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Abstract. In the Bachelor’s thesis we describe the Kalman filtering algorithm
for linear-Gaussian state space models and give an example of its application.
We describe the extended Kalman filter for differentiable Gaussian state space
models and give examples of its application. We show that for linear-Gaussian
state space models the extended Kalman filter gives the same results as the
Kalman filter.
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Lühikokkuvõte. Bakalaureusetöös kirjeldatakse Kalmani filtrit lineaarsete
normaaljaotusega müraga mudelite jaoks ja antakse näide Kalmani filtri ra-
kendamisest. Lisaks kirjeldatakse laiendatud Kalmani filtrit diferentseeruvate
normaaljaotuega müraga mudelite jaoks. Me toome näiteid laiendatud Kalmani
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Introduction

The Kalman filter is a recursive state estimation algorithm. It estimates the
current state Zt of the system from the previous state Zt−1 and measurements
{Y1 =y1, . . . , Yt =yt} up to the time t which we denote by Y1:t = y1:t.

In 1960 R. E. Kalman published his paper [2]. Since then the Kalman
filter has become a widely used tool in engineering, especially in the field of
navigation. Kalman filter can be used only for the linear-Gaussian state space
models. The extended Kalman filter broadens the type of models it can be
used for to differentiable Gaussian models.

In this theses we give a description of the Kalman filter and the extended
Kalman filter. We also give examples of the application of the Kalman filter and
the extended Kalman filter. The thesis is mainly based on the book Machine
Learning: A Probabilistic Perspective by Kevin P. Murphy [3].

This thesis consists of four sections. In the first section we give the pre-
requsites necessary for the following sections.

In the second section we define the state space models. In the first subsec-
tion we give examples of state space models. In the second subsection we define
the different types of state space model problems. In the third subsection we
describe the linear-Gaussian state space models.

In the third section we describe the Kalman filter algorithm. In the first
subsection we describe the Kalman filter prediction step where it is shown that
if the state Z0 has Gaussian distribution Zt|Y1:t−1 = y1:t−1 has Gaussian distri-
bution. In the second subsection we describe the Kalman filter measurement
step where it is shown, that Zt|Y1:t = y1:t has Gaussian distribution. In the
third subsection we give an example of the application of the Kalman filter.

In the fourth section we describe the algorithm of the extended Kalman
filter. In the first subsection we describe the prediction step for the extended
Kalman filter. In the second subsection we describe the measurement step for
the extended Kalman filter. In the third subsection we give examples of the
application of the extended Kalman filter. In the fourth subsection we show
that for linear-Gaussian systems the extended Kalman filter gives the same
results as the Kalman filter.

The Python codes used to generate the figures for the examples are pre-
sented in the appendices.
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1 Prerequisites

Let us denote random vectors by upper-case letters, that is X = (X1, . . . , Xd)T

is a d-dimensional random vector. Let the lower-case letters represent possible
numerical values of random vectors, that is x = (x1, . . . , xd)T represents the
possible numerical values of the vector X = (X1, . . . , Xd)T .

Let A be a matrix. We denote the transpose of A by AT .
Let us denote the density function of the random vector X by p(x) and the

joint density function of random vectors X1, . . . , Xn by p(x1, . . . , xn).

Definition 1.1. Let us look at a d-dimensional random vector X that has nor-
mal distribution with mean µ and covariance matrix Σ, that is X ∼ N (µ,Σ).
Let us denote the density function of X by φ(x|µ,Σ), that is

φ(x|µ,Σ) := 1
(2π)d/2|Σ|1/2 exp

[
−1

2(x− µ)T Σ−1(x− µ)
]
. (1.1)

Claim 1.1. Let a d-dimensional random vector X have normal distribution
where X ∼ N (µ,Σ). Suppose that A is a m× d matrix and b is a m-element
vector. Let Y be a m-dimensional random vector for which Y = AX+b. Then
Y has normal distribution and moreover Y ∼ N (Aµ+ b,AΣAT ) [1, p. 181].

Claim 1.2. Let X1, . . . , Xn be random vectors, where Xn is a d-dimensional
random vector. The rule of total probability [3, p. 29] states, that the joint
probability density function of the random vectors X1, . . . , Xn−1 can written
as:

p(x1, . . . , xn−1) =
∫
Rd
p(x1, . . . , xn)dxn. (1.2)

Let X and Y be random vectors. Let us denote the conditional density
function p(x|Y =y) by p(x|y), i.e., p(x|y) := p(x|Y =y).

Claim 1.3. Let X, Y be random vectors. The Bayes’ rule states that

p(x|y) = p(x, y)
p(y) = p(y|x)p(x)

p(y) . (1.3)

Claim 1.4. Let X be a random vector that has Gaussian distribution where

X ∼ N (µX ,ΣX) (1.4)
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and let Y be a random vector, for which

Y := AX + b + V (1.5)

where
V ∼ N (0,Σy). (1.6)

Then according to the Bayes rule for linear Gaussian systems [3, p. 119]
X|Y = y has normal distribution and the conditional density p(x|y) is in the
form

p(x|y) = φ(x|µx|y,Σx|y), (1.7)

where

Σ−1
x|y = Σ−1

x + AT Σ−1
y A (1.8)

µx|y = Σx|y[AT Σ−1
y (y − b) + Σ−1

x µx]. (1.9)

Claim 1.5. Let K be a d-dimensional random vector where K ∼ N (µ,Σ). Let
L be a random vector for which L = AK + b + V , where the random vector V
has a normal distribution and V ∼ N (0,Q). The following applies:

∫
Rd
φ(l|Ak + b,Q)φ(k|µ,Σ)dk = φ(l|Aµ+ b,AΣAT + Q)

Proof. Using the rule of total probability (1.2) we get that the density function
of the random vector L is:

p(l) =
∫
Rd
p(l|k)p(k)dk. (1.10)

The random vector K ∼ N (µ,Σ) and so p(k) = φ(k|µ,Σ). The random
vector L = AK + b + V , where V ∼ N (0,Q). According to Claim 1.1 L has
Gaussian distributiona and

L ∼ N (Aµ+ b,AΣAT + Q).

