
1
Tartu 2019

ISSN 2613-5906
ISBN 978-9949-77-962-8

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
4

ILY
A

 V
ER

EN
IC

H
	

Explainable Predictive M
onitoring of Tem

poral M
easures of B

usiness Processes

ILYA VERENICH

Explainable Predictive Monitoring of
Temporal Measures of Business Processes

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

4

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

4

ILYA VERENICH

Explainable Predictive Monitoring of
Temporal Measures of Business Processes

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in informatics on December 28, 2018 by the Council of the
Institute of Computer Science, University of Tartu.

Supervisors

Prof. Marlon Dumas
University of Tartu, Estonia

Assoc. Prof. Fabrizio Maria Maggi
University of Tartu, Estonia

Prof. Marcello La Rosa
University of Melbourne, Australia

Prof. Arthur ter Hofstede
Queensland University of Technology, Australia

Opponents

Prof. Dr. Peter Fettke
German Research Center for Artificial Intelligence (DFKI)
Germany

Prof. Alfredo Cuzzocrea, PhD
University of Trieste
Italy

The public defense will take place on February 11, 2019 at 10:15 in J.Liivi 2-405.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright c© 2019 by Ilya Verenich

ISSN 2613-5906
ISBN 978-9949-77-962-8 (print)
ISBN 978-9949-77-963-5 (PDF)

University of Tartu Press
http://www.tyk.ee/

ABSTRACT

Business process monitoring is a central component in any Business Process Man-
agement (BPM) initiative. Process monitoring enables analysts and managers to
understand which processes are under-performing and to intervene accordingly.
Traditional process monitoring techniques are designed to provide a picture of the
current performance of a process. As such, they allow us to identify degradations
events in the performance of a process, such as an increase in the number of dead-
line violations. However, these techniques only identify degradation events after
the fact, and hence they do not allow us to act in a preventive manner.

Advances in machine learning combined with the availability of process execu-
tion data have led to the emergence of predictive process monitoring techniques.
These techniques allow us to predict future states of the process, thus enabling
process workers and operational managers to intervene, in real-time, in order to
prevent or otherwise mitigate performance issues or compliance violations.

In the past years, various approaches have been proposed to address typical
predictive process monitoring questions, such as whether or not a running process
instance will meet its performance targets, or when will it finish. This doctoral
thesis starts with a systematic literature review and taxonomy of methods for pre-
dictive monitoring of temporal measures of business processes. Based on this
review, it identifies gaps in the existing body of methods. One of the key gaps
identified is the lack of support for explainability in existing approaches. Yet
in practice, explainability is a critical property of predictive methods. It is not
enough to accurately predict that a running process instance will end up in an un-
desired outcome. It is also important for users to understand why this prediction
is made and what can be done to prevent this undesired outcome.

To address this gap, this thesis proposes methods to build predictive models
to monitor temporal measures in an explainable manner. The contribution of the
thesis is the design and evaluation of explainable predictive process monitoring
techniques for temporal performance measures based on a principle known as
“Transparent Box Design”. Specifically, the proposed methods decompose a pre-
diction into elementary components.

In one embodiment of this general idea, we apply deep neural network models
that have been shown to achieve high levels of accuracy in the context of predic-
tive process monitoring. In order to make these models explainable, we use an in-
stance of multi-task learning where several related predictive monitoring tasks are
integrated into a single system which is trained jointly. In a second embodiment,
we propose an explainable predictive process monitoring method by extracting a
BPMN process model from the event log, predicting the temporal performance at
the level of activities, and then aggregating these predictions at the level of the
whole process via flow analysis techniques. Both of these embodiments provide
local interpretations of the predictions made for each process instance.

In the field of machine learning, it has been observed that there is a fundamen-

5

tal trade-off between explainability and accuracy. To evaluate this trade-off, we
perform a comparative evaluation of the proposed explainable techniques against
each other and against various state-of-the-art baselines, including black-box tech-
niques that do not produce explainable predictions. The evaluation is performed
on 17 real-life event logs exhibiting different characteristics and originating from
different domains.

The research contributions of the thesis have been consolidated into an open-
source toolset for predictive business process monitoring, namely Nirdizati. It is a
Web-based predictive business process monitoring engine that can be used to train
predictive models using the methods described in this thesis, as well as third-party
methods, and then to make predictions at runtime, for ongoing process instances.
Nirdizati has been validated in collaboration with potential users, providing im-
portant feedback as to how this technology is likely to be used in an enterprise
setting.

Finally, we present an application of the proposed explainable predictive mon-
itoring methods to improve the efficiency of business processes. Namely, we
demonstrate how these methods can be applied to reduce overprocessing waste
by ordering certain activities at runtime based on their expected outcome and ef-
fort determined via predictive models.

6

CONTENTS

7

1. Introduction 14
1.1. Problem Area . 14
1.2. Problem Statement . 16

1.2.1. Explainable Predictions 18
1.2.2. Process Performance Measures 18
1.2.3. Research Questions .
1.2.4. Solution Criteria .

1.3. Research Benefits and Innovation 20
1.4. Research Approach . 20
1.5. Thesis Outline . 21

2. Background 23
2.1. Process Mining . 23
2.2. Process Models . 25
2.3. Temporal Process Performance Measures 27
2.4. Machine Learning .

2.4.1. Overview .
2.4.2. Learning Algorithms . 31
2.4.3. Hyperparameter Optimization 35

2.5. Explainability in Machine Learning 36

3. State of the Art in the Prediction of Temporal Process Measures
3.1. Search Methodology .

3.1.1. Research Questions .
3.1.2. Study Retrieval . 40

3.2. Analysis and Classification of Methods 42
3.2.1. Input Data . 42
3.2.2. Process Awareness . 44
3.2.3. Family of Algorithms . 44
3.2.4. Evaluation Data and Domains 45
3.2.5. Implementation . 46
3.2.6. Predictive Monitoring Workflow 46
3.2.7. Primary and Subsumed (Related) Studies 47

3.3. Taxonomy of Methods . 48
3.3.1. Prefix Bucketing . 48
3.3.2. Prefix Encoding .
3.3.3. Discussion .

3.4. Summary . 52

19
19

29
29

39
39
39

49
51

8

4. Deep Learning for Prediction of Temporal Process Measures 54
4.1. Introduction . 54
4.2. Deep learning . 55

4.2.1. Neural Networks . 55
4.2.2. Recurrent Neural Networks 55
4.2.3. Long Short-Term Memory for Sequence Modeling 56

4.3. Next Activity and Timestamp Prediction 57
4.3.1. Approach . 57
4.3.2. Experimental setup .
4.3.3. Results . 60

4.4. Future Path Prediction . 62
4.4.1. Approach . 62
4.4.2. Experimental Setup . 63
4.4.3. Results . 64

4.5. Remaining Cycle Time Prediction 64
4.6. Summary . 65

5. Process Model Driven Prediction of Temporal Process Measures 66
5.1. Introduction . 66
5.2. Overview of Flow Analysis . 67
5.3. Discovering Process Models from Event Logs
5.4. Replaying Partial Traces on Process Models 70
5.5. Obtaining the Flow Analysis Formulas 71
5.6. Computing Cycle Times and Branching Probabilities 72
5.7. Summary . 76

6. Experimental Evaluation 77
6.1. Datasets . 77
6.2. Experimental Setup .

6.2.1. Data Preprocessing . 80
6.2.2. Data Split . 81
6.2.3. Evaluation Metrics . 81
6.2.4. Baselines . 82
6.2.5. Hyperparameter Optimization 83

6.3. Evaluation Results . 84
6.3.1. Evaluation of Flow Analysis-based Techniques 84
6.3.2. Evaluation of the Proposed Techniques and State-of-the-art

Techniques . 87
6.4. Threats to Validity . 93
6.5. Summary . 94

59

69

79

9

7. Nirdizati: An Integrated Predictive Process Monitoring Platform 95
7.1. Introduction . 95
7.2. Apromore Platform . 96
7.3. Training Plugin Bundle . 97
7.4. Runtime Plugin Bundle . 100
7.5. Validation . 102
7.6. Summary . 105

8. Application of Process Model Driven Prediction to Overprocessing Re-
duction 106

8.1. Introduction . 106
8.2. Background and Related Work 107
8.3. Approach . 109

8.3.1. Overview . 109
8.3.2. Estimation of Expected Processing Effort 110
8.3.3. Feature Encoding . 111
8.3.4. Prediction of Reject Probability and Processing Time . . . 112

8.4. Evaluation . 113
8.4.1. Datasets and Features . 113
8.4.2. Prediction Accuracy . 116
8.4.3. Overprocessing Reduction 116
8.4.4. Execution Times . 118
8.4.5. Threats to Validity . 118

8.5. Summary . 119

9. Conclusion and Future Work 121
9.1. Summary of Contributions . 121
9.2. Future Work . 122

Bibliography 125

Appendix A. Source Code and Supplementary Materials 140

Acknowledgments 141

Sisukokkuvõte (Summary in Estonian) 142

Curriculum Vitae 144

Elulookirjeldus (Curriculum Vitae in Estonian) 145

List of original publications 146

LIST OF FIGURES

1. BPM lifecycle model [32]. 15
2. An example of a real-time work in progress report produced by Bizagi 16
3. Process monitoring methods [135] 16
4. Overview of predictive process monitoring. 17
5. Core BPMN elements [3]. 27
6. Process model of a claim handling process 28
7. Cycle time components . 28
8. Discriminative and generative models [85]. 30
9. Ensemble learning architecture. 32

10. Maximal margin separating hyperplane with support vectors. . . . 34
11. Taxonomy of methods for explaining black box models (adopted

from [44]). 36
12. Number of published studies over time. 40
13. Predictive process monitoring workflow. 47
14. Taxonomy of methods for predictive monitoring of temporal mea-

sures. 52
15. An example of a neural network unit 55
16. A simple recurrent neural network (taken from [65]). 56
17. LSTM unit architecture [69]. 56
18. Neural Network architectures with single-task layers (a), with shared

multi-tasks layer (b), and with n+m layers of which n are shared (c). 58
19. Overview of the proposed approach. 67
20. Typical process model patterns: sequential (a), XOR-block (b), AND-

block (c) and rework loop (d). 68
21. Backtracking algorithm (taken from [2]). 71
22. Example process model. Highlighted is the current marking 71
23. Unfolding the rework loop of F 73
24. Temporal split of the training and test sets. 81
25. A process model of the Hospital log. Current marking of hd2(SWKD)

and its predicted future path are highlighted. 86
26. Prediction accuracy (measured in terms of MAE) across different

prefix lengths . 90
27. Average ranking of the evaluated methods over all datasets. 91
28. Average normalized MAE values (a) and their standard deviation (b)

across case lifetime. XGBoost is used as the main predictor 91
29. Average normalized MAE values (a) and their standard deviation (b)

across case lifetime. SVM is used as the main predictor 93
30. High-level architecture of the predictive monitoring functionality of

Apromore. 96
31. Apromore’s Portal with predictive monitoring functionality high-

lighted. .

10

98

32. Training configuration screen. .
33. High-level data flow diagram of the Training plugin bundle.
34. Model validation page of the Training plugin bundle. 101
35. High-level data flow diagram of the Runtime plugin bundle. 101
36. Main view of the dashboard in the Runtime plugin bundle. 102
37. Custom dashboard in QlikView made from the exported CSV file

with predictions. 105
38. Overview of the proposed approach. 110
39. Process map extracted from the environment permit log. 115
40. ROC curves of predictive models for checks in Bondora (a) and En-

vironmental (b) datasets. 117

11

98
98

LIST OF TABLES

1. Extract of an event log. 25
2. Comparison of our search methodology with [74] 41
3. Overview of the 23 relevant studies resulting from the search (or-

dered by year and author). 43
4. Primary and subsumed studies 48
5. Feature vectors created from the log in Table 1 using last state en-

coding. 50
6. Feature vectors created from the log in Table 1 using aggregated

encoding. 50
7. Feature vectors created from the log in Table 1 using index-based

encoding, buckets of length n = 3. 51
8. Experimental results for the Helpdesk and BPI’12 W logs. 61
9. Suffix prediction results in terms of Damerau-Levenshtein similarity. 64

10. Statistics of the datasets used in the experiments.
11. Hyperparameters tuned via grid search. 83
12. Weighted average MAE over all prefixes for flow analysis-based

techniques. 85
13. MAE of cycle time predictions of individual activities and their ac-

tual mean cycle times (in days). 85
14. Predicted and average values of cycle times and branching probabil-

ities for hd2(SWKD). 87
15. Weighted average MAE over all prefixes.
16. Post-hoc Nemenyi test of methods’ rankings across all datasets. . . 92
17. Possible outcomes of checks during the execution of a knockout sec-

tion with three activities. 111
18. Extract of an event log. 112
19. Summary of datasets. 114
20. Average number of performed checks and overprocessing for test

cases. 117
21. Distribution of number of checks across the test cases. 118
22. Execution times of various components of our approach in millisec-

onds. 118

12

79

89

LIST OF ABBREVIATIONS

AUC Area under ROC curve
BPI Business process intelligence
BPIC Business process intelligence challenge
BPM Business process management
BPMN Business process model and notation
CSV Comma-separated values file
CV Coefficient of variation
FA Flow analysis
JSON JavaScript object notation
KPI Key performance indicator
LSTM Long short-term memory unit
MAE Mean absolute error
MTL Multi-task learning
RNN Recurrent neural network
ROC Receiver operating characteristic curve
RPST Refined process structure tree
RQ Research question
SESE Single-Entry-Single-Exit
SLA Service level agreement
SLR Systematic literature review
SPN Stochastic Petri net
STL Single-task learning
SVM Support vector machine
TS Transition system
URL Uniform Resource Locator
XES IEEE Standard for extensible event stream
XML Extensible markup language

13

1. INTRODUCTION

1.1. Problem Area

Business Process Management (BPM) is “a body of methods, techniques and tools
to discover, analyze, redesign, execute and monitor business processes” [32] . In
this context, a business process is viewed as a collection of inter-connected events,
activities and decision points that involve a number of human actors, software
systems and physical and digital objects, and that collectively lead to an outcome
that adds value to the involved actors.

BPM activities can be organized in a cycle consisting of the following stages
(Figure 1) [32]:
• Process identification. Processes relevant to the problem being addressed

are identified, delimited and related to each other. The outcome of this
phase is a process architecture that presents an overview of the identified
processes, along with their relations.
• Process discovery. The present state of a process is described, in the form

of as-is process models.
• Process analysis. Issues related to the as-is process are identified and, if

possible, quantified using performance metrics.
• Process redesign. Options for changes to the process that would help tackle

the previously found issues are identified. The output is a to-be process
model.
• Process implementation. The changes required to migrate from the as-is

process to the to-be process are organized and implemented.
• Process monitoring. Once the process has been redesigned, data related

to the process execution are collected and analyzed to assess the process
performance with respect to its performance criteria.

Business processes are typically supported by enterprise systems that record
data about each individual execution of a process, also called a process instance
or a case. These data can be extracted as event logs in order to perform various
forms of business process analytics.

This research concerns the process monitoring phase of the BPM lifecycle.
Herein, data related to process execution are collected and analyzed in order to
assess the process performance with respect to a given set of performance criteria,
such as process duration or cost [135].

Traditional approaches to process monitoring are based on “post-mortem” (of-
fline) analysis of process execution. This range of techniques is usually referred
to as process intelligence. They take as input a database of completed process in-
stances that relate to a specific timeframe (e.g. last six months) and output process
performance insights, such as identified bottlenecks or historical case duration.

14

Figure 1: BPM lifecycle model [32].

An example of a process analytics tool is the open-source framework ProM1 that
employs a plugin architecture to extend its core functionality. Commercial alter-
natives for process analytics include Celonis2, Minit3, myInvenio4 and Fluxicon
Disco5.

Another approach to process monitoring includes observations of process work
by process analysts at runtime, i.e. online. These techniques known as business
activity monitoring take as input an event stream, i.e. prefixes of ongoing process
cases, and output a real-time overview of the process performance, such as the
current process load or problematic cases and current bottlenecks. Tools with
business activity monitoring capabilities usually provide their output in the form
of reports and dashboards. Figure 2 provides an example of a work-in-progress
report as produced by the Bizagi Business Activity Monitoring tool 6. The pie-
chart on the left shows the percentage distribution of cases based on whether they
are running on time, at risk, or overdue. The bar chart shows the target resolution
date of ongoing cases. The horizontal axis depicts the next eight days, and the
vertical axis shows the number of cases that are due to expire on each day. For
example, there are 11 cases expiring in 1 day and 6 cases expiring in 3 days.

1http://www.promtools.org/
2http://www.celonis.com/en/
3http://www.minit.io/
4http://www.my-invenio.com/
5http://fluxicon.com/disco/
6http://www.bizagi.com/

15

http://www.promtools.org/
http://www.celonis.com/en/
http://www.minit.io/
http://www.my-invenio.com/
http://fluxicon.com/disco/
http://www.bizagi.com/

Figure 2: An example of a real-time work in progress report produced by Bizagi

Business activity
monitoring

Process Monitoring

Process
intelligence

DB logs

Predictive process
monitoring

offline online

Event stream

Figure 3: Process monitoring methods [135]

1.2. Problem Statement

Although process intelligence and business activity monitoring techniques are
able to provide estimations of process performance, they are in fact reactive, in
the sense that they detect process issues only once they have happened, regardless
of whether they use historical data or not. Predictive process monitoring aims to
overcome the limitations of traditional “empirical” monitoring practices by using
data produced during process execution to continuously monitor processes perfor-
mance [138]. In other words, predictive process monitoring builds on top of both
process intelligence and business activity monitoring since it taps into past data to
allow process workers to steer the process execution by taking preemptive actions
to achieve performance objectives (Figure 3).

Prediction models form the core of every predictive process monitoring sys-
tem. They are built for a specific prediction goal based on an event log of com-
pleted cases. At runtime, these models are applied to prefixes of ongoing cases
in order to make predictions about future case performance. If the predicted out-

16

come deviates from the normal process behavior, a system raises an alert to the
process workers and possibly makes recommendations to them as to the impact of
a certain next action on future performance. Therefore, problems are anticipated
and can be proactively managed.

For example, in a freight transportation process, a prediction goal can be the
occurrence of a delay in delivery time. In this case, the outcome will be whether
the delay is going to occur (or the probability of delay occurrence). If a delay is
predicted, faster means of transport or alternative transport routes could be sched-
uled proactively and before the delay actually occurs [77].

Predictive process monitoring takes a set of historical process execution cases
(i.e. completed cases) and an ongoing process case as input and predicts desired
properties of the ongoing case. In other words, predictive process monitoring aims
at predicting the value of a given function F(p,T) over a set of completed cases,
where p is the case prefix of an ongoing case and T is the set of completed cases.
An ongoing case represented as a sequence of so far completed activities is often
referred to as a trace.

The problem of predictive process monitoring can be unfolded as shown in
Figure 4. A Prediction point is a point in time where the prediction takes place. A
Predicted point is a point in time in the future where the performance measure has
the predicted value. A prediction is thus based on the knowledge of the predictor
on the history of the process execution to the prediction point and the future to
the predicted point. The former is warranted by the predictor’s memory and the
latter is based on the predictor’s forecast (i.e. predicting the future based on trend
and seasonal pattern analysis). Finally, the prediction is performed based on a
reasoning method.

Figure 4: Overview of predictive process monitoring.

Since in real-life business processes the amount of uncertainty increases over
time (cone of uncertainty [112]), the prediction task becomes more difficult and
generally less accurate. As such, predictions are typically made up to a specific
point of time in the future, i.e. the time horizon h. The choice of h depends on
how fast the process evolves and on the prediction goal.

17

1.2.1. Explainable Predictions

Modern machine learning algorithms are capable of building more accurate mod-
els but they become increasingly complex and are harder for users to interpret
[16]. As a result of this inverse relation between model explainability and ac-
curacy, in many real-life problems, black-box machine learning models, such as
neural networks, are less preferable since users cannot see the reasoning behind
the predictions. This motivates the need to improve the explainability of complex
models [59]. Most existing approaches focus on explaining how the model made
certain predictions. For instance, Ribeiro et al. [98] approximate predictions of
black-box classifiers locally with an explainable model, while Zhou et al. [147]
provide a global approximation of neural networks with symbolic rules. How-
ever, these approaches generally focus on post-hoc explainability where a trained
model is given and the goal is to explain its predictions. By contrast, our objective
is to incorporate explainability directly into the structure of the model.

In this thesis, we apply a principle known as “Transparent Box Design” [44].
Specifically, our approach is grounded in the field of transparent box design for
local interpretability, meaning that we provide explanations for individual pre-
dictions, rather than globally for all predictions. To this end, we decompose the
predictions made for a given instance (case) into components. These components
are the tasks and the conditional flows. For a given instance, we make a prediction
that is composed from the predictions from each of these components. For exam-
ple, the remaining time of the case is explained in terms of the predicted execution
times for each task. In this way, users will know which elements contributed to
the prediction, i.e. where the time is expected to be spent. As such, we propose a
transparent box design that provides a local explanation of the predictions made
for each process instance.

1.2.2. Process Performance Measures

A performance measure is a function that maps an activity instance or a process
instance (case) to a numerical value for the purpose of reflecting the goodness of
its performance. Performance measures can be classified according to multiple
dimensions including time, cost, quality, and flexibility [32].

In this thesis, we focus on predicting temporal measures, i.e. performance mea-
sures that deal with time. Temporal performance measures include cycle time
(also known as throughput time, lead time, or case duration), processing time and
waiting time. These measures can be defined at the level of process instances or
at the level of individual activities.

At runtime, it makes sense to talk about remaining time, which is defined for
running cases as opposed to completed cases. As such, one can define remaining
cycle time, remaining processing time and remaining waiting time. For example,
remaining cycle time reflects the difference between the cycle time of the ongoing
(incomplete) case, and its currently elapsed time.

18

Temporal performance measures defined for cases can be lifted to the level of
processes via an aggregation function (e.g. average). For example, we can refer
to the average cycle time of a process as being equal to the average of the cycle
times of a set of completed cases of the process observed over a given period of
time.

1.2.3. Research Questions

The objective of this thesis is to design and evaluate methods for predictive pro-
cess monitoring, with a particular focus on the explainability of predictions. Ad-
ditionally, we aim to investigate the trade-off between the explainability and accu-
racy of predictions. Another focal point is providing a toolset for the replication
of the results and the application of the proposed methods at runtime, in order to
make predictions for ongoing business process instances. Specifically, the thesis
pursues the following research questions:
RQ1 How to make predictive process monitoring techniques for temporal mea-

sures more explainable to business process stakeholders?
RQ2 What is the impact of explainability on prediction accuracy in the context

of predictive process monitoring techniques for temporal measures?
RQ3 How to embed existing techniques for predictive process monitoring into

dashboard-based monitoring systems?
As a prerequisite to answering these research questions, we provide a compre-

hensive survey and taxonomy of predictive process monitoring methods proposed
in related work, and identify the gap in existing methods. This leads to a further
research question:

RQ0 What methods exist for predictive monitoring of remaining time of business
processes?

1.2.4. Solution Criteria

The predictive monitoring methods that will be designed as a result of this re-
search will be evaluated using the following criteria:
• Explainability: the solution should be able to explain predictions about on-

going cases by decomposing them into elementary components, at the level
of activities.
• Accuracy: the solution should be able to make predictions about a given

outcome with relatively high levels of accuracy (e.g. above 80%).
• Earliness: the solution should be able to make predictions as early as possi-

ble, i.e. as soon as there is enough information in an ongoing case to make
a prediction with sufficient confidence.
• Low runtime overhead: the solution should be able to make predictions

almost instantaneously (i.e. within 1 second), with limited computing re-
sources, over real-scale scenarios.

19

• Generality: the proposed solution should be able to deal with logs with
different characteristics and originating from different domains.

1.3. Research Benefits and Innovation

The importance of this research is emphasized by the need of many organiza-
tions to manage business processes, as shown by Gartner’s 2018 Process Mining
Market Analysis [73]. Based on its extensive interaction with end-user clients,
academic researchers and major process mining vendors, Gartner identified key
process mining capabilities. The results highlight the importance of predictive
and prescriptive analytics as well as real-time dashboards with support for KPIs
that are continuously monitored. These insights could be used to support process
workers and operational managers in taking data-aware decisions as business pro-
cesses unfold. Ultimately, predictive process monitoring enables evidence-based
business process management wherein every business decision is made with data,
backed by data and continuously put into question based on data.

1.4. Research Approach

The purpose of this project is to devise and operationalize a holistic approach
for predictive monitoring of business processes. In line with the defined research
questions, this approach will allow for prediction of process case evolution until
its completion and prediction of specific characteristics of the case.

The research approach of this project follows the Design Science methodology.
Hevner et al. [46] recommend several guidelines for design science research:

Design as an artifact. As an outcome of the project, we produce viable arti-
facts in the form of models for predicting various properties of running business
processes, e.g. whether the process case will meet a certain performance objective
and whether the case will contain a re-work loop. Aside from predictions, the
models will potentially be able to explain the causes of various case properties.

Problem relevance. The term relevance is used to address a research that in-
troduces new knowledge on a topic, proposing a novel and better approach to a
problem, or a solution to an unsolved problem. This research is relevant because
both practitioners and academics have recognized the importance of predictive
monitoring as part of the BPM lifecycle, and academics have been tackling this
problem in various contexts.

Design evaluation. A research contribution requires a rigorous evaluation of
the artifacts enabling assessment of their utility. Throughout this research, we
evaluate the results using a range of real-life datasets exhibiting different char-
acteristics (e.g. derived from different domains, having different attributes), to
ensure the generalizability of our contribution.

20

Research rigor. The term rigor is used to identify a scientific approach achieved
by applying existing foundations and well-established evaluation methods. The
rigor of the approach is ensured by conducting an extensive literature review,
using formal methods and state-of-the-art machine learning and process mining
algorithms, as well as by constructing a comprehensive evaluation benchmark,
using well-defined selection and assessment criteria.

Communication of research. The results of the research are communicated to
the scientific community via research papers published in international confer-
ences and journals and presentations at conferences, workshops and other venues.

An underlying assumption of this research is that it is possible to extract from
data already stored in event logs non-trivial patterns that can assist in prediction
of future process behavior. Hence, all our devised techniques are based on the
analysis of event log data. Some techniques make use of only minimal informa-
tion, such as event classes and their timestamps, while others take into account all
available attributes from the executed events, either in raw or aggregated form.

1.5. Thesis Outline

This thesis is organized as follows. Chapter 2 provides definitions, principles and
basic concepts from process mining and machine learning areas that are refer-
enced throughout the thesis. Additionally, we provide the relevant background on
process models and temporal process performance measures.

Chapter 3 provides a systematic literature review and taxonomy of techniques
proposed for predictive business process monitoring of temporal properties, and
identifies the gaps in the existing body of methods.

Chapter 4 introduces deep learning models, specifically recurrent neural net-
works (RNN) and long short-term memory networks (LSTM) for the prediction of
temporal measures. Deep learning models are black-box models, focusing on ac-
curately describing the sequences, rather than explainability of the results. In this
chapter, we aim to make these models explainable by applying them in a multi-
task setting where several predictive process monitoring tasks are integrated into
a single system which is trained jointly.

