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Sample Size Calculations in Clinical Trials 

The aim of this thesis is to give an overview of calculating sample size in clinical trials. First, a brief 

introduction to clinical trials and factors affecting sample size is given. This is followed by chapters 

on sample size calculations for three main trial types. Every design is then illustrated by a practical 

example and instructions for calculations in SAS and R software.  
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Valimimahu arvutused kliinilistes uuringutes 

Selle bakalaureusetöö eesmärgiks on anda ülevaade valimimahu arvutamisest kliinilistes uuringutes. 

Esmalt kirjeldatakse lühidalt kliinilisi uuringuid ning valimimahtu mõjutavaid tegureid. Seejärel 

käsitletakse valimimahu arvutusi kolme põhilise uuringutüübi korral. Igale disainile on lisatud 

praktiline näide ning SASi ja Ri koodid valimimahu arvutamiseks. 

Võtmesõnad: kliinilised uuringud, R, valimimaht, SAS 

P160 Statistika, operatsioonanalüüs, programmeerimine, finants- ja kindlustusmatemaatika 
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1. Introduction 

The purpose of this Bachelor’s thesis is to give an overview of calculating sample size in clinical 

trials. Clinical trials are studies carried out to test new experimental treatments before they can be 

made available for the market. These studies may have different purposes. The objectives of clinical 

studies may include one or more of the following four: (i) demonstrate/confirm efficacy, (ii) establish 

a safety profile, (iii) provide an adequate basis for assessing the benefit/risk relationship to support 

labelling, and (iv) establish the dose-response relationship. [1] Currently (according to data from 

01.04.2016) there are 208 ongoing trials in Estonia. Most of them are conducted in the field of 

oncology, followed by neurological studies. [2] 

The process of choosing the sample size is of great importance and it is equally inefficient to include 

either too few or too many subjects in a study. Clinical trials can be extremely expensive and subjects 

hard to find. Also, as there is no guarantee that the experimental treatment is better or safer than the 

already existing one, the subjects may be put at unnecessary risk. Due to these reasons smaller sample 

sizes are in favor. At the same time, it is unethical to include too few patients because that can lead 

to unreliable conclusions. Even worse is the increased probability of getting no conclusions at all 

when at the same time there are people who have been put at health risk. 

There are three types of clinical trials that are clearly distinguishable: superiority, non-inferiority and 

equivalence. For each, a brief introduction is given which is followed by explanations on hypothesis 

testing and finding optimal sample size considering different study designs. Finally, to put theory into 

practice, different methods for statistical software – SAS and R – are presented throughout the thesis. 

In addition to providing commands for sample size calculations, simple explanatory cases are 

presented to illustrate the use of the programs. 

The intention is to create a guidance for StatFinn Oy employees. Chapters are written in a way to 

make it possible quickly find the right formulas and/or syntax for software when the study type and 

design are determined. This is the main reason for having many repetitions in every paragraph. The 

aim is to be as clear as possible and not to overcomplicate the calculation progress for sample size.  
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2. Clinical Dictionary 

A short dictionary of clinical terms used in this thesis is provided to make reading understandable. 

For Estonian translations English-Estonian medical dictionary by Birgit Parkson [3] was used. 

active control aktiivne võrdlusravi 

 a marketed treatment used as a reference in a clinical trial  

baseline algandmed 

 

a data collected before subjects receive the first dose of treatment 

(pre-treatment) 

bioavailability biosaadavus 

 

the rate to which a treatment reaches the target organ or systemic 

circulation  

bioequivalence bioekvivalentsus 

 

an equivalent concentration of treatments in plasma and tissue 

when administered to the same patient 

blinded study pimemenetlusega uuring 

 

a strategy in clinical trials where one or more parties involved (e.g. 

participants, clinicians) do not know the treatment assigned for 

randomized groups  

clinical trial kliiniline uuring 

 

a research investigation where participants receive one or more 

treatments to answer questions about the safety and efficacy of 

these treatments 

clinically meaningful difference kliiniliselt oluline erinevus 

 

the smallest difference in treatment effects that is important for 

study conductors 

control group kontrollgrupp 

 the subjects receiving control treatment (active control or placebo) 

crossover trial ristuvuuring 

 a trial design where every subject serves as his/her own control 

endpoint tulemusnäitaja 

 a variable that is of focus to evaluate safety and/or efficacy 

equivalence trial samaväärsusuuring 

 

a trial that is aiming to show that the results of experimental and 

control treatment differ by an amount that is clinically unimportant 

experimental group ekperimentaalgrupp 

 the subjects receiving experimental treatment 

experimental treatment ekperimentaalravi 

 a treatment of focus 

intention-to-treat analysis ravikavatsuse analüüs 

 

an analysis that is analyzing every randomized subject as assigned 

to their randomized group (including e.g. violators) 
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non-inferiority trial mitte-halvemusuuring 

 

a trial that is aiming to show the results of experimental treatment 

are not much worse from control treatment 

parallel trial pralleelrühma uuring 

 

a trial design where every subject is randomized into an 

experimental group or a control group 

per protocol analysis uuringuplaani analüüs 

 

an analysis that is analyzing only those subjects that have followed 

the protocol 

placebo platseebo 

 

a treatment with no active ingredients used as a reference in a 

clinical trial 

primary endpoint esmane tulemusnäitaja 

 the most important endpoint in the study 

protocol uuringuplaan 

 

a document describing the objectives, design, statistical 

considerations etc. of a certain clinical trial 

protocol violator uuringuplaani rikkuja 

 a subject who has not been following the protocol 

randomized controlled trial randomiseeritud kontrollkatse 

 

an experiment where study participants are randomly allocated into 

different study groups 

reference value võrdlusnäitaja väärtus 

 a baseline, pre-treatment value of a certain endpoint 

sample size valimimaht 

 the number of subjects participating in the study 

study treatment/drug uuringuravi(m) 

 a treatment/drug under investigation 

subject uuritav 

 a person participating in the clinical trial 

superiority trial paremusuuring 

 

a trial that is aiming to show that the results of experimental 

treatment are better than the results of control treatment 

treatment allocation ravijaotus 

 the desired proportion of subjects in each study group 

treatment effect raviefekt 

 the true mean difference between a study drug and a control 
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3. Clinical Trials 

3.1. Sample Size in Clinical Trials 

In clinical trials the randomized controlled trial is a standard. It is a study design where subjects are 

randomized into a control or an experimental study drug group. The control group can be 

administered a standard treatment (active control) or placebo. Once the subjects have received the 

treatment, the aim of a randomized controlled trial is to measure and compare the outcomes of the 

study. This design reduces the effect of confounding factors that may lead to wrong interpretations 

considering the associations between study variables. [4] 

Placebo control is usually used to prove the beneficial effect of a new treatment, but in many cases it 

is considered unethical. When beneficial standard treatment exists, it should always be used for 

comparison. The use of placebo can affect the sample size. For example, in non-inferiority trials the 

sample size needed for treatment difference orientated placebo-controlled studies is much smaller 

than for studies where active-control is needed. This is because the difference between no treatment 

and new treatment is much larger than the difference between new and already existing treatment. 

Sample size should provide the right amount of subjects for different kinds of studies. In addition to 

considering the trial type (superiority, non-inferiority or equivalence) and study design (parallel or 

crossover), the sample size should be chosen so that the protocol violators, patient dropouts or 

subjects accidentally randomized into wrong groups would not have significant impact on the final 

result. The inclusion and exclusion criteria should be stated carefully and kept constant to avoid any 

misunderstandings and inaccurate conclusions. In long-term studies these criteria still may change 

because of findings during the study. [5] 

There are two approaches in study group comparison that may affect the sample size chosen: Per 

Protocol analysis and Intention-To-Treat analysis. Patients who are not following the protocol are 

excluded from Per Protocol analysis. In Intention-To-Treat analysis the perfect scenario would be 

that none of the patients violate the protocol. Nevertheless, if such patients do exist they are still 

analyzed as if they followed the protocol perfectly. For superiority trials, Intention-To-Treat analysis 

is usually applied. This is mainly done to avoid overly positive conclusions caused by excluding all 

protocol violators and therefore reducing the probability of type I error. For non-inferiority and 

equivalence trials both Intention-To-Treat and Per Protocol analysis should be conducted to obtain 

proper conclusions. Both approaches should give similar results for these trials. When the results 
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differ a little, the least positive one is preferred. A good sample size should consider the analysis type 

used and try to minimize the effects it has on the results. [5] [6] [7] 

Sample size calculations should be based on a single primary endpoint that is similarly evaluated for 

each study participant based on collected information on that subject. It should form the basis of the 

objectives of the trial and be of biological and/or clinical importance. For example, it could be death 

of the patient or occurrence of a symptom. A primary endpoint should be carefully considered. 

Despite the fact that it is not recommended, it may happen that there are several primary endpoints. 

In that case, all endpoints should be considered and sample size should be chosen so that every 

endpoint would have sufficient power in hypothesis testing. [1] 

Planning sample size must be based on prior data. When parameters needed for the sample size 

calculation cannot be estimated, it is recommended to conduct a pilot study which is a preliminary 

study conducted to save resources in an inefficiently designed trial. [1] [8] 

Therefore, sample size has to be determined by considering everything above-mentioned and 

balancing those factors. 

3.1.1. Power and Hypothesis Testing 

In the table below (Table 1) the concept of type I error and type II error can be seen. The null 

hypothesis (𝐻0) refers to a default position that there is no relationship or no difference among groups. 

There are four different possibilities: (i) 𝐻0 is true and not rejected, (ii) 𝐻0 is true but rejected (type I 

error), (iii) 𝐻0 is false, but not rejected (type II error), and (iv) 𝐻0 is false and rejected. Type I error 

is usually denoted by α and type II error by β. [1] 

Table 1 The concept of type I error and type II error 

 𝑯𝟎 True 𝑯𝟎 False 

Reject 𝑯𝟎 Type I Error (α) Correct Rejection (1 − β) 

Fail to Reject 𝑯𝟎 Correct Decision (1 − α) Type II Error (β) 

From the table it may be concluded that 

𝛼 = 𝑃𝑟{𝑡𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟} = 𝑃𝑟{𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑤ℎ𝑒𝑛 𝑖𝑡 𝑖𝑠 𝑡𝑟𝑢𝑒}, 



11 

 

𝛽 = 𝑃𝑟{𝑡𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟} = 𝑃𝑟{𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑤ℎ𝑒𝑛 𝑖𝑡 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒}. 

An upper bound for α is known to be the level of significance that is chosen for hypothesis testing. 

Most commonly the value 0.05 is chosen to show confidence concerning the parameter of interest. 

1 − α is called the level of confidence and it is the probability of not rejecting the null hypothesis 

(𝐻0) when it is true. In clinical trials, the aim is to decrease both type I error and type II error. With a 

fixed sample size, when α increases, β decreases and vice versa. The only way to decrease them both 

at the same time is to increase the sample size. [1] 

The power of a test is the probability that the test will correctly reject the null hypothesis (𝐻0) when 

the alternative hypothesis (𝐻1) is true, i.e., 

𝑃𝑜𝑤𝑒𝑟 = 1 − 𝛽 = 𝑃𝑟{𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑤ℎ𝑒𝑛 𝑖𝑡 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒}. 

This probability should be as large as possible to be sufficiently comfortable of the likelihood of 

finding a statistically significant treatment effect when such exists. In practice, the desired power is 

commonly 80% or 90%. Lack of power can lead to various errors. For studies where null hypothesis 

(𝐻0) is not rejected, it is hard to distinguish between having no effect at all and failing to prove an 

adequately sized observed effect due to a too small sample size. 