So the density of L is p(l) = φ(l|Aµ + b,AΣAT + Q). Now the distribution
of L|K=k is

L|K=k ∼ N (Ak + b,Q)
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and the density of L|K=k is p(l|K=k) = φ(k|Al + b,Q).
The rule of total probability (1.10) becomes

φ(l|Aµ+ b,AΣAT + Q) =
∫
Rd
φ(l|Ak + b,Q)φ(k|µ,Σ)dk. (1.11)

�

Definition 1.2. Let X = (X1, . . . , Xd)T be a random vector and let f be a
function. The first order Taylor expansion of the function f where f(X) =
(f1(X), . . . , fm(X)) is:

f(X) ≈ f(a) + Df(a)(X − a), (1.12)

where a is a point where f is differentiable and Df(a) is the matrix of partial
derivatives, that is

Df(a) =



∂f1(a)
∂x1

∂f1(a)
∂x2

· · · ∂f1(a)
∂xd

∂f2(a)
∂x1

∂f2(a)
∂x2

· · · ∂f2(a)
∂xd... ... . . . ...

∂fm(a)
∂x1

∂fm(a)
∂x2

· · · ∂fm(a)
∂xd

 . (1.13)

2 State Space Models

Let Z0, Z1, Z2 . . . be a sequence of random vectors called ”states”. Suppose
that for every t = 1, 2, . . . the value of Zt only depends on the previous state
value Zt−1 and some independent random vector Vt called ”noise”, but not the
state values Z1, . . . , Zt−2. Then Zt can be written as a function of the previous
state Zt−1 and the noise Vt, more precisely we get the following state space
model:

Zt = gt(Zt−1, Vt) t = 1, 2, . . . . (2.1)

Now let us look at some examples of state space models.

2.1 Examples of State Space Models

Let us look at a state space where the state Zt is a location in a one dimensional
space. Then Zt is a random variable. Let the state model have a linear noise
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Vt, that is, let the state space model be in the form

Zt = g(Zt−1) + Vt t = 1, 2, . . . . (2.2)

For this state space model the expectation of state Zt becomes

E[Zt] = E[g(Zt−1) + Vt] = E[g(Zt−1)] + E[Vt]. (2.3)

The previous state Zt−1 and the noise Vt are independent random variables.
So g(Zt−1) and Vt are also independent. The variance of state Zt becomes

Var[Zt] = Var[g(Zt−1) + Vt] = Var[g(Zt−1)] + Var[Vt]. (2.4)

Let us assume, that the noise Vt has expectation 0 and variance σ2
V . Then

the expectation and variance of state Zt become

E[Zt] = E[g(Zt−1)], (2.5)

Var[Zt] = Var[g(Zt−1)] + σ2
V . (2.6)

Let Zt−1 have expectation E[Zt−1] = µ and variance Var[Zt−1] = σ2.

Example 2.1. Let g be linear, that is let g(Zt) = aZt−1 + b, where a, b ∈ Z.
For this model the expectation and variance of the state Zt become

E[Zt] = E[g(Zt−1)] = E[aZt−1 + b] = aE[Zt−1] + b = aµ+ b (2.7)

and

Var[Zt] = Var[g(Zt−1)] + σ2
V = Var[aZt−1 + b] + σ2

V = a2Var[Zt−1] + σ2
V

= a2σ + σ2
V .

(2.8)

When we assume, that the noise Vt has normal distribution and that the
previous state Zt−1 also has Gaussian distribution, then using Claim 1.1 the
state Zt = aZt−1 + Vt has normal distribution.

Example 2.2. Let g(Zt−1) = Z3
t−1 +Zt−1. Let us assume, that the noise Vt has

normal distribution more precisely Vt ∼ N (0, σ2
V ). We also assume, that the

previous state Zt−1 has normal distribution with expectation µ and variance
σ2, that is Zt−1 ∼ N (µ, σ2).
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Even though the previous state Zt−1 and the noise Vt have normal distribu-
tion the random variable Zt = g(Zt−1) + Vt does not have normal distribution.

2.2 Types of State Space Model Problems

Let us have the state space model

Zt = gt(Zt−1, Vt), t = 1, 2, . . . . (2.9)

Let
Yt = ht(Zt,Wt) t = 1, 2, . . . (2.10)

be the random vector of ”measurements”, where the noise Wt is a Gaussian
random variable, which is independent from Zt.

Suppose we have measured the values y0, . . . , yt1 , which we denote by y1:t1 :=
{y0, . . . , yt1}, we denote the corresponding random variables Y0, . . . , Yt1 by
Y1:t1 := {Y0, . . . , Yt1} and when {Y0 = y0, . . . , Yt−1 = yt1} we write that Y1:t1 =
y1:t1 .

The state estimation problem in general consists of estimating the dis-
tribution of Zt2 given the observations y1:t1 . Depending on the time t2 the
state-estimation problems can be divided as:

• filtering, estimating the distribution of the state at time t2 = t1.

• smoothing, estimating the distribution of the state at time t2 < t1.

• prediction, estimating the distribution of the state at time t2 > t1.

2.3 Linear-Gaussian State Space Model

Let Zt be the state at time t that can be presented as a function of Zt−1

and noise vector Vt. Let Yt be a random vector, which can be presented as
a function of Zt and the random ”measurement noise” vector Wt. The state
space model can be written in the form

Zt = gt(Zt−1, Vt) t = 1, 2, . . . , (2.11)

Yt = ht(Zt,Wt) t = 1, 2, . . . . (2.12)
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The model (2.11) is called the ”system model” and the model (2.12) is called
the ”measurement model”.

Let us look at a linear-Gaussian state space model, that is a state space
model for which

• the system noise Vt and the measurement noise Wt are independent and
Gaussian with the expectation 0 and covariance matrices Qt and Rt

respectively, that is:

Vt ∼ N (0,Qt), (2.13)

Wt ∼ N (0,Rt). (2.14)

• the function gt is a linear function, which means the system model can
be written as

Zt = AtZt−1 + Vt t = 1, 2, . . . , (2.15)

where At is a matrix defining the linear function gt.

• the function ht is a linear function, which means, that the measurement
model can be written as:

Yt = CtZt +Wt t = 1, 2, . . . , (2.16)

where Ct is a matrix defining the linear function ht.

