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INTRODUCTION 
 

The need to analyse data by linear mixed models occurs in many areas of re-
search, especially in the analysis of biological field experiments. As pointed out 
by Searle, Casella and McCulloch (1992), the first applications of the random 
effects models appeared in the literature in the middle of the 19th century and 
concerned astronomy. The following development of the theory of linear mod-
els, and especially linear mixed models, is often connected with the applications 
in genetics. 

The parallel development of genetics and linear (mixed) models started in 
the beginning of the 20th century when K. Pearson and F. Galton studied the 
selection index theory and the inheritance of continuous traits, respectively, and 
worked out the cornerstones of regression and correlation analysis. In 1918 R. 
A. Fisher reconciled the work of G. Mendel on the inheritance of discrete ef-
fects and the work of F. Galton on the continuous variation of metric traits, giv-
ing the present population genetic description of inheritance. In the same paper 
Fisher worked out the basis of the analysis of variance and some years later de-
rived the first method for variance components estimation. The best-known sci-
entists in developing and advertising the theory of mixed linear models in the 
second part of the 20th century, C. R. Henderson and S. R. Searle, were both 
working in animal breeding and genetics (Searle, 1998). 

 
The connection between mixed model and genetics appears in the following. 

A mixed model representing the relation between response variables and fac-
tors consists of two different types of effects: fixed and random. The first of 
them has a finite set of levels, all (potentially) represented in the data and an 
object of interest. The second type of effects have (usually) an infinite set of 
levels, all generated by some random process and being represented in the data 
by a random sample, the user is interested in both – in the observed and the un-
observed levels – and in the variability of the studied variable explained by 
them. 

In genetic analysis the response variable can be influenced by thousands of 
genes and their interactions, from which we can predict only a random sample 
occurring in the data. The prediction can be made by measuring the similarity 
between relatives as the effect of identical genes of one family. These effects 
are the values of the random process of Mendelian inheritance. Thus, the ge-
netic effects exactly follow the definition of random effects. 

Usually the analysed individuals are not homogeneous by non-genetic ef-
fects, and some supplementary effects – the influence of which is essential – are 
exactly recorded (sex and age, for example). Those effects are of interest only 
by their observed levels and are considered fixed effects. 
 
The development in the mixed models theory is necessary for animal breeding, 
because better knowledge about the genetic determination of economically im-
portant traits needs better models to implement these new cognitions into the 
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selection of parents of the next generation. These better models mean more ac-
curate selection, more intensive breeding, bigger production and finally, more 
money. In human populations there is no need to rank people and this is the rea-
son for the scarce contributions into the development of mixed models theory 
by scientists working in human genetics. But this situation may change soon – 
the new models are needed to prevent or better predict the diseases using al-
ready available or only developed joint databases of genetic markers, human 
behaviour and diseases. Although in this dissertation models suitable for both 
these applications are considered, the main focus is on the animal genetics. 

 
The following study focuses on the normally distributed data, which in the con-
text of genetics means that the traits are quantitative in nature, and are affected 
by many genes and by environmental factors (blood pressure or survival time 
after infection in human medicine and the majority of production traits in ani-
mal breeding, for example). Also, to avoid redundant straggling, the study fo-
cuses only on single trait models and the methods of classical statistics. 
 
Chapter 1 gives an overview of the mixed linear models, presenting the basic 
concepts and formulas without complicated derivations for model building. In 
addition, a theory for estimating the fixed effects and for predicting the realised 
values of random effects, as well as the variance components estimation theory 
is introduced. Approximated expressions of two-stage predictor’s variances are 
extended to variance-covariance matrices by the author. 

In Chapter 2 the basic models used in genetic parameter estimation are pre-
sented and their differences discussed. As in the literature, some of these models 
are presented using only statistical notation, but at the same time, since the right 
understanding of genetics behind statistics required exploiting the model pa-
rameters properly, both the genetic and statistical models are reduced to a simi-
lar scheme and are presented concurrently. Topics like half- and full-sib models, 
animal models, models with maternal effects and models with single genes ef-
fects are considered. The estimable effects and genetic parameters for each 
model are introduced. 

In Chapter 3 the behaviour of estimated parameters is studied, based on the 
simplest mixed linear model – the one-way random model. The formulas for 
variances of predictors of random effects, for variances of estimators of vari-
ance components and intraclass correlation coefficient as well as for the prob-
abilities of inadmissible estimates of the heritability coefficient are congregated 
or derived if needed both for balanced and unbalanced data sets. The effect of 
data structure and imbalance is examined based both on the theoretical results 
and simulation experiments. 

In Chapter 4 some problems occurring when using the general mixed models 
with mathematically unstructured covariance structure – frequent in genetic 
studies but fairly unreasonable for standard mixed linear models theory – are 
considered. Propositions concerning the prediction of effects which have no 
data are proved. Also, the effect of variance-covariance structure on the accu-
racy of estimates and the dependence of the population genetic structure and 
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genetic model choice are discussed and illustrated with a real data example of 
lambs weaning weight. 
 
All theoretical results derived by the author are presented with proof. Theoreti-
cal results known and published before are given without detailed proof, show-
ing their exact source. 

The parallel approach of the basic genetic models and their statistical ana-
logues presented in Chapter 2 is with some modifications published in Kaart 
(2001). The probability of inadmissible heritability estimates (Chapter 3.2.4) is 
discussed in Kaart (1997), but here some extensions are made. The studies deal-
ing with the effect of data design on the accuracy of genetic parameters esti-
mates in balanced case presented in Chapter 3.3 are published in Kaart (2004) 
and discussed partly in Kaart (1998). The results regarding the sampling vari-
ance of intraclass correlation coefficient and its dependency on the data struc-
ture and imbalance (Chapters 3.4.2 and 3.5.2) are published in Kaart (2005). 
The real data example of the effect of genetic model choice and amount of used 
pedigree information (Chapter 4.4.2) follows the pilot study published in Kaart 
and Piirsalu (2000). 
 
In the past years many books about the models used in estimating genetic pa-
rameters have been published. The basic polygenetic models, with emphasis on 
their practical resolve via matrix calculus but without deeper mathematical 
proof, are introduced by Henderson (1984) and Mrode (1996). The deeper ge-
netic background can be found in Falconer and Mackay (1996) and Lynch and 
Walsh (1998). The excellent books on mathematical theory of mixed linear 
models are Searle, Casella and McCulloch (1992) and Khuri, Mathew and Sinha 
(1998), for example. The statistical methods used in animal breeding and genet-
ics are quite mathematically discussed in Gianola and Hammond (1990). The 
overview of biometrical genetics with an emphasis on the molecular data with-
out deeper discussion on mixed linear models is given by Weller (2001) for 
animal science and by Ott (1999), Sham (1998) and Lange (1997) for human 
genetics. There are some short compendious writings on statistical and genetic 
models in Estonian published by the author – Kaart (2001), plus more than 200 
pages of lecture notes prepared by the author for courses ‘Statistical Models in 
Gene Technology’ and ‘Linear Models and Estimation of Breeding Values’ 
taught at the University of Tartu and at the Estonian Agricultural University, 
respectively. 
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CHAPTER 1 
THE LINEAR MIXED MODEL: REVIEW 

 
In the terminology of linear mixed models we shall follow closely the notation 
and conventions of Searle (1987) and Henderson (1984). All the proof and deri-
vations of reviewed results can be found in these and many other books. How-
ever, some symbols will be modified to avoid the deceptive similarity with the 
notation in the other parts of the dissertation. In Section 1.2.4 the variance-
covariance matrix of two-stage predictors will be derived extending the previ-
ously published results. 

 

1.1. Matrix formulation 

1.1.1. Some basic notation and definitions 

In this dissertation matrices are marked with bold capital letters, the row and 
column vectors with bold minuscule letters and the elements of matrices with 
italic minuscule letters. 

In some formulas the following, more detailed notation for a matrix A of or-
der p q× is used: 

m 1 1{ } ,p q
ij i ja = ==A ,

where aij is the element that is in the ith row and jth column of A, the subindex 
m indicates that the elements inside the braces are arrayed as a matrix. 

This notation is extended to row and column vectors and to diagonal matri-
ces with the use of r, c and d as follows. First, a column vector is 

1

2
c 1{ }s

i i

s

u
u u

u
=

 
 

= = 
 
 

u � ,

the c being used to show that it is a column vector. Similarly 

r 1{ }s
i iu =′ =u

is a row vector. The apostrophe here and in the following indicates the trans-
posed matrix. The diagonal matrix is 

1

2
d 1

0 0
0 0 { }

0 0

t
i i

t

a
a a

a
=

 
 

= 
 
 

�
�

� � � �
�

.

The same notation is used for partitioned matrices. 
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The identity matrix, square matrix of ones, vector of ones and matrix of nulls 
are denoted as 

d 1{ 1}a
a i==I , m 1{ 1}a

a i==J , c 1{ 1}a
a i==1 and ` m 1, 1{ 0}a n

a n i j× = ==0 ,
respectively, where the subindexes a and n show the dimension of the matrix or 
vector. If it is not necessary, the indexes showing the dimension of matrices are 
omitted to shorten notation. 
 
The symbols ⊕ and ⊗ are used respectively for direct sum and direct product 
of matrices. For example 

2
1 2 d 1{ }i i=⊕ =A A A  

and 

m 1, 1{ }p q
ij i ja = =⊗ =A B B , where m 1, 1{ }p q

ij i ja = ==A .

The trace operation is the sum of the diagonal elements of a square matrix and 
is denoted by the letters tr. For example the trace of p p× -matrix A is 

1tr( ) p
iii a==∑A .

The number of linearly independent rows or columns is called the rank of a ma-
trix and is denoted by the letter r, for example, r( )A .

An inverse of a square matrix A, denoted by 1−A , is a matrix which when pre- 
or post-multiplied times the original matrix yields an identity matrix. That is, 

1− =AA I , and 1− =A A I .

A general inverse, denoted as −A , is a matrix that satisfies the following ex-
pression 

− =AA A A .

The scalar λ is called an eigenvalue of the n n× -matrix A if 
λ=Ax x

for some non-zero vector x. Then the vector x is an eigenvector of the matrix A
corresponding to the eigenvalue λ . If A is symmetric, then all eigenvalues are 
real. The eigenvalues are roots of the characteristic equation 

0λ− =A I .

An n n× matrix 

, ( )−′ ′=X WP X X WX X W
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is called a projection matrix with respect to an n n× symmetric positive definite 
matrix W for some n p× matrix X , because it defines the orthogonal projec-
tor onto the column space of X with respect to the inner product matrix W .

1.1.2. Matrix representation of the linear mixed model 

Let y be the N-vector of observed values of the trait. 
 

Definition 1.1. We say that 
 = + +y Xβ Zu e (1.1) 
defines the linear mixed model for y , where 
β is a 1p× vector of factors known as fixed effects,

c 1{ }r
i i==u u  is a 1q× vector of factors known as random effects ( iu is a 1iq ×

vector of effects of the ith random factor),
e is a 1N × vector of random residuals,
X and r 1{ }r

i i==Z Z  are known design matrices of order N p× and N q× re-
spectively. ■

The design matrices X and Z describe the precise relationship between the ele-
ments of β and u with those of y (Zi is a iN q× design matrix which associates 
effects in iu with y). 

The expectation of the random variables in the model is: 

 E
   
   =
   
   

y Xβ
u 0
e 0

, (1.2) 

and the variance-covariance structure is represented as a block-diagonal matrix: 

 Var    =   
   
u G 0
e 0 R . (1.3) 

Consequently, 
Var( ) ,′= = +y V ZGZ R

and 
Cov( , )′ =u y ZG ,

Cov( , )′ =e y R .

Traditional mixed model assumes that the random effects are independent; this 
means that the variance-covariance matrices are of the diagonal form: 

 2 2
d 1

1
Var( ) { }i i

r
r

q i q i i
i

σ σ =
=

= =⊕ =u G I I  (1.4) 
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and 
 2

0Var( ) Nσ= =e R I . (1.5) 
Defining 0 =u e and 0 N=Z I , the model (1.1) and Var( )y can be written as 

1 0

r r
i i i i

i i= =
= + + = +∑ ∑y Xβ Z u e Xβ Z u

and 

 2

0
Var( )

r
i i i

i
σ

=
′= =∑y V Z Z . (1.6) 

The variances 2
iσ are called variance components because they are the compo-

nents of the variance of an individual observation. 
 

1.2. Estimation and prediction 

1.2.1. Estimation and prediction for known V  

Estimation of fixed effects and prediction of realised values of random effects 
are usually the first major subtasks in linear mixed model analysis. All formulas 
derived for this purpose assume that the variance-covariance structure of ran-
dom effects, denoted by the matrix V, is known. As discussed in Section 1.2.4 
this simplifying assumption is motivated by practice. 

In the case of fixed effects the goal is to estimate a set of functions of β , say 
′L β , using a linear function of the observation vector, say ′T y , where T has to 

be determined. It’s easy to show (see, for example, Searle, 1987) that the Best 
Linear Unbiased Estimator (BLUE) of ′L β is of the form 

1 1 ˆ( )− − −′ ′ ′ ′ ′= =T y L X V X X V y L β .
The generalized least square estimate or BLUE of β is then 
 1 1ˆ ( )− − −′ ′=β X V X X V y . (1.7) 
If V is an identity matrix times a scalar, the generalized least squares estimator 
is equivalent to ordinary least squares estimator, and the least squares equation 
for β̂ can be written as 

ˆ′ ′=X Xβ X y .
In the theory of mixed linear models the problem is to predict the function 

′ ′+L β M u . The Best Linear Unbiased Predictor (BLUP) of ′ ′+L β M u is 
1ˆ ˆ( )−′ ′ ′ ′= + −T y L β M GZ V y Xβ ,

where β̂ is the BLUE of β . The realised values of random effects (BLUP of u)
are predictable from the equations  
 1 ˆ( )ˆ −′= −u GZ V y Xβ . (1.8) 
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In the normal case, BLUP has the smallest mean square error in the class of 
all linear, unbiased predictors. However, if y is not normally distributed, then 
non-linear predictors of function ′ ′+L β M u may exist with smaller mean square 
error than BLUP. 

 

1.2.2. Mixed model equations 

Henderson (1950) developed a set of equations known as the Mixed Model 
Equations (MME) for simultaneous computing of BLUP of u and BLUE of β .
The main advantage of these equations is that they do not require the inversion 
of V of order N, but only the inversion of matrix of a order p q+ (the total 
number of levels of fixed and random effects in the data) is required. 

For model (1.1) with expectations (1.2) and variance-covariance structure 
(1.3) the MME is 

 
1 1 1

1 1 1 1
ˆ
ˆ

− − −

− − − −
   ′ ′ ′  =    ′ ′ ′+     

X R X X R Z X R yβ
uZ R X Z R Z G Z R y

. (1.9) 

For traditional mixed model with variance-covariance structure (1.4)-(1.6) the 
MME is reduced to 

 2
0
2d 1

ˆ
{ } ˆi

i

r
q i

σ
σ =

′ ′  ′   =     ′′ ′ +    

X X X Z X yβ
Z yZ X Z Z I u . (1.10) 

 

1.2.3. The variances of predictors and prediction errors 

Let 1( )− −′=Q X V X and 
 1 1 1 1( )− − − − −′ ′= −P V V X X V X X V . (1.11) 
Then it can be shown (see, Henderson, 1975, for instance) that variances of pre-
dictors and prediction errors are 

ˆVar( )ˆ′ ′ ′ ′ ′+ = +L β M u L QL M GZ PZGM ,

1ˆ ˆVar( ) Var( ) ( )− −′= − = =β β β X V X Q ,

1 1 1 1Var( ) ( )ˆ − − − − −′ ′ ′ ′ ′= − =u GZ V ZG GZ V X X V X X V ZG GZ PZG , (1.12) 

ˆCov( , )ˆ′ =β u 0 ,

Var( ) Var( )ˆ ˆ− = −u u G u (1.13) 
and 

1 1 1ˆCov( , ) ( )ˆ − − − −′ ′ ′ ′ ′− = − = −β u u 0 X V X X V ZG QX V ZG .
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The mean square error of BLUP of u is 

0

MSE( ) E( ) ( ) tr[Var( )] E( ) E( ) tr[Var( )] .ˆ ˆ ˆ ˆ ˆ ˆ ˆ
=

′ ′= − − = − + − − = −u u u u u u u u u u u u u�������

 (1.14) 
 
The variances of β̂ , û and ˆ −u u can also be obtained directly from the MME. 
Let a general inverse of the coefficient matrix of the MME (1.9) be 

1 1

1 1 1
Z

Z

−− −

− − −
 ′ ′  =   ′ ′ +   

XX X

X ZZ

X R X X R Z C C
C CZ R X Z R Z G

 

Then the variance-covariance matrix of predictors is 
ˆ

Var
ˆ

   =    −  
XX

ZZ

C 0β
0 G Cu ,

and the variance-covariance matrix of prediction errors is 
ˆ

Var
ˆ

Z

Z

   =   −   
XX X

X ZZ

C Cβ
C Cu u  

(see, Henderson, 1984, for instance). 
 

1.2.4. Two-stage estimators and predictors 

As mentioned before the equations (1.7) and (1.8) like MME (1.9) yield to the 
best linear unbiased estimators of β and u only if the variance-covariance ma-
trices of random variables are known without error. In practice this assumption 
almost never holds and G and R are replaced by their estimates resulted with 
the so-called two-stage or estimated estimators and predictors 

1 1ˆ ˆEBLUE( ) ( )− − −′ ′= =β β X V X X V y�

and 
1ˆ ˆEBLUP( ) ( )−′= = −u u GZ V y Xβ�� .

Kakwani (1967) suggested the basic idea and Kackar and Harville (1981) 
showed that if y has a symmetric distribution and if V̂ is an even function of y,
then β� is an unbiased estimate of β̂ and u� is an unbiased estimate of û . For 
example, the normal distribution is symmetric and all the variance components 
estimation methods introduced in Section 1.3 satisfy the second condition. 

Kackar and Harville (1984) observed that both Var( )−β β� and Var( )−u u�
can be expressed as the sum of two variances: 
 ˆ ˆVar( ) Var( ) Var( )− = − + −β β β β β β� � (1.15) 
and 
 Var( ) Var( ) Var( )ˆ ˆ− = − + −u u u u u u� � , (1.16) 
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respectively. As the second addends in formulas (1.15) and (1.16) depend on the 
variance components estimation methods and are not exactly expressed, several 
approximated variances are derived (Kackar and Harville, 1984; Kenward and 
Roger, 1997; Prasad and Rao, 1990). McCulloch and Searle (2001) aggregated 
previously published results and presented approximated expressions for scalars 
Var( )′ ′−l β l β� and Var( )∗ ∗ ∗ ∗′ ′−m u m u� :

1 1

0 0
Var( )

r r
ij i i j j

i j
d − −

= =

 ′ ′ ′ ′ ′ ′ ′− ≈ +  
 
∑∑l β l β l Ql l Q X V Z Z PZ Z V X Ql� (1.17) 

and 

 
[ ]

[ ]
0 0

Var( )

( ) ( ) ,
r r

ij i i i j j j
i j

d

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
= =

′ ′ ′ ′− ≈ −

′ ′ ′ ′ ′+ − −∑∑

m u m u m G G Z PZ G m

m m G Z PZ Z PZ m Z PZ G m

�

(1.18) 
where 
 2 2

m , 0 m , 0{ } { Cov ( , )}ˆ ˆr r
ij i j i j i jd σ σ= ∞ == =D (1.19) 

is an asymptotic variance-covariance matrix of estimated variance components, 

( )∗′ ′ ′=u e u , ( )0∗ =Z Z Z , ∗
 =  
 

R 0G 0 G and ( )0 1 r∗′ ′ ′ ′=m m m m� .

Approximately unbiased estimators of (1.17) and (1.18) are derived by 
Kenward and Roger (1987) and McCulloch and Searle (2001), respectively. 
They investigated the bias studying expected values of two-term Taylor series 
expansions of expressions (1.17) and (1.18) and resulted estimators of the form 

	 1 1

0 0

ˆ ˆ ˆˆ ˆ ˆVar( ) 2
r r

ij i i j j
i j

d − −

= =

 ′ ′ ′ ′ ′ ′ ′− ≈ +  
 
∑∑l β l β l Ql l Q X V Z Z PZ Z V X Ql�

and 

 
	

0 0

ˆ ˆ ˆˆVar( )

ˆ ˆˆ ˆ ˆ2 ( ) ( ) ,
r r

ij i i i j j j
i j

d

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
= =

′ ′ ′ ′ − ≈ − 

′ ′ ′ ′ ′ + − − ∑∑

m u m u m G G Z PZ G m

m m G Z PZ Z PZ m Z PZ G m

�

(1.20) 
where Q̂ , P̂ and *Ĝ are calculated with V̂ , Ĝ and R̂ replacing V, G and R,
respectively. Note that stars in expressions (1.18) and (1.20) denoting the ex-
panded vectors and matrices are erroneously missing in McCulloch and Searle 
(2001, p 164–171). 

More theoretical discussion and proof concerning the accuracy of mean 
square errors of two-stage estimators and predictors are given by Das, Jiang and 
Rao (2004). 
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In the following the results of Kackar and Harville (1984) and McCulloch 
and Searle (2001) are extended for the variance-covariance matrix of a vector 
Var( )−u u� .

Corollary 1.1. In the traditional linear mixed model with variance-covariance 
structure (1.4)-(1.6) the Var( )−u u� is approximately expressed as 

 [ ]2

0

Var( )

Var( ) ( ) ( ,ˆ
r

i i i i i i i
i

σ
=

′− ≈ −

′ ′ ′ ′+ − −∑

u u G GZ PZG

E GZ PZ Z PZ E Z PZG

�
(1.21) 

where 0 N q×=E 0 and iE , 1,...,i r= , is a iq q× block matrix with ith column 
block equals to iqI and the rest zeros:

( )1
1 1

, 0,
, 0.i rij jj j i

N q
i

qq q

i
i−

= = +

×

∑ ∑

==  >

0
E 0 I 0  

Proof.  To find the variance-covariance matrix of prediction errors instead of a 
single variance, the N q N q+ × + block matrix m , 0{ }r

ij i j∗ ==M M  instead of 
1N q+ × vector ∗m must be used in expression (1.18). If we set the matrix ∗M

equal to the identity matrix N q+I , the approximated variance-covariance matrix 
of ∗ ∗−u u� is expressed as 

[ ]2

0

Var( )

Var( ) ( ) ( ) ,ˆ
r

i i i i i i i
i

σ

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
=

′− ≈ −

′ ′ ′ ′+ − −∑

u u G G Z PZ G

M G Z PZ Z PZ M Z PZ G

�

where ( )0 1 r∗′ ′ ′ ′=M M M M� and ( )1
0 1

i rij jj j i
i qq q−

= = +∑ ∑=M 0 I 0 .

Using partitions of ∗u , ∗G , ∗Z and iM , and also considering that 
( )0 N N q×=M I 0 , we can write the expression of Var( )∗ ∗−u u� after some matrix 

algebra as follows: 

0 0 0

0
2
0

0 0 0 0 0 0 0 0 0 0 0

0 0 0

Var( ) Cov( , )
Cov( , ) Var( )
Var( )ˆ

( ) ( ) ( ) ( )
( ) (

N N N N q

q N N

σ
×

×

′ ′ ′ ′− − −     ≈ −     ′ ′ ′ ′ ′− − −     
+

′ ′ ′ ′ ′ ′− − − −× ′ ′ ′− −

e e e e u u R 0 RZ PZ R RZ PZG
e e u u u u 0 G GZ PZ R GZ PZG

I RZ PZ Z PZ I Z PZ R I RZ PZ Z PZ 0 Z PZG
0 GZ PZ Z PZ I Z

� � �
� � �

0 0 0 0 0 0

2

1

0 0 0

0

) ( ) ( )

Var( )ˆ

( ) ( ) ( ) ( ) ,( ) ( ) ( ) ( )

q N N q
r

i
i

N i i i N i N i i i i i

i i i i N i i i i i i i

σ

× ×

=

 
 ′ ′ ′− − 

+

′ ′ ′ ′ ′ ′− − − − × ′ ′ ′ ′ ′ ′ ′ ′− − − − 

∑

PZ R 0 GZ PZ Z PZ 0 Z PZG

0 RZ PZ Z PZ 0 Z PZ R 0 RZ PZ Z PZ E Z PZG
E GZ PZ Z PZ 0 Z PZ R E GZ PZ Z PZ E Z PZG

where ( )1
1 1

i rij jj j i
i qq q−

= = +∑ ∑=E 0 I 0 .
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To finish the proof we must look at the lower right block of the derived 
block matrix, which represents the sampling variance of two-stage predictors 
u� . Defining 0 N q×=E 0 we got that 

 

[ ]
[ ]

[ ]

2
0 0 0 0 0 0 0

2

1

2

0

Var( )
Var( ) ( ) (ˆ

Var( ) ( ) (ˆ

Var( ) ( ) ( ,ˆ

r
i i i i i i i

i
r

i i i i i i i
i

σ

σ

σ
=

=

′− ≈ −
′ ′ ′ ′+ − −

′ ′ ′ ′+ − −

′ ′ ′ ′ ′= − + − −

∑

∑

u u G GZ PZG
E GZ PZ Z PZ E Z PZG

E GZ PZ Z PZ E Z PZG

G GZ PZG E GZ PZ Z PZ E Z PZG

�

which establishes the proof. ■

1.2.5. Variance component estimation 

Nowadays several difference variance components estimation methods are usu-
ally included in statistical packages. The reason for their plurality is that there is 
no one method best for all cases. For discussion concerning comparisons of the 
different algorithms look, for example, at Searle, et al (1992). The results of 
simulation studies performed to compare different variance components estima-
tion methods are also present in Swallow and Monahan (1984) and Kaart 
(1998). 
 
For simple models, usually the Analysis Of Variance (ANOVA) method, gener-
ally known as Henderson’s Method III (Henderson, 1953), is applied. Method 
III uses the reductions in sums of squares by fitting the submodels of the full 
model. The reductions are expressed as quadratic forms and the variance com-
ponents estimators are obtained by equating these quadratic forms to their ex-
pected values, which are functions of the unknown variance components. This 
approach is used in Section 3 of the present dissertation studying the one-way 
random model. 
 
The other group of variance components estimation methods are the so-called 
criteria-based methods. The three main criteria which determine the quadratic 
forms used in the estimation of the variance components are the unbiasedness of 
the estimates, the translation invariance of the quadratic forms in relation to the 
fixed effects, and the minimum variance (or norm, or mean square) of the esti-
mates. The methods satisfying these criteria were first published independently 
by C. R. Rao and by L. R. LaMotte in 1970’s. Rao derived the variance compo-
nents estimators both for the normally and the non-normally distributed y,
called Minimum Variance Quadratic Unbiased Estimators (MIVQUE or MIN-
VAR; Rao, 1970), and Minimum Norm Quadratic Unbiased Estimators (MIN-
QUE; Rao, 1971). LaMotte also derived MIVQUE (LaMotte, 1970). When y is 
normally distributed, then these two methods, MIVQUE and MINQUE, are 
equivalent. The main shortages of the criteria-based methods are that the esti-
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mators are quite laborious to find and greatly depend on the pre-assigned val-
ues. 
 
The most applied variance components estimation methods today are the 
Maximum Likelihood (ML) method and the Restricted (or residual) Maximum 
Likelihood (REML) method. The ML approach in variance components estima-
tion was first described by Hartley and Rao in 1967 (Hartley, Rao, 1967). Con-
trary to the ANOVA method, the ML estimation needs the underlying probabil-
ity distribution of the data. A natural choice is the multivariate normal distribu-
tion. Assume that the density function of the data vector y is expressed as 

11
2

2 1 2
exp[ ( ) ( )]( ) .

(2 ) | |Nf
π

−′− − −= y Xβ V y Xβy
V

The corresponding likelihood function as a function of the parameters β and V
is  

 
11

2
2 1 2

exp[ ( ) ( )]( , | )
(2 ) | |NL L
π

−′− − −= = y Xβ V y Xββ V y
V

.

The idea of ML estimation is to find the β and V that maximize the likelihood 
(1.11) subject to them falling within the parameter space. Maximization of 

( , | )L β V y can be achieved by maximizing the log-likelihood function 
 11 1 1

2 2 2ln ln(2 ) ln(| |) ( ) ( )l L N π −′= = − − − − −V y Xβ V y Xβ .

As the ML estimation does not take into account the information (degrees of 
freedom) lost in estimating fixed effects, then the REML method avoids this 
property by using the likelihood function of a set of error contrasts denoted by 

′K y instead of the likelihood function of y. The rows of ′K are determined so 
that ′ =K X 0 and ′K has the full row rank: r( ) r( )N= −K X . This method was 
derived for general mixed models in Patterson and Thompson (1971). 

Using error contrasts, the maximized log-likelihood function is 
11 1 1R 2 2 2( | ) [ r( )]ln(2 ) ln(| |) ( )l l N π −′ ′ ′ ′ ′= = − − − −V K y X K VK y K K VK K y .