3.1.2. Objectives of a Typical Clinical Trial 

In clinical trials, the general objective is proving superiority, non-inferiority or equivalence. These 

three study types are clearly distinguishable.  

Superiority trials are aiming to prove that the experimental treatment is better than the active control 

or placebo. Nowadays, that is often hard to prove since there are so many effective drugs on the 

market. That is why the most common trial types are non-inferiority and equivalence trials. In those 

trials, the experimental treatment should have been proven superior to a placebo beforehand. [9] 

Non-inferiority trials aim to prove that the new treatment is no less effective than the control. These 

studies may be conducted to show the increased safety of the experimental treatment instead of 

showing the superiority of treatment effect. [9] 

Equivalence trials aim to prove that the experimental and control treatments are similar by showing 

that the difference in their treatment effects stays within an acceptable interval. Many of these trials 

are bioequivalence trials where it is desirable to show that the experimental treatment and control 

treatment have similar bioavailability. [9]  
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To prove superiority, non-inferiority or equivalence, the clinically meaningful difference is used. It 

is called a superiority margin, non-inferiority margin or equivalence margin (limit), respectively. The 

treatment effect, i.e. 𝜇𝐸 − 𝜇𝐶 (𝜇𝐸 and 𝜇𝐶   being the true mean responses of the experimental treatment 

and the control treatment, respectively), is compared with the margin in order to make conclusions. 

It is important to notice that the desired treatment effect may be negative or positive depending on 

the primary endpoint of the study. On one hand, if the value of the primary endpoint is expected to 

increase, e.g. haemoglobin concentration in patients with anaemia, the treatment effect is larger than 

zero. On the other hand, if the value of the primary endpoint is expected to decrease, e.g. the blood 

pressure in patients with hypertension, the treatment effect is less than zero. This concept can be seen 

in the figure below (Figure 1) where the visual summary of hypotheses for deciding whether the new 

treatment is superior, non-inferior or equivalent to control is presented. [1] 

 

Figure 1 Hypotheses testing with different study types [10] 

For non-inferiority and superiority, the upper hypotheses are used when the value of a primary 

endpoint is expected to increase and lower hypotheses are used when the value of a primary endpoint 

is expected to decrease. For example, when the larger value is better, the null hypothesis for 

superiority trial is 𝜇𝐸 − 𝜇𝐶 ≤ 𝑚𝑎𝑟𝑔𝑖𝑛, when smaller value is better, the null hypothesis is formulated 

as 𝜇𝐸 − 𝜇𝐶 ≥ −𝑚𝑎𝑟𝑔𝑖𝑛. 

From now on, for the convenience of notation and understanding and without loss of generality, it is 

assumed that the larger value is always better (the value of a primary endpoint is expected to increase). 
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3.1.3. Clinically Meaningful Difference 

It is important to acknowledge that treatment effects may be statistically significant but are not always 

clinically important. For that reason, in randomized controlled trials, the general term clinically 

meaningful difference, is used. It is the smallest difference in treatment effects that is important for 

study conductors. The value of the clinically meaningful difference should never be zero as two 

treatments cannot be exactly equal. The term and notation differ for each trial type: for superiority 

trials it is the superiority margin (𝛿), in non-inferiority trials it is the non-inferiority margin (𝛿𝑁𝐼) and 

in equivalence trials it is the equivalence limit (𝛿𝐸). Establishing 𝛿 is discussed in Chapter 5 and 

Chapter 6. Determining clinically meaningful difference is crucial prior to the study and it is rather 

difficult to find the best method for obtaining 𝛿. Most often it is recommended to use data from 

previous placebo-controlled studies that were planned under similar conditions or use the information 

from a pilot study. For non-inferiority and equivalence studies, if the selected 𝛿 is too small, many 

effective drugs may be rejected. Contrary to that, when the 𝛿 is chosen to be too big, many inefficient 

drugs may be accepted. For superiority it is the opposite. [1] [4] 

3.1.4. One-Sample Analysis 

One-sample analysis is used to evaluate the effect within a particular study group. The hypotheses 

are defined to confirm whether there is a significant difference between pre- and post-treatment or 

mean change from baseline to endpoint. [1] 

For sample size calculations, let 𝑥𝑗 be the response of a treatment from the 𝑗th participant of the study 

group, 𝑗 = 1, 2, … , 𝑛. It is assumed that 𝑥𝑗’s are realizations of independent and identically distributed 

normal random variables 𝑋𝑗 with mean 𝜇 and variance 𝜎2. The sample mean is then defined as 

𝑥̅ =
1

𝑛
∑𝑥𝑗

𝑛

𝑗=1

. 

For one-sample analysis 𝜇 − 𝜇0 is being estimated where 𝜇 is the true mean response of an 

experimental treatment and 𝜇0 is the reference value. Reference value can be for example the pre-

treatment value of an endpoint. [1]  

In practice, one-sample analysis is not used in non-inferiority and equivalence trials and will therefore 

only be discussed for superiority trials in this thesis. 
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3.1.5. Two-sample Analysis 

Two-sample analysis is used to compare efficacy or other factors of an experimental treatment to a 

control treatment. It can be also used for comparing different doses. There are two designs that are 

most often used in practice – parallel design and crossover design. In parallel study design, subjects 

are randomized into groups and get only one treatment (experimental or control) for the whole 

duration of the study. For crossover design the subjects receive several treatments over the course of 

the trial. [1] 

Parallel design (Figure 2) is the most common one used in clinical trials and is quite easily conducted 

compared to other study designs. It is based on between-subject variability which means that 

differences are observed between different subjects. [1] [5] 

 

Figure 2 Parallel design 

For two-sample parallel design let 𝑥𝑗𝑘, 𝑗 = 1, 2, … , 𝑛𝑘, 𝑘𝑖 = 1, 2, be the response that is observed 

from the 𝑗th participant in the 𝑘th treatment group. It is expected that 𝑥𝑗𝑘 are realizations of 

independent normal random variables with mean 𝜇𝑘 and variance 𝜎𝑘
2. The sample mean for the 𝑘𝑖th 

treatment is defined as 

𝑥̅𝑘. =
1

𝑛𝑘𝑖
∑𝑥𝑗𝑘 .

𝑛𝑘

𝑗=1

 

For two-sample analysis 𝜇𝐸 − 𝜇C is being estimated, that is, the true mean difference between test 

drug and a control where 𝜇𝐸 is the true mean response of an experimental treatment and 𝜇Cis the true 

mean response of a control treatment. [1] 

Crossover design is the most used one in equivalence trials. The simplest form of crossover trial is a 

standard 2x2 design (Figure 3) which means that there are two treatments and every study participant 

is getting them both in one of the two potential sequences ‘experimental first – then control’ or 
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‘control first – then experimental’. It is based on within-subject variability which means that every 

participant is one’s own control. [1] [5] 

 

Figure 3 2x2 crossover design 

Let 𝑦𝑖𝑗𝑘 be the response from 𝑗th subject (𝑗 = 1,… , 𝑛) in the 𝑖th sequence (𝑖 = 1, 2) under the 𝑘th 

treatment (𝑘 = 1, 2). A simplified 2x2 model for crossover trial is 

𝑦𝑖𝑗𝑘 = 𝜇𝑘 + 𝛾𝑖𝑘 + 𝑠𝑖𝑗 + 𝜀𝑖𝑗𝑘, 1 

where 

 𝜇𝑘 is the effect of the 𝑘th treatment; 

 𝛾𝑖𝑘 is the fixed effect of the 𝑖th sequence under treatment 𝑘; 

 𝑠𝑖𝑗 is the between subject variability, 𝑠𝑖𝑗~𝑁(0, 𝜎𝐵
2), i.i.d.; 

 𝜀𝑖𝑗𝑘 is the within subject variability, 𝜀𝑖𝑗𝑘~𝑁(0, 𝜎𝑊
2 ), i.i.d. [1] [11] 

3.1.6. Sample Size Calculations 

In clinical trials, sample size calculations can be based on (i) precision analysis, (ii) power based 

analysis, (iii) probability assessment or (iv) some other statistical inferences. In practice, the most 

commonly used are the first two – precision analysis and power based analysis. This thesis discusses 

these analyses in separate paragraphs based on controlling type I error (or confidence level) and type 

II error (or power). [1] 

Probability assessment relies on a probability statement and it is used when it is desirable to detect a 

small difference of rare events. This method helps to avoid the need for an extremely big sample size. 

Other methods for sample size calculations include reproducibility probability (an estimated power 

                                                 
1 For detailed derivations of finding sample size for 2x2 crossover design, see B. Jones, M. G. Kenward, Design and 

Analysis of Cross-Over Trials, Chapman and Hall/CRC, 2014 (https://www.crcpress.com/Design-and-Analysis-of-Cross-

Over-Trials-Third-Edition/Jones-Kenward/9781439861424).  

https://www.crcpress.com/Design-and-Analysis-of-Cross-Over-Trials-Third-Edition/Jones-Kenward/9781439861424
https://www.crcpress.com/Design-and-Analysis-of-Cross-Over-Trials-Third-Edition/Jones-Kenward/9781439861424
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approach for the second clinical trial2) and sample size re-estimation without unblinding (re-

estimating sample size based on data collected up to a certain time point). These methods are out of 

the scope of this thesis and are not discussed any further. [1] 

3.1.6.1. Power Based Sample Size Analysis 

In hypothesis testing, type I error is considered to be the more serious error than type II error. Because 

of that an acceptable α is determined and the aim is to minimize 𝛽 by choosing the right sample size. 

This kind of sample size determination where α and 𝛽 are given, is referred to as power based 

analysis. It can be used to find the smallest possible sample size but still having a feasible probability 

of discovering an effect of given size. [1] 

For power based analysis the following is needed: 

 determination of an acceptable level of significance; 

 selection of a desirable power; 

 specification of a clinically meaningful difference; 

 having the knowledge of the standard deviation of the primary endpoint. [1] 

The formula used for sample size calculations when testing the following hypothesis  

𝐻0: 𝜇E = 𝜇C 

𝐻1:  𝜇E ≠ 𝜇C, 

and assuming 𝑛1 = 𝑛2 = 𝑛, is 

𝑛 =
(𝜎1
2 + 𝜎2

2)(𝑧α∕2 + 𝑧𝛽)
2

𝛿2
, 

where 

 𝜇E and 𝜇C are primary endpoint means for experimental and control study groups; 

 𝑛1 and 𝑛2 indicate the sample size for each study group; 

 𝜎𝑘
2 is the standard deviation of the kth group of observations; 

                                                 
2 The approval of an experimental treatment usually requires at least two clinical trials to be carried out. 
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 𝑧α∕2 is the upper (α 2⁄ )th-quantile of the standard normal distribution, corresponding to two-

tailed significance level; 

 𝑧𝛽  is the upper 𝛽th-quantile of the standard normal distribution, corresponding to power; 

 𝛿 is the clinically meaningful difference. [1] 

The formula above can also be solved for other parameters, e.g. power (1 − 𝛽). 