For any t1, t2 ∈ N and y1:t1 let us denote the expectation E[Zt2 |Y1:t1 =
y1:t1 ] =: µt2|t1 and the covariance matrix Cov[Zt2|Y1:t1 = y1:t1 ] =: Σt2|t1 . Both
µt2|t1 and Σt2|t1 depend on y1:t1 , but y1:t1 is left out of the notation because it
is fixed. If t1 = t2 =: t, we denote µt|t =: µt and Σt|t =: Σt.

Claim 2.1. If Z0 Gaussian random vector then Zt is a Gaussian random vector
for every t = 1, 2, . . . .

Proof. Let Z0 be a Gaussian random vector. We prove by induction that Zt is
Gaussian. Firstly for the induction base we have that Z0 is Gaussian.

For the induction step we assume, that state Zt is Gaussian and that Zt ∼
N (µt|0,Σt|0). We show, that the state Zt+1 is also Gaussian. According to the
system model (2.9) the state Zt+1 = At+1Zt +Vt+1. As Zt and Vt are Gaussian
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then according to Claim 1.1 the state Zt+1 has Gaussian distribution and

Zt+1 ∼ N (Atµt|0,AtΣt|0AT
t + Qt+1) =: N (µt+1|0,Σt+1|0). (2.17)

�

Let us assume, that Z0 is a Gaussian random variable, more precisely Z0 ∼
N (µ0,Σ0). Let us now look at an example of a linear-Gaussian state space
model.

Example 2.3. Let us consider an object moving in a 2-dimensional plane,
where z1,t and z2,t are the horizontal and vertical location coordinates and
ż1,t and ż2,t are the corresponding velocities. We can represent the described
system with a state vector:

Zt =


Z1,t

Z2,t

Ż1,t

Ż2,t

 (2.18)

Let us assume that the object is moving at constant velocity with random
Gaussian noise, that is the velocities are in the form ż1,t = ż1,t−1 + V3,t and
ż2,t = ż2,t−1 + V4,t where the noise Vt = (V1,t, V2,t, V3,t, V4,t)T is Gaussian, and
Vt ∼ N (0,Qt).

This means we can model the system as follows:

Zt =


Z1,t

Z2,t

Ż1,t

Ż2,t

 =


Z1,t + Ż1,t−1 ·∆ + V1,t

Z2,t + Ż2,t−1 ·∆ + V2,t

Ż1,t−1 + V3,t

Ż2,t−1 + V4,t

 (2.19)

where ∆ is the sampling period.
This equation can be written in the matrix form as:

Zt = AtZt−1 + Vt (2.20)
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where

A =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

 . (2.21)

Now suppose we can only observe the location of the object but not its
velocity. Let y1,t and y2,t be the measured location coordinates. Then yt =
(y1,t, y2,t)T is the observed location which is subject to Gaussian noise. We can
model the measurement as follows:

Yt =
Y1,t

Y2,t

 =
c1Z1,t +W1,t

c2Z2,t +W2,t

 (2.22)

where Wt = (W1,t,W2,t)T is the measurement noise, which has normal distri-
bution and Wt ∼ N (0,Rt) and a1, a1 ∈ R

We can write the measurement model in the matrix form as follows:

Yt = CtZt + δt (2.23)

where

Ct =
c1 0 0 0

0 c2 0 0

 . (2.24)

3 Kalman filter

The Kalman filter is a recursive filtering algorithm, which evaluates the state
Zt for linear-Gaussian state space models from Zt−1 and measurements Y1:t.

Let us have a linear-Gaussian state space model as described before. Let
us assume, that Z0 is Gaussian and that Z0 ∼ N (µ0,Σ0). We have already
shown, that then Zt is Gaussian for every t = 1, 2, . . . and we have denoted
Zt ∼ N (µt|0,Σt|0).

We show, that the conditional density p(Zt|Y1:t = y1:t) is Gaussian. We do
this by induction. For the induction basis we know that Z0 is Gaussian. We
divide the induction step into two parts:

• prediction step, show that Zt−1|Y1:t−1 = y1:t−1 has Gaussian distribu-
tion,
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• measurment step, show that Zt−1|Y1:t =y1:t has Gaussian distribution.

Let us assume, that the distribution of Zt−1|Y1:t−1 = y1:t−1 is available and
Gaussian, that is p(zt−1|y1:t−1) = φ(zt−1|µt−1,Σt−1).

3.1 Prediction step

Let the dimension of Zt for every t = 1, 2, . . . be d. Using the law of total
probability (1.2) we get that the joint density function of Zt and Y1:t−1 can be
written as:

p(zt, y1:t−1) =
∫
Rd
p(zt, y1:t−1, zt−1)dzt−1. (3.1)

By the definition of conditional probability the density function p(zt, y1:t−1)
can be written as:

p(zt, y1:t−1) = p(zt|y1:t−1)p(y1:t−1) (3.2)

and similarly the density function p(zt, y1:t−1, zt−1) can be written as:

p(zt, y1:t−1, zt−1) =p(zt|y1:t−1, zt−1)p(y1:t−1, zt−1)

=p(zt|y1:t−1, zt−1)p(zt−1|y1:t−1)p(y1:t−1).
(3.3)

So the equation (3.1) can be rewritten as

p(zt|y1:t−1)p(y1:t−1) =
∫
Rd
p(zt|y1:t−1, zt−1)p(zt−1|y1:t−1)p(y1:t−1)dzt−1. (3.4)

We divide the previous equation by p(y1:t−1) and get:

p(zt|y1:t−1) =
∫
Rd
p(zt|y1:t−1, zt−1)p(zt−1|y1:t−1)dzt−1. (3.5)

By the definition of linear-Gaussian state space model the conditional dis-
tribution of Zt|Y1:t−1, Zt−1 is independent of Y1:t−1 and equal to the conditional
distribution of Zt|Zt−1. Therefore p(zt|y1:t−1, zt−1) = p(zt|zt−1). Now we can
write the conditional density (3.5) as:

p(zt|y1:t−1) =
∫
Rd
p(zt|y1:t−1, zt−1)p(zt−1|y1:t−1)dzt−1

=
∫
Rd
p(zt|zt−1)φ(zt−1|µt−1,Σt−1)dzt−1.