Chapter 5 proposes a process model driven method for the explainable pre-
dictive process monitoring of continuous performance measures, such as the re-
maining time, based on a BPMN process model automatically discovered from
the event log. Unlike in the approach proposed in Chapter 4, here we additionally
model decision gateways.

In Chapter 6, we present a comprehensive evaluation of our proposed explain-
able techniques against each other and various state-of-the-art baselines identified
in Chapter 3. Namely, we demonstrate the impact of explainability on prediction
accuracy in the context of early prediction of temporal performance measures.

Chapter 7 presents a prototype of an integrated software platform for predic-
tive business process monitoring, namely Nirdizati, that consolidates the research

21

contributions of this thesis, and illustrates a concrete application of this platform
in practice.

In Chapter 8, we discuss a possible application of the process model driven
technique presented in Chapter 5 to improve the efficiency of business processes.
Namely, we illustrate how overprocessing waste can be reduced by ordering cer-
tain activities at runtime based on their expected outcome and effort determined
via predictive models.

Finally, Chapter 9 concludes this thesis by providing a summary of our contri-
butions and discussing possible avenues for future work.

22

2. BACKGROUND

Predictive process monitoring is a multi-disciplinary area that draws concepts
from process mining on the one side, and machine learning on the other side.
In this section, we introduce concepts from the aforementioned areas that will be
referred to in later chapters. In particular, Section 2.1 introduces basic process
mining concepts and notations, Section 2.2 provides the relevant background on
process models, Section 2.3 introduces temporal process performance measures.
Finally, Section 2.4 introduces the concept of machine learning, briefly discusses
three machine learning algorithms used in this thesis – decision tree, gradient
boosting and support vector machine – as well as common hyperparameter tuning
strategies for these algorithms.

2.1. Process Mining

Business processes are generally supported by information systems that record
data about each individual execution of a process (also called a case). Process
mining [129] is a research area within business process management that is con-
cerned with deriving useful insights from process execution data (called event
logs). Process mining techniques are able to support various stages of business
process management tasks, such as process discovery, analysis, redesign, imple-
mentation and monitoring. In this section, we introduce the key process mining
concepts.

Each case consists of a number of events representing the execution of activi-
ties in a process. Each event has a range of attributes of which three are mandatory,
namely (i) case identifier specifying which case generated this event, (ii) the event
class (or activity name) indicating which activity the event refers to and (iii) the
timestamp indicating when the event occurred2. An event may carry additional
attributes in its payload. For example, in a patient treatment process in a hospi-
tal, the name of a responsible nurse may be recorded as an attribute of an event
referring to activity “Perform blood test”. These attributes are referred to as event
attributes, as opposed to case attributes that belong to the case and are therefore
shared by all events relating to that case. For example, in a patient treatment pro-
cess, the age and gender of a patient can be treated as a case attribute. In other
words, case attributes are static, i.e. their values do not change throughout the life-
time of a case, as opposed to attributes in the event payload, which are dynamic
as they change from an event to the other.

Formally, an event record is defined as follows:
Definition 1 (Event). An event is a tuple (a,c, t,(d1,v1), . . . ,(dm,vm)) where a is
the activity name, c is the case identifier, t is the timestamp and (d1,v1) . . . ,(dm,vm)

2Hereinafter, we refer to the event completion timestamp unless otherwise noted.

23

(where m ≥ 0) are event attribute names and the corresponding values assumed
by them.

Let E be the event universe, i.e., the set of all possible event identifiers, and T
the time domain. Then there is a function πT ∈ E → T that assigns timestamps
to events.

The sequence of events generated by a given case forms a trace. Formally,
Definition 2 (Trace). A trace is a non-empty sequence σ = 〈e1, . . . ,en〉 of events
such that ∀i ∈ [1..n],ei ∈ E and ∀i, j ∈ [1..n] ei.c = e j.c. In other words, all events
in the trace refer to the same case.

A set of completed traces (i.e. traces recording the execution of completed
cases) comprises an event log.
Definition 3 (Event log). An event log L is a set of completed traces, i.e., L =
{σi : σi ∈S ,1≤ i≤ K}, where S is the universe of all possible traces and K is
the number of traces in the event log.

An IEEE standard for representing event logs, called XES (eXtensible Event
Stream), has been introduced in [1]. The standard defines the XML format for
organizing the structure of traces, events and attributes in event logs. It also intro-
duces some extensions that define some attributes with pre-defined meaning such
as: (i) “concept:name”, which stores the name of event/trace; (ii) “org:resource”,
which stores the name/identifier of the resource that triggered the event (e.g., a
person name); (iii) “org:group”, which stores the group name of the resource that
triggered the event.

As a running example, let us consider an extract of an event log originating
from an insurance claims handling process (Table 1). The activity name of the
first event in case 1 is A, it was completed on 1/1/2017 at 9:13AM. The additional
event attributes show that the cost of the activity was 15 units and the activity was
performed by John. These two are event attributes. The events in each case also
carry two case attributes: the age of the applicant and the channel through which
the application has been submitted. The latter attributes have the same value for
all events of a case.

Event and case attributes can be categorized into at least two data types –
numeric (quantitative) and categorical (qualitative) [117]. With respect to the run-
ning example, numeric attributes are Age and Cost, while categorical attributes
are Channel, Activity and Resource. Each data type requires different preprocess-
ing to be used in a predictive model. Specifically, numeric attributes are typically
represented as such, while for categorical attributes, one-hot encoding is typically
applied.

One-hot encoding represents each value of the categorical attribute with a bi-
nary vector with the i-th component set to one, and the rest set to zero. In other
words, it provides a 1-to-N mapping where N is the number of possible distinct
values (levels), or cardinality of an attribute [79]. As an example, let us consider
a categorical attribute A with cardinality N. We take an arbitrary but consistent

24

Table 1: Extract of an event log.
Case Case attributes Event attributes
ID Channel Age Activity Timestamp Resource Cost
1 Email 37 A 1/1/2017 9:13:00 John 15
1 Email 37 B 1/1/2017 9:14:20 Mark 25
1 Email 37 D 1/1/2017 9:16:00 Mary 10
1 Email 37 C 1/1/2017 9:18:00 Mark 10
1 Email 37 F 1/1/2017 9:18:05 Kate 20
1 Email 37 G 1/1/2017 9:18:50 John 20
1 Email 37 H 1/1/2017 9:19:00 Kate 15

2 Email 52 A 2/1/2017 16:55:00 John 25
2 Email 52 D 2/1/2017 17:00:00 Mary 25
2 Email 52 B 3/1/2017 9:00:00 Mark 10
2 Email 52 C 3/1/2017 9:01:00 Mark 10
2 Email 52 F 3/1/2017 9:01:50 Kate 15

ordering over the set of levels of A, and use index ∈ A→ {1, . . . ,N} to indicate
the position of a given attribute value a in it. The one-hot encoding assigns the
value 1 to feature number index(a) and a value of 0 to the other features.

As we aim to make predictions for traces of incomplete cases, rather than for
traces of completed cases, we define a function that returns the first k events of a
trace of a (completed) case.
Definition 4 (Prefix function). Given a trace σ = 〈e1, . . . ,en〉 and a positive inte-
ger k ≤ n, hdk(σ) = 〈e1, . . . ,ek〉.

For example, for a sequence σ1 = 〈a,b,c,d,e〉, hd2(σ1) = 〈a,b〉.
The application of a prefix function will result in a prefix log, where each

possible prefix of an event log becomes a trace.
Definition 5 (Prefix log). Given an event log L, its prefix log L∗ is the event log
that contains all prefixes of L, i.e., L∗ = {hdk(σ) : σ ∈ L,1≤ k ≤ |σ |}.

For example, a complete trace consisting of three events would correspond to
three traces in the prefix log – the partial trace after executing the first, the sec-
ond and the third event. For event logs where case length is very heterogeneous,
instead of including every prefix of a trace, it is common to include only prefixes
with specific length in the prefix log during the training procedure. This can be
done by retaining all prefixes of up to a certain length [66, 121]. An alternative
approach is to only include prefixes hdk(σ) such that

(∣∣hdk(σ)
∣∣−1

)
mod g = 0

where g is a gap size. This approach has been explored in [31].

2.2. Process Models

Modern BPM heavily relies on business process models. Process models provide a
visual representation of the underlying business process. A process model consists
of a set of activities and their structuring using directed control flow edges and

25

gateway nodes that implement process routing decisions [92]. Formally,
Definition 6 (Process model). A process model is a tuple (N,E, type), where
N = NA ∪NG is a set of nodes (NA is a nonempty set of activities and NG is a
set of gateways; the sets are disjoint), E ⊆ N×N is a set of directed edges be-
tween nodes defining control flow, type is a function NG→{AND,XOR,OR} is a
function that assigns a control flow construct to each gateway.

Ter Hofstede et al. [124] identify three core purposes of a model:
• Providing insight: Process models can be used to provide a clear overview

of aspects related to the process to different stakeholders involved in the
process.
• Analysis: Process models can be analyzed, depending on the type of model,

to check the performance of the system or to detect errors and inconsisten-
cies in the process.
• Process enactment: Process models can be used to execute business pro-

cesses.
Many modeling notations have been proposed to represent process models,

including Event-driven Process Chains (EPC), UML Activity Diagrams and Petri
nets. Nevertheless, the definition above is rather generic and abstracts from the
specific notation.

One of the most common process modeling notations is the Business Pro-
cess Model and Notation (BPMN) developed by the Object Management Group
(OMG). Figure 5 shows a subset of the core elements of BPMN. The start and
end events represent the initiation and termination of an instance of a process re-
spectively. The tasks denote activities to be performed. The flow represents the
order among the events, gateways and tasks. Finally, gateways are control flow el-
ements and they can represent either the splitting or merging of paths. In the case
of exclusive gateways (also known as XOR-gateways), a split has more than one
outgoing flow, but only one of them can be activated, according to a pre-defined
condition. Its counterpart, the join exclusive gateway, merges the incoming al-
ternative flows. Conversely, a parallel gateway (also known as AND-gateways)
denotes the parallel activation of all the outgoing branches; whereas, the merging
counterpart denotes the synchronization of the multiple incoming paths [3].

A process model can be decomposed into process fragments. A process frag-
ment is a connected part of a process model. For the purpose of this study, we
require a fragment to have a single entry and a single exit point. Such fragments
are referred to as SESE fragments. From a modeling perspective, SESE fragments
are very handy: structurally every SESE fragment can be replaced with one aggre-
gating activity. A model that can be decomposed into SESE fragments, without
impacting the behavior it describes, is called a block-structured, or a structured
model.

A process model can be provided by the process stakeholders or can be au-
tomatically discovered from the corresponding event log via a process discovery

26

Figure 5: Core BPMN elements [3].

algorithm [128].
Definition 7 (Process discovery algorithm). Let L be an event log as specified
in Definition 3. A process discovery algorithm is a function that maps L onto a
process model such that the model is “representative” for the behavior seen in the
event log.

A wide range of process automated process discovery algorithms have been
proposed in the literature [5], with Petri nets and BPMN being the most common
output model formats.

2.3. Temporal Process Performance Measures

Temporal performance measures include cycle time, processing time and waiting
time.

Cycle time is one of the most important measures of performance of a business
process [63]. It is also known as lead time or throughput time [97]. Cycle time
of a case is the time that it takes to complete an individual case from start to
finish. In other words, it is the time that it takes for a case to go from the entry
point to exit point of a process [63]. For example, the cycle time of an insurance
claim handling process may be the time that elapses from the moment a customer
submits the claim until the claim is resolved and the file is closed.

Cycle time can be decomposed into two components. First, processing time
(also called service time) includes the time that resources, such as process partici-
pants or software applications invoked by the process, spend on actually handling
the case [32]. Processing time typically refers to value-adding activities. By con-
trast, waiting time is associated with non-value-adding activities. It is the time
that a case spends in idle mode. Waiting time includes queueing time that hap-
pens when no resources are available to handle the case – and other waiting time,
for example because synchronization must take place with another process, with
other activities, or because an input is expected from a customer or from another
external party [32]. In many processes, the waiting time makes up a consider-
able proportion of the overall cycle time. This situation may, for example, happen

27

Lodge

Claim

Review

Claim

Approve

Claim

Check

Fraud

Enough information?

Approve

Payment

Request

New

Information

Yes

N
o

Figure 6: Process model of a claim handling process

Figure 7: Cycle time components

when the work is performed in batches. In a process related to the approval of
purchase requisitions at a company, the supervisor responsible for such approvals
in a business unit may choose to batch all applications and check them only once
at the start or the end of a working day [32].

Cycle time can also be defined at the level of specific activities. Formally,
Definition 8 (Cycle time of an activity). A cycle time of an activity i is the time it
takes between the moment the activity is ready to be executed and the moment it
completes. By “ready to be executed” we mean that all activities upon which the
activity in question depends have completed. Formally, cycle time is the difference
between the timestamp of the activity and the timestamp of the previous activity.
i.e. πT (σ(i))−πT (σ(i−1)) for 1 ≤ i ≤ |σ |. Here, πT (σ(0)) denotes the start
time of the case.

As for the process instance level, the cycle time of an activity includes the
processing time of the activity, as well as all waiting time prior to the execution
of the activity. To illustrate this concept, we refer to the process model of a claim
handling process (Figure 6). Activity Approve Payment is ready to be executed
when Approve Claim has completed; however, if it cannot start until Check Fraud
has completed (Figure 7). Thus, the activity will be in the idle mode until then.

In the context of ongoing cases, the above measures can be extended to refer
to their partial, or remaining, equivalents. For example, remaining cycle time
reflects the difference between the cycle time of the ongoing (incomplete) case,
and the current cycle time. For the process instance in Figure 7, if the prediction

28

is made after the first execution of Check Fraud, the remaining cycle time will be
the time from that moment until the case completes. Analogously, one can define
remaining processing time and remaining waiting time.

2.4. Machine Learning

Machine learning is a research area of computer science concerned with the dis-
covery of models, patterns, and other regularities in data [82]. Closely related to
machine learning is data mining. Data mining is the “core stage of the knowl-
edge discovery process that is aimed at the extraction of interesting – non-trivial,
implicit, previously unknown and potentially useful – information from data in
large databases” [35]. Data mining techniques focus more on exploratory data
analysis, i.e. discovering unknown properties in the data, and are often used as a
preprocessing step in machine learning to improve model accuracy.

2.4.1. Overview

A machine learning system is characterized by a learning algorithm and training
data. The algorithm defines a process of learning from information extracted,
usually as features vectors, from the training data. In this work, we will deal with
supervised learning, meaning training data is represented as n labeled samples:

D = {(x1,y1), . . . ,(xn,yn) : n ∈ N}, (2.1)

where xi ∈ X are m-dimensional feature vectors (m ∈ N) and yi ∈ Y are the
corresponding labels, i.e. values of the target variable.

Feature vectors extracted from the labeled training data are used to fit a pre-
dictive model that assigns labels to new data given labeled training data while
minimizing error and model complexity. In other words, a model generalizes the
pattern, providing a mapping f : X → Y . The labels can be either continuous,
e.g. cycle time of activity, or discrete, e.g. loan grade. In the former case, the
model is referred to as regression; while in the latter case we are talking about a
classification model.

From a probabilistic perspective, the machine learning objective is to infer a
conditional distribution P(Y |X). A standard approach to tackle this problem is
to represent the conditional distribution with a parametric model, and then to ob-
tain the parameters using a training set containing {xn,yn} pairs of input feature
vectors with corresponding target output vectors. The resulting conditional distri-
bution can be used to make predictions of y for new values of x. This is called a
discriminative approach since the conditional distribution discriminates between
the different values of y [64].

Another approach is to calculate the joint distribution P(X ,Y), expressed as a
parametric model, and then apply it to find the conditional distribution P(Y |X)
to make predictions of y for new values of x. This is commonly known as a

29

Figure 8: Discriminative and generative models [85].

generative approach since by sampling from the joint distribution one can generate
synthetic examples of the feature vector x [64].

To sum up, discriminative approaches try to define a (hard or soft) decision
boundary that divides the feature space into areas containing feature vectors be-
longing to the same class (see Figure 8). In contrast, generative approaches first
model the probability distributions for each class and then label a new instance as a
member of a class whose model is most likely to have generated the instance [64].

In cases when there is a sufficient amount of labeled data, discriminative mod-
els are usually applied since they exhibit very high generalization performance.
Specifically, Jordan and Ng [85] showed that logistic regression, which is a purely
discriminative model, performs better than its generative counterpart, naive Bayes
classifier, given a sufficiently large number of training samples. This results from
the fact that even though discriminative models have lower asymptotic error, gen-
erative models converge to its (higher) error more quickly.

Although the data collection is often easy, the labeling process can be quite
expensive. Accordingly, there is an increasing interest in generative methods, as
they can utilize unlabeled training samples, as well as the labeled ones.

The complementary properties of generative and discriminative models have
motivated the development of ensemble methods that combine characteristics of
purely discriminative or purely generative models, so that the resulting model has
an increased performance [64]. In particular, many research proposals have tack-
led “discriminatively training” generative models [14]. For example, Woodland
and Povey [143] used discriminatively trained hidden Markov models to develop
a speech recognition framework.

Traditional machine learning models can be extended to predict more complex,
structured objects, rather than scalar discrete or continuous values. This is known
as structured prediction [6]. In structured prediction, outputs are either struc-
tured objects, such as parse trees of natural language sentences and alignments
between sentences in different languages, or multiple response variables that are
interdependent [6]. The latter is commonly referred to as collective classifica-
tion. The most common models and algorithms for making structured predictions
are Bayesian networks and random fields, structured support vector machines,
inductive logic programming, case-based reasoning, Markov logic networks and
constrained conditional models [115].

30

An important issue to be considered when choosing a machine learning model
is explainability of the generated models. For example, the black-box patterns
produced by neural networks are effectively incomprehensible for the user as they
do not provide a structural description. In contrast, structural patterns are compre-
hensible as their construction reveals the structure of the problem, e.g., association
rules [43]. In our research we will prefer models that are easier to interpret, ceteris
paribus.

In this research, we will primarily use discriminative models, as case labeling
(cycle times, remaining processing times, etc.) is performed automatically by
processing event timestamps; thus, we have a sufficient amount of labeled data.
However, we will also compare our results with generative models, as well as
combinations of discriminative and generative models.

2.4.2. Learning Algorithms

Predictive process monitoring methods have employed a variety of classification
and regression algorithms, with the most popular choice being decision trees (e.g.
[29, 38]). Although quite simple, decision trees have an advantage in terms of
computation performance and explainability of the results. Other choices include
random forest [106, 137], support vector regression [91] and extreme gradient
boosting [106]. In this section, we describe machine learning algorithms used in
this thesis.

Decision trees. Decision trees are hierarchical structures where each internal
node has a condition which is evaluated when an example is being classified [17].
Based on the outcome, the example is sent either to the left or to the right child
of the node. The process is repeated until a leaf node is reached, when a pre-
diction is made about the example’s class. Thus, decision making is organized
hierarchically.

The general idea behind decision tree is as follows. A tree learns from data by
partitioning the training set into subsets based on the values of the features. At
each step the algorithm creates a new node and chooses a suitable condition for
splitting the data at that node. This is done in a way that maximizes the purity
(or, equivalently, minimizes impurity) of the node’s output after evaluating the
condition. Purity indicates the quality of the previous split and can be measured
in various ways. Purity is maximal at a node where all input examples have the
exact same label.

In case of binary classification, the Gini index is commonly used for measuring
impurity, which is defined as:

G = 2 f1 f2 = f1(1− f1)+ f2(1− f2) = 1− (f 2
1 + f 2

2) (2.2)

Here, f1 and f2 are fractions of input examples with class labels 0 and 1 that
satisfy f1 + f2 = 1. Impurity is the highest when both fractions are 0.5, i.e. the
number of correctly and incorrectly labeled examples is the same. The tree is

31

created by choosing such feature and condition that have the smallest Gini index
after making the split.

Decision trees are prone to overfitting [102]. Overfitting is the condition of
a grown decision tree that is very consistent with the training data and yet not
learned underlying patterns. The tree has, in this case, maximized purity on the
training set, while an unseen example with a few variations will be incorrectly
classified. The standard technique to deal with overfitting is with decision tree
pruning. Decision tree pruning seeks to reduce the redundancy of the decision
nodes. It traverses the tree to find nodes which do not increase purity and shortens
the tree by removing such nodes. However, decision tree pruning equivalently
reduces the classification accuracy of the tree. There is no classical decision tree
approach to increase both classification and generalization accuracy [49].

Ensemble learners. Ensemble methods train multiple predictors for the same
task and combine them together for the final prediction. Figure 9 illustrates the
general idea behind ensemble learning. Multiple base learners, or “weak” learn-
ers, fk are fitted on the training data or its subset. Their predictions are then
combined into one ensemble learner fΣ by applying some aggregation function
g(·). Decision trees are often used as base learners.

Dtrain(x,y)

f1 f2 fn

f? = g(fk), k=1,...,n

Figure 9: Ensemble learning architecture.

In this thesis, as the primary prediction algorithm, we apply extreme gradient
boosting (XGBoost) [23] which is one of the latest implementations of Gradient
Boosting Machines (GBM). It has been successfully utilized across various do-
mains [39, 83, 125] as well as in machine learning competitions such as Kaggle1.
Olson et al. [87] performed a thorough analysis of 13 state-of-the-art, commonly
used machine learning algorithms on a set of 165 publicly available classification
problems and found that gradient tree boosting achieves the best accuracy for the
highest number of problems.

In gradient boosting, predictions from base learners are combined by following
a gradient learning strategy [45]. At the beginning of the calibration process, a

1https://www.kaggle.com

32

https://www.kaggle.com

base learner is fit to the whole space of data, and then, a second learner is fit to
the residuals of the first one. This process of fitting a model to the residuals of the
previous one goes on until some stopping criterion is reached. Finally, the output
of the GBM is a kind of weighted mean of the individual predictions of each base
learner. Regression trees are typically selected as base learners [126].

The main challenge of boosting learning in general, and of GBMs in particular,
is the risk of overfitting, as a consequence of the additive calibration process. Typ-
ically, this issue is faced by including different regularization criteria in order to
control the complexity of the algorithm. However, the computational complexity
of these type of mechanisms is rather high [126]. In this context, the main objec-
tive of XGBoost is to control the complexity of the algorithm without excessively
increasing the computational cost. To this end, XGBoost aims to minimize the
following Loss+Penalty objective function:

R(Θ) = ∑
i

l(yi, ŷi)+∑
k

Ω(fk), (2.3)

where Θ includes the model parameters to be learned during training, l is the
loss function, which measures the cost between ground truth yi and prediction ŷi

for the i-th leaf, and Ω(fk) is the k-th regularization term. The loss function for
the predictive term can be specified by the user, and it is always truncated up to
the second term of its Taylor series expansion for computational reasons. The
regularization term is obtained with an analytic expression based on the number
of leaves of the tree and the scores of each leaf. The key point of the calibration
process of XGBoost is that both terms are ultimately rearranged in the following
expression [126]:

R(Θ) =−1
2

T

∑
j=1

G2
j

H j +λ
+ γT, (2.4)

where G and H are obtained from the Taylor series expansion of the loss function,
λ is the L2 regularization parameter and T is the number of leaves. This analytic
expression of the objective function allows a rapid scan from left to right of the
potential divisions of the tree, but always taking into account the complexity.

Support vector machines. The support vector machine (SVM) classifier has
been originally proposed by Vapnik [134] and has become one of the most widely
used machine learning techniques. The idea of SVM classification is to find for
given classification task a linear separation boundary wT x+ b = 0 that correctly
classifies training samples. Assuming that such a boundary exists, we search for
maximal margin separating hyperplane, for which the distance to the closest train-
ing sample element is maximal.
Definition 9 (Margin). The margin mi of a training sample {(xi,yi)} with respect
to the separating hyperplane wT x+b = 0 is the distance from the point xi to the

33

hyperplane:

mi =
‖wT xi +b‖
‖w‖

The margin m of the separating hyperplane with respect to the whole training set
X is the smallest margin of an instance in the training set:

m = min
i

mi

Finally, maximal margin separating hyperplane for a training set X is the
separating hyperplane having the maximal margin with respect to the training
set. Among all existing hyperplanes the maximal margin separating hyperplane
is considered to be optimal. The equivalent formalization of this problem of opti-
mization is SVM classifier with linear hard margin, which, according to Vapnik’s
original formulation, satisfies the following conditions [105]:{

wT xi +b≥+1, if yi =+1
wT xi +b≤−1, if yi =−1

(2.5)

which is equivalent to:

yi
(
wT xi +b

)
≥ 1, i = 1, . . . ,n (2.6)

Figure 10: Maximal margin separating hyperplane with support vectors.

The optimization problem is defined as:

min
w,b

1
2

wT w, (2.7)

subject to Equation 2.6.
This optimization problem can be solved using the Lagrangian [105]. The

solution of this optimization problem is the parameters (w0,b0), which are deter-
mined as:

w0 =
n

∑
i=1

αiyixi

b0 =
1
yk
−wT

0 xk,

(2.8)

34

where αi are Lagrange multipliers and k is an arbitrary index for which αk 6= 0.
The resulting hyperplane is completely defined by the training samples, which
are at the minimal distance to this hyperplane. They are showed at Figure 10
in circles. These training samples are called support vectors, from which the
algorithm inherits its name.

As it is sometimes impossible to find a hyperplane that separates two classes
perfectly, there have been proposed various modifications to the hard margin
SVM. Using the so-called soft margin hyperplane, it is possible to tune the amount
of misclassified training points produced by SVM classifier. The optimization
problem of soft margin SVM is then [113]:

min
w,b

1
2

wT w+C
n

∑
i=1

ξ + i (2.9)

subject to:
yi
(
wT xi +b

)
≥ 1−ξi, i = 1, . . . ,n (2.10)

The variable ξi is a slack variable, which allows misclassifications, C is a tun-
ing parameter, which is the penalty parameter of the error term. Thus, C deter-
mines the trade-off between two competing goals: maximizing the margin and
minimizing the training error. Large values of C force the model to have as few
misclassifications as possible, but at the price of large values of wi. Small C allows
the model to have more errors, but it provides smaller coefficient values.

In addition to performing linear classification, SVMs can efficiently perform
a non-linear classification using so-called kernel trick, implicitly mapping their
inputs into high-dimensional feature spaces [113].

2.4.3. Hyperparameter Optimization

Each prediction technique is characterized by model parameters and by hyperpa-
rameters [10]. While model parameters are learned during the training phase so
as to fit the data, hyperparameters are set outside the training procedure and are
used for controlling how flexible the model is in fitting the data. For instance, the
number of base learners is a hyperparameter of the XGBoost algorithm. The im-
pact of hyperparameter values on the accuracy of the predictions can be extremely
high. Optimizing their value is therefore important, but, at the same time, optimal
values depend on the specific dataset under examination [10].

