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1 Introduction

1.1 Historical review of literature

Generally speaking, all the materials used in the mechanical engineering and tech-
nology, can be divided into homogeneous and non-homogeneous materials. The
most of non-homogeneous materials can be treated as composites, consisting of
two or more ingredients incorporating various constituents have wide range of
specific strength and others material moduli. Among various composites the uni-
directionally reinforced materials seem to have the most favorable combination of
high specific modulus and strength. Unidirectional composites can be modeled as
anisotropic quasi-homogeneous materials having different moduli in the direction
of fibers and in the transverse direction, respectively (see Jones [26], Daniel and
Ishai [10]).

Due to the growing interest in non-destructive testing techniques and vibra-
tion monitoring of structures and machines there is an emerging demand for the
vibration analysis of structural elements with flaws and cracks. It was already
recognized long ago that the presence of surface flaws or intrinsic cracks in a
machine element is a source of local flexibility, which in turn influences the dy-
namic behavior of the whole system. This leads to an important idea to model
cracks as equivalent elastic springs, which was first used to quantify the relation
between the applied load and the strain concentration in the vicinity of the crack
tip by Irwin [24] in the early 1960s. Later Rice and Levy [71] extended the idea
to rectangular plates with part-through cracks.

However, these initial works did not focus on the vibration analysis of the
structures. At the same time the basic approaches to vibration analysis initially
studied the isotropic plates without cracks and steps employing the classical the-
ory with Kirchhoff-Love assumptions; see Leissa [38]. Subsequent studies have
generalized the basic theories of vibration analysis to the anisotropic plates and
the plates with cracks and steps.

The first study to combine vibration analysis with spring model of cracks was
undertaken by Rizos et al. [72] in 1990. The authors developed a method to
identify the crack location and magnitude in cantilever beams. Liang et al. [50],
Dimarogonas [12] and Chondros et al. [8, 9] extended this approach to several
cracked structures.

An important approach to identify crack size and location was introduced by
Liang et al. [49]. The novel idea was to use the measurements of natural vibrations
to detect cracks. This idea was later extended by Nandwana and Maiti [58]. De
Rosa [11] investigated the influence of cracks on the natural vibrations of stepped
beams with flexible ends. Prestressed beams with fixed ends were studied by Ma-
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soud et al. [54]. However, all previously mentioned methods of natural vibrations
considered only a single crack. The effect of multiple cracks on the natural vibra-
tions of uniform beams was studied by Lin et al. [52] making use of the transfer
matrix method.

Zhu et al. [85] extended the work by Leissa [38] to the free vibration analysis of
thin isotropic and anisotropic rectangular plates, while Gutierrez and Laura [16],
Xiang and Wang [81], Li et al. [46] have modeled analytically an isotropic stepped
plate with varying boundary conditions.

The well known Lévy method was used by Gorman et al. [14] for the vibra-
tion analysis of a plate with two opposite simply supported edges and arbitrary
boundary conditions at the other two edges. The Navier method is used by Kant
et al. [31] to analyze the vibration of a plate with all four edges simply supported.
The Rayleigh-Ritz method was used by Nallim et al. [57] to model an anisotropic
plate without steps and by Laura et al. [37] to model an anisotropic stepped plates.
Ramamurti et al. [66] have applied the generalized Rayleigh-Ritz method to de-
termine the natural frequency of cracked cantilevered plates.

Recently, more analytical and numerical methods for studying the vibration of
anisotropic rectangular plates have been proposed. Anisotropic plates were stud-
ied by Huang et al. [23] and by Bui et al. [6] using an efficient mesh free-method.
Exact solutions for free vibrations of rectangular plates are proposed by Wu et

al. [80] using Bessel functions. Free vibrations of orthotropic rectangular plates
are investigated by Jafari and Eftekhari [25] with mixed Ritz-differential quadra-
ture method and Paiva et al. [63] using the boundary element method. A vibration
analysis of thin rectangular plate has been undertaken by Li and Yuan [48]. The
authors used a Green quasifunction method to obtain the solution of the free vi-
bration problem of clamped thin plates. Wang et al. [78] used the discrete singular
convolution algorithm to analyze free vibrations of a simply supported anisotropic
rectangular plate. Natural frequencies for Lévy plate are studied by Park et al. [64]
by using a harmonic response estimation method.