3.1.6.2. Precision Analysis 

Precision shows how consistent the measurements are when repeated. When population parameters 

are estimated it is important to do it with a certain level of precision. The aim is to find a sample size 

so that errors of estimation stay within certain limits. The precision of an interval depends on its 

width: the narrower the interval, the more precise the measurements, and the wider the interval, the 

more imprecise the measurements. The confidence interval approach is equivalent to the method of 

hypotheses testing and that allows us to apply it for sample size calculations. For these calculations, 

confidence interval (1 − α)100% is used. [1] 

The precision analysis considers the maximum half width of the (1 − α)100% confidence interval of 

the unknown parameter that is considered sufficient. That half width of the confidence interval is also 

known as the maximum acceptable error of an estimate. [1] 

When standard deviation σ is known, the confidence interval for the mean 𝜇 of the primary endpoint 

can be calculated as 

𝑥̅ ± 𝑧𝛼 2⁄

𝜎

√𝑛
 , 

where 

 𝑧α 2⁄  is the upper (α 2⁄ )th quantile of the standard normal distribution; 

 n is the sample size; 

 𝑥̅ is the sample mean. [1] 

When estimating 𝜇, the maximum acceptable error (denoted by 𝐸𝑚𝑎𝑥) is defined as 

𝐸𝑚𝑎𝑥 = |𝑥̅ − 𝜇| = 𝑧𝛼 2⁄

𝜎

√𝑛
 . [1] 

Because of this, the sample size calculation can be carried out as 
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𝑛 =
𝑧𝛼∕2
2 𝜎2

𝐸𝑚𝑎𝑥2
 . 

3.2. Power and Sample Size Calculations with SAS 

The POWER procedure in SAS can be used for finding the sample size for a given level of power 

and vice versa. The value of interest has to be denoted as a missing value (.). [12] 

The basic syntax for the POWER procedure is 

proc power; 

<options>; 

run; 

For specifying one-sample and two-sample analysis, options onesamplemeans and twosamplemeans 

are used respectively. By default, both analyses use two-sided test, i.e. sides=2. For one-sided test, 

this command has to be carefully specified as shown in the table below (Table 2). [10] [12] 

Table 2 The use of commands sides and nullmean in SAS [10] 

Study type The direction of treatment change 
proc power; 

onesamplemeans 

Superiority 
Larger is better 

sides=U 

nullmean=𝜇0 + 𝛿 

Smaller is better 
sides=L 

nullmean=𝜇0 − 𝛿 

Non-Inferiority 
Larger is better 

sides=U 

nullmean=𝜇0 − 𝛿𝑁𝐼 

Smaller is better 
sides=L 

nullmean=𝜇0 + 𝛿𝑁𝐼 

Both onesamplemeans and twosamplemeans perform sample size and power calculations using t-

test by default. For onesamplemeans option, mean has to be given value 𝜇 and nullmean calculated 

as shown in the table above (Table 2). 

For twosamplemeans option, it is necessary to choose test=diff for superiority/non-inferiority 

trials or test=equiv_diff for equivalence trials to calculate sample size for parallel and crossover 

designs. When test=diff is chosen, values meandiff and nulldiff must be defined as 𝜇𝐸 − 𝜇𝐶 

and 𝛿, respectively. For test=equiv_diff, values meandiff, upper, and lower must be defined as 

𝜇𝐸 − 𝜇𝐶, +𝛿𝐸, and −𝛿𝐸, respectively. When sample size for parallel design is calculated, option 

groupweights is needed for defining treatment allocation κ =  𝑛1 𝑛2⁄ . [12] Having unequal 

variances 𝜎1
2 and 𝜎2

2 in parallel design, stddev is given the value 
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𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √

𝜎1
2

𝜅 + 𝜎2
2

1 +
1
κ

. 

In crossover design, sample size is calculated per sequence. Because of that, npergroup is used 

instead of ntotal. Also, for crossover design, standard deviation has to always be divided by two, 

i.e. 𝜎 2⁄ , that is due to the crossover formula. 

An example for sample size calculation with SAS: 

One-sample analysis, where the true mean response 𝜇 = 2 units, reference value 𝜇0 = 1.5 units and 

clinically meaningful difference 𝛿 = 0.6 units. The standard deviation 𝜎 = 1 units, alpha 𝛼 = 0.05 

and power 1 − 𝛽 = 0.8.  

proc power; 

   onesamplemeans 

   sides=2 

   mean=2 

   nullmean=2.1 

   ntotal=. 

   stddev=1 

   alpha=0.05 

   power=0.8; 

run; 

The procedure gives the following output (Figure 4) from where it can be seen that SAS performed 

two-sided t-test for mean where data is normally distributed. From the output it can be seen that the 

sample size for a given power is 787. The same syntax can be used for power calculations with a 

fixed sample size when replacing the value of power with a missing value (.). 

 

Figure 4 SAS output of sample size calculation 
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3.3. Power and Sample Size Calculations with R 

For simple power calculations, R has a package called pwr [13]. Since population means are used in 

sample size calculations, the basic syntax to obtain power and sample size using t-test for one-sample 

and two-sample analysis where samples are of the same size, i.e. the number of subjects for 

experimental and control group is the same, is  

pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL, 
type = c("two.sample", "one.sample"), 
alternative = c("two.sided", "less", "greater")). 

When desired group sizes differ for two-sample analysis, i.e. an experimental or a control group is 

bigger than the other, another function should be used: 

pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL, sig.level = 0.05, power = NULL, 
alternative = c("two.sided", "less","greater")). 

The arguments in the pwr.test and pwr.t2n.test functions indicate the following: 

 n (n1 and n2 for studies with unequal groups) stands for the number of observations in a 

group; 

 d is the effect size, i.e. 𝑑 =
|𝜇𝐸−(𝜇𝐶+𝛿)|

𝜎
; 

 sig.level is the significance level, i.e. 𝛼; 

 power is the power of test, i.e. 1 − 𝛽; 

 type shows if it is one- or two-sample test; 

 alternative specifies the alternative hypothesis, whether it is two-sided, greater or less. [13] 

It can be noted that besides power, these functions can also be used to find sample size n, effect size 

d and the level of significance sig.level. The desired value (n, d, sig.level, or power) must be denoted 

by NULL. It has to be noticed that parameter sig.level is not NULL by default and must be specifically 

denoted so. 

For sample size calculations in clinical trials, R has also a package TrialSize that is based on the book 

“Sample Size in Clinical Research” by S.C. Chow, J. Shao, H. Wang. It has its own function for every 

study type and design. OneSampleMean.NIS, TwoSampleMean.NIS, TwoSampleCrossOver.NIS 

for superiority and non-inferiority, and OneSampleMean.Equivalence, 

TwoSampleMean.Equivalence, TwoSampleCrossOver.Equivalence for equivalence trials. [14] 
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Arguments for these six functions are mostly the same: 

(alpha, beta, sigma, k, delta, margin), 

where 

 alpha is the significance level, i.e. 𝛼; 

 beta stands for type II error, i.e. 𝛽; 

 sigma is the standard deviation, i.e. 𝜎; 

 k shows treatment allocation (needed for parallel design), i.e. κ =  𝑛1 𝑛2⁄ ; 

 delta is the clinically meaningful difference, i.e. 𝛿; 

 margin is the true mean difference, i.e. 𝜇𝐸 − 𝜇𝐶. [14] 

Having unequal variances 𝜎1
2 and 𝜎2

2 in parallel design, sigma is given the value 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √

𝜎1
2

𝜅 + 𝜎2
2

1 +
1
κ

. 

An example of sample size calculations with R: 

The same example is used as for sample size calculation with SAS (Chapter 3.2). One-sample 

analysis, where the true mean response 𝜇 = 2 units, reference value 𝜇0 = 1.5 units and clinically 

meaningful difference 𝛿 = 0.6 units. The standard deviation 𝜎 = 1 units, alpha 𝛼 = 0.05 and power 

1 − 𝛽 = 0.8. Here three variables (𝜇, 𝜇0 and 𝛿) need to be combined to calculate 𝑑 =
|𝜇−(𝜇0+𝛿)|

𝜎
. 

pwr.t.test(n=NULL, d=0.1 , sig.level = 0.05, power=0.8, 

type = "one.sample", 

alternative = "two.sided"). 

Result of the sample size calculation with R is given below (Figure 5). 

 

Figure 5 R output of sample size calculation 
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It can be seen from the output that the sample size for a given power is 786.8089 ≈ 787. The same 

syntax can be used for power calculations with a fixed sample size when replacing the value of power 

with NULL.  
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4. Superiority Trials 

In superiority trials, the purpose is to show that an experimental treatment is superior to another – 

active control and/or placebo. This is what the majority of randomized controlled trials aim for – the 

experimental treatment is hoped to appear superior to the control. With a statistically significant 

result, it can be concluded that the experimental treatment is more effective compared to the control 

treatment. When the result is not statistically significant, it cannot be claimed that the experimental 

is better than the control treatment. With a nonsignificant result it can also be wrongly concluded that 

two treatments are equal in effect. Two treatments cannot be identical and there is always some kind 

of slight difference in the results. Therefore, if that difference exists and it is in favour of the 

experimental treatment, it should always be possible to find the right sample size for a superiority 

trial to show that distinction. Often, when the null hypothesis is not rejected, it is concluded as an 

absence of evidence even though it cannot be proved that there is no difference in treatment effects. 

[9] [15] “Randomized controlled clinical trials that do not show a significant difference between the 

treatments being compared are often called “negative.” This term wrongly implies that the study has 

shown that there is no difference, whereas usually all that has been shown is an absence of evidence 

of a difference. These are quite different statements [16].” 

The hypotheses for superiority trials are: 

𝐻0: 𝜇𝐸 − 𝜇𝐶 ≤ 𝛿 

𝐻1: 𝜇𝐸 − 𝜇𝐶 > 𝛿, 

where 

 𝜇𝐸 is the mean of the primary endpoint for the experimental treatment; 

 𝜇𝐶 is the mean of the primary endpoint for the control treatment; 

 𝛿 is the clinically meaningful difference. [1] 

When the null hypothesis is rejected, it indicates that there is a difference between experimental and 

the control treatment, i.e. the test drug is superior to standard therapy. 

The above hypotheses are defined for one-sided test, in the case that the larger value of primary 

endpoint is better (healthier). In practice, two-sided test is often preferred for showing superiority. 

The hypotheses for that are: 
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𝐻0: |𝜇𝐸 − 𝜇𝐶| ≤ 0 

𝐻1: |𝜇𝐸 − 𝜇𝐶| > 𝛿, 

where 𝛿 > 0. 

4.1. One-Sample Design 

4.1.1. One-Sided Test 

For one-sample design, let the hypothesis for the superiority trial be 

𝐻0: 𝜇 − 𝜇0 ≤ 𝛿 

𝐻1: 𝜇 − 𝜇0 > 𝛿, 

where 

 𝜇 is the true mean response of a test drug; 

 𝜇0 is a reference value, e.g. the pre-treatment value of an endpoint; 

 𝛿 is the clinically meaningful difference. [1] 

The sample size is calculated as: 

𝑛 =
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2

(𝜇 − 𝜇0 − 𝛿)2
 , 

where 𝑧𝛽 is the upper 𝛽th-quantile and 𝑧𝛼 is the upper 𝛼th-quantile of the standard normal 

distribution. [1] For the derivation of this formula, see an example in Appendix 1. 