A traditional way of performing hyperparameter optimization is grid search,
which is an exhaustive search through a manually specified subset of the hyperpa-
rameter space of a learning algorithm. A grid search algorithm must be guided by
some performance metric, typically measured by cross-validation on the training
set or evaluation on a held-out validation set [82]. However, in a large, multi-
dimensional, search space, random search is often more effective, given a fixed
number of iterations [10]. In random search, hyperparameters are sampled from a
pre-defined search space. Another advantage of random search is that it is trivially

35

Model
explainability

methods

Transparent box
design

Post-hoc
explainability

Model inspectionOutcome
explanationModel explanation

Figure 11: Taxonomy of methods for explaining black box models (adopted from
[44]).

parallel [9]. At the same time, both grid and random search memoryless, i.e. they
are completely uninformed by past evaluations. As a result, a significant amount
of time is spent evaluating inefficient hyperparameters.

This drawback is addressed by sequential model-based global optimization
(SMBO), wherein a probabilistic model of the objective function is built. This
model provides a mapping from hyperparameter values to the objective evaluated
on a validation set and is used to select the next set of hyperparameters to be eval-
uated. In related work, several SMBO approaches have been recently proposed,
such as Bayesian optimization, Sequential Model-based Algorithm Configuration
(SMAC) and Tree-structured Parzen Estimator (TPE). Bergstra et al. [10] showed
that SMBO approaches find configurations with lower validation set error and
with a smaller number of trials.

2.5. Explainability in Machine Learning

A major drawback of black-box machine learning methods in practical deploy-
ments is that users have difficulties trusting the prediction when the reasoning
behind the prediction is unclear [81, 104]. Indeed, in real-life applications, users
do not only need to get predictions, but they also need to be able to act upon these
predictions. In turn, to do so, they need to understand the rationale for these pre-
dictions. The decision on how to respond to a prediction is largely driven by the
user’s interpretation of the predictive model’s decision logic. If this interpretation
matches the intuition of a human decision maker, it might enhance trust in the
model [81, 104].

A recent survey by Guidotti et al. [44] provides a comprehensive review of
methods for explaining black box models, as well as presents a taxonomy of ex-
plainability methods according to the type of problem faced (Figure 11).

The first group of research proposals focus on explaining how the model makes
certain predictions. To this end, reverse engineering is typically exploited to un-
derstand the black box model. These approaches are also known as post-hoc ex-

36

tions, visualizations or by examples. Thus, we can separate two processes – de-
cision making (prediction) and decision explaining. Post-hoc interpretations are
also most suitable to provide intuition for complex non-transparent models, such
as deep neural networks [104].

Rather than providing post-hoc explanations for a black-box classifier, the sec-
ond group of proposals focus on directly designing a transparent classifier that
solves the same classification problem. This principle is known as “Transparent
Box Design” problem [44] and is often solved by means of interpretable predic-
tors based on extracted rule sets [139, 145].

In contrast, in this thesis, we leverage the idea of decompositional explanation
[67, 68] to enhance understanding of predictors. Specifically, we aim to explain
the prediction by decomposing it into its elementary components. Namely, we
propose two approaches that use multi-task learning and business process models

37

plainability, and they provide interpretations based on natural language explana-

Multiple strategies have been proposed for post-hoc explainability of black box
models. Firstly, model explanation methods seek to provide globally explainable
models that are able to mimic the behavior of black boxes and that are also under-
standable by humans. These methods adopt decision trees, sets of rules and linear
models as comprehensible global predictors [51]. For example, neural networks
can be approximated with decision trees [60] or symbolic rules [147]. Secondly,
outcome explanation methods provide a locally explainable model that is able
to explain the prediction of the black box in understandable terms for humans
for a specific instance or record. In other words, rather than explaining the en-
tire model, the focus is on explaining individual predictions. An example is the
Local Interpretable Model-agnostic Explanations (LIME) approach [98], which
uses local approximations based on generated random samples near the sample
for which the prediction needs to be explained. In the context of image and text
analysis, a common approach to explaining why neural networks predict a certain
outcome is based on designing saliency masks that visually highlight the deter-
mining aspects of the analyzed record [111]. Finally, model inspection methods
aim to provide a textual or visual representation for understanding some specific
property of a black box model or of its predictions. Common properties of inter-
est include sensitivity to attribute changes, and identification of components of the
black box (e.g., neurons in a neural network) responsible for specific decisions.
For instance, Samek et al. [103] apply two techniques, namely sensitivity analy-
sis and layer-wise relevance propagation, for explaining the individual predictions
of a deep learning model in terms of input variables. In a similar fashion, Ever-
mann et al. [34] made an investigation into understanding the behavior of deep
neural networks, using network hallucinations and steady-state analysis. Namely,
they feed the network output (prediction) immediately back as new input. The
ability of a network to reproduce, on its own, realistic and convincing process
traces proves that it has correctly learned the relevant features of the event log and
thereby affirms the usefulness of the model for process behavior prediction.

38

respectively.
to decompose the predictions. They are described in Chapter 4 and Chapter 5

3. STATE OF THE ART IN THE PREDICTION OF
TEMPORAL PROCESS MEASURES

Predictive business process monitoring techniques are concerned with predict-
ing the evolution of running cases of a business process based on models ex-
tracted from historical event logs. A wide range of such techniques have been
proposed for a variety of prediction tasks: predicting the next activity [7], pre-
dicting the future path (continuation) of a running case [91], predicting the re-
maining cycle time [99], predicting deadline violations [77] and predicting the
fulfillment of a property upon completion [71]. An earlier survey of this field by
Márquez-Chamorro et al. [74] identified 39 distinct proposals, out of which 15
focus on the prediction of the remaining time and delays in the execution of run-
ning business process cases. This chapter aims to answer the research question
RQ0 (“What methods exist for predictive monitoring of remaining time of busi-
ness processes?”) by presenting a detailed and up-to-date systematic literature
review and taxonomy of predictive business process monitoring methods, with a
focus on the prediction of temporal measures.

This chapter is structured as follows. Section 3.1 outlines the search procedure
and selection of relevant studies. Section 3.2 analyzes the selected studies and
categorizes them according to several dimensions. Section 3.3 provides a gen-
eralized taxonomy of methods for predictive monitoring of temporal measures.
Finally, Section 3.4 provides a summary of the chapter.

3.1. Search Methodology

In order to retrieve and select studies for our literature survey, we conducted a
Systematic Literature Review (SLR) according to the approach described in [57].
We started by specifying the research questions. Next, guided by these goals,
we developed relevant search strings for querying a database of academic papers.
We applied inclusion and exclusion criteria to the retrieved studies in order to
filter out irrelevant ones, and last, we divided all relevant studies into primary and
subsumed ones based on their contribution.

3.1.1. Research Questions

The purpose of this survey is to define a taxonomy of methods for predictive mon-
itoring of remaining time of business processes. The decision to focus on remain-
ing time is to have a well-delimited and manageable scope, given the richness of
the literature in the broader field of predictive process monitoring, and the fact
that other predictive process monitoring tasks might rely on different techniques
and evaluation measures.

In line with the selected scope, we break down the research question RQ0 into
the following sub-questions:

39

RQ0.1 How to classify methods for predictive monitoring of remaining time?
RQ0.2 What type of data has been used to evaluate these methods, and from
which application domains?
RQ0.3 What tools are available to support these methods?

RQ0 is the core research question, which aims at identifying existing methods
to perform predictive monitoring of remaining time. With RQ0.1, we aim to iden-
tify a set of classification criteria on the basis of input data required (e.g. input
log) and the underlying predictive algorithms. RQ0.2 explores what tool support
the different methods have, while RQ0.3 investigates how the methods have been
evaluated and in which application domains.

3.1.2. Study Retrieval

Existing literature in predictive business process monitoring was searched for us-
ing Google Scholar, a well-known electronic literature database, as it covers all
relevant databases such as ACM Digital Library and IEEE Xplore, and also allows
searching within the full text of a paper.

Our search methodology is based on the one proposed in [74], with few vari-
ations. Firstly, we collected publications using more specific search phrases,
namely “predictive process monitoring”, “predictive business process monitor-
ing”, “predict (the) remaining time”, “remaining time prediction” and “predict
(the) remaining * time”. The latter is included since some authors refer to the
prediction of the remaining processing time, while others may call it remaining
execution time and so on. We retrieved all studies that contained at least one of the
above phrases in the title or in the full text of the paper. The search was conducted
in March 2018 to include all papers published between 2005 and 2017.

The initial search returned 670 unique results which is about 3 times more than
the ones found in [74], owing to the differences in search methodologies (Table 2).
Figure 12 shows how the studies are distributed over time. We can see that the
interest in the topic of predictive process monitoring grows over time with a sharp
increase over the past few years.

0

25

50

75

100

125

2005 2007 2009 2011 2013 2015 2017
Year

Figure 12: Number of published studies over time.

In order to consider only relevant studies, we designed a range of exclusion
criteria to assess the relevance of the studies. First, we excluded those papers

40

Table 2: Comparison of our search methodology with [74]

Method in [74] Our method

Keywords 1. “predictive monitoring” AND 1. “predictive process”
“business process” monitoring
2. “business process” AND 2. “predictive business
“prediction” process monitoring”

3. “predict (the) remaining time”
4. “remaining time prediction”
5. “predict (the) remaining * time”

Search scope Title, abstract, keywords Title, full text
Min number of citations 5 (except 2016 papers) 5 (except 2017 papers)
Years covered 2010-2016 2005-2017
Papers found after filtering 41 53
Snowballing applied No Yes, one-hop

not related to the process mining field, written in languages other than English or
papers with inaccessible full text. Additionally, to contain the reviewing effort, we
have only included papers that have been cited at least five times. An exception
has been made for papers published in 2017 – as many of them have not had a
chance to accumulate the necessary number of citations, we required only one
citation for them. Thus, after the first round of filtering, a total of 53 publications
were considered for further evaluation.

Since, different authors might use different terms, not captured by our search
phrases, to refer to the prediction target in question, we decided to also include all
studies that cite the previously discovered 53 publications (”snowballing”). Ap-
plying the same exclusion criteria, we ended up with 83 more studies. Due to the
close-knit nature of the process mining community, there is a considerable overlap
between these 83 studies and the 53 studies that had been retrieved during the first
search stage. Accordingly, a total of 110 publications were finally considered on
the scope of our review. All papers retrieved at each search step can be found at
https://goo.gl/kg6xZ1.

The remaining 110 papers were further assessed with respect to exclusion cri-
teria:
EX1 The study does not actually propose a predictive process monitoring method.

With this criterion, we excluded position papers, as well as studies that, after
a more thorough examination, turned out to be focusing on some research
question other than predictive process monitoring. Furthermore, here we
excluded survey papers and implementation papers that employ existing
predictive methods rather than propose new ones.

EX2 The study does not concern remaining time predictions. Common exam-
ples of other prediction targets that are considered irrelevant to this study
are failure and error prediction, as well as next activity prediction. At the
same time, prediction targets such as case completion time prediction and
case duration prediction are inherently related to remaining time and there-

41

https://goo.gl/kg6xZ1

fore were also considered in our work. Additionally, this criterion does not
eliminate studies that address the problem of predicting deadline violations
in a boolean manner by setting a threshold on the predicted remaining time
rather than by a direct classification.

EX3 The study does not take an event log as input. In this way, we exclude meth-
ods that do not utilize at least the following essential parts of an event log:
the case identifier, the timestamp and the event classes. For instance, we ex-
cluded methods that take as input numerical time series without considering
the heterogeneity in the control flow. In particular, this is the case in manu-
facturing processes which are of linear nature (a process chain). The reason
for excluding such studies is that the challenges when predicting for a set of
cases of heterogeneous length are different from those when predicting for
linear processes. While methods designed for heterogeneous processes are
usually applicable to those of linear nature, it is not so vice versa. More-
over, the linear nature of a process makes it possible to apply other, more
standard methods that may achieve better performance.

Furthermore, we excluded our earlier studies on the application of artificial
neural networks [119] and flow analysis techniques [137] for the prediction of
temporal measures. These studies will be covered in subsequent chapters of the
thesis.

The application of the exclusion criteria resulted in 23 relevant studies which
are described in detail in the following section.

3.2. Analysis and Classification of Methods

Driven by the research questions defined in Section 3.1.1, we identified the fol-
lowing dimensions to categorize and describe the relevant studies.
• Type of input data – RQ0.1
• Awareness of the underlying business process – RQ0.1
• Family of algorithms – RQ0.1
• Type of evaluation data (real-life or artificial log) and application domain

(e.g., insurance, banking, healthcare) – RQ0.2
• Type of implementation (standalone or plug-in, and tool accessibility) –

RQ0.3
This information, summarized in Table 3, allows us to answer the first research

question. In the remainder of this section, we proceed with surveying each main
study method along the above classification dimensions.

3.2.1. Input Data

As stipulated by EX3 criterion, all surveyed proposals take as input an event log.
Such a log contains at least a case identifier, an activity and a timestamp. In

42

Table 3: Overview of the 23 relevant studies resulting from the search (ordered by
year and author).

Study Year Input data Process-aware? Algorithm Domain Implementation

van Dongen et al. [132] 2008 event log No regression public administration ProM 5
data

van der Aalst et al. [130] 2011 event log Yes transition system public administration ProM 5
Folino et al. [36] 2012 event log No clustering logistics ProM

data
contextual information

Pika et al. [88] 2012 event log No stat analysis financial ProM
data

van der Spoel et al. [131] 2012 event log Yes process graph healthcare n/a
data regression

Bevacqua et al. [11] 2013 event log No clustering logistics ProM
data regression

Bolt and Sepúlveda [12] 2013 event log Yes stat analysis telecom n/a
simulated

Folino et al. [37] 2013 event log No clustering customer service n/a
data
contextual information

Pika et al. [89] 2013 event log No stat analysis insurance ProM
data

Rogge-Solti and Weske [99] 2013 event log Yes stoch Petri net logistics ProM
data simulated

Ceci et al. [21] 2014 event log Yes sequence trees customer service ProM
data regression workflow management

Folino et al. [38] 2014 event log No clustering logistics n/a
data regression software development
contextual information

de Leoni et al. [28] 2014 event log No regression no validation ProM
data
contextual information

Polato et al. [90] 2014 event log Yes transition system public administration ProM
data regression

classification
Senderovich et al. [107] 2014 event log Yes queueing theory financial n/a

transition system
Metzger et al. [77] 2015 event log Yes neural network logistics n/a

data constraint satisfaction
process model QoS aggregation

Rogge-Solti and Weske [100] 2015 event log Yes stoch Petri net financial ProM
data logistics

Senderovich et al. [108] 2015 event log Yes queueing theory financial n/a
transition system telecom

Cesario et al. [22] 2016 event log Yes clustering logistics n/a
data regression

de Leoni et al. [29] 2016 event log No regression no validation ProM
data
contextual information

Polato et al. [91] 2018 event log Yes transition system public administration ProM
data regression customer service

classification financial
Senderovich et al. [106] 2017 event log No regression healthcare standalone

data manufacturing
contextual information

Navarin et al. [84] 2017 event log No neural network customer service standalone
financial

43

addition, many techniques leverage case and event attributes to make more accu-
rate predictions. For example, in the pioneering predictive monitoring approach
described in [132], the authors predict the remaining processing time of a trace
using activity durations, their frequencies and various case attributes, such as the
case priority. Many other approaches, e.g. [29], [91], [106] make use not only of
case attributes but also of event attributes, while applying one or more kinds of
sequence encoding. Furthermore, some approaches, e.g. [36] and [106], exploit
contextual information, such as workload indicators, to take into account inter-
case dependencies due to resource contention and data sharing. Finally, the ap-
proach by Metzger et al. [77] also leverages a process model in order to “replay”
ongoing process cases on it. Such works treat remaining time as a cumulative
indicator composed of cycle times of elementary process components.

3.2.2. Process Awareness

Existing techniques can be categorized according to their process-awareness, i.e.
whether or not the methodology exploits an explicit representation of a process
model to make predictions. As can be seen from Table 3, nearly half of the tech-
niques are process-aware. Most of them construct a transition system from an
event log using set, bag (multiset) or sequence abstractions of observed events.
State transition systems are based on the idea that the process is composed of a
set of consistent states and the movement between them [128]. Thus, a process
behavior can be predicted if we know its current and future states.

Bolt and Sepúlveda [12] exploit query catalogs to store the information about
the process behavior. Such catalogs are groups of partial traces (annotated with
additional information about each partial trace) that have occurred in an event log,
and are then used to estimate the remaining time of new executions of the process.

Also queuing models can be used for prediction because if a process follows
a queuing context and queuing measures (e.g. arrival rate, departure rate) can
be accurately estimated and fit the process actual execution, the movement of a
queuing item can be reliably predicted. Queueing theory and regression-based
techniques are combined for delay prediction in [107, 108].

Furthermore, some process-aware approaches rely on stochastic Petri nets [99,
100] and process models [77].

3.2.3. Family of Algorithms

Non-process aware approaches typically rely on machine learning algorithms to
make predictions. In particular, these algorithms take as input labeled training data
in the form of feature vectors and the corresponding labels. In case of remaining
time predictions, these labels are continuous. As such, various regression methods
can be utilized, such as regression trees [28, 29] or ensemble of trees, i.e. random
forest [131] and XGBoost [106].

An emerging family of algorithms for predictive monitoring are artificial neu-

44

ral networks. They consist of one layer of input units, one layer of output units,
and multiple layers in-between which are referred to as hidden units. While tra-
ditional machine learning methods heavily depend on the choice of features on
which they are applied, neural networks are capable of translating the data into
a compact intermediate representation to aid a hand-crafted feature engineering
process [8]. A feedforward network has been applied in [77] to predict deadline
violations. More sophisticated architectures based on recurrent neural networks
were explored in [84].

Other approaches apply trace clustering to group similar traces to fit a predic-
tive model for each cluster. Then for any new running process case, predictions
are made by using the predictor of the cluster it is estimated to belong to. Such
approach is employed e.g., in [36] and [38].

Another range of proposals utilizes statistical methods without training an ex-
plicit machine learning model. For example, Pika et al. [88, 89] make predictions
about time-related process risks by identifying and leveraging process risk indi-
cators (e.g., abnormal activity execution time or multiple activity repetition) by
applying statistical methods to event logs. The indicators are then combined by
means of a prediction function, which allows for highlighting the possibility of
transgressing deadlines. Conversely, Bolt and Sepúlveda [12] calculate remaining
time based on the average time in the catalog which the partial trace belongs to,
without taking into account distributions and confidence intervals.

Rogge-Solti and Weske [99] mine a stochastic Petri net from the event log to
predict the remaining time of a case using arbitrary firing delays. The remaining
time is evaluated based on the fact that there is an initial time distribution for
a case to be executed. As inputs, the method receives the Petri net, the ongoing
trace of the process instance up to current time, the current time and the number of
simulation iterations. The algorithm returns the average of simulated completion
times of each iteration. This approach is extended in [100] to exploit the elapsed
time since the last observed event to make more accurate predictions.

Finally, a hybrid approach is proposed by Polato et al. [91] who build a tran-
sition system from an event log and enrich it with classification and regression
models. Naive Bayes classifiers are used to estimate the probability of transition
from one state to the other, while support vector regressors are used to predict the
remaining time from the next state.

3.2.4. Evaluation Data and Domains

As reported in Table 3, most of the surveyed methods have been validated on at
least one real-life event log. Some studies were additionally validated on simu-
lated (synthetic) logs.

Importantly, many of the real-life logs are publicly available from the 4TU
Center for Research Data.1 Among the methods that employ real-life logs, we

1https://data.4tu.nl/repository/collection:event_logs_real

45

https://data.4tu.nl/repository/collection:event_logs_real

observed a growing trend to use publicly-available logs, as opposed to private
logs which hinder the reproducibility of the results due to not being accessible.

Concerning the application domains of the real-life logs, we noticed that most
of them pertain to logistics, banking (7 studies each), public administration (5
studies) and customer service (3 studies) processes.

3.2.5. Implementation

Providing publicly available implementation and experiment data greatly facil-
itates reproducibility of research experiments, as well as to enable future re-
searchers to build on past work. To this end, we found that nearly a half of the
methods provide an implementation as a plug-in for the ProM framework.1 The
reason behind the popularity of ProM can be explained by its open-source and
portable framework, which allows researchers to easily develop and test new al-
gorithms. Also, ProM provides an Operational Support (OS) environment [141]
that allows it to interact with external workflow management systems at runtime.
In this way, process mining can also be performed in an online setting. Another
two methods have a standalone implementation in Python 2. Finally, 8 methods
do not provide a publicly available implementation.

3.2.6. Predictive Monitoring Workflow

As indicated in Table 3, most predictive monitoring methods make use of machine
learning algorithms based on regression, classification or neural networks. Such
methods typically proceed in two phases: offline, to train a prediction model based
on historical cases, and online, to make predictions on running process cases (Fig-
ure 13) [120].

In the offline phase, given an event log, case prefixes are extracted and filtered,
e.g. to retain only prefixes up to a certain length, to create a prefix log (cf. Sec-
tion 2). Next, ”similar” prefixes are grouped into homogeneous buckets, e.g. based
on process states or similarities among prefixes and prefixes from each bucket are
encoded into feature vectors. Then feature vectors from each bucket are used to
fit a machine learning model.

In the online phase, the actual predictions for running cases are made, by
reusing the buckets, encoders and predictive models built in the offline phase.
Specifically, given a running case and a set of buckets of historical prefixes, the
correct bucket is first determined. Next, this information is used to encode the
features of the running case. In the last step, a prediction is extracted from the en-
coded case using the pre-trained model corresponding to the determined bucket.

Similar observations can be made for non-machine learning-based methods.
For example, in [130] first, a transition system is derived and annotated and then

1http://promtools.org
2https://www.python.org

46

http://promtools.org
https://www.python.org

the actual predictions are calculated for running cases. In principle, this transition
system akin to a predictive model can be mined in advance and used at runtime.

Event log

Encode prefixes as
feature vectors

Train predictive
models

Training (offline) Testing (online)

Buckets
of feature

vectors

Predictive
models

Encode case as a
feature vector

Ongoing
feature
vector

Prediction
result

Apply the model

Ongoing case

Group prefixes
into buckets

Buckets of
historical
prefixes Determine

bucket

Figure 13: Predictive process monitoring workflow.

3.2.7. Primary and Subsumed (Related) Studies

Among the papers that successfully passed both the inclusion and exclusion cri-
teria, we determined primary studies that constitute an original contribution, and
subsumed studies that are similar to one of the primary studies and do not provide
a substantial contribution with respect to it.

Specifically, a study is considered subsumed if:
• there exists a more recent and/or more extensive version of the study from

the same authors (e.g. a conference paper is subsumed by an extended jour-
nal version), or
• it does not propose a substantial improvement/modification over a method

that is documented in an earlier paper by other authors, or
• the main contribution of the paper is a case study or a tool implementation,

rather than the predictive process monitoring method itself, and the method
is described and/or evaluated more extensively in a more recent study by
other authors.

This procedure resulted in 9 primary and 14 subsumed studies, as reported in
Table 4.

47

Table 4: Primary and subsumed studies

Primary study Subsumed studies

van der Aalst et al. [130] van Dongen et al. [132], Bolt and Sepúlveda [12]
Folino et al. [36] Folino et al. [37, 38]
Rogge-Solti and Weske [100] Rogge-Solti and Weske [99]
Senderovich et al. [108] Senderovich et al. [107]
Cesario et al. [22] Bevacqua et al. [11]
de Leoni et al. [29] Pika et al. [88, 89], de Leoni et al. [28]
Polato et al. [91] van der Spoel et al. [131], Polato et al. [90], Ceci et al. [21]
Senderovich et al. [106] van der Spoel et al. [131]
Navarin et al. [84] Metzger et al. [77]

3.3. Taxonomy of Methods

The methods that resulted from the search procedure are very heterogeneous in
terms of the inputs required, the outputs produced and inner details. In this sec-
tion, we aim to abstract the details that are not inherent to the methods and focus
on their core differences.

3.3.1. Prefix Bucketing

While some machine learning-based predictive process monitoring approaches
train a single predictor on the whole event log, others employ a multiple predictor
approach by dividing the prefix traces in the historical log into several buckets
and fitting a separate predictor for each bucket. To this end, Teinemaa et al. [120]
surveyed several bucketing methods out of which three have been utilized in the
primary methods:
• No bucketing. All prefix traces are considered to be in the same bucket. As

such, a single predictor is fit for all prefixes in the prefix log. This approach
has been used in [29], [106] and [84].
• Prefix length bucketing. Each bucket contains the prefixes of a specific

length. For example, the n-th bucket contains prefixes where at least n
events have been performed. One classifier is built for each possible prefix
length. This approach has been used in [66].
• Cluster bucketing. Here, each bucket represents a cluster that results from

applying a clustering algorithm on the encoded prefixes. One classifier is
trained for each resulting cluster, considering only the historical prefixes
that fall into that particular cluster. At runtime, the cluster of the running
case is determined based on its similarity to each of the existing clusters and
the corresponding classifier is applied. This approach has been used in [36]
and [22]
• State bucketing. It is used in process-aware approaches where some kind

of process representation, e.g. in the form of a transition system, is derived

48

and a predictor is trained for each state, or decision point. At runtime, the
current state of the running case is determined, and the respective predictor
is used to make a prediction for the running case. This approach has been
used in [91].

In addition to these “canonical” bucketing methods, various combinations thereof
have been explored in related work. For example, in our earlier work [136], we
proposed an approach where prefixes are first grouped into buckets according to
their prefix length and then clustering is applied for each bucket. This approach
has been shown to marginally improve the classification accuracy.

3.3.2. Prefix Encoding

In order to train a machine learning model, all prefixes in a given bucket need to
be represented, or encoded as fixed-size feature vectors. Case attributes are static,
and their number is fixed for a given process. Conversely, with each executed
event, more information about the case becomes available. As such, the number
of event attributes will increase over time. To address this issue, various sequence
encoding techniques were proposed in related work summarized in [66] and re-
fined in [120]. In the primary studies, the following encoding techniques can be
found:
• Last state encoding. In this encoding method, only event attributes of the

last m events are considered. Therefore, the size of the feature vector is
proportional to the number of event attributes and is fixed throughout the
execution of a case. m = 1 is the most common choice used, e.g. in [91],
although in principle higher m values can also be used.
• Aggregation encoding. In contrast to the last state encoding, all events since

the beginning of the case are considered. However, to keep the feature vec-
tor size constant, various aggregation functions are applied to the values
taken by a specific attribute throughout the case lifetime. For numeric at-
tributes, common aggregation functions are minimum, average, maximum
and sum of observed values, while for categorical ones count is generally
used, e.g. the number of times a specific activity has been executed, or the
number of activities a specific resource has performed [29].
• Index-based encoding. Here for each position n in a prefix, we concatenate

the event en occurring in that position and the value of each event attribute in
that position v1

n, . . . ,v
k
n, where k is the total number of attributes of an event.

