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Abstract

Data analysis has become the main driver of successful decision making in our nowa-

days world. From startups to big businesses application of statistics over constantly

accumulating data has proven to be the key for growth in many industries. Currently,

alongside business organizations and high-tech firms, governmental institutions, medical

industry and many more rely on insights derived from big data. Usage of proper statisti-

cal models over data can increase a firm’s profitability, identify a medical test’s accuracy,

support banks recognize fraud transactions and many more.

One of the platforms where application of data analysis has grabbed a great deal of

attention is over the most popular sport on earth-Football. Application of statistical

models in order to predict football match results has been the center of attention for

many people, from top scientists to bookmakers already for quite some time. Certain

techniques have been proposed to find potential statistical models that could be helpful

in predicting match score outcomes. And with growing betting industry many have tried

to beat bookies with the help of statistical models developed for making prediction for

match results.

In this paper, indirect approaches, namely Poisson and Dixon-Coles models will be

applied to predict match score results. The reason why those models are referred as

indirect is due to the fact that regression outputs through those models are goals, rather

than direct match outcomes. We will try to beat punctuality of decisions derived from

one’s ”gut feeling”, an ambiguous term we will formalize in this paper, through using

indirect approaches for match outcome modelling. And at the end, it is found that

betting strategy formulated with the use of predictions through such models can yield a

positive return through betting in the Premier League over the season 2018-2019.

CERCS research specialisation: P160 Statistics, operations research, program-

ming, actuarial mathematics.

Keywords : Data Analysis, Football
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Poissoni ja Dixon-Cole mudelite kasutamine jalgpallitulemuste ennustamisel

ja spordikihlvedude tulemuslike investeerimistrateegiate uurimine

Magistritöö

Farhad Tahirov

Lühikokkuvõte. Tänapäeva maailmas on andmeanalüüsist saanud edukate otsuste

tegemise peamine mootor. Mitmes valdkonnas on just kasvavate andmehulkade statisti-

line analüüs edu võti, seda nii idufirmades kui ka suurettevõtetes.

Tänapäeval toetuvad suurandmetest saadud teadmistele lisaks äriorganisatsioonidele

ja kõrgtehnoloogiaettevõtetele ka valitsusasutused, meditsiinitööstus ja paljud teised vald-

konnad. Korralike statistiliste mudelite kasutamine võib näiteks suurendada ettevõtte

kasumlikkust, tuvastada meditsiinilise testi täpsust ja aidata pankadel tuvastada pettusi,

näiteid on teisigi.

Andmeanalüüsi rakendamine on pälvinud suurt tähelepanu ka kõige populaarsema

spordiala – jalgpalli - maailmas. Statistiliste mudelite rakendamine jalgpallimatši tule-

muste ennustamisel on juba pikka aega paljude inimeste, tippteadlastest kihlvedude va-

hendajateni, fookuses. Jalgpallimatši tulemuste ennustamiseks on välja pakutud palju

erinevaid mudeleid ja tehnikaid ning spordikihlvedude turu kasvu tõttu proovib nende

mudelite abil tulu saada üha rohkem ja rohkem inimesi Käesolevas magistritöös kasu-

tatakse kihlvedude võitmiseks kaudseid lähenemisviise, nimelt Poissoni ja Dixon-Colesi

mudeleid. Neid mudeleid nimetatakse kaudseteks seetõttu, et nende abil modelleritakse

täpset jalgpallimatši tulemust, mitte aga ainult võitjat või kaotajat. Nimetatud kaudsete

mudelite abil üritame saavutada suuremat ennustustäpsust kui see on nö kõhutunde“

meetodidel, millised formuleerime töö käigus. Magistritöö lõpus näitame Inglise kõrgliiga

2018-2019 hooaja tulemuste kaudu, et nimetatud kaudsed mudelid võivad kihla vedades

anda reaalset tulu.

CERCS uurimisvaldkonnad: Statistika, operatsioonianalüüs, programmeerimine,

kindlustusmatemaatika

Märksõnad: andmeanalüüs, jalgpall

:
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Chapter 1

Introduction

1.1 Statistics for Football

Being the most popular sport on earth, football has gathered quite some attention espe-

cially in the 21st century. Recently, various types of data such as player statistics, number

of shots and etc. have been gathered by bookmakers, statisticians. Consequently, avail-

ability of such enormous information have allowed data scientists to predict outcomes as

such:

• Match Strategy

• Player Performance

• Corner Predictions

• Above/Below 2.5 goals predictions

• Match outcome prediction

• Exact score prediction

• Betting odds calculation

Currently, betting market is worth billions of dollars and seems to be growing over

time. Additional availability of access for betting on live matches have further paved the

way for the market to attract interest.

1.2 Motivation

An important element of application of statistics on football matches is to attempt deci-

phering information regarding the match outcomes based on historical data. This process

is referred to as predicting future match outcomes relying on historical data and statistical
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models applied on the data.

It is indeed understandable that there is a big random element in football matches,

and statistical models cannot perfectly control those random elements which occur in

real life. That being said, it could be quite challenging to predict match outcomes in the

presence of so-called surprise events. Such events can be described as a key player being

injured, a player receiving a red card, weak team gaining luck all of a sudden and etc.

As famous saying goes: ”The ball is round and the game lasts 90 minutes”. In other

words, no matter how large data we have, random element is always there and it is quite

of an obstacle to account for that randomness in statistical models. However, possessing

randomness does not make football matches be impossible to predict, at the very least,

certain accuracy level can be expected to be reached and a potential investment strategy

through betting can be researched.

At the first glance, it might be a bit tricky to understand the variable being predicted

by the statistical model. Using indirect approaches such as Poisson models, the variable

being predicted is the expected number of goals each team will score against the rest of the

teams. Inserting these expected number of goals into Poisson Probability Mass Function

of goals(for both home and away team), one can extract probabilities of number of goals

each team can score. Through using historical matches, we find an optimal method that

assigns probabilities for each potential match score in the season 2018-2019 in the Premier

League. And then, using these probabilities one can extract probabilities for win, draw

and loss result.

1.3 Objectives

This project aims to extend the state of the art by applying indirect methods to model

match outcomes using historical data where matches are recorded in seasons 2010-2017

in English Premier League and then make predictions on 2018-2019 season.

The main objective of this paper is to research application of Poisson and Dixon-Coles

models to predict the outcome of a football game and observe whether such models beat

the benchmark model. In doing so, we initially will create simple models, for example

CHAPTER 1. INTRODUCTION 2



Title

a model that will always assign win result for home team, or a model that will simply

make decisions based on team bookmaker’s odds, etc. and such models will be referred

as simple models serving as the benchmark. One of the most famous indirect approaches

for match outcome prediction is Poisson model. In Poisson model(s) we have developed

attacking strength and defensive strength metrics, which are crucial in finding the proba-

bility for potential match outcomes. Although very useful, Poisson model inherits certain

drawbacks in modelling direct outcome of the game. For example, implicit extraction of

match outcomes from probability distribution of number of goals each team can score in

a game proves to be underestimating the occurrence of Draw results. Thus, by relying

on modifications developed by Mark J.Dixon and Stuart G.Coles, we will adjust Basic

Poisson model, and build a modified version of Poisson model, so-called Dixon-Coles

model.

It should certainly be noted that when building above-mentioned models, we will be

referring to a dataset that includes information only regarding home team, away team

and historical match results. As a next step, we will research the possibility of reaching

a positive return over investing in betting market with a strategy purely followed by the

model results.

1.4 Challanges

• Optimal Betting Strategy: The results the models will produce might attract one to

try and see if those models can be proven to yield in a positive return once a proper

investment strategy is chosen, relying on those models. Although there might be an

optimal investment strategy once predicted probabilities for match results are extracted,

at this point we will not focus on optimizing our investment strategy on the basis of

probabilities to reach the best return possible, instead we will follow a simple betting

strategy that is to play for the outcome(win/draw/loss) that has the highest probability

of occurrence according to the model’s predictions and observe whether a positive return

could be realized.

CHAPTER 1. INTRODUCTION 3



Chapter 2

Background

2.1 What is Football?

This part of the report will provide information regarding general principles in Football.

• Basic Rules:

– Football is one of the games where two teams play against each other. The number

of players each team has is 11, and normal duration of the game is 90 minutes.

– If team A makes it on target against team B, then team A scores a goal, and earns

1 point for each goal scored.

– The team which has the highest number of points is winner. And if the points are

same, then the result is assigned Draw.

• Domestic Leagues:

– On average there are 20 teams in a league, playing against each other twice in a

year. Once in their own stadium, once in opponent team’s stadium.

– On League level, winning a match grants a team 3 points, while losing none. And

Draw results in 1 point for each team.

– The team that gains the highest number of points is declared champion In case

there is more than one team reaching to the maximum point, the team with Net goals

(goals scored-goals conceded) advantage is superior.

2.2 Literature Review

In this part of the project we will go over existing literature regarding model developments

for prediction of match results. Applying statistical techniques on football data in order
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to estimate match results has been a hot topic since previous century. Initial models

proposed by Moroney (1956) [1] and Reep (1971) [2], who used Poisson and Negative

Binomial distribution for modelling number of goals scored in a given match paved the

way for further research around the topic. Later, coming up with teams’ attacking and

defensive strengths metrics, Maher [3] in 1982 used Poisson distribution to predict the

expected number of goals for both home and away team to score in a match. Maher’s

work created the ground for Dixon and Coles [4] (1997) to further improve the Poisson

model by introducing certain adjustments such as introducing correlation between home

goals and away goals and assigning more weights to the draw results for low scoring

games.

The Dixon-Coles model is yet to be considered as superior to the Basic Poisson model

and in this project both Basic Poisson and Dixon-Coles models will be applied. Rue

and Salveson [5] (2000) adjusted teams’ attacking and defensive strengths by introducing

time dependency, arguing that teams’ performances do not stay stable over time, rather

changes throughout a given season. Later, their work had been adjusted by Crowder et

al. [6] (2002) so that the algorithm for extracting model coefficients work more efficiently.

In early 2000s direct approaches, rather than goals models, for prediction of soccer

results attracted attention by researchers. In other words, modelling match outcomes

in a direct way (win-draw-loss), instead of using goals model to estimate match scores

and then obtaining respective probabilities, was preferred. For instance, Forrest and

Simmons (2000) [7] used a classifier model to directly predict the match result rather

than predicting the goals scored by each time. Such an approach indeed allows one to get

rid of inter-dependency between the number of goals each team scores, it rather treats

goals scored in home game and away game as two different variables.

Goddard [8] (2005) used an probit link regression model to predict match results by

including more variables than do Basic Poisson model. In doing so, he added explanatory

variables such as geographical distance between home and away teams, match significance

and etc. His work was one of the pioneers to have more variables added into past data

than only match results, and concluded that there was a possibility to make a positive

CHAPTER 2. BACKGROUND 5
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return when comparing his model outcomes with market odds.