Above formula assumes that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formula given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛 =
(𝑧𝛼 + 𝑧𝛽)

2
𝑠2

(𝜇 − 𝜇0 − 𝛿)2
. 
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4.1.2. Two-Sided Test 

For one-sample design, let the hypothesis for the superiority trial be 

𝐻0: |𝜇 − 𝜇0| ≤ 0 

𝐻1: |𝜇 − 𝜇0| > 𝛿, 

where  

 𝜇 is the true mean response of a test drug; 

 𝜇0 is a reference value, e.g. the pre-treatment value of an endpoint; 

 𝛿 > 0 is the clinically meaningful difference. [1] 

The sample size corresponding to this test is 

𝑛 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝜎2

(𝜇 − 𝜇0 − 𝛿)2
, 

where 𝑧𝛽 is the upper 𝛽th-quantile and 𝑧𝛼 2⁄  is the upper 𝛼 2⁄ th-quantile of the standard normal 

distribution. [1] For the derivation of this formula, see an example in Appendix 2. 

Above formula assumes that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formula given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝑠2

(𝜇 − 𝜇0 − 𝛿)2
. 

4.1.3. SAS Calculations for One-Sample Design 

Commands sides (only for one-sided test) and nullmean have to be determined following Table 2, 

other commands following Table 3. Option onesamplemeans is needed for one-sample analysis. It is 

assumed that 𝜎 is known. If not, 𝜎 is replaced by 𝑠 and the same syntax can still be used.  
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One-sided: 

proc power; 

onesamplemeans 

sides= 

mean= 

nullmean= 

stddev= 

alpha= 

power= 

ntotal=.; 

run; 

Two-sided: 

proc power; 

onesamplemeans 

mean= 

nullmean= 

stddev= 

alpha= 

power= 

ntotal=.; 

run; 

 

Table 3 SAS commands for one-sample design 

Option Value 
mean 𝜇 

nullmean 𝜇0 + 𝛿 
stddev 𝜎 or 𝑠 
alpha 𝛼 
power 1 − 𝛽 

4.1.4. R Calculations for One-Sample Design  

For superiority one-sample design, R has a function OneSampleMean.NIS from package TrialSize. 

Having two-sided test instead of one-sided, alpha is divided by two, i.e. 𝛼 2⁄ . When 𝜎 is unknown, 

it is replaced by 𝑠. Arguments have to be determined following Table 4. 

OneSampleMean.NIS(alpha, beta, sigma, margin, delta) 

Table 4 R arguments for one-sample design 

Option Value 

alpha 𝛼 or 𝛼 2⁄  

beta 𝛽 

sigma 𝜎 or 𝑠 
margin 𝜇 − 𝜇0 

delta 𝛿 
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4.1.5. An Example for One-Sample Superiority Trial 

A pharmaceutical company is interested in having an 80% power for establishing superiority of their 

new treatment. The variance 𝜎2 = 0.1 units2 and expected true mean difference, i.e. effect size        

𝜇 − 𝜇0, is 0.3 units. Pre-treatment mean is 0.3 units and post-treatment mean is 0.6 units. The 

clinically meaningful difference for this study is 0.2 units. 

The sample size is now found using three different methods (Table 5). 

Table 5 Sample size calculations for one-sample superiority design 

Method Formula/syntax Result 

𝑛 =
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2

(𝜇 − 𝜇0 − 𝛿)
2
 

(𝑧0.05 + 𝑧0.2)
20,1

(0.3 − 0.2)2
=
(1.6449 + 0.8416)20.1

(0.3 − 0.2)2
=

= 61.82682 

61.82682 ≈ 62 

SAS 

proc power; 

   onesamplemeans 

   sides=U 

   mean=0.6 

   nullmean=0.5 

   stddev=0.3162278 

   alpha=0.05 

   power=0.8 

   ntotal=.; 

run; 

64 

R 
OneSampleMean.NIS(alpha=0.05, beta=0.2, 
sigma=0.3162278, margin=0.3, delta=0.2) 

61.82559 ≈ 62 

Hence for one-sided hypothesis testing with the type I error level set to 5%, a total of 64 patients 

would be required in order to detect a clinically meaningful difference of 0.2 units with 80% power 

when the expected effect size is 0.3 units and the variance 𝜎2 = 0.1 units2 (based on calculations 

done with SAS software). The results differ slightly as a result of rounding etc. 

4.2. Two-Sample Parallel Design 

4.2.1. One-Sided Test 

In two-sample parallel design subjects are randomized into two groups – experimental and control – 

and get the same treatment the whole time the trial is ongoing. Let the hypothesis for the superiority 

trial be 

𝐻0: 𝜇𝐸 − 𝜇𝐶 ≤ 𝛿 

𝐻1: 𝜇𝐸 − 𝜇𝐶 > 𝛿, 

where 
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 𝜇𝐸 is the true mean response of the experimental treatment; 

 𝜇𝐶  is the true mean response of the control treatment; 

 𝛿 is the clinically meaningful difference. [1] 

The formulas for obtaining the sample size for the experimental treatment group and the control group 

are then given by 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2(1 + 1 κ⁄ )

(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
, 

where 𝜅 = 𝑛1 𝑛2⁄  shows treatment allocations, usually 1:1 or 2:1. 𝑧𝛽 is the upper 𝛽th-quantile and 𝑧𝛼 

is the upper 𝛼th-quantile of the standard normal distribution. [1] For the derivation of these formulas, 

see an example in Appendix 3. 

When the population variances 𝜎1
2 and 𝜎2

2 are not equal then the sample size is calculated as 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
(
𝜎1
2

𝜅 + 𝜎2
2)

(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
, 

where 𝜎1
2 is the variance of the experimental treatment group and 𝜎2

2 is the variance of the control 

treatment group. 

Above formulas assume that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formulas given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝑠2(1 + 1 κ⁄ )

(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
. 
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4.2.2. Two-Sided Test 

For two-sided test, let the hypothesis for parallel design be 

𝐻0: |𝜇𝐸 − 𝜇𝐶| ≤ 0 

𝐻1: |𝜇𝐸 − 𝜇𝐶| > 𝛿, 

where 

 𝜇𝐸 is the true mean response of the experimental treatment; 

 𝜇𝐶  is the true mean response of the control treatment; 

 𝛿 > 0  is the clinically meaningful difference. [1] 

Similarly to the one-sided test, the formulas of sample size for the experimental treatment group and 

the control are 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝜎2(1 + 1 κ⁄ )

(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
, 

where 𝜅 = 𝑛1 𝑛2⁄  demonstrates treatment allocations, 𝑧𝛽 is the upper 𝛽th-quantile and 𝑧𝛼 2⁄  is the 

upper 𝛼 2⁄ th-quantile of the standard normal distribution. [1] 

When the population variances 𝜎1
2 and 𝜎2

2 are not equal then the sample size is calculated by 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
(
𝜎1
2

𝜅 + 𝜎2
2)

(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
, 

where 𝜎1
2 is the variance of the experimental treatment group and 𝜎2

2 is the variance of the control 

treatment group. 

Above formulas assume that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formula given above can also be used when 



30 

 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝑠2(1 + 1 κ⁄ )

(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
. 

4.2.3. SAS Calculations for Two-Sample Parallel Design 

Command sides (only for one-sided test) has to be determined following Table 2, other commands 

following Table 6. Option twosamplemeans is needed for two-sample analysis. With test=diff it is 

stated that there are two samples and means of those samples are compared. It is assumed that 𝜎 is 

known. If not, 𝜎 is replaced by 𝑠 and the same syntax can still be used. For unequal variances 𝜎 is 

replaced by 𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √(
𝜎1
2

𝜅
+ 𝜎2

2) (1 +
1

κ
)⁄ . Statement groupweights in needed for treatment 

allocation, for example 1:2 treatment allocation is denoted as groupweights=1|2. If it is desired to 

get sample size for the whole study, ntotal should be used, if getting sample size for each study 

group separately is of interest, then npergroup is used. It is important to notice that options 

groupweights and npergroup cannot be used together.  

One-sided: 

proc power; 

   twosamplemeans 

   test=diff  

   sides= 

   groupweights= 

   meandiff= 

   nulldiff= 

   stddev= 

   alpha= 

   power= 

   ntotal=.; 

run; 
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Two-sided: 

proc power; 

   twosamplemeans 

   test=diff 

   groupweights= 

   meandiff= 

   nulldiff= 

   stddev= 

   alpha= 

   power= 

   ntotal=.; 

run; 

 

Table 6 SAS commands for two-sample parallel design 

Option Value 

meandiff 𝜇𝐸 − 𝜇𝐶 

nulldiff 𝛿 

stddev 
𝜎 or 𝑠 or 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 
alpha 𝛼 
power 1 − 𝛽 

groupweights 𝑛1|𝑛2 

4.2.4. R Calculations for Two-Sample Parallel Design 

For superiority two-sample parallel design, R has the function TwoSampleMean.NIS from package 

TrialSize. This function calculates one-sided sample size by default. Having two-sided test instead 

of one-sided, alpha is divided by two, i.e. 𝛼 2⁄ . It is important to notice that R gives sample size per 

group. Also, with two-sample design, treatment allocation 𝜅 = 𝑛1 𝑛2⁄  has to be considered. It is 

assumed that 𝜎 is known. If not, 𝜎 is replaced by 𝑠 and the same syntax can still be used. For unequal 

variances 𝜎 is replaced by 𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √(
𝜎1
2

𝜅
+ 𝜎2

2) (1 +
1

κ
)⁄ . With unequal study groups, e.g.             

𝜅 = 𝑛1 𝑛2⁄ = 1 2 = 0.5⁄ , R calculates 𝑛1 and the total sample size 𝑛 = 𝑛1 + 𝑛2 = 𝑛1 +
𝑛1

𝜅
. For the 

usual parallel study with equal study groups (𝜅 = 𝑛1 𝑛2⁄ = 1), the sample size obtained with R 

simply has to be doubled to get the total sample size. Arguments have to be determined following 

Table 7. 

TwoSampleMean.NIS(alpha, beta, sigma, k, delta, margin)  
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Table 7 R arguments for two-sample parallel design 

Option Value 

alpha 𝛼 or 𝛼 2⁄  

beta 𝛽 

sigma 
𝜎 or 𝑠 or 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 

k 𝑛1 𝑛2⁄  

delta 𝛿 
margin 𝜇𝐸 − 𝜇𝐶  

4.2.5. An Example for Two-Sample Parallel Superiority Trial 

A pharmaceutical company is interested in having an 80% power for establishing superiority of their 

new headache treatment. It is expected that the new treatment improves headache symptoms by 60% 

while the same indicator for the control treatment is 30%. The clinically meaningful difference for 

this study is 20%, the variance 𝜎2 = 0.1. Let both treatment groups be equal. The sample size is now 

found using three different methods (Table 8). 

Table 8 Sample size calculations for two-sample parallel superiority design 

Method Formula/syntax Result 

𝑛1 = 𝜅𝑛2, 

𝑛2 = 

=
(𝑧𝛼+𝑧𝛽)

2
𝜎2(1+1 κ⁄ )

(𝜇𝐸−𝜇𝐶−𝛿)2
  

𝑛2 =
(𝑧0.05 + 𝑧0.2)

20.1(1 + 1 1⁄ )

(0.6 − 0.3 − 0.2)2
= 

=
(1.6449 + 0.8416)20.1(1 + 1 1⁄ )

(0.6 − 0.3 − 0.2)2
= 123.6536 

𝑛1 = 1 ∗ 123.6536 = 123.6536 

123.6536 + 
+123.6536 = 
= 247.3073 ≈ 
≈ 248 

SAS 

proc power; 

   twosamplemeans 

   test=diff  

   sides=U 

   groupweights=1|1 

   meandiff=0.3 

   nulldiff=0.2 

   stddev=0.3162278 

   alpha=0.05 

   power=0.8 

   ntotal=.; 

run; 

250 

R 
TwoSampleMean.NIS(alpha=0.05, beta=0.2, 

sigma=0.3162278, k=1, delta=0.2, margin=0.3) 

123.6512 + 
+123.6512 = 
= 247.3023 ≈ 
≈ 248 

Hence for one-sided hypothesis testing with the type I error level set to 5%, a total of 250 patients – 

125 patients in each group – would be required in order to detect a clinically meaningful difference 

of 20% with 80% power and the variance 𝜎2 = 0.1 (based on calculations done with SAS software). 