(3.6)

As we proved before Zt−1 is Gaussian and Zt−1 ∼ N (µt−1|0,Σt−1|0). The
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system model (2.15) is Zt = AtZt−1 + Vt. Both Zt−1 and Vt have a normal
distribution and Vt ∼ N (0,Qt). Then according to Claim 1.1 the distribution
of Zt is also Gaussian and more precisely

Zt ∼ N (Atµt−1|0,AtΣt−1|0AT
t + Qt). (3.7)

Both Zt and Zt−1 are Gaussian. Then the conditional distribution of
Zt|Zt−1 =zt−1 is also Gaussian and more precisely

Zt|Zt−1 =zt−1 ∼ N (Atzt−1,Qt). (3.8)

So the density function of Zt|Zt−1 =zt−1 is

p(zt|zt−1) = φ(zt|Atzt−1,Qt). (3.9)

We can now rewrite (3.6) as:

p(zt|y1:t−1) =
∫
Rd
p(zt|zt−1)φ(zt−1|µt−1,Σt−1)dzt−1

=
∫
Rd
φ(zt|Atzt−1,Qt)φ(zt−1|µt−1,Σt−1)dzt−1

(3.10)

We show, that p(zt|y1:t−1) has normal distribution. We take K to be

Zt−1|Y1:t−1 =y1:t−1 ∼ N (µt−1,Σt−1). (3.11)

We take L to be Zt = AtK + Vt, where Vt ∼ N (0,Qt). Then according to
Claim 1.5 the following equation applies:∫

Rd
φ(zt|Atzt−1,Qt)φ(zt−1|µt−1,Σt−1)dzt−1

= φ(zt|Atµt−1,AtΣt−1AT
t + Qt).

(3.12)

Let us denote

µt|t−1 := Atµt−1, (3.13)

Σt|t−1 := AtΣt−1AT
t + Qt. (3.14)
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Then (3.10) is

p(zt|y1:t−1) =
∫
Rd
φ(zt|Atzt−1,Qt)φ(zt−1|µt−1,Σt−1)dzt−1

= φ(zt|µt|t−1,Σt|t−1).
(3.15)

3.2 Measurement step

By the definition of state space models the conditional distribution of Yt|Y1:t−1 =
y1:t, Zt = zt is independent of Y1:t−1 and equals to Yt|Zt = zt. Then the density
functions are also equal, i.e., p(yt|y1:t−1, zt) = p(yt|zt).

For the density function p(zt|y1:t) the Bayes’ rule (1.3) becomes:

p(zt|y1:t) = p(zt|yt, y1:t−1) = p(yt|zt)p(zt|y1:t−1)
p(yt|y1:t−1) . (3.16)

In the Bayes rule for linear-Gaussian systems, Claim 1.4, we take X to be
Zt|Y1:t−1 =y1:t−1. The distribution of Zt|Y1:t−1 =y1:t−1 is Gaussian and

Zt|Y1:t−1 =y1:t−1 ∼ N (µt|t−1,Σt|t−1). (3.17)

We take Y to be Yt. According to (2.16) Yt can be expressed as:

Yt = CtZt +Wt, (3.18)

where
Wt ∼ N (0,Rt). (3.19)

Now according to the Bayes rule of the linear-Gaussian systems, Claim 1.4,
the posterior is given as:

p(zt|Y1:t =y1:t) = φ(zt|µt,Σt) (3.20)

where

Σ−1
t = Σ−1

t|t−1 + CT
t R−1

t Ct (3.21)

µt = ΣtCT
t R−1

t Yt + ΣtΣ−1
t|t−1µt|t−1. (3.22)

Using simple transformations [3, p. 643] the expectation µt and the covari-
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ance matrix Σt can be written as

µt = µt|t−1 + Kt(yt − ŷt) (3.23)

Σt = (I−KtCt)Σt|t−1 (3.24)

where ŷt is the predicted observation and

ŷt := E[Yt|Y1:t−1 =y1:t−1] = Ctµt|t−1 (3.25)

and where Kt is the Kalman gain matrix given by

Kt = Σt|t−1CT
t S−1

t (3.26)

where

St : = cov[rt|Y1:t−1]

= cov[CtZt + wt −Ctµt|t−1|Y1:t−1]

= CtΣt|t−1CT
t + Rt.

(3.27)

We have shown, that Zt|Y1:t =y1:t has normal distribution and that

p(zt|Y1:t =y1:t) = φ(zt|µt,Σt). (3.28)

Now we can estimate the state Zt on the condition, that Y1:t =y1:t with µt.

3.3 Example of Kalman Filter Estimation

Example 3.1. Let us look at a 1-dimensional linear-Gaussian state space
model

Zt =Zt−1 + Vt (3.29)

Yt =Zt +Wt (3.30)

where

Vt ∼N (0, Qt) (3.31)

Wt ∼N (0, Rt). (3.32)
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Now we take Z0 ∼ N (0, 0.1) =: N (µ0, σ
2
0) and use the Kalman filter to find

the density functions p(zt|Y1:t = y1:t) = φ(zt|µt, σ
2
t ) for every t = 1, 2, . . . .

Recursively for every t = 1, . . . we first calculate µt|t−1 and σ2
t|t−1 from the

prediction step, more precisely from the formulas (3.13) and (3.14). For our
case it is:

µt|t−1 = µt−1, (3.33)

σ2
t|t−1 = σ2

t−1 +Qt. (3.34)

Then we calculate µt and σ2
t from the measurement step using the formulas

(3.23) and (3.24), which for our case are:

µt = µt|t−1 +Kt(yt − ŷt) (3.35)

σ2
t = (1−Kt)σ2

t|t−1, (3.36)

where for our case according to (3.25) we have that ŷt = µt|t−1 and according
to (3.26) and (3.27) we have that Kt = σ2

t|t−1 ∗ 1/(σ2
t|t−1 +Rt).

Now from the Kalman filter measurement step we know, that Zt|Y1:t =y1:t ∼
N (µt, σ

2
t ).

We can write µt as

µt = µt−1 +Kt(yt − µt−1) = µt−1(1−Kt) +Ktyt (3.37)

and Kt as:
Kt = σ2

t−1 +Qt

σ2
t−1 +Qt +Rt

. (3.38)

Then Kt ∈ [0, 1]. If Rt → ∞, then Kt → 0 and if Qt → ∞ or Rt → 0, then
Kt → 1.

Now if Kt → 0 the Kalman estimation µt → µt−1. If Kt → 1 then µt → yt.
That is the bigger Rt is, the more µt depends on µt−1 and less on yt. And the
bigger Qt is the more µt depends on the measurement yt and less on µt−1).