Further results on the application of finite element method for dynamic anal-
ysis of a thin rectangular plate with a crack have been obtained by Krawczuk et

al. [34,35]. Liew et al. [51] employed the decomposition method to determine the
vibration frequencies of cracked plates. An experimental study of natural frequen-
cies of clamped rectangular plates with cracks has been described by Maruyama
and Ichinomiya [53]. They investigated experimentally the effect of length, po-
sition and inclination angle of a crack on the natural frequencies. However, it
should be noted that the work by Maruyama and Ichinomiya clarified the vibra-
tion of a plate with penetrating crack which is different from part-through cracks
at the corners of the re-entrant parts of the steps. The latter is the focus of this
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In recent years the investigations of structures resting on elastic foundation
have gained large importance. The vibration and bending problems of plates on
elastic foundations are often faced in the practical engineering of structures. The
examples of the plates resting on elastic foundations are road surfaces, airport run-
ways, aircraft parking areas, railway tracks and building foundations. In this study
we use the well known Winkler model [67], which was originally developed for
the analysis of railroad tracks. The Winkler elastic model is the simplest example
of the continuous elastic foundation.

The vibration analysis of thin structures on elastic foundations has been car-
ried out by various researchers. Let us consider some of recent results and research
methods in this area. Pengcheng and Peixiang [65] studied vibrations of the plates
on elastic foundation using the multivariable spline element method. A few years
later Cheung et al. [7] developed a finite strip method for the natural vibration
analysis of stepped plate on an elastic foundation. At the same time Huang and
Thambiratnam [22] proposed a procedure incorporating the finite strip method to-
gether with a spring system to analyze plate resting on elastic supports and elastic
foundation.

Hsu [20] investigated the eigenvalue problems of cracked hinged–hinged and
cantilevers Bernoulli–Euler beams resting on elastic foundation using the differen-
tial quadrature method. A year later Hsu [21] proposed the differential quadrature
method for the rectangular plate. Also the finite strip method was complemented
by Hatami et al. [17]. Authors provided the exact finite strip method and used
the method to solve the vibration and stability problems of the axially moving
orthotropic plates on the elastic foundation.

Recently, Li and Yuan [47] adopted the quasi-Green’s function method to ana-
lyze the free vibration of a clamped thin plate resting on the Winkler foundation.
Motaghian et al. [55] proposed a novel mathematical approach to find the exact
analytical solution of the problem of natural vibrations of plates resting on par-
tially elastic foundation with certain boundary conditions. The natural vibrations
of the cracked cantilever beam resting on elastic foundation is analyzed by Nassar
et al. [59] using the differential quadrature method in the case when the beam is
made of a functionally graded material.

1.2 Aim of the dissertation

The primary goal of this study is to develop a method for finding natural vibrations
of elastic structures with steps and cracks. To the best of our knowledge this would
be the first analytical method that has this feature. The goal is to have a method
for both, for isotropic and anisotropic structures, with the cracks located at the
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re-entrant corners of the steps (see Fig. 1). It is worthwhile to mention that in
the following we will use the term "crack" instead of a "crack-like defect" for the
conciseness sake.

The secondary goal of the dissertation is the application of the proposed method
to different plate structures in order to investigate the effect of cracks on the natu-
ral vibrations.

crack

Figure 1: Side view of stepped plate with crack at re-entrant corner.

1.3 Structure of the dissertation

The dissertation has been organized as follows. Section 1 contains a historic back-
ground of vibration analysis, the aim and the structure of the dissertation. In Sec-
tion 2 our method is described in detail and applied to isotropic plate strips that
are stepped and have cracks. In Section 3 the method is extended to anisotropic
plates for determination of frequencies of natural vibrations. Finally, Section 4
extends the approach to anisotropic plates resting on the elastic foundation.
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2 Free vibrations of stepped plate strips with cracks

The objective of this section is to develop the basic concepts for the analysis of the
free vibrations of plate strips. A review of the papers by Lellep and Kägo [39,40]
is presented herein.

2.1 Formulation of the problem

Let us consider natural vibrations of a plate strip subjected to the in-plane tension
N (Fig. 2). Let the dimensions of the strip in x and y directions be l and b,
respectively.

y

x

b

la1 a2 an

NN

(a) Dimensions of the plate strip

z

x

h0

h1

hn

a1 a2 an l0

(b) Side view of the stepped plate strip

Figure 2: Plate strip

It is assumed that the thickness h(x, y) = hj is piecewise constant for x ∈
(aj , aj+1), where j = 0, . . . , n. The quantities aj and hj (j = 0, . . . , n) are
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In the present study like in Rizos et al. [72], Chrondos et al. [9], Dimarog-
onas [12] the effect of crack propagation in the body during vibrations is disre-
garded.