The results differ slightly as a result of rounding etc. 
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4.3. Two-Sample Crossover Design 

4.3.1. One-Sided Test 

In two-sample 2x2 crossover design subjects are randomized into two groups – experimental and 

control. During the first period, one group gets experimental and the other one gets control treatment. 

During the second period, the subjects who got experimental treatment before now get control 

treatment and vice versa. That way each participant is one’s own control.  Let the hypothesis for the 

superiority trial be 

𝐻0: 𝜇𝐸 − 𝜇𝐶 ≤ 𝛿 

𝐻1: 𝜇𝐸 − 𝜇𝐶 > 𝛿, 

where 

 𝜇𝐸 is the true mean response of the experimental treatment; 

 𝜇𝐶  is the true mean response of the control treatment; 

 𝛿 is the clinically meaningful difference. [1] 

The formula for calculating sample size in each sequence is 

𝑛1 = 𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2

2(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
, 

where 𝑧𝛽 is the upper 𝛽th-quantile and 𝑧𝛼 is the upper 𝛼th-quantile of the standard normal 

distribution. [1] [11] 

Above formula assumes that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formula given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛1 = 𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝑠2

2(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
. 

4.3.2. Two-Sided Test 

For two-sided test, let the hypothesis for parallel design be 
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𝐻0: |𝜇𝐸 − 𝜇𝐶| ≤ 0 

𝐻1: |𝜇𝐸 − 𝜇𝐶| > 𝛿, 

where  

 𝜇𝐸 is the true mean response of the experimental treatment; 

 𝜇𝐶  is the true mean response of the control treatment; 

 𝛿 > 0 is the clinically meaningful difference. [1] 

Similarly to the one-sided test, the sample size in each sequence is obtained with two-sided test: 

𝑛1 = 𝑛2 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝜎2

2(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
, 

where 𝑧𝛽 is the upper 𝛽th-quantile and 𝑧𝛼 2⁄  is the upper 𝛼 2⁄ th-quantile of the standard normal 

distribution. [1] [11] 

Above formula assumes that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formula given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛1 = 𝑛2 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝑠2

2(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
. 

4.3.3. SAS Calculations for Two-Sample Crossover Design 

Command sides (only for one-sided test) has to be determined following Table 2, other commands 

following Table 9. Option twosamplemeans is needed for two-sample analysis. The sample size 

needed is obtained by finding the sample size per sequence (npergroup), for total sample size that 

has to be doubled. For crossover design, standard deviation has to be divided by two, i.e. 𝜎 2⁄ . It is 

assumed that 𝜎 is known. If not, 𝜎 is replaced by 𝑠 and the same syntax can still be used. 
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One-sided: 

proc power; 

   twosamplemeans 

   test=diff 

   sides= 

   meandiff= 

   nulldiff= 

   stddev= 

   alpha= 

   power= 

   npergroup=.; 

run; 

Two-sided: 

proc power; 

   twosamplemeans 

   test=diff 

   meandiff= 

   nulldiff= 

   stddev= 

   alpha= 

   power= 

   npergroup=.; 

run; 

 

Table 9 SAS commands for two-sample crossover design 

Option Value 

meandiff 𝜇𝐸 − 𝜇𝐶 

nulldiff 𝛿 
stddev 𝜎 2⁄  or 𝑠 2⁄  

alpha 𝛼 
power 1 − 𝛽 

4.3.4. R Calculations for Two-Sample Crossover Design 

For superiority two-sample crossover design, R has the function TwoSampleCrossOver.NIS from 

package TrialSize. This function calculates one-sided sample size by default. For two-sided 

calculation, alpha needs to be divided by two, i.e. 𝛼 2⁄ . It is important to notice that R gives sample 

size per sequence. Arguments have to be determined following Table 10. 

TwoSampleCrossOver.NIS(alpha, beta, sigma, delta, margin) 
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Table 10 R arguments for two-sample crossover design 

Option Value 

alpha 𝛼 or 𝛼 2⁄  

beta 𝛽 

sigma 𝜎 or 𝑠 
delta 𝛿 

margin 𝜇𝐸 − 𝜇𝐶  

4.3.5. An Example for Two-Sample Crossover Superiority Trial 

The same example is used as for the parallel design. A pharmaceutical company is interested in having 

an 80% power for establishing superiority of their new headache treatment. It is expected that the 

new treatment improves headache symptoms by 60% while the same indicator for the control 

treatment is 30%. The clinically meaningful difference for this study is 20%, the variance 𝜎2 = 0.1. 

The sample size is now found using three different methods (Table 11). 

Table 11 Sample size calculations for two-sample crossover superiority design 

Method Formula/syntax Result 

𝑛1 = 𝑛2 =

=
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2

2(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
 

(𝑧0.05 + 𝑧0.2)
20.1

2(0.6 − 0.3 − 0.2)2
= 

=
(1.6449 + 0.8416)20.1

2(0.6 − 0.3 − 0.2)2
= 30.91341 ≈ 31 

30.91341 ≈
≈ 31 

SAS 

proc power; 

   twosamplemeans  

   test=diff  

   sides=U 

   meandiff=0.3 

   nulldiff=0.2 

   stddev=0.1581139 

   alpha=0.05 

   power=0.8 

   npergroup=.; 

run; 

32 

R 
TwoSampleCrossOver.NIS(alpha=0.05, beta=0.2, 

sigma=0.3162278, delta=0.2, margin=0.3) 
30.91279 ≈
≈ 31 

A one-sided hypothesis testing with the type I error level set to 5%, a total of 64 patients, 32 in each 

sequence, would be required in order to detect a clinically meaningful difference of 20% with 80% 

power and the variance 𝜎2 = 0.1 (based on calculations done with SAS software). The results differ 

slightly as a result of rounding etc. 
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5. Non-Inferiority Trials 

In the past, experimental treatment was always believed to be better than the control treatment. As 

the treatments have developed a lot, nowadays it is quite difficult to find a drug that is vastly better 

than the existing one. Instead of proving increased effect of a drug, the focus can be, for example, on 

finding a drug that has the same efficacy but is safer, cheaper or easier to administer. These trials are 

called non-inferiority trials, which are aimed to prove that the experimental treatment is not much 

worse than the control treatment, i.e. the treatment difference is not less than a non-inferiority margin 

𝛿𝑁𝐼 > 0. When the lower limit of the confidence interval is above −𝛿𝑁𝐼, i.e. the confidence interval 

of the difference 𝜇𝐸 − 𝜇𝐶 lies within the interval (−𝛿𝑁𝐼; +∞), the non-inferiority of the experimental 

treatment is proven. [6] [9] 

The non-inferiority margin 𝛿𝑁𝐼 is defined as the maximum extent of clinical non-inferiority. It is 

crucial to define it correctly. Otherwise, when the margin is chosen to be too large, it may happen 

that the test drug is allowed to be remarkably less effective than active control or even placebo. With 

a margin that is too small, it may be concluded that the test drug is inferior to the control. Whether 

the selection of either too small or too large, 𝛿𝑁𝐼 could become a problem, depends on the disease for 

what the experimental treatment is tested for. The margin value should be chosen to be smaller than 

is the minimum difference between active control and placebo to ensure that the test drug has a 

clinically relevant effect greater than zero. It is recommended to base the defining process on prior 

placebo-controlled studies and the margin should be substantially smaller – approximately no more 

than one half – than the clinically meaningful difference used for superiority trials. [17] [7]  

Non-inferiority trials are often used for ethical reasons. It is chosen instead of a clearly interpretable 

superiority trial in situations where it is unethical to conduct a placebo controlled trial or give a low 

dose of an active control. [15] Those kinds of trials include situations where active control could 

prevent some kind of serious harm, e.g. death of a patient. There are more reasons why non-inferiority 

trials are chosen to be the most appropriate. Where the experimental drug is not expected to be better 

on a primary endpoint, but it is safer or easier to produce or administrate compared to active control, 

then that trial type is preferred. For example, when there is a control treatment that has to be injected 

or the oral intake of a medication is very frequent, but the experimental treatment can be administered 

orally instead of injecting or the medication is taken only once a day. During the randomized 

controlled trial, it may seem that an experimental treatment has a higher efficacy because the patients 

are being controlled and motivated. Outside the trial, when the patients will most probably not follow 

the intake plan so carefully, the experimental treatment with an easier drug administration could have 
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a higher efficacy. The drug used as an active control should be proven beforehand to be superior in a 

placebo-controlled trial. [9] [18] [19] 

When the 95% confidence interval excludes both – the non-inferiority margin and zero –, it is 

considered acceptable to prove superiority within the same trial. This does not apply the other way 

round. [18] 

The hypotheses for non-inferiority trials are: 

𝐻0: 𝜇𝐸 − 𝜇𝐶 ≤ −𝛿𝑁𝐼 

𝐻1: 𝜇𝐸 − 𝜇𝐶 > −𝛿𝑁𝐼 , 

where  

 𝜇𝐸 is the mean of the primary endpoint for the experimental treatment; 

 𝜇𝐶 is the mean of the primary endpoint for the control treatment; 

 𝛿𝑁𝐼 > 0 is the clinically meaningful difference. [1] 

When the null hypothesis is rejected, it indicates that the experimental drug is not much worse than 

the control treatment. It can be seen that the hypotheses of superiority trials and non-inferiority trials 

are almost the same, the only difference is a minus sign in front of non-inferiority margin.  

5.1. Two-Sample Parallel Design 

In two-sample parallel design study subjects are randomized into two groups – experimental and 

control – and get the same treatment the whole time the trial is ongoing. Let the hypothesis for the 

non-inferiority trial be 

𝐻0: 𝜇𝐸 − 𝜇𝐶 ≤ −𝛿𝑁𝐼 

𝐻1: 𝜇𝐸 − 𝜇𝐶 > −𝛿𝑁𝐼 , 

where 

 𝜇𝐸 is the true mean response of the experimental treatment; 

 𝜇𝐶  is the true mean response of the control treatment 

 𝛿𝑁𝐼 > 0 is the clinically meaningful difference. [1] 
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The formulas of sample size for the experimental treatment group and the control group are 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2(1 + 1 κ⁄ )

(𝜇𝐸 − 𝜇𝐶 + 𝛿𝑁𝐼)2
, 

where 𝜅 = 𝑛1 𝑛2⁄  shows treatment allocations, usually 1:1 or 2:1. 𝑧𝛽 is the upper 𝛽th-quantile and 𝑧𝛼 

is the upper 𝛼th-quantile of the standard normal distribution. [1] For the derivation of this formula, 

see an example in Appendix 3. 

When the population variances 𝜎1
2 and 𝜎2

2 are not equal, the sample size is given by 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
(
𝜎1
2

𝜅 + 𝜎2
2)

(𝜇𝐸 − 𝜇𝐶 + 𝛿𝑁𝐼)2
, 

where 𝜎1
2 is the variance of the experimental treatment group and 𝜎2

2 is the variance of the control 

treatment group. 

Above formulas assume that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formulas given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝑠2(1 + 1 κ⁄ )

(𝜇𝐸 − 𝜇𝐶 + 𝛿𝑁𝐼)2
. 