Another algorithm utilized by Hamadani [9] (2006) for prediction of American football

results, a different type of sport, came into play. He used Logistic Regression and SVM

kernel method for results prediction.

Coming to 2010s, Adam (2016) [10] benefited from gradient descent boosting algo-

rithm, one of the widely used optimization methods, when building a Generalized Linear

Model that was applied on data that included more features than simple match results

for making match outcome predictions. His work concluded importance of addition of

more features, which raised model performance in his work. Certainly, what is meant by

addition of more features is those features which help increase model performance.

By adding player statistics alongside historical match results for teams competing in

a tournament, Tavakol (2016) [11] took Adam’s approach to a different level. However,

knowing that including player statistics for each team will add 22 (11 player for each

team) features into Linear Model and consequently potential so-called overfitting prob-

lem could become inevitable, he decided to apply feature selection techniques to reduce

dimensionality space.

When it comes to reduce feature space in a given data, there are couple of techniques

previously used by statisticians. For example, Kampakis [12] made predictions for cricket

matches referring to hierarchical feature design. Additionally, Tax et al. [13] (2015) made

predictions on a Dutch football league by incorporating dimensionality reduction tech-

niques with Machine Learning algorithms. Their work came to the conclusion that best

results could be obtained with Principal Component Analysis (PCA) reduction algorithm

incorporated with Gaussian Näıve Bayes or Perceptron classifier.

All being said, we will focus on indirect approaches- Poisson and Dixon-Coles models,

from past research. And data we will refer to build our model will be historical match

results in English Premier League from season 2010-2011 to season 2017-2018, and then

we will observe the model performance over the data that includes matches from 2018-

2019 season.

CHAPTER 2. BACKGROUND 6



Chapter 3

Methodology

3.1 Generalized Linear Models

In this chapter we will be introducing appropriate methodology that we will be referring

to when building our models for match outcome prediction. Specifically speaking, we will

describe Poisson and Dixon-Coles models in this section.

3.1.1 Linear Models

A linear model describes how the response/dependent variable depends on the explanato-

ry/independent variables. In other words, a linear model captures the linear dependency

between p explanatory variables x1i,....,xpi for i=1,....,N and dependent variable Yi again

for i=1,....,N. Furthermore, underlying assumption of the linear model is that the response

variable Yi is normally distributed. Mathematically, a linear model could be formulated

as follows:

Yi = β0 + β1x1i + ...+ βpxpi + εi = xT
i β + εi, for i=1,....,N

The term εi represents the difference between model predicted Ŷi and actual Yi

for i = 1, ...., N . That being said, ε will be referred as error term and is normally dis-

tributed with mean µ being equal to zero and variance σ2: εi ∼ N (0, σ2). We could

express the linear equation in matrix notation as follows:

Y = Xβ + ε,

where
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y =


Y1

Y2

.

YN

 ,X =


XT

1

XT
2

.

XT
N

 , β =


β1

β2

.

βm

 , ε =


ε1

ε2

.

εN


Modelling the parameter of interest-Y through the given independent variable-X with

the assumption that Y and X are linearly related is also known as Linear Regression.

Using historical data one could observe the dependency between Y and X and then put

that into equation, thanks to which, predictions-Ŷi could be made given values of X.

And it is the term β that is representing the degree of dependency between Y and X.

At this stage, one should come up with β value that would minimize the error rate ε.

That being said, there are two famously known methods that find the optimal β value

for given Y and X values, which are Maximum Likelihood Estimator and Least Squares

estimator. For a linear model, both of these estimators are same and can be represented

as follows:

β̂MLE = β̂LS = (XTX)−1XTY

Derivation of maximum likelihood and least squares estimators are outside of the

scope of this project, yet one could find the derivation procedure in Dobson [14].

3.1.2 Generalized Linear Models

Although very useful and widely applied, linear model is not capable of modelling pa-

rameter of interest in every circumstances. That is due to the inherent assumption linear

model makes regarding distribution of the dependent variable - Y. In linear modelling,

fundamental assumption is response variable - Y is normally distributed with constant

mean µ and variance σ2. However, this does not necessarily hold in every situation.

For instance, there cases where parameter of interest is a binary or a count variable and

there are even cases where variance of response variable depends on the mean, and thus

assumption that response variable is normally distributed might not be the best one.

CHAPTER 3. METHODOLOGY 8
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Having all said, it is generalized linear model, which, as its name suggests, extends the

concept of a linear model to a more general form. And when applying generalized lin-

ear models the parameter of interest is allowed to be of any member from exponential

family, and thus, assumption regarding normal distribution of response variable does not

have to hold anymore. When talking about generalized linear model, it is important to

concentrate on three main parts: Random Component, Systematic Component and Link

function.

• Random Component identifies the response variable. Response variable is a random

variable Y whose distribution depends on only parameter θ. Assuming that the proba-

bility mass function of the distribution can be expressed as follows, then the distribution

belongs to exponential family:

f (y ; θ;φ) = exp(
yθ − b(θ)

φ
+ c(y , φ)) (3.1)

In the exponential family, θ is the canonical parameter that depends on the model of

linear predictors, which we will be talking about very soon. The term b() is real-valued

twice differentiable function of θ. φ is called the dispersion parameter and is known.

Lastly, the function c() is known and is independent of canonical parameter θ. And

now referring to [15] we will introduce the following Lemma, thanks to which we will

be familiarized with the mean and variance of a distribution belonging to exponential

family:

Lemma 1 If the distribution of random variable Y belongs to exponential
family (3.1), Y ∼ ε it can be shown that:
•Expected value of Y is equal to the first derivative of b, where b is twice

differentiable function, with respect to θ :E[Y]=b′(θ).
•Variance of Y is the product of the second derivative and the scale

parameter φ:Var[Y]=φb′′(θ)

• Systematic Component identifies the set of explanatory variables in the model. And

Linear Predictor is a function of explanatory variables in linear combination with beta

CHAPTER 3. METHODOLOGY 9
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values, also represented with the letter eta. In other words, the linear predictor η depicts

the linear combination of X values with β values.

η = X T
j β (3.2)

• Link Function g is linking the expected value of response variable - Y to the linear

predictor η. The link function must be monotone and differentiable:

g(E [Y ]) = η

Definition: A Link function is called canonical if relates the canonical parameter

θ directly to the linear predictor η.

θ = g(b(θ)′) = η = X T
j β

All being said, Generalized Linear Models can be used in modelling count/binary

variables as well, if and only if a distribution is a member of exponential family of dis-

tributions. Using Generalized Linear Models we refer to Maximum Likelihood method

for estimating model parameters - β1, ...βp. In the following section we will introduce

models that we will be referring to during our analysis.

3.2 Bernoulli Trials and Binomial Distribution

In this section, we will talk about Bernoulli trials, Binomial Distribution and how they

pave the way for understanding of one of the most famous distributions, namely Poisson

Distribution. Let us consider an experiment where we will toss a coin and the result

is either ”Heads” or ”Tails”, denoted by ”H” and ”T” respectively. Assuming that

probability of ”Heads” to show up is p and p ∈ (0 , 1 ), one can come up with probability

of ”Tails” to occur as q where q = 1 − p, since these two events are assumed to be

mutually exclusive. This is called a Bernoulli Trial with probability of ”Heads” to occur

being equal to p and ”Tails” being equal to q . Now we define a Bernoulli random

variable S , where S = {H, T } and X : H → {0 , 1} be a function on the sample

space S : X (H ) = 1 and X (T ) = 0 . Then:

CHAPTER 3. METHODOLOGY 10
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PX (0 ) = P(X = 0 ) = q = 1 − p

PX (1 ) = P(X = 1 ) = p

Thus the random variable X is referred as Bernoulli Random Variable with probability

of occurrence of ”H” being equal to p, and probability mass function of PX. Now

that we have defined Bernoulli random variable, let’s now assume that one performs

n independent Bernoulli Trials with number of successes being represented by Y , and

success occurs each time the coin turns up as ”Heads”. Knowing that probability of heads

turning up is p, then for 0 ≤ x ≤ n, where x ∈ Z, we have:

Py(x ) = P(Y = x ) =

(
n

x

)
px (1 − p)n−x =

(
n

x

)
pxqn−x (3.3)

One can attempt to understand the formula above in an intuitive sense. Since p

represents the probability of a coin turning up ”Heads”, and assuming that all trials are

made independently, px shows the probability of ”Heads” landing x times and since the

”Heads” turning up x times out of n trials imply that ”Tails” should turn up n − x

times, its probability of occurrence translates into (1 − p)n−x or (q)n−x . The last

thing to understand in our formula is
(
n
x

)
, which shows number of possible sequences

where ”Heads” will occur exactly x times out of n trials. And finally, the random

variable Y is called Binomial Random Variable with probability mass function being

equal to Py(x ), with parameters n and p. At this stage, one could go further and derive

expectation of random variable Y being equal to np and variance being equal to npq ,

yet the derivation procedure is outside of the scope of this project work.

3.3 Poisson Distribution

Now that we have introduced Binomial Random Variable, it would be important to note

that for computing probabilities for a binomial random variable Y , it is comfortable to

work with relatively small number of trials, or for a small n . For example, imagine that

CHAPTER 3. METHODOLOGY 11
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one wants to know the number of cars pass from a given street in a day, and then one

specifies the time interval to be an hour instead of a day. And then one could obviously

try to find the probability of certain number of cars passing from a street in a second,

and this translates into increase in the number of trials being made. Assuming that

X ∼ B(n, λ/n) where λ > 0, and relying on our definition of p and q in section

3.2 then:

Pn(x ) :=
n!

x !(n − x )!
(pn)x (qn)(n−x )

=
n!

k !(n − x )!
(
λ

n
)x (1 − λ

n
)n−x

=
n(n − 1 )(n − 2 )....(n − x + 2 )(n − x + 1 )

x !
(
λ

n
)x (1 − λ

n
)n−x

=
n(n − 1 )(n − 2 )....(n − x + 2 )(n − x + 1 )

nx
(
λx

x !
)
(1 − λ

n )n

(1 − λ
n )x

Now as we said in the beginning, taking the number of trials go infinity, or in other

words, taking the limit as n →∞, we have:

limn→∞Pn(x )→ 1
λx

x !

e−λ

1
= e−λ

λx

x !

def
=: f (x ;λ) (3.4)

With that being said, if n is large enough and correspondingly, λ/n is small enough,

then (3.4) can be used to approximate (3.3). Moreover, a random variable whose proba-

bility mass function can be expressed as in (3.4) is called Poisson random variable with

parameter λ. Now that we have talked about the logic and derivation of Poisson Ran-

dom Variable, we will be talking about Poisson distribution in the context of Generalized

Linear Models.

Named after the famous french mathematician Siméon Denis Poisson, Poisson

Distribution is a non-negative discrete probability distribution. Poisson distribution was

first published in 1837 in his work - ’Recherches sur la probabilité des jugements

en matières criminelles et matière civile’ [16].