This type of encoding is lossless, i.e. it is possible to recover the original
prefix based on its feature vector. On the other hand, with longer prefixes, it
significantly increases the dimensionality of the feature vectors and hinders
the model training process. This approach has been used in [131].
• Tensor encoding. A tensor is a generalization of vectors and matrices to

potentially higher dimensions [114]. Unlike conventional machine learning
algorithms, tensor-based models do not require input to be encoded in a

49

two-dimensional n×m form, where n is the number of training instances
and m is the number of features. Conversely, they can take as input a three-
dimensional tensor of shape n× t× p , where t is the number of events and
p is the number of event attributes, or features derived from each event. In
other words, each prefix is represented as a matrix where rows correspond
to events and columns to features for a given event. The data for each event
is encoded ”as-is”. Case attributes are encoded as event attributes having
the same value throughout the prefix. Hence, the encoding for LSTM is
similar to the index-based encoding except for two differences: (i) case
attributes are duplicated for each event, (ii) the feature vector is reshaped
into a matrix.

To aid the explanation of the encoding types, Tables 5 – 7 provide examples
of feature vectors derived from the event log in Table 1. For convenience, we
replaced absolute timestamps with relative ones (in seconds), starting from the
beginning of a case. Furthermore, for simplicity, we showed only one aggregation
function, sum, for numerical attributes. Note that for the index-based encoding,
each trace σ in the event log produces only one training sample per bucket, while
the other encodings produce as many samples as many prefixes can be derived
from the original trace, i.e. up to |σ |.

Table 5: Feature vectors created from the log in Table 1 using last state encoding.
Channel Age Activity_last Time_last Resource_last Cost_last
Email 37 A 0 John 15
Email 37 B 80 Mark 25
Email 37 D 180 Mary 10
Email 37 F 305 Kate 20
Email 37 G 350 John 20
Email 37 H 360 Kate 15

Email 52 A 0 John 25
Email 52 D 300 Mary 25
Email 52 B 57900 Mark 10
Email 52 F 58010 Kate 15

Table 6: Feature vectors created from the log in Table 1 using aggregated encod-
ing.

Channel Age Act_A Act_B Act_D Act_F Act_G Act_H Res_John Res_Mark Res_Mary Res_Kate sum_Time sum_Cost . . .
Email 37 1 0 0 0 0 0 1 0 0 0 0 15
Email 37 1 1 0 0 0 0 1 1 0 0 80 40
Email 37 1 1 1 0 0 0 1 1 1 0 180 50
Email 37 1 1 1 1 0 0 1 1 1 1 305 70
Email 37 1 1 1 1 1 0 2 1 1 1 350 90
Email 37 1 1 1 1 1 1 2 1 1 2 360 105

Email 52 1 0 0 0 0 0 1 0 0 0 0 25
Email 52 1 0 1 0 0 0 1 0 1 0 300 50
Email 52 1 1 1 0 0 0 1 1 1 0 57900 60
Email 52 1 1 1 1 0 0 1 1 1 1 58010 75

These three “canonical” encodings can serve as a basis for various modifi-
cations thereof. For example, de Leoni et al. [29] proposed the possibility of
combining last state and aggregation encodings.

While the encoding techniques stipulate how to incorporate event attributes in

50

Table 7: Feature vectors created from the log in Table 1 using index-based encod-
ing, buckets of length n = 3.

Channel Age Activ_1 Time_1 Res_1 Cost_1 Activ_2 Time_2 Res_2 Cost_2 Activ_3 Time_3 Res_3 Cost_3
Email 37 A 0 John 15 B 80 Mark 25 D 180 Mary 10

Email 52 A 0 John 25 D 300 Mary 25 B 57900 Mark 10

a feature vector, the inclusion of case attributes is rather straightforward, as their
number is fixed throughout the case lifetime.

While last state and aggregation encodings can be combined with any of the
bucketing methods described in Section 3.3.1, index-based encoding is commonly
used with prefix-length bucketing, as the feature vector size depends on the trace
length [66]. Nevertheless, two options have been proposed in related work to
combine index-based encoding with other bucketing types:
• Fix the maximum prefix length and, for shorter prefixes, impute missing

event attribute values with zeros or their historical averages. This approach
is often referred to as padding in machine learning [109] and has been used
in the context of predictive process monitoring in [121] and [84].
• Use the sliding window method to encode only recent (up-to window size

w) history of the prefix. This approach has been proposed in [106].

3.3.3. Discussion

Summarizing the above observations, we devised a taxonomy of predictive moni-
toring techniques (Figure 14). The taxonomy is framed upon a general classifica-
tion of machine learning approaches into generative and discriminative ones (cf.
Section 2.4).

The former correspond to process-aware predictive monitoring techniques,
meaning that there is an assumption that an observed sequence is generated by
some process that needs to be uncovered via probabilistic reasoning. The pro-
cess can be represented via a state transition system [130], a Petri net [100] or a
queueing model [108].

Conversely, discriminative approaches are non-process-aware techniques that
learn a direct mapping from inputs to the output via regression, without providing
a model of how input sequences are actually generated. Having analyzed the
discriminative studies, we have observed that they tend to mix different encoding
types [29] or different bucketing types [36], while some combinations thereof
have not been explored.

Finally, a range of newer studies propose hybrid methods that combine gener-
ative and discriminative approaches [91]. Such methods can generally be approx-
imated with state bucketing that, for every process state, fits a model to predict the
remaining time starting from that state.

51

Predictive monitoring methods

DiscriminativeGenerative Hybrid

Transition
system (TS)

Stochastic
Petri net
(SPN)

Queue

No bucketing

Last state
encoding

Aggregation
encoding

Index-based
encoding

Clustering
bucketing

Last state
encoding

Aggregation
encoding

Index-based
encoding

Prefix-length
bucketing

Last state
encoding

Aggregation
encoding

Index-based
encoding

State
bucketing

Last state
encoding

Aggregation
encoding

Index-based
encoding

Tensor
encoding
(LSTM)

Figure 14: Taxonomy of methods for predictive monitoring of temporal measures.

3.4. Summary

Predictive process monitoring is an actively growing research area, with the num-
ber of publications increasing year-by-year. In this chapter, we provided a com-
prehensive analysis of existing process monitoring techniques to predict the re-
maining execution time.

Following the literature survey, we identified two primary gaps in the related
work. Firstly, the potential of deep learning models, specifically recurrent neu-
ral networks, to predict the remaining execution time in the context of business
processes has not been fully explored. As such, in this thesis, we aim to design
and evaluate various architectures for the remaining time prediction. In the first
approach, we predict the remaining time by iteratively predicting the next activity
and its timestamp, until the case is predicted to finish. Additionally, we explore
LSTM models that are trained to predict the remaining time directly, rather than
by predicting the timestamp of each future activity (Chapter 4).

Secondly, we note that most of the proposed methods adopt a black-box ap-
proach, insofar as they predict a single scalar value, without seeking to explain
this prediction in terms of more elementary components. Yet, quantitative perfor-
mance measures such as cost or time are aggregations of corresponding perfor-
mance measures of the activities composing the process. For example, the cycle
time of a process instance with sequentially performed activities consists of the
sum of the cycle time of the activities performed in that process instance. As such,
in this thesis, we propose a process model driven approach to predict performance
measures of running process instances. The key idea is to first predict the perfor-
mance measure at the level of activities, and then to aggregate these predictions at
the level of a process instance by means of flow analysis techniques (Chapter 5).

Finally, even though, most of the surveyed techniques have publicly available

52

implementations, they are designed as prototypes to train and evaluate a specific
predictive monitoring method, without considering how to apply the proposed
methods at runtime. As such, we consolidate the research contributions of this the-
sis into an integrated platform for predictive business process monitoring that will
allow its users not only to train predictive models but also to receive a stream of
events from an enterprise information system, make predictions using previously
trained models, and finally to present them in a real-time operational dashboard,
with multiple visualization options.

53

4. DEEP LEARNING FOR PREDICTION OF
TEMPORAL PROCESS MEASURES

4.1. Introduction

Recurrent neural networks with Long Short-Term Memory (LSTM) architectures [50]
have been shown to deliver consistently high accuracy in several sequence model-
ing application domains, e.g. natural language processing [80] and speech recog-
nition [41].

Business processes, being sequences of activities with associated attributes,
can be naturally modeled with recurrent neural networks. Recently, Mehdiyev et
al. [75, 76] applied LSTMs to predictive process monitoring, specifically to pre-
dict the next activity in a case, using a multi-stage deep learning approach which
formulates the next business process event prediction problem as a classification
problem and applies deep feed-forward multilayer neural networks. Similarly,
Navarin et al. [84] applied LSTM to predict the completion time of running cases
using control flow and data attributes extracted from the prefix.

Tax et al. [118] compared the generalizing capabilities of process discovery
techniques and black-box sequence models and discovered that LSTM networks
more accurately describe previously unseen traces than existing process discov-
ery methods. However, LSTM sequence models are black-box models, focusing
on accurately describing the sequences, rather than the explainability of the re-
sults [118]. In this chapter, we propose a technique to make prediction results
from deep learning models, specifically LSTM, explainable to business process
stakeholders, thus aiming to answer RQ1.

To this end, we use an instance of multi-task learning [25], where several
predictive process monitoring tasks are integrated into a single system which is
trained jointly. Namely, we design and evaluate several LSTM architectures for
predicting: (i) the next activity in a running case and its timestamp; (ii) the con-
tinuation of a case up to completion; and (iii) the remaining cycle time. The
outlined LSTM architectures are empirically compared against tailor-made ap-
proaches with respect to their accuracy at different prediction points, using real-
life event logs from different domains.

The chapter is structured as follows. Section 4.2 introduces foundational deep
learning concepts and notation. Section 4.3 describes a technique to predict the
next activity in a case and its timestamp, and compares it against tailor-made base-
lines. Section 4.4 extends the previous technique to predict the continuation of a
running case. Section 4.5 shows how this latter method can be extended to predict
the remaining time of a case, while the detailed evaluation for the approach pre-
sented here is reported in a dedicated Chapter 6. Finally, Section 4.6 summarizes
the chapter.

54

Figure 15: An example of a neural network unit

4.2. Deep learning

4.2.1. Neural Networks

A neural network consists of a set of units or nodes. A unit accepts n inputs

xi, computes their weighted sum
n

∑
i=1

wixi and passes it to the activation func-

tion φ (Figure 15). Common activation functions are sigmoid: sigmoid(x) =
1

1+ exp(−x)
, hyperbolic tangent: φ(x) =

exp(x)− exp(−x)
exp(x)+ exp(−x)

and the rectified lin-

ear unit (ReLU): ξ (x) = max(0,x).
Units are connected into a network using edges between them. Specifically,

a network consists of layers of units, where the first is the input layer, last is
the output layer and there are multiple layers in-between which are referred to as
hidden layers. The outputs of the input units form the inputs of the units of the
first hidden layer, and the outputs of the units of each hidden layer form the input
for each subsequent hidden layer. The outputs of the last hidden layer form the
input for the output layer.

A network is activated with an input data, and activations are propagated until
the output ŷ is produced. The network training phase includes iterative updating
of the weights wi that would minimize a loss function L(ŷ,y). The weights are
typically learned using backpropagation algorithm [101]. Backpropagation ap-
plies forward and backward passes, where during the forward pass the weights wi

and the loss function L are calculated and during the backward pass the partial
derivatives with respect to each parameter are calculated using the chain rule. The
weights are then adjusted through gradient-based optimization.

4.2.2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a special type of neural networks where
the connections between neurons form a directed cycle. This allows modeling
temporal dynamics.

RNNs can be unfolded, as shown in Figure 16. Each step in the unfolding is
referred to as a time step, where xt is the input at time step t. RNNs can take an

55

Figure 16: A simple recurrent neural network (taken from [65]).

Figure 17: LSTM unit architecture [69].

arbitrary length sequence as input, by providing the RNN a feature representation
of one element of the sequence at each time step. st is the hidden state at time
step t and contains information extracted from all time steps up to t. The hidden
state s is updated with information of the new input xt after each time step: st =
f (Uxt +Wst−1), where f is the activation function and U and W are vectors of
weights over the new inputs and the hidden state respectively. ot is the output at
step t.

4.2.3. Long Short-Term Memory for Sequence Modeling

The vanishing gradient problem causes RNN to perform poorly on longer tempo-
ral dependencies. As a result, the input at the beginning of the sequence may not
affect the output at the end.

A Long Short-Term Memory model (LSTM) [50] is a special Recurrent Neu-
ral Network architecture that has powerful modeling capabilities for long-term
dependencies. In an LSTM unit, the input xt at time t is fed to the input node gt .
The input node also accepts the information from the hidden layer at the previous
step ht−1. Then an activation function is applied to the sum of weighted output
(Figure 17).

The main distinction between a regular RNN and a LSTM is that the latter has a
more complex memory cell Ct replacing st . Where the value of state st in a RNN is
the result of a function over the weighted average over st−1 and xt , the LSTM state
Ct is accessed, written, and cleared through controlling gates. Namely, an LSTM

56

unit has an input gate it , forget gate ft and output gate ot . Information on a new
input will be accumulated to the memory cell if it is activated. Additionally, the
past memory cell status Ct−1 can be “forgotten” if ft is activated. The information
of Ct will be propagated to the output ht based on the activation of output gate ot .

Combined, the LSTM model can be described with the following formulas:
[69]

ft = sigmoid(Wf · [ht−1,xt]+b f)

it = sigmoid(Wi · [ht−1,xt]+bi)

C̃t = tanh(Wc · [ht−1,xt]+bC)

Ct = ft ∗Ct−1 + ii ∗C̃t

ot = sigmoid(Wo[ht−1,xt]+bo)

ht = ot ∗ tanh(Ct)

In these formulas all W variables are weights and b variables are biases and
both are learned during the training phase.

Summing up, an LSTM unit manages the information flow in the forward pass
by regulating with the gates how much information to let in and out and how much
to forget. In terms of the backward pass it regulates how much error to propagate
back [69].

4.3. Next Activity and Timestamp Prediction

In this section we present and evaluate multiple architectures for next event and
timestamp prediction using LSTMs.

4.3.1. Approach

We start by predicting the next activity in a case and its timestamp, by learning
an activity prediction function f 1

a and a time prediction function f 1
t . We aim at

functions f 1
a and f 1

t such that f 1
a (hdk(σ)) = hd1(tlk(πA (σ))) and f 1

t (hdk(σ)) =
hd1(tlk(πT (σ))) for any prefix length k. We transform each event e ∈ hdk(σ)
into a feature vector and use these vectors as LSTM inputs x1, . . . ,xk. We build
the feature vector as follows. We start with |A| features that represent the type
of activity of event e in a so-called one-hot encoding. We take an arbitrary but
consistent ordering over the set of activities A, and use index ∈ A→ {1, . . . , |A|}
to indicate the position of an activity in it. The one-hot encoding assigns the value
1 to feature number index(πA (e)) and a value of 0 to the other features. We add
three time-based features to the one-hot encoding feature vector. The first time-
based feature of event e = σ(i) is the time between the previous event in the trace

and the current event, i.e., fvt1(e) =
{

0 if i = 1,
πT (e)−πT (σ(i−1)) otherwise.

. This

feature allows the LSTM to learn dependencies between the time differences at
different points (indexes) in the process. Many activities can only be performed
during office hours; therefore we add a time feature fvt2 that contains the time
within the day (since midnight) and fvt3 that contains the time within the week

57

Figure 18: Neural Network architectures with single-task layers (a), with shared
multi-tasks layer (b), and with n+m layers of which n are shared (c).

(since midnight on Sunday). fvt2 and fvt3 are added to learn the LSTM such that
if the last event observed occurred at the end of the working day or at the end of
the working week, the time until the next event is expected to be longer.

At learning time, we set the target output ok
a of time step k to the one-hot

encoding of the activity of the event one time step later. However, it can be the
case that the case ends at time k, in which case there is no new event to predict.
Therefore, we add an extra element to the output one-hot-encoding vector, which
has value 1 when the case ends after k. We set a second target output ok

t equal to
the fvt1 feature of the next time step, i.e. the target is the time difference between
the next and the current event. However, knowing the timestamp of the current
event, we can calculate the timestamp of the following event. We optimize the
weights of the neural network with the Adam learning algorithm [56] such that
the cross entropy between the ground truth one-hot encoding of the next event
and the predicted one-hot encoding of the next event as well as the mean absolute
error (MAE) between the ground truth time until the next event and the predicted
time until the next event are minimized.

Modeling the next activity prediction function f 1
a and time prediction function

f 1
t with LSTMs can be done using several architectures. Firstly, we can train two

separate models, one for f 1
a and one for f 1

t , both using the same input features
at each time step, as represented in Figure 18 (a). Secondly, f 1

a and f 1
t can be

learned jointly in a single LSTM model that generates two outputs, in a multi-task
learning setting [20] (Figure 18 (b)). The usage of LSTMs in a multi-task learn-
ing setting has shown to improve performance on all individual tasks when jointly
learning multiple natural language processing tasks, including part-of-speech tag-
ging, named entity recognition, and sentence classification [25]. A hybrid option

58

between the architecture of Figures 18 (a) and (b) is an architecture of a number
of shared LSTM layers for both tasks, followed by a number of layers that spe-
cialize in either prediction of the next activity or prediction of the time until the
next event, as shown in Figure 18 (c).

It should be noted that activity prediction function f 1
a outputs the probability

distribution of various possible continuations of the partial trace. For evaluation
purposes, we will only use the most likely continuation.

We implemented the technique as a set of Python scripts using the recurrent
neural network library Keras [24]. The experiments were performed on a single
NVidia Tesla k80 GPU, on which the experiments took between 15 and 90 seconds
per training iteration depending on the neural network architecture. The execution
time to make a prediction is in the order of milliseconds.

4.3.2. Experimental setup

In this section we describe and motivate the metrics, datasets, and baseline meth-
ods used for evaluation of the predictions of the next activities and of the times-
tamps of the next events. To the best of our knowledge, there is no existing tech-
nique to predict both the next activity and its timestamp. Therefore, we utilize one
baseline method for activity prediction and a different one for timestamp predic-
tion.

The remaining cycle time prediction method proposed by van der Aalst et al.
[130] can be naturally adjusted to predict the time until the next event. To do so
we build a transition system from the event log using either set, bag, or sequence
abstraction, as in [130], but instead we annotate the transition system states with
the average time until the next event. We will use this approach as a baseline to
predict the timestamp of next event.

We evaluate the performance of predicting the next activity and its timestamp
on two datasets. We use the chronologically ordered first 2/3 of the traces as
training data and evaluate the activity and time predictions on the remaining 1/3
of the traces. We evaluate the next activity and the timestamp prediction on all
prefixes hdk(σ) of all trace σ in the set of test traces for 2 ≤ k < |σ |. We do not
make any predictions for the trace prefix of size one, since for those prefixes there
is insufficient data available to base the prediction upon. To measure the error in
predicting the time until the next event, we use mean absolute error (MAE).

Helpdesk dataset This log contains events from a ticketing management process
of the help desk of an Italian software company1. The process consists of 9 ac-
tivities, and all cases start with the insertion of a new ticket into the ticketing
management system. Each case ends when the issue is resolved, and the ticket is
closed. This log contains around 3,804 cases and 13,710 events.

BPI’12 subprocess W dataset This event log originates from the Business Pro-

1doi:10.17632/39bp3vv62t.1

59

cess Intelligence Challenge (BPI’12)1 and contains data from the application pro-
cedure for financial products at a large financial institution. This process con-
sists of three subprocesses: one that tracks the state of the application, one that
tracks the states of work items associated with the application, and a third one
that tracks the state of the offer. In the context of predicting the coming events
and their timestamps we are not interested in events that are performed automati-
cally. Thus, we narrow down our evaluation to the work items subprocess, which
contains events that are manually executed. Further, we filter the log to retain
only events of type complete. Two existing techniques [18, 33] for the next activ-
ity prediction have been evaluated on this event log with identical preprocessing,
enabling comparison. Breuker et al. [18] describe a next activity prediction tech-
nique that they call RegPFA, which relies on techniques from the field of gram-
matical inference. Evermann et al. [33] also use LSTM but do not optimize the
network architecture.

4.3.3. Results

Table 8 shows the performance of various LSTM architectures on the helpdesk
and the BPI’12 W subprocess logs in terms of MAE on predicted time, and ac-
curacy of predicting the next event. The specific prefix sizes are chosen such that
they represent short, medium, and long traces for each log. Thus, as the BPI’12 W
log contains longer traces, the prefix sizes evaluated are higher for this log. In the
table, all reports the average performance on all prefixes, not just the three prefix
sizes reported in the three preceding columns. The number of shared layers rep-
resents the number of layers that contribute to both time and activity prediction.
Rows where the numbers of shared layers are 0 correspond to the architecture of
Figure 18 (a), where the prediction of time and activities is performed with sepa-
rate models. When the number of shared layers is equal to the number of layers,
the neural network contains no specialized layers, corresponding to the architec-
ture of Figure 18 (b). Table 8 also shows the results of predicting the time until
the end of the next event using the adjusted method from van der Aalst et al. [130]
for comparison. All LSTM architectures outperform the baseline approach on all
prefixes as well as averaged over all prefixes on both datasets. Further, it can be
observed that the performance gain between the best LSTM model and the best
baseline model is much larger for the short prefix than for the long prefix. The best
performance obtained on next activity prediction over all prefixes was a classifica-
tion accuracy of 71% on the helpdesk log. On the BPI’12 W log the best accuracy
is 76%, which is higher than the 71.9% accuracy on this log reported by Breuker
et al. [18] and the 62.3% accuracy reported by Evermann et al. [33]. In fact, the
results obtained with LSTM are consistently higher than both approaches. Even
though Evermann et al. [33] also rely on LSTM in their approach, there are several
differences which are likely to cause the performance gap. First of all, [33] uses a

1doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

60

Helpdesk BPI’12 W

Layers Shared N/l
MAE in days

Accuracy
MAE in days

Accuracy
Prefix 2 4 6 All Prefix 2 10 20 All

LSTM
4 4 100 3.64 2.79 2.22 3.82 0.7076 1.75 1.49 1.02 1.61 0.7466
4 3 100 3.63 2.78 2.21 3.83 0.7075 1.74 1.47 1.01 1.59 0.7479
4 2 100 3.59 2.82 2.27 3.81 0.7114 1.72 1.45 1.00 1.57 0.7497
4 1 100 3.58 2.77 2.24 3.77 0.7074 1.70 1.46 1.01 1.59 0.7522
4 0 100 3.78 2.98 2.41 3.95 0.7072 1.74 1.47 1.05 1.61 0.7515
3 3 100 3.58 2.69 2.22 3.77 0.7116 1.69 1.47 1.02 1.58 0.7507
3 2 100 3.59 2.69 2.21 3.80 0.7118 1.69 1.47 1.01 1.57 0.7512
3 1 100 3.55 2.78 2.38 3.76 0.7123 1.72 1.47 1.04 1.59 0.7525
3 0 100 3.62 2.71 2.23 3.82 0.6924 1.81 1.51 1.07 1.66 0.7506
2 2 100 3.61 2.64 2.11 3.81 0.7117 1.72 1.46 1.02 1.58 0.7556
2 1 100 3.57 2.61 2.11 3.77 0.7119 1.69 1.45 1.01 1.56 0.7600
2 0 100 3.66 2.89 2.13 3.86 0.6985 1.74 1.46 0.99 1.60 0.7537
1 1 100 3.54 2.71 3.16 3.75 0.7072 1.71 1.47 0.98 1.57 0.7486
1 0 100 3.55 2.91 2.45 3.87 0.7110 1.72 1.46 1.05 1.59 0.7431
3 1 75 3.73 2.81 2.23 3.89 0.7118 1.73 1.49 1.07 1.62 0.7503
3 1 150 3.78 2.92 2.43 3.97 0.6918 1.81 1.52 1.14 1.71 0.7491
2 1 75 3.73 2.79 2.32 3.90 0.7045 1.72 1.47 1.03 1.59 0.7544
2 1 150 3.62 2.73 2.23 3.83 0.6982 1.74 1.49 1.08 1.65 0.7511
1 1 75 3.74 2.87 2.35 3.87 0.6925 1.75 1.50 1.07 1.64 0.7452
1 1 150 3.73 2.79 2.32 3.92 0.7103 1.72 1.48 1.02 1.60 0.7489

RNN
3 1 100 4.21 3.25 3.13 4.04 0.6581
2 1 100 4.12 3.23 3.05 3.98 0.6624
1 1 100 4.14 3.28 3.12 4.02 0.6597

Time prediction baselines
Set abstraction [130] 6.15 4.25 4.07 5.83 - 2.71 1.64 1.02 1.97 -
Bag abstraction [130] 6.17 4.11 3.26 5.74 - 2.89 1.71 1.07 1.92 -
Sequence abstraction [130] 6.17 3.53 2.98 5.67 - 2.89 1.69 1.07 1.91 -

Activity prediction baselines
Evermann et al. [33] - - - - - - - - - 0.623
Breuker et al. [18] - - - - - - - - - 0.719

Table 8: Experimental results for the Helpdesk and BPI’12 W logs.

61

technique called embedding [80] to create feature descriptions of events instead of
the features described above. Embeddings automatically transform each activity
into a “useful” large dimensional continuous feature vector. This approach has
shown to work really well in the field of natural language processing, where the
number of distinct words that can be predicted is very large, but for process min-
ing event logs, where the number of distinct activities in an event log is often in the
order of hundreds or much less, no useful feature vector can be learned automat-
ically. Second, [33] uses a two-layer architecture with 500 neurons per layer and
does not explore other variants. We found performance to decrease when increas-
ing the number of neurons from 100 to 150, which makes it likely that the per-
formance of a 500-neuron model will decrease due to overfitting. A third and last
explanation for the performance difference is the use of multi-task learning, which
as we showed, slightly improves prediction performance on the next activity.

Even though the performance differences between our three LSTM architec-
tures are small for both logs, we observe that most best performances (indicated
in bold) of the LSTM model in terms of time prediction and next activity predic-
tion are either obtained with the completely shared architecture of Figure 18 (b)
or with the hybrid architecture of Figure 18 (c). We experimented with decreasing
the number of neurons per layer to 75 and increasing it to 150 for architectures
with one shared layer, but found that this results in decreasing performance in both
tasks. It is likely that 75 neurons resulted in underfitting models, while 150 neu-
rons resulted in overfitting models. We also experimented with traditional RNNs
on one layer architectures and found that they perform significantly worse than
LSTMs on both time and activity prediction.

4.4. Future Path Prediction

Using functions f 1
a and f 1

t repeatedly allows us to make longer-term predictions
that predict further ahead than a single time step. We use f⊥a and f⊥t to refer to ac-
tivity and time until next event prediction functions that predict the whole contin-
uation of a running case, and aim at those functions to be such that f⊥a (hdk(σ)) =
tlk(πA (σ)) and f⊥t (hdk(σ)) = tlk(πT (σ))

4.4.1. Approach

The future path, or suffix can be predicted by iteratively predicting the next activ-
ity and the time until the next event, until the next activity prediction function f 1

a
predicts the end of case, which we represent with ⊥. More formally, we calculate
the complete suffix of activities as follows:

f⊥a (σ) =


σ if f 1

a (σ) =⊥
f⊥a (σ · e),with e ∈ E ,πA (e) = f 1

a (σ)∧
πT (e) = (f 1

t (σ)+πT (σ(|σ |))) otherwise

62

and we calculate the suffix of times until the next events as follows:

f⊥t (σ) =


σ , if f 1

t (σ) =⊥
f⊥t (σ · e),with e ∈ E ,πA (e) = f 1

a (σ)∧
πT (e) = (f 1

t (σ)+πT (σ(|σ |))) otherwise

4.4.2. Experimental Setup

For a given trace prefix hdk(σ) we evaluate the performance of f⊥a by calculating
the distance between the predicted continuation f⊥a (hdk(σ)) and the actual con-
tinuation πA (tlk(σ)). Many sequence distance metrics exist, with Levenshtein
distance being one of the most well-known ones. Levenshtein distance is defined
as the minimum number of insertion, deletion, and substitution operations needed
to transform one sequence into the other.