(1.22) 
Taking the derivative of the log-likelihood function with respect to 2

iσ for 
0,1, ...,i r= is 

1 1 1R 1 1
2 22 tr[( ) ] ( ) ( ) .i i i i

i

l
σ

− − −∂ ′ ′ ′ ′ ′ ′ ′ ′ ′= − +
∂

K VK K Z Z K y K K VK K Z Z K K VK K y

Taking the derivatives equal to zero and using the identity 
1 1 1 1 1( ) ( )− − − − − −′ ′ ′ ′= − =P V V X X V X X V K K VK K

gives the REML equations 
 c 0 c 0{ tr( )} { )}r r

i i i i i i= =′ ′ ′=PZ Z y PZ Z Py . (1.23) 
An alternative form of the equations (1.23) is 
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2
m , 0 c 0{ tr( )} { )}r r

i i j j i j i i i= =′ ′ ′ ′=PZ Z PZ Z σ y PZ Z Py . (1.24) 
One attractive feature of ML and REML estimation is that the asymptotic dis-
persion matrix of the estimators is always available. It equals to the inverse of 
the information matrix, the elements of which are defined as the negative ex-
pected values of second derivatives with respect to 2 2

c 0{ }r
i iσ ==σ (and β , in 

ML). Therefore the information matrix corresponding to the REML method is 
2 2 2 2 1R m , 02I( ) E ( ) [{ tr( )} ]r

i i j j i jl = ′ ′ ′= − ∂ ∂ ∂ = σ σ σ PZ Z PZ Z .

Asymptotic variance of REML estimators is therefore of the form:  
 2 1

REML m , 0Var( ) 2[{ tr( )} ]ˆ r
i i j j i jσ −

=′ ′≈ PZ Z PZ Z . (1.25) 
 
There are no analytical expressions available for the variance component esti-
mators produced by ML or REML. In both cases one needs to use numerical 
iterative techniques to derive the estimates. The simplest algorithm is the EM 
algorithm, which guarantees that the iterations will always remain in the pa-
rameter space. On the other hand, the convergence is very, very slow, and it 
may not converge in some cases.  

Usually, to increase the speed of convergence, gradient methods in the nu-
merical analysis are used to maximize a non-linear function. There are two main 
algorithms used in variance components estimations. These are the Newton-
Raphson algorithm and the method of scoring algorithm.

In animal breeding, where the dimensions of variance-covariance matrices 
are equal or even bigger than the number of observations, there are two other 
algorithms used with the REML method. Both of these methods avoid the in-
versing of high dimensional matrices. One of them is called the derivative free 
REML (DF REML), proposed by Smith and Gaser (1986) and Graser, Smith 
and Tier (1987), and transforms the log-likelihood function into the form which 
enables to find its maximum based on the Gaussian elimination of properly con-
structed coefficient matrices. The other method, called the average information 
REML (AI REML), is by nature a gradient method that finds the iteration step 
direction based on the average of the observed and expected information matri-
ces using, again, the Gaussian elimination of properly constructed coefficient 
matrices (Johnson and Thompson, 1995). 

For discussion concerning the comparison of EM, Newton-Rhapson and the 
method of scoring algorithms look at Searle, et al (1992, p 312), for example. 
The algorithms used in the animal breeding programs are compared in Hofer 
(1998). 
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CHAPTER 2 
THE APPLICATIONS OF THE MIXED MODEL  

IN ESTIMATING GENETIC PARAMETERS 

2.1. Introduction 
 
Every phenotypic value of an individual is determined by environmental and 
genetic factors. In population genetics the basic model reflecting this fact is of 
the form 
 P P G E= + + , (2.1) 
where P, P , G and E are the observed phenotypic value, the average pheno-
typic value in the examined population and the unknown genetic and environ-
mental effects, respectively. Presently there exist many modifications of this 
basic model where both genetic and environmental effects are presented as the 
sums of different influences. 
 
There are two different ways to write down the models used in genetics. One 
includes the so-called genetic models or the models in genetic notation, where 
the genetic effect is divided into so many parts as is known from the genetic 
science to be relevant for current analysis. That way the genetic model forms 
the ideal model for the researcher. 

The other model is the mathematical (or statistical) model or the model in 
statistical notation, which is based on the genetic model and on the really 
measurable effects in keeping with analysed data structure. In many situations 
the terms estimable from the statistical model do not match with the genetic 
model parameters – some genetic model parameters can be expressed as func-
tions of the mathematical model parameters and some can not be uniquely sepa-
rated based on the mathematical model parameters. 

Understanding of both the genetic and mathematical models is required to 
collect the data with proper structure, to select the right mathematical model for 
data analysis and to interpret the statistical results properly. 
 
As the genetic effect usually collects the effects of many single genes, and in 
different studies many different individuals are analysed, it is common to con-
sider the genetic effect to be random and to measure the magnitude of the ge-
netic effect via corresponding variance components. 

The variance-covariance structure of observed values and studied effects 
also forms the basis of distinguishing between models. From a statistician’s 
viewpoint the models can be separated into two groups: models with a simple 
diagonal variance-covariance structure and models with a generally unstruc-
tured (in the mathematical sense) variance-covariance structure. 

Taking into account the source of genetic influence, additional subgrouping 
should be done. The basic applications of the traditional linear mixed model with 
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a simple diagonal variance-covariance structure in biometrical genetics are half- 
and full-sib models examining polygenetic effects inherited only from parents. 
The applications of models with a general variance-covariance structure are the 
so-called animal models and their extensions evaluating polygenetic effects in-
herent to the analysed individual’s self and involving all known pedigree informa-
tion; and models representing an integration between molecular and biometrical 
genetics, allowing to isolate single genes and to elucidate their phenotypic actions 
based on the sequential exploitation of models over all genome, reflecting the in-
heritance of single alleles via elements of the variance-covariance matrix. 

All these models have many supplementary variants and are applicable in a 
one- or multidimensional situation. 

 
The primary parameters describing the effects of random factors are the variance 
components. To measure the magnitude of random effects, variance components 
ratios to the total variance, called intraclass correlation coefficients, are used. In 
the following chapters the intraclass correlation coefficient is noted as ρ .

In genetic studies the percentage of genetic contribution on the observed 
trait, called heritability coefficient and denoted as 2h , is calculated. It is shown 
in the next sections that depending on the genetic model, the intraclass correla-
tion is representing different types or proportions of heritabilities. 

Based on known or estimated values of variance components or heritabili-
ties, the realized values of random genetic effects are estimable. In animal 
breeding, where most of the traits the animals are selected for, are assumed to 
be affected by many genes, all with a small effect, the relevant effects are poly-
genetic ones, measuring the part of the observed phenotypic values heritable 
from the parents to the progeny. These polygenetic heritable effects are called 
breeding values. Besides the polygenetic effects, also the effects on the level of 
single chromosomal regions or even based on the single nucleotides can be es-
timated by specific models – this has already been experimented in animal 
breeding for some years and has given one supplement analysis method for hu-
man genetics as well.  

Fixed environmental effects are usually not of interest in genetic studies. 
These are included in the model only to consider the potential non-genetic dif-
ferences between studied individuals. Due to this, fixed effects are avoided in 
genetic models and are not specified in theoretical mathematical models. 
 
In the following the basic genetic models and their statistical analogues are in-
troduced, the commonly estimated genetic parameters are formulated, and the 
problems and genetic background are shortly discussed. All considered models 
are – with minor modifications – also discussed in Kaart (2001). 
 

In the present chapter we shall denote the effects in genetic models with 
italic capital letters and the effects in statistical models with italic minuscule 
letters. To show the identity of the genetic parameters separable from the ge-
netic set-up of the model and the estimable effects (or their functions) of the 
statistical model, the sign 
 is used. 
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2.2. The half- and full-sib models for estimating  
polygenetic effects 

2.2.1. The half-sib model 

The earliest applications of mixed models in animal breeding, especially in 
dairy cattle, were based on the half-sib model. In this model the analysed ani-
mals are grouped only by one parent, the genetic contribution of the second par-
ent is considered inappreciable. As sires in animal husbandry commonly have a 
large number of progeny, the evaluated parent is the sire, and the model is also 
called the sire model.

As half of the alleles in the individual genotype come from the sire and half 
from the mother, the genotypic effect G in the model (2.1) can be substituted 
with the sum 1 1

2 2S DA A MS+ + , where SA and DA are breeding values (sums 
of allelic values) of the sire and the dam respectively, and MS is the Mendelian 
sampling effect, accounting for the sampling that occurs in the formation of 
gametes at meiosis and describing the deviation of the individual additive ge-
netic value from the average additive genetic value of its parents. All non-
additive genetic effects like the dominance and epistatic effects, for example, 
are dealt as parts of the environmental effect because their influence is not as-
certainable in half-sib analysis and is said to be remote. 

The simplest sire model is assuming that all sires are mated randomly to 
dams and dams are mated to only one sire and have just one progeny with a 
measured record. The sire model in genetic notation for jth progeny of ith sire is 
 1 1

2 2i ijij S D ij ijP P A A MS E= + + + + , (2.2) 
where ijP , ijMS and ijE are the observed phenotypic value, unknown Mende-
lian sampling effect and environmental effect corresponding to the jth progeny 
of ith sire, respectively, P is the average phenotypic value in the examined 
population, iSA and ijDA are unknown breeding values of ith sire and dam of jth 
progeny of ith sire, respectively. 

The phenotypic variance is expressed as a sum of two components, additive 
genetic and environmental variance. By the assumption of model (2.2), the ex-
tended formula for phenotypic variance is of the form 

 
2 1 1

2 2
2 2 2 21 1 1

4 4 2

Var( ) Var( ) Var( ) Var( )
.

i ijP S D ij ij

A A A E

A A MS Eσ
σ σ σ σ

= + + +
= + + +

 (2.3) 

So, the Mendelian sampling generates one half of the additive genetic variance 
and the phenotypic variance includes only one quarter of the additive genetic 
variance caused by the sire. 
 
In the statistical model the phenotypic value ijy of jth progeny of ith the sire is 
presented as the sum of fixed effects (population mean, age, sex, birthplace and 
so on) expressed via the product of fixed effects vector β and an incidence vec-
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tor ijx relating records of observed progeny to the fixed effects, the random 
effect of ith sire is and the random residual effect ije :

ij ij i ijy s e′= + +x β . (2.4) 
The last term ije includes the possible effect of the dam and also the Mende-

lian sampling. Comparing the parts of random effects in models (2.2) and (2.4), 
it follows that statistically estimable are only the realized values of random sire 
effects (in genetic terms the transmission abilities of sires): 

1
2 ii Ss A
 .

As the independence of genotype and environment, the independence of re-
cords, similar environmental variance, and the unrelated sires are assumed, then 

2

2Var a s

N e

σ
σ

   =      
s I 0
e 0 I

,

where N denotes the number of individuals and a the number of sires. On these 
conditions the phenotypic variance is expressed as a simple sum of variance 
components caused by the sire and random environment:  

2 2 2
y s eσ σ σ= + .

The usual intraclass correlation coefficient calculated from sire model is ex-
pressed as 

 
2

2 2
s

s e

σρ
σ σ

=
+

. (2.5) 

In genetic studies the fraction of total phenotypic variance attributable to addi-
tive genetic differences among individuals, known as the heritability coefficient, 
is of interest. Based on the genetic model, the heritability coefficient is defined 
as 
 2 2 2

A Ph σ σ= . (2.6) 
As the variance caused by sires constitutes only one quarter of the whole addi-
tive genetic variance: 2 21

4s Aσ σ
 , then the heritability coefficient is calculable 
from the statistical model by the formula 

 
22

2 2
4 s

s e
h σ

σ σ
=

+
. (2.7) 

It is evident that 2 4h ρ= in the sire model. 
 
Although the genetic assumptions of the sire model are never absolutely satis-
fied, this model is widely used, especially in pilot studies in populations where 
the exact pedigrees are not known or values of the interested traits are registered 
only in the last generation. The main reason is the mathematical simplicity of 
the model, which makes it possible to prepare appropriate datasets with minimal 
effort and to quickly get preliminary results from statistical analysis. Due to this 
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the half-sib model is the basic application of the traditional linear mixed model 
in estimating genetic parameters. The accuracy of the genetic parameters esti-
mators found by the sire model is discussed in Chapter 3. 
 

2.2.2. The full-sib model 

The other frequently discussed application of the traditional linear mixed model 
in population genetics is the full-sib model. In this situation, both the sire and 
the dam are known, but as in the sire model, neither have any records of their 
own. Usually dams are nested within sires, and there can be only one record per 
offspring. 

For the full-sib model it is necessary to express that the same full sib group 
resemble each other for at least three reasons. These are: the same sire, the same 
dam, and the same prenatal and often also postnatal environments, which to-
gether are denoted as the common environment. The relevant genetic model de-
scribing an observation on the kth individual ijkP in a full sib group with sire 
effect iS and dam effect ijD , subject to an environmental effect common to all 
the full sibs ijCE and subject to individual specific Mendelian sampling effect 

ijkMS and environmental effect ijkE , is 
1 1
2 2i ij ijijk S D ijk C ijkP P A A MS E E= + + + + + .

The phenotypic variance is presented respectively as 
2 1 1

2 2
2 2 2 2 21 1 1

4 4 2

Var( ) Var( ) Var( ) Var( ) Var( )
.

i ij ij

C

P S D ijk C ijk

A A A E E

A A MS E Eσ
σ σ σ σ σ

= + + + +
= + + + +

 

The equation of the model in statistical notation is 
ijk ijk i ij ijky s d e′= + + +x β .

The only estimable random effects are the sire effects is and the dam effects 
ijd . Thereby, 1

2 ii Ss A
 , as in the sire model, and the dam effect contains one 
half of the additive genetic effect plus a common environmental effect – 

1
2 ij ijij D Cd A E+
 .

Since the random effects are again assumed to be mutually independent and the 
sires and dams unrelated, the variance-covariance structure of the random ef-
fects is expressed as 

2

2

2
Var

a s

b d

N e

σ
σ

σ

  
   =        

I 0 0s
d 0 I 0
e 0 0 I

,

where N denotes the number of individuals, a the number of sires and b the 
number of dams per sire. The phenotypic variance is expressed as the sum of 
the variance components caused by the sire, the dam and the random environ-
ment:  
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2 2 2 2
y s d eσ σ σ σ= + + .

Many different proportions of variance components are possible to find in the 
full-sib analysis, but only two of them are commonly used in genetic studies. 
The prime of these proportions is, again, the heritability coefficient, which can 
be calculated in three different ways. The most reliable estimate is got from the 
sire component with the equation 

22
2 2 2

4 s

s d e
h σ

σ σ σ
=

+ +
.

The other possible formulas 2 2 2 22( )s d yh σ σ σ= +  and 2 2 24 d yh σ σ= produce bi-
ased estimates, because in both of them the numerator is involving non-genetic 
variance caused by the common environment – 2 2 21

4 Cd A Eσ σ σ+
 .
The second estimable proportion is measuring the part of the variability 

caused by the common environment in the total variance:  
22 22

2 2 2 2
CEd s

s d e P
c σσ σ

σ σ σ σ
−=

+ +

 .

In the genetic form of the full-sib model, sometimes the dominance effect – 
common to all the full sibs and also measuring the effect of allele pairs – is 
pointed out. But as in the statistical model, it is – analogously to the common 
environmental effect – included in the dam effect and is not separately estima-
ble, its influence is said to be remote. 

 
All the mathematical theory evolved for the half-sib model is easily expanded to 
the full-sib model. Due to this and due to the higher genetic complexity of the 
full-sib models when compared with the sire model, in theoretical studies the 
latter is used as the application of the traditional linear mixed model in genetic 
studies. 
 

2.3. The animal model 

2.3.1. The simple animal model 

In genetic notation the animal model is the phenotypic value measured on the 
ith individual expressed as the sum of the average phenotypic value in the ex-
amined population, the additive genetic effect (the breeding value in animal 
breeding) of the concerned individual and the environmental effect: 

i i iP P A E= + + .
Thus, the only difference from the basic genetic model (2.1) is in the use of the 
additive genetic effect instead of the total genetic merit. 
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The statistical model includes the same addends as the genetic model, all known 
fixed environmental effects that influenced the individual’s i phenotype are in-
cluded in first term expressed as i′x β , terms ia and ie incorporates all individ-
ual’s i additive genetic effects and residual individual-specific effects, respec-
tively: 
 i i i iy a e′= + +x β . (2.8) 
The analogous congruity holds for variances, too. The phenotypic variance is 
the sum of the additive genetic variance and the environmental residual vari-
ance, and is expressed based on the statistical model (2.8) as 
 2 2 2

y a eσ σ σ= + . (2.9) 
 
From the model (2.8) it is clear that based on the traditional mixed model with 
covariance structure (1.3)–(1.6) assuming the independence of the observations, 
it is not possible to separate the additive genetic and random residual effects. In 
this situation all realised values of the random effects predicted after consider-
ing the known fixed effects denote the sum of the genetic and residual effects, 
and are useless for practical applications. 

The additional information needed for determining the proportion of the ad-
ditive genetic effect for each individual concurs with using the relationships 
between analysed individuals. From the fact that two individuals are related, it 
follows that the covariance between them caused by genetic factors differs from 
zero. It is common in genetic studies that all individuals with unknown geneal-
ogy are assumed to be sampled from a single population with an average ge-
netic effect of zero and the common variance 2

aσ and are expected to be not 
related. Such individuals constitute the base population and are called in animal 
breeding as foundation animals.

As previously, the basic model examines only the additive genetic part of the 
genetic variation between individuals and the effects of alleles’ interaction in 
one locus (dominance) and genes’ interaction (epistatis) are said to be remote, 
which, considering only the polygenetic effect, seems to be non-restrictive. 
 
The additive genetic relationship between two individuals is the probability that 
those two individuals have alleles in common which are identical by descent.
These probabilities are considered in the model (2.8)–(2.9) through the additive 
genetic relationship matrix (or numerator relationship matrix). This matrix, 
usually noted as A, is symmetric and has one row and column for each individ-
ual in the examined pedigree. Its diagonal element, iia , represents twice (each 
gene has two copies) the probability that two gametes taken at random from 
individual i will carry identical alleles by descent and is equal to 1 iF+ , where 

iF is the inbreeding coefficient of individual i (Wright, 1922). The offdiagonal 
element, ija , equals to the numerator of the coefficient of the relationship 
(Wright, 1922) between individuals i and j, and has the value ½ for full-sibs and 
parent-progeny pairs, ¼ for half-sibs and grandparent-progeny pairs and so on. 
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Based on the facts that the additive genetic relationship between two indi-
viduals is the average of the relationships between one of them and the parents 
of the other, and that the inbreeding of an individual is half the additive genetic 
relationship between its parents, Henderson (1976) described a recursive 
method for computing the additive genetic relationship matrix. By this method, 
individuals in the pedigree are coded 1 to N, the number of them in the pedi-
gree, and are ordered in such a way that the parents precede their progeny, 
firstly. Then the following rules are exerted to compute A:
� if both parents of individual i are unknown and are assumed unrelated, then 

0ij jia a= = for 1j = to ( 1)i − , and 1iia = ;
� if only one parent (for example sire s) is known and assumed unrelated to 
the mate, then 

0.5ij ji jsa a a= =  for 1j = to ( 1)i − , and 1iia = ;
� if both parents (s and d) of individual i are known, then 

0.5 ( )ij ji js jda a a a= = +  for 1j = to ( 1)i − , and 1 0.5ii sda a= + .

The defined relationship matrix is used on the determining of the variance-
covariance structure of random effects in the model (2.8) as 

 
2

2Var a

N e

σ
σ

   =      
a A 0
e 0 I

. (2.10) 

 
The only calculable proportion from the animal model based on the equation 
(2.9) is the heritability coefficient: 

22
2 2

a

a e
h σ

σ σ
=

+
,

which equals to the intraclass correlation coefficient. 
 
As reviewed in Chapter 1.2, the estimation of the realised values of random ef-
fects and variance components need the inverse of Var( ) ′= = +y V ZGZ R or 

2Var( ) aσ= =a G A . Both of these inverses include the inversion of the additive 
genetic relationship matrix A, which has in a mathematical sense quite a general 
structure and has mostly too big a dimension to employ straight inversion pro-
cedures. 

In 1976, Henderson (Henderson, 1976) presented the first strategy for calcu-
lating 1−A without the direct inversion of A ignoring inbreeding. In the same 
year Quaas (Quaas, 1976) elaborated this method for general relationships be-
tween individuals. Based on these studies the inversion of the additive genetic 
relationship matrix is based on the identity ′=A TDT , where T is a lower trian-
gular matrix that traces the flow of genes from one generation to the other, and 
D is a diagonal matrix measuring the proportion of the additive genetic effect 
not explained by the pedigree. As 1 1 1 1( )− − − −′=A T D T , and 1−T and 1−D are cal-
culable by recursive algorithms similar to the ones presented for the calculation 
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of A, the inversion of A is quite easy to obtain and the setting up of matrix A
self is unnecessary. The faster algorithm based on the modified calculations of 
the matrices T and D was presented by Meuwissen and Luo (1992). 

 
Especially advantageous for animal breeding are the results presented by Soren-
sen and Kennedy (1983) and Kennedy and Sorensen (1988) – that the animal 
model by the use of the full relationship matrix can accommodate the change in 
genetic mean and variance caused by inbreeding and selection. Due to this and 
due to the development of the estimation methods and the increase of the com-
puting power, the animal model became the basic model for genetic evaluation 
of animals since the end of the 1980’s. In Estonia the animal model was first 
implemented in 1996 (Reents, et al, 1996). 
 
One possible situation where the simple animal model can fail appears if the 
individuals in the base population are sampled from different genetic groups. 
Then the hypothesis of a single population with an average genetic effect of 
zero and the common variance 2

aσ did not hold and the modified animal model 
including the additional genetic group effect can be used (Westell, et al, 1988). 

The other more complex situations occur when there should be other rele-
vant heritable genetic effects – except for the additive genetic effect – in the 
model. Two widely applied variants of models of that kind are presented in the 
following sections. 

 
There are several properties of the animal model not considered in the tradi-
tional mixed model theory, but commonly used in practical animal breeding and 
genetic studies. Many of these, strange properties at first glance, are discussed 
in Henderson (1984) and Searle (1992) – like the situation where the number of 
unknown parameters exceeds the number of observations or the models with 
non-null covariances between random genetic effects and random errors. In 
Sections 4.2 it is proved that adding individuals without records on observed 
traits into the model and estimating the additive genetic effects for them does 
not change the estimators reviewed in Chapter 1. 
 

2.3.2. The maternal effect animal model 

Nowadays the economical interests in animal husbandry – maximum intensifi-
cation of the breeding process and abbreviation of the generation interval – ne-
cessitate the selection among animals as early as possible. But as the traits 
measured on juveniles depend a lot on the mother and/or on the pre- and postna-
tal conditions, then the simple animal model discussed previously is not precise 
enough. Thus, the more and more complicated so-called maternal effect animal 
models were developed to reflect the extra genetic effect of the dam. 

Good generalizations on the theoretical works on the subject of maternal ge-
netic effects were done by Willham (1972) and by Lynch and Walsh (1998). 
Based on those studies, the phenotypic value measured on individual i can be 
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viewed as the sum of two components. The first component, the so-called direct 
phenotypic value is a function of the direct expression of individual’s genotype 
and general environmental effects. Since in population genetics the interest is 
basically focused only on the additive genetic effect of individual i, iA , then the 
direct phenotypic value of individual i, o

iP , is expressed as o
i i iP P A E= + + ,

where upper index o denotes a direct effect, P is the population mean pheno-
type and iE represents general environmental and non-additive direct genetic 
effects. The second component, the so-called maternal effect, i

m
DP , is an indirect 

effect of the maternal phenotype of individual’s i dam, iD , and can also have 
genetic and environmental components: i i i

m m
D D CP A E= + , where upper index m 

denotes a maternal effect, i
m
DA is the maternal additive genetic effect measuring 

the inheritable genetic ability of the dam to provide a suitable environment, and 
iCE is the environmental effect common to all progeny of dam Di.
Generally the phenotypic value measured on individual i, noted as iP , can be 

expressed as follows: 

i i
m

i i D C iP P A A E E= + + + + .
The reciprocal references between effects can be better understood from 

Figure 2.1. As previously, it is assumed that the genetic and environmental ef-
fects are independently distributed with no interaction between them. But the 
genetic covariance may exist between direct additive and maternal additive ge-
netic effects, for example the genes with direct effect on the body size of the 
dam may also affect the characters influencing the provisioning of offspring. 

 

Figure 2.1. The path diagram representing the determination of the phenotype iP of an 
individual i by direct additive genetic effect iA , direct environmental effect Ei, maternal 
additive genetic effect i

m
DA and common environmental effect iCE ; amr is the additive 

genetic correlation between direct and maternal effects. 

 
The statistical model includes the same effects as the genetic model, only the 
indexes are different, allowed to express the maternal additive genetic effect for 
all individuals:  
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i i i j k iy a m c e′= + + + +x β . (2.11) 
Here it is relevant to understand that albeit for both, the direct additive genetic 
effect ia and the maternal additive genetic effect jm , the indexes vary in the 
same range – , 1, ...,i j N= , the estimates are different based on different inci-
dence matrices relating records to the effects. It is better understood from the 
model written down in the matrix notation:  

= + + + +y Xβ Za Wm Sc e .
Here design matrices Z and W have one column for each individual in the pedi-
gree, thereby Z has in each column at least one 1 corresponding to individual 
self and columns corresponding to individuals without record contain only ze-
ros, W has 1’s only in columns corresponding to dams with progeny having 
records and all other columns consist only of zeros; matrix S relating each re-
cord to the common environmental effect based on the mother (or litter) is the 
usual design matrix having one row for each individual and one column for 
each effect. 

 
To avoid the coincidence of genetic and environmental effects, the additional 
information by additive genetic relationships between individuals expressed in 
numerator relationship matrix A is used. Then the variance-covariance structure 
of random effects in model (2.11) is 
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,

and the phenotypic variance is expressed based on statistical model (2.11) as 
2 2 2 2 22y a m am c eσ σ σ σ σ σ= + + + + .

There are four functions of the variance-covariance components in the maternal 
trait animal model that have sense in genetics. At first the heritability, 

22
2 2

a

a e
h σ

σ σ
=

+
.

Then the so-called maternal heritability, showing the part of the total variance 
explained by the maternal additive genetic effect: 

22
2
m

y
m σ

σ
= ,

the proportion of the common environment variance in the total variance: 
22
2
c

y
c σ

σ
= ,
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and finally, the correlation between the direct and maternal additive genetic ef-
fects: 

2 2
amam

a m
r σ

σ σ
=

⋅
.

While the application of the best linear unbiased prediction (1.8) to models with 
maternal effects was first presented by Quaas and Pollak already in 1981 
(Quaas, Pollak, 1981), in Estonia the maternal effect animal model was first 
implemented in 2000 for estimating the heritabilities and breeding values on 
ewe’s litter size and lambs weight (Kaart, Piirsalu, 2000). 
 

2.3.3. The mixed models for detecting single genes 

If based on the measured records and relationships between individuals it is 
possible to estimate only the polygenetic effects, then the availability of the 
mass of molecular marker data made it possible to estimate the effects of single 
chromosomal regions. The models needed for this are nothing completely new, 
however – the genetic background and the complicacy of the models are largely 
different. 
 
The chromosomal regions having a putatively measurable effect on a studied 
trait are called the major genes or the major alleles (alleles are the different 
forms of genes). The other often-used term is the QTL (Quantitative Trait Loci), 
which means the location of a gene with some measure effect on the quantita-
tive phenotype and is, at the moment, also the concept synonym to the gene it-
self. 
 
There are three basic sample designs used in “gene hunting”. The clearest pic-
ture on the transmission of genetic material and its reflection in the phenotype 
can be derived by using experimental crosses of pure lines where the segrega-
tion of genotypes is accurately observed. An overview of statistical methods 
applied in this situation is given by Broman (2001). Except for all kinds of ex-
perimental crosses widely used in animal and plant breeding to explain the ge-
netic part of the phenotypic diversity, the sample sizes and thus the reliability of 
analyses in that kind of experiments can’t be large at all (especially in humans 
and wild animals). 

The second design is based on fixed relative groups. The most common 
analysis uses the sib pairs, and the first method proposed for this scheme was 
the Haseman-Elston regression (Haseman, Elston, 1972). By this the squared 
difference of trait values between sibs is regressed on the number of alleles 
shared identical by descent at a test locus, and the null hypothesis – that the re-
gression coefficient is 0 – is tested against the alternative hypothesis that the 
regression coefficient is negative. Its simplicity is the biggest advantage of this 
method. At the same time the Haseman-Elston regression and also its modified 
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variant, which uses the cross-product of sib pair values instead of their squared 
difference (Elston, et al, 2000), have a relatively small power in detecting single 
genes in situations where the more general pedigree of studied individuals is 
known and when the analysed trait is complex (influenced by many genes plus 
environment) in nature. 

The mixed models are applicable for detecting the effects of single genes on 
traits influenced also by fixed environmental and random polygenetic effects in 
any population structure. The first introduction of an appropriate model in ani-
mal breeding was presented by Fernando and Grossman (1989). The following 
development of the model was parallelly done for applications in human genet-
ics and in animal breeding (Almasy and Blangero, 1998, Meuwissen and God-
dard, 2000). 