5.1.1. SAS Calculations for Two-Sample Parallel Design 

Command sides has to be determined following Table 2, other commands following Table 12. 

Option twosamplemeans is needed for two-sample analysis. With test=diff it is stated that there 

are two samples and means of those samples are compared. It is assumed that 𝜎 is known. If not, 𝜎 is 

replaced by 𝑠 and the same syntax can still be used. For unequal variances 𝜎 is replaced by     
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𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √(
𝜎1
2

𝜅
+ 𝜎2

2) (1 +
1

κ
)⁄ . Statement groupweights in needed for treatment allocation, for 

example 1:2 treatment allocation is denoted as groupweights=1|2. If it is desired to get sample size 

for the whole study, ntotal should be used, if getting sample size for each study group separately is 

of interest, then npergroup is used. It is important to notice that options groupweights and 

npergroup cannot be used together. It is assumed that 𝜎 is known. If not, 𝜎 is replaced by 𝑠 and the 

same syntax can still be used. 

proc power; 

   twosamplemeans 

   test=diff 

   sides= 

   groupweights= 

   meandiff= 

   nulldiff= 

   stddev= 

   alpha= 

   power= 

   ntotal=.; 

run; 

 

Table 12 SAS commands for two-sample parallel design 

Option Value 

meandiff 𝜇𝐸 − 𝜇𝐶 

nulldiff −𝛿𝑁𝐼 

stddev 
𝜎 or 𝑠 or 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 
alpha 𝛼 
power 1 − 𝛽 

groupweights 𝑛1|𝑛2 

5.1.2. R Calculations for Two-Sample Parallel Design 

For superiority two-sample parallel design, R has the function TwoSampleMean.NIS from package 

TrialSize. It is important to notice that R gives sample size per group. Also, with two-sample design, 

treatment allocation 𝜅 = 𝑛1 𝑛2⁄  has to be considered. It is assumed that 𝜎 is known. If not, 𝜎 is 

replaced by 𝑠 and the same syntax can still be used. For unequal variances 𝜎 is replaced by     

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √(
𝜎1
2

𝜅
+ 𝜎2

2) (1 +
1

κ
)⁄ . With unequal study groups, e.g. 𝜅 = 𝑛1 𝑛2⁄ = 1 2 = 0.5⁄ , R 

calculates 𝑛1 and the total sample size 𝑛 = 𝑛1 + 𝑛2 = 𝑛1 +
𝑛1

𝜅
. For the usual parallel study with equal 

study groups (𝜅 = 𝑛1 𝑛2⁄ = 1), the sample size obtained with R simply has to be doubled to get the 

total sample size. Arguments have to be determined following Table 13.  

TwoSampleMean.NIS(alpha, beta, sigma, k, delta, margin) 
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Table 13 R arguments for two-sample parallel design 

Option Value 

alpha 𝛼 

beta 𝛽 

sigma 
𝜎 or 𝑠 or 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 

k 𝑛1 𝑛2⁄  

delta -𝛿𝑁𝐼 

margin 𝜇𝐸 − 𝜇𝐶  

5.1.3. An Example for Two-Sample Parallel Non-Inferiority Trial 

A pharmaceutical company is interested in having an 80%  power for establishing non-inferiority of 

their experimental treatment. It is expected that the mean value for the experimental treatment is 0.3 

units while the same indicator for the control treatment is 0.2 units. This means that the experimental 

treatment is supposed to increase the value of the primary endpoint by 0.1 units, i.e. effect size       

𝜇𝐸 − 𝜇𝐶 = 0.1. The clinically meaningful difference for this study is 0.2 units, the variance 𝜎2 = 0.2 

units2. Let both treatment groups be equal. 

The sample size is now found using three different methods (Table 14). 

Table 14 Sample size calculations for two-sample parallel non-inferiority design 

Method Formula/syntax Result 

𝑛1 = 𝜅𝑛2, 

𝑛2 = 

=
(𝑧𝛼+𝑧𝛽)

2
𝜎2(1+1 κ⁄ )

(𝜇𝐸−𝜇𝐶+𝛿𝑁𝐼)2
  

𝑛2 =
(𝑧0.05 + 𝑧0.2)

20.2(1 + 1 1⁄ )

(0.3 − 0.2 + 0.2)2
= 

=
(1.6449 + 0.8416)20.2(1 + 1 1⁄ )

(0.1 + 0.2)2
= 27.47859 

𝑛1 = 1 ∗ 248.3228 = 248.3228 

27.47859 + 
+27.47859 = 
= 54.95718 ≈ 
≈ 55 

SAS 

proc power; 

   twosamplemeans 

   test=diff 

   sides=U 

   groupweights=1|1 

   meandiff=0.1 

   nulldiff=-0.2 

   stddev=0.4472136 

   alpha=0.05 

   power=0.8 

   ntotal=.; 

run; 

58 

R 
TwoSampleMean.NIS(alpha=0.05, beta=0.2, 

sigma=0.4472136, k=1, delta=-0.2, margin=0.1) 

27.47803 + 
+27.47803 = 
= 54.95607 ≈ 
≈ 55 

With 80% power and a one-sided type I error level set to  5% a total of  58 patients, 29 in each group, 

would be required in order to show that the experimental treatment is at most  0.2 units inferior to the 
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control treatment when the expected effect size is  0.1 units and the variance 𝜎2 = 0.2 units2 (based 

on calculations done with SAS software). The results differ slightly as a result of rounding etc 

5.2. Two-Sample Crossover Design 

In two-sample 2x2 crossover design subjects are randomized into two treatment sequences. During 

the first period, one group gets the experimental and the other one gets the control treatment. During 

the second period, the subjects who got experimental treatment before, now get control treatment and 

vice versa. That way each participant is one’s own control. Let the hypothesis for the non-inferiority 

trial be 

𝐻0: 𝜇𝐸 − 𝜇𝐶 ≤ −𝛿𝑁𝐼 

𝐻1: 𝜇𝐸 − 𝜇𝐶 > −𝛿𝑁𝐼 , 

where 

 𝜇𝐸 is the true mean response of the experimental treatment; 

 𝜇𝐶  is the true mean response of the control treatment. 

 𝛿𝑁𝐼 > 0 is the clinically meaningful difference. [1] 

 

The formula for calculating sample size for each treatment sequence is 

𝑛1 = 𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2

2(𝜇𝐸 − 𝜇𝐶 + 𝛿𝑁𝐼)2
, 

where 𝑧𝛽 is the upper 𝛽th-quantile and 𝑧𝛼 is the upper 𝛼th-quantile of the standard normal 

distribution. [1] [11] 

Above formula assumes that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formula given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛1 = 𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝑠2

2(𝜇𝐸 − 𝜇𝐶 + 𝛿𝑁𝐼)2
. 
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5.2.1. SAS Calculations for Two-Sample Crossover Design 

Command sides has to be determined following Table 2, other commands following Table 15. 

Option twosamplemeans is needed for two-sample analysis. The sample size needed is obtained by 

finding the sample size per group (npergroup), for total sample size that has to be doubled. For 

crossover design, standard deviation has to be divided by two, i.e. 𝜎 2⁄ . It is assumed that 𝜎 is known. 

If not, 𝜎 is replaced by 𝑠 and the same syntax can still be used. 

proc power; 

   twosamplemeans 

   test=diff 

   sides= 

   meandiff= 

   nulldiff= 

   stddev= 

   alpha= 

   power= 

   npergroup=.; 

run; 

Table 15 SAS commands for two-sample crossover design 

Option Value 

meandiff 𝜇𝐸 − 𝜇𝐶 

nulldiff −𝛿𝑁𝐼 
stddev 𝜎 2⁄   or 𝑠 2⁄  

alpha 𝛼 
power 1 − 𝛽 

5.2.2. R Calculations for Two-Sample Crossover Design 

For non-inferiority two-sample crossover design, R has the function TwoSampleCrossOver.NIS 

from package TrialSize. It is important to notice that R gives sample size per sequence. Arguments 

have to be determined following Table 16. 

TwoSampleCrossOver.NIS(alpha, beta, sigma, delta, margin) 

Table 16 R arguments for two-sample crossover design 

Option Value 

alpha 𝛼 

beta 𝛽 

sigma 𝜎 
delta −𝛿𝑁𝐼 

margin 𝜇𝐸 − 𝜇𝐶  
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5.2.3. An Example for Two-Sample Crossover Non-Inferiority Trial 

The same example is used as for the parallel design. A pharmaceutical company is interested in having 

an 80% power for establishing non-inferiority of their new treatment. It is expected that the mean 

value for the experimental treatment is 0.3 units while the same indicator for the control treatment is 

0.2 units, the variance 𝜎2 = 0.2 units2. That means that new treatment is supposed to increase value 

by 0.1 units, i.e. effect size 𝜇𝐸 − 𝜇𝐶. The clinically meaningful difference for this study is 0.2 units. 

The sample size is now found using three different methods (Table 17). 

Table 17 Sample size calculations for two-sample crossover non-inferiority design 

Method Formula/syntax Result 

𝑛1 = 𝑛2 =

=
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2

2(𝜇𝐸 − 𝜇𝐶 + 𝛿𝑁𝐼)2
 

(𝑧0.05 + 𝑧0.2)
20.2

2(0.3 − 0.2 + 0.2)2
= 

=
(1.6449 + 0.8416)20.2

2(0.1 + 0.2)2
= 6.869647 

6.869647 ≈
≈ 7 

SAS 

proc power; 

   twosamplemeans  

   test=diff  

   sides=U 

   meandiff=0.1 

   nulldiff=-0.2 

   stddev=0.2236068 

   alpha=0.05 

   power=0.8 

   npergroup=.; 

run; 

8 

R 
TwoSampleCrossOver.NIS(alpha=0.05, beta=0.2, 

sigma=0.4472136, delta=-0.2, margin=0.1) 
6.869508 ≈
≈ 7 

With 80%  power and a one-sided type I error level set to 5% a total of 16 patients, 8 in each 

sequence, would be required in order to show that the experimental treatment is at most 0.2 units 

inferior to the control treatment when the expected effect size is 0.1 units and the variance 𝜎2 = 0.2 

units2 (as determined by SAS software). The results differ slightly as a result of rounding etc. 
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6. Equivalence Trials 

It has been mentioned before that it is practically impossible for two treatments to be exactly equal. 

In clinical trials, equivalence means that the effects of two treatments may not differ more than 

tolerable, i.e. the effect difference of treatments stays within a small determined interval. Therefore, 

the aim of equivalence trials is to show that the differences are not substantial in either direction. 

Conducting clinical trial as an equivalence trial is reasoned when the experimental drug is believed 

to be safer or cheaper to produce. This still applies when the therapeutic effect of the test drug is not 

assumed to be as large as for the active control. [6] 

Defining an appropriate interval for equivalence can be difficult and controversial. When the 

difference in population means 𝜇𝐸 − 𝜇𝐶 stays within the interval of equivalence limit, i.e. ±𝛿𝐸, the 

equivalence is shown. It is desirable to limit the approval of a test drug that is inferior to a standard 

drug as much as possible. Therefore, the defined interval should be rather narrow. It is recommended 

to define 𝛿𝐸 so that it is no more than one-half of the value that would be used in a superiority trial. 