The material of plates is considered as a linear elastic material. Both, homo-
geneous elastic plates and these made of non-homogeneous composite materials
are studied.

The aim of this section is to elucidate the sensitivity of natural frequencies on
the crack parameters and geometrical parameters of the plate strip.

2.2 Basic equations

In the present case of the plate it is reasonable to assume that the stress-strain state
of the plate depends on the time t and coordinate x only, provided the stresses
mean generalized stresses (bending moments and membrane forces). However,
due to the tension N applied at the edge of the plate, in-plane forces have to be
taken into account. If, moreover, the inertia of the rotation is not neglected the
equilibrium equations of a plate element can be presented as (Reddy [70])

∂Mx

∂x
= Qx

∂Qx

∂x
= −N

∂2W

∂x2
+ ρhj

∂2W

∂t2
− Ij

∂4W

∂x2∂t2

(1)

for x ∈ (aj , aj+1). In (1) W = W (x, t) stands for the transverse deflection cor-
responding to the point with coordinate x at the middle plane of the plate whereas
Mx is the bending moment and Qx is the shear force. Herein

Ij =
ρh3j
12

(2)

where ρ stands for the density of the material. According to this theory the mem-
brane force in the direction of the axis x Nx = N in the present case.

Eliminating the shear force Qx from (1) one easily obtains

∂2Mx

∂x2
+N

∂2W

∂x2
= ρhj

∂2W

∂t2
− Ij

∂4W

∂x2∂t2
(3)

for x ∈ (aj , aj+1) where j = 0, . . . , n.
It is well known that (Reddy [70], Soedel [74])

Mx = −Dj
∂2W

∂x2
(4)

where Dj = Eh3j/[12(1 − ν2)]; j = 0, . . . , n.



Substituting (4) in (3) yields

Dj
∂4W

∂x4
−N

∂2W

∂x2
= −ρhj

∂2W

∂t2
+ Ij

∂4W

∂x2∂t2
(5)

for x ∈ (aj , aj+1) where j = 0, . . . , n. Here W is the transverse deflection,

Ij =
ρh3j
12

, Dj =
Eh3j

12(1 − ν2)
, (6)

E and ν are elastic moduli and ρ is density of the material. The equation (5) will
be considered as the equation of motion for the segment (aj, aj+1); j = 0, . . . , n.
It can be solved accounting for appropriate boundary conditions.

In the case of a free edge of a strip the boundary conditions are

∂2W

∂x2
= 0,

∂3W

∂x3
= 0, (7)

for the case of the clamped edge

W = 0,
∂W

∂x
= 0, (8)

and for the simply supported edge

∂W

∂x
= 0,

∂2W

∂x2
= 0. (9)

Let at the initial moment

∂W

∂t
= 0, W = ϕ(x) (10)

where ϕ is a given function.

2.3 Solution of the equation of motion

It is reasonable to look for the general solution of (5) in the form

W (x, t) = wj(x)T (t) (11)

for x ∈ (aj , aj+1) where j = 0, . . . , n.
Differentiating (11) with respect to variables x, t and substituting in (5) one

easily obtains
Djw

IV
j T −Nw′′

j T = −ρhjwjT̈ + Ijw
′′

j T̈ (12)
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for x ∈ (aj , aj+1) where j = 0, . . . , n. Here prims denote the differentiation with
respect to the coordinate x and dots with respect to time t.

Separating variables in (11) yields

Djw
IV
j − (Ijω

2 +N)w′′

j + ρhjω
2wj = 0 (13)

for j = 0, . . . , n and
T̈ + ω2T = 0 (14)

where ω stands for the frequency of natural vibrations. Evidently, the solution of
(14) which satisfies according to (10) initial conditions T (0) = d, Ṫ (0) = 0 has
the form

T = d cosωt (15)

where d is a constant.
The equation (13) is a linear fourth order ordinary equation with respect to the

variable wj . The characteristic equation corresponding to (13) is

Djr
4
j − (Ijω

2 +N)r2j + ρhjω
2 = 0 (16)

From (16) one easily obtains the roots

rj = ±

√

√

√

√

Ijω2 +N

2Dj
±

√

(Ijω2 +N)2

4D2
j

−
ρhj
Dj

. (17)

Introducing the notation

(r2j )1 = −λ2
j

(r2j )2 = µ2
j

(18)

one can present the general solution of (13) as

wj(x) = A1j cos λjx+A2j sinλjx+

+A3j sinhµjx+A4j cosh µjx (19)

which holds good for x ∈ (aj , aj+1), j = 0, . . . , n. Here A1j , . . . , A4j stand
for unknown constants of integration. These will be determined from boundary
conditions and requirements on the continuity of displacements and generalized
stresses.