The Poisson Distribution measures the probability of a certain number of events

occurring in a given fixed amount of time, with a condition of such events occurring
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independently of one another with a known constant average rate that we refer as λ.

The parameter λ is the rate parameter of the distribution and is equal to the average

number of events happening in a fixed interval of time.

Figure 3.1: Poisson Distribution

Coming to the formal definition of Poisson Distribution, the random variable Y

is said to follow the Poisson Distribution with a known rate parameter λ > 0 , if for

y = 0 , 1 , 2 ..., the probability mass function of Y can be expressed in the following

way:

f (y ;λ) = P(Y = y) =
λye−λ

y !
(3.5)

And referring to (3.1) one could show that Poisson Distribution belongs to exponential

family of distributions in the context of Generalized Linear Models.

f (y ; θ;φ) =
e−λλy

y !
= exp(log(e−λ) + log(λ)y − log(y !))

⇒f(y; θ;φ) = exp(ylog(λ)− λ− log(y!)) (3.6)

⇒φ = 1; θ = log(λ)⇔ λ = eθ b(θ) = λ = eθ c(y;φ) = −log(y!)
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Referring to Lemma 1, one could express the expectation and variance of Poisson

distribution as follows:

E [Y ] = b(θ)′ = eθ = λ Var [Y ] = b(θ)′′φ = eθ = λ

With that being said, it is now easily seen that expectation of Poisson Distribution

is equal to its variance, which is one of the characteristics for Poisson Distribution. And

since θ = log(λ), or in other words, log-link of the expectation of Poisson random

variable is canonical, we say that one of the link functions that maps expectation to

linear predictor is log-link, and thus, we will choose log-link to continue:

θ = log(b(θ)′) = η = log(λ) = X T
j β (3.7)

3.4 Poisson Regression

Poisson regression model is a generalized linear model used to model count data. As said

earlier, the parameter of interest to be modeled could be continuous, binary or count and

for the purpose of this project work, we are interested in modelling count data, which are

number of goals in our analysis. The Poisson regression model is derived from Poisson

distribution with rate parameter λ depending on the explanatory variables, which are

teams in our analysis.

Data that is used in Poisson regression model consists of sample of N observations with

independent response variable - Yi and explanatory variables - xi for i = 0 , 1 , ...,N .

The response variable Yi is the number of occurrences of a given event, whereas xi

is the vector of linearly independent explanatory variables that are supposed to be

determining the response variable. And we will build a regression model by condi-

tioning Yi on a p-dimensional vector xT
i = [x1i , x2i ....xpi ] and coefficient parame-

ters β = [β1 , β2 , ...βp ] such that E [yi |xi ] = λi(xi , β). In the section 3.4, more

specifically in (3.7) we already proposed that we will be choosing logarithmic link func-

tion that is mapping the expectation of Poisson random variable into linear predictor- ηi .

Then, more formally, one could define the Poisson regression equation in the following
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way:

f (yi |xi) =
λyii e−λi

yi !
i = 1 , 2 , ...,N (3.8)

with

λi = ex
T
i β

Now that we are left with derivation of β estimates, we will spare the next section

of our project work on the derivation procedure of our β parameters. At this stage,

one should note that since we know probability mass function of Poisson Distribution

it would be reasonable to rely on Maximum Likelihood Method for finding β estimates.

Additionally, one has to use iterative re-weighted least squares algorithm to solve the

system of equations, also called as score equations that we will be talking about in the

next section.

3.5 Parameter Estimation Procedure

Referring to statistical literature, especially to [14] we will be building our procedure of

estimating β parameters for Poisson regression.

Now let’s consider independent random variables Y1 ,Y2 , ...,YN , which are Poisson

distributed with rate parameter λi for i = 1 , 2 , ...,N . And referring to (3.8), we

already got ourselves familiarized with the notion that Poisson distribution satisfies the

properties of generalized linear models. Then, to estimate parameter vector β one needs

to apply maximum likelihood method and arrive at parameter coefficients that maximize

the likelihood of generating the observations given the parameters. And in our example,

β values and response variables Y ′i s are related through λi values, and we already know

that E [Yi ] = λi . More specifically, it is logarithmic link function that maps λi values

to linear predictor or since λi = ex
T
i β , we can write g(E [Yi ]) = log(λi) = xT

i β,

where xi is an p-dimensional vector of explanatory variables xT
i = [x1i , x2i ....xpi ].

Our Likelihood function for each Yi can be given as follows:

L(θi ; yi) = f (yi ; θi ;φ) = exp(
yiθi − b(θi)

φ
+ c(yi , φ)) (3.9)
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And correspondingly, our log-likelihood function is logarithmic transformation of (3.9):

li(θi) = lnL(θi ; yi) =
yiθi − b(θi)

φ
+ c(yi , φ) (3.10)

where b(), c(), a() are functions that we will be replacing with exponential family form

of Poisson distribution. Referring back to (3.6), one could plug in the values in the

equation into those in (3.10) and get the following:

li(λi ; yi) = yi log(λi)− λi − log(yi !) (3.11)

And since (3.11) represents the log-likelihood of only one response variable and vari-

ables Yi are independent, the log-likelihood of the whole sample over y1 , ....yN could

be represented as follows:

l(λ; y) =

N∑
i=1

li(λi ; yi) =

N∑
i=1

yi log(λi)−
N∑
i=1

λi −
N∑
i=1

log(yi !)

At this stage, one needs to come up with some way that the equation above includes

β terms. In order to arrive at maximum likelihood estimate for β parameters, we need

score function.

Sj =
∂l

∂βj
=

N∑
i=1

∂li
∂βj

and using chain rule:

=

N∑
i=1

∂li
∂λi

∂λi
∂βj

(3.12)

Using 3.11 and (3.2) and applying chain rule we have:

∂li
∂λi

=
yi
λi
− 1

and
∂λi
∂βj

=
∂λi
∂ηi

∂ηi
∂βj

=
∂λi
∂ηi

xij
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and since
∂λi

∂ηi
= λi referring to (3.8), we could write previous equation as follows:

∂λi
∂βj

=
∂λi
∂ηi

∂ηi
∂βj

=
∂λi
∂ηi

xij = λixij = ex
T
i βxij

Coming back to our initial point of estimating β values, one should note that there

is no direct estimation method, which is why we will refer to (3.13) that starts from

mth iteration for finding vector of β values:(β1 , β2 , ..., βp). Now at this stage, we will

skip the derivation procedure of how one can reach at (3.13) given our explanation above

regarding parameter estimation. (3.13) is obtained with the help of Newton-Raphson

formula alongside with method of scoring, where initial guess for the parameter of interest

is made and then successive approximations are obtained. One can refer to [14] for more

detailed explanation and be familiarized with the procedure Newton-Raphson formula is

implemented :

b(m) = b(m−1 ) + [J (m−1 )]−1S (m−1 ) (3.13)

And one should certainly note that the term bm represents the mth iteration estimate

for β vector. In (3.13), [J (m−1)]−1 is the inverse of information matrix Jjk and

S (m−1 ) is the vector of elements, all being evaluated at b(m−1). Multiplying both sides

of (3.13) by J (m−1), one obtains:

J (m−1)b(m) = J (m−1 )b(m−1 ) + S (m−1 ) (3.14)

And now, we could expand the terms in equation (3.14) referring to [16]. In short,

right hand-side of (3.14) could be written as:

p∑
k=1

N∑
i=1

xij xik
λi

(
∂λi
∂ηi

)2 b
(m−1 )
k +

N∑
i=1

(
yi − λm−1i

λm−1i

)(
∂λm−1i

∂ηi
)xij

again since
∂λi

∂ηi
= λi :

p∑
k=1

N∑
i=1

xij xikλib
(m−1 )
k +

N∑
i=1

(
yi − λm−1i

λm−1i

)(
∂λm−1i

∂ηi
)xij
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being evaluated at b(m−1). Therefore, we could also write:

XTWz, (3.15)

where

zi =

p∑
k=1

xikb
(m−1 )
k + (yi − λi)(

∂ηi
∂λi

)

again since
∂λi

∂ηi
= λi :

zi =

p∑
k=1

xikb
(m−1 )
k +

(yi − λi)
λi

with λi being evaluated at b(m−1). And finally, the iterative method (3.14) could

be rewritten as follows:

XTW(m−1)Xb(m) = XTW(m−1)z(m−1). (3.16)

where (3.16) is in its linear representation form, where W and z depend on b. And

this way, we have approximated parameter estimates-β vector using iterative re-weighted

least squares algorithm. However, it should be noted that in the software we will be

referring to(R and Python 3.0), there will not be a need for following the procedure

for parameter estimation since there are already built-in functions doing the parameter

estimation task for us.

3.6 Dixon-Coles Model

The other model we will be applying during our analysis is famously known as Dixon-

Coles model. Initially developed by Mark J.Dixon and Stuart G.Coles, Dixon-Coles model

is considered as alternative for Basic Poisson model. Yet, before starting to describe the

model itself, we will justify the need for Dixon-Coles model in our project work.

3.6.1 Poisson Model Output

In the Basic Poisson model, once we have the coefficient parameters- β vector, and regres-

sion outputs extracted, the next step would be to use those regression outputs to predict
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probabilities for different possible match scores. Assume we want to predict possible

match outcome probabilities for any two teams playing against each other. Although

we will give more information regarding model outputs in Chapter 6, it would be

reasonable to give brief information regarding how the model works to justify the need

for our usage of Dixon-Coles model.

When building Poisson model, we will have data consisting of Team, Opponent

and Home advantage as our explanatory variables, where Team column specifies

the teams playing, while Opponent column demonstrates the teams playing against

those teams in Team column. And finally, Home advantage is the dummy vari-

able: 1 if the team is playing at its own stadium, and 0 otherwise. For example, assume

we have data of only 1 match between two teams playing: Arsenal and Bournemouth. In

order to run Poisson regression for goals over Home Team, Opponent and Home advantage

variable, we will structure data in the following way for each match:

Table 3.1: Structure of data

What’s important to realize regarding the table above, there is only one match, played

between Arsenal and Bournemouth, which ended 3-0 with Arsenal declaring victory. Yet,

as can be seen from the table, we double the number of rows for each match and the

corresponding columns represent teams rather than matches. In this case, we will first

treat Arsenal as team, and Bournemouth as opponent to the team. And since Arsenal is

home team in this example, home dummy variable indicates 1 for Arsenal and response

variable in this case- Y1 and its value is 3. The same way, we will treat Bournemouth

as team and Arsenal as opponent to Bournemouth. However, since Bournemouth plays

away, the column Home(indicating whether the team plays home or away) is 0 and value

of response variable Y2 is 0 in this case. As we talked in section 3.4 Y represents

the column ’goals’. Moreover, Y consists of both home team goals(goals Arsenal scored)
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and away team goals(goals Bournemouth scored).