 
For detecting the major genes or the QTL, data on molecular genetic level are 
needed. As the exact determining of the nucleotide sequences in the genotypes 
of the observed individuals is, in the present day, still inconceivable and unnec-
essary (for example, in the human genome there is, supposedly, informative 
material of only about 5%, the rest is junk), the specific sequences of base pairs 
with a unique physical location in the genome and with sufficient variation be-
tween individuals, called molecular markers, are used. If a decade ago the 
common markers were microsatellites – DNA variants due to tandem repetition 
of a short DNA sequence, then these days the analyses are based on the SNP 
(Single Nucleotide Polymorphism – a DNA sequence variations due to change 
in a single nucleotide). 
 
Similar mixed models can be used to separately or simultaneously model two 
genetic phenomena, the properties of which are very different. These two phe-
nomena are the linkage of genes and the linkage disequilibrium between genetic 
units. The first of them is based on linkage analysis and the second is based on 
association analysis.

Linkage refers to the tendency of certain genes to be inherited together, due 
to their close proximity in a chromosome. This means that if marker alleles 
show familiar co-segregation with the phenotype, then the gene causative of the 
phenotypic difference is located near the investigated marker. The central idea 
of linkage analysis based on the mixed model is to identify loci making a sig-
nificant contribution to the population variance of the trait, by the use of allele-
sharing probabilities derived from genotyped marker loci. As the linkage analy-
sis uses only the re-combinations occurred between alleles within the dataset, 
which typically contains two to three generations, there is no effect to look at in 
dense marker maps – there will be few re-combinations between adjacent mark-
ers during these two to three generations. 

Linkage Disequilibrium (LD, although allelic association) means that two 
alleles at different loci occur together within an individual more often than 
would be predicted by random chance. LD can be generated by mutation, selec-
tion, population admixture, finite population size and migration. If the LD is 
caused by mutation, the mutant allele will be in very strong linkage with alleles 
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at a number of marker alleles. The association analysis is based on identifying 
an identity by descent region that flanks the putative gene using all re-
combinations since the mutation occurred.  

Hereby, the linkage disequilibrium mapping methods seem more useful for 
precise estimation of the major gene position, while linkage mapping is more 
useful for a genome-wide scan for locating major genes. 
 
Both the linkage and association analysis methods assume that the difference of 
individual’s i phenotypic value, iP , from average phenotypic value in the exam-
ined population, P , is determined by the additive major gene effects received 
from the sire and dam, p

iQ and m
iQ , respectively, by the random polygenetic 

effect not explained by the genetic markers, iA , and by the random residual iE :
p m

i i i iiP P Q Q A E= + + + + (2.12) 
 
The same model in statistical and matrix notation is 
 = + + +y Xβ Za ZTq e , (2.13) 
where y is a 1N × vector of observations, β is a vector of fixed effects, X is a 
design matrix relating fixed effects to records, Z is a N N× matrix relating re-
cords to the individuals, a is a 1N × vector of random additive polygenetic ef-
fects, T is a 2N N× matrix relating each individual to its two QTL alleles, q is 
a 2 1N × vector of individuals two random QTL allelic effects and e is a vector 
of residuals. 

In the basic model the independence of the genetic and environmental effects 
and the QTL and polygenetic effects is assumed. Due to this, the total pheno-
typic variance is expressed as a simple sum of variance components correspond-
ing to the random effects in model (2.13): 

2 2 2 2
y a q eσ σ σ σ= + + .

The variance-covariance structure of the random effects in the model (2.13) is 
expressed as 
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where A is the additive genetic relationship matrix containing the mean prob-
abilities that individuals share alleles identical by descent across the entire ge-
nome, and Q contains the probabilities for individual QTL alleles being identi-
cally by descent conditional on the marker genotypes, linkage phase and puta-
tive position of the QTL. 
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The basic population genetic proportion, the heritability coefficient, is estimable 
from the ratio 

2 2
2

2 2 2
a q

a q e
h σ σ

σ σ σ
+=

+ +
.

In addition, the part of the phenotypic variance explained by the QTL effect, 
2 2 2 2 2( )q q a q eh σ σ σ σ= + + , and the part of the phenotypic variance explained by 

the complementary additive polygenetic effect are distinguished, 
2 2 2 2 2( )a a a q eh σ σ σ σ= + + .

Since potentially the quantitative trait may be influenced by more than one 
QTL, the model (2.12) is easily elaborated to form 

mp
ii i iP P Q Q A E= + + + +∑ ∑ ,

where p
iQ and m

iQ denote the i-th putative QTL-effect inherited respectively 
from the sire and the dam. 
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CHAPTER 3 
THE ACCURACY OF THE ANOVA 

ESTIMATES IN THE ONE-WAY RANDOM MODEL 
 
The one-way random model is the simplest mixed model. Due to its relative 
simplicity this model is a suitable instrument for studying the behaviour of the 
estimates of mixed model parameters. Its application in genetics is usually the 
sire model (2.4), which is due to the mainly sire-based breeding still widely 
used in the present day. The heritability coefficient in this chapter measures the 
genetic variability caused by sires and equals four times the intraclass correla-
tion coefficient as stated by expressions (2.5) and (2.7). 

All proved results are derived by the author, the other expressions are sup-
plied with references. The results presented in chapter 3.2.4 are discussed in 
Kaart (1997), but here some extensions are made. The results presented in chap-
ter 3.3 are partly published in Kaart (2004) and the results presented in para-
graphs 3.4.2 and 3.5.2 are published in Kaart (2005). 

 

3.1. The one-way random model and its properties 

3.1.1. Model and predictors 

Consider the mixed linear model 
ij i ijy u eµ= + + ,

or in matrix notation 
 Nµ= + +y 1 Zu e , (3.1) 
where 
y is the 1N × vector of observed values, 
µ is the only fixed effect in the model (mean), 

N =1 X and d 1{ }i a
n i==Z 1  are known design matrices of order 1N × and N a×

associating fixed and random effects with y,
1( )au u′ ′=u … is a vector of random effects, 

e is a 1N × vector of random residuals. 
 The number of levels in the random factor is traditionally marked as a, and 

the number of objects per i-th level in the one-way model is denoted by ni,

1
a

ii n N= =∑ .

In the following we use the traditional notation of variance components for the 
one-way random model, substituting 2

uσ and 2
eσ for 2

1σ and 2
0σ , applied in the 

general theory in Chapter 1, respectively. The expectations and the variance-
covariance structure are then represented as   

E( ) µ=y , 2Var( ) u aσ=u I , 2Var( ) e Nσ=e I , Cov( , )′ =u e 0
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and 
 2 2

d 1Var( ) { }i i
a

u n e n iσ σ == = +V y J I . (3.2) 
If we assume variance components 2

uσ and 2
eσ known, the best linear unbi-

ased predictor of u is 
2 1( )ˆ ˆu Nσ µ−′= −u Z V y 1 ,

or component-wise written 
2

2 2
1
( )ˆ ˆ

in
ui ij

e i u j
u y

n
σ µ

σ σ =
= −

+
∑ ,

where 

1
2 2 2 2

1 1
ˆ

ina aijj i

e i u e i ui i

y n
n n

µ
σ σ σ σ

=

= =
=

+ +
∑∑ ∑ .

If the data set is balanced, that is, in n= for 1, ,i a= … , then the last formula is 
simplifying to a well known equation 

1ˆ N
ii y Nµ ==∑ .

In further studies the estimation of mean is left without additional attention, be-
cause in genetics the interest is focused mainly on the prediction of random ef-
fects and on the estimation of variance components. 
 

3.1.2. The ANOVA estimators of variance components 

As discussed in Section 1.3, there are many different methods for variance 
components estimation which give different results in unbalanced data. For 
models with simple covariance structure, where analytical results are possible 
and relatively easy to derive, the traditional ANOVA-method is frequently used. 

It is assumed that effects iu and ije in model (3.1) are independently and 
normally distributed so that 
 2~ (0, )i uu N σ and 2~ (0, )ij ee N σ ( 1,2,...,i a= ; 1,2,..., ij n= ). (3.3) 

The ANOVA table corresponding to model (3.1) is shown in Table 3.1 where A
is denoting the random factor with effects ui, . 1

in
i ijjy y==∑ and .. 1 1

ia n
iji jy y= ==∑ ∑ .

Tabel 3.1. The ANOVA table for model (3.1). 

Source Sum of Squares d.f. Mean Squares Expected Mean Squares 

A
2 2
. ..

1
( )

a
i

i i

y ySS u
n N=

= −∑ 1a −
( )
( ) 1

MS u
SS u a= −

21
2 21

1

a
iN i u e

N n
a

σ σ=
 −

+ 
− 
∑

Error 2
2 .

1 1 1

( )
ia n a

i
ij

i j i i

SS e
yy
n= = =

= −∑∑ ∑
N a−

( )
( )

MS e
SS e N a= −

2
eσ
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In matrix notation the sums of squares are expressed as quadratic forms: 

 { } 1d 1
( ) i

a
n i N

i
SS u n N

=
 ′ ′= − =  

y J J y y Q y (3.4) 

and 

{ } 2d 1
( ) i

a
N n i

i
SS e n

=
 ′ ′= − =  

y I J y y Q y .

The ANOVA estimators of variance components 2
uσ and 2

eσ are obtained by 
equating the mean squares with their expected values and are expressed as 

 [ ]2 1 ( ) ( )ˆu MS u MS e
d

σ = − (3.5) 

and 
 2 ( )ˆe MS eσ = , (3.6) 
where 

 2

1

1 1
1

a
i

i
d N n

a N =

 = − −  
∑ . (3.7) 

If the data set is balanced, that is, in n= for 1, ,i a= … , then d n= and 

 [ ]2 1 ( ) ( )ˆu MS u MS e
n

σ = − . (3.8) 

 
The estimator ρ̂ of the intraclass correlation coefficient ρ , which measures the 
magnitude of random effects, is calculated as the ratio of variances:  

 
2

2 2
( ) ( )ˆˆ

( ) ( 1) ( )ˆ ˆ
u

u e

MS u MS e
MS u d MS e

σρ
σ σ

−= =
+ + −

. (3.9) 

In the half-sib model (2.4) the intraclass correlation coefficient estimates one 
quarter of the heritability coefficient, measuring the magnitude of the additive 
genetic effect: 
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2 2
4 ˆˆ 4 ˆ

ˆ ˆ
u

u e
h σ ρ

σ σ
= =

+
, (3.10) 

and the random effect u represents the random parent (mainly sire) effect. 
 

3.1.3. The distributional properties of the ANOVA estimators 

It is well known that the sums of squares corresponding to the main effect and 
error term, ( )SS u and ( )SS e , respectively, are independent and that 
 2 2( ) ~e N aSS e σ χ − (3.11) 
(see, for example, Searle, Casella and McCulloch, 1992, p 73). If the data set is 
balanced, then it also holds that 
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2 2 2
1( ) ( ) ~u e aSS u nσ σ χ −+

and 

 1,2 2 2
( ) ( ) ~ a N a

u e e

MS u MS e F
nσ σ σ

− −
+

. (3.12) 

In the case of unbalanced data, the two latter distributions are not true. How-
ever, as noted in Khuri, Mathew and Sinha (1998), the formulas derived by 
Johnson and Kotz (1970) can be used to express the quadratic form (3.4) as a 
linear combination of independent central Chi-squared variables of the form 

 2
1

1
( ) ~ i

s
i m

i
SS u λ χ

=
′= ∑y Q y , (3.13) 

where 1 2, ,..., sλ λ λ are the distinct non-zero eigenvalues of 1Q V with multi-
plicities 1 2, ,..., sm m m , respectively, and V is the variance-covariance matrix of 
observed values defined with the equation (3.2). As further operations with the 
linear combination of independent central Chi-squared variables of the form 
(3.13) are complicated, in the following paragraphs an approximation, based on 
Satterthwaite’s procedure (1941) and presented by Khuri, Mathew and Sinha 
(1998), is used of the form 

 2 2

1
χ χi

s
i m m

i
λ λ

=
≈∑ , (3.14) 

where 

 
2

1

1

s
i ii

s
i ii

m
m
λλ
λ

=

=

= ∑
∑

(3.15) 

and 

 
( )2

1
2

1

s
i ii

s
i ii

m
m

m
λ

λ
=

=

=
∑
∑

. (3.16) 

As discussed in Khuri, Mathew and Sinha (1998, p 58–59), the approximation is 
exact when the data set is balanced, that is, in n= for 1, ,i a= … .

3.1.4. The measure of imbalance 

If a data set is unbalanced, usually the question arises how to measure this im-
balance. Having some kind of a numerical measure of the degree of imbalance 
makes it possible to compare designs and study the effect of data imbalance on 
the properties of parameters estimators. 

In this chapter the measure of data design imbalance first introduced by 
Ahrens and Pincus (1981) is used. Following the notations of Khuri, Mathew 
and Sinha (1998, p 62–63), let 1 2{ , , , }an n n=D … denote the associated design. 
Then the measure of D‘s imbalance is defined as 
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( )2

1( ) 1 a i
i

na
N

ν == ∑D . (3.17) 

Hence, 1 ( ) 1a ν< ≤D . The lower bound follows from the fact that 2 2
1

a
ii n N= <∑

for 1a > . The measure ( )ν D attains its maximum value 1 if and only if the de-
sign D is balanced. 
 
Since there are several different designs corresponding to the fixed measure of 
data imbalance, it is not possible to find the exact expression between data im-
balance and the accuracy of parameters estimators. One possible variant to 
study this potential dependency is to use simulations.  

To generate designs for the one-way model with a specified degree of imbal-
ance, data size and number of groups, the algorithm proposed by Khuri, 
Mathew and Sinha (1998, p 76–80) was realised in SAS Interactive Matrix 
Language (IML; SAS Institute Inc., 1999) by the author. The algorithm calcu-
lates groups sizes n1, n2, …, na as solutions to the equations 

 1
a

ii n N= =∑ and 2 2
1 ( )a

ii n N aν= =∑ D , (3.18) 

finding the intersection of the hyperplane with the hypersphere whose represen-
tatives are the equations (3.18), respectively. As the equations (3.18) may not 
have exact integer solutions in general, the approximate solution would be 
needed. Based on the Lemma 3.6.1 presented in Khuri, Mathew and Sinha 
(1998, p 77), the optimal integer group sizes are achieved, taking first 0a group 
sizes  equal to [ ]in and the remaining 0a a− group sizes equal to [ ] 1in + , where  
[ ]in is the greatest integer in in , for 1,2,...,i a= , and 0 ( [ ])i i ia n n= Σ − .

Examples of the approximate designs generated for data size 360N = and 
corresponding to specified numbers of groups (a) and data set imbalances (ν )
are presented in Table 3.2. The same data size, similar group sizes and data set 
imbalances are used in paragraphs 3.4 and 3.5 in studying the relationship be-
tween data imbalance and the accuracy of parameters estimators. 

 

3.1.5. Some results on traces, eigenvalues, projection matrices and 
1 2n nc c+I J matrices useful in studying the properties of  

the ANOVA estimators 

In this paragraph several standard properties of traces, eigenvalues and projec-
tion matrices are presented that are used later in Sections 3.2 and 3.4. Also, the 
characteristics of 1 2n nc c+I J type matrices typically operated in one-way 
ANOVA are derived.  
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Tabel 3.2. Examples of approximate designs with the specific data set imbalance ν
generated for data size 360N = and fixed number of groups a.

ν a 1 2{ , , , }an n n=D …

0.3 4 {8,12,14,326}; {2,12,24,322}; {10,10,13,327}; {2,13,41,304}

15 
5

{1,3,7,8,10,10,10,11,...,11,25,108,123};�����
7

{9,11,14,14,14,15,...,15,16,16,161}�����

24 ��
12 8

{6,8,...,8,9,...,9,13,60,113};
12

{1,2,7,7,8,8,9,10,...,10,11,11,15, 44,118};�����  

90 ��
63 16

{1,1,1,2,2,3,...,3, 4,..., 4 ,5,5,7,9,15,59}; ��
66 21

{3,...,3,4,..., 4 ,8,10,80}

0.6 4 {18,67,68,207}; {43, 45,62,210}; {26,34,95,205}; {46,49,50, 215}

15 
6 7

{9,19,...,19,20,..., 20,97};����� �����  
4

{1,2,15,16,...,16,17,17, 26,26,32,35,41,84}�����  

24 
6 13

{8,10,...,10,11,...,11,16,26,47,60};����� �����
14

{2,7,10,...,10,11,11,14,17,24,34,47,53}�����

90 ���
4 28 54

{1,2,..., 2 ,3,...,3, 4,..., 4 ,9,9,33}; ��
38 49

{2,3,...,3, 4,..., 4 ,17,31}

0.9 4 {41,103,104,112}; {66,77,80,137}; {50,76,114,120}; {38,107,107,108}

15 
5 6

{1,22,23,24,..., 24,25,..., 25,44};����� �����  
5 4

{15,16,22,..., 22, 23,23,24,..., 24,25,52}����� �����  

24 
16

{11,12,13,13,14,...,14,15,17,18,37};�����  
21

{13,14,...,14,15,38}�����  

90 ��
10 78

{2,3,...,3, 4,..., 4 ,16}; ��
12 72

{1,2,2,3,...3, 4,...4 ,8,10,13}; ��
13 74

{1,3,...,3, 4,..., 4 ,12,12}

Proof of the following useful properties of trace operator is trivial and can be 
partly found in Searle (1982) and Harville (1997), for example. 

 
Proposition 3.1. For trace operation the following properties hold.
(i) tr( ) tr( )k k=A A ;

(ii) tr( ) tr( ) tr( )+ = +A B A B ;

(iii) tr( ) tr( )′ =A A ;

(iv) tr( ) tr( ) tr( )= =ABC CAB BCA ;

(v) tr( ) tr( ) tr( )= =ABC BAC ACB , if A, B and C are symmetric;

(vi) , 1tr( ) n
n iji j a==∑J A , where m , 1{ }n

ij i ja ==A ;

(vii) d 1 1tr{ } tr( )aa
i i ii= ==∑D D . ■
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The following properties of eigenvalues are collected from matrix books by 
Harville (1997) and Schott (1997). 

 
Proposition 3.2. Let A represent an n n× matrix. Then for its eigenvalues the 
following properties hold. 
(i) If A is a real symmetric matrix, then all its eigenvalues are real.
(ii) If λ represents an eigenvalue of A , then for every positive integer k , kλ is 
an eigenvalue of kA .
(iii) If 1 2, ,..., sλ λ λ are distinct eigenvalues of A with multiplicities 1 2, ,..., sm m m ,
respectively, then 1tr( ) s

i ii mλ==∑A .

(iv) If A is a non-negative definite, then all its eigenvalues are non-negative, if 
A is a positive definite, then all its eigenvalues are positive. ■

Proof of the following and many other useful properties concerning projection 
matrices can be found in Harville (1997, p 260–264). 

 
Proposition 3.3. Let X be an arbitrary n p× matrix and W a n n× symmetric 
positive definite matrix. Then for the projection matrix ,X WP ( )−′ ′= X X WX X W
the following properties hold.
(i) ,X WWP and 1

,
−

X WP W are symmetric;
(ii) , , ,′ =X W X W X WP WP WP ;
(iii) , , ,( ) ( ) ( )′− − = −X W X W X WI P W I P W I P . ■

The following results formulate the basis for simplifying the general expres-
sions about estimators and predictors and their accuracy in the model (3.1). 
 
Proposition 3.4. For structured matrices in the form 1 2n nc c+I J the following 
properties hold.
(i) 1 2 1 2 1 1 1 2 2 1 2 2( )( ) ( )n n n n n nb b c c bc bc b c nb c+ + = + + +I J I J I J ;

(ii) 1 21 2
1 1 1 2

1( )
( )

n n n n
cc c

c c c nc
−+ = −

+
I J I J for 1 0c ≠ and 1 2c nc≠ − ;

(iii) 1 2 1 1 2 11( ) ( )k k k k
n n n nc c c c nc c

n
 + = + + − I J I J ;

(iv) 1 2 1 1 2tr ( ) ( 1) ( )k k k
n nc c n c c nc + = − + + I J .

Proof. Properties (i) and (ii) can be found in several matrix books (Searle, 
1982, p 322, for example). Proof to (i) is straightforward. Proof to (ii) is given 
in Nahtman (2004, Lemma 1.5.1, p 21), for example. 
 
(iii) To prove the third statement of the theorem, induction is used. If 1k = then 

1 1 111 1 2 1 1 2[( ) ]n n n nnc c nc c c c+ + − = +I J I J . If 2k = then 
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2 2 2 2 2 21 11 1 2 1 1 1 2 2
2 2 2
1 1 2 2 1 2

[( ) ] (2 )
2 ( ) .

n n n nn n

n n n n n

c c nc c c nc c n c
c c c nc c c

+ + − = + +
= + + = +

I J I J
I J J I J

So, the statement is true for 1k = and 2k = .
Suppose the statement is true for 1

1 2( )k
n nc c −+I J , then we shall show that it is 

also true for 1 2( )k
n nc c+I J . In proof we use the formula from statement (i). 

1
1 2 1 2 1 2

1 1 1
1 1 2 1 1 2

1
1 1 21 1 111 1 2 2 1 2 1 2

1
1 2 1 2 1

1

1 1 2

( ) ( ) ( )
1 ( ) ( )

( ) ( )

( ) ( )

1 ( )

k k
n n n n n n

k k k
n n n n

k kk k k k
n n

k k
k

n n

k k
n

c c c c c c
c c nc c c c

n
c c nc cc c c c c nc c c

n n
c nc c nc cc

n
c c nc

n

−

− − −

−
− − −

−

+ = + × +
 = + + − × + 

 += + + − + + −  
+ + −= +

= + +

I J I J I J
I J I J

I J

I J

I 1 ,k
nc − J

and thus the formula (iii) is proved via induction. 
 
(iv) As the trace of sum equals to the sum of traces, we separate the expression 

1 2( )k
n nc c+I J into two parts based on statement (iii) and apply the trace opera-

tion to both of them:  

 { }11 2 1 1 2 1

1 1 2 1 1 1 2

tr ( ) tr( ) tr ( )

( ) ( 1) ( ) .

k k k k
n n n nn

k k k k k

c c c c nc c

nc c nc c n c c nc

   + = + + −   
= + + − = − + +

I J I J  
■

Corollary 3.1.  The inverse of variance-covariance matrix of observed values 
(3.2) is expressed as 

2
1

2 2 2
d 1

1
i i

a
un n

e e i u i
n

σ
σ σ σ

−

=

  −=   +  
I JV . (3.19) 

 ■

3.2. The accuracy of the estimates and predictors  
in balanced data 

3.2.1. The sampling variances of variance components 

Based on the distributional properties of the ANOVA estimators discussed in 
Section 3.1.3, the sampling variances of the ANOVA estimators of variance 
components are expressed as  
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2 2 2 42
2

( )2Var( )ˆ
1 ( 1)

u e eu
n

n a a n
σ σ σσ

 += + − − 
, (3.20) 

and 

 
42 2Var( )ˆ ee

N a
σσ =
−

. (3.21) 

The unbiased estimators of the sampling variances of the ANOVA estimators of 
variance components are expressed as 

 	
2 2 2 42

2
( )ˆ ˆ ˆ2Var( )ˆ

1 ( 1) 2
u e eu

n
n a a n

σ σ σσ
 += + + − + 

, (3.22) 

and 

 	 42 2 ˆVar( )ˆ
2

ee
N a

σσ =
− +

. (3.23) 

The derivation of these formulas can be found in several text-books, for exam-
ple in Searle, Casella and McCulloch (1992, p 63–64). 
 
In real data analysis usually the standard deviations of estimated parameters – in-
stead of sampling variances – are calculated. The motivation for this is that the 
standard deviations are easier to interpret and they are also the basis for the accu-
racy and significance testing of parameters estimates. The square root of estimated 
sampling variance is also called the standard error (Weisstein, 2004, for example).  

But usually it is not perceived that it matters whether the sampling variance or 
the standard error is found in studying the accuracy of estimates. Visscher (1998) 
discussed that often expressions which give biased estimates to sampling variances, 
result from taking their square root with unbiased estimates to standard errors, and 
the opposite. This can especially be a problem in the case of small sample sizes. 
 
The following simulation study with SAS IML (SAS Institute Inc., 1999) was 
carried out by the author to explore the possible bias in standard errors and 
sampling variances of the variance components depending on the used formu-
las. Both the standard deviations and variances of the estimated variance com-
ponents were found in three ways. Firstly, the empirical variances of 2ˆuσ and 

2ˆeσ were found, based on 10000 replicated samples. Secondly, the predicted 
variances were calculated by formulas (3.20) and (3.21), using the true popula-
tion values. Thirdly, the average estimated biased variances were calculated by 
formulas (3.20) and (3.21), and the average estimated unbiased variances were 
calculated by formulas (3.22) and (3.23), with 2ˆuσ substituted for 2

uσ and 2ˆeσ
for 2

eσ , respectively.  The estimates of the standard deviations of the variance 
components estimators were calculated in similar ways, applying the square 
root to expressions (3.20)-(3.23), if these were used. 

The data size 360N = was used as a reasonable number for small practical 
experiments and also giving a possibility to divide data into groups with equal 
integer size in different ways. Number of groups a used in simulations were 4, 
15, 24 and 90. Random effects were generated by normal distributions (3.3). 
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Without loss of generality, a 2 1eσ = was used throughout. In the generation of 
random effects iu , the intraclass correlation coefficient ρ was taken equal to 
0.0125, 0.0625, 0.15 and 0.8. Corresponding values of variance component 2

uσ
are calculable by expression 2 2 (1 )u eσ ρσ ρ= − and are  approximately equal to 
0.01266, 0.06667, 0.17647 and 4.0; corresponding heritability coefficient 2h
values are by expression (3.10) equal to 0.05, 0.25, 0.6 and 3.2 (the last is not a 
possible value of heritability in genetic studies based on sire model, but is cor-
rect in the mathematical sense; if the genetic model states the intraclass correla-
tion coefficient equal to proportion of whole genetic variability, then 2hρ =
and value 0.8ρ = is acceptable also in genetic sense). 

Simulations results dealing with variances of 2ˆuσ are presented in Table 3.3. 
 

Table 3.3. The observed, predicted and estimated sampling variances of the variance 
component 2

uσ in the case of different true population values and number of groups 
(sires) a. 360N = , 2 1eσ = .

2
uσ ( 2h ) a 2E( )ˆuσ 2 *Var( )ˆuσ 2 2 #

,Var( | )ˆu e uσ σ 	 2 2 ¤
,Var( | )ˆ ˆu e uσ σ 	 2 2 ¤

,Var ( | )ˆ ˆb u e uσ σ
4 0.0127 0.3893×10-3 0.3773×10-3 0.3840×10-3 0.6395×10-3

15 0.0125 0.4351×10-3 0.4317×10-3 0.4298×10-3 0.4898×10-3

24 0.0130 0.5771×10-3 0.5736×10-3 0.5770×10-3 0.6251×10-3

0.01266 
(0.05) 

90 0.0124 0.2033×10-2 0.2013×10-2 0.2008×10-2 0.2046×10-2

4 0.0662 0.3907×10-2 0.4034×10-2 0.3952×10-2 0.6586×10-2

15 0.0662 0.1694×10-2 0.1687×10-2 0.1678×10-2 0.1916×10-2

24 0.0666 0.1602×10-2 0.1572×10-2 0.1573×10-2 0.1707×10-2

0.06667 
(0.25) 

90 0.0669 0.2684×10-2 0.2716×10-2 0.2712×10-2 0.2766×10-2

4 0.1774 2.4568×10-2 2.3459×10-2 2.4044×10-2 4.0072×10-2

15 0.1758 0.6669×10-2 0.6808×10-2 0.6752×10-2 0.7715×10-2

24 0.1765 0.5216×10-2 0.5167×10-2 0.5171×10-2 0.5618×10-2

0.17647 
(0.6) 

90 0.1774 0.4545×10-2 0.4550×10-2 0.4563×10-2 0.4659×10-2

4 3.9327 10.1416 10.726 10.2777 17.1296
15 3.9763 2.2899 2.3336 2.3042 2.6333
24 3.9931 1.4007 1.4381 1.4306 1.5550

4.0 
(3.2) 

90 4.0014 0.4131 0.4064 0.4068 0.4159
* Observed sampling variances 2Var( )ˆuσ were found based on 10000 replicated samples. 
# Predicted sampling variances 2 2

,Var( | )ˆu e uσ σ were calculated by formula (3.20). 
¤ Estimated sampling variances 	 2 2

,Var( | )ˆ ˆu e uσ σ and 	 2 2
,Var ( | )ˆ ˆb u e uσ σ were calculated by 

formulas (3.22) and (3.20), respectively, with 2ˆuσ substituted for 2
uσ and 2ˆeσ substituted 

for 2
eσ in (3.20), and based on 10000 replicated samples. 

 
Simulations results concerning standard deviations of 2ˆuσ are presented in Table 
3.4. Results showing 2ˆeσ are not presented because these are similar to those in 
Tables 3.3 and 3.4, only the differences in accuracy are less notable. 