[6] [19] 

With equivalence trial there is no internal control for validity because equivalence does not indicate 

that one of the treatments – experimental or control – is superior to another. The drug used as an 

active control should be proven beforehand to be superior in a placebo-controlled trial. [19] 

Nowadays, many of the equivalence trials are bioequivalence trials. Bioequivalence describes the 

relationship between two products when they are pharmaceutically equivalent and in the same dosage 

have the similar bioavailability – in both rate and extent of which is demonstrated with peak 

concentration and area under the time-concentration curved being equivalent. The aim of 

bioequivalence trials is to compare a generic drug to an already existing commercial drug that is going 

off-patent. After the approval of a generic drug, it can be used as a substitute to a commercial drug. 

These trials are most commonly carried out using crossover design. [1] 

In equivalence trials the hypotheses are defined a little differently. It is standard that when the null 

hypothesis is not rejected there is no difference between comparable means. For equivalence trials, 

null hypothesis states that there is at least a difference of 𝛿𝐸 while alternative hypothesis states that 

the difference is smaller. 

𝐻0: |𝜇𝐸 − 𝜇𝐶| ≥ 𝛿𝐸 
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𝐻1: |𝜇𝐸 − 𝜇𝐶| < 𝛿𝐸 , 

where 

 𝜇𝐸 is the mean of the primary endpoint for the experimental treatment; 

 𝜇𝐶 is the mean of the primary endpoint for the control treatment; 

 𝛿𝐸 is the equivalence limit. [1] 

6.1. Two-Sample Parallel Design 

For two-sample parallel design, let the hypothesis for the equivalence trial be 

𝐻0: |𝜇E − 𝜇C| ≥ 𝛿𝐸 

𝐻1: |𝜇E − 𝜇C| < 𝛿𝐸 , 

where 

 𝜇Cis the true mean response of a control treatment; 

 𝜇Eis the true mean response of an experimental treatment; 

 𝛿𝐸 is the equivalence limit. [1] 

The sample size formulas for the treatment group and the control group are 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + zβ 2⁄ )

2
𝜎2(1 + 1 κ⁄ )

(𝛿𝐸 − |𝜇E − 𝜇C|)2
, 

where 𝜅 = 𝑛1 𝑛2⁄  shows treatment allocations, usually 1:1 or 2:1. 𝑧β 2⁄  is the upper β 2⁄ th-quantile 

and 𝑧𝛼 is the upper 𝛼th-quantile of the standard normal distribution. [1] For the derivation of this 

formula, see an example in Appendix 3. 

When the population variances 𝜎1
2 and 𝜎2

2 are not equal then the sample size is given by 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + zβ 2⁄ )

2
(
𝜎1
2

𝜅 + 𝜎2
2)

(𝛿𝐸 − |𝜇E − 𝜇C|)2
, 
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where 𝜎1
2 is the variance of the experimental treatment group and 𝜎2

2 is the variance of the control 

treatment group. 

Above formulas assume that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formulas given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + zβ 2⁄ )

2
𝑠2(1 + 1 κ⁄ )

(𝛿𝐸 − |𝜇E − 𝜇C|)2
. 

6.1.1. SAS Calculations for Two-Sample Parallel Design 

Command have to be determined following Table 18. Option twosamplemeans is needed for two-

sample analysis. With test=equiv_diff it is stated that means of two samples are compared. It is 

assumed that 𝜎 is known. If not, 𝜎 is replaced by 𝑠 and the same syntax can still be used. For unequal 

variances 𝜎 is replaced by 𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √(
𝜎1
2

𝜅
+ 𝜎2

2) (1 +
1

κ
)⁄ . The equivalence limit is specified by 

lower and upper. Statement groupweights is needed for treatment allocation, for example 1:2 

treatment allocation is denoted as groupweights=1|2. If it is desired to get sample size for the whole 

study, ntotal should be used, for getting sample size for each study group separately, npergroup is 

used. It is important to notice that options groupweights and npergroup cannot be used together. It 

is assumed that 𝜎 is known. If not, 𝜎 is replaced by 𝑠 and the same syntax can still be used. 

proc power; 

   twosamplemeans 

   test=equiv_diff 

   groupweights= 

   meandiff= 

   upper= 

   lower= 

   stddev= 

   alpha= 

   power= 

   ntotal=.; 

run; 
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Table 18 SAS commands for two-sample parallel design 

Option Value 

meandiff 𝜇𝐸 − 𝜇C 

stddev 
𝜎 or 𝑠 or 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 

alpha 𝛼 
power 1 − 𝛽 2⁄  

lower −𝛿𝐸 
upper +𝛿𝐸 

groupweights 𝑛1|𝑛2 

6.1.2. R Calculations for Two-Sample Parallel Design 

For equivalence two-sample parallel design, R has the function TwoSampleMean.Equivalence from 

package TrialSize. It is important to notice that R gives sample size per group. Also, with two-sample 

design, treatment allocation 𝜅 = 𝑛1 𝑛2⁄  has to be considered. It is assumed that 𝜎 is known. If not, 𝜎 

is replaced by 𝑠 and the same syntax can still be used. For unequal variances 𝜎 is replaced by 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √(
𝜎1
2

𝜅
+ 𝜎2

2) (1 +
1

κ
)⁄ . With unequal study groups, e.g. 𝜅 = 𝑛1 𝑛2⁄ = 1 2 = 0.5⁄ , R 

calculates 𝑛1 and the total sample size 𝑛 = 𝑛1 + 𝑛2 = 𝑛1 +
𝑛1

𝜅
. For the usual parallel study with equal 

study groups (𝜅 = 𝑛1 𝑛2⁄ = 1), the sample size obtained with R simply has to be doubled to get the 

total sample size. Arguments have to be determined following Table 19. 

TwoSampleMean.Equivalence(alpha, beta, sigma, k, delta, margin) 

Table 19 R arguments for two-sample parallel design 

Option Value 

alpha 𝛼 

beta 𝛽 

sigma 
𝜎 or 𝑠 or 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 

k 𝑛1 𝑛2⁄  

delta 𝛿𝐸 
margin 𝜇𝐸 − 𝜇C 

6.1.3. An Example for Two-Sample Parallel Equivalence Trial 

A pharmaceutical company is interested in having an 80%  power for proving the equivalence of an 

experimental and a control treatment. The true mean difference is thought to be 0.01 units and the 

equivalence limit is considered to be 0.05 units, the variance 𝜎2 = 0.01 units2. Let both treatment 

groups be equal. 
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The sample size is now found using three different methods (Table 20). 

Table 20 Sample size calculations for two-sample parallel equivalence design 

Method Formula/syntax Result 

𝑛1 = 𝜅𝑛2, 

𝑛2 = 

=
(𝑧𝛼 + zβ 2⁄ )

2
𝜎2(1 + 1 κ⁄ )

(𝛿𝐸 − |𝜇𝐸 − 𝜇C|)2
 

𝑛2 =
(𝑧0.05 + 𝑧0.1)

20.01(1 + 1 1⁄ )

(0.05 − |0.01|)2
= 

=
(1.6449 + 1.2816)20.01(1 + 1 1⁄ )

(0.05 − |0.01|)2

= 107.0516 

𝑛1 = 1 ∗ 107.0516 = 107.0516 

107.0516 + 
+107.0516 = 
= 214.1033 ≈ 
≈ 216 

SAS 

proc power; 

   twosamplemeans 

   test=equiv_diff 

   groupweights=1|1 

   meandiff=0.01 

   upper=0.05 

   lower=-0.05 

   stddev=0.1 

   alpha=0.05 

   power=0.9 

   ntotal=.; 

run; 

218 

R 

TwoSampleMean.Equivalence(alpha=0.05, 
beta=0.2, sigma=0.1, k=1, delta=0.05, 

margin=0.01) 

107.0481 + 
+107.0481 = 
= 214.0962 ≈ 
≈ 216 

With 80% power and a type I error level set to 5% a total of 218 patients, 109 in each group, would 

be required in order to detect the clinically meaningful difference of 0.05 units when the expected 

effect size is 0.01 units and the variance 𝜎2 = 0.01 units2 (as obtained with SAS software). The 

results differ slightly as a result of rounding etc. 

6.2. Two-Sample Crossover Design 

In two-sample 2x2 crossover design subjects are randomized into two groups – experimental and 

control. During the first period, one group gets experimental and the other one gets control treatment. 

During the second period, the subjects who got experimental treatment before now get control 

treatment and vice versa. That way each participant is one’s own control. Let the hypothesis for the 

equivalence trial be 

𝐻0: |𝜇𝐸 − 𝜇𝐶| ≥ 𝛿𝐸 

𝐻1: |𝜇𝐸 − 𝜇𝐶| < 𝛿𝐸 , 

where 
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 𝜇C is the true mean response of a control treatment; 

 𝜇E is the true mean response of an experimental treatment; 

 𝛿𝐸 is the equivalence limit. [1] 

The formula for calculating sample size for each sequence is 

𝑛1 = 𝑛2 =
(𝑧𝛼 + 𝑧β 2⁄ )

2
𝜎2

2(𝛿𝐸 − |𝜇𝐸 − 𝜇𝐶|)2
, 

where 𝑧𝛽 2⁄  is the upper 𝛽 2⁄ th-quantile and 𝑧𝛼 is the upper 𝛼th-quantile of the standard normal 

distribution. [1] [11] 

Above formula assumes that the data is normally distributed and 𝜎2 is known. In practice, 𝜎2 is often 

unknown and hence the test statistic which is used to test hypotheses and derive sample size, has t-

distribution. However, having 𝑛 sufficiently large, the formulas given above can also be used when 

𝜎2 is unknown. The required sample size is then calculated by replacing 𝜎2 by the sample variance 

𝑠2: 

𝑛1 = 𝑛2 =
(𝑧𝛼 + 𝑧β 2⁄ )

2
𝑠2

2(𝛿𝐸 − |𝜇𝐸 − 𝜇𝐶|)2
. 

6.2.1. SAS Calculations for Two-Sample Crossover Design 

Commands have to be determined following Table 21. Option twosamplemeans is needed for two-

sample analysis. The sample size needed is obtained by finding the sample size per group 

(npergroup), for total sample size that has to be doubled. The equivalence limit is specified by lower 

and upper. For crossover design, standard deviation has to be divided by two, i.e. 𝜎 2⁄ . 

proc power; 

   twosamplemeans 

   test=equiv_diff 

   meandiff= 

   upper= 

   lower= 

   stddev= 

   alpha= 

   power= 

   npergroup=.; 

run; 
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Table 21 SAS commands for two-sample crossover design 

Option Value 

meandiff 𝜇𝐸 − 𝜇𝐶 

stddev 𝜎 2⁄  

alpha 𝛼 
power 1 − 𝛽 2⁄  

lower −𝛿𝐸 
upper 𝛿𝐸 

6.2.2. R Calculations for Two-Sample Crossover Design 

For equivalence two-sample crossover design, R has a function TwoSampleCrossOver.Equivalence 

from package TrialSize. It is important to notice that R gives sample size per sequence. Right now, 

the value of 𝛽 has to be divided by two3, i.e. 𝛽 2⁄ . Arguments have to be determined following Table 

22.  

TwoSampleCrossOver.Equivalence(alpha, beta, sigma, delta, margin) 

Table 22 R arguments for two-sided crossover design 

Option Value 

alpha 𝛼 

beta 𝛽 2⁄  

sigma 𝜎 
delta 𝛿𝐸 

margin 𝜇𝐸 − 𝜇𝐶  

6.2.3. An Example for Two-Sample Crossover Equivalence Trial  

The same example is used as for the parallel design. A pharmaceutical company is interested in having 

an 80% power for proving the equivalence of a new experimental treatment. The expected true mean 

difference between experimental and control treatment is 0.01 units and the equivalence limit is 

considered to be 0.05 units, the variance 𝜎2 = 0.01 units2. 