Once we regress Y over Home Team, Opponent and Home advantage variables, from

the model output we will get two coefficients for each team in our sample and then by

exponentiating those coefficients, we will obtain values representing the attacking and

defensive strength of each team. Additionally, one other value we obtain will be repre-

senting Home advantage, in other words it will capture the home effect, meaning

that it will demonstrate the expected number of times teams playing at their own sta-

dium will score more goals than teams playing away.In Chapter 6 we will talk more

about attacking and defensive strength of each team and how coefficients obtained from

Poisson model relate to team strength measures.

Referring back to (3.5), λ in our model represents a certain team’s average or expected

number of goals to be scored in a given match. And since in a match there should be

exactly two teams playing, we will have two different λ values, λhome representing home

team’s expected number of goals against away team and λaway , representing away team’s

expected number of goals against home team. However, for the sake of simplicity, we will

call λaway as µ and λhome as λ from now on. Once we know expected number of goals

for a given team to score against another team, in prediction stage over Poisson model

we will plug those λ and µ values into (3.17) to extract the probabilities for potential

match outcomes. The basic assumption regarding (3.17) is that the number of goals to be

scored by home and away teams in any given match follow Poisson distribution and are

independent. More formally, in a match between teams i and j , let Ui ,j and Vi ,j be the

number of goals be scored by home and away team respectively. Then, the assumption

that :

Ui ,j ∼ Poisson(αiβjγ)

Vi ,j ∼ Poisson(αjβi)

fori, j = 1, 2, ....m, i 6= j and m is the number of unique teams participating in

Premier League in season 2018-2019(we have explained the difference between values n

and m in section 4.1). Again, we need the assumption of independence between the
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number of goals scored by home and away teams in prediction stage, after modelling our

response variable-goals.

where Ui ,j and Vi ,j are independent, and forms the main rationale to arrive at (3.17):

P(Ui ,j = u; Vi ,j = v) =
λue−λ

u!

µve−µ

v !
, (3.17)

where λ = αiβjγ and µ = αjβi , representing home and away teams’ expected

number of goals to be scored against each other, where αi , βj , γ > 0 . The subscripts

i and j stand for home and away teams, and α and β values representing attack and

defensive strength respectively, while γ parameter denotes home advantage coefficient.

Last yet not the least,u and v values represent the number of goals each team can score

and by plugging in different values for u and v , in fact, one obtains the probability of

potential match score between two teams. In general, it depends on the practitioner

to specify intervals for u and v values and we will rationalize our method of interval

selection for different possible match scores in the coming sections.

By introducing (3.17) we have arrived at a very important point. Previously in (3.5)

we defined probability mass function for Poisson distribution where we assumed only one

random variable Y , which is goals in our data to be modeled by Poisson regression. In the

case of (3.17), however, we have two random variables - U and V , and correspondingly,

two independent Poisson distributions. That is, after modelling the variable Y , goals in

our case, we will predict the probabilities of possible match scores by inserting expected

goals we obtain from model output for teams that play against each other into (3.17).

We will continue talking more about the model outputs in Chapter 6, now we could

start explaining Dixon-Coles model in a more detailed sense.

3.6.2 Dixon-Coles Model

Now that we have briefly talked about the procedure of deriving probabilities from Poisson

regression outputs, we could start researching potential flaws Poisson model might inherit

when relying on (3.17) to extract probabilities of possible match outcomes. In fact, it is

equation (3.17) where Dixon-Coles model comes into play, suggesting that independence
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assumption between the number of goals scored by home and away teams might not be

the best one and at certain times there could be a superior model with more realistic ap-

proach. With that being said, in their original paper, Mark J.Dixon and Stuart G.Coles

argue that for the matches ending with the scores 0 − 0 ; 0 − 1 ; 1 − 0 ; 1 − 1 , the

assumption regarding the independence of number of goals scored by home and away

teams is flawed. One could check [4] to follow the procedure on proof of existing correla-

tion between number of goals scored by home and away teams when match ends with low

scores. Eventually, in order to provide a potential alternative for (3.17), they proposed

the following approach:

P(Ui ,j = u; Vi ,j = v) = τλ,µ(u, v)
λue−λ

u!

µve−µ

v !
, (3.18)

where

λ = αiβjγ

µ = αjβi

and

τλ,µ(u, v) =



1-λµρ if u=v=0,

1+λρ if u=0, v=1,

1+µρ if u=1, v=0,

1-ρ if u=1, v=1,

1 otherwise.

In the function above, ρ parameter is also referred as correction, controlling the

dependence between goals scored by home and away teams when the match ends with the

results 0 − 0 ; 0 − 1 ; 1 − 0 ; 1 − 1 . One could easily check that once the ρ parameter

is equal to 0, then Dixon-Coles model and Poisson model are equal. In our case, Dixon-

Coles model specified the interval for ρ parameter to be as following:

max(−1/λ,−1µ) ≤ ρ ≤ min(1/λµ, 1)
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Now before we move any further, we will show that (3.18) is a valid probability

distribution, in other words, we will have to prove that:

∞∑
u=0

λue−λ

u!

∞∑
v=0

µve−µ

v !
τλ,µ(u, v) = 1

And we will first prove that

∞∑
u=0

λue−λ

u!

∞∑
v=0

µve−µ

v !
(3.19)

is a valid probability distribution. Expanding (3.19), we have:

e−λe−µ(1 +
λ

1 !
+
λ2

2 !
+ ....(1 +

µ

1 !
+
µ2

2 !
+ ....)) = e−λe−µeλeµ = 1

Since we proved (3.19) is a valid probability distribution, we could expand it by moving

the summation signs, and we already know that (3.19) adds up to 1:

∞∑
u=0

∞∑
v=0

λue−λ

u!

µve−µ

v !
= e−λe−µ(1 + µ+ λ+ λµ+

+
λ2

2!
+
µ2

2!
+
λµ2

2!
+
µλ2

2!
+ ..) = 1

And now, we can prove that (3.18) is a valid probability distribution as well:

∞∑
u=0

λue−λ

u!

∞∑
v=0

µve−µ

v !
τλ,µ(u, v) =

= e−λe−µ(1 − λµρ+ µ+ λµρ+ λ+ λµρ+ λµ− λµρ+

+
λ2

2!
+
µ2

2!
+
λµ2

2!
+
µλ2

2!
+ ....)

And simplifying the equation, we obtain:

= e−λe−µ(1 + µ+ λ+ λµ+
λ2

2 !
+
µ2

2 !
+
λµ2

2 !
+
µλ2

2 !
+ ....) = 1

which is the same as the (3.19) and thus must add up to 1.

Regarding parameter estimation, under Dixon-Coles model, there are 2n + 2 number

of parameters to be estimated, namely, n number of α values: [α1 , ...αn ], representing

attacking strength, and n number of β values: [β1 , ...βn ], denoting defensive strengths
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and additionally, ρ parameter introducing dependency and γ parameter denoting home

advantage. Moreover, in our case, there is one constraint being added into the computa-

tion of parameters so that the model we build will not suffer from overparametrization:

1

n

n∑
i=1

αi = 1 ,

where αi ≥ 0

So that average attacking strength would be equal to 1. This step makes sure that the

model does not suffer from overparametrization, yet one could refer to [4] for additional

information regarding constraints added into our model.

Given the constraint, we want to find those 2n + 2 parameters that would maximize

the following likelihood function:

L(αi , βi , ρ, γ; i = 1 , ...n) =

n∏
i ,j ;i 6=j

τλi,j ,µi,j
(ui ,j , vi ,j )

λ
ui,j

i ,j e−λi,j

ui ,j !

µ
vi,j
i ,j e−µi,j

vi ,j !
,

However, one should consider the fact that the equation above assumes only two

matches between each team. In our case we have sampled matches from season 2010-

2011 up to 2017-2018, and thus the number of matches between teams is more than two.

In order to take this fact into consideration, we will introduce certain adjustment to the

equation above. Let k(i , j ) be the number of matches played between team i and team

j in case i is home team, then:

n∑
i ,j ;i 6=j

k(i , j ) = k ,

where k is the total number of matches being played during our sample of train data

from season 2010-2011 to 2017-2018. And since we double number of matches in our data

as we discussed in subsection 3.6.1, the total number of observations N=2k. Then
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we could write the adjusted likelihood function as following:

L(αi , βi , ρ, γ; i = 1 , ...n) =

n∏
i ,j ;i 6=j

k(i ,j )∏
l=1

τλi,j ,µi,j
(u l

i ,j , v
l
i ,j )

λ
u l
i,j

i ,j e−λi,j

u l
i ,j !

µ
v l
i,j

i ,j e−µi,j

v l
i ,j !

,

(3.20)

where

λi,j = αiβjγ,

µi,j = αjβi
(3.21)

where i , j = 1 , ...(n) and i 6= j , are the indexes for home and away teams and again

k(i , j ) is the number of matches played between team i and team j, in cases i is home

team, and (u l
i ,j , v

l
i ,j ) denote the home and away goals for l-indexed match. Additionally,

i and j be the indices of corresponding home and away teams respectively, then it is

(3.20) that we want to maximize given (3.21). Taking log of likelihood function (3.20),

and assuming that each match is independent from one another, we have:

l(αi , βi , ρ, γ; i = 1 , ...n) =

n∑
i ,j ;i 6=j

k(i ,j )∑
l=1

log(τλi,j ,µi,j
(u l

i ,j , v
l
i ,j ))+

uli,jlog(λi,j)− λi,j − λi,juli,j! + vli,jlog(µi,j)− µi,j − µi,jvli,j!

(3.22)

In our python code, we maximize the equation above by adding teams’ attacking

strength constraint. Additionally, our procedure is as follows:

-Specify initial attacking strengths for each team randomly between 0 and 1.

-Specify initial defensive strengths for each team randomly between 0 and 1.

-Specify initial dependence-ρ parameter as 0 (Or assume no dependence initially).

-Specify initial home advantage-γ parameter as 1.

-Add following constraint:

1

n

n∑
i=1

αi = 1

-Numerically maximize (3.22).
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And in order to make this process easier, we will use minimize function from scipy.optimize

package, and then minimize the negative log-likelihood or negated version of (3.22). After

first iteration of the procedure detailed above through randomly assigning initial param-

eters for those 2n+2 parameters we obtain first 2n+2 coefficients for those parameters at

first iteration. And those coefficients relate to our α, β, γ values as follows:

α̃i = logαi α̃j = logαi β̃i = logβi β̃j = logβj γ̃ = logγ

Then, we could write (3.21) in the following way:

λij = αiβjγ = e α̃i+β̃j+γ̃

µji = αjβi = e α̃j+β̃i

where home advantage γ̃ is added only in calculation of λ values.

Now that we have described the models we will be applying in our analysis, we could

safely switch to talk about the data we will be working with.
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Data

4.1 Premier League

In our research we will be focusing on teams participating in Premier League in England.

Premier League is the highest division football league in England and there are 20 teams

competing each season. We will be working for giving predictions for matches played in

the season 2018-2019 using historical data from the season 2010-2011 up until the season

2017-2018 included.