Results in table 3.3 indicate that the expression (3.22), giving an unbiased es-
timator to the sampling variance of the ANOVA estimator of the variance com-
ponent 2

uσ , is correct. Using the standard formula (3.20) with 2ˆuσ substituted for 



49

2
uσ and 2ˆeσ substituted for 2

eσ will lead to overestimated sampling variance. The 
bias is especially large in the case of a small number of groups and a small intra-
class correlation (the latter means all possible heritabilities from the sire model); 
in the case of a large intraclass correlation (the values of which are impossible in 
the sire model) the bias is bigger for a large number of groups. 

Results in table 3.4 indicate that taking the square root from the expression 
(3.22) will result in an underestimated standard error of 2

uσ . To get a more pre-
cise estimate, the formula (3.20) with 2ˆuσ substituted for 2

uσ and 2ˆeσ substituted 
for 2

eσ should be used in calculating the standard deviation of the estimates of 
2
uσ . The latter is a standard practice for example in the commercial statistical 

package SAS, where asymptotic standard errors are calculated, which in the 
case of the ANOVA method means that the square roots of the expressions 
(3.20) and (3.21) are used (SAS, 1999). 
 
Table 3.4. The observed, predicted and estimated standard deviations of the variance 
component estimate 2ˆuσ in the case of different true population values and number of 
groups (sires) a. 360N = , 2 1eσ = .

2
uσ ( 2h ) a 2E( )ˆuσ 2 *( )ˆuσσ 2 2 #

,| )ˆu e uσ σσ( 
 2 2 ¤
,( | )ˆ ˆu e uσ σσ 
 2 2 ¤

,( | )ˆ ˆb u e uσ σσ
4 0.0127 0.0197 0.0194 0.0152 0.0195 

15 0.0125 0.0209 0.0208 0.0195 0.0208 
24 0.0130 0.0240 0.0240 0.0231 0.0241 

0.01266 
(0.05) 

90 0.0124 0.0451 0.0449 0.0445 0.0449 
4 0.0662 0.0625 0.0635 0.0489 0.0631 

15 0.0662 0.0412 0.0411 0.0383 0.0410 
24 0.0666 0.0400 0.0397 0.0381 0.0397 

0.06667 
(0.25) 

90 0.0669 0.0518 0.0521 0.0517 0.0522 
4 0.1774 0.1567 0.1532 0.1192 0.1539 

15 0.1758 0.0817 0.0825 0.0770 0.0823 
24 0.1765 0.0722 0.0719 0.0690 0.0719 

0.17647 
(0.6) 

90 0.1774 0.0674 0.0675 0.0669 0.0676 
4 3.9327 3.1846 3.2751 2.4943 3.2201 

15 3.9763 1.5133 1.5276 1.4206 1.5186 
24 3.9931 1.1835 1.1992 1.1483 1.1972 

4.0 
(3.2) 

90 4.0014 0.6427 0.6375 0.6307 0.6377 
* Observed standard deviations 2( )ˆuσσ were found based on 10000 replicated samples. 
# Predicted standard deviations 2 2

,( | )ˆu e uσ σσ were calculated as square roots of formula 
(3.20). 
¤ Estimated standard deviations 
 2 2

,( | )ˆ ˆu e uσ σσ and 
 2 2
,( | )ˆ ˆb u e uσ σσ were calculated as square 

roots of formulas (3.22) and (3.20), respectively, with 2ˆuσ substituted for 2
uσ and 2ˆeσ

substituted for 2
eσ in (3.20), and based on 10000 replicated samples. 

 
Thus, there is a big difference in the accuracy of the estimators of the variability 
of 2ˆuσ depending on whether the sampling variance or standard error is found 
and which formula is used. Expression giving an unbiased estimate to sampling 
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variance gives a biased estimate to the standard error in estimating variance 
components.  
 

3.2.2. The sampling variance of the intraclass correlation  
coefficient 

For the sampling variance of the intraclass correlation coefficient there does not 
exist an exact formula even in the balanced case. Usually an approximate for-
mula is used: 

 
2 22[1 ( 1) ] (1 )Var( )ˆ

( 1)( 1)
n

n n a
ρ ρρ + − −≈

− −
, (3.24) 

derived by Osborne and Paterson (1952) using a first-order Taylor-series expan-
sion of equality (3.9) with n replacing d. Zerbe and Goldgar (1980) derived an 
alternative formula based on the F-ratio (3.12). They used a first-order Taylor 
series expansion of variance of non-linear function of parameter w estimator of 
the form 

 [ ]2Var[ ( )] ( ) Var( )ˆ ˆf w f w w w≈ ∂ ∂ , (3.25) 

where the derivative is evaluated at the mean of ŵ , and reached to the follow-
ing final formula: 

 
2

2 2
2 2

[ ( 1)] ( 3)Var( ) 2[1 ( 1) ] (1 )ˆ
( 1)[ ( 1) 2] [ ( 1) 4]

a n ann
n a a n a n

ρ ρ ρ − −≈ + − −
− − − − −

. (3.26) 

 
To examine the accuracy of the expressions (3.24) and (3.26), similarly to the 
previous section, a simulation study was performed. The compared parameters 
were the variances and standard deviations of the estimators of the intraclass 
correlation coefficient. Both these parameters were found in five different ways. 
At first the observed variability of the estimators was found based on 10000 
replicated samples. The predicted sample variances and standard errors were 
calculated both by Osborne’s and Paterson’s approximation and by Zerbe’s and 
Goldgar’s approximation. The estimated sample variances and standard errors 
are averages of the parameters found on each simulation by expressions (3.24) 
or (3.26) (or the square root of them) with ρ̂ substituted for ρ .

The simulations results concerning the variances of ρ̂ are presented in Ta-
ble 3.5 and the simulations results showing the standard deviations of ρ̂ are 
presented in Table 3.6. As in the sire model, the sampling variance of the heri-
tability coefficient equals to 16 times the sampling variance of the intraclass 
correlation coefficient (for the standard error the corresponding coefficient is 4), 
then all the following conclusions apply also in the case of estimation of herita-
bilities. 
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Table 3.5. The observed, predicted and estimated sampling variances of the intraclass 
correlation coefficient ρ in the case of different true population values and number of 
groups (sires) a. 360N = , 2 1eσ = .

ρ
( 2h ) a E( )ρ̂ *Var( )ρ̂ #Var ( )ˆOP ρ ρ 	 ¤Var ( )ˆ ˆOP ρ ρ #Var ( )ˆZG ρ ρ 	 ¤Var ( )ˆ ˆZG ρ ρ

4 0.0124 0.3625×10-3 0.3622×10-3 0.5572×10-3 0.3674×10-3 0.5651×10-3

15 0.0123 0.4165×10-3 0.4183×10-3 0.4568×10-3 0.4246×10-3 0.4637×10-3

24 0.0122 0.5734×10-3 0.5575×10-3 0.5832×10-3 0.5662×10-3 0.5924×10-3

0.0125
(0.05) 

90 0.0121 0.1961×10-2 0.1966×10-2 0.1954×10-2 0.2008×10-2 0.1996×10-2

4 0.0595 0.2682×10-2 0.3150×10-2 0.3856×10-2 0.3195×10-2 0.3911×10-2

15 0.0612 0.1304×10-2 0.1351×10-2 0.1405×10-2 0.1372×10-2 0.1426×10-2

24 0.0617 0.1272×10-2 0.1280×10-2 0.1306×10-2 0.1230×10-2 0.1326×10-2

0.0625
(0.25) 

90 0.0624 0.2274×10-2 0.2321×10-2 0.2303×10-2 0.2371×10-2 0.2353×10-2

4 0.1382 0.0987×10-2 0.1238×10-1 0.1199×10-1 0.1256×10-1 0.1216×10-1

15 0.1462 0.3440×10-2 0.3703×10-2 0.3637×10-2 0.3758×10-2 0.3692×10-2

24 0.1477 0.2782×10-2 0.2875×10-2 0.2835×10-2 0.2920×10-2 0.2879×10-2

0.15 
(0.6) 

90 0.1497 0.2798×10-2 0.2845×10-2 0.2811×10-2 0.2906×10-2 0.2872×10-2

4 0.7048 0.3529×10-1 0.1735×10-1 0.2260×10-1 0.1760×10-1 0.2292×10-1

15 0.7799 0.4974×10-2 0.3896×10-2 0.4455×10-2 0.3955×10-2 0.4522×10-2

24 0.7885 0.2772×10-2 0.2465×10-2 0.2687×10-2 0.2504×10-2 0.2729×10-2

0.8 
(3.2) 

90 0.7969 0.9042×10-3 0.8659×10-3 0.8937×10-3 0.8847×10-3 0.9131×10-3

* Observed sampling variances Var( )ρ̂ were found based on 10000 replicated samples. 
# Predicted sampling variances Var ( | )ˆOP ρ ρ and Var ( | )ˆZG ρ ρ were calculated by formu-
las (3.24) and (3.26), respectively. 
¤ Estimated sampling variances 	Var ( )ˆ ˆOP ρ ρ and 	Var ( )ˆ ˆZG ρ ρ were calculated by for-
mulas (3.24) and (3.26), respectively, with ρ̂ substituted for ρ , and based on 10000 
replicated samples.  

 
Comparing the observed variances Var( )ρ̂ with the predicted variances 
Var ( )ˆOP ρ ρ and Var ( )ˆZG ρ ρ in Table 3.5, the following conclusion can be 
made. For admissible heritability values both Osborne’s and Paterson’s ap-
proximation and Zerbe’s and Goldgar’s approximation are quite exact. Only in 
the case of small number of groups (sires) the approximated predicted variances 
are a little overestimated, being more imprecise using Zerbe’s and Goldgar’s 
approximation (3.26). For large heritability values and especially for large intra-
class correlation values (corresponding to inadmissible heritabilities) the ap-
proximated predicted sampling variances are underestimated, being most im-
precise for small number of groups. The same conclusions were made by Viss-
cher (1998) and by Donner and Koval (1983). 
 
Conclusions dealing with predicted standard deviations ( )ˆOP ρ ρσ and 

( )ˆZG ρ ρσ presented in Table 3.6 are similar to those concerning sample vari-
ances. For small intraclass correlations both approximations are quite precise, 
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being a little overestimated in Zerbe’s and Goldgar’s expression. The standard 
deviations for large intraclass correlation coefficients are underestimated. 
 
Table 3.6. The observed, predicted and estimated standard deviations of the intraclass 
correlation coefficient estimate ρ̂ in the case of different true population values and 
number of groups (sires) a. 360N = , 2 1eσ = .

ρ ( 2h ) a E( )ρ̂ *( )ρ̂σ #( | )ˆOP ρ ρσ 
 ¤( | )ˆ ˆOP ρ ρσ #( | )ˆZG ρ ρσ 
 ¤( | )ˆ ˆZG ρ ρσ
4 0.0124 0.0190 0.0190 0.0187 0.0192 0.0188 

15 0.0123 0.0204 0.0204 0.0202 0.0206 0.0204 
24 0.0122 0.0239 0.0236 0.0235 0.0238 0.0237 

0.0125 
(0.05) 

90 0.0121 0.0443 0.0443 0.0440 0.0448 0.0445 
4 0.0595 0.0518 0.0561 0.0518 0.0565 0.0523 

15 0.0612 0.0361 0.0368 0.0359 0.0370 0.0361 
24 0.0617 0.0357 0.0358 0.0352 0.0360 0.0355 

0.0625 
(0.25) 

90 0.0624 0.0477 0.0482 0.0479 0.0487 0.0484 
4 0.1382 0.0994 0.1113 0.0965 0.1121 0.0972 

15 0.1462 0.0587 0.0609 0.0587 0.0613 0.0591 
24 0.1477 0.0527 0.0536 0.0524 0.0540 0.0528 

0.15 
(0.6) 

90 0.1497 0.0529 0.0533 0.0530 0.0539 0.0535 
4 0.7048 0.1879 0.1317 0.1430 0.1327 0.1440 

15 0.7799 0.0705 0.0624 0.0652 0.0629 0.0657 
24 0.7885 0.0526 0.0487 0.0510 0.0500 0.0514 

0.8 
(3.2) 

90 0.7969 0.0301 0.0294 0.0297 0.0297 0.0300 
* Observed standard deviations ( )ρ̂σ were found based on 10000 replicated samples. 
# Predicted standard deviations ( | )ˆOP ρ ρσ and ( | )ˆZG ρ ρσ were calculated as square roots 
of formulas (3.24) and (3.26), respectively. 
¤ Estimated standard errors 
 ( | )ˆ ˆOP ρ ρσ and 
 ( | )ˆ ˆZG ρ ρσ were calculated as square roots of 
formulas (3.24) and (3.26), respectively, with ρ̂ substituted for ρ , and based on 10000 
replicated samples. 

 
The accuracy of the expressions for the sample variances and standard devia-
tions of the intraclass correlation coefficient estimates in the case of admissible 
heritabilities gives good opportunities for studies in data designs, and for addi-
tional simulations. 
 
In real data analyses the population values are not known and sample variances 
are estimated by formulas (3.24) or (3.26) with ρ̂ substituted for ρ . In all 
cases the estimated sampling variances are larger than the corresponding theo-
retical approximations. As can be seen from Table 3.5, the sampling variances 
of the intraclass correlation coefficient are overestimated for admissible herita-
bility values, especially in the case of small number of groups (sires). For bigger 
intraclass correlation values the sampling variances are underestimated, but less 
than with the theoretical approximations assuming population parameters 
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known. In the case of big number of groups, the estimated variances of ρ̂ got 
with Zerbe’s and Goldgar’s approximation quite precise. 
 
Unlike the estimated sampling variances, the standard errors of the estimated 
intraclass correlation coefficients in the case of admissible heritability coeffi-
cient values are quite precise. If the Osborne’s and Paterson’s approximation 
gives somewhat underestimated values to the estimated ( )ρ̂σ , then the Zerbe’s 
and Goldgar’s approximation is more precise. For large intraclass correlation 
values and small number of groups the standard errors of ρ̂ are underestimated. 
As the last situation is impossible in genetic applications like the sire model, 
then the use of the approximated standard errors of heritabilities is justified. 
 

3.2.3. The mean square errors of predictors 

The following theorem gives an exact expression for the variance-covariance 
matrix of prediction errors in the balanced one-way ANOVA model, allowing to 
study the effect of data design. 
 
Theorem 3.1. In the one-way balanced random model under the normality as-
sumptions the variance-covariance matrix of prediction errors and mean square 
error of predictors are expressed by the following formulas:

2 2 2 22 22 2

2 2 2 2 2 2
m , 1

( )( )Var( )ˆ
( ) ( )

a
ij u e uuu e a a

e u e u e u i j

a nn
n a n a n

δ σ σ σσσ σ
σ σ σ σ σ σ

=

 +− = + =  + + + 
u u I J ,

(3.27) 

where {1,0,ij
i j
i jδ == ≠ , and 

 
2 2 2

2 2
( )MSE( )ˆ u e u

e u

a n
n

σ σ σ
σ σ

+=
+

u . (3.28) 

 
Proof. By formulas (1.12) and (1.13) the variance-covariance matrix of predic-
tion errors is expressed as 
 1 1 1 1Var( ) ( )ˆ − − − − −′ ′ ′ ′− = − +u u G GZ V ZG GZ V X X V X X V ZG . (3.29) 
Design matrices X and Z corresponding to model (3.1) are expressed as fol-
lows: N=X 1 and d 1{ }a

n i==Z 1 . Variance-covariance matrix of random effects u
is 2

u aσ=G I and the inverse of variance-covariance matrix V (3.2) is by Corol-
lary 3.1 equal to 

221
2 2 22 2 2

d 1

11
a

uu n na n n
e e ue e u i

nn
σσ

σ σ σσ σ σ
−

=

    −= ⊗ − =     ++     
I JV I I J .

After some matrix algebra we get that the two first terms in (3.29) add up to 
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2 2 2 21 2
2 2 2 2
( )u u eu a a a

e u e u

n
n n

σ σ σσ
σ σ σ σ

−′− = − =
+ +

G GZ V ZG I I I . (3.30) 

For the third component in the expression (3.29) we have first that the middle 
term 1( )− −′X V X is scalar because the design matrix X is 1N × vector. The in-
vertible matrix 1−′X V X has a form 

2 21
2 2 2 2 2 2 2 2

d 1

1 1
a

u un nN N
e e u e e u e ui

Nn NN
n n n

σ σ
σ σ σ σ σ σ σ σ

−

=

    −′ ′= = − =    + + +    
I JX V X 1 1 ,

from which we have that 

 
2 21( ) e un

N
σ σ− − +′ =X V X . (3.31) 

The other terms in the third component of expression (3.29) can be presented as 
follows: 

 

2 21 1
2 2 2 2

2 2

2 2 2

( )( )

( ) .
( )

u ua a
e u e u
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e u

n n
n n

n
n
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σ σ σ σ

σ
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J
(3.32) 

If we substitute the expressions (3.30), (3.31) and (3.32) into (3.29) we get that 
2 22 2 2 2

2 2 2 2 2

2 22 2

2 2 2 2

( )Var( )ˆ
( )

( ) ,
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uu e e ua a
e u e u

uu e a a
e u e u

nn
n N n

n
n a n

σσ σ σ σ
σ σ σ σ

σσ σ
σ σ σ σ

+− = + ×
+ +

= +
+ +

u u I J

I J
 

which is exactly the formula (3.27) in the theorem statement. 
 
The mean square error of predictors equals to the sum of the diagonal elements 
of the matrix (3.27): 

2 2 2 2 22 2

2 2 2 2 2 2
1

( ) ( )MSE( )ˆ
( )

a
u u e uu e

e u e u e ui

n a n
n a n n

σ σ σ σσ σ
σ σ σ σ σ σ=

  += + = + + + 
∑u .

The latter is equal to the expression (3.28) in the theorem statement, which ends 
the proof.  ■

Corollary 3.2. In the one-way balanced random model under the normality as-
sumptions the mean square error of predictor ˆiu is expressed as 

 
2 2 2

2 2
( )MSE( )ˆ
( )

u e u
i

e u

a nu
a n

σ σ σ
σ σ

+=
+

(3.33) 

and naive estimated as 
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2 2 2

2 2
( )ˆ ˆ ˆMSE( )ˆ
( )ˆ ˆ

u e u
i

e u

a nu
a n

σ σ σ
σ σ

+=
+

. (3.34) 

■

Taking into account the sampling variance of the estimators of the variance 
components the approximated formula for the mean square error of two-stage 
predictors is given in the following theorem. 
 
Theorem 3.2. In the one-way balanced random model under the normality as-
sumptions the variance-covariance matrix of two-stage prediction errors and 
the mean square error of two-stage predictors are expressed by the following 
formulas:

2 2 2 2

2 2 2
Var( ) Var( ) Var( ) ( )ˆ ˆ

Var( ) ( ) ( )ˆ

−′− ≈ − + ×
′ ′ ′+ × − −

� e u

u a u a u

σ σ
σ σ σ

u u u u Z V PZ
I Z PZ Z PZ I Z PZ

(3.35) 

and 
2 2 2 2 2 2

2 2 3
( 1)MSE( ) MSE( ) ( ) Var( ) ( ) Var( )ˆ ˆ ˆ

( )
u e e u

e u

n a
n

σ σ σ σ
σ σ

−  ≈ + + +
u u� . (3.36) 

 
Proof. To derive the expression for Var( )−�u u corresponding to model (3.1), 
we proceed from general expression (1.21) derived in Corollary 1.1. As in the 
model (3.1) 2

u aσ=G I and 0 N=Z I , we get that 

 
2 2 2

2 2 2
Var( ) Var( ) Var( ) ( )ˆ ˆ

Var( ) ( ) ( ).ˆ
′− ≈ − + ×

′ ′ ′+ × − −
� e u

u a u a u

σ σ
σ σ σ

u u u u Z PPPZ
I Z PZ Z PZ I Z PZ

(3.37) 

The matrix P in this approximation is given in formula (1.11) and can be ex-
pressed also as the following matrix product: 1 1 1[ ( ) ]N

− − − −′ ′= × −P V I X X V X X V .
Here the part 1 1( )− − −′ ′X X V X X V can be referred as projection matrix 1, −X VP .
Then by the Proposition 3.3 we have that 

1 1 1 1 1

1 1 1
[ ( ) ] [ ( ) ]

[ ( ) ].
N N

N

− − − − − − −

− − − −

′ ′ ′ ′ ′− × × −
′ ′= × −

I X X V X X V V I X X V X X V
V I X X V X X V

 

As 1 1( )N
− − −′ ′−I X X V X X V is symmetric in the balanced case, then 

1 1− −=PPP V V P . The substitution of the last identity into (3.37) results in ex-
pression (3.35) in the theorem statement. 
 
To derive MSE( )�u , we first note that 

MSE( ) tr[Var( )] tr[Var( )] tr[Var( )]ˆ ˆ
MSE( ) tr[Var( )].ˆ ˆ

= − = − + −
= + −

u u u u u u u
u u u

� � �
�

Using (3.35) and partition of P, the trace of Var( )ˆ−u u� can be divided into eight 
terms, which after applying the first five trace properties from Proposition 3.1 
are expressed as follows: 
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{ }
{
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′ ′ ′ ′+ × −

 ′ ′ ′ ′ ′ ′− × − 
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ZZ ZZ V X V X ZZ ZZ XX V

ZZ ZZ ZZ V X V X ZZ

�

}4) .− ′ ′ ′ ZZ ZZ XX V

 (3.38) 
In deriving this expression also the facts that ′ZZ , ′XX and 1−V are symmet-
ric, and that 1( )− −′X V X is scalar, were used. 

As N=X 1 and d 1{ }a
n i==Z 1 , then N′ =XX J , d 1{ }a

n i=′ =ZZ J , ′ ′ =ZZ ZZ
d 1{ }a

n in =J and d 1{ }a
n in =′ ′ =ZZ XX J . Analogously we get that ′ ′ ′ ′ =ZZ ZZ ZZ XX

3
d 1{ }a

n in =J .
Next we notice that according to the expression of 1−V and by the form of 

the products of design matrices, all arguments of the trace operations in expres-
sion (3.38) are block diagonal matrices with block dimensions n n× . By state-
ment (vii) in Proposition 3.1 we can take trace separately from all diagonal 
blocks and then sum the results. Denoting the exponent of n in products of de-
sign matrices by j and exponent of 1−V in (3.38) by h, we can represent each 
diagonal block of matrices under trace operation in a form 
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n
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σ σ σ
  × −  +  
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which can be more compactly expressed as 2[( ) ]j h
n n n en g σ× −J I J , using notation  

2 2 2( )u e ug nσ σ σ= + .
By the statement (vi) in Proposition 3.1, the trace of such a matrix equals to 

2( )j h
en σ times sum of elements of ( )h

n ng−I J . Following the statement (iii) in 
Proposition 3.4 we get that matrix ( )h

n ng−I J has n diagonal elements equal to 
1 [(1 ) 1]hng n+ − −  and ( 1)n n − offdiagonal elements equal to [(1 ) 1]hng n− − .
So, the sum of elements of matrix ( )h

n ng−I J is expressed as 

(1 ) 1 (1 ) 11 ( 1) (1 )
h h

hng ngn n n n ng
n n

   − − − −+ + − = −      
.

In summary we get, for example, that the first trace in (3.38) equals to 
3 3 2 3 3 2 3

1
tr( ) (1 ) ( ) (1 ) ( )

a
e e

i
n ng an ngσ σ−

=
′ = − = −∑ZZ V .

According to the formula (3.31) we know that 1 2 2( ) ( )e un Nσ σ− −′ = +X V X . De-
noting this scalar with c:

2 2( )e uc n Nσ σ= + ,
we get the second addend in the expression (3.38) as follows: 

1 4 2 4 2 4 2 4 2 4

1
( ) tr( ) (1 ) ( ) (1 ) ( )

a
e e

i
c n ng c an ngσ σ− − −

=
′ ′ ′ = − = −∑X V X ZZ XX V .
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The other terms in (3.38) can be expressed similarly and finally resulted in the 
following expression: 

{

}

2 2 2 3 2 3 2 4 2 4

2 2 2 2 2 2

2 2 2 2 2 3 3 2 3

2 2 3 3 2 3 4 4 2 4

tr[Var( )] Var( ) ( ) (1 ) ( ) (1 ) ( )ˆ ˆ

Var( ) (1 ) (1 ) ( )ˆ

2 (1 ) ( ) (1 ) ( )

( ) (1 ) ( ) (1 ) ( ) .

e u e e

u e e

u e e

u e e

an ng c an ng

an ng can ng

an ng c an ng

an ng c an ng

σ σ σ σ

σ σ σ

σ σ σ

σ σ σ

 − ≈ × × − − − 
+ × − − −

 − × − − − 
 + × − − − 

u u�

After reducing and bringing front similar terms we got approximated 
tr[Var( )]ˆ−u u� of the form 

2 2 2 2
2 2

(1 ) (1 )tr[Var( )] 1 Var( ) (1 ) Var( ) .ˆ ˆ ˆe u
e e

an ng cn ng g ngσ σ
σ σ
− −   − ≈ − × + −   

u u�

To simplify the last formula we note that 2 2 21 ( )e e ung nσ σ σ− = +  and 
2 2 2

2 2 2 2
(1 ) ( ) 11 1 e u e

e e e u

cn ng n a
a n a

σ σ σ
σ σ σ σ
− + −− = − × =

+
.

Now we substitute these expressions and get that 
2 2 2 2 2 2

2 2 3
( 1)tr[Var( )] ( ) Var( ) ( ) Var( )ˆ ˆ ˆ

( )
u e e u

e u

n a
n

σ σ σ σ
σ σ

−  − ≈ + +
u u� .

So, 
2 2 2 2 2 2

2 2 3
( 1)MSE( ) MSE( ) ( ) Var( ) ( ) Var( )ˆ ˆ ˆ

( )
u e e u

e u

n a
n

σ σ σ σ
σ σ

−  ≈ + + +
u u� ,

which establishes the theorem. ■

The second approximation in the next corollary follows from expression (1.20). 
 
Corollary 3.3. In the one-way balanced random model under the normality as-
sumptions the mean square error of two-stage predictor iu� is expressed as 

 2 2 2 2 2 2
2 2 3
( 1)MSE( ) MSE( ) ( ) Var( ) ( ) Var( )ˆ ˆ ˆ

( )
i i u e e u

e u

n au u
a n

σ σ σ σ
σ σ

−  ≈ + + +
� (3.39) 

and unbiasedly estimated approximately as 

 	 	 2 2 2 2 2 2
2 2 3

2 ( 1)MSE( ) MSE( ) ( ) Var( ) ( ) Var( )ˆ ˆ ˆ ˆ ˆ
( )ˆ ˆ

i i u e e u
e u

n au u
a n

σ σ σ σ
σ σ

−  ≈ + + +
� . (3.40) 

■

To study the accuracy of the expressions (3.33), (3.34), (3.39) and (3.40), and to 
examine the effect of using estimated variance components instead of their true 
population values, similarly to the previous sections a simulation study was per-
formed. The compared parameters were the observed mean square errors of 
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predictors ˆiu and iu� based on 10000 replicated samples; the predicted mean 
square errors of predictors ˆiu and iu� calculated by formulas (3.33) and (3.39), 
respectively; and the average estimated mean square errors based on 10000 rep-
licated samples. In calculating the estimated MSE( )iu� by expression (3.40), 
sampling variances of variance components 2

uσ and 2
eσ were found by formu-

las (3.22) and (3.23), respectively. Simulations results showing the mean square 
errors of random effect iu are presented in Table 3.7.  
 
Based on simulations results presented in Table 3.7, the formula (3.33), giving 
the mean square errors of random effects iu (denoted as 2

,MSE( | )ˆi e uu σ in the 
table), is correct – in all cases the observed and predicted mean square errors are 
identical. This allows performing precise studies in data designs. In the point of 
genetic applications, where population genetic parameters like heritabilities and 
intraclass correlations are often assumed known, the correctness of the mean 
square errors means precise estimates to the accuracy of random genetic effects. 
 
Table 3.7. The observed, predicted and estimated mean square errors of random effect 

iu in the case of different true population values and number of groups (sires) a. Popu-
lation size 360N = and error variance 2 1eσ = were used. 