However, it appears that the quantity W ′ cannot be continuous at x = aj ac-
cording to the model of distributed line springs developed by Rice and Levy [71];
Dimarogonas [12], Chondros et al. [8].
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2.4 Local compliance of the plate strip

Let us consider the influence of the crack located at the cross section x = a on
the stress-strain state of the strip in the vicinity of the crack. For the conciseness
sake we shall study the case when n = 1 and thus in the adjacent segments to the
crack the thickness equals to h0 and h1, respectively. Let h = min(h0, h1).

According to the distributed line spring method the slope of the deflection has
a jump

Θ = w′(a+ 0)− w′(a− 0) (20)

at the cross section x = a. The angle Θ can be treated as a generalized displace-
ment corresponding to the generalized stress Mx. Thus

Θ = CMx(a) (21)

or

C =
∂Θ

∂Mx(a)
(22)

where C is the local compliance due to the crack. It is known in the linear elastic
fracture mechanics that (see Anderson [1], Broberg [4])

Θ =
∂UT

∂Mx(a)
(23)

where UT is the extra strain energy caused by the crack. Combining (21)–(23)
one obtains

C =
∂2UT

∂M2
x(a)

. (24)

According to the concept of the distributed line spring 1/C = K , where K stands
for the stress intensity coefficient. It is known in the fracture mechanics that (see
Anderson [1])

KM = σM
√
πcFM

( c

h

)

. (25)

In (25) c is the crack depth and

σM =
6Mx(a)

bh2
, (26)

provided the element involving the cross section x = a is loaded by the bending
moment Mx only. Here the function FM is to be approximated on the basis of
experimental data [76].

If the element is loaded by the axial tension N then the stress intensity coeffi-
cient

KN = σN
√
πcFN

( c

h

)

(27)
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where

σN =
N

bh
. (28)

In the case of a combined loading the stress intensity coefficient

KT = KM +KN . (29)

Note that (29) holds good under the condition that (25)–(28) refer to the common
mode of fracture (see Anderson [1] and Broek [5]).

In the present case this requirement is fulfilled, KM and KN regard to the first
mode of the fracture. It was shown in the previous studies (Lellep et al. [43], [41],
[45]) that in the case of loading by the moment

KM =
E′h2b

72πf(s)
(30)

where E′ = E for plane stress state and E′ = E/(1 − ν2) in the case plane
deformation state.

Here s = c/h and the compliance

C =
72π

E′h2b

∫ s

0

sF 2
M (s)ds (31)

whereas

f(s) =

∫ s

0

sF 2
M (s)ds. (32)

The function FM was taken in the studies by Dimarogonas [12]; Rizos et al. [72]
as

FM = 1.93 − 3.07s + 14.53s2 − 25.11s3 + 25.8s4. (33)

According to the handbook by Tada et al. [76] the function FN can be approxi-
mated as

FN = 1.122 − 0.23s + 10.55s2 − 21.71s3 + 30.38s4. (34)

2.5 Determination of natural frequencies

In the case when the plate has a unique step the deflected shape of the plate can
be presented according to (19) as

w(x) = A1 sinλ0x+A2 cos λ0x+A3 sinhµ0x+A4 cosh µ0x (35)

for x ∈ [0, a] and as

w(x) = B1 sinλ1x+B2 cos λ1x+B3 sinhµ1x+B4 cosh µ1x (36)

16
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Arbitrary constants Ai, Bi (i = 1, . . . , 4) have to meet boundary requirements
and intermediate conditions at x = a. The latters can be presented as (Lellep,
Roots [43])

w(a− 0) = w(a+ 0)

w′(a− 0) = w′(a+ 0)− pw′′(a+ 0)

h30w
′′(a− 0) = h31w

′′(a+ 0)

h30w
′′′(a− 0) = h31w

′′′(a+ 0)

(37)

where according to (29), (30)

p =
Eh3

12(1 − ν2)KT
. (38)

It is worthwhile to mention that the third and the fourth equality in (37) express
the continuity of the bending moment and the shear force, respectively, when pass-
ing the step at x = a. It is known from the solid mechanics that these quantities
must be continuous (Soedel [74]).