Talking about the teams, as said there are 20 teams competing in the league and

each team plays 38 games in a given season: 19 away and 19 home, making in total 380

matches among teams. We will be taking the sample of 8x380=3040 matches to build

our model and then give predictions for the 380 matches played in season 2018-2019. In

other words, we will be taking training data as matches played from season 2010-2011 till

season 2017-2018 and test data as matches played during season 2018-2019 in Premier

League.

One should also note that at the end of each season 3 worst performing teams relegate

to the second division, while 3 best performing teams from second division gain right to

perform in Premier League. With that being said, we sampled our data so that those

teams that compete in the season 2018-2019 are already included in our sample data, so

that our model would make predictions for every game played in 2018-2019.

Table 4.1: Number of Teams
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Another important thing to take from our data is that in this project n represents

number of unique teams performed in Premier League from season 2010-2011 up to season

2017-2018. On the other hand, m represents number of unique teams performed in

Premier League in season 2018-2019. Since three team relegates to the second division

and three new teams replace those that got relegated each season n > m. Specifically

speaking, in our data n is 35 while m is 20.

4.2 Preliminary Statistics over Data

Talking about data, it is important to emphasize that one could easily access data re-

garding match results from various reliable sources over internet. The source we referred

to is football-data.co.uk [17]. The most important information for us from those tables

in football-data.co.uk would be categorized as following:

• Home Team

• Away Team

• Home Team goals

• Away Team Goals

• Bwin win odds for home team

• Bwin draw odds

• Bwin win odds for away team

Once we have this information at hand, then we will be ready to start our analysis.

However, one should certainly note that because of relegation and addition of three teams

into first division each season, number of games each teams play are different. Although

we have all the teams in our sample we want to predict for 2018-2019, there is still

discrepancy in the number of games each team plays. One could observe this in the

Figure 4.1 below:
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Figure 4.1: Number of matches each team played from 2010-2011 up to 2017-2018 in
Premier League
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Chapter 5

Betting Strategy

In this chapter, we will give information regarding the potential betting strategies one

might refer to when trying to receive positive return over investment in a certain match.

More specifically, potential betting strategies will be proposed and at the end of our

analysis, such strategies will be compared so that one could realize the most effective

investment strategy for investment in Premier League match outcomes in the season

2018-2019. However, before talking about the possible investment strategies, we will

introduce the concept of risk-free investment with a positive return on betting market,

also known called arbitrage strategy over betting market.

5.1 Arbitrage Strategy

In this section we will introduce a strategy thanks to which one could make profit without

risking any loss at all. We will refer to such a strategy as arbitrage strategy in betting

market, where no preliminary knowledge regarding team performance or expertise in the

betting market is necessary. Our very purpose of talking about such strategies is to show

that in the existence of arbitrage strategies one should definitely not proceed with other

strategies we will be introducing in the next section, unless he/she wants is still willing

to risk for some higher return. Let A,B ,C be mutually exclusive events such that

(A) ∩ (B) ∩ (C ) = ∅ implying that P(A ∩ B ∩ C ) = 0 , and j be the index for a

match being played and O be the odd provided by the bookmaker(1 divided odd for a

specific event yields the probability of that specific event calculated by bookmaker), then

30



Title

for every match j , if:
1

OAj
+

1

OBj
+

1

OCj
< 1 (5.1)

then we say one could make riskless return through betting on match j . It would be fairly

easy to prove (5.1). For the sake of simplicity, assume two mutually exclusive events in a

match: event A and event B. In the case of football betting event A might be thought

of the match ending above 2.5 goals and event B otherwise. Again assume that we have

odds indexed by A and B: OA representing the odd for event A to happen, while odd

OB representing the odd for event B to happen. One chooses to bet a amount on event

A and b amount on event B simultaneously. Then the profit one could make can be

described as follows: aOA − (a+ b) if event A happens,

bOB − (a+ b) if event B happens.

and since we know that  1
OA

= P(A),

1
OB

= P(B),

then  a
P (A)

− (a+ b) if event A happens,

b
P (B)

− (a+ b) if event B happens.

one may select a = P(A) and b = P(B). Then we have:1− (P (A) + P (B)) if event A happens,

1− (P (A) + P (B)) if event B happens.

For any case, we can see that our profit is equal to 1-(P(A)+P(B)). And as said earlier,

since odds are inverse of probabilities for the events to happen, we could express our

profit as 1 − ( 1
OA

+ 1
OB

). Consequently, our profit becomes positive if and only if

( 1
OA

+ 1
OB

) < 1, and this proves (5.1) in the case of two events. Indeed, increasing the

number of events under the assumption that those events are mutually exclusive yields

in the same result. However, such opportunities in the betting market are not always
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possible since (5.1) does not hold in most of the cases. In case (5.1) holds for any number

events assuming that those events are mutually exclusive, then one should definitely

follow arbitrage strategy. In the next section we will introduce alternative strategies that

one can choose from when arbitrage opportunities are not possible.

5.2 Alternative Strategies

Since we are not guaranteed to benefit from arbitrage opportunities in betting market, we

will introduce potential strategies that could hopefully yield positive return over betting

in matches in Premier League in season 2018-2019. At this stage, what we can do is

to come up with certain strategies that anyone could apply to make profit or rely on

the models we introduced in Methodology section and compare the results. The simple

strategy that one could apply would be to bet always on home team win in all matches

played in season 2018-2019. Assuming that the gambler bets 1 euro for each match, he

would invest 380 euros in total and the percentage return could be represented as follows:

PercentageReturn =

380∑
i=1

oddhomewin − 380

380
100

Similarly, we could develop another simple strategy for gambler to bet. Again, as-

suming that the gambler bets 1 euro for each match, he would invest 380 euros in total

for away team win and the percentage return could be represented as follows:

PercentageReturn =

380∑
i=1

oddawaywin − 380

380
100

Similarly, we could develop another simple strategy for gambler to bet. Again, as-

suming that the gambler bets 1 euro for each match, he would invest 380 euros in total

for the draw outcome and the percentage return could be represented as follows:

PercentageReturn =

380∑
i=1

odddraw − 380

380
100

Besides these strategies, we will also now rely on the models we introduced in Chap-

ter 3 and bet on the option that is most probable under those models. Meanwhile, in
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our case we will be betting on either of these three options: Home Team Win; Draw;

Away Team Win. The percentage return formulas will be similar to those before but

instead, we will bet on options suggested by Poisson and Dixon-Coles models in separate

and then compare these five betting strategies to observe whether any of them results in

positive return for over 2018-2019 season.
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Chapter 6

Model

In this chapter we will talk about the models we built when giving predictions for match

outcomes. In a given match there are only three possible outcomes: home team win, draw

and away team win. If number of goals scored by home team outweighs the number of

goals scored by away team then home team is considered as winner of the match, however,

if the away team scores more goals than home team then away team is considered as

winner, otherwise the result is draw.

And referring back to our models we introduced in Chapter 3 we will predict

the expected number of goals each team to score against each other and then insert

those expected number of goal values(λ and µ for home and away teams respectively)

into equation (3.17) and (3.18) in Poisson and Dixon-Coles models respectively to extract

probabilities of potential match score outcomes. And then we will add up the probabilities

of the scores where home team scores more than away team and call this sum as win

probability for home team. Similarly, we will add up the probabilities of the scores where

away team scores more goals than home team and call this sum win probability for away

team. And finally the probabilities over the score where home team and away team score

same number of goals will add up to draw probability.

In section 6.1 we will conduct preliminary statistics over the data we gathered for

English Premier League through season 2010-2011 up to season 2017-2018. And then in

section 6.2 we will introduce model results for Poisson regression and Dixon-Coles

models and compare the results.
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6.1 Preliminary Data Analysis

As can be seen from the Figure 6.1 below, one could observe that Poisson distribution

fits both the number of goals scored by home team and away team quite well. Poisson

regression, being one of the widely applied regression method over count data, is therefore

thought to be good fit for our data, where counts in our case are the goals. However, one

should note that when making Poisson regression, we will not treat goals scored by home

and away teams differently, we will rather gather all goals scored both by home and away

teams under one ’goals column’ when implementing Poisson regression and Dixon-Coles

method and treat all goals as independently distributed from one another.

λ = 1.55 µ = 1.18

Figure 6.1: Frequency of Observed and Predicted number of home and away goals scored
from season 2010-2011 up to season 2017-2018 in Premier League. Pink bars show the
frequency of goal values scored by home teams, whilst purple bars demonstrate the fre-
quency of goal values scored by away teams. In addition, green line depicts the predicted
number of goals to be scored by home team and purple line shows the predicted number
of goals to be scored by away team under the Poisson distribution.

Regarding goal interval in Figure 6.1, we should say that it is not decided randomly.

The maximum goal scored from season 2010-2011 up to season 2018-2019 is 8, whereas

minimum number of goal was 0, which is why our Goals values range from 0 to 8 in the

histogram above.
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6.1.1 Explanatory Variables in the Generalized Linear Model

Since we already know that Poisson distribution is part of the exponential family of

distributions, we could fit a generalized linear model for data that has response variable

Poisson distributed. As given in the methodology section, we know that :

g(E [Yi ]) = xT
i β

Our main aim is to find estimates for β vector and since xT
i stands for the values of

explanatory variables for the observation indexed with i, it is β vector that will help one

determine the expected value for response variable or E [Yi ], which in our case is the

average number of goals scored.

All being said, our main goal in this section is to describe the explanatory variables

we will be using when predicting number of goals each team will score and furthermore,

give rationale for our choice of those explanatory variables.

Initially, we will want our model to reflect teams’ strengths when giving goal predic-

tions and difference in teams’ strengths exist since not every team is equally competent.

Those people following football matches are aware of the notion that certain teams out-

play rest of the teams in most of the matches, indeed there are exceptions and sensations

occurring in a football match as well as anything else that has randomness in its nature.

However, we first, should convince ourselves that all teams are not performing equally

well. And in order to visualize the fact that there exists a difference in the quality of

teams, at least those competing in Premier League, we will refer to the following Figure

that includes teams which took part in Premier League from the season 2010-2011 up to

the season 2017-2018:

As can be seen from the Figure 6.2, certain teams such as Manchester City are

more inclined to score than concede a goal on average. However, teams such as Cardiff

have conceded more goals than they scored on average. Such a characteristics should be

included in our model so that the predictions we make reflect the fact that some teams

are likely to score more than they are to conceded, and some are vice versa.

Another very important factor to take into account when modelling goals would be
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Figure 6.2: Average number of goals scored(blue) and conceded(red) per match by the
teams that participated in Premier League from 2010-2011 to 2017-2018.

home advantage effect. There is widely believed phenomenon that if a team plays at

its own stadium then that particular team, holding everything else constant, is more

advantageous to the team that it is playing against. We will try to observe whether such

a phenomenon exists in our data as well:

Figure 6.3: Ratio of games won home to games won away for all teams participating in
English Premier League from season 2010-2011 up to season 2017-2018.