For the general case for the Kalman filter according to (3.23), (3.13) and
(3.25) µt can be written as:

µt = Atµt−1 + Kt(yt −CtAtµt−1). (3.39)
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Now if Ct = I we can write µt as

µt = (I−Kt)Atµt−1 + Ktyt (3.40)

and the same relations hold as in the example. That is the bigger Rt is, the
more µt depends on µt−1 and the bigger Qt is the more µt depends on the
measurement yt.

Now let us look at figures with the measurement values yt, state values zt

and the expectation µt where t = 0, . . . , 100 for different values of Qt and Rt.
From the figures we can see, that the variance of the system noise Qt af-

fects the amplitude of the state function. The bigger Qt is, the bigger is the
amplitude of the state. The variance of the measurement noise Rt affects the
amplitude of the measurements. The bigger Rt the bigger is the amplitude of
the measurements. When Rt is small the measurement values are close to the
state values and thus the extended Kalman filter estimation µt is close to both
zt and yt.

Figure 3.1: As both noise variances Rt and Qt are small the expectation µt is
close to the state value zt.
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Figure 3.2: As the value of Qt has increased from that in the previous figure
the value of µt depends more on yt then in figure 3.1.

Figure 3.3: As the value of Rt has increased from that in the previous figure
the value of µt depends more on µt−1 and less on yt then in figure 3.2.
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Figure 3.4: As the value of Qt has decreased from that in the previous figure
the value of µt depends more on yt and less on µt−1 then in figure 3.3.

4 The Extended Kalman Filter

Let us look at a state space model, where the system model (2.9) and the
measurement model (2.10) are in the form:

Zt = gt(Zt−1) + Vt, (4.1)

Yt = ht(Zt) +Wt, (4.2)

where gt,ht : Rd → Rd are nonlinear but differentiable functions and Vt ∼
N (0,Qt) and Wt ∼ N (0,Rt).

4.1 Prediction Step

Let us assume, that

Zt−1|Y1:t−1 =y1:t−1 ∼ N (µt−1,Σt−1). (4.3)

18



We know from the prediction step of the Kalman filter that

p(zt|y1:t−1) =
∫
Rd
p(zt|y1:t−1, zt−1)p(zt−1|y1:t−1)dzt−1

=
∫
Rd
p(zt|zt−1)φ(zt−1|µt−1,Σt−1)dzt−1.

(4.4)

The expectation of Zt|Zt−1 =zt−1 is:

E[Zt|Zt−1 =zt−1] = E[gt(Zt−1) + Vt|Zt−1 =zt−1] = gt(zt−1) (4.5)

and the covariance matrix of Zt|Zt−1 =zt−1 is:

Var[Zt|Zt−1 =zt−1] =Var[gt(Zt−1) + Vt|Zt−1 =zt−1] = Var[gt(Zt−1)|Zt−1 =zt−1]

+Qt = E[(gt(Zt−1)− E[gt(Zt−1)])·

·(gt(Zt−1)− E[gt(Zt−1)])T |Zt−1 =zt−1] + Qt

=Qt.

(4.6)

We linearize the function gt using the first order Taylor expansion, Defini-
tion 1.2, at the point µt−1, that is

gt(Zt−1) ≈ gt(µt−1) + Dgt(µt−1)(Zt−1 − µt−1). (4.7)

Now let us denote the approximation of Zt by Z̃t, i.e.,

Z̃t := gt(µt−1) + Dgt(µt−1)(Zt−1 − µt−1) + Vt. (4.8)

We approximate

p(zt|zt−1) ≈ φ(zt|Dgt(µt−1)zt−1 + (gt(µt−1)−Dgt(µt−1)µt−1),Qt) (4.9)

We can now rewrite (4.4) as:

p(zt|y1:t−1) =
∫
p(zt|zt−1)φ(zt−1|µt−1,Σt−1)dzt−1

≈
∫
φ(zt|Dgt(µt−1)zt−1 + (gt(µt−1)−Dgt(µt−1)µt−1),Qt)·

· φ(zt−1|µt−1,Σt−1)dzt−1

(4.10)

19



We takeK to have the same distribution as Zt−1|Y1:t−1 =y1:t−1 ∼ N (µt−1,Σt−1)
and we take L to be Z̃t = Dgt(µt−1)K+(gt(µt−1)−Dgt(µt−1)µt−1)+Vt, where
Vt ∼ N (0,Qt) is independent of K.

Then according to the Claim 1.5 the following equation applies:∫
φ(zt|Dgt(µt−1)zt−1 + (gt(µt−1)−Dgt(µt−1)µt−1),Qt)φ(zt−1|µt−1,Σt−1)dzt−1

=φ(zt|gt(µt−1),Dgt(µt−1)Σt−1Dgt(µt−1)T + Qt).
(4.11)

Let us denote

µ̃t|t−1 := gt(µt−1), (4.12)

Σ̃t|t−1 := Dgt(µt−1)Σt−1Dgt(µt−1)T + Qt. (4.13)

Then (4.4) is

p(zt|y1:t−1) ≈
∫
Rd
φ(zt|Dgt(µt−1)zt−1 + (gt(µt−1)−Dgt(µt−1)µt−1),Qt)·

· φ(zt−1|µt−1,Σt−1)dzt−1

=φ(zt|µ̃t|t−1, Σ̃t|t−1).
(4.14)

Thus the approximation of Zt|Y1:t−1 =y1:t−1 is

Z̃t|Y1:t−1 =y1:t−1 ∼ N (µ̃t|t−1, Σ̃t|t−1). (4.15)

4.2 Measurement Step

We linearize the function ht using the first order Taylor expansion, Definition
1.2, at the point µ̃t|t−1, that is

ht(Yt) ≈ ht(µ̃t|t−1) + Dht(µ̃t|t−1)(Z̃t − µ̃t|t−1). (4.16)

Now let us denote the approximation of Yt by Ỹt, i.e.,

Ỹt := ht(µt|t−1) + Dht(µt|t−1)(Z̃t − µt|t−1) +Wt. (4.17)
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In the Bayes rule for linear-Gaussian systems, Claim 1.4, we take X to have
the distribution

X ∼ N (µ̃t|t−1, Σ̃t|t−1). (4.18)