Boundary conditions (8) at x = 0 admit to eliminate from (35) the unknown
constants

A4 = −A2,

A3 = −A1

λ0

µ0

.
(39)

The intermediate conditions (37) with boundary requirements (8) at x = l lead
to the system of six equations which will be presented in the matrix form. The
continuity of the deflection leads to the equation

















A1

A2

B1

B2

B3

B4

















⊤

×

















sinλ0a− λ0

µ0
sinhµ0a

cos λ0a− cosh µ0a
− sinλ1a
− cos λ1a
− sinhµ1a
− coshµ1a

















= 0. (40)
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According to the second relation in (37) one has

















A1

A2

B1

B2

B3

B4

















⊤

×

















λ0(cos λ0a− cosh µ0a)
−λ0 sinλ0a− µ0 sinhµ0a)
λ1(pλ1 sinλ1α− cos λ1α)
λ1(sinλ1α− pλ1 cos λ1α)

−µ1(cosh µ1α+ pµ1 sinhµ1α)
−µ1(sinhµ1α+ pµ1 cosh µ1α)

















= 0. (41)

The continuity requirements imposed on the bending moment and the shear force,
respectively, lead to the equations

















A1

A2

B1

B2

B3

B4

















⊤

×

















−h30λ0(λ0 sinλ0a− µ0 sinhµ0a)
−h30(λ

2
0 cos λ0a− µ2

0 coshµ0a)
h31λ

2
1 sinλ1a

h31λ
2
1 cos λ1a

−h31µ
2
1 sinhµ1a

−h31µ
2
1 coshµ1a

















= 0 (42)

and
















A1

A2

B1

B2

B3

B4

















⊤

×

















−h30λ0(λ
2
0 cos λ0a− µ2

0 cosh µ0a)
h30(λ

3
0 sinλ0a− µ3

0 sinhµ0a)
h31λ

3
1 cos λ1a

−h31λ
3
1 sinλ1a

−h31µ
3
1 coshµ1a

−h31µ
3
1 sinhµ1a

















= 0. (43)

The boundary conditions (7) can be expressed as

















A1

A2

B1

B2

B3

B4

















⊤

×

















0
0

−λ2
1 sinλ1l

−λ2
1 cos λ1l

µ2 sinhµ1l
µ2 coshµ1l

















= 0 (44)

and
















A1

A2

B1

B2

B3

B4

















⊤

×

















0
0

−λ3
1 sinλ1l

−λ3
1 cos λ1l

µ3 sinhµ1l
µ3 cosh µ1l

















= 0. (45)
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The system (40)–(45) is a linear homogeneous system of algebraic equations.
It has a non-trivial solution only in the case, if its determinant ∆ equals to zero.
The equation ∆ = 0 is solved up to the end numerically. Let us consider some
examples. The results regarding to cantilever plate strips are presented in the
Fig. 3 and Fig. 4. Here the natural frequency is plotted versus the location of the
step a = αl. It can be seen from Fig. 3 and Fig. 4 that the frequency of a cracked
structure is always less than that of a strip without defects.
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Figure 3: Natural frequencies of stretched strips; γ = 0.5.
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Figure 4: Natural frequencies of strips; γ = 0.7.
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3 Free vibrations of stepped plate with cracks

The aim of this section is to determine the eigenfrequencies of the plate and to
study the sensitivity of free vibrations on the crack location and depth. This sec-
tion is based on the papers Kägo and Lellep [29, 30].

3.1 Statement of the problem and governing equations

Consider a thin stepped rectangular plate of anisotropic material, as shown in
Fig. 5. The plate is simply supported at all edges and the plate has width b, length
l. Assume that the thickness h = hj for x ∈ (aj , aj+1), where j = 0, . . . , n. Let
us introduce the notation

hj = γjh0, (46)

where 0 < γj ≤ 1. The parameters hj , aj , γj will be treated as given constants.

x

y

h0 h1 hn

l

b

a1 a2 an

Figure 5: Stepped plate with crack

It is assumed, that the plate has part-through cracks [19] at the corners of the
re-entrant parts of the steps. Hence according parameters for the cracks are the
crack position

aj = αj l, (47)

where 0 ≤ αj ≤ 1 and the crack length

cj = sjhj , (48)

where 0 ≤ sj < 1.
The differential equation of the vibration of the anisotropic plate is (Reddy

[69])

D11

∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
= q − I0

∂2w

∂t2
. (49)
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In (49) w(x, y, t) is the deflection of the plate, Dij stand for flexural stiffness
coefficients, I0 = ρhb is the moment of inertia, ρ is the density of the material
and q is the load intensity. Since we study free vibrations of the plate one has to
take q = 0.