Without rigorously proving that a team playing at its own stadium is more advanta-

geous to win a certain match than that particular team playing the same match away,

referring to Figure 6.3 one could easily observe that number of games won home is

more than that of games won away during the time span of our selected data.
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To put in a nutshell, we have gained useful insights regarding the inclusion of explana-

tory variables into our model. Due to the existing discrepancy between teams when it

comes to scoring and conceding goals, we will add attacking and defensive strengths of

teams, which are purely extracted through regression output on the basis of number of

goals each team score and concede, alongside with home advantage factor.

6.2 Model Outputs

6.2.1 Poisson Model

After modelling Poisson distributed random variable Y , goals in our case, by using

Team, Opponent and home advantage variables, we will try to use (3.17) to predict score

probability predictions for matches between teams performing in Premier League season

2018-2019. As we noted earlier in section 3.7:

Ui ,j ∼ Poisson(αiβjγ)

Vi ,j ∼ Poisson(αjβi)

fori, j = 1, 2, ....m, i 6= j and we already explained what m stands for in section

4.1. Ui ,j stands for the number of goals team i scores against team j at home and

Vi ,j is the number of goals team i scores against team j away. Moreover, λ is expected

value of Ui ,j , which is represented as αiβjγ and µ is the expected value Vi ,j , denoted

as αjβi . And as discussed earlier, αi , βj , γ > 0 . The subscripts i and j stand for

home and away teams, and α and β values representing attack and defensive strength

respectively, while γ parameter denotes home advantage coefficient. After obtaining

regression outputs we will show how λ and µ parameters, denoting expected number of

goals home and away team to score respectively, are obtained. But before, let’s describe

the coefficients we will obtain from regression output:

α̃i = logαi α̃j = logαi β̃i = logβi β̃j = logβj γ̃ = logγ

Since we are using logarithmic link function:

λij = αiβjγ = e α̃i+β̃j+γ̃
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µji = αjβi = e α̃j+β̃i

i , j = 1 , ...m and j 6= i .

Meanwhile, we have sampled training data so that all teams present in test data have

already performed at least one season in our training data. In other words, in order to

give predictions for teams participating in Premier League in season 2018-2019, we should

have all those teams in our training data. This step is necessary since each year three

teams relegate to second division and some different three teams from second division

gains the right to participate in Premier League.

Now, regarding the equations above, one should note that referring to Poisson re-

gression output in Appendix 1, α̃ coefficients for teams are differentiated from β̃ and

γ̃ coefficients by addition of ’team’ word before the actual name of the team. Whereas

β̃ coefficients for teams are represented by addition of ’opponent’ word before the ac-

tual name of the team, whereas γ̃ coefficient, denoting home advantage is represented as

’home’ in the model output. And calculation of λi,j values can be represented as follows:

λij = αiβjγ = e α̃i+β̃j+γ̃ = eX
′B

where

X′ =



x′i

.

x′m

.

x′m+j

.

x′2m

.

x′2m+1



,B =



α̃i

.

α̃m

.

β̃j

.

β̃m

.

γ̃


i , j = 1 , ...m and j 6= i .
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Where B is the parameter vector as in Appendix 1 but for m teams in season 2018-

2019 rather than n teams in our training data. And in our code we have created X′ being

the vector of 2m+1 elements, and we have m teams(not n, since we are predicting results

for m teams in test data) repeating twice in X′ vector for the simplicity in calculation

of λi,j and µj,i values, whilst (2m+1)th, or the last element in X′ vector is 1 in case

of calculation of λi,j and 0 in case of calculation of µj,i values.Meanwhile since we are

repeating teams in X′ vector, ith and (m+i)th elements are the same for i = 1 , ...m . In

calculation of λi,j , except ith, (m+j)th and (2m+1)th(last) elements, rest of the elements

in the X′ vector are zero and those with ith and (m+j)th elements are 1. ith element of

X′ vector is multiplied by the ith element of B vector, or α̃i and (n+j)th element of X′

vector is multiplied by the (m+j)th element of B vector, or β̃j . And finally, (2m+1)th

element of X′ vector, or 1 is multiplied by the last element of B vector, or γ̃.Similarly,

one can show the calculation of µj,i values in the following way:

µji = αjβi = e α̃j+β̃i = eX
′B

where

X′ =



x′j

.

x′m

.

x′m+i

.

x′2m

.

x′2m+1



,B =



α̃j

.

α̃m

.

β̃i

.

β̃m

.

γ̃


i , j = 1 , ...m and j 6= i .

In calculation of µj,i, except jth and (m+i)th elements, rest of the elements in the

X′ vector are zero and those with jth and (m+i)th elements are 1. jth element of X′

CHAPTER 6. MODEL 40



Title

vector is multiplied by the jth element of B vector, or α̃j and (m+i)th element of X′

vector is multiplied by the (m+i)th element of B vector, or β̃i. And finally, (2m+1)th

element of X′ vector, or 0 is multiplied by the last element of B vector, or γ̃.

Since elements of our explanatory variables- Team and Opponent, are actual

team names, we have observed Arsenal to be the intercept term. In Appendix 1, one

could realize that α̃Arsenal coefficient is given, however, β̃Arsenal coefficient is set to

zero. Other than Arsenal, β̃ coefficients for all teams are given. Regarding interpretation

of α̃ parameters, for example, for the team Arsenal eα̃Arsenal or αArsenal(attacking

strength) stands for the average number of times Arsenal would score more goals than

the overall average number of goals scored by all teams, holistically speaking. When it

comes to interpretation of β̃ parameters, again giving the example of Arsenal, β̃Arsenal,

which is zero and thus making eβ̃Arsenal or βArsenal(defensive strength) be 1, stands for

the average number of times Arsenal would concede more goals than the overall average

number of goals conceded by all teams, again holistically speaking. In case of Arsenal, it is

held that Arsenal would have exactly defensive strength of 1, so that defensive strength

parameters for the rest of the teams would be multiplied with that of Arsenal, or be

multiplied by 1. The parameter γ indicates the average number of times a home team

would score more goal than an away team. Further more, λi,j stands for the expected

number of goals team indexed i would score against team indexed j, while µj,i is the

expected number of goals team indexed j would score against team indexed i.

Once we have λij and µji obtained from regression output for i , j = 1 , ...m and

j 6= i , we will then insert these values to the following equation below to get possible

match score probabilities between team i and j, again where i , j = 1 , ...m and j 6= i .

P(Ui ,j = u; Vi ,j = v) =
λuij e

−λij

u!

µvjie
−µji

v !
, (6.1)

for i,j=1,...m and j6= i

The above equation is different from that in (3.17) in a sense that we have indexed

λ and µ values. Those indexes exist in (6.1) due to the fact that in this very specific

case, each team has varying expected number of goals to score depending on the team
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they are playing with and home advantage. After we predict the probabilities for each

potential outcome of the match played between teams, we will assign the probability for

home team to win, for away team to win and finally for draw. For example, calculation of

probability for home team to win, again assuming that team i plays at home and scores u

goals whereas team j plays away and scores v goals, for each teams playing home would

be as follows:

P(HomeTeamWin) =

maxgoals∑
u=1

u−1∑
v=0

λuij e
−λij

u!

µvjie
−µji

v !
, (6.2)

for i,j=1,...m and j6= i; u,v∈ N .

Similarly, calculation of draw probability for each match could be described as follows:

P(Draw) =

maxgoals∑
u=v=0

λuij e
−λij

u!

µvjie
−µji

v !
, (6.3)

for i,j=1,...m and j6= i; u,v∈ N .

And finally, calculation of probability of away team win for each match can be de-

scribed as follows:

P(AwayTeamWin) =

maxgoals∑
v=1

v−1∑
u=0

λuij e
−λij

u!

µvjie
−µji

v !
, (6.4)

for i,j=1,...m and j6= i; u,v∈ N .

Before we move on any further, as noted in section 4.1 it should be made clear

that our training data contains all match results from season 2010-2011 up to season

2017-2018 in Premier League. And after building models over the training data, we will

be applying our model to matches played in 2018-2019 season in Premier League. In

other words, our test data contains matches from season 2018-2019.

And as we already noted earlier in section 6.1 earlier, the maximum number of

goals is taken to be 8. Once we have the probability for all home teams to win, lose

and take draw in matches using (6.2), (6.3) and (6.4) in season 2018-2019 obtained, we

will assign one of those labels(home/draw/away) for every game with the label that has

highest probability of occurrence. And we will call it predicted result of the game under
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Poisson Regression. And referring to Figure 6.4, one could be familiarized with the

confusion matrix we built. Confusion matrix is a table layout presenting performance

of an algorithm. As can be seen from the figure below, our accuracy rate of correctly

predicting the final match outcomes for Premier League during season 2018-2019, using

2010-2011 up to 2017-2018 match outcome data, is approximately 58.42 percent which

obviously exceeds a random guess that has one third of success rate for three possible

match outcomes. Since we have our confusion matrix ready, now we could interpret the

Figure 6.4: Confusion matrix for predicted and actual result of the games under the
Poisson model.

performance of the Poisson model. On the left, we have True label, denoting actual

results. And below we have Predicted match outcome for home team to win, draw and

away team to win. Summing diagonal line from upper left to lower right will yield in the

number of matches which we correctly predicted, the rest are misclassified instances.

The thing that should catch one’s interest is Poisson model’s very poor performance

in predicting Draw outcomes. In fact, one could observe that Poisson model predicts
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no Draw outcome for any of those 380 matches, where predicted outcome is simply

the event(home/draw/away) that has highest probability of occurrence. On the way to

investigate factors that might be causing such deficiencies of Poisson model, we present a

matrix of match results in Figure 6.5, where the difference between average of Poisson

predicted match score probabilities and actual percentage of matches ended with those

scores from 2010-2011 to 2017-2018 is presented.

Figure 6.5: Difference between average of Poisson predicted score probabilities and per-
centage of matches that ended with given results from season 2010-2011 up to season
2017-2018 in Premier League.

.

In Figure 6.5, one should note that when the colour strength demonstrates the

level of disagreement. The greener the cells become, the less weight Poisson model puts

on those scores. On the contrary, the redder the cells become, the more weights Poisson

model assigns for those scores. And it is easily observed that both green and red colours

get most darker in the northwest square of the matrix where we have match scores being

0 and 1. Obviously, Poisson model is having hard time predicting the match score out-
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come that has combination of 0 and 1 in it. With the hope of solving this problem, we

will refer to the other model we introduced in Chapter 3, Dixon-Coles model.

6.2.2 Dixon-Coles Model

In previous section we realized that Poisson model is not very good at predicting Draw

results, while referring to Figure 6.4 we have 71 of 380 matches ended in Draw in

Premier League. Apart from that, referring to Figure 6.5 we realized that Poisson

model seems to be inferior model when giving predictions for matches that could end

with score outcome that has combination of 0 and 1 in it. Once we numerically maxi-

mize (3.22) we will obtain coefficients for parameters that we discussed in subsection

3.7.2.Estimated parameter coefficients for Dixon-Coles model will be given in Appendix

2. First m(20) coefficient estimates could be thought as α̃ values and next m(20) coeffi-

cients could be thought as β̃ values and last one as γ̃ value as in previous section. Since

Dixon-Coles model is built by adjusting Poisson model, we will apply exactly the same

procedure as in subsection 6.2.1 till (6.4). however, instead of (6.1), (6.2), (6.3) and

(6.4), we will use the following equations adjusted for Dixon-Coles model:

P(Ui ,j = u; Vi ,j = v) = τλi,j ,µi,j
(ui ,j , vi ,j )

λuij e
−λij

u!