We take Y to be Ỹt and

Ỹt = ht(µt|t−1) + Dht(µt|t−1)(X − µt|t−1) +Wt

= Dht(µt|t−1)X + (ht(µt|t−1)−Dht(µt|t−1)µt|t−1) +Wt

(4.19)

where Wt ∼ N (0,Rt) is independent of X.
Now according to the Bayes rule for the linear-Gaussian systems, that is

Claim 1.4, the following applies:

p(zt|Ỹ1:t = y1:t) = φ(zt|µ̃t, Σ̃t) (4.20)

where

Σ̃−1
t = Σ̃−1

t|t−1 + Dht(µ̃t|t−1)T R−1
t Dht(µ̃t|t−1) (4.21)

µ̃t = Σ̃t[Dht(µ̃t|t−1)T R−1
t (Dht(µ̃t|t−1)yt +Rt) + Σ̃−1

t|t−1µ̃t|t−1] (4.22)

Using simple transformations similar to [3, p. 643] the expectation µt and
the covariance matrix Σt can be written as

µ̃t = µ̃t|t−1 + Kt(yt − ŷt) (4.23)

Σ̃t = (I−KtDht(µ̃t|t−1))Σ̃t|t−1 (4.24)

where ŷt is the predicted observation and

ŷt := E[Ỹt|Y1:t−1 =y1:t−1] = E[Dht(µ̃t|t−1)Z̃t + ht(µ̃t|t−1)

−Dht(µ̃t|t−1)µ̃t|t−1 +Wt|Y1:t−1 =y1:t−1] = Dht(µ̃t|t−1)E[Z̃t|Y1:t−1 =y1:t−1]

+ ht(µ̃t|t−1)−Dht(µ̃t|t−1)µ̃t|t−1 + E[Wt|Y1:t−1 =y1:t−1]

= Dht(µ̃t|t−1)µ̃t|t−1 + ht(µ̃t|t−1)−Dht(µ̃t|t−1)µ̃t|t−1 = ht(µ̃t|t−1).
(4.25)

and where Kt is the Kalman gain matrix given by

Kt = Σ̃t|t−1Dht(µ̃t|t−1)T S−1
t (4.26)
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where

St : = Cov[Ỹt − ŷt|Y1:t−1 =y1:t−1] = Cov[Dht(µ̃t|t−1)Z̃t + ht(µ̃t|t−1)

−Dht(µ̃t|t−1)µ̃t|t−1 +Wt − ht(µ̃t|t−1)|Y1:t−1 =y1:t−1]

= Dht( ˜µt|t−1)Σ̃t|t−1Dht(µ̃t|t−1)T + Rt.

(4.27)

4.3 Examples of Extended Kalman Filter Estimation

Example 4.1. Let us look at a state space model where gt(Zt−1) = Z3
t−1 −

0.5Zt−1 + 0.2 and ht(Zt) = Zt, i.e., the following state space model

Zt =Z3
t−1 − 0.5Zt−1 + 0.2 + Vt (4.28)

Yt =Zt +Wt (4.29)

where

Vt ∼N (0, Qt) (4.30)

Wt ∼N (0, Rt). (4.31)

Now we take Z0 ∼ N (0, 0.1) =: N (µ̃0, σ̃2
0) and use the extended Kalman

filter to estimate the density functions p(zt|Y1:t = y1:t) ≈ φ(zt|µ̃t, σ̃
2
t ) for every

t = 1, 2, . . . .
Recursively for every t = 1, . . . we first calculate µ̃t|t−1 and σ̃2

t|t−1 from the
prediction step, more precisely from the formulas (4.12) and (4.13). For our
case it is:

µ̃t|t−1 = µ̃3
t−1 − 0.5µ̃t−1 + 0.2 = gt(µ̃t−1), (4.32)

σ̃2
t|t−1 = (3µ̃2

t−1 + 0.5)2σ̃2
t−1 +Qt. (4.33)

Then we calculate µ̃t and σ̃2
t from the measurement step. As the measure-

ment model is linear we can use the Kalman filter formulas (3.23) and (3.24),
which for our case are:

µ̃t = µ̃t|t−1 +Kt(yt − ŷt) (4.34)

σ̃2
t = (1−Kt)σ̃2

t|t−1, (4.35)
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where for our case according to (3.25) we have that ŷt = µ̃t|t−1 and according
to (3.26) and (3.27) we have that Kt = σ̃2

t|t−1 ∗ 1/(σ̃2
t|t−1 +Rt).

We can write µt as

µ̃t = gt(µ̃t−1) +Kt(yt − gt(µ̃t−1)) = gt(µ̃t−1)(1−Kt) +Ktyt. (4.36)

Now Kt can be written as:

Kt = (3µ̃2
t−1 − 0.5)2σ̃2

t−1 +Qt

(3µ̃2
t−1 − 0.5)2σ̃2

t−1 +Qt +Rt

. (4.37)

Then Kt ∈ [0, 1]. If Rt → ∞, then Kt → 0 and if Qt → ∞ or Rt → 0, then
Kt → 1.

Now if Kt → 0 the extended Kalman estimation µ̃t → gt(µ̃t−1). If Kt → 1
then µ̃t → yt. That is the bigger Rt is, the more µ̃t depends on gt(µ̃t−1) and
less on yt. And the bigger Qt is the more µ̃t depends on the measurement yt

and less on gt(µ̃t−1).
For the general case for the extended Kalman filter according to (4.23),

(4.12) and (4.25) µt can be written as:

µ̃t = gt(µ̃t−1) + Kt(yt − ht(gt(µ̃t−1))). (4.38)

Now if ht is an identity function we can write µt as

µ̃t = (I−Kt)gt(µ̃t−1) + Ktyt (4.39)

and the same relations hold as in the example. That is the bigger Rt is, the
more µ̃t depends on µ̃t−1 and the bigger Qt is the more µt depends on the
measurement yt.

Now let us look at figures with the measurement values yt, state values zt

and the expectation µ̃t where t = 0, . . . , 100 for different values of Qt and Rt.
The value of Qt and Rt affects the state and measurement function ampli-

tude in the same way as in Example 3.1. That is the bigger Qt is, the bigger
is the amplitude of the state and the bigger Rt the bigger is the amplitude of
the measurements.
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Figure 4.1: As both noise variances Rt and Qt are small the expectation µ̃t is
close to the state value zt.