The function w(x, y, t) is presented in the form

w(x, y, t) = X(x) sin

(

kπy

b

)

cos(ωt). (50)

Substituting (50) into (49) we obtain

D11X
IV − 2 (D12 + 2D66)

(

kπ

b

)2

X ′′ +D22

(

kπ

b

)4

− I0ω
2 = 0. (51)

If the material is an unidirectionally reinforced fiber composite then the con-
stants Dij take the form

D11 =
E1h

3

12(1 − ν12ν21)
, (52)

D22 =
E2h

3

12(1 − ν12ν21)
, (53)

D12 + 2D66 =
ν12E2h

3

12(1 − ν12ν21)
+

2G12h
3

12
. (54)

Here E1 and E2 are Young’s moduli, ν12 and ν21 are Poisson’s ratios, hi are the
plate thicknesses, where i = 0, . . . , n, and G12 is shear modulus (Herakovich
[18]). Hence, solving the characteristic equation of (51) the solution of the fourth
order equation can be expressed as

Xj(x) = A1j sinλjx+A2j cos λjx+A3j sinhµjx+A4j cosh µjx (55)

for x ∈ (aj , aj+1), j = 0, . . . , n. Here A1j , . . . , A4j are integration constants,
which are to be determined using the boundary and continuity conditions.

However, it appears that the quantity X ′ cannot be continuous at x = aj ac-
cording to the model of distributed line springs developed by Rice and Levy [71];
Dimarogonas [12], Chondros et al. [8].

3.2 Additional flexibility due to the crack

The weakening effect of cracks, flaws, notches and different types of defects was
recognized a long ago. The relationship between the additional compliance C and
the stress intensity coefficient K of a cracked beam was caught by Irwin [24]. On
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the other hand, the stress intensity coefficient is coupled with the energy release
rate computed for the infinitesimal change of the crack length.

In the case of anisotropic bodies with eventual fracture modes I and II the
energy release rate is (see Nikpour [61], Nikpur and Dimarogonas [62])

G =−
A22

2
Im

(

µ1 + µ2

µ1µ2

)

K2
I +

A11

2
Im(µ1 + µ2)K

2
II

+A11 Im(µ1µ2)KIKII . (56)

In (56) A11, A22, A12 stand for elastic constants for an anisotropic material
(see Herakovich [18], Reddy [69])

A11 =
1

E1

(

1−
E2

E1

ν212

)

,

A22 =
1

E2

(

1− ν223
)

,

A12 = −
ν12
E1

(1 + ν23) .

Here
Im(µ) = y

if the complex number µ = x+ iy.
The complex numbers µ1, µ2 in (56) are the roots of the characteristic equation

A11µ
4 − 2A16µ

3 + (2A12 +A66)µ
2 − 2A26µ+A22 = 0. (57)

In the following we shall confine to the unidirectionally reinforced composites.
Moreover, let us confine to the case of cracks of the first mode. Let the stress
intensity coefficient and the bending moment applied to the crack at x = aj be
Kj and Mj , respectively. It is well known in the linear elastic fracture mechanics
that for isotropic materials

Kj =
6Mj

bh2
√
πcjF (58)

where
h = min(hj−1, hj)

Following the paper [3] we can state that in the case of the orthotropic materials

Kj =
6Mj

bh2j

√
πcjF (sj)Y (ξ), (59)
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provided hj < hj−1 and

Y (ξ) = 1 + 0.1(ξ − 1)− 0.016(ξ − 1)2 + 0.002(ξ − 1)3. (60)

Here

ξ =

√
E11E22

2G12

− ν12

√

E22

E11

and F is a shape function which must be determined on the basis of experimen-
tal data. It is known in the fracture mechanics that the energy release rate; the
generalized force P and the compliance C are coupled as (see Broek [5])

G =
P 2

2b

dC

dc
. (61)

Specifying the last formula for the crack located at x = aj and taking into account
that the generalized force P = Mj one obtains

M2
j

2b

dCj

dcj
=

36M2
j A

h4jb
πcjF

2(sj)Y
2(ξ) (62)

where

A =
A22

2
Im

(

µ1 + µ2

µ1µ2

)

. (63)

The solution of (62) which meets the natural initial condition (Cj = 0 when
sj = 0) can be presented as