Levenshtein distance is not suitable when the business process includes par-
allel branches. Indeed, when 〈a,b〉 are the next predicted events, and 〈b,a〉 are
the actual next events, we consider this to be only a minor error since it is often
not relevant in which order two parallel activities are executed. However, Lev-
enshtein distance would assign a cost of 2 to this prediction, as transforming the
predicted sequence into the ground truth sequence would require one deletion and
one insertion operation. An evaluation measure that better reflects the prediction
quality of is the Damerau-Levenstein distance [27], which adds a swapping oper-
ation to the set of operations used by Levenshtein distance. Damerau-Levenshtein
distance would assign a cost of 1 to transform 〈a,b〉 into 〈b,a〉. To obtain compa-
rable results for traces of variable length, we normalize the Damerau-Levenshtein
distance d by the maximum of the length of the ground truth suffix and the length
of the predicted suffix and subtract the normalized Damerau-Levenshtein distance
from 1 to obtain Damerau-Levenshtein Similarity (DLS):

DLS = 1− d(y, ŷ)
max(|y|, |ŷ|)

, (4.1)

where y = πA (tlk(σ)), ŷ = f⊥a (hdk(σ)).
To the best of our knowledge, the most recent method to predict an arbitrary

number of events ahead is the one by Polato et al. [91]. The authors first extract a
transition system from the log and then learn a machine learning model for each
transition system state to predict the next activity. They evaluate on predictions of
a fixed number of events ahead, while we are interested in the continuation of the
case until its end. We redid the experiments with their ProM plugin to obtain the
performance on the predicted full case continuation.

For the LSTM experiments, we use a two-layer architecture with one shared
layer and 100 neurons per layer, which showed good performance in terms of next
activity prediction and predicting the time until the next event in the previous ex-
periment (Table 8). In addition to the two previously introduced logs, we evaluate

63

Method Helpdesk BPI’12 W BPI’12 W (no duplicates) Environmental permit

Polato [91] 0.2516 0.0458 0.0336 0.0260
LSTM 0.7669 0.3533 0.3937 0.1522

Table 9: Suffix prediction results in terms of Damerau-Levenshtein similarity.

prediction of the suffix on an additional dataset, described below, which becomes
feasible now that we have fixed the LSTM architecture.

Environmental permit dataset This is a log of an environmental permitting pro-
cess at a Dutch municipality.1 Each case refers to one permit application. The
log contains 937 cases and 38,944 events of 381 event types. Almost every case
follows a unique path, making the suffix prediction more challenging.

4.4.3. Results

Table 9 summarizes the results of suffix prediction for each log. As can be seen,
LSTM outperforms the baseline [91] on all logs. Even though it improves over
the baseline, the performance on the BPI’12 W log is low given that the log only
contains 6 activities. After inspection we found that this log contains many se-
quences of two or more events in a row of the same activity, where occurrences of
8 or more identical events in a row are not uncommon. We found that LSTMs have
problems dealing with this log characteristic, causing it to predict overly long se-
quences of the same activity, resulting in predicted suffixes that are much longer
than the ground truth suffixes. Hence, we also evaluated suffix prediction on a
modified version of the BPI’12 W log where we removed repeated occurrences of
the same event, keeping only the first occurrence. However, we can only notice a
mild improvement over the unmodified log.

4.5. Remaining Cycle Time Prediction

The proposed multi-task learning setting can be extended to also predict the re-
maining cycle time of a case. Indeed, time prediction function f⊥t predicts the
timestamps of all events in a running case that are still to come. Since the last
predicted timestamp in a prediction generated by f⊥t is the timestamp of the end
of the case, it is easy to see that f⊥t can be used for predicting the remaining cycle
time of the running case. For a given unfinished case σ , σ̂t = f⊥t (σ) contains the
predicted timestamps of the next events, and σ̂t(|σ̂t |) contains the predicted end
time of σ , therefore the estimated remaining cycle time can be obtained through
σ̂t(|σ̂t |)−π(σ(|σ |)).

For consistency of explanations, a dedicated Chapter 6 provides a comprehen-
sive evaluation of our proposed multi-task LSTM and a single-task architecture,

1doi:10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

64

such as the one presented in [84], using a wide range of event logs as well as other
baselines, for the problem of remaining cycle time prediction.

4.6. Summary

Deep learning neural networks have been typically applied in a single-task set-
ting, where the prediction target is outputted directly by the output layer of the
network. However, these approaches focus on making accurate predictions, rather
than trying to explain them.

In this chapter, we apply a multi-task LSTM as a means to decompose the time
prediction in terms of its components. Namely, we design a technique to predict
the next activity of a running case and its timestamp. We showed that this tech-
nique outperforms existing baselines on real-life data sets. Additionally, we found
that predicting the next activity and its timestamp via a single model (multi-task
learning) yields a higher accuracy than predicting them using separate models.
We then showed that this basic technique can be generalized to address two other
predictive process monitoring problems: predicting the entire continuation of a
running case and predicting the remaining cycle time. In this way, the remaining
cycle time can be explained in terms of cycle times of individual activities to be
executed in an ongoing case.

Although multi-task learning tends to achieve better accuracy by sharing in-
formation across different tasks, it is not trivial to extend it to make use of all
available case and event attributes, not only activity names and their timestamps.
Indeed, the predictions are performed iteratively – at the i-th step we predict the
(i+ 1)-th activity and its timestamp, and the prediction result is then included in
the input for the (i+ 1)-th step, and so on. In order to use all data attributes,
one would have to predict the value of each such attribute for each step. That
would make the architecture overly complex as well as significantly affect the
running times. Furthermore, for longer sequences, the propagation of errors for
incorrectly predicted attributes will affect the overall time prediction accuracy. To
address this limitation, in Chapter 5, we propose an alternative, process model-
based, approach for the prediction of temporal process performance measures.

65

5. PROCESS MODEL DRIVEN PREDICTION OF
TEMPORAL PROCESS MEASURES

As illustrated earlier, a number of approaches have been proposed to predict quan-
titative process performance measures for running instances of a process, includ-
ing remaining cycle time, cost, or probability of deadline violation. However,
these approaches adopt a black-box approach, insofar as they predict a single
scalar value without decomposing this prediction into more elementary compo-
nents. In this chapter, we propose a white-box approach for predictive process
monitoring of continuous performance measures, such as the remaining time,
based on a BPMN process model automatically discovered from the event log.

The key idea is to first predict the performance measure at the level of activi-
ties, and then to aggregate these predictions at the level of a process instance by
means of flow analysis techniques. We develop this idea in the context of predict-
ing the remaining cycle time of ongoing process instances. Compared to Chap-
ter 4, here we present an alternative solution to the research question RQ1, where
explainability is achieved by the mapping prediction components into the process
model. The evaluation for the approach presented in this chapter is reported in
Chapter 6.

This chapter is structured as follows. Section 5.1 provides an overview of the
proposed approach. Section 5.2 describes flow analysis and how to apply it to
calculate cycle time of a structured process. The next four sections focus on the
key parts of our approach, namely automatic process discovery, replaying traces
on a process model, obtaining flow analysis formula, computing the formulas
components. Finally, Section 5.7 provides a summary of the chapter.

5.1. Introduction

Flow analysis is a family of techniques that enables estimation of the overall per-
formance of a process given knowledge about the performance of its activities.
For example, using flow analysis one can calculate the average cycle time of an
entire process if the average cycle time of each activity is known. Flow analysis
can also be used to calculate the average cost of a process instance knowing the
cost-per-execution of each activity, or calculate the error rate of a process given
the error rate of each activity [32]. Since flow analysis is typically applied to
structured process models described in the BPMN notation, the estimation can be
easily explained in terms of its elementary components.

Our approach exploits historical execution traces in order to discover a struc-
tured process model. Once the model has been discovered, we identify its set of
activities and decision points and train two families of machine learning models:
one to predict the cycle time of each activity, and the other to predict the branch-
ing probabilities of each decision point. To speed up the performance at runtime,

66

these steps are performed offline (Figure 19).
At runtime, given an ongoing process instance, we align its partial trace with

the discovered process model to determine the current state of the instance. Next,
we parse the process model to construct a tree using the algorithm described
in [133]. The tree is traversed starting from the state up to the process end and
deduce a formula for remaining time using rules described in Section 5.2. The
formula includes cycle times of activities and branching probabilities of decision
points that are reachable from the current execution state. These components are
predicted using previously trained regression and classification models. Finally,
we evaluate the formula and obtain the expected value of the remaining cycle time.

Figure 19: Overview of the proposed approach.

5.2. Overview of Flow Analysis

To understand how flow analysis works, we start with an example of a process
with sequential SESE fragments of events as in Figure 20a. Each fragment has
a cycle time Ti. Since the fragments are performed one after the other, we can
intuitively conclude that the cycle time CT of a purely sequential process with N
fragments is the sum of the cycle times of each fragment [32]:

CT =
N

∑
i=1

Ti (5.1)

Let us now consider a process with a decision point between N mutually ex-
clusive fragments, represented by an XOR gateway (Figure 20b). In this case, the
average cycle time of the process is determined by:

CT =
N

∑
i=1

pi ·Ti, (5.2)

where pi denotes the branching probability, i.e. frequency with which a given
branch i of a decision gateway is taken.

67

In case of parallel gateways where activities can be executed concurrently as
in Figure 20c, the combined cycle time of multiple fragments is determined by
the slowest of the fragments, that is:

CT = max
i=1...n

Ti (5.3)

CT =
T

1− r
(5.4)

(a)

(b)

(c)

(d)

Figure 20: Typical process model patterns: sequential (a), XOR-block (b), AND-
block (c) and rework loop (d).

Besides cycle time, flow analysis can also be used to calculate other perfor-
mance measures. For instance, assuming we know the average cost of each ac-
tivity, we can calculate the cost of a process more or less in the same way as we
calculate cycle time. In particular, the cost of a sequence of activities is the sum
of the costs of these activities. The only difference between calculating cycle time

68

Another recurrent pattern is the one where a fragment of a process may be
repeated multiple times, for instance, because of a failed quality control. This
situation is called rework and is illustrated in Figure 20d. The fragment is executed
once. Next, it may be repeated each time with a probability r referred to as the
rework probability. Assuming that the probability of reworking for the N-th time
is not dependent on the value of N, the number of times that the rework fragment
will be executed follows a geometric distribution with the expected value 1/(1−
r). Thus, the average cycle time of the fragment in this case is:

and calculating cost relates to the treatment of AND-blocks. The cost of an AND-
block such as the one shown in Figure 20c is not the maximum of the cost of the
branches of the AND-block. Instead, the cost of such a block is the sum of the
costs of the branches. This is because after the AND-gateway is traversed, every
branch in the AND join is executed and therefore the costs of these branches add
up to one another [32].

In case of structured process models, we can relate each fragment to one of the
four described types and use the aforementioned equations to estimate the required
performance measure. However, in case of an unstructured process model or if a
model contains other modeling constructs besides AND and XOR gateways, the
method for calculating performance measures becomes more complicated [144].

Importantly, flow analysis equations were defined when the average cycle time
of the process is in question. However, the same equations can also be used to
predict the remaining cycle time of a given ongoing instance σ based on the in-
formation available in the prefix hdk(σ). For example, in Equation 5.2, branching
probabilities pi returned by the predictor can serve as confidence values [122].
Thus, among the predicted cycle times Ti for each fragment, the highest weight is
given to the one that corresponds to the most likely continuation of σ .

5.3. Discovering Process Models from Event Logs

The proposed approach relies on a process model as input. However, since the
model is not always known or might not conform to the real process, generally we
need to discover the model from event logs. For that, we use a two-step automated
process discovery technique proposed in [4] that has been shown to outperform
traditional approaches with respect to a range of accuracy and complexity mea-
sures. The technique has been implemented as a standalone tool 1 as well as a
ProM plugin, namely StructuredMiner.

The technique in [4] pursues a two-phase “discover and structure” approach.
In the first phase, a model is discovered from the log using either the Heuristics
Miner or Fodina Miner. They have been shown to consistently produce accurate,
but potentially unstructured or even unsound models. In the second phase, the dis-
covered model is transformed into a sound and structured model by applying two
techniques: a technique to maximally block-structure an acyclic process model
and an extended version of a technique for block-structuring flowcharts.

Next, we used a technique called Refined Process Structure Tree (RPST) [133]
to parse a process model into a tree that represents a hierarchy of SESE fragments.
Each fragment relates to the subgraph induced by a set of edges. A fragment in
the tree consists of all fragments at the lower level, but fragments at the same
level are disjoint. Each fragment in an RPST belongs to one of four types [93]:
a trivial fragment includes only a single edge; a polygon fragment is a sequence

1Available at http://apromore.org/platform/tools

69

http://apromore.org/platform/tools

of fragments; a bond corresponds to a fragment where all child fragments share a
common pair of vertices. Any other fragment is considered a rigid.

5.4. Replaying Partial Traces on Process Models

For a given partial trace, to predict its remaining time, we need to determine the
current state of the trace relative to the process model. For that, we map, or align,
a trace to the process model using the technique described in [2] which is available
as a plugin for the open-source process analytics platform Apromore1.

The technique treats a process model as a graph that is composed of activities
as nodes and their order dependencies as arcs. A case replay can be seen as a
series of coordinated moves, including those over the model activities and gate-
ways and those over the trace events. In that sense, a case replay is also termed
an alignment of a process model and a trace. Ideally, this alignment should result
in as many matches between activity labels on the model and event labels in the
trace as possible. However, practically, the replay may choose to skip a number of
activities or events in search of more matches in later moves. Moves on the model
must observe the semantics of the underlying modeling language which is usually
expressed by the notion of tokens. For example, for a BPMN model, a move of
an incoming token over an XOR split gateway will result in a single token pro-
duced on one of the gateway outgoing branches, while a move over an AND split
gateway will result in a separate token produced on each of the gateway outgoing
branches. The set of tokens located on a process model at a point in time is called
a marking. On the other hand, a move in the trace is sequential over successive
events of the trace ordered by timestamps, one after another. Thus, after every
move, either on the model or in the trace, the alignment comes to a state consist-
ing of the current marking of the model and the index of the current event in the
trace.

In [2], cases are replayed using a heuristics-based backtracking algorithm that
searches for the best alignment between the model and a partial trace. The al-
gorithm can be illustrated by a traversal of a process tree starting from the root
node, e.g. using depth-first search, where nodes represent partial candidate solu-
tion states (Figure 21). Here the state represents the aforementioned alignment
state of the case replay. At each node, the algorithm checks whether the align-
ment state till that node is good enough, based on costs accumulated along the
path from the root to the current node. If the alignment is good, it generates a set
of child nodes of that node and continues down that path; otherwise, it stops at
that node, i.e. it prunes the branch under the node, and backtracks to the parent
node to traverse other branches.

1http://apromore.org

70

http://apromore.org

Figure 21: Backtracking algorithm (taken from [2]).

5.5. Obtaining the Flow Analysis Formulas

Having determined the current state of the case execution, we traverse the process
model starting from that state until the process completion in order to obtain the
flow analysis formulas.

As a running example, let us consider a simple process model in Figure 22.
Applying the flow analysis formulas described in Section 5.2, the average cycle
time of this process can be decomposed as follows:

CT = TA +max(TB +TC,TD)+TF + p2
(

TG +
TH

1− r

)
(5.5)

x32x31x21
end

A

start
x11

B

D

C

x12

F HG

x22

p2

p1

r

Figure 22: Example process model. Highlighted is the current marking

Note that one of the branches of gateway X21 is empty and therefore does not
contribute to the cycle time. Therefore, only the branch with the probability p2 is
included in the equation.

The components of the formula – cycle times of individual activities and branch-
ing and rework probabilities – can be estimated as averages of their historical val-
ues. However, since we deal with ongoing process cases, we can use the informa-
tion that is already available from the case prefix to predict the above components.

Consider, we have a partial trace hd(σ) = 〈A,D,B〉. Replaying this trace on
the given model as described in the Section 5.4, we find the current marking to
be in the states B and D within the AND-block. Traversing the process model

71

starting from these states until the process end, for the remaining cycle time of
hd(σ), we obtain the formula:

CTrem = 0+max(0+TC,0)+TF + p2
(

TG +
TH

1− r

)
=

= TC +TF + p2
(

TG +
TH

1− r

)
.

(5.6)

Since activities A, B and D have already been executed, they do not contribute
to the remaining cycle time. Thus, they are not a part of the formula. All the other
formula terms need to be predicted using the data from hd(σ).

Similarly, if a current marking is inside an XOR block, its branching probabil-
ities need not be predicted. Instead, the probability of the branch that has actually
been taken is set to 1 while the other probabilities are set to 0.

A more complex situation arises when the current marking is inside the rework
loop. In this case, we “unfold” the loop as shown in Figure 23. Specifically, we
separate the already executed occurrences of the rework fragment from the po-
tential future occurrences and take the former out of the loop. Let us consider a
partial trace hd(σ) = 〈A,D,B,C,F,G,H〉. Since H has occurred once, according
to the process model (Figure 22), with a probability r, it may be repeated, other-
wise, the rework loop is exited. To signal this choice, we take the first occurrence
of H out of the loop and place an XOR gateway after it. One of the branches will
contain a rework loop of future events with the same probability r, while the other
one will reflect an option to skip the loop altogether. Thus, the cycle time of the
whole fragment can be decomposed as follows:

CTH = TH′+ r
TH

1− r
, (5.7)

where TH′ refers to the cycle time of already executed occurrence(s) of H. It is
highlighted in bold font, meaning that we should take the actual cycle time rather
than the predicted.

5.6. Computing Cycle Times and Branching Probabilities

We can use the flow analysis formulas produced by the method described in Sec-
tion 5.5 to compute the remaining cycle time of a case, given: (i) an estimate of
the cycle time of each activity reachable from the current execution state; and (ii)
an estimate of the branching probability of each flow stemming from a reachable
XOR-split (herein called a reachable conditional flow). Given an execution state,
we can obtain these estimates in several ways including:

1. By using the prediction models produced for each reachable activity and for
each reachable conditional flow, taking into account only traces that reach

72

H

1-r

H

H*

r

1-r

1-r

r

r

(a) (b)

Figure 23: Unfolding the rework loop of F

the current execution state. We herein call this approach predictive flow
analysis.

2. By computing the mean cycle time of each reachable activity and the traver-
sal frequency of each reachable conditional flow, again based only on the
suffixes of traces that reach the execution state in question. We call this
approach mean flow analysis

3. By combining the above two approaches as follows: If the number of train-
ing cases to fit the prediction model for a given activity A is less than a
certain threshold N0, then we find the mean cycle times and branching prob-
abilities as in the mean flow analysis method. Otherwise, we fit the predic-
tors as in predictive flow analysis. This hybrid approach is herein called
adaptive flow analysis. The value N0 can be treated as a hyperparameter
and is to be determined during the hyperparameter optimization procedure.

The rationale for the adaptive flow analysis is that in a high dimensional fea-
ture space, the number of observations to train a model may not be enough, thus
the predictions may be unreliable and unstable [96]. This may happen when we
predict cycle times of rare activities or branching probabilities of gateways that
are rarely taken. Furthermore, if a prefix is too short, there might not be enough
information in it to predict cycle times of some activities and gateways’ branch-
ing probabilities, especially those that are executed near the process end. In such
cases, we can then use the mean historical activity cycle times and mean proba-
bilities instead.

For each activity in the process model, to predict its cycle time, we train a
regression model, while for predicting branching probabilities we fit classification

73

models for each corresponding XOR gateway. In the latter case, each branch of
a gateway is assigned a class starting from 0, and the model makes predictions
about the probability of each class. The predictive models are trained for prefixes
hdk(σ) of all traces σ in the training set for 2 ≤ k < |σ |. We do not train and
make predictions after the first event since for those prefixes there is insufficient
data available to base the predictions upon.

In order to fit predictive models, we need to encode process execution traces
in the form of fixed-length feature vectors. In the related work, there have been
proposed two common approaches to achieve this:

1. Training a single predictive model using case attributes as well as aggre-
gated attributes of executed events. This approach has been used in [29,71,
119, 132], among others. Typical aggregation functions applied over event
attributes include count (for categorical attributes) and mean (for numeric
ones).

2. Training multiple predictive models, one for each possible prefix length.
In this way, values of each event attribute need not be aggregated across
the partial case, therefore, they may be preserved, as well as the order of
attributes. In other words, this encoding is lossless as compared to the pre-
vious one. This approach has been used in [66, 122, 137], among others.

Although lossless, the latter approach has been shown to be outperformed by
a single predictive model in some circumstances [120]. This is due to the fact
that combining the knowledge from all events performed so far may provide more
signal than using the order of events and their individual attributes. In order to
quantify this phenomenon in the context of flow analysis, in our work we consider
both approaches.

Feature encoding with a single predictive model

In a single predictive model approach, we create feature vectors by extracting the
following data from each prefix of the corresponding prefix log:
• Case attributes. These attributes are static in the sense that they do not

change as the case progresses. As such, they can simply be appended to
feature vectors.
• Aggregated event attributes. As event attributes are dynamic, i.e. each

event in a trace has its own attribute values, in order to encode them in a
fixed-length vector, we apply several aggregation functions. For numeric
attributes, we compute their mean, minimum and maximum values across
a partial case, as well as their sum and standard deviation. For categorical
attributes, we count how many times a specific level has appeared (e.g. how
many times a specific activity has been executed, or how many activities a
specific resource has performed).

To fit a predictive model, we append to these feature vectors the value of the
target variable y that is to be learned. For example, if we are to predict the cycle

74

time of an activity, we calculate it as the time difference (in seconds) between
the completion timestamp of that activity and the completion timestamp of the
previous activity. If the activity is never executed in a given case, its cycle time is
undefined. Therefore, we exclude such cases from the training data. Conversely,
if an activity occurs multiple times in a case, we take its average cycle time.

Similarly, to predict branching probabilities, we assign a class label to each
outgoing branch. For example, if we are to predict the branching probabilities for
the X32 gateway, we can assign class 0 to the branch that leads to rework and
class 1 to the other branch. Evidently, the probability of class 0 would be equal to
the rework probability r. Thus, for the first case in Table 1 X32 = 1, while for the
second case X32 is undefined since the case does not reach that decision point.
Consequently, the second case cannot be used to populate a training set for the
prediction of X32.

From these examples, it is evident that the dimensionality of feature vectors
is constant for a given log and depends on: (i) the number of case attributes, (ii)
the number of categorical event attributes and the number of possible values, or
levels, of each such attribute, (iii) the number of numeric event attributes and the
number of aggregation functions applied for them.

Feature encoding with multiple predictive models

In a multiple predictive model approach, we concatenate case attributes and, for
each position in a trace, the event occurring in that position and the value of
each event attribute in that position. In general, for a case with U case attributes
{s1, . . . ,sU} containing k events {e1, . . . ,ek}, each of them having an associated
payload {d1

1 , . . . ,d
R
1 }, . . . , {d1

k , . . . ,d
R
k } of length R, the resulting feature vector

would be:
~X = (s1, . . . ,sU ,e1,d1

1 , . . . ,d
R
1 , . . . ,ek,d1

k , . . . ,d
R
k) (5.8)

With this encoding, the length of the feature vector increases with each exe-
cuted event ek:

U + k ·R (5.9)

Consequently, this approach requires fitting a separate model for each possible
length of a test prefix.

As compared to the single model approach where each sample of a prefix log
created from the training set becomes a training sample, in the multiple model
approach, each training trace produces only one sample. It should be noted that
if a case does not reach length k, i.e. it finishes earlier, there are two options to
proceed:
• Discard such cases from the training set for prefix lengths k
• Impute missing event attribute values with zeros or their historical averages

computed from cases that have at least k events, so that the resulting feature
vectors’ dimensionality would be determined by Eq. 5.9. This approach is
often referred to as padding in machine learning [95].

75

In this work, we will use the former approach, as we are mostly interested
in predictions in the early stages of a process evolution where many process in-
stances have not finished yet, so there is still sufficient amount of data to train the
predictive models.

5.7. Summary

In this chapter, we put forward some potential benefits of a process model-based
approach to predicting quantitative process performance measures. Rather than
predicting single scalar measures, we demonstrated how these measures can be
estimated as aggregations of corresponding performance measures of the activ-
ities composing the process. In this way, the predicted measures become more
explainable, as they are decomposed into elementary components. Thus, business
analysts can pinpoint the bottlenecks in the process execution and provide better
recommendations to keep the process compliant with the performance standards.

We implemented and evaluated three approaches – one where the formulas’
components are predicted from the trace prefix based on the models trained on
historical completed traces, another one that instead uses constant values obtained
from the historical averages of similar traces, and finally, a hybrid approach that
combines the strengths of the above two approaches. In Chapter 6 we will evaluate
these three approaches to predict the remaining cycle time, which is a common
process performance measure.

76

6. EXPERIMENTAL EVALUATION

In the two previous chapters, we have presented two alternative solutions to the re-
search question RQ1, one that is based on multi-task deep learning networks, and
the other one based on flow analysis. In this chapter, we empirically compare the
two approaches with each other and with various baselines proposed in previous
work. In particular, we seek to answer the research question RQ2, namely “What
is the impact of explainability on prediction accuracy in the context of predictive
process monitoring techniques for temporal measures?”

This research question can be decomposed into several sub-questions, namely:
RQ2.1. What is the relative performance of different variants of flow analysis-

based techniques? Does the adaptive flow analysis approach provide added value
over the mean and predictive flow analysis approaches (Chapter 5)?

RQ2.2. What is the relative performance of long short-term memory networks
trained in single-task and multi-task learning settings (Chapter 4)?

RQ2.3. Which techniques tend to provide accurate predictions in the early
stages of case evolution? How explainable are they?

This chapter is structured as follows. Section 6.1 provides an overview of
datasets used in the evaluation as well as lists their main characteristics. Sec-
tion 6.2 describes the experimental pipeline, namely data preprocessing and split-
ting strategies, evaluation metrics employed, baselines to compare against and the
hyperparameter optimization procedure. Section 6.3 provides the results of the
evaluation and discusses them from various viewpoints. Section 6.4 identifies in-
ternal and external threats to validity. Finally, Section 6.5 provides a summary of
the chapter.

6.1. Datasets

We conducted the experiments using 17 real-life event logs. To ensure the repro-
ducibility of the experiments, the logs we used are publicly available at the 4TU
Center for Research Data2 as of May 2018, except for one log, which we obtained
from the demonstration version of a software tool.