ρ
( 2h ) a *MSE( )ˆiu 2 #

,MSE( | )ˆi e uu σ 	 2 ¤
,MSE( | )ˆ ˆi e uu σ *MSE( )iu� 2 #

,MSE( | )i e uu σ� 	 2 ¤
,MSE( | )ˆi e uu σ�

4 0.0076 0.0076 -0.0001 0.0157 0.0102 3.9413 
15 0.0099 0.0099 0.0046 0.0151 0.0143 0.0141 
24 0.0107 0.0107 0.0055 0.0162 0.0156 0.0153 

0.0125
(0.05) 

90 0.0121 0.0121 0.0045 0.0193 0.0189 0.0190 
4 0.0240 0.0238 0.0215 0.0261 0.0246 0.0297 

15 0.0284 0.0284 0.0257 0.0311 0.0306 0.0302 
24 0.0348 0.0347 0.0314 0.0381 0.0376 0.0373 

0.0625
(0.25) 

90 0.0529 0.0528 0.0471 0.0588 0.0581 0.0581 
4 0.0515 0.0520 0.0511 0.0526 0.0523 0.0805 

15 0.0432 0.0432 0.0419 0.0446 0.0443 0.0441 
24 0.0536 0.0537 0.0519 0.0554 0.0553 0.0551 

0.15 
(0.6) 

90 0.1043 0.1043 0.1002 0.1087 0.1081 0.1079 
4 1.0067 1.0083 0.9915 1.0068 1.0083 0.9916 

15 0.3022 0.3052 0.3035 0.3023 0.3052 0.3036 
24 0.2303 0.2295 0.2291 0.2304 0.2296 0.2293 

0.8 
(3.2) 

90 0.2763 0.2771 0.2768 0.2768 0.2771 0.2768 
* Observed mean square errors MSE( )ˆiu and MSE( )iu� were found based on 10000 rep-
licated samples. 
# Predicted mean square errors 2

,MSE( | )ˆi e uu σ and 2
,MSE( | )i e uu σ� were calculated by for-

mulas (3.33) and (3.39), respectively. 
¤ Estimated mean square errors 	 2

,MSE( | )ˆ ˆi e uu σ and 	 2
,MSE( | )ˆi e uu σ� were calculated by for-

mulas (3.34) and (3.40), respectively, with 2ˆuσ substituted for 2
uσ and 2ˆeσ substituted 

for 2
eσ , and based on 10000 replicated samples.  
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If the estimated variance components (or their ratios) are used in prediction, 
then the additional variability should be taken into account and the approxi-
mated expression of the mean square error of a two-stage prediction might be 
used. Simulations show that in the case of admissible heritability values the ob-
served MSE( )iu� is underestimated using approximation (3.39) resulted with 

2
,MSE( | )i e uu σ� in Table 3.7. Inaccuracy is largest for small heritabilities and 

small number of groups, which is logical, as the approximated formulas for 
MSE( )iu� are derived, assuming large sample size and group number. 

 
In real data analysis it is standard practice that the accuracy of calculated pre-
dictors iu� is characterised via the estimated MSE( )ˆiu . Simulations showed that 
due to such action the real mean square error of predictor iu� is underestimated, 
especially in the case of small values of the intraclass correlation coefficient. 

 
The estimated mean square errors of two-stage predictors iu� calculated with 
(3.40) are in the case of not too small number of groups and in the range of ad-
missible heritability values also somewhat underestimated. But this bias is small 
compared with the differences between the observed MSE( )iu� and estimated 
MSE( )ˆiu which are equated in practical studies. In the case of big values of the 
intraclass correlation coefficient there seems to be no need for additional ad-
dend, considering the variability of the variance components estimators in the 
expression of the MSE( )iu� . Both estimated mean square errors of the predictors 
ˆiu and iu� are very imprecise and variable in the case of small number of groups 

and small heritabilities. Then the MSE( )ˆiu is strongly underestimated, resulting 
even in a negative average estimated mean square error of ˆiu ; at the same time 
the MSE( )iu� is overestimated, being in several cases – due to the inappropriate 
estimates of variance components and their variances – more than 1000 times 
bigger than the observed MSE( )iu� .

Similarly to the variance components and heritability estimation where the ac-
curacy of estimates is usually examined based on standard errors instead of 
sampling variances, also in the prediction of random effects the standard devia-
tions of prediction errors MSE( ) ( )ˆ ˆi i iu u u= σ − and MSE( ) ( )i i iu u u= σ −� � are 
used instead of variances MSE( ) Var( )ˆ ˆi i iu u u= − and MSE( ) Var( )i i iu u u= −� � .
The problem in studying the standard deviations is that the estimated variances 
of prediction errors calculated by formulas (3.34) and (3.40) can be negative, 
not allowing to take the square root and to find the standard deviations. The 
probability to get such inadmissible estimates is discussed in the following 
paragraph. In simulation studies the estimated standard deviations of prediction 
errors were found in two ways – at first the negative estimates were taken equal 
to zero and secondly the negative estimates were omitted and only positive or 
zero estimates were used. Wang et al (1992), who studied the negative estimates 
of variance components, called the first type of estimators concentrated estima-
tors and second type of estimators truncated estimators. The observed standard 
errors were found also in two ways – using all generated samples and using 
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only samples corresponding to non-negative estimated mean square error of 
predictor ˆiu .

The simulations results concerning the standard deviations of prediction errors 
( )ˆi iu uσ − are presented in Table 3.8 and the simulations results dealing with the 

standard deviations of prediction errors ( )i iu uσ −� are presented in Table 3.9. 
 

Study of the standard deviations of prediction errors (Table 3.8 and Table 3.9) 
shows that the predicted standard deviations of prediction errors calculated by 
theoretical formulas and assuming the parameters real values known give over-
estimated values to the observed standard errors.  
 
Table 3.8. The observed, predicted and estimated standard deviations of prediction er-
rors in the case of different true population values and number of groups (sires) a. Popu-
lation size 360N = and error variance 2 1eσ = were used. 

ρ ( 2h ) a *( )ˆi iu uσ −  *( )ˆi iu u+σ −  2 #
,( | )ˆi i e uu u σσ − 
 2 ¤

0 ,( | )ˆ ˆi i e uu u σσ − 
 2 ¤
,( | )ˆ ˆi i e uu u σ+σ −

4 0.0816 0.0818 0.0872 0.0640 0.0914 
15 0.0980 0.0978 0.0995 0.0763 0.1094 
24 0.1026 0.1024 0.1035 0.0830 0.1212 

0.0125 
(0.05) 

90 0.1096 0.1097 0.1098 0.1011 0.1699 
4 0.1396 0.1394 0.1543 0.1367 0.1465 

15 0.1655 0.1655 0.1685 0.1563 0.1598 
24 0.1845 0.1845 0.1863 0.1724 0.1763 

0.0625 
(0.25) 

90 0.2293 0.2294 0.2298 0.2038 0.2244 
4 0.1967 0.1966 0.2279 0.2100 0.2124 

15 0.2029 0.2029 0.2079 0.2033 0.2034 
24 0.2287 0.2287 0.2318 0.2268 0.2269 

0.15 
(0.6) 

90 0.3220 0.3220 0.3229 0.3136 0.3140 
4 0.8091 0.8091 1.0041 0.9192 0.9194 

15 0.4770 0.4770 0.5524 0.5435 0.5435 
24 0.4367 0.4367 0.4791 0.4759 0.4759 

0.8 
(3.2) 

90 0.5219 0.5219 0.5264 0.5257 0.5257 
* Observed standard deviations of prediction errors ( )ˆi iu uσ − and ( )ˆi iu u+σ − were found 
based on 10000 replicated samples and based only on samples with non-negative esti-
mates of MSE( )ˆiu , respectively. 
# Predicted standard deviations 2

,( | )ˆi i e uu u σσ −  were calculated as square roots of formula 
(3.33). 
¤ Estimated standard deviations 
 2

0 ,( | )ˆ ˆi i e uu u σσ −  and 
 2
,( | )ˆ ˆi i e uu u σ+σ −  were calculated as 

square roots of formula (3.34), based on 10000 replicated samples and based only on 
non-negative estimates of MSE( )ˆiu , respectively, with 2ˆuσ substituted for 2

uσ and 2ˆeσ
substituted for 2

eσ , and based on 10000 replicated samples.  
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Table 3.9. The observed, predicted and estimated standard deviations of two-stage pre-
diction errors in the case of different true population values and number of groups 
(sires) a. Population size 360N = and error variance 2 1eσ = were used. 

ρ ( 2h ) a *( )i iu uσ −� *( )i iu u+σ −� 2 #
,( | )i i e uu u σσ −� 
 2 ¤

0 ,( | )ˆi i e uu u σσ −� 
 2 ¤
,( | )ˆi i e uu u σ+σ −�

4 0.1062 0.1062 0.1010 0.1495 0.1495 
15 0.1181 0.1110 0.1195 0.1119 0.1262 
24 0.1242 0.1158 0.1250 0.1387 0.1165 

0.0125 
(0.05) 

90 0.1351 0.1262 0.1375 0.1334 0.1836 
4 0.1459 0.1459 0.1569 0.1519 0.1519 

15 0.1728 0.1723 0.1748 0.1718 0.1727 
24 0.1929 0.1925 0.1939 0.1905 0.1914 

0.0625 
(0.25) 

90 0.2413 0.2390 0.2411 0.2304 0.2417 
4 0.1994 0.1994 0.2287 0.2176 0.2176 

15 0.2060 0.2060 0.2105 0.2091 0.2091 
24 0.2326 0.2325 0.2352 0.2341 0.2341 

0.15 
(0.6) 

90 0.3286 0.3286 0.3287 0.3264 0.3265 
4 0.8091 0.8091 1.0041 0.9193 0.9194 

15 0.4771 0.4771 0.5525 0.5436 0.5436 
24 0.4368 0.4368 0.4792 0.4761 0.4761 

0.8 
(3.2) 

90 0.5223 0.5223 0.5264 0.5257 0.5257 
* Observed standard deviations of prediction errors ( )i iu uσ −� and ( )i iu u+σ −� were found 
based on 10000 replicated samples and based only on samples with non-negative esti-
mates of MSE( )iu� , respectively. 
# Predicted standard deviations 2

,( | )i i e uu u σσ −� were calculated by square root of formula 
(3.39). 
¤ Estimated standard deviations 
 2

0 ,( | )ˆi i e uu u σσ −� and 
 2
,( | )ˆi i e uu u σ+σ −� were calculated as 

square roots of formula (3.40), based on 10000 replicated samples and based only on 
non-negative estimates of MSE( )iu� , respectively, with 2ˆuσ substituted for 2

uσ and 2ˆeσ
substituted for 2

eσ , and based on 10000 replicated samples.  

 
Due to the fact that the estimated mean square errors can be negative, two types 
of estimators of standard errors were calculated. As inadmissible estimates are a 
problem especially in the case of the intraclass correlation values near to zero, 
then the differences between the concentrated and truncated estimators appear 
also if the influences of the random factor are small. The truncated estimators of 

( )ˆi iu uσ − are overestimated, being quite precise in the case of average heritabil-
ity values, the concentrated estimators of ( )ˆi iu uσ − are underestimated in the 
case of small intraclass correlations and overestimated in the case of big intra-
class correlations. Since in calculating the mean square errors of two-stage pre-
dictors iu� an additional, always positive (shown in the next paragraph) term is 
added, then the chance to get a negative estimated mean square error is smaller 
and the difference between concentrated and truncated estimators of ( )i iu uσ −� is 
not notable. Both of these estimators are quite precise in the case of average 
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heritability values and are overestimated in the case of very small or big values 
of the intraclass correlations coefficient. 
 

3.2.4. The inadmissible estimates 

The inadmissible estimates are those outside the permissible limits, which are 
[0, ]∞ for variance components and mean square errors, [0,1] for intraclass cor-
relation coefficients and heritabilities and [-1,1] for genetic correlations. The 
possibility to get negative estimates of variance components, mean square errors 
and intraclass correlation coefficients is an undesirable feature of the ANOVA 
estimation. From more complicated methods, applicable in general linear mixed 
model and reviewed in Section 1.2.5, negative variance components estimates 
can be obtained with the Henderson III method and the MIVQUE-method. 

An excellent – but unfortunately almost without any algebraic derivations 
and proof – discussion on this problem is given by Henderson (1984). The first 
study dealing with the probability of inadmissible estimates of variance compo-
nents was published by Gill and Jensen (1968). Hill and Thompson (1978) ex-
tended the theory to the multivariate case, deriving the formula for probability 
to get non-positive definite covariance matrices with ANOVA. The detailed 
discussion concerning negative variance components can be found in Searle, 
Casella and McCulloch (1992) and in Khuri, Mathew and Sinha (1998). 

The estimates of the intraclass correlation coefficient cannot be bigger than 
one. But, depending on the genetic model and the genetic application of the in-
traclass correlation coefficient, the estimated heritability coefficient can be big-
ger than one. As this is not an inadmissible estimate in the mathematical sense 
but only in genetics, the problem of too big estimates is left without attention. 
Also, the possibility to get negative estimates of mean square errors is not dis-
cussed yet. 
 
In the following, the sire model (2.4) in notation (3.1) is used and the probabil-
ity to get an inadmissible estimate of heritability with the ANOVA method in 
the balanced case is derived. The proof of the following theorem and the results 
of the simulation studies, checking the correctness of derived formulas, are also 
presented in Kaart (1997). 

 
Theorem 3.3. In the additive genetic sire model under the normality assump-
tions and in balanced data the probability to get the inadmissible heritability 
estimates is 

[ ]2 2 1
( 1), 1 ( 1), 1ˆ ˆP( 0) P ( 1) P F 1 P F ( 3 1) (1 ) ,a n a a n ah h n n nτ τ−

− − − − < + > = > + + < + + 
(3.41) 

where a is the number of sires, n is the number of analysed progeny on each 
sire, τ is the ratio of between- and within-sires variance components, 

2 2
u eτ σ σ= , and ( 1),( 1)Fa n a− − is the random variable with F-distribution having 

( 1)a n − and 1a − degrees of freedom.



63

Proof. In the 1-way balanced classification (half-sib analysis) the estimates of 
variance components are represented with equations (3.8) and (3.6). As 2ˆeσ is 
always positive, then from the equation (3.10) we have that 2ˆ 0h < if 2 0ˆuσ <
and 2ˆ 1h > if 2 2 1 3ˆ ˆu eσ σ > . Knowing that in balanced data the mean squares are 
proportional to 2χ -distribution, the probability of the negative estimate of 
heritability is expressed as follows: 

 

[ ]

( ) ( ) [ ]

2 2

2 2 2 2 2
1 ( 1)

2 2 21
2 2
( 1)

2
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P 1 F 1 P F 1 ,

u

a e u a n e

a e u

a n e

u a n aa a n
e

h MS u MS e
n

a a n
a n n

a

n n

σ
σ σ σ

σ σ
σ

σ τ
σ

− −

−

−

− −− −

< = < = <
 += < − − 
 − += × × < − 
  = + < = > +    

 (3.42) 

where 2
1χ a− and ( 1), ( 1)Fa a n− − denote the random variables with 2χ -distribution and 

F-distribution, respectively. The last equality is true due to the fact that the re-
ciprocal of the random variable with ( 1), ( 1)a a nF − − distribution has the ( 1), 1a n aF − −

distribution. 
Similarly, 
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2
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3(1 )P 1 F 1 P F ,
3 3
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e
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e

MS u nh
MS e

nn n
n

σ
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σ
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  = > = > +      
  +   = + > + = <    +   

 (3.43) 

which establishes the theorem.  ■

Using the relationship between the heritability coefficient and the ratio of vari-
ance components of the form 2 2(4 )h hτ = − , the probability to get an inadmis-
sible estimate of heritability can be expressed also as 

222 2
-1, ( -1) ( 1), 12 2

( 3)(4 )4ˆ ˆP ( 0) P ( 1) P F P F
( 1) 4 3 ( 1) 12

a a n a n a
n hhh h

h n h n
− −

 + − −< + > = < + <  − + − +   
.

In studying the negative estimates of the MSE( )ˆiu it follows from expression 
(3.33) that 

	
2 2 2

2
2 2

( )ˆ ˆ ˆP MSE( ) 0 P 0 P( 0)ˆ ˆ
( )ˆ ˆ

u e u
i u

e u

a nu
a n

σ σ σ σ
σ σ

 + < = < = <   + 
,
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because 2 2P( 0) P[ ( ) (1 ) ( )] 0ˆ ˆe ua n MS u a MS eσ σ+ < = < − = and 2 2P( 0)ˆ ˆe unσ σ+ <
P[ ( ) ( )] 0MS u MS e= < = . From expression (3.40) follows, that 

	

	

	

2 2 2 2 2 2
2 2 3
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2 ( 1)MSE( ) ( ) Var( ) ( ) Var( ) 0ˆ ˆ ˆ ˆ ˆP
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i u e e u
e u

i

u
n au

a n
u

σ σ σ σ
σ σ

 < 
−  + + <≈   + 

 < < 

�

because 

2 2 2 2 2 2
2 2 3

2 ( 1) ( ) Var( ) ( ) Var( ) 0ˆ ˆ ˆ ˆP 0
( )ˆ ˆ

u e e u
e u

n a
a n

σ σ σ σ
σ σ

−  + < =  + 
.

Thus, the estimate of the MSE( )ˆiu is negative if and only if 2ˆuσ is negative, but 
the estimate of the MSE( )iu� can be positive even if 2ˆuσ is negative. As the latter 
is very deceptive and incomprehensible, and the probability to get the estimate 
of the MSE( )iu� negative depends not only on the data design and values of 
variance components, but also on the variance components estimation methods 
and the sampling variances of the variance components estimates, then it is 
natural to treat all estimates corresponding to negative 2ˆuσ as inadmissible. 
 
In the following a simulation study was carried out by the rules described in 
Section 3.2.1. The purpose of simulations is to control the accuracy of the prob-
abilities (3.42) and (3.43), and to find out the magnitude of the chance to get a 
non-negative estimate of the MSE( )iu� even if 2 0ˆuσ < . The results of the simula-
tions are presented in Table 3.10. The probabilities of inadmissible estimates are 
not presented for intraclass correlation coefficient value 0.8, because the corre-
sponding population value of the heritability coefficient 2 3.6h = is already in-
admissible in itself and the probability of negative estimates is irrelevant (for 
example, 2P( 0)ˆuσ < is bigger than 0.0001 only in case of very small number of 
groups). 

Simulations show the compatibility of the observed probabilities (based on 
10000 replicated samples) and theoretical predicted probabilities. The chance to 
get a non-negative estimate of the MSE( )iu� even if 2 0ˆuσ < is bigger in the case 
of small number of groups, in the case of big number of groups from 2 0ˆuσ < the 
negative estimate of MSE( )iu� follows more often. 
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Table 3.10. The observed and predicted probabilities of inadmissible estimates in the 
case of different true population values and number of groups (sires) a. Population size 

360N = and error variance 2 1eσ = were used. 

ρ ( 2h ) a 2 *P( 0)ˆuσ < 2 2 #
,P( 0| )ˆu u eσ σ< 2 *ˆP( 1)h > 2 2 #

,ˆP( 1| )u eh σ> 	[ ]*P MSE( ) 0iu <�
4 0.2949 0.2948 0.0000 0.0000 0.0000 

15 0.3022 0.2950 0.0000 0.0000 0.1129 
24 0.3264 0.3208 0.0000 0.0000 0.1062 

0.0125 
(0.05) 

90 0.4047 0.3994 0.0000 0.0000 0.2732 
4 0.0667 0.0658 0.0033 0.0045 0.0000 

15 0.0217 0.0212 0.0000 0.0000 0.0049 
24 0.0236 0.0246 0.0000 0.0000 0.0050 

0.0625 
(0.25) 

90 0.0918 0.0953 0.0001 0.0000 0.0467 
4 0.0196 0.0189 0.1402 0.1402 0.0000 

15 0.0004 0.0005 0.0481 0.0503 0.0000 
24 0.0005 0.0003 0.0328 0.0328 0.0002 

0.15 
(0.6) 

90 0.0012 0.0018 0.0306 0.0298 0.0002 
* Observed probabilities were found based on 10000 replicated samples. 
# Predicted probabilities 2 2

,P( 0| )ˆu u eσ σ< and 2 2
,ˆP( 1| )u eh σ> were calculated by formulas 

(3.42) and (3.43), respectively. 
 

3.3. The effect of data structure 

3.3.1. The effect of data structure on 2Var( )ˆuσ and Var( )ρ̂

The number of objects per group which minimizes 2Var( )ˆuσ has been derived 
already by Hammersley in 1948 (Hammersley, 1948) considering n as a con-
tinuous argument and studying the derivatives of equation (3.20). The minimum 

2Var( )ˆuσ is obtained by considering 

 ( 1) 1
2

Nn
N
τ
τ
+ +=
+

(3.44) 

observations per group. The same group size guarantees the minimum of 2( )ˆuσσ .

To illustrate the optimal criterion and to study the effect of using non-optimal 
designs, the simulation study is performed. Data size 360N = is used similarly 
to previous paragraphs. As standard errors are accuracy parameters used usually 
in practice and also the differences between different designs are better notice-
able in studying standard errors, here and below in this paragraph the patterns of 
standard deviations instead of the patterns of variances are examined. Calcula-
tions base on the formula (3.20), because the modelling results presented in Ta-
ble 3.4 show the accuracy of predictors of 2( )ˆuσσ got in such way. The number 
of observations per group minimizing the standard error of 2

uσ , is found by 
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formula (3.44). To control the optimum criterion, in fixed values of the intra-
class correlation the optimal integer numbers of observations per group is found 
by simulations. The pattern of 2( )ˆuσσ and optimum numbers of observations per 
group are shown in Figure 3.1. 

It appears that optimum criterion given by equation (3.44) agrees with simu-
lation results. About the behaviour of 2( )ˆuσσ the following conclusions are 
drawn. The standard errors of 2

uσ increase drastically if the intraclass correla-
tion coefficient values come close to its upper limit 1. In the case of average or 
bigger magnitude of random effects measured by the intraclass correlation, the 
optimal group size 2n = . The optimal group size increases fast only in the case 
of small values of the intraclass correlation. But this is exactly the situation oc-
curring in genetic applications like the sire model, where the admissible values 
of the intraclass correlations lie in the interval 0 0.25ρ≤ ≤ .

In the following the pattern of 2( )ˆuσσ in different true heritability values is 
found and presented in Figure 3.2. Also both the continuous and integer opti-
mum numbers of daughters per sire are calculated by formula (3.44) and by 
simulations, respectively. The pattern of 2( )ˆuσσ shown on Figure 3.2 corre-
sponds to the modelling results presented in Table 3.4. The basic conclusion 
from the simulation study about 2( )ˆuσσ is that the deficiency of sires increases 
the inaccuracy of the estimates of the variance components when the effect of 
sires, measured via heritability, is large. 
 

Figure 3.1. The pattern of 2( )ˆuσσ and optimal number of observations per group in dif-
ferent true intraclass correlation values ( 360N = , 2 1eσ = ). 
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Figure 3.2. The pattern of 2( )ˆuσσ and optimal number of daughters per sire (vertical 
arrows for integer numbers and dotted line on xy-plane for continuous numbers) in dif-
ferent true heritability values ( 360N = , 2 1eσ = ). 

 
The modelling results concerning the standard deviations of the estimators of the 
intraclass correlation coefficients and the heritability coefficients showed that the 
most accurate estimates are got using the optimum designs for variance compo-
nents estimation, the differences from the optimum group sizes calculated by 
(3.44) appear only in decimal places. The patterns of ( )ρ̂σ and 2ˆ( ) 4 ( )ˆh ρσ = σ ,
based on the sampling variance expression (3.26), are shown in Figures 3.3 and 
3.4, respectively,. Also the number of observations per group minimizing studied 
standard errors is found by simulations based on expression (3.26). 

The patterns of ( )ρ̂σ and 2ˆ( )hσ shown in Figures 3.3 and 3.4 correspond to 
the modelling results presented in Table 3.6. The conclusions based on these 
tables and figures are the following. Although the patterns of 2( )ˆuσσ and ( )ρ̂σ
are very different, the optimum designs are the same. The deficiency of groups 
increases the inaccuracy of estimates of intraclass correlation coefficients when 
the effect of studied factor is of average level, in genetic studies this means that 
the deficiency of sires has the worst effect in case of large heritabilities. A small 
number of groups (sires), even with a big number of observations (daughters), 
may cause dramatic loss of accuracy. For small and large intraclass correlation 
coefficient values the estimates are more accurate and depend less on the de-
sign. Of course, very small number of observations per group should be 
avoided. Compendium for genetic studies is that as the heritability of trait in-
creases, the accuracy of estimate decreases, the optimum number of sires in-
creases and the optimal number of daughters per sire decreases. 
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Figure 3.3. Pattern of ( )ρ̂σ and optimal number of daughters per sire (vertical arrows 
for integer numbers and dotted line on xy-plane for continuous numbers) in different 
true intraclass correlation values ( 360N = , 2 1eσ = ). 

 

Figure 3.4. Pattern of 2ˆ( )hσ and optimal number of daughters per sire (vertical arrows 
for integer numbers and dotted line on xy-plane for continuous numbers) in different 
true heritability values ( 360N = , 2 1eσ = ). 
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3.3.2. The effect of data structure on MSE( )ˆiu and MSE( )iu�

It is natural to suppose for balanced data that both the number of groups a and 
number of observations per group n are bigger than one. Then it is obvious that 
MSE( )û is minimized when the number of groups is minimal, 2a = , and the 
number of observations per group is maximal, 2n N= .

The optimal number of observations per group minimizing MSE( )ˆiu is 
found considering n as a continuous argument and studying the derivatives of 
equation (3.33). 
 
Theorem 3.4. Considering the number of objects per group as a continuous 
argument the minimum value of MSE( )ˆiu is obtained if the size of groups is ex-
pressed as 

 1 1 Nn τ
τ

− + += . (3.45) 

 
Proof. Mean square error of predictor ˆiu given by (3.33) can be rewritten as a 
function of group size n in the form 

2 2 2 2

2 2

( )MSE( )ˆ
( )

u e u
i

e u

N nu
N n

σ σ σ
σ σ

+
=

+
.

To find the value of n which minimizes MSE( )ˆiu we study the derivative of last 
expression: 

2 2 2 2 2 2

2 2

MSE( ) ( ) (2 )ˆ
( )

i u e u e

e u

u n n N
n N n

σ σ σ σ
σ σ

∂ + −
=

∂ +
.

We assume that both 2
uσ and 2

eσ differ from null. Now we equate the derivative to 
zero and get: 2 2 0n n Nτ + − = , where 2 2

u eτ σ σ= . The only positive solution to 
this quadratic is expressed as ( 1 1 )n Nτ τ= − + + , which establishes the theorem.■

As ( ) MSE( )ˆ ˆi i iu u uσ − = and MSE( ) 0ˆiu ≥ , then the derived criterion of opti-
mality applies also for standard deviations of prediction errors. 

To follow the optimal group size depending on the magnitude of random ef-
fects and to examine the accuracy of estimates besides optimal designs, the pat-
tern of ( )ˆi iu uσ − was found, and both continuous and integer optimum numbers 
of observations per group were calculated by formula (3.45) and by simulations, 
respectively (Figure 3.5). The pattern was drawn for the data size 360N = and 
for error variance equal to one. 

Standard errors of two-stage predictors depend in addition to data design and 
variance components values also on the sampling variance of variance compo-
nents. For this reason it is complicated to find exact and simple expression for 
optimal group size. Simulation studies in range of intraclass correlation coeffi-
cient values showed that the pattern of ( )i iu uσ −� is similar to this presented in 
Figure 3.5, and also the optimal group sizes are analogous. 
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Similarly to variance components estimation, the accuracy of prediction of 
random effects decreases drastically if the intraclass correlation coefficient 
comes near to its upper limit. The inaccuracy is the biggest in case of small 
number of groups with big number of observations. 

 
As in genetic applications only the small values of intraclass correlations are 
meaningful and also the difference between ( )ˆi iu uσ − and ( )i iu uσ −� is better 
noticeable in case of smaller magnitude of random effects iu , then additional 
patterns of ( )ˆi iu uσ − and ( )i iu uσ −� are drawn for admissible values of heritabil-
ity (Figure 3.6). 

It follows that there is not a big difference in the optimal designs for the ran-
dom effects prediction according to the estimated or true population values of 
variance components. For small heritability values the estimates are more accu-
rate and do not depend so much on the design. When the heritability of a trait 
increases, then the accuracy of estimates decreases and the optimum number of 
sires increases. Compared with variance components and heritability estimation 
(Figures 3.2 and 3.4) the number of daughters per sire, needed for the most ac-
curate prediction of random effects, is bigger. The poorest combination is large 
heritability and a small number of daughters per sire, but also a very big number 
of daughters per sire compared with the number of sires is not good. 

It appears that the usual assumption of animal breeders to increase the num-
ber of daughters per sire for increasing the accuracy of estimates of genetic pa-
rameters is not the best way. Surely, increasing the number of daughters per sire 
will increase the accuracy of estimates, but increasing the number of sires has a 
bigger effect (shortly is this misconception also noted by Searle et al, 1992, p 
68–69). 

Figure 3.5. The pattern of ( )ˆi iu uσ − and the optimal number of observations per group 
in different true intraclass correlation values ( 360N = , 2 1eσ = ). 
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Figure 3.6. The patterns of ( )ˆi iu uσ − and ( )i iu uσ −� and the optimal number of daugh-
ters per sire (vertical arrows for integer numbers and dotted line on xy-plane for con-
tinuous numbers) in different true heritability values ( 360N = , 2 1eσ = ). 