Figure 4.2: As the value of Qt has increased from that in the previous figure
the value of µ̃t depends more on yt then in figure 4.1.
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Figure 4.3: As the value of Rt has increased from that in the previous figure
the value of µ̃t depends more on gt(µ̃t−1) and less on yt then in figure 4.2.

Figure 4.4: As the value of Qt has decreased from that in the previous figure
the value of µ̃t depends more on yt and less on gt(µ̃t−1) then in figure 4.3.
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Example 4.2. Let us look at a state space model where gt(Zt−1) = Z3
t−1 −

0.5Zt−1 + 0.2 and ht(Zt) = exp (Zt), i.e., the following state space model

Zt =Z3
t−1 − 0.5Zt−1 + 0.2 + Vt (4.40)

Yt = exp (Zt) +Wt (4.41)

where

Vt ∼N (0, Qt) (4.42)

Wt ∼N (0, Rt). (4.43)

Now we take Z0 ∼ N (0, 0.1) =: N (µ̃0, σ̃2
0) and use the extended Kalman

filter to estimate the density functions p(zt|Y1:t = y1:t) ≈ φ(zt|µ̃t, σ̃
2
t ) for every

t = 1, 2, . . . .
Recursively for every t = 1, . . . we first calculate µ̃t|t−1 and σ̃2

t|t−1 from the
prediction step, more precisely from the formulas (4.12) and (4.13). For our
case it is:

µ̃t|t−1 = µ̃3
t−1 − 0.5µ̃t−1 + 0.2 = gt(µ̃t−1), (4.44)

σ̃2
t|t−1 = (3µ̃2

t−1 − 0.5)2σ̃2
t−1 +Qt. (4.45)

Then we calculate µ̃t and σ̃2
t from (4.23) and (4.24), which for our case are:

µ̃t = µ̃t|t−1 +Kt(yt − ŷt) (4.46)

σ̃2
t = (1−Kt)σ̃2

t|t−1, (4.47)

where for our case according to (4.25) we have that ŷt = exp (µ̃t|t−1). According
to (3.26) and (3.27) we have that

Kt =
σ̃2

t|t−1 exp (µ̃t|t−1)
exp (2µ̃t|t−1)σ̃2

t|t−1 +Rt

. (4.48)

We can write µt as

µ̃t = µ̃3
t−1 − 0.5µ̃t−1 + 0.2 +Kt(yt − exp (µ̃3

t−1 − 0.5µ̃t−1 + 0.2)). (4.49)
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Now Kt can be written as:

Kt = ((3µ̃2
t−1 − 0.5)2σ̃2

t−1 +Qt) exp (µ̃3
t−1 − 0.5µ̃t−1 + 0.2)

exp (2µ̃3
t−1 − µ̃t−1 + 0.4)((3µ̃2

t−1 − 0.5)2σ̃2
t−1 +Qt) +Rt

. (4.50)

Then Kt ∈ [0, 1]. If Rt → ∞, then Kt → 0 and if Qt → ∞ or Rt → 0, then
Kt → exp (−µ̃3

t−1 + 0.5µ̃t−1 − 0.2).
Now if Kt → 0 the extended Kalman estimation µ̃t → gt(µ̃t−1). If Kt →

exp (−µ̃3
t−1 + 0.5µ̃t−1 − 0.2) then

µ̃t → µ̃3
t−1 − 0.5µ̃t−1 − 0.8 + yt exp (−µ̃3

t−1 + 0.5µ̃t−1 − 0.2). (4.51)

That is the bigger Rt is, the more µ̃t depends on gt(µ̃t−1) and less on yt.
Now let us look at figures with the measurement values yt, state values zt

and the expectation µ̃t where t = 0, . . . , 100 for different values of Qt and Rt.
The value of Qt and Rt affects the state and measurement function ampli-

tude in the same way as in Example 3.1 and Example 4.1. That is the bigger
Qt is, the bigger is the amplitude of the state and the bigger Rt the bigger is
the amplitude of the measurements.

Figure 4.5: As Rt and Qt are small the expectation µ̃t is close to the state
value zt.
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Figure 4.6: As the value of Qt has increased from that in the previous figure
the amplitude of the state function is bigger than in figure 4.5.

Figure 4.7: As the value of Rt has increased from that in the previous figure
the amplitude of the measurements is bigger and the value of µ̃t depends more
on gt(µ̃t−1) and less on yt then in figure 4.6.
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Figure 4.8: As the value of Qt has decreased from that in the previous figure
amplitude of the state function is smaller then in figure 4.7. The value of Rt

is big so the value of µ̃t depends more on gt(µ̃t−1) and less on yt.

4.4 Extended Kalman filter for Linear-Gaussian systems

Let us look at a state space model, where gt and ht are linear functions, that
is

gt(Zt−1) = AtZt−1 (4.52)

ht(Zt) = CtZt (4.53)

where At and Ct are matrices.
For linear gt and ht the matrix Dgt(µt−1) = At and Dht(µ̃t|t−1) = Ct.
The prediction step now gives that

Z̃t|Y1:t−1 =y1:t−1 ∼ N (µ̃t|t−1, Σ̃t|t−1) (4.54)
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where

µ̃t|t−1 =gt(µt−1) = Atµt−1 (4.55)

Σ̃t|t−1 =Dgt(µt−1)Σt−1Dgt(µt−1)T + Qt = AtΣt−1AT
t + Qt. (4.56)

The measurement step gives that

Z̃t|Ỹ1:t =y1:t ∼ N (µ̃t, Σ̃t) (4.57)

where

µ̃t =µ̃t|t−1 + Kt(yt − ht(µt|t−1)) = µ̃t|t−1 + Kt(yt −Ctµt|t−1) (4.58)

Σ̃t =(I−KtDht(µ̃t|t−1))Σ̃t|t−1 = (I−KtCt)Σ̃t|t−1 (4.59)

where the Kalman gain matrix is given by

Kt =Σ̃t|t−1Dht(µ̃t|t−1)T (D(µt|t−1)Σ̃t|t−1D(µ̃t|t−1)T + Rt)−1

=Σ̃t|t−1CT
t (CtΣ̃t|t−1CT

t + Rt)−1.
(4.60)

Thus for a linear-Gaussian state space model the extended Kalman filter
gives the same results as the Kalman filter.
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5 Appendices