µvjie
−µji

v !
, (6.5)

for i,j=1,...m and j6= i

P(HomeTeamWin) =

maxgoals∑
x=1

u−1∑
v=0

τλi,j ,µi,j
(ui ,j , vi ,j )

λuij e
−λij

u!

µvjie
−µji

v !
, (6.6)

for i,j=1,...m and j6= i; u,v∈ N .

Similarly, calculation of draw probability for each match could be described as follows:

P(Draw) =

maxgoals∑
u=v=0

τλi,j ,µi,j
(ui ,j , vi ,j )

λuij e
−λij

u!

µvjie
−µji

v !
, (6.7)

for i,j=1,...m and j6= i; u,v∈ N .
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And finally, calculation of probability of away team win for each match can be de-

scribed as follows:

P(AwayTeamWin) =

maxgoals∑
v=1

v−1∑
u=0

τλi,j ,µi,j
(ui ,j , vi ,j )

λuij e
−λij

u!

µvjie
−µji

v !
, (6.8)

for i,j=1,...m and j6= i; u,v∈ N .

Once we have the probability for all home teams to win, lose and take draw in matches

using (6.6), (6.7) and (6.8) in season 2018-2019 obtained, we will assign one of those

labels(home/draw/away) for every game with the label that has highest probability of

occurrence. And we will call it predicted result of the game under Dixon-Coles model.

Since we had assigned more weights over probabilities for scores ending with 0− 0 and

1− 1, we would expect Poisson model prediction and Dixon-Coles model prediction be

different for low scoring games. In order to observe this phenomenon in practice, we

shall have a look at the difference in predicted score probabilities between Poisson and

Dixon-Coles model for a random match(Arsenal-Bournemouth in our case).

As could be seen from the Figure 6.6, upper-left part of the matrix, which is

the result of adjustment we made using τ function in subsection 3.7.2. Obviously,

most of the difference in predicted probabilities for potential match score result between

Arsenal and Bournemouth is observed for the scores that has combination of 0 and 1

simultaneously in it, which is to be expected thanks to τ function.

And referring to Figure 6.7, one could be familiarized with the confusion matrix we

built. As can be seen from the figure below, our accuracy rate of correctly predicting the

final match outcomes for Premier League during season 2018-2019, using 2010-2011 up to

2017-2018 match outcome data, is approximately 58.16 percent which obviously exceeds

a random guess that has one third of success rate for three possible match outcomes,

however, performance of Dixon-Coles model is falling behind the performance of Poisson

model. We can try to understand the main rationale behind that by relying on the figure

below:

As could be seen from the Figure 6.6, the only difference in performance level
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Figure 6.6: Difference in predicted score probabilities between Poisson and Dixon-Coles
model for a match between Arsenal and Bournemouth.

between Poisson and Dixon-Coles models in terms of match outcome prediction is 2

wrongly predicted Draws by Dixon-Coles model. Dixon-Coles model assigns more weight

over probability of match outcomes for Draw results- 0− 0 and 1− 1. However, in our

case it seems that Dixon-Coles model is not solving the problem we are having, on the

contrary, it is further decreasing the predictive accuracy of the model. At the very least,

for our data, we realize that Poisson model outperforms Dixon-Coles model in terms of

accuracy of model performance. However, this need not always necessarily be the case.

Although being outperformed by Poisson model in our data, Dixon-Coles model will still

be referred to when observing possibility of positive return over betting.

Yet, before we move on to start talking about results of betting strategies and their

corresponding returns, we will try to look at performance of both models from differ-

ent angle. Going back, in equations (6.2), (6.3) and (6.4) we obtain the probability of

home team win, draw, and away team win for each match and when assigning label for
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Figure 6.7: Confusion matrix for predicted and actual result of the games under the
Dixon-Coles model.

match outcome we predicted the outcome for the match result that had highest proba-

bility of occurrence. Now, we will create bins with fixed probability intervals and then

compare our model accuracy per each bin to see the performance of model favourable

prediction(outcome that has the highest probability of occurrence).

As can be seen from the Table 6.1, it is the interval for predicted probability for

the favourable outcome ranging between 70-80 percent, where the predicted outcome is

realized 86 percent of the time. On the other hand, once the probability for the model

favourable outcome is in interval ranging from 30 to 40 percent, we have only 41.67

percent of the predictions realized. We could extract the same table for Dixon-Coles

model.

Again, referring to Table 6.2, it is the interval for predicted probability for the

favourable outcome ranging between 70-80 percent, where the predicted outcome is re-

alized 87.8 percent of the time. On the other hand, once the probability for the model
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Table 6.1: Accuracy of Model favorable prediction per probability interval under Poisson
Model

Table 6.2: Accuracy of Model favorable prediction per probability interval under Dixon-
Coles Model

favourable outcome is in interval ranging from 30 to 40 percent, we have only 41.82

percent of the predictions realized.

Now that we have discussed performance of both models, it would be interesting to

see if these models can be of any use for an enthusiastic gambler. With that being said,

we are proceeding with next chapter to see the potential benefits of such models.
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Chapter 7

Results

In this chapter we will be talking about what additional information previous models we

built could give for someone gambling in betting market. In section section 7.1 we will

be talking about teams’ performance under goals models(both Dixon-Coles and Poisson

models are referred as goals models in literature). And later, we will try to observe if

relying on these models could make one richer than otherwise.

7.1 Team ranking

In previous chapter we talked about accuracy of models, confusion matrix and other

descriptive statistics methods measuring performance of our models. In this section

however, we will see whether those models speak anything about the team rankings in

Premier League in season 2018-2019. In other words, since we relied on training data,

matches’ data from season 2010-2011 to season 2017-2018 included, we want to know if

knowing the simple match results from 2010-2011 to 2017-2018 could take one beyond the

prediction for matches over test data. That being said, we will now investigate whether

Dixon-Coles model could predict the teams’ standpoint in Premier League season 2018-

2019.

The Plot below depicts the teams’ stances purely by their attacking and defensive

strengths that we obtained through Dixon-Coles model. Before we start interpreting

the plot above, we should be able to understand the axis values. Regarding y-axis, we

have attacking strength value represented, which we explained in Chapter 6. And the

x-axis indicates defensive strengths of teams performing in Premier League in season
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Figure 7.1: Teams’ standpoint in terms of their attacking and defensive strengths.

2018-2019. The higher the attacking strength a team has, the more likely that team

is to score goals against others. On the contrary, the lower the defensive strength a

team has, the less likely that team will concede a goal. Having those said, one could see

that Manchester City is the team performing best among all regarding both attacking

and defensive strengths, whereas, Cardiff and Huddersfield seem to be worst performing

teams in Premier League season 2018-2019 according to our predictions. In general, teams

being located on the upper left part of the Figure 7.1 are supposed to be overperforming

the rest, whereas teams being located on the lower right of the Figure 7.1 are supposed to

be worst performing teams. Interestingly, Manchester City, locating on the most upper

left of our plot, according to Dixon-Coles model predictions actually became champion in

Premier League season 2018-2019. What’s more, the six teams locating on the most upper

left part of Figure 7.1 took first six places in the Premier League in season 2018-2019,

whilst Huddersfield and Cardiff were two out of three teams to be relegated to the second
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division. Apparently, attacking and defensive strengths of teams say a lot regarding

team performance. However, what one might be interested in is the very reason of

Manchester City’s overperforming others especially due to the fact that as many football

fans are familiar with it, Manchester City was not the amongst the top performers in

Premier League early 2000s. It was teams such as Chelsea, Manchester United, Liverpool

etc. which were the main players not only in Premier League but also in European

Championships. In order to understand why say model does not predict Manchester

United be the champion for the season 2018-2019, but it does predict Manchester City

be champion, we will try to analyze the ratio of average goals both teams scored and

conceded to the average number of goals scored and conceded in Premier League across

years 2010 to 2018. The reason why we do this is both Poisson and Dixon-Coles models

are considered to be goals models since the number of goals teams score and concede play

pivotal role in making the predictions:

Figure 7.2: Teams’ standpoint in terms of their attacking and defensive strengths.

Now, the red line indicates the ratio of average number of goals Manchester City scored

to the average number of goals scored by all teams from 2010-2018, whilst the blue line

shows the same for Manchester United. And the purple line demonstrates the ratio of

average number of goals conceded by Manchester City to the average number of goals

conceded by all teams from 2010-2018, while green line shows the same for Manchester
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United. As can be seen from the figure above, it is easily realized that Manchester City

started to outperform Manchester United starting from season 2012-2013 when it comes

to ratio of average number of goals scored by those teams to the average number of

goals scored by all teams in Premier League. Then it might be understandable that

Manchester City scored more goals than Manchester United during seasons starting from

2012-2013 and that is the rationale behind Dixon-Coles model selecting Manchester City

as a champion but not Manchester United. Regarding the ratio of average number of

goals conceded by both teams, we could realize that it is fluctuating across years between

those two teams and not much of a conclusion could be made out of Figure 7.2 except

the one that starting from 2015 Manchester City began to conceded more goals than

Manchester United.

7.2 Return

Now that we have made our predictions for each 380 game over the season 2018-2019

in Premier League, one would like to test whether those predictions could be financially

of any use. In this section, we will simulate 1 euro bet on each match under different

betting strategies as discussed in section 5.2. Referring to following table, one could

see the comparison of returns obtained through various betting strategies:

Table 7.1: Percentage return over betting 1 euro in every match in Premier League season
2018-2019 per strategy.

As can be seen from the Table 7.1, it is betting strategy following Poisson model

favourable outcome that yields in the highest percentage return. Return we obtained

from Dixon-Coles model is quite disappointing taking into account that a simple strategy

such as betting always on home team win can outperform Dixon-Coles model in terms
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of percentage return. Betting on draw seems to result in lowest percentage return, which

may suggest that betting on draw outcome on a consistent basis actually makes one

worse off. Similarly, betting on away team win also results in negative percentage return.

Having those said, Basic Poisson model, built with match data from season 2010-2011 to

2017-2018, seems to yield in the highest return for Premier League season 2018-2019.
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Chapter 8

Conclusion and Future Work

The purpose of this thesis project was to build Poisson and Dixon-Coles models over

match data from season 2010-2011 to season 2017-2018, compare those models, research

the possibility of realizing positive return over investment in betting market and observe

whether such models could outperform simple strategies in terms of percentage return in

Premier League season 2018-2019. And we managed to beat the accuracy of a random

guess over a direct match outcome by relying on both models we built. Furthermore,

by betting on Poisson model favorable outcome, we managed to beat simple strategies

in terms of percentage return (3.30%). Although supposed to be improved version of

Poisson model, Dixon-Coles was outperformed both in terms of accuracy and percentage

return by Poisson model and it failed to be beat home team win strategy again in terms

of percentage return.