Cj =
72π

h2j
f(sj)AY

2 (64)

where

f(sj) = 1.8624s2j − 3.95s3j + 16.375s4j − 37.226s5j + 76.81s6j

− 126.9s7j + 172.5s8j − 143.97s9j + 66.56s10j (65)

It was shown in the previous section that the slope discontinuity at x = aj

Θj =
∂w

∂x
(aj+0, t)−

∂w

∂x
(aj−0, t) (66)

can be calculated as
Θj = CjMj (67)

where Cj is given by (64) and Mj = Mx(aj , t). Since Mx is continuous with
respect to x one can select

Mj = −
(

D11

∂2w

∂x2
+D12

∂2w

∂y2

)








x=aj+0

. (68)
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3.3 Determination of eigenfrequencies

In the case when the plate has an unique step the deflected shape of the plate can
be presented according to (55) as

w(x) = A1 sinλ0x+A2 cos λ0x+A3 sinhµ0x+A4 cosh µ0x (69)

for x ∈ [0, a] and as

w(x) = B1 sinλ1x+B2 cos λ1x+B3 sinhµ1x+B4 cosh µ1x (70)

for x ∈ [a, l].
Arbitrary constants Ai, Bi (i = 1, . . . , 4) have to meet boundary requirements

and intermediate conditions at x = a. The latters can be presented as (Lellep and
Kägo [40])

w(a− 0) = w(a+ 0)

w′(a− 0) = w′(a+ 0)− pw′′(a+ 0)

h30w
′′(a− 0) = h31w

′′(a+ 0)

h30w
′′′(a− 0) = h31w

′′′(a+ 0)

(71)

where p is the stiffness parameter defined according to (64)–(68).
It is worthwhile to mention that the third and the fourth equality in (71) express

the continuity of the bending moment and the shear force, respectively, when pass-
ing the step at x = a. It is known from the solid mechanics that these quantities
must be continuous (Soedel [74]).

The obtained system is a linear homogeneous system of algebraic equations. It
has a non-trivial solution only in the case, if its determinant ∆ equals to zero. The
equation ∆ = 0 is resolved up to the end numerically. In the following figures
some examples are shown. The results for simply supported plates are presented
in Fig. 6 and Fig. 7. Fig. 6 corresponds to the case h1 = 0.5h0 whereas Fig. 7 is
associated with h1 = 0.7h0
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Figure 6: Natural frequencies of an anisotropic plate; γ = 0.5.

4.
0

4.
5

5.
0

5.
5

α

ω

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

s=0.0
s=0.2
s=0.4
s=0.6

Figure 7: Natural frequencies of an anisotropic plate; γ = 0.7.
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4 Natural vibrations of stepped plate with cracks on elas-

tic foundation

The aim of this section is to consider the effect of the elastic foundation on the
eigenfrequencies of the plate. Additionally, we study the sensitivity of free vibra-
tions on the crack location and depth. This section is based on the papers by Kägo
and Lellep [27, 28].

4.1 Formulation of the problem

We consider an elastic stepped rectangular plate (Fig. 8) made of anisotropic ma-
terial with dimensions and crack locations like in previous section.

x

y

h0 h1

l

b

a

(a) System of coordinates

l

h1

h0 a

x

z

(b) Influence of the foundation

Figure 8: Geometry of the plate

4.2 Equations of motion

According to the classical thin plate theory given by Reddy [69] the differential
equation of the free vibration of thin plates on the Winkler foundation (Fig. 8) can
be expressed as follows [47]

D11
∂4w
∂x4 + 2(D12 + 2D66)

∂4w
∂x2∂y2

+D22
∂4w
∂y4

+ κw − ω2ρw = 0, (72)
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where w(x, y, t) denotes the function of the mode shape, κ is the elasticity coeffi-
cient of the foundation, ω is the natural frequency, ρ is the mass density.

The transverse displacement w can be written in the form

w(x, y, t) = X(x) sin

(

kπy

b

)

eλt, (73)

where k is the wave number of the kth mode in y-direction (k = 1, 2, . . . ), b is
the width of the plate, λ is a complex number.

Substituting (73) into (72) one obtains

D11X
IV − 2 (D12 + 2D66)

(

kπ

b

)2

X ′′ + (74)

+

(

D22

(

kπ

b

)4

+ κ− ω2ρ

)

X = 0.