5.1 Appendix 1. Python Code for Kalman Filter Ex-
ample

import numpy as np
import matplotlib.pylab as plt

plt . close ( ’ all ’ )
#the expectation and variance of Z_0
mu0=0
sigmaruut0=.1
#the expectations of he noises V and W
muv=0
muw=0
#the length of time period
n=100
a=1
c=1

def g(z):
return a∗z

def h(z):
return c∗z

def KF(Qt,Rt):
mu = np.zeros((n+1, n+1))
mu[0, 0]=mu0

sigmaruut = np.zeros((n+1, n+1))
sigmaruut[0, 0]=sigmaruut0

v=np.random.normal(muv, Qt, n+1)
w=np.random.normal(muw, Rt, n+1)

z = np.zeros(n+1)
z[0]=z0+v[0]
for k in np.arange(1,n+1):

z[k]=g(z[k−1])+v[k]

y = np.zeros(n+1)
for j in np.arange(n+1):

y[ j]=h(z[j])+w[j]

#KF algorithm
for i in np.arange(1,n+1):

#prediction step
mu[i, i−1]=a∗mu[i−1,i−1]
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sigmaruut[i, i−1]=a∗∗2∗sigmaruut[i−1,i−1]+Qt
#measurement step
Kt=sigmaruut[i,i−1]∗c∗(1/(c∗∗2∗sigmaruut[i,i−1]+Rt))
mu[i, i]=mu[i,i−1]+Kt∗(y[i]−c∗mu[i,i−1])
sigmaruut[i, i ]=(1−Kt∗c)∗sigmaruut[i,i−1]

return z, y, mu.diagonal()

def jon(z,y,mu,Qt,Rt):
plt .plot(t , mu, label=r"KF␣$\mu_t$")
plt .plot(t , z, label=r"$z_t$")
plt . xlabel( ’time’)
plt . ylabel( ’ state␣value’)
plt . title (r"$Q_t=$"+str(Qt)+r",␣$R_t=$"+str(Rt))
plt .plot(t , y, ’x’ , label=r"$y_t$")
plt .ylim([−6,6])
plt .legend(loc=’best’)

z0= np.random.normal(mu0, sigmaruut0)

Qt1=.1
Rt1=.1
z1,y1,mu1=KF(Qt1,Rt1)
Qt2=.4
Rt2=.1
z2,y2,mu2=KF(Qt2,Rt2)
Qt3=.4
Rt3=1
z3,y3,mu3=KF(Qt3,Rt3)
Qt4=.1
Rt4=1
z4,y4,mu4=KF(Qt4,Rt4)

t = np.linspace(0, n, n+1)
plt . rc( ’ text ’ , usetex=True)

o=plt.figure(0)
jon(z1,y1,mu1,Qt1,Rt1)
o.show()

p=plt.figure(1)
jon(z2,y2,mu2,Qt2,Rt2)
p.show()

q=plt.figure(2)
jon(z3,y3,mu3,Qt3,Rt3)
q.show()

r=plt.figure (3)
jon(z4,y4,mu4,Qt4,Rt4)
r .show()
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5.2 Appendix 2. Python Code for Extended Kalman
Filter Examples

import numpy as np
import matplotlib.pylab as plt
from scipy.misc import derivative

plt . close ( ’ all ’ )
#the expectation and variance of Z_0
mu0=0
sigmaruut0=.1
#the expectations of he noises V and W
muv=0
muw=0
#the length of time period
n=100

def g(z):
return z∗∗3−z

def h(z):
return z

def EKF(Qt,Rt):
mu = np.zeros((n+1, n+1))
mu[0, 0]=mu0

sigmaruut = np.zeros((n+1, n+1))
sigmaruut[0, 0]=sigmaruut0

v=np.random.normal(muv, Qt, n+1) #vead on normaaljaotusest
w=np.random.normal(muw, Rt, n+1)

z = np.zeros(n+1)
z[0]=z0+v[0]
for k in np.arange(1,n+1):

z[k]=g(z[k−1])+v[k]

y = np.zeros(n+1)
for j in np.arange(n+1):

y[ j]=h(z[j])+w[j]

#EKF algorithm
for i in np.arange(1,n+1):

#prediction step
mu[i, i−1]=g(mu[i−1,i−1])
sigmaruut[i, i−1]=(derivative(g,mu[i−1,i−1])∗∗2∗sigmaruut[i−1,i−1]+Qt)
#measurement step
Kt=sigmaruut[i,i−1]∗derivative(h,mu[i,i−1])∗(1/(derivative(h,mu[i, i−1])∗∗2∗sigmaruut[i,i−1]+Rt))
mu[i, i]=mu[i,i−1]+Kt∗(y[i]−h(mu[i,i−1]))
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sigmaruut[i, i ]=(1−Kt∗derivative(h,mu[i,i−1]))∗sigmaruut[i,i−1]
return z,y,mu.diagonal()

def jon(z,y,mu,Qt,Rt):
plt .plot(t , mu, label=r"EKF␣$\tilde{\mu}_t$")
plt .plot(t , z, label=r"$z_t$")
plt . xlabel( ’time’)
plt . ylabel( ’ state␣value’)
plt . title (r"$Q_t=$"+str(Qt)+r",␣$R_t=$"+str(Rt))
plt .plot(t , y, ’x’ , label=r"$y_t$")
plt .ylim([−3,3])
plt .legend(loc=’best’)

z0=np.random.normal(mu0, sigmaruut0)

Qt1=.1
Rt1=.1
z1,y1,mu1=EKF(Qt1,Rt1)
Qt2=.3
Rt2=.1
z2,y2,mu2=EKF(Qt2,Rt2)
Qt3=.3
Rt3=1
z3,y3,mu3=EKF(Qt3,Rt3)
Qt4=.1
Rt4=1
z4,y4,mu4=EKF(Qt4,Rt4)

t = np.linspace(0, n, n+1)
plt . rc( ’ text ’ , usetex=True)

o=plt.figure(0)
jon(z1,y1,mu1,Qt1,Rt1)
o.show()

p=plt.figure(1)
jon(z2,y2,mu2,Qt2,Rt2)
p.show()

q=plt.figure(2)
jon(z3,y3,mu3,Qt3,Rt3)
q.show()

r=plt.figure (3)
jon(z4,y4,mu4,Qt4,Rt4)
r .show()
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