8.1 Reliability of Results

In our project work we used so-called goals models when predicting the direct match

outcome(win-draw-lose). In a sense, modelling goals and then inserting expected number

of goals for each team into probability mass functions by introducing independence of

home and away goals to later obtain probability of each outcome is an indirect method of

obtaining predictions for direct match results. In our case, since Dixon-Coles model was

outperformed by Poisson model, one might be interested in deciphering potential existing

correlation between goals scored by home and away teams except scores with combination

of 0 and 1 goals. It could be possible to introduce correlation between goals scored by
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home and away teams with different combination of scores and later see whether any

improvement is made over Poisson model.

Besides improving models, one could decide to set a probability threshold as his

benchmark when betting. For example, in Table 6.1 and Table 6.2 we have in-

troduced percentage of matches won by model favorable outcome when probability in-

tervals are fixed. Consequently, one might choose to bet only on those matches where

model(Poisson or Dixon-Coles) predicted probability of favourable outcome is between

70-80% interval(since it has the highest accuracy in our case).

8.2 Future Improvements

What might certainly experiment is the inclusion of time factor into parameter estimation

over Dixon-Coles model. The need for inclusion of time factor is derived from the very

fundamental phenomenon that in football teams do not show consistent performance.

For example, as discussed in section 7.1, the Dixon-Coles model selects Manchester

City as the most favorable candidate for championship over season 2018-2019. However,

in case Manchester City goes through financial or managerial issues, this could reflect

on team performance for the following seasons. However, goals models do not take time

effect into consideration when estimating parameters.
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Appendices

Appendix 1

Dep. Variable: goals No. Observations: 6080

Model: GLM Df Residuals: 6010

Model Family: Poisson Df Model: 69

Link Function: log Scale: 1.0000

Method: IRLS Log-Likelihood: -8779.0

Date: Sun, 09 Aug 2020 Deviance: 6823.0

Time: 21:37:42 Pearson chi2: 5.93e+03

No. Iterations: 5

coef std err z P> |z| [0.025 0.975]

team[Arsenal] 0.2893 0.071 4.090 0.000 0.151 0.428

team[Aston Villa] -0.3342 0.086 -3.890 0.000 -0.503 -0.166

team[Birmingham] -0.4132 0.174 -2.377 0.017 -0.754 -0.073

team[Blackburn] -0.1583 0.117 -1.350 0.177 -0.388 0.071

team[Blackpool] 0.0036 0.146 0.025 0.980 -0.283 0.290

team[Bolton] -0.1185 0.115 -1.027 0.305 -0.345 0.108

team[Bournemouth] -0.0500 0.100 -0.501 0.616 -0.245 0.145

team[Brighton] -0.4052 0.180 -2.247 0.025 -0.759 -0.052

team[Burnley] -0.4049 0.113 -3.586 0.000 -0.626 -0.184

team[Cardiff] -0.4857 0.185 -2.623 0.009 -0.849 -0.123

team[Chelsea] 0.2599 0.069 3.755 0.000 0.124 0.396

team[Crystal Palace] -0.1907 0.088 -2.174 0.030 -0.363 -0.019

team[Everton] 0.0058 0.073 0.079 0.937 -0.137 0.149
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team[Fulham] -0.1506 0.092 -1.645 0.100 -0.330 0.029

team[Huddersfield] -0.5956 0.197 -3.023 0.003 -0.982 -0.209

team[Hull] -0.3581 0.111 -3.232 0.001 -0.575 -0.141

team[Leicester] 0.0578 0.087 0.662 0.508 -0.113 0.229

team[Liverpool] 0.2596 0.069 3.746 0.000 0.124 0.395

team[Man City] 0.4251 0.067 6.325 0.000 0.293 0.557

team[Man United] 0.2416 0.069 3.479 0.001 0.106 0.378

team[Middlesbrough] -0.6384 0.200 -3.188 0.001 -1.031 -0.246

team[Newcastle] -0.1404 0.078 -1.797 0.072 -0.293 0.013

team[Norwich] -0.2856 0.096 -2.967 0.003 -0.474 -0.097

team[QPR] -0.3248 0.108 -3.000 0.003 -0.537 -0.113

team[Reading] -0.2074 0.162 -1.279 0.201 -0.525 0.110

team[Southampton] -0.0684 0.080 -0.855 0.393 -0.225 0.089

team[Stoke] -0.2654 0.078 -3.406 0.001 -0.418 -0.113

team[Sunderland] -0.2852 0.081 -3.517 0.000 -0.444 -0.126

team[Swansea] -0.1847 0.079 -2.332 0.020 -0.340 -0.029

team[Tottenham] 0.2088 0.070 2.985 0.003 0.072 0.346

team[Watford] -0.2115 0.105 -2.007 0.045 -0.418 -0.005

team[West Brom] -0.2115 0.077 -2.750 0.006 -0.362 -0.061

team[West Ham] -0.1014 0.078 -1.307 0.191 -0.253 0.051

team[Wigan] -0.2389 0.104 -2.297 0.022 -0.443 -0.035

team[Wolves] -0.2422 0.121 -1.995 0.046 -0.480 -0.004

opponent[T.Aston Villa] 0.3613 0.075 4.806 0.000 0.214 0.509

opponent[T.Birmingham] 0.2793 0.143 1.958 0.050 -0.000 0.559

opponent[T.Blackburn] 0.4629 0.102 4.550 0.000 0.263 0.662

opponent[T.Blackpool] 0.5938 0.126 4.708 0.000 0.347 0.841

opponent[T.Bolton] 0.4351 0.103 4.232 0.000 0.234 0.637

opponent[T.Bournemouth] 0.4052 0.090 4.491 0.000 0.228 0.582

opponent[T.Brighton] 0.2087 0.147 1.421 0.155 -0.079 0.497

opponent[T.Burnley] 0.1150 0.099 1.161 0.246 -0.079 0.309
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opponent[T.Cardiff] 0.5376 0.129 4.182 0.000 0.286 0.790

opponent[T.Chelsea] -0.1151 0.079 -1.449 0.147 -0.271 0.041

opponent[T.Crystal Palace] 0.2116 0.082 2.579 0.010 0.051 0.372

opponent[T.Everton] 0.0782 0.075 1.037 0.300 -0.070 0.226

opponent[T.Fulham] 0.3293 0.085 3.883 0.000 0.163 0.495

opponent[T.Huddersfield] 0.2741 0.142 1.924 0.054 -0.005 0.553

opponent[T.Hull] 0.3467 0.092 3.776 0.000 0.167 0.527

opponent[T.Leicester] 0.2185 0.088 2.493 0.013 0.047 0.390

opponent[T.Liverpool] 0.0499 0.076 0.655 0.513 -0.099 0.199

opponent[T.Man City] -0.1817 0.081 -2.240 0.025 -0.341 -0.023

opponent[T.Man United] -0.1710 0.081 -2.122 0.034 -0.329 -0.013

opponent[T.Middlesbrough] 0.1884 0.148 1.273 0.203 -0.102 0.478

opponent[T.Newcastle] 0.3040 0.074 4.128 0.000 0.160 0.448

opponent[T.Norwich] 0.3760 0.083 4.513 0.000 0.213 0.539

opponent[T.QPR] 0.4257 0.090 4.754 0.000 0.250 0.601

opponent[T.Reading] 0.5248 0.129 4.059 0.000 0.271 0.778

opponent[T.Southampton] 0.0938 0.081 1.163 0.245 -0.064 0.252

opponent[T.Stoke] 0.1942 0.073 2.654 0.008 0.051 0.338

opponent[T.Sunderland] 0.2739 0.074 3.699 0.000 0.129 0.419

opponent[T.Swansea] 0.2348 0.075 3.139 0.002 0.088 0.381

opponent[T.Tottenham] -0.0146 0.077 -0.189 0.850 -0.166 0.137

opponent[T.Watford] 0.3286 0.092 3.563 0.000 0.148 0.509

opponent[T.West Brom] 0.2495 0.072 3.450 0.001 0.108 0.391

opponent[T.West Ham] 0.2900 0.074 3.925 0.000 0.145 0.435

opponent[T.Wigan] 0.4122 0.090 4.573 0.000 0.236 0.589

opponent[T.Wolves] 0.5365 0.099 5.416 0.000 0.342 0.731

home 0.2724 0.022 12.312 0.000 0.229 0.316
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Appendix 2

’α̃Arsenal’: 1.4423893896288609,

’α̃Bournemouth’: 1.1020563638625969,

’α̃Brighton’: 0.7528023305988317,

’α̃Burnley’: 0.7433504066625719,

’α̃Cardiff ’: 0.6718472314755046,

’α̃Chelsea’: 1.411108814669605,

’α̃CrystalPalace’: 0.9564298026309063,

’α̃Everton’: 1.1564717740061394,

’α̃Fulham’: 1.0016366332716813,

’α̃Huddersfield’: 0.5611542389266958,

’α̃Leicester’: 1.2101095016484764,

’α̃Liverpool’: 1.4115868106526184,

’α̃ManCity’: 1.5765701926130324,

’α̃ManUnited’: 1.3924094602083803,

’α̃Newcastle’: 1.0083483505241735,

’α̃Southampton’: 1.083139124841409,

’α̃Tottenham’: 1.3589765952394532,

’α̃Watford’: 0.9377953529144604,

’α̃WestHam’: 1.052792565684589,

’α̃Wolves’: 0.9112329995692178,

’β̃Arsenal’: -1.1506573411988894,

’β̃Bournemouth’: -0.7466378999787747,

’β̃Brighton’: -0.9433467852309084,

’β̃Burnley’: -1.0391436463281694,

’β̃Cardiff ’: -0.6140184400702217,

’β̃Chelsea’: -1.2664182855494908,

’β̃CrystalPalace’: -0.9403550405185297,

’β̃Everton’: -1.0727958997561893,

CHAPTER 8. CONCLUSION AND FUTURE WORK 62



Title

’β̃Fulham’: -0.8228914988140964,

’β̃Huddersfield’: -0.876754040185636,

’β̃Leicester’: -0.9327228869250347,

’β̃Liverpool’: -1.0999775222064119,

’β̃ManCity’: -1.332163819291578,

’β̃ManUnited’: -1.3222655674334836,

’β̃Newcastle’: -0.8500185622352655,

’β̃Southampton’: -1.057762860391228,

’β̃Tottenham’: -1.1660636548801082,

’β̃Watford’: -0.8228477166080611,

’β̃WestHam’: -0.8597553020077582,

’β̃Wolves’: -0.6168609003546477,

’rho’: -0.054032325021451694,

’γ̃’: 0.2731855529532789
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