 

3.3.3. The effect of data structure on the probability 
of inadmissible estimates 

An undesirable feature of ANOVA estimation is the possibility to get negative 
estimates of variance components. As discussed in Section 3.2.4, from negative 

2ˆuσ follow also negative estimates of intraclass correlation coefficient and heri-
tability coefficient, and also negative mean square error of random effects. Fol-
lowing the effect of data structure on probability to get negative variance com-
ponent estimate is studied by simulations. The pattern of 2P( 0)ˆuσ < calculated 
by equation (3.42) is shown in Figure 3.7. Also the trajectory of optimal group 
sizes and possible discrete numbers of observations per group minimizing 

2P( 0)ˆuσ < are found assuming fixed data size 360N = .
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Figure 3.7. The pattern of 2P( 0)ˆuσ < and the optimal number of observations per group 
(vertical arrows for integer numbers and dotted line on xy-plane for continuous num-
bers) in different true intraclass correlation values ( 360N = , 2 1eσ = ). 

 
The results are expected – probability of negative variance component estimate 
depends not so much on the data structure than the magnitude of random effects 

iu in real population. If the real value of 2
uσ is close to zero (then also ρ is 

close to zero), then the probability of getting negative estimate increases. As the 
probability of inadmissible estimates is bigger when accuracy of estimates is 
poor, then it is obvious that group sizes minimizing 2P( 0)ˆuσ < are similar to 
group sizes minimizing 2( )ˆuσσ . The smallest probability of negative 2ˆuσ is 
achieved with enough big number of groups, whereby the necessary number of 
groups increases when the population value of 2

uσ increases. In case of intra-
class correlation coefficient values bigger than 0.5 the optimal number of 
groups increases again, but as in these situations the probability to get negative 

2ˆuσ is close to zero, then there is no difference between optimal or near to opti-
mal design (for example, when 0.5ρ = then 2 16P( 0) 8.9 10ˆuσ −< = ×  in case of 90 
groups and  4 observations per group, and 2 10P( 0) 9.5 10ˆuσ −< = ×  in case of 20 
groups and 18 observations per group). 

In genetic applications not only negative but also too big positive estimates 
are inadmissible. In the following, based on equation (3.41), the pattern of prob-
abilities is found for heritability estimates that are negative or greater than one. 
Also both continuous and integer numbers of daughters per sire minimizing 

2 2ˆ ˆP( <0) P( >1)h h+ are presented (Figure 3.8). 
As the heritability coefficient values lying in interval (0,1) , correspond to in-

traclass correlation coefficients lying in interval (0,0.25) , and 2ˆP( <0)h
2P( <0)ˆuσ= , then it is obvious that the left-side part of 2 2ˆ ˆP( <0) P( >1)h h+ ’s pat-
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tern is similar to the part of 2P( 0)ˆuσ < ’s pattern corresponding to small values of 
intraclass correlation coefficient values. The increase in probabilities of inad-
missible heritability estimates comparing with probabilities of negative variance 
component estimates concur when the 2h values get bigger than 0.5 , because at 
this point the chance to get heritability estimate bigger than one has already 
considerable effect. The optimal numbers of sires and daughters per sire differs 
from designs minimizing 2( )ˆuσσ and 2P( 0)ˆuσ < only when the real 2h value is 
big enough (for example approximately 0.9, when 360N = ). This is because in 
case of 2h values near to one the optimal design in relation to 2ˆP( >1)h changes 
from maximal number of sires to maximum number of daughters per sire. But 
as such big heritability values are not reality for polygenetic traits, there is usu-
ally no need to worry about heritability estimates bigger than one. 

Searle et al (1992, p 67–68) studied the negative variance components esti-
mates and illustrated calculations with figures about contour lines of 2P( 0)ˆuσ < .
Analogous contour lines for 2 2ˆ ˆP( <0) P( >1) 0.5, 0.3, 0.1, 0.05, 0.01h h+ =  and 0.001 
in different true 2h values plotted on ( , )a n co-ordinates, ranging from 2 to 360 
for the number of sires a and from 2 to 100 for the number of daughters per sire 
n, are presented on Figure 3.9. Similarity of contours on Figure 3.9 and those 
presented by Searle et al indicate that the probability to get a too big heritability 
estimate has almost no extra effect in data size studies. 

 

Figure 3.8. The pattern of 2 2ˆ ˆP( <0) P( >1)h h+ and the optimal number of daughters per 
sire (vertical arrows for integer numbers and dotted line on xy-plane for continuous 
numbers) in different true heritability values ( 360N = , 2 1eσ = ). 
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a)     b) 
 

c)     d) 
 

Figure 3.9. The contours of 2 2ˆ ˆP( <0) P( >1)h h+ = 0.5, 0.3, 0.1, 0.05, 0.01 and 0.001 plot-
ted on ( , )a n co-ordinates for a) 0.01τ = 2( 0.0396)h = ; b) 0.05τ = 2( 0.1905)h = ;
c) 0.1τ = 2( 0.3636)h = ; d) 0.25τ = 2( 0.8)h = .

3.4. The accuracy of estimates and predictors  
in unbalanced data 

3.4.1. The sampling variances of variance components 

Define 2
2 1

a
iiS n==∑ and 3

3 1
a

iiS n==∑ ,

1 2h
N a

=
−

, 2 2
2

2 ( 1)
( )( )

N ah
N a N S

− −=
− −

,
2

3 2 2
2

2 ( 1)( 1)
( )( )

N N ah
N a N S

− −=
− −

,

4 2
2

4Nh
N S

=
−

,
2 2

2 2 3
5 2 2

2

2( 2 )
( )

N S S NSh
N S
+ −=
−

.

Then the sampling variances of ANOVA estimators of variance components in 
unbalanced one-way random model under the normality assumptions are ex-
pressed as 

2 4 2 2 4
5 4 3Var( ) ,ˆu u u e eh h hσ σ σ σ σ= + +  (3.46) 

and 
42 2Var( )ˆ ee

N a
σσ =
−

.



75

Unbiased estimators to these sampling variances are expressed as 

 	 ( )2 4 2 2 43 2 45 4
5 1

1Var( ) ,ˆ ˆ ˆ ˆ ˆ
1 1

u u u e e
h h hh h

h h
σ σ σ σ σ−= + +

+ +
 (3.47) 

and 
	 42 2 ˆVar( )ˆ

2
ee

N a
σσ =

− +
.

Derivation of these formulas can be found for example in Searle, Casella and 
McCulloch (1992, p 74–75). 
 
In the following a simulation study was carried out to investigate the accuracy 
of estimated variance component 2ˆuσ standard error expressions, got as square 
roots of formulas (3.46) and (3.47), with variance components estimates substi-
tuted for their unknown population values. 

As it appears in balanced designs studies with 360 individuals, there is not a 
big difference between designs with average number of groups ( 15, 24a = ), 
then in the following only one average design with 20 groups was modelled. 
The other studied designs had 4 and 90 groups. Data sets with three different 
imbalances ( 0.3ν = , 0.6, 0.9) were generated assuming the same fixed parame-
ters values as in balanced data studies ( 360N = , 2 1eσ = , 0.0125ρ = , 0.0625, 
0.15 and 0.8). Due to the very computer intensive calculations, only 1000 simu-
lations were made with each of combinations of parameters a, ρ and υ values. 
This modelling size enabled to get an idea of the general tendencies. The com-
pared parameters were (a) the observed standard deviation 2( )ˆuσσ of the esti-
mated variance component; (b) the predicted standard deviation 2 2

,| )ˆu e uσ σσ( of 
the estimated variance component calculated as the square root of expression 
(3.46); (c) the estimated standard deviation 
 2 2

,| )ˆ ˆu e uσ σσ( of the estimated vari-
ance component calculated as the square root of expression (3.47); (d) the esti-
mated standard deviation 
 2 2

,| )ˆ ˆb u e uσ σσ ( of the estimated variance component cal-
culated as the square root of expression (3.46) with 2ˆuσ substituted for 2

uσ and 
2ˆeσ substituted for 2

eσ . The simulations results are presented in Table 3.11. 
The simulation study does not call in question the rightness of theoretical 

expressions. Several discrepancies between observed and predicted standard 
errors of 2

uσ are apparently caused by the relatively small number of simula-
tions made. In the case of standard errors 2( )ˆuσσ the same conclusions can be 
made as in the balanced case (Paragraph 3.2.1) – expression (3.47), giving un-
balanced estimates to sampling variance of 2

uσ , produce underestimated values 
to standard error of 2ˆuσ , and the expression (3.46), giving biased estimates to 
sampling variance of 2

uσ , is preferred in estimating 2( )ˆuσσ .
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3.4.2. The sampling variance of the intraclass correlation 
 coefficient 

Approximate formula for the sampling variance of intraclass correlation coeffi-
cient in unbalanced data was published by Swinger et al (1964) and has the fol-
lowing form: 

 
2 2

2
2( 1)(1 ) [1 ( 1) ]Var( )ˆ

( )( 1)
N d

d N a a
ρ ρρ − − + −≈
− −

. (3.48) 

Derivation of this formula is based on the approximate formula for the variance 
of the ratio of two random variables: 

[ ] [ ] [ ]{ }2 22Var( ) E( ) E( ) Var( ) [E( )] Var( ) E( ) 2Cov , E( )E( )y x y x y y x x y x y x≈ + − ,

applied to the estimate of intraclass correlation coefficient expressed through 
sums of squares. 
 
Next an alternative expression for Var( )ρ̂ is derived based on approximations 
(3.25) and (3.14). 

 
Theorem 3.5. In the one-way random model under the normality assumptions 
(3.3) the variance of the intraclass correlation coefficient estimate can ap-
proximately be expressed as 

 
2 2 4

2 2 2 2 2
2 ( ) ( 2)(1 )Var( )ˆ

( 1) ( 2) ( 4)( )e

m N a N a m
d a N a N a

λ ρρ
σ

− − + − −≈
− − − − −

, (3.49) 

where d is a coefficient (3.7), m and λ are defined with formulas (3.15) and 
(3.16), respectively.

Proof. Let ( ) ( )ŵ MS u MS e= , then based on (3.9) 

 1ˆ ( )ˆ ˆ
1ˆ

w f w
w d

ρ −= =
+ −

. (3.50) 
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Table 3.11. The observed, predicted and estimated standard errors of variance compo-
nent 2

uσ in the case of different true population values, data set imbalance ν and num-
ber of groups a ( 360N = , 2 1eσ = ) found based on 1000 replicated samples. 

2
uσ ( 2h ) ν a 2E( )ˆuσ 2 *( )ˆuσσ 2 2 #

,| )ˆu e uσ σσ( 
 2 2 ¤
,( | )ˆ ˆu e uσ σσ 
 2 2 ¤

,( | )ˆ ˆb u e uσ σσ
0.3 4 0.0169 0.0512 0.0478 0.0403 0.0578 

20 0.0127 0.0257 0.0256 0.0241 0.0271 
0.0127 
(0.05) 

 90 0.0133 0.0459 0.0461 0.0457 0.0471 
 0.6 4 0.0122 0.0217 0.0224 0.0167 0.0231 

20 0.0132 0.0229 0.0234 0.0224 0.0240 
 90 0.0142 0.0480 0.0452 0.0452 0.0459 
 0.9 4 0.0119 0.0191 0.0199 0.0149 0.0195 

20 0.0121 0.0219 0.0227 0.0215 0.0227 
 90 0.0143 0.0457 0.0449 0.0448 0.0453 

0.3 4 0.0702 0.1026 0.1009 0.0757 0.1090 
20 0.0660 0.0484 0.0501 0.0449 0.0505 

0.0667 
(0.25) 

 90 0.0677 0.0542 0.0549 0.0541 0.0557 
 0.6 4 0.0660 0.0744 0.0734 0.0529 0.0732 

20 0.0673 0.0433 0.0433 0.0408 0.0439 
 90 0.0648 0.0537 0.0530 0.0523 0.0531 
 0.9 4 0.0694 0.0657 0.0654 0.0518 0.0677 

20 0.0692 0.0407 0.0406 0.0392 0.0414 
 90 0.0652 0.0522 0.0523 0.0517 0.0523 

0.3 4 0.1662 0.2005 0.2138 0.1426 0.2054 
20 0.1762 0.1025 0.1052 0.0937 0.1055 

0.1765 
(0.6) 

 90 0.1720 0.0756 0.0772 0.0748 0.0770 
 0.6 4 0.1810 0.1814 0.1790 0.1325 0.1841 

20 0.1779 0.0843 0.0862 0.0807 0.0868 
 90 0.1727 0.0697 0.0707 0.0692 0.0703 
 0.9 4 0.1741 0.1513 0.1580 0.1192 0.1560 

20 0.1704 0.0739 0.0776 0.0715 0.0756 
 90 0.1761 0.0672 0.0680 0.0672 0.0680 

0.3 4 4.0768 3.5356 3.3844 2.6354 3.4478 
20 4.0732 2.2399 2.0698 1.8687 2.1019 

4.0 
(3.2) 

 90 4.0458 1.0732 1.0286 1.0088 1.1551 
 0.6 4 4.0644 3.8438 3.8424 2.8152 3.9027 

20 3.8841 1.4780 1.6049 1.4489 1.5592 
 90 3.9678 0.7425 0.7828 0.7634 0.7768 
 0.9 4 3.8422 4.0376 4.1816 2.7758 3.9957 

20 3.9571 1.4097 1.3781 1.2908 1.3635 
 90 3.9877 0.6852 0.6660 0.6559 0.6640 
* Observed standard errors 2( )ˆuσσ were found based on 1000 replicated samples. 
# Predicted standard errors 2 2

,( | )ˆu e uσ σσ were calculated as square roots of formula (3.46). 
¤ Estimated standard deviations 
 2 2

,( | )ˆ ˆu e uσ σσ and 
 2 2
,( | )ˆ ˆb u e uσ σσ were calculated as square 

roots of formulas (3.47) and (3.46), respectively, with 2ˆuσ substituted for 2
uσ and 2ˆeσ

substituted for 2
eσ .
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Following (3.11), (3.13) and (3.14) we get that ŵ is approximately distributed 
as follows 

,2~ˆ
( 1)

m N a
e

mw F
a

λ
σ

−
−

,

where ,m N aF − is the F-distribution having m and N – a degrees of freedom. 
Here, depending on the context, F denotes both the distribution and random 
variable with the F-distribution. Because of 

2 2
,Var(F ) 2( ) ( 2) ( 2) ( 4)m N a N a N a m m N a N a−  = − − + − − − − − 

we have 
2 2

2 4 2
( ) 2( ) ( 2)Var( )ˆ

( 1) ( 2) ( 4)e

m N a N a mw
a m N a N a

λ
σ

− − + −≈ ×
− − − − −

.

From (3.50) it follows 

2
( )ˆ

( 1)ˆ ˆ
f w d

w w d
∂ =
∂ + −

,

or, because [1 ( 1) ] (1 )ˆ ˆŵ d ρ ρ= + − − ,
2( ) (1 )ˆˆ

ˆ
f w

w d
ρ∂ −=

∂
,

and, based on approximation (3.25), 

 

4 2 2

2 2 4 2

2 2 4

2 2 2 4

(1 ) ( ) 2( ) ( 2)Var( )ˆ
( 1) ( 2) ( 4)

2 ( ) ( 2)(1 ) ,
( 1) ( 2) ( 4)

e

e

m N a N a m
d a m N a N a

m N a N a m
d a N a N a

ρ λρ
σ

λ ρ
σ

− − − + −≈ × ×
− − − − −

− − + − −=
− − − − −

 

which completes the proof of Theorem 3.5. ■

Similarly to the previous paragraph, a simulation study was carried out to inves-
tigate the accuracy of estimated intraclass correlation coefficient standard devia-
tion estimators. The compared parameters were (a) the observed standard devia-
tion ( )ρ̂σ of estimated intraclass correlation coefficient; (b) the predicted stan-
dard deviation ( | )ˆS ρ ρσ of the intraclass correlation coefficient estimate calcu-
lated as square root of approximation (3.48); (c) the predicted standard devia-
tion ( | )ˆK ρ ρσ of the intraclass correlation coefficient estimate calculated as 
square root of approximation (3.49); (d) the estimated standard deviation 

 ( | )ˆ ˆS ρ ρσ of the intraclass correlation coefficient estimate calculated as square 
root of approximation (3.48) with ρ̂ substituted for ρ ; (e) the estimated stan-
dard deviation 
 ( | )ˆ ˆK ρ ρσ of the intraclass correlation coefficient estimate calcu-
lated as square root of approximation (3.49) with ρ̂ substituted for ρ . The 
simulations results are presented in Table 3.12. 
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Table 3.12. The observed, predicted and estimated standard errors of the intraclass cor-
relation coefficient ρ in the case of different true population values, data set imbalance 
ν and number of groups a ( 360N = , 2 1eσ = ) found based on 1000 replicated samples. 

2( )hρ ν a E( )ρ̂ *( )ρ̂σ #( | )ˆS ρ ρσ 
 ¤( | )ˆ ˆS ρ ρσ #( | )ˆK ρ ρσ 
 ¤( | )ˆ ˆK ρ ρσ
0.3 4 0.0147 0.0468 0.0460 0.0459 0.0471 0.0531 

20 0.0122 0.0249 0.0257 0.0261 0.0254 0.0264 
0.0125 
(0.05) 

 90 0.0133 0.0459 0.0517 0.0459 0.0460 0.0466 
 0.6 4 0.0118 0.0209 0.0210 0.0201 0.0221 0.0221 

20 0.0129 0.0225 0.0286 0.0240 0.0234 0.0239 
 90 0.0140 0.0471 0.0446 0.0444 0.0451 0.0453 
 0.9 4 0.0116 0.0183 0.0193 0.0183 0.0196 0.0188 

20 0.0118 0.0214 0.0371 0.0232 0.0225 0.0222 
 90 0.0139 0.0449 0.0485 0.0529 0.0449 0.0448 

0.3 4 0.0587 0.0794 0.0806 0.0730 0.0897 0.0849 
20 0.0608 0.0418 0.0381 0.0371 0.0451 0.0442 

0.0625 
(0.25) 

 90 0.0631 0.0496 0.0636 0.0597 0.0511 0.0514 
 0.6 4 0.0585 0.0592 0.0580 0.0523 0.0653 0.0591 

20 0.0620 0.0378 0.0616 0.0627 0.0397 0.0389 
 90 0.0602 0.0491 0.0579 0.0600 0.0494 0.0491 
 0.9 4 0.0620 0.0543 0.0563 0.0536 0.0582 0.0554 

20 0.0641 0.0361 0.0780 0.0739 0.0373 0.0371 
 90 0.0607 0.0479 0.0906 0.0855 0.0488 0.0484 

0.3 4 0.1231 0.1210 0.1312 0.1054 0.1563 0.1250 
20 0.1453 0.0706 0.0628 0.0598 0.0777 0.0739 

0.15 
(0.6) 

 90 0.1448 0.0585 0.0740 0.0715 0.0606 0.0597 
 0.6 4 0.1377 0.1097 0.1126 0.0959 0.1309 0.1113 

20 0.1477 0.0613 0.0777 0.0750 0.0639 0.0620 
 90 0.1462 0.0549 0.0825 0.0805 0.0561 0.0555 
 0.9 4 0.1364 0.0979 0.1114 0.0959 0.1156 0.0994 

20 0.1472 0.0594 0.0882 0.0841 0.0639 0.0619 
 90 0.1490 0.0528 0.0816 0.0821 0.0543 0.0539 

0.3 4 0.6614 0.2230 0.1407 0.1555 0.1691 0.1879 
20 0.7728 0.0821 0.0765 0.1010 0.0844 0.0894 

0.8 
(3.2) 

 90 0.7950 0.0406 0.0598 0.0589 0.0442 0.0446 
 0.6 4 0.6903 0.2034 0.1395 0.1496 0.1554 0.1685 

20 0.7770 0.0640 0.1722 0.1703 0.0657 0.0697 
 90 0.7945 0.0332 0.0572 0.0612 0.0350 0.0355 
 0.9 4 0.7042 0.1922 0.1433 0.1534 0.1370 0.1476 

20 0.7823 0.0640 0.4972 0.5041 0.0944 0.0991 
 90 0.7965 0.0309 0.0294 0.0297 0.0308 0.0311 
* Observed standard deviations ( )ρ̂σ were found based on 1000 replicated samples. 
# Predicted standard deviations ( | )ˆS ρ ρσ and ( | )ˆK ρ ρσ were calculated as square roots 
of formulas (3.48) and (3.49), respectively. 
¤ Estimated standard deviations 
 ( | )ˆ ˆS ρ ρσ and 
 ( | )ˆ ˆK ρ ρσ were calculated as square roots 
of formulas (3.48) and (3.49), respectively, with ρ̂ substituted for ρ .
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Results in Table 3.12 show that in case of small values of ρ , both approxima-
tions (3.48) and (3.49) give quite similar results that seem to be unbiased. For 
large intraclass correlation coefficient values the formula (3.9) underestimates 
the real values of ρ . The estimates of ( )ρ̂σ got with expressions (3.48) and 
(3.49) underestimate the real ( )ρ̂σ when the number of groups is small and the 
intraclass correlation coefficient is large. The difference from simulated values 
is smaller by using expression (3.49). 
 

3.4.3. The mean square errors of predictors 

The following theorem gives an exact expression for variance-covariance ma-
trix of prediction errors, allowing to study the effect of data imbalance. 
 
Theorem 3.6. In one-way random model under the normality assumptions the 
variance-covariance matrix of prediction errors is expressed as 
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Proof. We derive the expression in theorem statement similarly to proof of 
Theorem 3.1. By formulas (1.12) and (1.13) the variance-covariance matrix of 
prediction errors is expressed as 
 1 1 1 1Var( ) ( )ˆ − − − − −′ ′ ′ ′− = − +u u G GZ V ZG GZ V X X V X X V ZG . (3.52) 
Based on expressions of design matrix Z and variance-covariance matrix G cor-
responding to model (3.1) and the inverse of variance-covariance matrix V de-
fined in Corollary 3.1 we get after some matrix algebra that 
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The scalar 1−′X V X has a form 
2 2 21

2 2 2 2 2 2
d 11

1 1
i i

a
a

u i un nN N
e e i u e e i uii

nN
n n

σ σ
σ σ σ σ σ σ

−

==

    −′ ′= = −    + +    
∑I JX V X 1 1  

from which we have that 
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The other terms in the third component of expression (3.52) can be presented as 
follows: 
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If we substitute the expressions (3.53), (3.54) and (3.55) into (3.52), we get the 
formula in the theorem statement.  ■

Corollary 3.4. In the one-way random model under the normality assumptions 
the mean square error of predictors is expressed as 
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(3.56) 
and naive estimated as 

 	
2 2 22 2 2

2 2 2 2 22 2 2 2
1 11

( )ˆˆ ˆ ˆMSE( )ˆ
( )( )ˆ ˆ ˆ ˆˆ ˆ ˆ

a a
i uu e e

a
e i u e i ui ii u e i ui

n
n nN n n

σσ σ σ
σ σ σ σσ σ σ= ==

= +
 + +− + 

∑ ∑
∑

u .

(3.57) 
 
Proof. By expression (1.14) the mean square error of predictors equals to the 
sum of diagonal elements of matrix (3.51). Applying the trace properties (i), (ii) 
and (vii) listed in Proposition 3.1 we reach the desired formula (3.56). ■

In the next theorem the approximated formula of mean square error of two-stage 
predictors taking into account the sampling variance of estimators of variance 
components is presented. 
 
Theorem 3.7. In the one-way random model under the normality assumptions 
the mean square error of two-stage predictors is expressed by the following 
formula:
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Proof. First we note, that MSE( ) MSE( ) tr[Var( )]ˆ ˆ= + −� �u u u u . To derive 
tr[Var( )]ˆ−u u� , the general expression of Var( )ˆ−u u� of the form (3.37) should 
be used, because in unbalanced case the projection matrix 1, − =X VP
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1 1( )− − −′ ′X X V X X V is not symmetric and the simplification 1 1− −=PPP V V P used 
in balanced case (Theorem 3.2) is not valid. 

According to the trace properties (i) and (ii) listed in Proposition 3.1 is the 
tr[Var( )]ˆ−u u� expressed as 

2 2 2

2 2 2 2
tr[Var( )] Var( ) ( ) tr( )ˆ ˆ

Var( ) [tr( ) 2 tr( ) ( ) tr( )].ˆ
e u

u u u

σ σ
σ σ σ

′− ≈ × ×
′ ′ ′ ′ ′ ′+ × − +

u u Z PPPZ
Z PZ Z PZZ PZ Z PZZ PZZ PZ

� (3.59) 

Using the definition of matrix P (1.11) and the facts that 1−′ZZ V , 1− ′V ZZ and 
1 1− −′V XX V are symmetric and that general inverse 1( )− −′X V X is a scalar, all 

matrices under traces operators in the last expression can be modified and di-
vided into parts. For example, the tr( )′Z PPPZ can be expressed as 
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From Proposition 3.4 and Corollary 3.1 follows that  
2 2 22

2 2 22 2 2
dd 11

( ) ( )11 .
( ) ( )i ii i

a ah h h
e i u eh u n nn n h h

e i e i ue e i u ii

n
n nn

σ σ σσ
σ σ σσ σ σ

−

==

    + −      −= =−        ++         
I JV I J  

This equality together with matrix products N′ =XX J , d 1{ }i a
n i=′ =ZZ J  and 

d 1{ }i a
i n in =′ ′ =ZZ XX J  enable to express all traces in (3.60) as functions of sums in 

the form 
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where f and h denote different positive integer exponents.  
For example, in calculating 3tr( )−′ZZ V we first note, that 3−′ZZ V is a block 

diagonal matrix with i in n× blocks equal to 
32

2 2 2
1

i i i
un n n

e e i un
σ

σ σ σ
  × −  +  

J I J ,

which can be more compactly expressed as 2 3[( ) / ]i i in n i n eg σ× −J I J , using nota-
tion 2 2 2( )i u e i ug nσ σ σ= + . By the statement (vii) in Proposition 3.1 we can take 
trace separately from all diagonal blocks and then sum the results. As each di-
agonal block is expressed as product where the first component is inJ , then ac-
cording to the statement (vi) in Proposition 3.1, the trace of such product matrix 
equals to the sum of elements of the second component 2 3[( ) / ]i in i n eg σ−I J . Fol-
lowing the statement (iii) in Proposition 3.4 we get, that matrix 3( )i in i ng−I J has 

in diagonal elements equal to 31 [(1 ) 1]i i in g n+ − −  and ( 1)i in n − offdiagonal 
elements equal to 3[(1 ) 1]i i in g n− − . So, the sum of elements of matrix 

2 3[( ) / ]i in i n eg σ−I J  is expressed as 
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The other terms in (3.60) can be similarly expressed and finally result in the 
following expression: 

2 2 3 2
13 24 12 23 13 22 12 22tr( ) 3 2k ck c k k c k k c k k′ = − + + −Z PPPZ .

Here the scalar c denotes the general inverse expressed in (3.54). 
 
Applying the statements of Propositions 3.1 and 3.3 to the other traces in (3.59), 
yields after tedious algebra to the desired expression of mean square error of 
two-stage predictors of the form (3.58). ■

Corollary 3.5. In the one-way random model under the normality assumptions 
the mean square error of two-stage predictors is unbiasedly estimated approxi-
mately as  
	 	

2 2 2 2 2 3 2
13 24 12 23 13 22 12 22

2 2 2 2
11 22 22 33 22

2 2 2 3 3
33 44 22 33 22

MSE( ) MSE( )ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2Var( ) ( ) ( 3 2 )ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ2Var( ) 2 ( 2 )ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ( ) ( 3 3 ) ,ˆ ˆ ˆ ˆ

e u

u u

u

k ck c k k c k k c k k
k ck k ck c k

k ck c k k c k

σ σ
σ σ

σ

≈
+ × × − + + −

+ × − − − +
+ − + − 

u u�

(3.61) 

where 2 2

1

ˆ ( )ˆ ˆ
a

f h
fh e i ui

i
k n nσ σ

=
= +∑ , ( )

2

2
1

ˆˆ
ˆ

e
a

i ii

c
N n g

σ
=

=
−∑

and 
2

2 2
ˆˆ

ˆ ˆ
ui

e i u
g

n
σ

σ σ
=

+
. ■

Results of simulation studies controlling derived formulas are presented in Ta-
ble 3.13. As previously, the standard deviations of prediction errors were ana-
lysed instead of mean square errors, and based on studies made with balanced 
data (Paragraph 3.2.3) only concentrated estimators of standard errors, noted as 

0( )ˆσ −u u and 0( )σ −u u� , were used. 
The predicted standard errors of prediction errors 2

,( | )ˆ e uσσ −u u , are overes-
timated, and the bias is the biggest in case of large intraclass correlation coeffi-
cient values. The predicted standard errors of two-stage prediction errors 

2
,( | )e uσσ −u u� , are underestimated in case of small values of ρ , and overesti-

mated in case of large values of ρ . These results are similar to those, got in 
balanced case, and in connection with this the formulas derived for unbalanced 
data sets are suitable for further analyses. 
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Table 3.13. The observed, predicted and estimated standard deviations of the prediction 
errors and two-stage prediction errors in the case of different true population values, 
data set imbalance ν and number of groups a ( 360N = , 2 1eσ = ) found based on 1000 
replicated samples. 