We excluded from the evaluation those logs that do not pertain to business
processes (e.g., JUnit 4.12 Software Event Log and NASA Crew Exploration Ve-
hicle). Such logs are usually not case-based, or they contain only a few cases.
Furthermore, we discarded the log that comes from the Environmental permit ap-
plication process, as it is an earlier version of the BPIC 2015 event log from the
same collection. Finally, we discarded the BPIC 2018 event log, as the underlying
process exhibits strong seasonal patterns that can be trivially predicted. Specif-
ically, 76% of cases in the log terminate on one of the three days: 2018-01-06,
2017-01-07 and 2016-02-19.

2https://data.4tu.nl/repository/collection:event_logs_real

77

https://data.4tu.nl/repository/collection:event_logs_real

Table 10 summarizes the basic characteristics of each resulting dataset, namely
the number of complete cases, the ratio of distinct (unique) traces (DTR), the num-
ber of event classes, the average number of distinct events per trace (DER), aver-
age case length, i.e. the average number of events per case and its coefficient of
variation (CV), average case duration (in days) and its CV, and the number of case
and event attributes. The datasets possess a very diverse range of characteristics
and originate from a variety of domains.

BPIC 2011. This event log originates from the first Business Process Intel-
ligence Challenge 1 held in 2011 and a describes the executions of a healthcare
process related to the treatment of patients diagnosed with cancer in a large Dutch
academic hospital. Each case refers to the treatment of a different patient. The
event log contains domain specific attributes that are both case attributes and event
attributes in addition to the standard XES attributes.

BPIC 2012. This event log originates from the 2012 Business Process Intelli-
gence Challenge 2 and contains data from the application procedure for financial
products at a large financial institution. The process consists of three subpro-
cesses: one that tracks the state of the application (BPIC’12 A), one that tracks
the state of the offer (BPIC’12 O), and a third one that tracks the states of work
items associated with the application (BPIC’12 W). For the purpose of this work,
we treat these three subprocesses as separate datasets.

BPIC 2015. This dataset assembles event logs from 5 Dutch municipalities,
pertaining to the building permit application process. We treat the datasets from
each municipality as separate event logs.

BPIC 2017. This log originates from a loan application process in a Dutch
financial institution. For each application, the institution can make one or multiple
offers, while the customer can accept at most one of them.

Credit Requirement (CR). This log contains information about a credit re-
quirement process in a bank.3 It contains data about events, time execution, etc.
A distinctive feature is that all cases follow the same path, thus the process model
is sequential and does not contain gateways.

Helpdesk. This log contains events from a ticketing management process of
the help desk of an Italian software company.4 Each case starts with the insertion
of a new ticket into the ticketing management system and ends when the issue is
resolved, and the ticket is closed.

Hospital. This log was obtained from the financial modules of the ERP system
of a regional hospital.5 The log contains events that are related to the billing of
medical services that have been provided by the hospital. Each trace of the event
log records the activities executed to bill a package of medical services that were

1doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
2doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3doi:10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
4doi:10.17632/39bp3vv62t.1
5doi:10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741

78

bundled together. The log is a random sample of process instances that were
recorded over three years.

Invoice. This log refers to the invoice approval process and comes as a demon-
stration log with the Minit process intelligence software.1

Production. This log contains data from a manufacturing process 2. Each
trace records information about the activities, workers and/or machines involved
in producing an item.

Sepsis. This real-life event log contains events of sepsis cases from a hospital.3

One case represents the pathway through the hospital.
Traffic fines. The last log describes a road traffic fines management process4

in an Italian police unit. It contains events related to fine notifications, as well as
partial repayments.

Table 10: Statistics of the datasets used in the experiments.

log # cases DTR event DER mean case CV case mean case CV case # attributes Domain
classes length length duration duration (case+event)

bpic2011 1140 0.858 251 0.505 131.342 1.542 387.283 0.875 6+10 HC
bpic2012a 12007 0.001 10 1 4.493 0.404 7.437 1.563 1+4 Fin
bpic2012o 3487 0.002 7 1 4.562 0.126 15.048 0.606 1+4 Fin
bpic2012w 9650 0.235 6 0.532 7.501 0.97 11.401 1.115 1+5 Fin
bpic2015_1 696 0.976 189 0.967 41.343 0.416 96.176 1.298 17+8 PA
bpic2015_2 753 0.999 213 0.969 54.717 0.348 159.812 0.941 17+8 PA
bpic2015_3 1328 0.968 231 0.975 43.289 0.355 62.631 1.555 18+8 PA
bpic2015_4 577 0.998 179 0.97 42 0.346 110.835 0.87 15+8 PA
bpic2015_5 1051 0.997 217 0.972 51.914 0.291 101.102 1.06 18+8 PA
bpic2017 31509 0.207 26 0.878 17.826 0.32 21.851 0.593 3+15 Fin
credit 10035 0 8 1 8 0 0.948 0.899 0+7 Fin
helpdesk 3218 0.002 5 0.957 3.293 0.2 7.284 1.366 7+4 CS
hospital 59228 0 8 0.995 5.588 0.123 165.48 0.671 1+20 HC
invoice 5123 0.002 17 0.979 12.247 0.182 2.159 1.623 5+10 FI
production 225 28 0.454 20.191 1.034 20.467 1.03 2+13 M
sepsis 1035 0.076 6 0.995 5.001 0.288 0.029 1.966 23+10 HC
traffic_fines 150370 0.002 11 0.991 3.734 0.439 341.676 1.016 4+10 PA

Domains: HC – healthcare, Fin – financial, PA – public administration, CS – customer service, M
– manufacturing

6.2. Experimental Setup

In this section, we describe our approach to split the event logs into training and
test sets along the temporal dimension. Next, we provide a description of our

1https://www.minit.io
2doi:10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
3doi:10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
4doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

79

https://www.minit.io

evaluation criteria and the baselines to compare against. Finally, we discuss the
hyperparameter optimization procedure employed in our evaluation.

6.2.1. Data Preprocessing

Data preprocessing is a crucial step prior to modeling as it can often have a sig-
nificant impact on generalization performance of a supervised machine learning
algorithm [58].

All the logs have been preprocessed beforehand to ensure the maximum achiev-
able prediction accuracy. Firstly, since the training and validation procedures re-
quire having a complete history of each case, we remove incomplete cases, as
well as cases that have been recorded not from their beginning. Information about
case completion may be recorded in the log explicitly, with a dedicated end event.
Otherwise, we need to apply manual rules to filter out incomplete cases. For ex-
ample, in the Traffic fines log, we consider traces where the last recorded event is
Send Fine to be pending and therefore incomplete.

Secondly, from the available timestamps we extract additional features, such as
the time elapsed since the case has started, time elapsed since the previous event
and current day of the week. Intuitively, if the last event observed occurred at the
end of the working day or at the end of the working week, the time until the next
event is expected to be longer. Furthermore, if both start and complete timestamps
are available for a log, we extract event durations.

Thirdly, for the categorical attributes we check the number of distinct values
(levels). For some attributes, the number of levels can be very large, with some of
the levels appearing only in a few cases. Thus, one-hot encoding (Section 2.1) will
significantly increase the dimensionality of the data, with many sparse features.
In order to avoid that, we mark infrequent attributes that appear in at least ten
training samples as other. This process is repeated for all categorical attributes
except the activity name, where we retain all category levels.

Next, in order to take into account resource contention, we extract the number
of open cases at the particular point in time and the number of work items the
current resource is also working on. These features are added as event attributes
for each event.

Finally, even though event logs are recorded automatically by enterprise sys-
tems, there may be some missing data present. However, this usually happens due
to the fact that some attributes are not applicable for a particular event. For exam-
ple, in Traffic fines log, the payment amount is only available for payment events,
while for other events it is marked as “missing”. Another reason for missing data
is that in some logs data attributes are only recorded if they have changed since
the previous event. In such situations, we look for the closest preceding event in
the given case where the attribute was available and propagate its value forward.

80

6.2.2. Data Split

In order to assess the predictive power of a predictor, we need to design experi-
ments in such a way that would prevent overfitting. In other words, we want the
accuracy measure to have low variance and low bias. To ensure that, we need to
properly separate training data from test data. Two common splitting strategies in
machine learning are the train-test split and cross-validation [82].

In order to simulate a real-life situation where prediction models are trained
using historical data and applied to running cases, we employ a so-called temporal
split to divide the event log into train and test cases. Specifically, all cases in the
log are ordered according to their start time and the first 80% are used to fit the
models, while the remaining 20% are used to evaluate the prediction accuracy. In
other words, the classifier is trained with all cases that started before a given date
T1 which would represent a current point in time in a real-life scenario, and the
testing is done only on cases that start afterwards. Technically, cases that start
before T1 and are still running at T1 should not be included in either set. However,
to prevent the exclusion of a significant number of cases, in our experiments, we
allow the two sets not to be completely temporally disjoint.

T1

Test period Training period

time
T0 T2

j

i

“now”

Figure 24: Temporal split of the training and test sets.

6.2.3. Evaluation Metrics

Two measures commonly employed to assess a predictive process monitoring
technique are accuracy and earliness [31, 66, 122]. Indeed, in order to be use-
ful, a prediction should be accurate and should be made early on to allow enough
time to act upon.

Accuracy. To assess the accuracy of the prediction of continuous variables,
well-known error metrics are Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and Mean Percentage Error (MAPE) [53], where MAE is defined
as the arithmetic mean of the prediction errors, RMSE as the square root of the
average of the squared prediction errors, while MAPE measures error as the av-
erage of the unsigned percentage error. We observe that the value of remaining
time tends to be highly varying across cases of the same process, sometimes with
values on different orders of magnitude. RMSE would be very sensitive to such
outliers. Furthermore, the remaining time can be very close to zero, especially
near the end of the case, thus MAPE would be skewed in such situations. Hence,
we use MAE to measure the error in predicting the remaining time. Formally,

81

MAE =
1
n

n

∑
i=1
|yi− ŷi| (6.1)

where yi ∈Y =R is the actual value of a function in a given point and ŷi ∈Y =R
is the predicted value.

Earliness. A common approach to measure the earliness of the predictions
is to evaluate the accuracy of the models after each arrived event or at fixed time
intervals. Naturally, uncertainty decreases as a case progresses towards its com-
pletion. Thus, the earlier we reach the desired level of accuracy, the better the
technique is in terms of its earliness.

To measure earliness, we make predictions for prefixes hdk(σ) of traces σ in
the test set starting from k = 1. However, using all possible values of k is fraught
with several issues. Firstly, a large number of prefixes considerably increases the
training time of the prediction models. Secondly, for a single model approach, the
longer cases tend to produce much more prefixes than shorter ones and, therefore,
the prediction model is biased towards the longer cases [120]. Finally, for a multi-
ple model approach, if the distribution of case lengths has a long tail, for very long
prefixes, there are not enough traces with that length, and the error measurements
become unreliable. Consequently, we use prefixes of up to 20 events only in both
the training and the test phase. If a case contains less than 20 events, we use all
prefixes, except the last one, as predictions do not make sense when the case has
completed. In other words, the input for our experiments is a filtered prefix log
L∗ = {hdk(σ) : σ ∈ L,1≤ k ≤ min(|σ |−1,20)}.

Inherently, there is often a trade-off between accuracy and earliness. As more
events are executed, due to more information becoming available, the prediction
accuracy tends to increase, while the earliness declines [106,122]. As a result, we
measure the performance of the models w.r.t. each dimension separately.

6.2.4. Baselines

We compare our deep learning and flow analysis-based approaches against several
baselines. Firstly, we use all 12 feasible combinations of canonical encoding and
bucketing types (Section 3.3) including those that have not been used in any exist-
ing approach in the literature. In this way, we will be able to assess the benefits of
each combination, while abstracting implementation nuances of each individual
primary method.

Secondly, we use a transition system (TS) based method proposed by van der
Aalst et al. [130] applying both set, bag and sequence abstractions. In the final
evaluation, we report the abstraction that achieved the highest accuracy.

Finally, we use the stochastic Petri-net based approach proposed by Rogge-
Solti and Weske [99, 100]. Specifically, we use the method based on the con-
strained Petri net, as it was shown to have the lowest prediction error. However,
their original approach makes predictions at fixed time points, regardless of the

82

arriving events. To make the results comparable to our approach, we modify the
method to make predictions after each arrived event.

6.2.5. Hyperparameter Optimization

In order to achieve the best performance within each technique, the hyperparame-
ters of the predictors need to be optimized separately for each method and dataset.
For that, we further split the training set randomly into 80% training and 20%
validation data. The former set is used to fit the predictors using combinations
of hyperparameters, while the latter is used to evaluate the performance of each
combination. As we use MAE to assess the predictive power each technique, we
will also use MAE on the validation data to select the combination of hyperpa-
rameters that achieves the best validation performance and retrain a model with
these parameters, now using the original training set. For all predictors, we apply
random search [9] procedure with 50 iterations. To define the search space, for
each hyperparameter, we specify its bounds and a distribution to sample values
from.

We perform the experiments using Python libraries Scikit-learn1 for XGBoost
and SVM and Keras2 with TensorFlow backend for LSTM. These libraries allow
for a wide range of learning parameters. Table 11 lists hyperparameters that were
optimized during the random search. All other hyperparameters were left to their
default values in the corresponding library.

Table 11: Hyperparameters tuned via grid search.

Parameter Explanation Search space
XGBoost

n_estimators Number of decision trees (“weak” learners) in the ensemble [100,500]
learning_rate Shrinks the contribution of each successive decision tree in the ensemble [0.01,0.10]
subsample Fraction of observations to be randomly sampled for each tree. [0.5,0.8]
colsample_bytree Fraction of columns (features) to be randomly sampled for each tree. [0.5,0.8]
max_depth Maximum tree depth for base learners [3,7]
mcw Minimum sum of weights of all observations required in a child [1,3]

SVM
C Penalty parameter for regularization

[
10−5,105]

gamma Kernel coefficient gamma for RBF kernel
[
10−5,105]

LSTM
units Number of neurons per hidden layer [50,150]
n_layers Number of hidden layers {1,2,3}
batch Number of samples to be propagated {8,16,32}
activation Activation function to use {ReLU}
optimizer Weight optimizer {RMSprop,Nadam}
epochs Number of training epochs {500}

For approaches that involve clustering, we use the k-means clustering algo-
rithm. In order to calculate the Euclidean distance between pairs of prefixes, we
map each trace prefix into a feature vector using the aggregation encoding (Sec-
tion 3.3.2), based on the information from the control-flow of the prefix. This

1http://scikit-learn.org/
2https://github.com/fchollet/keras/

83

http://scikit-learn.org/
https://github.com/fchollet/keras/

approach was also used in [31, 71]. K-means requires one to specify in advance
the desired number of clusters k. We searched for the optimal value in the set
k ∈ {2,5,10}. In the case of the index-based bucketing method, an optimal con-
figuration was chosen for each prefix length separately.

For the adaptive flow analysis, we treat the minimum number of training sam-
ples N as an additional hyperparameter. The relationship between the size of the
training set and the dimensionality of the problem has been studied extensively in
the machine learning literature [40,96]. Common rules of thumb are that the num-
ber of training samples should be 50+8m, 10m and m2, where m is the dimension-
ality. [116] Accordingly, we define a set of thresholds N0 ∈ {5m,10m,20m,m2}.
If N > N0, then we fit a predictive model for a given activity or a gateway, other-
wise, we use average historical values of cycle times and branching probabilities
respectively in the flow analysis formulas. Similarly to the XGBoost hyperparam-
eters, we choose the value of N0 that minimizes the validation error for a given
log.

A similar procedure is performed for methods that do not train a machine learn-
ing model. For the method in [130], we vary the type of abstraction – set, bag of
sequence – to create a transition system. For the method in [100], we vary the
stochastic Petri net properties: (i) the kind of transition distribution – normal,
gaussian kernel or histogram and (ii) memory semantics – global preselection or
race with memory. We select the parameters that yield the best performance on
the validation set and use them for the test set.

6.3. Evaluation Results

In Section 6.3.1 we aim to answer RQ2.1 while Section 6.3.2 is dedicated to
RQ2.2 and RQ2.3.

6.3.1. Evaluation of Flow Analysis-based Techniques

As mentioned in Section 5.2, flow analysis cannot readily deal with unstructured
models. In addition, the discovery technique described in Section 5.3 aims to
mine maximally structured models, meaning that when the business process is
inherently unstructured, the resulting model will not be fully structured. Specif-
ically, the technique sometimes produces models with overlapping loops which
our current implementation is unable to deal with. As a result, for flow analysis,
we will only use event logs for which we were able to produce structured BPMN
models.

In Table 12, we report the prediction accuracy, averaged across all evaluated
prefix lengths, together with its standard deviation. The averages are weighted
by the relative frequency of prefixes with that prefix, such that longer prefixes get
lower weights since not all traces reach that length.

In order to understand why for some of the event logs used mean flow anal-
ysis is more accurate than predictive flow analysis, we analyze the performance

84

Table 12: Weighted average MAE over all prefixes for flow analysis-based tech-
niques.

Method
MAE in days (mean ± std)

bpic2012a bpic2012o bpic2012w credit

predictive FA (single) 666...666777777±±±333...777222 555...999555±±±222...888333222 6.946±1.057 000...000777555±±±000...000333999
predictive FA (multiple) 6.838±4.155 6.008±2.643 6.823±0.957 0.087±0.043
mean FA 7.62±3.528 6.243±3.237 666...111999777±±±000...555444 0.339±0.187
adaptive FA 666...666777777±±±333...777222 555...999555±±±222...888333222 6.921±1.057 0.078±0.035

hospital invoice traffic fines helpdesk

predictive FA (single) 51.689±14.945 111...111666999±±±000...000666 222222333...555000666±±±777444...555888 5.13±2.092
predictive FA (multiple) 72.104±50.779 1.228±0.09 225.467±80.693 555...000444666±±±222...999999888
mean FA 444222...555888±±±888...666222222 2.012±0.249 229.337±82.628 5.233±2.022
adaptive FA 444222...555888±±±888...666222222 1.171±0.061 223.513±78.87 5.233±2.022

Table 13: MAE of cycle time predictions of individual activities and their actual
mean cycle times (in days).

Activity
MAE Mean cycle

Predictive FA Mean FA time

Invoice (Top 6 longest activities)
Invoice_accounting 2.61 3.53 3.11
Check_whether_total_approval 0.771 0.962 0.893
Manual_identification_CC 0.109 0.132 0.097
Compare_of_sums 0.081 0.123 0.060
Get_lowest_approval_level 0.0117 0.0271 0.0091
Status_change_to_Accounted 0.0008 0.0031 0.0005

Hospital
FIN 8.52 58.77 70.08
BILLED 40.36 36.58 36.43
DELETE 18.37 16.76 8.20
CHANGE_DIAGN 3.18 11.91 7.57
CODE_NOK 14.58 22.00 6.27
CODE_OK 2.57 2.38 5.14

of these two approaches at the level of individual activities. Specifically, for each
activity in the Hospital and the Invoice log, we measure the performance of re-
gressors trained to predict its cycle time and compare it with a constant regressor
used in the mean flow analysis. In Table 13, for each activity, we report average
MAE of cycle time predictions across all test prefixes. In addition, we report the
actual average cycle time values of each activity based on the test set.

As we can see in Table 13, in the Invoice log, prediction-based cycle times
are more accurate than those based on historical averages for the six longest ac-
tivities which make up the largest portion of the remaining cycle time. Hence,
the predictive flow analysis approach provides a better estimation of the overall

85

RELEASE

CODE_NOK

FIN

CODE_OK

end

NEW

x11
start

DELETE

x41

BILLED

x32

x42

CHANGE_DI-

AGN

x12x22 x21 x31

p
6

p
7

p
8

p
5

p3p2

p
1

p
4

Figure 25: A process model of the Hospital log. Current marking of hd2(SWKD)
and its predicted future path are highlighted.

remaining time than the mean flow analysis approach. In contrast, in the Hospital
log, for three of the six longest activities, we get a more accurate estimate using
the mean flow analysis. Thus, the performance of the predictive flow analysis ap-
proach hinges on the ability to accurately predict cycle times of key activities. In
this way, the adaptive approach provides a “golden mean” between the predictive
and the mean approaches, while retaining explainability of the predictions.

To illustrate the explainability of the proposed techniques, let us consider a par-
tial trace hd2(SWKD) = 〈NEW,CHANGE_DIAGN〉 of an ongoing case SWKD
originating from the Hospital event log. At that stage, the case is predicted to
exceed the median case duration for the considered process. Our family of flow
analysis-based approaches allows users not only to make predictions but also to
explain them. Let us consider the output of the adaptive flow analysis approach
trained with a single predictive model. Having replayed the trace on the process
model (Figure 25), we obtain the following formula for its remaining time:

Thd2(SWKD) = 0+ p2∗ (0+ p4∗ (CHANGE_DIAGN)/(1− p4))+ p5∗
∗(FIN +RELEASE+ p7∗CODE_OK + p8∗CODE_NOK +BILLED)+

+p6∗DELETE

(6.2)

Table 14 lists the predicted values of cycle times and branching probabilities
for the trace in question, as well as their historical averages.

Comparing the obtained values with their historical averages (expectations),
we notice that the activity FIN is going to take 10 days longer while BILLED
is about to take 20 days longer. Therefore, by pinpointing FIN and BILLED as
potential bottleneck activities, operational managers may gain more leverage over
the process execution and be able to steer this towards the target performance
values.

Summing up, the experiments suggest that flow analysis-based approaches
provide relatively accurate estimations of the remaining cycle time across most
logs. Another important observation is that mean flow analysis sometimes out-
performs predictive flow analysis. This is due to the lack of data attributes in the
event logs that would be able to accurately explain the variation in the cycle times
of individual activities and branching probabilities of each conditional flow. Nev-
ertheless, the accuracy of the adaptive approach in most logs corresponds to the

86

Table 14: Predicted and average values of cycle times and branching probabilities
for hd2(SWKD).

Variable Predicted Average
p2 0.9988 0.6268
p4 0.0543 0.0305
p5 0.9609 0.9625
p6 0.0391 0.0375
p7 0.9988 0.9766
p8 0.0012 0.0234

CHANGE_DIAGN 1.08 7.57
FIN 80.17 70.08
RELEASE 1.11 1.45
CODE_OK 4.51 5.14
CODE_NOK 7.81 6.27
BILLED 56.21 36.43
DELETE 13.89 8.20

best accuracy achieved by the predictive and mean methods. In this way, adap-
tive flow analysis can be regarded as a safeguard against instability in predictions
caused by the lack of data (attributes). For the rest of the evaluation, adaptive flow
analysis will be used as a representative process model driven technique.

Execution Times. The execution time of the proposed flow analysis approaches
is composed of the execution times of the following components: (i) training the
predictive models; (ii) replaying the partial traces on the process model (finding an
alignment) and deriving the formulas; (iii) applying the models to predict the cy-
cle times and branching probabilities and calculating the overall remaining time.
For real-time prediction, it is crucial to output the results faster than the mean
case arrival rate. Thus, we also measured the average runtime overhead of our
approach. All experiments were conducted on a laptop with a 2.4GHz Intel Core
i7 processor and 16GB of RAM.

The training phase includes the time for constructing the prefix log, encod-
ing the prefix traces and fitting the predictive models. It is performed offline and
takes between 1 minute (BPIC’12 O) and 80 minutes (Hospital), depending on
the size of the log and the number of models to train, i.e. the number of distinct
decision points and activities. Replaying a single test trace takes less than a sec-
ond. Finally, making the predictions takes between 50 milliseconds and 3 seconds
per trace, depending on the length of the trace and the number and complexity of
the predictive models. This shows that flow analysis-based prediction approaches
perform within reasonable bounds for most online applications.

6.3.2. Evaluation of the Proposed Techniques and State-of-the-art
Techniques

Table 15 reports the prediction accuracy, averaged across all evaluated prefix
lengths, together with its standard deviation. The averages are weighted by the rel-

87

ative frequency of prefixes with that prefix (i.e. longer prefixes get lower weights
since not all traces reach that length). In our experiences, we set an execution cap
of 6 hours for each training configuration, so if some method did not finish within
that time, the corresponding cell in the table is empty.

Overall, we can see that in 13 out of 17 datasets, LSTM-based networks trained
in a single-task learning setting achieve the best accuracy, while multi-task LSTM,
flow-analysis and index-based encoding with no bucketing and prefix-length buck-
eting achieve the best results in one dataset each. On the other side of the spec-
trum, transition systems [130] and stochastic Petri nets [99] usually provide the
least accurate predictions among the surveyed methods.

Figure 26 presents the prediction accuracy in terms of MAE, evaluated over
different prefix lengths. To keep the plot readable, we exclude some of the worst
performing methods according to Table 15. Each evaluation point includes pre-
fixes of exactly the specified length. In other words, traces that are shorter than the
required prefix are left out of the calculation. Therefore, the number of cases used
for evaluation is monotonically decreasing when increasing the prefix length.

In most of the datasets, we see that the MAE decreases as cases progress. It
is natural that the prediction task becomes trivial when cases are close to com-
pletion. However, for some datasets, the predictions become less accurate as
the prefix length increases. This phenomenon is caused by the fact that these
datasets contain some short traces for which it appears to be easy to predict the
outcome. These short traces are not included in the later evaluation points, as they
have already finished by that time. Therefore, we are left with longer traces only,
which appear to be more challenging for the predictor, hence decreasing the total
accuracy on larger prefix lengths. However, different techniques behave differ-
ently wrt. earliness. For example, single-task LSTMs generally provide the most
accurate predictions early on, but as the case progresses, other techniques may
outperform LSTMs.

As a simple bulk measure to compare the performance of the evaluated tech-
niques, we plot their mean rankings achieved across all datasets in Figure 27. Ties
were resolved by assigning every tied element to the lowest rank. The rankings
illustrate that single-task LSTMs consistently outperform other machine-learning
baselines in terms of accuracy (measured by MAE), while stochastic Petri nets
and transition systems are usually the least accurate methods.

To complement the above observations, we also compare error values aggre-
gated across all datasets. These values need to be normalized, e.g. by the mean
case duration, so that they are on a comparable scale. In order to do that, for each
log, we divide the average MAE values and their standard deviations across all
prefixes reported in Table 15 by the mean case duration for that log reported in
Table 10. The results for each technique are illustrated with the boxplots in Fig-
ure 28, where each point represents the results for one of the 17 datasets. We can
see that LSTM-based techniques have an average error of 40% of the mean case
duration across all datasets. In contrast, transition systems on average incur a 59%

88

Table 15: Weighted average MAE over all prefixes.