The solution of equation (74) can be expressed as

Xj(x) = A1j sinλjx+A2j cos λjx+A3j sinhµjx+A4j cosh µjx (75)

for x ∈ (aj , aj+1), j = 0, . . . , n. Here A1j , . . . , A4j are integration constants,
which are to be determined using the boundary and continuity conditions [40].

However, it appears that the quantity X ′ cannot be continuous at x = aj ac-
cording to the model of distributed line springs developed by Chondros et al. [8],
Rice and Levy [71], Dimarogonas [12].

The crack emanating from the re-entrant corner of the plate affects the vibra-
tional behavior of the structure. The influence of cracks on vibrations of the plate
was described in the previous section.

Some examples are presented in Fig. 9 and Fig. 10. These results regard to
anisotropic plates on elastic foundation, which are clamped at two opposite edges
and other two are free. Fig. 9 corresponds to the case h1 = 0.5h0 and Fig. 10 is
associated with h1 = 0.7h0. The length of the crack is the same in the both cases.
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Figure 9: Natural frequencies of a stepped plate on elastic foundation; γ = 0.5,
s = 0.6.
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Summary

In the current dissertation free vibrations of elastic plates and plate strips are
studied. It is assumed that the plates are weakened by crack-like defects and have
piecewise constant thickness. The cracks are considered as stationary surface
cracks which are located at the re-entrant corners of the steps and which have not
fully penetrated the plate thickness.

By combining the theory of elastic plates and the theory of the linear elas-
tic fracture mechanics a new method for determining the natural frequencies of
elastic structures is developed in the dissertation.

The dissertation is based on the six papers of the author (three of these are
published during the last three years). The dissertation consists of the review
paper of the obtained results, the copies of the papers, the list of literature and CV
of the author.

The review paper consists of the historical review of the literature (Section 1)
and of three main sections.

In the second section of the paper natural frequencies of plate strips subjected
to the axial tension are studied. The material of the plate strips is assumed to be
a pure elastic material and the hypothesis of Kirchhoff are assumed to hold good.
A refined version of the classical bending theory is employed.

The influence of cracks on the vibrational characteristics is taken into account
according to the model of distributed line springs. The latter uses the stress inten-
sity coefficient known in the elastic fracture mechanics.

In the subsequent sections the developed method is used for determination of
the natural frequency of free vibrations of anisotropic plates with and without an
elastic foundation. The influence of geometrical and material parameters on the
vibration of the plates resting on the elastic foundation has been analyzed.

This solution can be used in nondestructive testing.
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Kokkuvõte

Pragudega elastsete astmeliste plaatide omavõnkumised

Käesolevas dissertatsioonis vaadeldakse isotroopsete ribade ja anisotroopsete
plaatide omavõnkumisi. Vaatluse all olevad plaadid on tükiti konstantse paksusega
ning nõrgestatud pragudega.

Antud dissertatsioon põhineb autori kuuel teaduslikul publikatsioonil. Kolm
neist publikatsioonidest on avaldatud kolme viimase aasta jooksul.

Väitekiri koosneb kokkuvõtvast ülevaateartiklist, publikatsioonide koopiatest,
kirjanduse ülevaatest ja autori elulookirjeldusest. Ülevaateartikkel omakorda koos-
neb ajaloolisest kirjanduse ülevaatest ja kolmest põhiosast koos kokkuvõtvate jä-
reldustega.

Esimeses põhiosas vaadeldakse plaadi ribade vabavõnkumisi erinevate rajatin-
gimuste korral, juhul kui plaadi ribale mõjub telgsuunaline tõmbejõud. Eeldame,
et plaadi ribad on elastsest materjalist ja kehtivad Kirchhoffi hüpoteesid.

Teises põhiosas on vaatluse all anisotroopsed plaadid ning kolmandas põhi-
osas anisotroopsed plaadid elastsel alusel. Mõlemal juhul vaadeldakse ülesannet
erinevate rajatingimuste korral.

Plaatide ja plaadi ribade geomeetrilisteks iseärasusteks on astmelisus ja paksu-
se muutumise kohtades asuvad praod. Praod on stabiilsed ja konstantse pikkuse-
ga. Prao mõju plaadi omavõnkumisele võetakse arvesse lokaalse järeleandlikkuse
koefitsiendi abil ning pinge intensiivsuse koefitsiendiga, mis tuleneb purunemis-
mehaanikast.

Kõikidel juhtudel on omavõnkumiste uurimiseks kasutatud analüütilist meeto-
dit, mis põhineb klassikalisel plaatide teooria ning purunemismehaanika võrran-
ditel ja kriteeriumitel.
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