2( )hρ ν a *( )ˆσ −u u 2 #
,( | )ˆ e uσσ −u u 
 2 ¤

0 ,( | )ˆ ˆe uσσ −u u *( )σ −u u� 2 #
,( | )e uσσ −u u� 
 2 ¤

0 ,( | )ˆe uσσ −u u�
0.3 4 0.1928 0.2076 0.1978 0.4147 0.3171 2.2944 

20 0.4631 0.4665 0.1610 0.9449 0.5555 89.1258 
0.0125
(0.05) 

 90 1.0380 1.0473 1.0076 1.7068 1.2866 2.5472 
 0.6 4 0.1714 0.1845 0.1519 0.4978 0.2191 1.8843 

20 0.4495 0.4562 0.3591 0.7278 0.5520 1.3221 
 90 1.0430 1.0423 1.0174 2.4044 1.2964 7.6049 
 0.9 4 0.1642 0.1762 0.1475 0.3184 0.2055 0.7478 

20 0.4434 0.4452 0.2637 0.5817 0.5587 0.6098 
 90 1.0370 1.0444 1.0007 1.4299 1.3049 3.4221 

0.3 4 0.3723 0.4060 0.3367 0.6045 0.4610 0.6007 
20 0.8720 0.8860 0.7951 0.9203 0.9372 0.9961 

0.0625
(0.25) 

 90 2.1994 2.2233 1.9754 2.3647 2.3182 2.8693 
 0.6 4 0.3161 0.3362 0.2873 0.3626 0.3514 0.4180 

20 0.7995 0.8338 0.7711 0.8546 0.8765 0.9243 
 90 2.1835 2.2005 1.9134 2.3235 2.2993 2.5090 
 0.9 4 0.2786 0.3125 0.2849 0.3193 0.3190 0.6979 

20 0.7583 0.8059 0.7578 0.7995 0.8441 0.8408 
 90 2.1652 2.2110 1.9408 2.2898 2.2886 2.1781 

0.3 4 0.5430 0.5785 0.4651 0.6196 0.6187 1.0964 
20 1.1514 1.1612 1.1038 1.1849 1.2004 1.1704 

0.15 
(0.6) 

 90 3.1559 3.1928 3.0424 3.2308 3.2478 3.1751 
 0.6 4 0.4348 0.4903 0.4435 0.4511 0.4998 0.4699 

20 1.0077 1.0631 1.0336 1.0374 1.0812 1.0731 
 90 3.1015 3.1390 3.0129 3.1693 3.1774 3.1243 
 0.9 4 0.3915 0.4592 0.4203 0.4006 0.4614 0.4569 

20 0.9419 1.0208 0.9900 0.9923 1.0328 1.0158 
 90 3.0656 3.1001 3.0039 3.1314 3.1359 3.1048 

0.3 4 1.6903 2.0775 1.8276 1.7123 2.0756 1.8352 
20 2.2025 2.4563 2.4512 2.2108 2.4506 2.4266 

0.8 
(3.2) 

 90 5.4605 5.5195 5.4999 5.4719 5.5069 5.5009 
 0.6 4 1.6488 2.0287 1.8545 1.6567 2.0250 1.8526 

20 2.0542 2.3969 2.3471 2.0742 2.3286 2.2792 
 90 5.1898 5.2764 5.2653 5.1957 5.2607 5.2524 
 0.9 4 1.6122 2.0153 1.8659 1.6174 2.0091 1.8590 

20 1.9140 2.5574 2.5059 1.9804 2.2879 2.2351 
 90 5.0987 5.0961 5.0792 5.1042 5.1006 5.0884 

* Observed standard errors ( )ˆσ −u u and ( )σ −u u� were found based on 1000 replicated 
samples. 
# Predicted standard errors 2

,( | )ˆ e uσσ −u u  and 2
,( | )e uσσ −u u� were calculated as square roots 

of formulas (3.56) and (3.58), respectively. 
¤ Estimated standard deviations 
 2

0 ,( | )ˆ ˆe uσσ −u u  and 
 2
0 ,( | )ˆe uσσ −u u� were calculated as 

square roots of formulas (3.57) and (3.61), respectively; in case of negative mean square 
error estimates the estimated standard deviations were equated to zero. 
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Studying the estimated standard deviations of prediction errors, the differences 
between these and corresponding observed accuracy parameters are more visible. 
The standard deviations of the prediction error ˆ −u u are mainly overestimated in 
case of large values of intraclass correlation coefficient and underestimated in 
case of small values of ρ . But this bias is not too big, especially compared with 
estimated standard deviations of two-stage prediction error −u u� . The estimated 
standard deviations of two-stage predictors −u u� are without appreciable bias in 
case of average values of ρ , but are overestimated in case of small or large val-
ues of ρ (especially in case of small number of groups). There are several ex-
tremely large estimators of 0( )σ −u u� in case of small values of ρ and a . On the 
average the variability of estimated standard deviations of prediction errors −u u�
is 10 times bigger than the corresponding accuracy parameter of prediction errors 
ˆ −u u . For estimated mean square errors of predictors (not shown here) the dif-

ference between variability of estimated MSE( )û and estimated MSE( )u� lies 
approximately in the interval (10000, 1016), measured in times. In standard error 
scale this means the difference between 100 and 108 times (the difference is big-
ger compared to variability of 0( )σ −u u� because the left-side negative part of es-
timated mean square errors distribution is also taken into account).  

Thereby it seems that using the standard error of two-stage estimators in case 
of small values of intraclass correlation coefficient and numbers of groups is not 
advisable. But in case of not too small values of ρ , when the real values of 
variance components are not known, the use of derived formulas (3.58) and 
(3.61) is legitimate.   

 

3.4.4. The inadmissible estimates of heritability  

In the next theorem the approximated probability to get an inadmissible esti-
mate of heritability with ANOVA method in unbalanced case is derived. 
 
Theorem 3.8. In the additive genetic sire model under the normality assump-
tions and in unbalanced data the probability to get the inadmissible heritability 
estimates is approximately expressed as 
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(3.62) 
where a is the number of sires, d is a coefficient (3.7), m and λ are defined with 
formulas (3.15) and (3.16), respectively, and , ( 1)Fm a n− means random variable 
with F-distribution with m and ( 1)a n − degrees of freedom.

Proof. It is obvious that 2ˆ 0h < if 2 0ˆuσ < and 2ˆ 1h > if 2 2 1 3ˆ ˆu eσ σ > (Theorem 
3.3). The approximated probability of negative 2ˆuσ is derived in Khuri, Mathew 
and Sinha (1998, p 58). Based on distributional properties of mean squares 
(3.11) and (3.13), and applying the approximation (3.14), the probability of 
negative 2ĥ is expressed as follows: 
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   −≈ < = <   − −   

∑ (3.63) 

Analogous the probability of 2ˆ 1h > is approximated in the following way: 
2

2 2

,2 2

MS( )ˆP( 1) P 1
MS( ) 3
χ ( 1) ( 3)( 1)P 1 P F .
χ 3 3

m e
m N a

e N a

u dh
e

a d ad
N a m

λ σ
σ λ

−
−

 > = > +  
   − + −≈ < + = >   −   

(3.64) 

The two derived expressions together give us the approximation in the theorem 
statement. ■

Results of simulation studies controlling derived formulas are presented in Ta-
ble 3.14. There is no clear bias in predicted probabilities of 2 0ˆuσ < and 2ˆ 1h > .
Similarly to balanced data studies, the probability to get negative estimate of 
mean square error of two-stage predictors is smaller than the probability to get 
negative estimate of 2

uσ .

Table 3.14. The observed and predicted probabilities of the inadmissible estimates in 
the case of different true population values, data set imbalance ν and number of groups 
a ( 360N = , 2 1eσ = ) found based on 1000 replicated samples. 

2( )hρ ν a 2 *P( 0)ˆuσ < 2 2 #
,P( 0| )ˆu u eσ σ< 2 *ˆP( 1)h > 2 2 #

,ˆP( 1| )u eh σ> 	[ ]*P MSE( ) 0<u�
0.3 4 0.451 0.4968 0.000 0.0003 0.236 

20 0.334 0.3381 0.000 0.0000 0.154 
0.0125 
(0.05) 

 90 0.405 0.4023 0.000 0.0000 0.225 
 0.6 4 0.341 0.3449 0.000 0.0000 0.106 

20 0.287 0.3186 0.000 0.0000 0.080 
 90 0.393 0.4002 0.000 0.0000 0.253 
 0.9 4 0.298 0.3038 0.000 0.0000 0.048 

20 0.313 0.3116 0.000 0.0000 0.172 
 90 0.397 0.3995 0.000 0.0000 0.297 

0.3 4 0.255 0.2891 0.029 0.0260 0.130 
20 0.042 0.0637 0.000 0.0002 0.010 

0.0625 
(0.25) 

 90 0.092 0.1078 0.001 0.0002 0.033 
 0.6 4 0.099 0.1210 0.014 0.0095 0.027 

20 0.023 0.0343 0.000 0.0000 0.004 
 90 0.101 0.0992 0.000 0.0001 0.062 
 0.9 4 0.050 0.0750 0.004 0.0053 0.005 

20 0.021 0.0246 0.000 0.0000 0.009 
 90 0.093 0.0960 0.000 0.0001 0.070 



87

2( )hρ ν a 2 *P( 0)ˆuσ < 2 2 #
,P( 0| )ˆu u eσ σ< 2 *ˆP( 1)h > 2 2 #

,ˆP( 1| )u eh σ> 	[ ]*P MSE( ) 0<u�
0.3 4 0.137 0.1685 0.159 0.1798 0.054 

20 0.004 0.0105 0.082 0.0869 0.000 
0.15 
(0.6) 

 90 0.002 0.0054 0.033 0.0446 0.001 
 0.6 4 0.033 0.0533 0.160 0.1571 0.012 

20 0.001 0.0016 0.061 0.0561 0.001 
 90 0.002 0.0027 0.036 0.0344 0.001 
 0.9 4 0.022 0.0237 0.132 0.1439 0.001 

20 0.000 0.0005 0.036 0.0421 0.000 
 90 0.003 0.0019 0.027 0.0306 0.001 
* Observed probabilities were found based on 1000 replicated samples. 
# Predicted probabilities 2 2

,P( 0| )ˆu u eσ σ< and 2 2
,ˆP( 1| )u eh σ> were calculated by formulas 

(3.63) and (3.64), respectively. 

 

3.5. The effect of data imbalance 

3.5.1. The effect of data imbalance on 2Var( )ˆuσ

Theorem 3.2.1 in Khuri et al (1998, p 56–57) proves that 2Var( )ˆuσ attains a 
minimum for all 2

uσ and 2
eσ if and only if the data set is balanced. 

For unbalanced data the criteria of optimal design is not clear. Anderson and 
Crump (1967) concluded that the design with closest number of classes should 
be used to get the optimum. Norell (2001, 2003) showed that this suggestion not 
always yields to the minimum of 2Var( )ˆuσ . Khuri et al (1998, p 81–87) estab-
lished an approximate empirical relationship between 2Var( )ˆuσ and ( )ν D , and 
showed that the sampling variance of 2ˆuσ increases as imbalance increases. 

To visualise the effect of data imbalance on the accuracy of variance compo-
nent estimate 2ˆuσ , the modelling experiments were implemented. Similarly to 
paragraph 3.3 the standard deviations of 2ˆuσ , as parameters found usually in prac-
tice, were calculated by formula (3.46) in case of different combinations of data 
imbalance and intraclass correlation coefficients. Since there are different data 
designs corresponding to a given imbalance, then with specified value of ( )ν D ,
on average five designs were generated and the average value of 2( )ˆuσσ was used 
to characterise the effect of the corresponding imbalance. Figure 3.10 shows the 
dependence of standard deviation of estimated 2

uσ on ( )ν D and ρ , keeping the 
data size 360N = , number of groups 20a = , and error variance 2 1eσ = .
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Figure 3.10. The patterns of 2( )ˆuσσ in different data set imbalances ( )ν D and true intra-
class correlation coefficient values ρ for 360N = , 2 1eσ = and numbers of groups 

20a = .

Since similarly to balanced data case (Figure 3.1), the accuracy of variance 
components estimation decreases quickly if the intraclass correlation coefficient 
comes close to its upper limit, then the additional modelling experiments were 
implemented with intraclass correlation coefficient values varying from 0 to 
0.25 (in case of half-sib model this covers all admissible values of heritability). 
Figure 3.11 shows the dependence of standard deviation of estimated 2

uσ on 
( )ν D and 2 1

4h ρ= , keeping the data size 360N = , number of groups 
4, 20, 90a = , and error variance 2 1eσ = .

The modelling results show that even a quite notable increase of data imbal-
ance does practically not decrease the accuracy of intraclass correlation coeffi-
cient estimate. Yet in the case of very imbalanced data, the standard deviation 
of ρ̂ quickly increases along with the imbalance. Comparing modelling ex-
periments implemented with different numbers of groups, it is obvious that the 
influence of data imbalance on the accuracy of intraclass correlation coefficient 
estimators is stronger when the number of groups is small. It is also visible that 
in case of very unbalanced design, the accuracy of ρ̂ decreases more drastically 
for small values of intraclass correlation coefficient. The most imprecise esti-
mates are got for large values of ρ and 2h .
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(c) 

(a) 

(b) 

Figure 3.11. The patterns of 2( )ˆuσσ in different data set imbalances ( )ν D and true 
heritability coefficient values 2h for 360N = , 2 1eσ = and numbers of groups (a) 

90a = , (b) 20a = , (c) 4a = .
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3.5.2. The effect of data imbalance on Var( )ρ̂

In the following it is proved that Var( )ρ̂ expressed by (3.49) attains a minimum 
for all 2

uσ and 2
eσ if and only if the data set is balanced. 

 
Theorem 3.9. For fixed values of N, a, 2

uσ and 2
eσ , Var( )ρ̂ attains a minimum 

if and only if the data set is balanced. 

Proof. Rewrite the expression (3.49) in the form 

 
2 2 2 4

2 2 2 2 2 2 2
( 2) ( ) 2( ) (1 )Var( )ˆ
( 1) ( 1) ( 2) ( 4)( )e

m N a m N a
d a d a N a N a

λ λ ρρ
σ

 − − − −≈ + × − − − − − − 
,

(3.65) 
where only the first part depends on the design. 

From formulas (3.15) and (3.16), and general properties of eigenvalues 
(Proposition 3.2) we have 

 11 tr( )s
i iim mλ λ== =∑ Q V and 2 2 2

11 tr ( )s
i iim mλ λ=  = =  ∑ Q V . (3.66) 

From formula (3.4) we have 

 ( )2 2 211 1tr( ) ( 1)a
i u eN iN n aσ σ== − + −∑Q V .

As we also have the expression for d of the form (3.7), we can write 

 2 2
1tr( ) ( 1)( )e ua dσ σ= − +Q V ,

from which it follows that 

 
21 2

12 2 2
tr( ) 1 tr( ) ( 1)

( 1) ( 1)
e e

u u u
d a

a a
σ σ

σ σ σ
 = − = − − − −

Q V Q V . (3.67) 

Based on expressions (3.66) and (3.67) we have for the first addend in the 
square brackets of (3.65) that 

 

[ ]

4 22
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22 2 2
1
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2
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( 2) tr ( )( 2)
( 1) tr( ) ( 1)

tr ( ) ( 1)( 2) 1 .
tr( )tr( )
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e
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N am N a
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aN a

σλ
σ

σσ
−

 − −− −  =
−  − − 

   − = − − × × − 
 

Q V
Q V

Q V
Q VQ V

 

Here the first term does not depend on design. The second term 
2 2

1 1tr[( ) ] [tr( )]Q V Q V has its minimum value equal to the reciprocal of the rank 
of 1Q , which is equal to 1a − , if and only if in n= for all i (this can be shown 
by making use of Theorem 9.1.22 in Graybill, 1983, p 303). For the third term 
we have that 

 
2 2 22 2 2

2 2 2
1

( 1)1 1 1
tr( )

e e e

e u u

a
d d

σ σ σ
σ σ σ

−
 −    − = − = +    +    Q V

,
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which has its minimum, equal to 2 2 2(1 )e unσ σ+ , if and only if in n= for all i ,
because d is at its maximum, namely d n= , if and only if in n= for all i .

Similarly, we have for the second addend in the square brackets of (3.65) 
that 

 [ ]
[ ]

2 2 242 2 21 4
22 2 2 2

1

tr ( )( ) 1 1
( 1) tr( )

u e eu
u u

m
d a d d

σλ σ σσ
σ σ

   = + = +   −    
Q V

Q V
.

The last expression here has its minimum 4 2 2 2(1 )u e unσ σ σ+ if and only if in n=
for all i . We therefore conclude that Var( )ρ̂ is at its minimum, which is given 
by the formula 

 

2 24 2 24
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2 4

2 4
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2 2
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( 1)
2( ) (1 )
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σ σ ρ
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ρ ρ

 − −    ≈ + + +    −     
− −×

− − − −
+ − − −=

− − − − −
+ − − − −=

− − − −
,

4)−

(3.68) 

if and only if the data set is balanced. This completes the proof of Theorem 3.9. ■

Note that the minimum of Var( )ρ̂ expressed by (3.68) and corresponding to 
balanced data has the same form as approximated Var( )ρ̂ derived by Zerbe and 
Goldgar (1980) assuming balanced data and presented earlier in (3.26). 

 
To visualize the effect of data imbalance on the accuracy of estimated intraclass 
correlation coefficient, the modelling experiments were used. The standard de-
viations of intraclass correlation coefficient estimate were calculated by formula 
(3.49) in case of different combinations of data imbalance and intraclass corre-
lation coefficients. Since there are different data designs corresponding to a 
given imbalance, then with specified value of ( )ν D , on average five designs 
were generated and average value of ( )ρ̂σ was used as representative to corre-
sponding imbalance. Figure 3.12 shows the dependence of standard deviation of 
estimated intraclass correlation coefficient on ( )ν D and ρ , keeping the data 
size 360N = , number of groups 4, 20, 90a = , and error variance 2 1eσ = (note 
that the axis of intraclass correlation coefficient values is drawn in the opposite 
order to better visualize the pattern of ( )ρ̂σ ). 

The modelling results show that even quite a notable increase of data imbal-
ance does practically not decrease the accuracy of intraclass correlation coeffi-
cient estimate. Yet in the case of very imbalanced data the standard deviation of 
ρ̂ increases quickly along with the imbalance. Comparing modelling experi-
ments implemented with different numbers of groups, it is obvious that the in-
fluence of data imbalance on the accuracy of intraclass correlation coefficient 
estimators is stronger when the number of groups is small. It is also visible that 



92

in case of very unbalanced design the accuracy of ρ̂ decreases more drastically 
for small values of intraclass correlation coefficient. The most imprecise esti-
mates are got for average values of ρ .

3.5.3. The effect of data imbalance on MSE( )ˆiu and MSE( )iu�

For balanced design it is clear that the MSE( )û has its minimum value if the 
number of groups is minimal. Due to this the effect of data design in balanced 
case was studied only for MSE( )ˆiu . In unbalanced case the MSE( )ˆiu depends 
on the number of observations in group i and has the smallest value for the big-
gest in . The data imbalance has effect only on MSE( )û . In following theorem it 
is proved that the mean square error of predictors attains a minimum for all 2

uσ
and 2

eσ if and only if the data set is balanced. 
 
Theorem 3.10. For fixed values of N and a, MSE( )û attains a minimum for all 

2
uσ and 2

eσ if and only if the data set is balanced. 

Proof. In the following three well-known inequalities are applied. These are 
(i) the inequality involving arithmetic and harmonic means of the form 

1 2

1 21 1 1
n

n

x x x n
n x x x

+ + + ≥
+ + +

�
�

,

from which it follows that 2
1 2 1 21 1 1 ( )n nx x x n x x x+ + + ≥ + + +� � , and 

where equality holds if and only if 1 2 nx x x= = =� ;
(ii) Cauchy-Schwarz inequality of the form 
 2 2 2 2 2 2 2

1 1 2 2 1 2 1 2( ) ( )( )n n n nx y x y x y x x x y y y+ + + ≤ + + + + + +� � � ,

where equality holds if and only if 1 1 2 2 n nx y x y x y= = =� , and from which it 
follows that 2 21

1 1( )n n
i ii inx x= =≥∑ ∑ ;

(iii) Chebyshev’s inequality of the form 
 1 2 1 2 1 1 2 2( )( ) ( )n n n nx x x y y y n x y x y x y+ + + + + + ≤ + + +� � � ,
from which it follows that 1

1 1 1
n n n

i i i ii i inx y x y= = =≥ × ×∑ ∑ ∑ .

For the first addend in formula (3.56) we have by the inequality (i) 

 
2 2

2 2 2 2 2 2
1 1

1
( )

a

a
e i u e i u e ui i

a a
n n a Nσ σ σ σ σ σ= =

≥ =
+ + +

∑
∑

, (3.69) 

where equality holds if and only if in n= for all 1,2,...,i a= .
For the sum in the second addend of (3.56) it holds according to the inequal-

ity (iii) that 

 
2 2

2 2 2 2 2 2
1 1 1

1 1
( ) ( )

a a a
i i

e i u e i ui i i

n n
n a nσ σ σ σ= = =

≥
+ +

∑ ∑ ∑ . (3.70) 
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Figure 3.12. The patterns of ( )ρ̂σ in different data set imbalances ( )ν D and true intra-
class correlation coefficient values ρ for 360N = , 2 1eσ = and numbers of groups 
(a) 90a = , (b) 20a = , (c) 4a = .

(a) 

(b) 

(c) 
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For the first sum in (3.70) we have by the Cauchy-Schwarz inequality 
2

2 2

1 1

1 1a a
i i

i i
n n N

a a= =

 ≥ = 
 

∑ ∑ ,

where equality holds if and only if in n= for all 1,2,...,i a= . For the second 
sum in (3.70) we have, after sequential applying of the Cauchy-Schwarz ine-
quality and inequality (3.69), that it attains its minimum value 3 2 2 2( )e ua a Nσ σ+
if and only if in n= for all 1,2,...,i a= .

We therefore conclude that MSE( )û is at its minimum, which is given by 
formula (3.28), if and only if the data set is balanced. ■

For mean square error of two-stage predictors MSE( )u� of the form (3.58), it is 
easy to show that in case of balanced data the expression (3.58) simplifies to the 
previously derived form (3.36). All auxiliary variables in (3.58), noted as fhk
and c, attain their minimum values if and only if the data set is balanced, that is 

in n= for all i . To show this the same three inequalities used in the proof of 
Theorem 3.10, must be applied. For variable fhk in (3.58) the following ine-
quality holds: 

 
2 2 2 2(iii)1 1 1

1 1
( ) ( )

fa a a
i f

fh ih h
i i ie i u e i u

nk n
n a nσ σ σ σ= = =

= ≥ × ×
+ +

∑ ∑ ∑ . (3.71) 

The lower limit of the first sum in the last product can be expressed as 

 1 1(ii)1 1

1 f fa a
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ii f f
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Nn n
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= =
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∑ ∑ ,

and the lower limit of the second sum in the right side of (3.71) can be ex-
pressed as 
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Hence, the lower limit of variable fhk is written of the form 

 
( )

1

1 2 2

h f

fh hf
e u

a Nk
a a Nσ σ

+

−
≥

+
,

where equality holds if and only if the data set is balanced, that is in n= for all 
1,2,...,i a= and thus N an= . Then 2 2( )f h

fh e uk an nσ σ= + . Similarly the lower 
limit of variable c in (3.58) is expressed as 
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2 2 2

2 2 2 2
1 ( )

e e u
a

i u e i ui

a Nc
aNN n n

σ σ σ
σ σ σ=

+= ≥
 − + ∑

,

where equality holds if and only if in n= for all i. Then 2 2( )e uc n Nσ σ= + .

To visualize the effect of data imbalance on the standard deviations of predic-
tion error, the modelling experiments were implemented. The standard devia-
tions of prediction error were calculated as square roots of formula (3.56) in 
case of different combinations of data imbalance and intraclass correlation coef-
ficients. Similarly to previous modelling experiments in paragraph 3.5, with 
specified value of ( )ν D , on average five designs were generated and average 
value of ( )ˆσ −u u was used as representative to corresponding imbalance. Fig-
ure 3.13 shows the dependence of standard deviation of prediction error on 

( )ν D and ρ , keeping the data size 360N = , number of groups 4, 20, 90a = ,
and error variance 2 1eσ = .

Also, the analogous modelling experiments were used to study the effect of 
data imbalance on the standard deviations of second-stage prediction error. To 
calculate ( )σ −u u� in case of different combinations of data imbalance and intra-
class correlation coefficient values, a square root of formula (3.58) was used. 
The patterns of the standard deviations of the second-stage prediction error are 
shown in Figure 3.14. 

The patterns of ( )ˆσ −u u and ( )σ −u u� are quite similar. More visible differ-
ences occur in case of small intraclass correlation coefficients, where the stan-
dard deviations of second-stage prediction errors are larger. The dependency on 
the data imbalance is imaginary compared to the data design effect and value of 
intraclass correlation coefficient. Yet in the case of very imbalanced data, the 
standard deviation of prediction error increases quickly along with the imbal-
ance, being more conspicuous when the number of groups is big.  

 

3.5.4 The effect of data imbalance on the probability 
of the inadmissible estimates 

The effect of data imbalance on the approximated probability of negative 2ˆuσ of 
the form 
 [ ]2 2

,P( 0) P F ( 1)ˆu m N a ea mσ σ λ−< ≈ < − (3.72) 
is discussed in Khuri, Mathew and Sinha (1998, p 59). They concluded that im-
balance causes a reduction in the value of m, which is the numerator’s number 
of degrees of freedom of the F-variate in (3.72), and is defined with expression 
(3.16). They also showed that m is equal to its maximum value 1a − , if the data 
set is balanced. 
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Figure 3.13. The patterns of ( )ˆσ −u u in different data set imbalances ( )ν D and true 
intraclass correlation coefficient values ρ for 360N = , 2 1eσ = and numbers of 
groups (a) 90a = , (b) 20a = , (c) 4a = .

(a) 

(b) 

(c) 
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Figure 3.14. The patterns of ( )σ −u u� in different data set imbalances ( )ν D and true 
intraclass correlation coefficient values ρ for 360N = , 2 1eσ = and numbers of groups 
(a) 90a = , (b) 20a = , (c) 4a = .

(a) 

(b) 

(c) 
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By making use of the fact 1tr( )i im mλ λ= =∑ Q V , and the expressions of 
1tr( )Q V derived in proof of Theorem 3.9, it is easy to see that imbalance causes 

a reduction in the value of mλ , and mλ is equal to its maximum value 
2 2( 1)( )u ea nσ σ− + , if the data set is balanced. So, data imbalance causes an en-

largement of the argument of the distribution function (3.72). 
As a result, this implies that for balanced data set with in n= ( 1,2,..., )i a=

the approximated probability of negative 2ˆuσ of the form (3.72) reduces to the 
expression (3.42). 

Singh (1989), who derived the exact expression of 2P( 0)ˆuσ < using an infi-
nite weighted sum of incomplete beta functions, concluded based on numerical 
studies that imbalance increases the probability of a negative value of 2ˆuσ .

Studying the effect of data imbalance on probability of inadmissible heritability 
estimate it follows, that the first term in approximation (3.62) 2ˆP ( 0)h <

2P( 0)ˆuσ= < and the second term can be rewritten as 

 2
, 2

3ˆP ( 1) P F
( 3)( 1)

N a m
e

mh
d a

λ
σ

− > ≈ <
 + − 

. (3.73) 

Here the data imbalance causes a reduction in the value of m, which is the de-
nominator’s number of degrees of freedom of the F-variate in (3.73). Also, im-
balance causes an enlargement of the argument of the distribution function 
(3.73). The last is true because (based on expressions derived in proof of Theo-
rem 3.9) 

 
22 22

2 2
1

( 1)( 3 )33 1
( 3)( 1) tr( )

e uu

e e

am
d a

σ σσλ
σ σ

−
 − −= × − + −  Q V

 

and value of 1tr( )Q V reduces if the imbalance increases. 
Note that in balanced case the approximation (3.73) reduces to the previ-

ously derived form (3.43).  
 
To visualize the effect of data imbalance on 2P( 0)ˆuσ < and 2 2ˆ ˆP( <0) P( >1)h h+ ,
the modelling experiments were implemented as in the previous sections of the 
current  paragraph. Figures 3.15 and 3.16 show the dependence of probability of 
a negative value of 2ˆuσ and probability of an inadmissible estimate of 2ĥ , re-
spectively, on ( )ν D and ρ , keeping the data size 360N = , number of groups 

4, 20, 90a = , and error variance 2 1eσ = .
The patterns of 2P( 0)ˆuσ < and 2 2ˆ ˆP( <0) P( >1)h h+ show that – similarly to 

previous accuracy studies – there is no big necessity to worry about the data 
imbalancedness, especially in case of big number of groups (sires). The prob-
lems with inadmissible estimates may occur mainly if the real parameters values 
are too small or too big, and the data set contains a large number of groups with 
1 or 2 observations. 
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Figure 3.15. The patterns of 2P( 0)ˆuσ < in different data set imbalances ( )ν D and true 
intraclass correlation coefficient values ρ for 360N = , 2 1eσ = and numbers of 
groups (a) 90a = , (b) 20a = , (c) 4a = .