Method
MAE in days (mean ± std)

bpic2011 bpic2012a bpic2012o bpic2012w bpic2015_1 bpic2015_2

TS [130] 236.088±9.98 8.363±4.797 6.766±2.909 7.505±1.036 56.498±8.341 118.293±16.819
LSTM STL [84] 111666000...222777±±±222444...333222555 333...777777222±±±333...000777555 6.418±2.768 666...333444444±±±000...999999444 39.457±5.708 666111...666222±±±222...000666111
LSTM MTL [119] − 30.06±16.08 26.357±13.41 23.176±8.83 44.342±5.072 104.44±7.74
SPN [100] − 7.693±1.889 6.489±2.562 8.538±0.772 66.509±17.131 81.114±8.033
FA [137] − 6.677±3.72 555...999555±±±222...888333222 6.946±1.057 − −
cluster_agg 211.446±5.941 6.739±4.146 7.656±3.534 7.18±0.953 40.705±1.824 68.185±2.649
cluster_index 225.132±5.212 6.743±4.354 7.439±3.436 7.074±1.254 38.092±2.988 66.957±3.436
cluster_last 216.75±4.338 6.728±4.358 7.435±3.412 7.061±1.019 38.388±3.478 62.781±2.347
prefix_agg 211.401±14.257 6.75±4.452 7.79±3.636 7.26±0.935 46.765±23.581 71.21±8.893
prefix_index 227.288±7.404 6.753±4.45 7.472±3.356 7.155±0.942 37.525±2.746 66.883±3.756
prefix_last 219.781±12.664 6.76±4.429 7.441±3.399 7.139±0.851 37.975±5.903 64.708±5.749
noBucket_agg 200.466±11.786 6.746±3.899 7.744±3.62 7.082±1.02 35.962±3.744 67.914±2.467
noBucket_index 217.139±13.991 6.768±4.249 7.548±3.367 6.982±1.34 333555...444555111±±±222...444999999 65.505±3.442
noBucket_last 208.711±2.001 6.752±4.15 7.51±3.415 7.021±1.099 37.442±3.607 64.11±2.332
state_agg 271.801±14.676 6.756±4.45 7.656±3.534 7.465±0.622 42.949±2.725 68.768±4.094
state_index − 6.757±4.453 7.439±3.436 7.51±0.585 − −
state_last 271.595±14.449 6.746±4.446 7.435±3.412 7.539±0.554 42.946±2.691 68.296±3.762

bpic2015_3 bpic2015_4 bpic2015_5 bpic2017 credit helpdesk

TS [130] 26.412±8.082 61.63±5.413 67.699±7.531 8.278±2.468 0.382±0.194 6.124±2.6
LSTM STL [84] 111999...666888222±±±222...666444666 48.902±1.527 52.405±3.819 777...111555±±±222...666333555 000...000666222±±±000...000222111 333...444555888±±±222...555444222
LSTM MTL [119] 20.639±5.116 444555...333444777±±±111...666111555 89.782±73.728 64.934±38.008 0.321±0.183 4.671±2.001
SPN [100] 26.757±10.378 51.202±5.889 − 10.731±0.369 0.385±0.197 6.646±1.225
FA [137] − − − − 0.075±0.039 5.13±2.092
cluster_agg 23.087±3.226 51.555±2.363 45.825±3.028 7.479±2.282 0.077±0.036 4.179±3.074
cluster_index 24.497±1.887 56.113±6.411 44.587±4.378 − 0.075±0.035 4.178±3.043
cluster_last 22.544±1.656 51.451±4.189 46.433±4.085 7.457±2.359 0.076±0.035 4.152±3.053
prefix_agg 24.152±2.785 53.568±6.413 46.396±2.466 7.525±2.306 0.075±0.034 4.175±3.045
prefix_index 21.861±3.292 50.452±4.605 444444...222999±±±333...666666999 7.421±2.36 0.076±0.035 4.262±3.105
prefix_last 23.574±3.778 53.053±5.665 46.639±3.718 7.482±2.325 0.076±0.034 4.242±3.082
noBucket_agg 24.453±3.577 54.89±1.894 49.203±1.833 7.437±2.381 0.083±0.033 4.252±2.869
noBucket_index 23.025±1.587 52.282±1.182 50.153±1.097 − 0.078±0.034 4.253±2.722
noBucket_last 25.15±1.271 56.818±1.729 49.027±1.954 7.525±2.244 0.082±0.035 4.224±2.814
state_agg 28.427±9.844 49.318±2.699 49.873±2.658 − 0.077±0.036 4.206±3.092
state_index − − − − 0.079±0.036 4.155±3.023
state_last 27.826±8.28 49.038±2.498 49.556±2.575 7.521±2.341 0.078±0.036 4.111±3.026

hospital invoice production sepsis traffic fines

TS [130] 46.491±21.344 1.715±0.891 14.474±7.199 0.019±0.019 190.949±15.447
LSTM STL [84] 333666...222555888±±±222333...888777 000...777333888±±±000...222666666 888...777666666333999±±±111...111222333000000 000...000000999±±±000...000000666 111777888...777333888±±±888999...000111999
LSTM MTL [119] 46.098±16.738 7.54±3.22 125.13±23.484 0.009±0.005 348.236±156.885
SPN [100] 71.377±29.082 1.646±0.601 29.156±3.006 0.02±0.032 193.807±69.796
FA [137] 51.689±14.945 1.224±0.51 − − 223.808±14.859
cluster_agg 42.934±26.136 1.048±0.355 17.695±4.335 0.011±0.006 210.322±98.516
cluster_index − 1.052±0.404 16.055±2.378 0.011±0.006 209.139±98.417
cluster_last 48.589±26.708 1.085±0.389 18.319±5.903 0.011±0.006 208.599±99.549
prefix_agg 43.06±25.884 1.03±0.359 17.202±3.934 0.011±0.006 212.614±99.484
prefix_index 41.698±25.944 1.041±0.365 17.850±3.589 0.011±0.006 209.085±99.708
prefix_last 48.528±26.714 1.057±0.369 18.239±5.569 0.011±0.006 209.304±102.027
noBucket_agg 43.483±25 1.186±0.568 17.022±3.572 0.012±0.005 211.017±93.198
noBucket_index − 1.053±0.374 17.357±2.437 0.012±0.005 208.879±92.25
noBucket_last 50.496±23.961 1.144±0.466 17.316±6.033 0.012±0.003 204.758±93.399
state_agg 43.835±25.984 1.044±0.341 19.538±5.047 0.011±0.006 211.439±98.351
state_index 41.095±26.499 1.051±0.371 15.623±3.558 0.011±0.006 210.408±99.276
state_last 48.902±27.001 1.086±0.385 19.154±6.889 0.011±0.006 209.206±100.632

89

●

●

●

●

● ● ● ● ●
●

● ●
●

●
●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

● ● ●
● ●

●
●

●
●

●

●

●

●

●
● ●

●

●

● ● ●
●

●
● ● ●

● ●
●

● ●
●

●

●

●

●
●

●

● ●
●

● ●
●

●

● ● ● ● ● ● ● ●
●

● ●
● ● ● ●

●

● ●
●

●

● ● ●

●

●
●

●
●

●
● ●

●
● ●

●
●

● ● ●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

sepsis traffic_fines

hospital invoice production

bpic2017 credit helpdesk

bpic2015_3 bpic2015_4 bpic2015_5

bpic2012w bpic2015_1 bpic2015_2

bpic2011 bpic2012a bpic2012o

2 4 6 1 2 3 4 5

2 4 6 4 8 12 5 10 15 20

5 10 15 20 2 4 6 1 2 3 4

5 10 15 20 5 10 15 20 5 10 15 20

4 8 12 16 5 10 15 20 5 10 15 20

5 10 15 20 2 4 6 1 2 3 4

10

20

30

60

80

100

100

200

300

0

2

4

6

0

50

100

150

0

10

20

30

30

40

50

45
50
55
60

0.0
0.1
0.2
0.3
0.4
0.5

0

3

6

9

0
100
200
300
400
500

100
150
200
250
300

10

20

30

40

10
20
30
40
50
60

0

25

50

75

100

0

20

40

60

80

0.005

0.010

0.015

Prefix length

M
A

E
, d

ay
s

●

FA

LSTM_STL

LSTM_MTL

cluster_agg

cluster_last

prefix_index

prefix_last

state_last

Figure 26: Prediction accuracy (measured in terms of MAE) across different pre-
fix lengths

90

SPN

LSTM_MTL

TS

state_agg

state_last

noBucket_agg

noBucket_last

prefix_last

FA

noBucket_index

prefix_agg

state_index

cluster_agg

cluster_index

prefix_index

cluster_last

LSTM_STL

0 5 10
mean ranking

Figure 27: Average ranking of the evaluated methods over all datasets.

error. Importantly, for LSTMs the accuracy varies between 0.07 and 0.56, while
index-based encoding with prefix length bucketing, the method that on average
achieves the second most accurate results, is more volatile and varies between
0.08 and 0.90 of the mean case duration.

Another important observation is related to the temporal stability of the predic-
tions. In general, methods that provide higher accuracy also have lower volatility
of error across case lifetime (Figure 28b). In other words, the difference between
successive predictions obtained from these methods is lower, as evidenced by
lower standard deviation of the error metrics.

●●

●●

●● ●

●● ●

●● ●

●● ●

●● ●

●●

●● ●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●LSTM_MTL

TS

SPN

state_index

noBucket_index

cluster_index

noBucket_agg

noBucket_last

FA

prefix_agg

state_agg

prefix_last

cluster_last

cluster_agg

state_last

prefix_index

LSTM_STL

0 0.2 0.4 0.6 0.8 1
Average normalized MAE

(a)

●●● ●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●LSTM_MTL

state_index

TS

SPN

FA

prefix_agg

state_agg

state_last

prefix_last

cluster_last

cluster_index

prefix_index

cluster_agg

noBucket_agg

noBucket_last

noBucket_index

LSTM_STL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Standard deviation of normalized MAE

(b)

Figure 28: Average normalized MAE values (a) and their standard deviation (b)
across case lifetime. XGBoost is used as the main predictor

In order to assess the statistical significance of the observed differences in
methods’ performance across all datasets, we use the non-parametric Friedman
test. The complete set of experiments indicate statistically significant differences

91

according to this test (p = 4.642× 10−8). Following the procedure suggested in
the recent work on evaluating machine learning algorithms [30], in order to find
which methods in particular differ from each other, we use the Nemenyi post-hoc
test that compares all methods to each other.

Table 16: Post-hoc Nemenyi test of methods’ rankings across all datasets.

cluster_agg cluster_last LSTM_MTL LSTM_STL noBucket_agg noBucket_last prefix_agg prefix_index prefix_last state_last
cluster_last 0.996

LSTM_MTL 0.169 000...000222555
LSTM_STL 0.098 0.421 000

noBucket_agg 0.998 0.894 0.740 000...000000555
noBucket_last 0.995 0.847 0.804 000...000000333 1

prefix_agg 0.999 0.931 0.669 000...000000777 1 1
prefix_index 0.999 1 000...000111666 0.515 0.833 0.773 0.883
prefix_last 1 0.958 0.593 000...000111111 1 1 1 0.923
state_last 0.958 0.631 0.946 000...000000111 1 1 1 0.535 1

TS 0.169 000...000222555 1 000 0.740 0.804 0.669 000...000111666 0.593 0.946

Table 16 lists p-values of a pairwise post-hoc analysis. Since the test requires
complete information for all pairwise comparisons, we included only 10 methods
for which we have results on all 17 datasets. For most pairs, the null hypothesis
that their performance is similar cannot be rejected. However, the test underlines
the impressive performance of LSTM, which significantly outperforms most of
the other methods at the p < 0.05 level.

While on average most combinations of bucketing and encoding methods pro-
vide more or less similar levels of accuracy, we can observe differences for in-
dividual datasets. For example, in the hospital dataset, it is clear that clustering
with aggregation encoding is better than with clustering with last state encoding.
Arguably, aggregating knowledge from all events performed so far provides much
more signal than using raw attributes of the latest event.

In order to explain differences in performance of various bucketing and encod-
ing combinations, we try to correlate the characteristics of event logs (Table 10)
with the type of bucketing/encoding that achieves the best accuracy on that log.
One can notice that if cases in the log are very heterogeneous in terms of case
length, i.e. the coefficient of variation of case length is high enough, it is more ben-
eficial to assign all traces to the same bucket. This can be observed in bpic2012w
and bpic2011 event logs, where standard deviation of case length is close to or ex-
ceeds mean case length. Furthermore, if cases in the log are short (e.g. in helpdesk,
traffic_fines, bpic2012a, bpic2012o) or very distinctive from each other (e.g. in
bpic2015_2), last state encoding tends to capture the most signal. Notably, in the
aforementioned logs, the index-based encoding, although lossless, is not optimal.
This suggests that in these datasets, combining the knowledge from all events per-
formed so far provides more signal for remaining time prediction than the order
of events. However, unlike LSTMs, standard classifiers such as XGBoost and
SVM, are not able to learn such higher-level features, which is why in some situa-
tions even the simple aggregations provide more accurate results than index-based
encoding.

So far we reported the results with a single learning algorithm (XGBoost). In
order to avoid bias associated with the choice of a particular algorithm, we decided

92

to repeat the experiments replacing XGBoost with SVM where applicable. In the
benchmark [87], it was found that SVMs in general provide the third most accurate
results, on a set of 165 classification problems, after gradient tree boosting and
random forest. We decided not to use random forest, as it essentially belongs to
the same family of ensemble algorithms as XGBoost.

The results for each technique are illustrated with the boxplots in Figure 29,
where each point represents the results for one of the 17 datasets. One can see that
there are no significant differences in the performance as compared to XGBoost
(Figure 29). In other words, with SVMs, we obtained qualitatively the same re-
sults, relative to the baselines. Thus, in principle, using a different algorithm does
not invalidate the results. That said, we acknowledge that the goodness of fit, as
in any machine learning problem, depends on the particular classifier/regressor
algorithm employed. Hence, it is important to test multiple algorithms for a given
dataset and to apply hyperparameter tuning, in order to choose the most adequate
algorithm with the best configuration.

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LSTM_MTL

TS

SPN

FA

cluster_index

noBucket_index

state_agg

state_last

noBucket_agg

noBucket_last

cluster_agg

prefix_last

prefix_agg

prefix_index

state_index

LSTM_STL

cluster_last

0 0.2 0.4 0.6 0.8 1
Average normalized MAE

(a)

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LSTM_MTL

TS

SPN

state_index

FA

state_agg

state_last

prefix_last

prefix_agg

prefix_index

cluster_last

LSTM_STL

cluster_agg

cluster_index

noBucket_last

noBucket_agg

noBucket_index

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Standard deviation of normalized MAE

(b)

Figure 29: Average normalized MAE values (a) and their standard deviation (b)
across case lifetime. SVM is used as the main predictor

6.4. Threats to Validity

One of the threats to the validity [110] of our evaluation is related to the com-
prehensiveness of the conducted experiments. In particular, only two machine
learning algorithm (XGBoost and SVM) and one clustering method (k-means)
were tested over all relevant methods. It is possible that there exists, for example,
a combination of an untested clustering technique and a predictor that outperforms
the settings used in this study. Furthermore, the generalizability of the findings,
i.e. external validity, is to some extent limited by the fact that the experiments were
performed only on 17 event logs. Although these are all real-life event logs from
different application fields that exhibit different characteristics, it may possible

93

that the results would be different using other datasets or different log preprocess-
ing techniques for the same datasets. In order to mitigate these threats, we built
an open-source software framework which allows the full replication of the ex-
periments, and made this tool publicly available. Moreover, additional datasets,
as well as new sequence classification and encoding methods can be plugged in,
so that the framework can be used for future experiments.

Another threat to validity relates to the potential selection bias in the choice
of the baselines. To minimize this, we described our literature review procedure
(Chapter 3) on a level of detail that is sufficient to replicate the search. However,
in time the search and ranking algorithms of the used academic database (Google
Scholar) might be updated and return different results. Another potential source
of bias is the subjectivity when applying inclusion and exclusion criteria, as well
as when determining the primary and subsumed studies. In order to mitigate this
issue, all the included papers were collected in a publicly available spreadsheet,
together with decisions and reasons about excluding them from the study.

Finally, we explained the observed difference in the performance of the meth-
ods in terms of the experiment settings (type of bucketing, type of encoding, pre-
dictor, etc.). However, unknown factors may have had an influence on the ob-
served results and therefore put limitations on the internal validity of the study.

6.5. Summary

We conducted a comparative evaluation of the two techniques proposed to make
more explainable predictions for temporal process performance measures. These
techniques were evaluated with each other and with various state-of-the-art base-
lines identified in Chapter 3. The results of the evaluation suggest several conclu-
sions.

Firstly, in response to RQ2.1, adaptive flow analysis provides a safeguard
against instability in predictions caused by the lack of data attributes when pre-
dicting the properties of activities and gateways that are rarely taken in the training
set. In that regard, it provides a balance between predictive flow analysis and mean
flow analysis.

Secondly, referring to RQ2.2, we demonstrate that LSTMs trained in a single-
task setting typically outperform their multi-task counterparts, both in terms of
accuracy and earliness, at the expense of providing non-explainable predictions.
This can result from the propagation of errors for incorrectly predicted attributes at
earlier stages, for long sequences. Another explanation is that a single-task makes
use of all data attributes in the prefix, not only activity names and timestamps.

In the wider context, comparing all the surveyed techniques, we note the inher-
ent trade-off between the prediction accuracy and explainability of the underlying
model. Namely, the most accurate predictions are obtained via black-box models,
while explainable models, such as those proposed in this research, are generally
less accurate. This trade-off should be considered by business process analysis

94

when choosing a suitable prediction method.

7. NIRDIZATI: AN INTEGRATED PREDICTIVE
PROCESS MONITORING PLATFORM

In order to demonstrate the practical application of the research conducted in this
research project, we have designed and evaluated a prototype system for pre-
dictive business process monitoring, namely Nirdizati. Nirdizati implements the
techniques for predicting various business process targets, such as the remaining
processing time or the next events until case completion, the case outcome, or the
violation of compliance rules or internal policies.

This chapter is structured as follows. Section 7.1 provides an overview of the
developed prototype. Section 7.2 describes the Apromore platform where our pro-
totype has been integrated to. Section 7.3 describes the predictive model training
functionality, while Section 7.4 discusses the runtime component and the dash-
board. Section 7.5 provides details on how the designed solution has been vali-
dated externally and the lessons learned during the validation. Finally, Section 7.6
provides a summary of the chapter.

7.1. Introduction

A dashboard is a visual display of data used to monitor conditions and/or facili-
tate understanding [142]. More specifically, a process performance dashboard is
a graphical representation of one or more performance measures or other charac-
teristics of a business process [32].

Dumas et al. [32] identify three types of process performance dashboards, de-
pending on their purpose and targeted users, namely operational, tactical, and
strategical dashboards. Operational dashboards are aimed at process workers and
operational managers and focus on the performance of running or recently com-
pleted cases in a way that assists process workers and their managers in planning
their short-term work. Figure 2 provides an example of an operational dashboard
that displays the number of running cases classified by their types. By contrast,
tactical dashboards are designed with the goal to give an overview of the pro-
cess performance over a relatively long period of time. They can be used to un-
cover performance variations and long-term bottlenecks, as well as their possible
causes. Tactical dashboards are aimed at process owners and functional man-
agers. Finally, strategic dashboards put emphasis on linking process performance
measures to strategic objectives and are aimed at executive managers.

This chapter seeks to answer the research question RQ3, namely, “How to em-
bed existing techniques for predictive process monitoring into dashboard-based
monitoring systems?” To this end, we design a prototype of a predictive monitor-
ing platform that generates predictions about ongoing cases and displays them in
an operational dashboard, along with a range of descriptive statistics about com-
pleted and ongoing cases. The dashboard offers multiple visualization options,

95

Event log
Training plugin bundle

Training Validation

Predictor Dashboard

Runtime plugin bundle

Information system

Predictions
stream

Predictive
model(s)

Event stream Event stream

Predictions
CSV

Apromore

Figure 30: High-level architecture of the predictive monitoring functionality of
Apromore.

such as tables, histograms and pie charts. The predictions can also be exported
into a text file to be visualized in third-parties business intelligence tools, e.g. for
periodic reporting. Based on these predictions, operations managers may identify
potential issues early on, and take remedial actions in a timely fashion, e.g. reallo-
cating resources from one case onto another to avoid that the case runs overtime.

Structurally, Nirdizati consists of the two core components, namely Training
and Runtime (Figure 30). Both components have been integrated into the Web-
based process analytics platform Apromore1 as two bundles (i.e. sets) of plugins.
The Training plugin bundle takes as input a business process event log stored in
the Apromore repository, and produces one or more predictive models, which can
then be deployed to the runtime predictive monitoring environment. Once a model
is deployed, the Runtime plugin bundle listens to a stream of events coming from
an information system supporting the process, or produced by replaying an event
log stored in the repository, and creates a stream of predictions. These predictions
can then be visualized in a Web dashboard or exported into a text file to be used
within third-party business intelligence tools.

7.2. Apromore Platform

Apromore is a Web-based advanced process analytics platform, developed by the
business process management (BPM) community under an open-source initia-
tive. Apromore was originally conceived as an advanced process model reposi-
tory. However, today it offers a wide range of features which go beyond those for
managing large process model collections and include a variety of state-of-the-
art process mining techniques. These are techniques for the automated discov-
ery of BPMN models, for the conformance checking of BPMN models against
event logs, the replaying of event logs on top of BPMN models, the detection and
characterization of process drifts from event logs, the visual analysis of process
performance, and many others.

1http://apromore.org

96

http://apromore.org

All these features are exposed through a Web portal and organized according
to the phases of the BPM lifecycle: discovery, analysis, redesign, implementation
and monitoring [32]. These features can also be accessed as external Web services
by third-party BPM software environments, such as ProM (for process mining)
and WoPeD (for process modeling and verification).

From a technology viewpoint, Apromore relies on four core technologies:
Spring, ZK, OSGi and Eclipse Virgo. Spring provides a simplified management of
Java-based enterprise applications through the use of Java annotations and XML
configurations. ZK is an AJAX framework used for Apromore’s main Web inter-
face (the Portal). OSGi provides a flexible framework for managing component
dependencies through plugin bundles. Finally, Eclipse Virgo is a Web server based
on the OSGi component model.

To equip Apromore with predictive business process monitoring capabilities,
we have wrapped the two core components of Nirdizati into two OSGi plugin
bundles for Apromore: Training and Runtime. Each bundle is a set of OSGi plug-
ins which encapsulate the logic or the user interface (UI) of the various functions
offered by Nirdizati. For example, the runtime predictor is a logic plugin, while
the runtime dashboard is a portal plugin (UI). These two bundles are accessible
from the Monitoring menu of the Apromore Portal (see Figure 31). One can se-
lect an event log stored in the repository, and use it to train, tune and test a variety
of predictive models, by launching the training plugin bundle. Next, the runtime
bundle can be used to stream an event log from the repository, or hook into a live
external stream, to generate predictions as process cases unfold.

In the next sections, we introduce a working example and use this to describe
the functionality of the training and runtime plugins in detail.

7.3. Training Plugin Bundle

The Training plugin bundle provides several algorithms for generating predictive
models suitable for different types of predictions. Specifically, it is able to build
models for predicting remaining time, the next activity to be performed, whether
a case will exceed a specified duration threshold, as well as various static case
attributes, for example, the total cost of the order. To this aim, the Training bundle
involves two phases: a training and a validation phase. In the former, one or more
predictive models are fitted; in the latter, their suitability to the specific dataset is
evaluated, so as to support the user in selecting the predictive model that ensures
the best results.

The Training bundle is composed of a front-end application (Figure 32), which
allows users to select the prediction methods and to assess the goodness-of-fit of
the built models, and a back-end application for the actual training and validation.
From the data flow perspective, the back-end application performs several tasks
shown in Figure 33.

Firstly, when a user uploads their log, the tool extracts and categorizes data

97

Figure 31: Apromore’s Portal with predictive monitoring functionality high-
lighted.

Figure 32: Training configuration screen.

log splitter

Data processor

Data object

User-
uploaded log

training set

validation set

attribute
extractor

feature
encoder bucketer

predictor
(training) Pickle model

Runtime

prediction
results

Validation
page

buckets of
feature vectors

buckets of
feature vectors

predictor
(validation)

Figure 33: High-level data flow diagram of the Training plugin bundle.

98

attributes of the log into static case attributes and dynamic event attributes. On the
other hand, each attribute needs to be designated as either numeric or categorical.
These procedures are performed automatically upon the log uploading, using a
set of pre-defined rules. Nevertheless, the user is given an option to override
the automatic attribute definitions. Proper attribute categorization ensures best
training data quality. The resulting definitions are saved in a configuration file in
a JSON format.

Secondly, the log is internally split into training and validation set in a 80-
20 proportion. The former is used to train the model, while the latter is used to
evaluate the predictive power of the model. Next, all traces of a business process
need to be represented as fixed-size feature vectors in order to train a predictive
model. To this end, several encoding techniques were proposed in [66] and fur-
ther refined in [120], out of which we support four, namely last state encoding,
frequency (aggregation) encoding, combined encoding and lossless index-based
encoding.

While some of existing predictive process monitoring approaches train a single
classifier on the whole event log, others employ a multi-classifier approach by
dividing the prefix traces in the historical log into several buckets and fitting a
separate classifier for each such bucket. At run-time, the most suitable bucket for
the ongoing case is determined and the respective classifier is applied to make a
prediction. Various bucketing types have been proposed and described in detail
in [120]. The Training bundle supports four types of bucketing: no bucketing (i.e.
fitting a single classifier), state-based bucketing, clustering-based bucketing and
prefix length-based bucketing.

For each bucket of feature vectors, we train a predictive model using one of
four supported machine learning techniques: decision tree, random forest, gra-
dient boosting and extreme gradient boosting (XGBoost). For each technique, a
user may manually enter the values of the most critical hyperparameters, e.g. the
number of base learners (trees) and the learning rate in a gradient boosting model.

In order to accommodate users with varying degrees of expertise in machine
learning and predictive process monitoring, the plugin bundle offers two training
modes – basic and advanced. By default, the basic mode is activated wherein a
user only needs to choose the log and prediction target. If the prediction target
is based on the logical rule – whether the case duration will exceed the speci-
fied threshold, a user is also invited to key in the threshold value. For all the
other settings – bucketing method, encoding method and prediction method and
its hyperparameters – the default values which usually achieve the best predic-
tion accuracy will be used. Experienced users may switch the advanced mode
toggle and manually choose bucketing, encoding and prediction method settings
or any plausible combination thereof. The latter is especially useful when a user
wants to train and compare multiple models, e.g. using various sequence encoding
methods.