The sample size is now found using three different methods (Table 23). 

  

                                                 
3 The author of this thesis discovered a contradiction in the package TrialSize related to equivalence crossover design and 

contacted the R team who confirmed the issue. The change will be made with the next package update (planned in May 

2016). Due to that, the syntax given may change. 
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Table 23 Sample size calculations for two-sample crossover equivalence design 

Method Formula/syntax Result 

𝑛1 = 𝑛2 =

=
(𝑧𝛼 + 𝑧β 2⁄ )

2
𝜎2

2(𝛿𝐸 − |𝜇𝐸 − 𝜇𝐶|)2
 

(𝑧0.05 + 𝑧0.1)
20.01

2(0.05 − 0.01)2
= 

=
(1.6449 + 1.2816)20.01

2(0.05 − 0.01)2
= 26.76376 

26.76376 ≈
≈ 27 

SAS 

proc power; 

   twosamplemeans 

   test=equiv_diff 

   meandiff=0.01 

   upper=0.05 

   lower=-0.05 

   stddev=0.05 

   alpha=0.05 

   power=0.9 

   npergroup=.; 

run; 

28 

R 
TwoSampleCrossOver.Equivalence(alpha=0.05, 
beta=0.1, sigma=0.1, delta=0.05, margin=0.01) 

26.76202 ≈
≈ 27 

With 80% power and a type I error level set to 5% a total of 56 patients, 28 in each sequence, would 

be required in order to detect the clinically meaningful difference of 0.05 units when the expected 

effect size is 0.01 units and the variance 𝜎2 = 0.01 units2 (as obtained with SAS software). The 

results differ slightly as a result of rounding etc. 
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Conclusion 

The aim of this thesis was to give guidelines for determining the sample size in clinical trials. First 

three chapters gave a short overview of clinical trials and what has to be considered when finding 

sample size. The three following chapters discussed the main trial types and distinct methods for 

calculations. 

The progress of obtaining sample size is of great importance in pharmaceutical industry and the 

determination progress should be a collaboration of clinicians and statisticians. Every trial type 

requires its own approach and points to consider. Superiority trials are the easiest to conduct and to 

interpret. For those trials, both one-sample and two sample (parallel and crossover) designs were 

discussed. For more complicated trials – non-inferiority and equivalence –, only two-sided designs 

were explained as the one-sample design is not used in practice for those two. Also, the progress of 

choosing non-inferiority margin and equivalence limit were more thoroughly discussed. 

Working with SAS or R, two most important aspects have to be considered: the choice of proper 

parameters and the correct interpretation as these may differ depending on the program used. For 

every method, a short example was included for the best understanding of using the directions 

provided.  
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Appendices 

Appendix 1 

For one-sample superiority design, the one-sided hypotheses are 

𝐻0: 𝜇 − 𝜇0 ≤ 𝛿 

𝐻1: 𝜇 − 𝜇0 > 𝛿, 

where 

 𝜇 is the true mean response of a test drug; 

 𝜇0 is a reference value. 

For sample size calculations, z test is used. When 𝜎 is known, the distribution of test statistic given 

null hypothesis is 

𝑍 ~𝑁(0,1). 

The null hypothesis is rejected when the calculated test statistic z 

𝑧 =
𝑥̅ − 𝜇0 − 𝛿

𝜎𝑛
> 𝑧𝛼 , 

where 

 𝑧𝛼 is the upper 𝛼th quantile of the standard normal distribution;  

 𝑥̅ is sample mean; 

 𝜎𝑛 is the standard error of mean.  

The power formula for given hypotheses is 

𝑃𝑜𝑤𝑒𝑟 = 1 − 𝛽 = 𝑃𝑟 (
𝑋̅ − 𝜇0 − 𝛿

𝜎𝑛
> 𝑧1−𝛼|𝐻1). 

Definition of standard normal distribution function being used 
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1 − 𝛽 =  Φ(
𝜇 − 𝜇0 − 𝛿

𝜎𝑛
− 𝑧1−𝛼). 

Definition of standard normal quantiles being used 

𝑧1−𝛽 =
(𝜇 − 𝜇0 − 𝛿)

𝜎𝑛
− 𝑧1−𝛼. 

A little algebra and that 𝑧𝛼 = −𝑧1−𝛼 

−𝑧𝛽 =
𝜇 − 𝜇0 − 𝛿

𝜎𝑛
+ 𝑧𝛼 

1

𝜎𝑛
=
−𝑧𝛽 − 𝑧𝛼

𝜇 − 𝜇0 − 𝛿
 

Having 𝜎𝑛 =
𝜎
√𝑛
⁄ , the sample size equals 

𝑛 =
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2

(𝜇 − 𝜇0 − 𝛿)2
  

Appendix 2 

For one-sample superiority design, the two-sided hypotheses are 

𝐻0|: 𝜇 − 𝜇0| ≤ 𝛿 

𝐻1: |𝜇 − 𝜇0| > 𝛿, 

where 𝛿 > 0 and 

 𝜇 is the true mean response of a test drug; 

 𝜇0 is a reference value. 

For sample size calculations, z test is used. When 𝜎 is known, the distribution of test statistic given 

null hypothesis is 

𝑍 ~𝑁(0,1). 

The null hypothesis is rejected when calculated test statistic z 
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𝑧 = |
𝑥̅ − 𝜇0 − 𝛿

𝜎𝑛
| > 𝑧𝛼 2⁄ , 

where 𝑧𝛼is the upper 𝛼th quantile of the standard normal distribution and 𝑥̅ is sample mean. 

The power formula for given hypotheses is 

𝑃𝑜𝑤𝑒𝑟 = 1 − 𝛽 = 𝑃𝑟 (|
𝑋̅ − 𝜇0 − 𝛿

𝜎𝑛
| > 𝑧1−𝛼 2⁄ |𝐻1). 

Definition of standard normal distribution function being used 

1 − 𝛽 =  Φ (
𝜇 − 𝜇0 − 𝛿

𝜎𝑛
− 𝑧1−𝛼 2⁄ ) + Φ(−

𝜇 − 𝜇0 − 𝛿

𝜎𝑛
− 𝑧1−𝛼 2⁄ ). 

Because of using two-sided test 

1 − β = Φ(
|𝜇 − 𝜇0 − 𝛿|

𝜎𝑛
− 𝑧1−𝛼 2⁄ ). 

Definition of standard normal quantiles being used and 𝑧𝛼 = −𝑧1−𝛼. 

−𝑧𝛽 =
|𝜇 − 𝜇0 − 𝛿|

𝜎𝑛
+ 𝑧𝛼 2⁄  

1

𝜎𝑛
=
−𝑧𝛽 − 𝑧𝛼 2⁄

|𝜇 − 𝜇0 − 𝛿|
 

Having 𝜎𝑛 =
𝜎
√𝑛
⁄ , the sample size equals 

𝑛 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝜎2

(𝜇 − 𝜇0 − 𝛿)2
. 

Appendix 3 

For two-sample parallel superiority design, the one-sided hypotheses are 

𝐻0: 𝜇𝐸 − 𝜇𝐶 ≤ 𝛿 

𝐻1: 𝜇𝐸 − 𝜇𝐶 > 𝛿, 
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where  

 𝜇𝐸 is the mean of the primary endpoint for the experimental treatment; 

 𝜇𝐶 is the mean of the primary endpoint for the control treatment. 

For sample size calculations, z test is used. When 𝜎 is known, the distribution of test statistic given 

null hypothesis is 

𝑍 ~𝑁(0,1). 

In parallel design, two sample means – 𝑥̅1 and 𝑥̅2 (estimates of population means 𝜇𝐸 and 𝜇𝐶, 

respectively) – are being observed. To reject the null hypothesis using z test, the following has to be 

true: 

𝑧 =
𝑥̅1 − 𝑥̅2 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

> 𝑧𝛼, 

where 𝑛1 and 𝑛2 are the sample sizes for each group. 

The power formula for given hypotheses is 

𝑃𝑜𝑤𝑒𝑟 = 1 − 𝛽 = 𝑃𝑟

(

 𝑥̅1 − 𝑥̅2 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

> 𝑧1−𝛼||𝐻1

)

 . 

Definition of standard normal distribution function being used 

1 − 𝛽 =  Φ

(

 
𝜇𝐸 − 𝜇𝐶 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

− 𝑧1−𝛼

)

 . 

Definition of standard normal quantiles being used 

𝑧1−𝛽 =
𝜇𝐸 − 𝜇𝐶 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

− 𝑧1−𝛼. 

A little algebra and that 𝑧𝛼 = −𝑧1−𝛼. 
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−𝑧𝛽 =
𝜇𝐸 − 𝜇𝐶 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

+ 𝑧𝛼 

1

𝜎√
1
𝑛1
+
1
𝑛2

=
−𝑧𝛽 − 𝑧𝛼

𝜇𝐸 − 𝜇𝐶 − 𝛿
, 

which leads to 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 + 𝑧𝛽)

2
𝜎2(1 + 1 κ⁄ )

(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
, 

where 𝜅 = 𝑛1 𝑛2⁄  demonstrates treatment allocations. 

Appendix 4 

For two-sample parallel superiority design, the one-sided hypotheses are 

𝐻0|: 𝜇𝐸 − 𝜇𝐶| ≤ 𝛿 

𝐻1: |𝜇𝐸 − 𝜇𝐶| > 𝛿, 

where 𝛿 > 0 and 

 𝜇𝐸 is the mean of the primary endpoint for the experimental treatment; 

 𝜇𝐶 is the mean of the primary endpoint for the control treatment. 

For sample size calculations, z test is used. When 𝜎 is known, the distribution of test statistic given 

null hypothesis is 

𝑍 ~𝑁(0,1). 

To reject the null hypothesis using z test, the following has to apply: 
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𝑧 = ||
𝑥̅1 − 𝑥̅2 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

|| > 𝑧𝛼 2⁄ , 

where 𝑛1 and 𝑛2 are the sample sizes for each group. 

The power formula for given hypotheses is 

𝑃𝑜𝑤𝑒𝑟 = 1 − 𝛽 = 𝑃𝑟

(

 𝑋̅1 − 𝑋̅2 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

> 𝑧𝛼 2⁄ ||𝐻1

)

 . 

Definition of standard normal distribution function being used 

1 − 𝛽 =  Φ

(

 
𝜇𝐸 − 𝜇𝐶 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

− 𝑧1−𝛼 2⁄

)

 +Φ

(

 −
𝜇𝐸 − 𝜇𝐶 − 𝛿

𝜎√
1
𝑛1
+
1
𝑛2

− 𝑧1−𝛼 2⁄

)

 . 

Because the one-sided test is used 

1 − β = Φ

(

 
|𝜇𝐸 − 𝜇𝐶 − 𝛿|

𝜎√
1
𝑛1
+
1
𝑛2

− 𝑧1−𝛼 2⁄

)

 . 

A little algebra and that 𝑧𝛼 = −𝑧1−𝛼. 

−𝑧𝛽 =
|𝜇 − 𝜇0 − 𝛿|

𝜎√
1
𝑛1
+
1
𝑛2

+ 𝑧𝛼 2⁄  

that leads to 

𝑛1 = 𝜅𝑛2, 

𝑛2 =
(𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝜎2(1 + 1 κ⁄ )

(𝜇𝐸 − 𝜇𝐶 − 𝛿)2
, 

where 𝜅 = 𝑛1 𝑛2⁄  demonstrates treatment allocations. 
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