(a) 

(b) 

(c) 
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Figure 3.16. The patterns of 2 2ˆ ˆP( <0) P( >1)h h+ in different data set imbalances ( )ν D
and true heritability coefficient values 2h for 360N = , 2 1eσ = and numbers of 
groups/sires (a) 90a = , (b) 20a = , (c) 4a = .

(a) 

(b) 

(c) 
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CHAPTER 4 
THE ACCURACY OF THE ESTIMATES IN 
THE GENERAL LINEAR MIXED MODEL 

4.1. Introduction 
 
The applications of linear mixed models with general variance-covariance struc-
ture in genetic studies are animal models (2.8), (2.11) and models with single 
genes effects (2.13) containing wide pedigree information given in the structure 
of variance-covarince matrix. Estimation and prediction theory for these models 
is overviewed in Chapter 1.2. As the estimation of variance-covariance compo-
nents from unstructured variance-covariance matrices is natural in the REML 
method (Chapter 1.2.5), this method is the main technique applied in general 
linear mixed models. 

Due to the potential complexity of genetic studies there are several unrea-
sonable situations for traditional mixed linear models theory, but they are a 
usual set-up for genetics and especially for animal breeding studies. Many of 
these are at first glance strange properties, like the models where the number of 
terms to be estimated (predicted) exceeds the number of observations or the 
models with non-null covariances between random genetic effects and random 
errors, are discussed in Henderson (1984) and Searle (1998). In Section 4.2 it is 
proved that adding into the model individuals without records on observed traits 
and estimating the additive genetic effects for them do not change the estimators 
and the accuracy of estimates reviewed in Chapter 1. 

In Sections 4.3 and 4.4 the effects of pedigree structure on the accuracy of 
estimates and the effect of choice of genetic model are discussed based on short 
modelling experiments and real data study. The results of the first Estonian 
Black Face Sheep Database analyses, followed also by the model comparison 
study presented in Section 4.4.2 are published in Kaart and Piirsalu (2000). 

 

4.2. The effect of predicting the non-measured effects 
 
In animal husbandry it is quite frequent to predict the realised values of random 
genetic effects which have no data. The purpose is to select the best animals for 
parents of the next generation by their genetic potential, which may not always be 
expressed in their phenotype. For example, the potential milk production of bulls 
from animal model (2.8) or motherability of rams by maternal animal model (2.11). 

The linear mixed model used in described situations is shortly examined in 
Henderson (1984, p 42). More detailed discussion is given in Searle (1998, p 
74–77). 
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Let y be the vector of observed values of the trait and 0 be the vector of nulls 
corresponding to the individuals without records. 
 
Definition 4.1. We say that 

 
0 0 0

        = + +        
        

y X Z 0 u eβ0 X 0 Z u 0 (4.1) 

defines the linear mixed model for ( )′ ′ ′y 0 , where 
β is a vector of fixed effects, 
u and 0u are vectors of random effects with and without data, respectively, 
e is a vector of random residuals, 
X , 0X , Z and 0Z are known design matrices which describe the precise relation-
ship between the elements of β and 0( )′ ′ ′u u with those of ( )′ ′ ′y 0 , respectively. ■

The variance-covariance structure of random effects (excluded the random re-
sidual term e ) is expressed as a block-matrix: 

 0 0Var
′   

   ′ ′ ′=
   
   

u G C GZ
u C G C Z
y ZG ZC V

. (4.2) 

Let 

¤

0

 =  
 

XX X , ¤

0

 =  
 

Z 0Z 0 Z , ¤  =  
 

yy 0 and ¤ Var    = =   
   

y V 0V 0 0 0 .

We denote the estimates from model (4.1) with hat � instead of traditional no-
tation 
 .

The following theorem summarises the basic estimation and prediction equa-
tions for model (4.1).  
 
Theorem 4.1. In the linear mixed model (4.1) estimators and predictors of pa-
rameters β and u , and their accuracy are independent on the additional ran-
dom effects which have no data. The realised values of random effects 0u are 
predictable from equation 

1 1
0 ˆ( ) ˆ− −′ ′ ′= − =u C Z V y Xβ C G u� ,

and the corresponding variances and covariances of predictors and prediction 
errors are 

1
0Var( ) −′ ′=u C Z V WZC� ,

1
0 0Cov( , ) Cov( , )ˆ −′ ′ ′= =u u u u GZ V WZC� � � ,

0 0ˆCov( , ) Cov( , )′ ′= =β u β u 0
� � � ,

0 0 0 0Var( ) Var( )− = −u u G u� � ,

0 0 0 0Cov( , ) Cov( , )ˆ′ ′ ′ ′− = − =u u u u u u 0� � � ,
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( ) ( ) 1
0 0 0 0ˆCov Cov, , −′′ ′ = = −′ ′− − QX V ZCβ u u β u u

� � � ,

where 1( )− −′=Q X V X and 1−′= −W I XQX V .

Proof. Suppose that the model describing the relationship between data and 
factors that may have an effect on our data is (4.1) and the variance-covariance 
matrix between random effects is (4.2). 

We now apply the estimation formula (1.7) to the linear mixed model set-up 
(4.1). The estimator β

�
is 

( ) ( )

¤ ¤ 1 ¤ ¤ ¤ 1 ¤

1 1

0 0
0

1 1

( ( ) ) ( )

ˆ( ) .

− − −

−
− −

− − −

′ ′=

       ′ ′ ′ ′=               
′ ′= =

β X V X X V y

X yV 0 V 0X X X XX 00 0 0 0

X V X X V y β

�

Likewise, applying to model (4.1) the prediction formula (1.8) gives predictors 
u� and 0u� as 

( )( ) ( )

( )

¤ ¤ ¤ ¤ ¤

0

0 0

11

1
0

Cov ,

Cov ,

( ) .
( )

−

−

−−

−

  ′= − 
 

  −    ′=        −      
 ′ ′  − −  = =      ′ ′ − ′ ′ −      

u u y V y X βu
u V 0 y Xβy 0u 0 0 0 X β

GZ 0 y Xβ GZ V y XβV 0
C Z 0 0 X β0 0 C Z V y Xβ

� �
�

�
�

� �
� �

Thus, 
1 1 ˆ( ) ( ) ˆ− −′ ′= − = − =u GZ V y Xβ GZ V y Xβ u

��

and 

( )1 1 1
0 ˆ− − −′ ′ ′ ′= = =−u C Z V C G u C G uy Xβ

�� � .

To study the variances and covariances of predictors and prediction errors 
we use the matrices 1( )− −′=Q X V X and 1−′= −W I XQX V . Then  

1 1 1
0, and− − −′ ′ ′ ′= = =β QX V y u GZ V Wy u C Z V Wy

� � � .
From the results on generalized inverses of X we have that 

1−′ =XQX V X X ,
and therefore, 
 1 1( )− −′ ′= − = − = − =WX I XQX V X X XQX V X X X 0 . (4.3) 

As the estimators and predictors of parameters β and u are independent 
from 0u , then the equations for predictors variances and prediction errors also 
do not include the terms related with 0u . The variance of predictor u� is ex-
pressed as 
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1 1

1 1

1 1 1

Var( ) Var( )

.

− −

− −

− − −

′ ′=
′ ′=
′ ′ ′= −

u GZ V W y W V ZG
GZ V WVW V ZG
GZ V ZG GZ V XQX V ZG

�

The covariance between β
�

and u� is zero due to the equality (4.3): 

( ) 1 1

1

Cov Var( ),
.

− −

−

′ ′′ =
′ ′= =

QX V y W V ZGβ u
QX W V ZG 0

� �

The variances and covariances of prediction errors for parameters β and u are 
( ) ( ) ( ) ( ) ( )

( ) ( )
Var Var Var Cov Cov, ,

ˆVar Var ,
= + − −−
= = =

β β β β ββ β β
Qβ β

� �� �
�

Var( ) Var( ) Var( ) Cov( , ) Cov( , )
Var( ) Var( ), because Cov( , ) Var( ),ˆ

− = + − −
= − = − =

u u u u u u u u
G u G u u u u

� � � �
� � �

( ) ( ) ( )
( ) ( ) 1

Cov Cov Cov, , ,
ˆ ˆCov Cov ., ,ˆ −

′ ′ = −−
′= − = −

β u u β u β u
0 QX V ZGβ u β u

� � �� �

These results are the same as reported in Chapter 1.2.3. 
Similarly, the variance of predictor 0u� is expressed as 

1 1
0

1 1 1
Var( ) Var( )

.

− −

− − −

′ ′ ′=
′ ′ ′ ′ ′= −

u C Z V W y W V ZC
C Z V ZC C Z V XQX V ZC

�

The covariance between β
�

and 0u� is 

( ) 1 1
0Cov Var( ), − −′ ′′ = =QX V y W V ZC 0β u

� �

and the covariance between u� and 0u� is 
1 1

0
1 1 1

Cov( , ) Var( )
.

− −

− − −

′ ′ ′=
′ ′ ′= −

u u GZ V W y W V ZC
GZ V ZC GZ V XQX V ZC

� �

The variance of prediction error is 
0 0 0 0Var( ) Var( )− = −u u G u� �

and the suitable covariances are 
0 0 0 0

1 1 1
0

1 1 1

1 1 1

Cov( , ) Cov( , ) Cov( , )
Var( ) Cov( , )

( )
,

− − −

− − −

− − −

′ ′ ′ ′− = −
′ ′ ′ ′= −
′ ′ ′= −
′ ′ ′− −

=

u u u u u u u
GZ V W y W V ZC GZ V W y u
GZ V ZC GZ V XQX V ZC
GZ V ZC GZ V XQX V ZC
0

� � � � �

( ) ( ) ( ) 1
0 0 00 0Cov Cov Cov, , , −′′ ′ ′ ′= − = −− QX V ZCβ u u β u β u

� � �� � . ■
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The following theorem proves that the REML equations used in estimating variance 
components and the information matrix (and so the approximate variance of esti-
mates) do not depend on the additional random effects which have no data. 
 
Theorem 4.2 The REML equations used in estimating variance components in 
the mixed linear model and the approximate variances of estimates do not de-
pend on the additional random effects which have no data. 

Proof. At first we note that the matrix P (1.11) is for the mixed model set-up 
(4.1) expressed as 

( ) ( )
1 1 1 1

¤
0 0

0 0

1 1 1 1

1 1 1 1

( )

( ) .

−
− − − −

− − − − −

− − − − −

           ′ ′ ′ ′= −                       
   ′ ′= −   
   
 ′ ′  −= =      

X XV 0 V 0 V 0 V 0P X X X XX X0 0 0 0 0 0 0 0
V 0 V X X V X X V 0
0 0 0 0

P 0V V X X V X X V 0
0 00 0

 

The left-hand side of the REML equations (1.23) is rewritable as 

0 0

¤ ¤ ¤
c 0

cc 00

c 0

tr tr{ tr( )}

{ tr( )}

q q
i i i iq

i i i i i
ii

q
i i i

=

==

=

 ′ ′         ′ = =         ′            
′=

P 0 Z 0 Z 0 PZ Z 0
P Z Z 0 0 0 Z 0 Z 0 0

PZ Z

 

and the right-hand side of these equations for our mixed model set-up is 

( )
0 0

¤ ¤ ¤ ¤ ¤ ¤
c 0

c 0

c 0

{ }

{ } .

q
i iq

i i i i i
i

q
i i i

=

=

=

′      ′′ ′ =       ′       
′ ′=

P 0 Z 0 Z 0 P 0 yy 0y P Z Z P y 0 0 0 Z 0 Z 0 0 0

y PZ Z Py

 

Applying the approximated formula for 2
REMLVar( )σ̂ in (1.25) to our set-up 

gives the variances and covariances of variance components estimates as 

{ }
1

¤ ¤ ¤ ¤ ¤ ¤2
REML

m , 0
1

m , 0

m , 0

tr( )Var( ) 2

tr2

tr2

n n n n

q

i i j j
i j

q
i i j j

i i j j
i j

i i j j

i j

σ
−

=

−

=

=

 ′ ′≈  
 
  ′ ′        =         ′ ′          

′ ′  
=      

P Z Z P Z Z

P 0 Z 0 Z 0 P 0 Z 0 Z 0
0 0 0 Z 0 Z 0 0 0 Z 0 Z

PZ Z PZ Z 0
0 0

�

{ }

1

1
2

m REML, 0
2 tr( ) Var( ) .ˆ

q

q
i i j j i j

σ

−

−

=

 
 
  
 ′ ′= ≈ PZ Z PZ Z

■
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Proposition 4.1. The model (4.1) is equivalent to the model  

 ( )
0

 = + + 
 

uy Xβ Z 0 eu . ■

4.3. The accuracy of the genetic parameters estimates  
depending on genetic relationships 

 
It is obvious that without genetic relationships between studied individuals we 
can not to estimate any genetic parameters based on measured phenotypic val-
ues. At the same time it is unclear how complicated relationships we need to get 
as accurate as possible estimates of genetic parameters. This question should 
arise at first in the phase of experiment planning. Should we cross or choose for 
further study possibly deeply related individuals or, in the opposite, completely 
unrelated individuals? In which case would we get the most accurate estimates 
to the parameters describing the genetic determination of observed traits? 

In a mathematical sense the relationships between individuals aggregate in the 
covariance structure of the model. The effect of variance-covariance structure on 
the estimation and prediction results is not trivial (for a short discussion see, for 
example, Möls, 2004, p 51). In genetic studies, where a small change in genetic 
relationships should lead to a complicated change in variance-covariance struc-
ture, these associations are even harder to fix. In the following, a short study still 
waiting for further and more mathematical approach is presented.  
 
The form of the general linear mixed model (1.1) corresponding to the animal 
model (2.8) was assumed. For simplicity, the only fixed effect included in the 
model was the overall mean µ , the variance-covariance structure of random 
effects in the form (2.10) was assumed, the error variance 2 1eσ = was used and 
the calculations were implemented for heritability coefficient 2h values 0.01, 
0.025 and 0.6. Corresponding values of variance component 2

aσ are calculable 
by expression 2 2 2 2(1 )a eh hσ σ= − throughout. 

Six different crossing schemes were worked out and the corresponding vari-
ance-covariance matrices were constructed (Table 4.1). The number of meas-
ured individuals was taken equal to 100. 

The studied parameters were the mean square error of predictors, MSE( )â ,
and the asymptotic sampling variance of REML-estimator of variance compo-
nent 2

aσ , 2
,Var( )ˆa REMLσ , calculated by formulas (1.14) and (1.25), respectively. 

 
From the results presented in Table 4.2 it is obvious that the simplest variance-
covariance structure is not the best, but also not the worst. Also, the values of 
MSE( )â and 2

,Var( )ˆa REMLσ depend in addition to variance-covariance structure on 
the real values of variance components or their ratios (some models changed their 
rankings if the values of 2h varied) and on the number of studied individuals. 
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Tabel 4.1. The studied crossing or relationship schemes of 100 individuals 



108

 
The mean square error of predictors has its smallest value in the case of Model 
3, where there exist some non-null offdiagonal elements in the variance-
covariance matrix (25% of observed individuals are full-sibs), but all diagonal 
elements were equal to 2

aσ . Weaker relationships between studied individuals 
(for example Model 2, where these 25% of individuals have been assumed to be 
half-sibs) will increase the values of MSE( )â .

If inbreed individuals exist in the pedigree, then some diagonal elements are 
bigger than 2

aσ and the values of MSE( )â increase. Also, the mean square error 
of predictors increases if the number of related individuals increased (in vari-
ance-covariance matrix there are more non-null offdiagonal elements). 

The asymptotic sampling variance of REML-estimator of variance compo-
nent 2

aσ has its smallest values if the studied individuals are deeply related and 
the accuracy is the poorest in case of unrelated individuals. 

 
Table 4.2. The values of MSE( )â and 2

,Var( )ˆa REMLσ in case of different variance-
covariance structures and heritability coefficient values, 100N = , 2 1eσ = .

MSE( )â 2
,Var( )ˆa REMLσ x10 Model

2 0.8h = 2 0.25h = 2 0.01h = 2 0.8h = 2 0.25h = 2 0.01h =
M1 83.20 25.08 1.000 5.0505 0.3591 0.2061
M2 83.46 24.52 0.998 4.4824 0.3502 0.2060
M3 81.64 23.34 0.990 3.5541 0.3372 0.2059
M4 82.51 24.78 1.004 4.2435 0.3542 0.2061
M5 249.12 34.68 1.814 0.2534 0.2131 0.2027
M6 400.00 33.33 1.010 0.2020 0.2020 0.2020
M7 801.35 66.17 2.010 0.2038 0.1995 0.2020

4.4. The dependency of the genetic parameters estimates on  
the genetic model choice 

4.4.1. Discussion 

The model choice problem is incidental to all studies where the probabilistic 
(usually noted as statistical) models are used. The true model, which describes 
the data perfectly and is never known exactly, is tried to approximate with the 
ideal model, which is set up based on the researcher’s knowledge and experi-
ences. In real data analysis due to the lack of data and/or computing facilities 
usually the simplified version of the ideal model is used. 

In large population based genetic studies with a large amount of individuals 
the fixed environmental factors traditionally contain information about the sex, 
age, birth and abiding place. The form of genetic parameters estimators, hence 
the correctness of estimates depends first of all on the random part of the model. 
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The latter is defined with the genetic model, the choice of which depends on the 
researcher’s ability to understand the genetic background of the studied trait (to 
set up a correct genetic model), and the possibilities to collect and analyse data 
based on the proposed model. 

 
In pedigree based studies also the question about the use and exert of all avail-
able relationships between individuals can arise. Based on population genetic 
studies (see, for example, Kennedy and Sorensen, 1988) it is clear that the use 
of relationships between individuals allows to avoid the bias in estimates caused 
by the deviances in population from the Hardy-Weinberg law (non-random mat-
ing, migration, etc). But how many generations back we should involve in the 
study is unclear. 

There are a few articles available using the simulations to study the effect of 
pedigree structures on the accuracy of estimates. Reverter and Kaiser (1996) 
concluded that the 2h estimates with the smallest standard error are obtained 
when there is performance information on many animals closely related to 
foundation animals, it is better to have data about tightly related individuals 
from a few generations than the long term pedigree schemes. Mehrabani-
Yeganeh, Gibson and Schaeffer (1999) used stochastic simulation to study the 
effect of using full data and pedigree structure versus more recent data and 
pedigree structure to obtain best linear unbiased predictors of breeding values. 
They concluded that using the data only from one generation would complicate 
the ranking of individuals by their genetic potential, especially in case of small 
heritabilities; but there is no big difference in selecting animals based on data 
from last 2 or 10 generations. 

 
The effect of using a more or less complicated genetic model besides the statisti-
cal model depends on the real nature of the studied trait. It is logical to presume 
that more maternally influenced traits can only be poorly analysed with sire based 
models. On the other hand, if the mothers do not add something extra to the trait 
realized values, then the use of complicated maternal effects animal models is not 
necessary. Also, if in the pedigree there are many generations without data, then 
the use all of them is not necessary and the simpler model can be used. 

Since the pedigree structure and also the real values of genetic parameters dif-
fer in different populations, then the studies dealing with the choice of genetic 
models should also be population based. There have been published some real 
data studies illustrating the effect of using different genetic models in estimating 
genetic parameters and in ranking animals for selection (Hagger and Schneeber-
ger, 1995; Ferreira, MacNeil and Van Vleck, 1999; Rumph, et al, 2002). 

In the following the effects of using different genetic models and different 
amount of pedigree information is studied in the Estonian Black Face Sheep 
Database example. 
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4.4.2. Example: lambs weaning weights analysis 

The weaning weights of Estonian Black Face Sheep lambs, born in 2001–2003, 
and the required pedigree information were extracted from the Estonian Sheep 
Database. The main dataset contains observations of 1073 animals. In pedigree 
data, where all available ancestors were included, 2451 animals were listed (the 
maximum number of ancestor’s generations was 12 and the number of inbreed 
animals was 636). As an alternative, only parents and grand-parents of animals 
with weaning weight values were listed producing the pedigree of 1886 animals. 
The pedigree structures of all available ancestors and only 2 parental genera-
tions are represented on Figure 4.1 and Figure 4.2, respectively, using the Pedi-
greeViewer program (Kinghorn, 1999). 

To study the effect of genetic model choice and the amount of pedigree informa-
tion on the estimates of genetic parameters, 6 genetic models were compared, 4 of 
them were applied with two different amount pedigree information. Model 1 was 
the typical sire model discussed in Section 2.1 with only one random effect caused 
by sire and without supplementary relationships. Model 2 was the full-sib model 
with two independent random effects caused by sire and dam, respectively. Models 
3, 4, 5 and 6 were the animal model, the animal model with permanent environment 
effects (measured as the effect of litter and defined with the dam number), the ma-
ternal effect animal model and the maternal effect animal model with permanent 
environment effects, respectively. In models 3, 4, 5 and 6 the reduced pedigree in-
formation was used. Models 7, 8, 9 and 10 were the same as models 3, 4, 5 and 6, 
respectively, but only information on all ancestors was used. 

The fixed effects included in the model were weaning age, dam age, sex, 
weaning type and year*farm interaction. All these effects remained the same for 
all studied models (for additional reading about the influence of fixed effects in 
Estonian sheep studies see, for example, Piirsalu and Kaart, 2001). 

The analyses were performed with VCE-5 software and the variance-
covariance components were estimated with AIREML algorithm (Kovač and 
Groeneveld, 2003). The values of estimated ratios of variance components in-
terpreted as different genetic parameters are presented in Table 4.3. 

The results show, as would be predicted, that the error variance is decreasing 
if the complicacy of model is increasing. 
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Figure 4.1. The pedigree structure of 2451 Estonian Black Face Sheep (all available 
ancestors includes, the number of inbreed animals was 636) 
 

Figure 4.2. The pedigree structure of 1886 Estonian Black Face Sheep (only parents 
and grand-parents of animals with weaning weight values included, the number of in-
breed animals was 116). 
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The estimates of the primary genetic parameter – the heritability coefficient – 
depend quite a bit on the presence of other random effects in the model. 

Apparently the half- and full-sib model both overestimate the heritability co-
efficient, placing too much weight on the simple sire or dam effect and do not 
consider the non-additive genetic influences associated with these effects. Thus 
it seems that these simple genetic models are not suited for large population 
based studies and should be used only in well designed pilot studies to get a first 
glance on the genetic determination of an examined trait. 

Comparing the pedigree based models it is obvious that including non-direct 
genetic or environmental effects will decrease the values of heritability coeffi-
cient as the measure of the direct additive genetic influence. It is also logical 
that including maternal genetic effects and permanent environment effects to-
gether will decrease both of them, as they measure quite similar effects. 

The effect of using all available pedigree information compared to using 
only 2 parental generations is not considerable. The only bigger difference ap-
pears in the estimates of additive genetic correlation between direct and mater-
nal effects – the mentioned parameter has much bigger estimates based on only 
2 parental generations. The reason may be that in the last generations the selec-
tion of animals is implemented more correctly and in such a way that only ani-
mals with both high additive and maternal genetic effects were selected to pro-
duce offspring. But perhaps the number of studied animals was just a little too 
small to correctly estimate such complex genetic parameters. 

Generally it seems that there is no need to use all the available pedigree in-
formation, 2 or some more generations are enough to get relatively correct esti-
mates. Also, the right understanding of the genetic background of a studied trait 
and the right choice of genetic and statistical models are necessary to get proper 
results. 

 
Table 4.3. The estimated genetic parameters of Estonian Black Face Sheep lambs wean-
ing weights got with different models. 

 Estimated genetic parameters Pedigree 
information 2

eσ 2h 2m amr 2c
Model 1 sires 48.674 0.256 – – – 
Model 2 sires+dams 44.818 0.274 – – – 
Model 3 43.030 0.162 – – – 
Model 4 41.669 0.118 – – 0.065 
Model 5 

≤2
generations 
of ancestors 41.736 0.139 0.043 0.446 – 

Model 6  41.303 0.127 0.012 0.922 0.048 
Model 7 42.995 0.165 – – – 
Model 8 41.619 0.129 – – 0.066 
Model 9 

≤12 
generations 
of ancestors 41.966 0.125 0.055 0.087 – 

Model 10 41.661 0.118 0.024 0.260 0.041 
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SUMMARY IN ESTONIAN 
 

Lineaarsete segamudelite  
usaldusväärsus geneetilistes uuringutes 

 
Lineaarsete segamudelite areng 20. sajandi vältel on käinud käsikäes geneetika-
alaste teadmiste kasvuga. Järjest täienev ja komplitseeruv arusaamine elusorga-
nismidel mõõdetud suuruste geneetilisest determineeritusest on nõudnud järjest 
täiuslikumaid mudeleid selle seotuse matemaatiliseks kirjeldamiseks. Sobivai-
mateks mudeliteks on osutunud lineaarsed segamudelid, sest ühelt poolt on 
nende abil võimalik hinnata konkreetsete andmetes fikseeritud mittegeneetiliste 
faktorite mõju ning teiselt poolt saab prognoosida otseselt mittevaadeldavaid 
geneetilisi efekte ja hinnata nende osa uuritava tunnuse varieeruvuses. Tänu 
otsesele majanduslikule huvile on järglastele pärandatavate geneetiliste efektide 
tuvastamine ja mõõtmine aastakümneid olnud loomakasvatusteaduse eesmärk, 
mistõttu on paljud lineaarsete segamudelite teoorias klassikaks saanud tulemu-
sed pärit just sellest valdkonnast. Näiteks ühed tuntumad 20. sajandi teise poole 
lineaarsete segamudelite teooria arendajad C. R. Henderson ja S. R. Searle on 
mõlemad aastakümneid töötanud just põllumajandusloomade aretuse vallas 
(Searle, 1998). Tänapäeval, millal järjest enam luuakse kõiksugu inimmeditsii-
nilisi andmeid, geneetikat, sugupuid jmt sisaldavaid ühtseid registreid, on li-
neaarsed segamudelid muutumas atraktiivseks analüüsimeetodiks ka geneetili-
ses epidemioloogias. 

Käesolevas töös on juhindutud eelkõige põllumajandusloomade aretuses ka-
sutatavatest mudelitest, aga samas on paljud käsitletavad probleemid üldised ja 
võimaldavad teha katsete planeerimise ja andmete analüüsi alaseid otsuseid 
mistahes lineaarsete segamudelite rakendusalal. 
 
Töö esimeses peatükis on defineeritud kasutatud maatriksite ja mudelite esitu-
sed ning toodud peamised tulemused lineaarsete segamudelite teooriast. Senise 
teooria üldistusena on tuletatud juhuslike efektide teist järku prognooside dis-
persioonimaatriksi avaldis. 

Teises peatükis on peamised geneetilistes uuringutes rakendatavad mudelid 
esitatud paralleelselt nii geneetika kui ka matemaatilise statistika terminoloogiat 
ja kirjapilti kasutades. Taolise tavakäsitlusest komplekssema esituse mõte on 
korraga hõlmata nii teoreetilise geneetika seaduspäradel baseeruvad mudelite 
püstitamise põhimõtted kui ka reaalsetel andmetel põhinevatest statistilistest 
mudelitest hinnatavate parameetrite geneetiline sisu (Kaart, 2001). 

Kolmandas peatükis on toodud töö peamised teoreetilised tulemused. Vaatluse 
alla on võetud lihtsaim võimalik lineaarne segamudel – ühe juhusliku faktoriga 
mudel – mis rakendusena geneetikas on tuntud ka poolõvede mudeli või isa mu-
deli (loomakasvatuses) nime all. Kirjanduse allikaile tuginedes on esitatud tule-
mused dispersioonikomponendi hinnangute varieeruvuse kohta, tuletatud on va-
lemid päritavuskoefitsiendi hinnangute ja juhuslike efektide prognooside variee-
ruvuse kohta ning illegaalsete hinnangute tõenäosuste kohta. Nii teoreetilistele 
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tõestustele kui ka modelleerimiseksperimentidele tuginedes on uuritud hinnangute 
täpsuse sõltuvust andmete disainist ja mittetasakaalulisusest. Peatükis esitatud 
tulemused on osaliselt publitseeritud artiklites Kaart (2004), Kaart (2005) ja dis-
kuteeritud konverentsi ettekannetes Kaart (1997), Kaart (1998). 

Neljandas peatükis on diskuteeritud geneetiliste andmete analüüsil igapäevas-
te, aga üldiste lineaarsete segamudelite tavateoorias mittekäsitletavate mudelite 
püstituste üle. Tõestatud on tulemused juhuslike faktorite andmetes reaalsete 
mõõtmistulemustega mitteesindatud tasemete mõjude hindamise ja prognoosimi-
se kohta. Väikese modelleerimiseksperimendi abil on uuritud erinevate ristamis-
skeemide ja põlvnemisstruktuuride mõju geneetiliste parameetrite hinnangute 
täpsusele. Arutletud on geneetilise mudeli valiku ning arvesse võetavate eellas-
põlvkondade arvu mõju üle. Viimast diskussiooni on illustreeritud Eesti musta-
pealiste lammaste võõrutusmassi geneetilise hindamise näitega (pilootuuring töös 
esitatud näitanalüüsile on publitseeritud artiklis Kaart, Piirsalu, 2000). 
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