Next, an operating system executes calls to Python command line scripts which

99

are wrapped into training jobs. This is done using Java web application that also
provides a basic job scheduler. When multiple training jobs are submitted, the
scheduler adds them to the queuing system. The status of the jobs can be verified
using the collapsible drawer in the right-hand corner. Upon the training comple-
tion, a serialized Python object in the pickle1 format is produced and persisted in
the database. It describes a trained predictive model and includes:
• Configuration parameters of the predictors (whether it is a classifier or a

regressor, what learning algorithm it uses)
• Definition of each column of the event log (static or dynamic, numeric or

categorical). This information allows the Runtime plugin bundle to con-
struct a feature vector from a given partial trace.
• For each bucket, the trained model, ready to be taken as input by the se-

lected prediction algorithm, e.g. in the case of decision trees, the whole tree
representation.
• The bucketing function, which given an input sample, allows us to deter-

mine from which bucket a predictor should be taken.
In order to provide users with an estimate of the predictive power of the trained

model, we evaluate it on a held-out validation set that is not used in the training
phase. By default, a user will see the average accuracy across all partial traces
after a certain number of events have completed. This evaluation method was also
used in [66] and [120]. For classification tasks, a user can choose which metrics
to plot among the accuracy score, F1 score and logarithmic loss. For regression
tasks (e.g. remaining time), a user can choose between mean absolute error and
root mean square error, either raw or normalized. The accuracy of a particular
model can be visually compared with that of other models trained for the same
log and the same prediction target (Figure 34). Additionally, we provide a scatter
plot of predicted vs. actual values (for regression tasks) or a confusion matrix
(for classification tasks) and a bar plot of the relative importance of each feature
for the chosen predictor. For a more detailed analysis, we provide an option to
download a CSV file with the validation results for each case in the validation set.

7.4. Runtime Plugin Bundle

Once the predictive models have been created, they can be deployed to the Run-
time predictive monitoring environment of Apromore, to make predictions on on-
going cases. The Runtime plugin bundle can be used to stream an event log from
the repository, or hook into an external stream. In the former case, events in the
log are replayed according to their timestamps. The replayer component is guided
by a playback policy:
• Real-time playback: events arrive exactly at intervals specified by times-

tamps.
1https://docs.python.org/3/library/pickle.html

100

https://docs.python.org/3/library/pickle.html

Figure 34: Model validation page of the Training plugin bundle.

• Accelerated playback: the arrival rate is proportionally increased or de-
creased. For example, if in the original log, the time interval between the
two events is 1 hour, it may be useful to scale it to 1 seconds for demonstra-
tion purposes.
• Fixed playback: events arrive at a constant rate, according to the order de-

fined by the timestamps.
Regardless of the source, the input stream of events is transformed into a

stream of predictions which is visualized in a Web-based dashboard. The trans-
formation is implemented using the dataflow pipeline in Figure 35.

Figure 35: High-level data flow diagram of the Runtime plugin bundle.

The pipeline is built on top of the open-source Apache Kafka stream pro-
cessing platform.1 The “predictor” components of the pipeline are the predictive
models from the Training plugin bundle. The “topic” components are network-
accessible queues of JSON messages with publisher/subscriber support. This al-
lows the computationally intense work of the predictors to be distributed across
a cluster of networked computers, providing scalability and fault-tolerance. The
“collator” component accumulates the sequence of events-to-date for each case,
such that the prediction is a stateless function of the trained predictive model and
of the case history. This statelessness is what allows the predictors to be freely
duplicated and distributed. The “joiner” component composes the original events
with the various predictions, ready for display on the dashboard.

The dashboard provides a list of both currently ongoing cases (colored in gray)
as well as completed cases (colored in green), as shown in Figure 36. For each

1https://kafka.apache.org

101

https://kafka.apache.org

Figure 36: Main view of the dashboard in the Runtime plugin bundle.

case, it is also possible to visualize a range of summary statistics including the
number of events in the case, its starting time and the time when the latest event in
the case has occurred. For the ongoing cases, the Runtime plugin bundle provides
the predicted values of the performance measures the user wants to predict. For
completed cases, instead, it shows the actual values of the measures. In addition to
the table view, the dashboard offers other visualization options, such as pie charts
for case outcomes and bar charts for case durations.

Process workers and operational managers can set some process performance
targets and subscribe to a stream of warnings and alerts generated whenever these
targets are predicted to be violated. Thus, they will be capable of making in-
formed, data-driven decisions to get a better control of the process executions.
This is especially beneficial for processes where process participants have more
leeway to make corrective actions (for example, in a lead management process).

7.5. Validation

For the designed prototype, we performed an external validation in collaboration
with a small-sized IT vendor in Israel. Specifically, we considered a purchase-
to-pay process which starts with lodging a purchase order and ends when the
requested goods have been supplied. The stakeholders are interested in predicting
four variables:
• Late supply. It is a boolean variable indicating whether or not the case is

closed before the target supply date of that case.
• Delay Rank indicating the severity of potential delay, if any.
• Next activity indicating which activity will be performed right after the cur-

rent one.
• Remaining time until case completion.
For use with the Training plugin bundle, we extracted an event log of com-

pleted purchase orders, while ongoing orders were fed into the Runtime plugin

102

1 {
2 "case_id_col":"Line_ID",
3 "activity_col":"Activity_Name",
4 "timestamp_col":"time:timestamp",
5 "static_cat_cols":["Supplier_ID"],
6 "dynamic_cat_cols":["Employee_ID", "weekday"],
7 "static_num_cols":["Line_Total_Cost", "Target_Supply_Date_delta"],
8 "dynamic_num_cols":["elapsed", "timesincelastevent", "open_cases",

"workload"],
9 "ignore":["Activity_Start_Time", "hour", "Milestone", "Key",

"Target_Supply_Date", "Part_ID"],
10 "future_values":["Late_Supply", "Delay_Rank"]
11 }

Listing 7.1: Example dataset configuration file

bundle to make predictions for them. The log contains a number of case attributes
and event attributes ready to be used to train the models. In order to make more
accurate predictions, we perform some basic data preprocessing steps described
in Section 6.2 before feeding the log into Apromore. Additionally, we define a la-
beling function that maps the delay for each case (if any) to one of four categories,
namely “Just in case”, “Mild”, “Moderate”, “Severe”. The delay is calculated as
the time difference between the predicted supply date and the target supply date.

Listing 7.1 illustrates the dataset configuration file, where each attribute in the
processed log is mapped to one of the categories that define how to process the
attribute.

Individual process events belonging to the same case are collated in prefixes
which are stored in the Kafka’s “event prefixes” topic. The header of each prefix
is annotated with the identifier of the log it belongs to, the case identifier, the posi-
tional event number and the predictor identifier. Listing 7.2 provides an example
of a prefix with two events.

Predictions for each of the four target variables are updated after each executed
event. To this end, the predictions are stored in the “event with predictions” topic,
along with the prefix header (Listing 7.3).

One important observation noted in our validation is that the designed predic-
tive monitoring platform shall be used in conjunction with other business intel-
ligence or monitoring systems. To this end, the platform should offer an API to
allow integration with other tools. This task is beyond the scope of the current the-
sis; however, we provide functionality to export the predictions in a CSV file, for
importing into third-party business intelligence tools, e.g. for periodic reporting.
In this way, process analysts will be able to build customized dashboards to high-
light the required measures. Figure 37 provides an example of such a dashboard
built in collaboration with the vendor involved in this validation, using QlikView
tool1. The dashboard shows the distribution of open cases according to their pre-
dicted delay rank, grouped by the delivery type. The second bar chart shows the

1https://www.qlik.com/us/products/qlikview

103

https://www.qlik.com/us/products/qlikview

1 {
2 "log_id": 7,
3 "Line_ID": "201608",
4 "event_nr": 2,
5 "predictor": 7,
6 "prefix": [
7 {
8 "Activity_Name": "Order Opened",
9 "Employee_ID": "10932",

10 "Line Total Cost": "24000",
11 "Supplier ID": "14",
12 "time:timestamp": "2017-01-17T19:47:42+11:00",
13 "elapsed": "30.0",
14 "timesincelastevent": "0",
15 "weekday": "3",
16 "Milestone": "False",
17 "open_cases": "13",
18 "workload": "2",
19 "Target_Supply_Date_delta": "37.8",
20 },
21 {
22 "Activity_Name": "Order Confirmed",
23 "Employee_ID": "10662",
24 "Line Total Cost": "24000",
25 "Supplier ID": "14",
26 "time:timestamp": "2017-01-17T20:07:43+11:00",
27 "elapsed": "1231.0",
28 "timesincelastevent": "1201",
29 "weekday": "3",
30 "Milestone": "False",
31 "open_cases": "19",
32 "workload": "1",
33 "Target_Supply_Date_delta": "37.8",
34 }
35]
36 }

Listing 7.2: Example record from the “event prefixes” topic

1 {
2 "log_id": 7,
3 "Line_ID": "201608",
4 "event_nr": 2,
5 "predictor": 7,
6 "predictions": {
7 "Delay_Rank": {
8 "Just in case": 0.867,
9 "Mild": 0.104,

10 "Moderate": 0.025,
11 "Severe": 0.004
12 }
13 }
14 }

Listing 7.3: Example record from the “event with predictions” topic

104

Figure 37: Custom dashboard in QlikView made from the exported CSV file with
predictions.

distribution of open cases according to the predicted next activity to be executed.
Another important lesson learned by testing Nirdizati is that there exist sev-

eral use cases for predictive process monitoring in practice. One of them is the
real-time dashboard use case where users can see the current predictions updated
continuously. This is especially relevant for very dynamic processes with high
throughput. For slower processes, the regular reports use case may be sufficient
where a user wants to get reports on a regular basis with the current set of predic-
tions. These predictions are possibly filtered so that the report focuses on the cases
that are most likely to become deviant and therefore need attention. Finally, the
alarm use case may be helpful, where users only want to know about a prediction
when a case is likely to be deviant. Initially we designed Nirdizati for the first use
case, but we have learned the other two use cases also need to be supported.

7.6. Summary

We have developed an integrated open-source process monitoring platform that
supports users in selecting and tuning various prediction models, and that enables
the continuous prediction of different process performance measures at runtime.
In particular, users can upload event logs to train a range of predictive models, and
later use the trained models to predict various performance measures of running
process cases from a live event stream. Predictions can be presented visually in a
dashboard or exported for periodic reporting.

The developed solution was validated with a small-sized IT vendor, provid-
ing an important feedback for the future development. Namely, the validation
highlighted how the solution is likely to be used in practice and the need for the
solution to be integrated with existing enterprise systems.

Video demos of the model training and of the runtime functionality can be
found at http://youtu.be/xOGckUxmrVQ and at http://youtu.be/Q4WVebqJzUI
respectively. The source code is available under the LGPL version 3.0 license at
https://github.com/nirdizati.

105

http://youtu.be/xOGckUxmrVQ
http://youtu.be/Q4WVebqJzUI
https://github.com/nirdizati

8. APPLICATION OF PROCESS MODEL DRIVEN
PREDICTION TO OVERPROCESSING REDUCTION

In this chapter, we present an application of previously designed explainable
predictive monitoring methods to improve the efficiency of business processes.
Namely, we propose an approach to reduce overprocessing waste by ordering cer-
tain activities at runtime based on their reject probabilities and processing times
estimated via predictive models.

Overprocessing waste occurs in a business process when effort is spent in a
way that does not add value to the customer nor to the business. Previous studies
have identified a recurrent overprocessing pattern in business processes with so-
called “knockout checks”, meaning activities that classify a case into “accepted”
or “rejected”, such that if the case is accepted it proceeds forward, while if re-
jected, it is canceled, and all work performed in the case is considered unnec-
essary. Thus, when a knockout check rejects a case, the effort spent in other
(previous) checks becomes overprocessing waste. Traditional process redesign
methods propose to order knockout checks according to their mean effort and re-
jection rate. This chapter presents a more fine-grained approach where knockout
checks are ordered at runtime based on predictive machine learning models.

The rest of the chapter is organized as follows. Section 8.1 gives a more de-
tailed introduction to the problem of overprocessing. Section 8.2 provides a def-
inition of knockout checks and discusses related work. Section 8.3 presents the
proposed knockout check reordering approach. Next, Section 8.4 discusses an em-
pirical evaluation of the proposed approach versus design-time alternatives based
on two datasets related to a loan origination process and an environmental permit
process. Finally, Section 8.5 provides a summary of the chapter.

8.1. Introduction

Overprocessing is one of seven types of waste in lean manufacturing [47]. In a
business process, overprocessing occurs when effort is spent in the performance of
activities to an extent that does not add value to the customer nor to the business.
Overprocessing waste results for example from unnecessary detail or accuracy in
the performance of activities, inappropriate use of tools or methods in a way that
leads to excess effort, or unnecessary or excessive verifications [47].

Previous studies in the field of business process optimization have identified a
recurrent overprocessing pattern in business processes with so-called “knockout
checks” [54, 127]. A knockout check is an activity that classifies a case into “ac-
cepted” or “rejected”, such that if the case is accepted it proceeds forward, while
if rejected, all other checks are considered unnecessary and the case is either ter-
minated or moved to a later stage in the process. When a knockout check rejects
a case, the effort spent in previous checks becomes overprocessing waste. This

106

waste pattern is common in application-to-approval processes, where an applica-
tion goes through a number of checks aimed at classifying it into admissible or
not, such as eligibility checks in a University admission process, liability checks
in an insurance claims handling process, or credit worthiness checks in a loan
origination process. Any of these checks may lead to an application or claim be-
ing declared ineligible, effectively making other checks irrelevant for the case in
question.

A general strategy to minimize overprocessing due to the execution of unnec-
essary knockout checks is to first execute the check that is most likely to lead to
a negative (“reject”) outcome. If the outcome is indeed negative, there is no over-
processing. If on the other hand we execute first the checks that lead to positive
outcomes and leave the one that leads to a negative outcome to the end, the over-
processing is maximal – all the checks with positive outcome were unnecessary.
On the other hand, it also makes sense to execute the checks that require less ef-
fort first, and leave those requiring higher effort last, so that the latter are only
executed when they are strictly necessary. These observations lead to a strategy
where knockout checks are ordered according to two parameters: their likelihood
of leading to a negative outcome and the required effort.

Existing process optimization heuristics [72, 127] typically apply this strategy
at design-time. Specifically, checks are ordered at design-time based on their re-
jection rate and mean effort. This approach achieves some overprocessing reduc-
tion but does not take into account the specificities of each case. We propose an
approach that further reduces overprocessing by incorporating the above strategy
into a predictive process monitoring method. Specifically, the likelihood of each
check leading to a positive outcome and the effort required by each check are es-
timated at runtime based on the available case data and machine learning models
built from historical execution data. The checks are then ordered at runtime for
the case at hand according to the estimated parameters.

8.2. Background and Related Work

This study is concerned with optimizing the order in which a set of knockout
checks are performed in order to minimize overprocessing. The starting point
for this optimization is a knockout section, defined as a set of independent binary
knockout checks. By independent we mean that the knockout checks in the section
can be performed in any order. By binary we mean that each check classifies the
case into two classes, hereby called “accepted” and “rejected”. And by knockout
we mean that if the check classifies a case as “rejected”, the case jumps to a
designated point in the process (called an anchor) regardless of the outcome of all
other checks in the section. An anchor can be any point in the process execution
either before or after the knockout section. In this study, we assume that an anchor
point is an end event of the process, meaning that a case completes with a negative
outcome as soon as one of the checks in the knockout section fails.

107

For example, a loan application process in a peer-to-peer lending marketplace
typically includes several knockout checks. Later in this chapter, we will examine
one such process containing three checks: identity check; credit worthiness check;
and verification of submitted documents. Any of these checks can lead to rejection
of the loan, thus the three checks constitute a knockout section.

The order of execution of checks in a knockout section can impact on overpro-
cessing waste. For example, in the above knockout section, if the identity check
is completed first and succeeds and then the credit worthiness check is completed
and leads to a rejection, then the identity check constitutes overprocessing, as it
did not contribute to the outcome of the case. Had the credit worthiness check
been completed first, the identity check would not have been necessary.

Van der Aalst [127] outlines a set of heuristics to resequence the knockout
checks according to the average processing time, rejection rate and setup time of
each check. One heuristic is to execute the checks in descending order of rejection
rate, meaning that the checks that are more likely to reject a case are executed first.
A more refined heuristic is one where the checks are executed in descending order
of the product of their rejection rate times their required effort. In other words,
checks are ordered according to the principle of “least effort to reject” – checks
that require less effort and are more likely to reject the case come first. This idea is
identified as a redesign best practice by Reijers et al. [72] and called the “knockout
principle” by Lohrmann and Reichert [70].

Pourshahid et al. [94] study the impact of applying the knockout principle in
a healthcare case study. They find that the knockout pattern in combination with
two other process redesign patterns improve some of the process KPIs, such as
average approval turnaround time and average cost per application. Niedermann
et al. [86] in the context of their study on process optimization patterns introduce
the “early knockout” pattern. The idea of this latter pattern is moving the whole
knockout section to the earliest possible point.

All of the above optimization approaches re-sequence the knockout checks at
design time. In contrast, in this study, we investigate the idea of ordering the
checks at runtime based on the characteristics of the current case. Specifically,
we seek to exploit knowledge extracted from historical execution traces in order
to predict the outcome of the knockout checks and to order them based on these
predictions. In this respect, the present work can be seen as an application of
predictive process monitoring.

Predictive process monitoring is a branch of process mining that seeks to ex-
ploit event logs in order to predict how one or multiple ongoing cases of a busi-
ness process will unfold up to their completion [71]. A predictive monitoring
approach relies on machine learning models trained on historical traces in order
to make predictions at runtime for ongoing cases. Existing predictive process
monitoring approaches can be classified based on the predicted output or on the
type of information contained in the execution traces they take as input. In this
respect, some approaches focus on the time perspective [130], others on the risk

108

perspective [26]. Some of them take advantage only of a static snapshot of the
data manipulated by the traces [71], while in others [66, 122], traces are encoded
as complex symbolic sequences, and hence the successive data values taken by
each data attribute throughout the execution of a case are taken into account. This
study relies on the latter approach. The main difference between the present work
and existing predictive monitoring approaches is that the goal is not to predict
the outcome of the entire case, but rather to predict the outcome of individual
activities in the case in order to re-sequence them.

The idea of using predictive monitoring to alter (or customize) a process at
runtime is explored by Zeng et al. [146] in the specific context of an invoice-to-
cash process. The authors train a machine learning model with historical payment
behavior of customers, with the aim of predicting the outcome of a given invoice.
This prediction is then used to customize the payment collection process in order
to save time and maximize the chances of successfully cashing in the payment.
In comparison, the proposal outlined in this chapter is generally applicable to any
knockout section and not tied to a specific application domain.

8.3. Approach

In this section we describe the proposed approach to resequencing knockout checks
in order to minimize overprocessing. We first give an overview of the entire solu-
tion framework and then focus on the core parts of our approach.

8.3.1. Overview

Given a designated knockout section in a process, the goal of our approach is to
determine how the checks in this section should be ordered at runtime in order
to reduce overprocessing waste. Accordingly, our approach pre-supposes that
any preexisting design-time ordering of the checks be relaxed, so that instead the
checks can be ordered by a runtime component.

The runtime component responsible for ordering the checks in a knockout sec-
tion relies on a predictive monitoring approach outlined in Figure 38. This ap-
proach exploits historical execution traces in order to train two machine learning
models for each check in the knockout section: one to predict the probability of
the check to reject a given case, and the second to predict the expected process-
ing time of the check. The former is a classification model while the latter is a
regression model.

To train these models, the traces of completed cases are first encoded as fea-
ture vectors and fed into conventional machine learning algorithms. The resulting
models are then used at runtime by encoding the trace of an ongoing case as a fea-
ture vector and giving it as input to the models in order to estimate the expected
processing effort of each allowed permutation of knockout checks and to select
the one with the lowest expected effort. To validate the models, once the case has
completed and the actual outcome of the checks is known, we compute the actual

109

processing effort and compare it with the minimum processing effort required to
either accept or knock out the case in question. The difference between the actual
and the minimum effort is the overprocessing waste.

Compute actual/

min processing

effort

Compute actual/

min processing

effort

Post-mortem analysisHistorical

traces

Ongoing

process

case

Current

practice

Our approach

(Training)

Our approach

(Testing)

Compute

feature

vectors

Train

predicitve

models

Compute

feature

vector

Predict

probabilities

and times

Compute and

apply optimal

permutation

Apply

predefined

permutation

Figure 38: Overview of the proposed approach.

8.3.2. Estimation of Expected Processing Effort

As mentioned in the introduction, overprocessing results from the activities that
add no value to the product or service. For example, if knockout activity rejects
a case, then the case is typically terminated, and the effort spent on the previous
activities becomes overprocessing waste. Consequently, to minimize the overpro-
cessing, we are interested in determining such a permutation σ of activities that
the case will be knocked out as early as possible. In the best case, the first exe-
cuted activity will knock out the case; in the worst case, none of them will knock
out the case. Furthermore, among all activities that could knockout the case, the
one with lowest effort represents the minimal possible processing effort Wmin for
a particular case to pass the knockout section. If none of the activities knocks out
the case, there is no overprocessing.

Since the minimal possible processing effort is constant for a particular process
case, minimizing overprocessing of a knockout section is essentially equivalent to
minimizing overall processing effort Wσ , which is dependent on the actual number
of performed activities M in the knockout section:

Wσ =
M

∑
i=1

wi =
M

∑
i=1

TiRi, 1≤M ≤ N (8.1)

where wi is the effort of an individual activity, Ti is its expected processing time
and Ri is the cost of a resource that performs the activity per unit of time, which
is assumed constant and known.

At least one activity needs to be performed, and if it gives a negative result,
we escape the knockout section. In the extreme case, if all activities are passed
normally, we cannot skip any activity; therefore, M varies from 1 to N.

110

However, the actual processing effort can only be known once the case has
completed; therefore, we approximate it by estimating the expected processing
effort Ŵσ of a permutation σ of knockout checks. For that we introduce the notion
of reject probability. The reject probability Pr

i of a check is the probability that
the given check will yield a negative outcome, i.e. knock out the case. In other
words, it is the percentage of cases that do not pass the check successfully.

Let us suppose we have a knockout section with three independent checks.
Table 17 lists possible scenarios during the execution of the section depending on
the outcome of the checks, as well as the probabilities of these scenarios and the
actually spent effort.

Table 17: Possible outcomes of checks during the execution of a knockout section
with three activities.

Outcome of checks Probability of outcome Actual effort spent
{failed} Pr

1 w1

{passed; failed} (1−Pr
1)P

r
2 w1 +w2

{passed; passed; failed} (1−Pr
1)(1−Pr

2)P
r
3 w1 +w2 +w3

{passed; passed; passed} (1−Pr
1)(1−Pr

2)(1−Pr
3) w1 +w2 +w3

Depending on the outcome of the last check, we are either leaving the knockout
section proceeding with the case or terminating the case. In either situation, the
processing effort would be the same. Thus, joining the last two scenarios, the
expected effort to execute a knockout section of three checks would be:

Ŵσ = w1Pr
1 +(w1 +w2)(1−Pr

1)P
r
2 +(w1 +w2 +w3)(1−Pr

1)(1−Pr
2) (8.2)

Generalizing, the expected processing effort of a knockout section with N ac-
tivities can be computed as follows:

Ŵσ =
N−1

∑
i=1

(
i

∑
j=1

w j ·Pr
i

i−1

∏
k=1

(1−Pr
k)

)
+

N

∑
j=1

w j ·
N−1

∏
k=1

(1−Pr
k). (8.3)

To estimate the expected processing effort, we propose constructing predictive
models for reject probabilities Pr

i and processing times Ti (see Section 8.3.4).
Having found the expected processing effort for all possible permutations σ

of knockout activities, in our approach we select the one with the lowest expected
effort. To validate the results in terms of minimizing overprocessing, we need to
compare the actual processing effort Wσ taken after following the selected order-
ing σ with Wmin.

8.3.3. Feature Encoding

Business process execution traces are naturally modeled as complex symbolic
sequences, i.e. sequences of events each carrying data payload consisting of event
attributes. However, to make estimations of the reject probabilities and processing

111

times of knockout checks, we first need to encode traces of completed process
cases in the form of feature vectors for corresponding predictive models.

As a running example, let us consider the log in Table 18, pertaining to an en-
vironmental permit request process. Each case refers to a specific application for
the permit and includes activities executed for that application. For example, the
first case starts with the activity T02. Its data payload {2015-01-10 9:13:00, R03}
corresponds to the data associated with the Timestamp and Resource attributes.
These attributes are dynamic in the sense that they change for different events. In
contrast, attributes like Channel and Department are the same for all the events in
a case, i.e. they are static.

Table 18: Extract of an event log.
Case Case attributes Event attributes
ID Channel Department Activity Timestamp Resource . . .
1 Email General T02 2015-01-10 9:13:00 R03 . . .
1 Email General T06 2015-01-10 9:14:20 R12 . . .
2 Fax Customer contact T02 2015-01-10 9:18:03 R03 . . .
1 Email General T10 2015-01-10 9:13:45 R12 . . .
2 Fax Customer contact T05 2015-01-10 9:13:57 R12 . . .

To encode traces as feature vectors, we include both static information, coming
from the case attributes and dynamic information, contained in the event payload.
In general, for a case i with U case attributes {s1, . . . ,sU} containing M events
{e1, . . . ,eM}, each of them having an associated payload {d1

1 , . . . ,d
R
1 }, . . .{d1

M, . . . ,dR
M}

of length R, the resulting feature vector would be:

~Xi = (s1, . . . ,sU ,e1, . . . ,eM,d1
1 , . . . ,d

R
1 , . . .d

1
M, . . . ,dR

M) (8.4)

As an example, the first case in the log in Table 18 will be encoded as such:

~X1 = (Email,General,T02,T06,T10,2015-01-10 9:13:00,R03,

2015-01-10 9:14:20,R12,2015-01-10 9:13:45,R12)
(8.5)

This kind of encoding, referred to as index-based encoding, is lossless since
all data from the original log are retained. It achieves a relatively high accuracy
and reliability when making early predictions of the process outcome. [66].

8.3.4. Prediction of Reject Probability and Processing Time

To make online predictions on a running case, we apply pre-built (offline) models
using prefixes of historical cases before entering the knockout section. For exam-
ple, if a knockout section typically starts after the n-th event, as model features we
can use case attributes and event attributes of up to (n−1)-th event. For predicting
reject probabilities of knockout activities, we train classification models, while for
predicting processing times we need regression models. To train the models, in
addition to historical case prefixes, we need labels associated with the outcome

112

of a check (classification) and its processing time (regression). As a learning al-
gorithm, we primarily use support vector machines (SVM) since they can handle
unbalanced data in a robust way [52]. In addition, we fit decision trees and ran-
dom forest models, for they have been used to address a wide range of predictive
process monitoring problems [26, 42, 66, 71].

To assess the predictive power of the classifiers, we use the area under receiver
operator characteristic curve (AUC) measure [15]. AUC represents the probability
that the binary classifier will score a randomly drawn positive sample higher than
a randomly drawn negative sample. A value of AUC equal to 1 indicates a perfect
ranking, where any positive sample is ranked higher than any negative sample. A
value of AUC equal to 0.5 indicates the worst possible classifier that is not better
than random guessing. Finally, a value of AUC equal to 0 indicates a reserved
perfect classifier, where all positive samples get the lowest ranks.

As a baseline, instead of predicting the reject probabilities, we use constant
values for them computed from the percentage of cases that do not pass the par-
ticular knockout activity in the log. Similarly, for processing times of activities,
we take the average processing time for each activity across all completed cases.
This roughly corresponds to the approach presented in [127]. Another, even sim-
pler baseline, assumes executing knockout activities in a random order for each
case, regardless of their reject probabilities and processing times.

8.4. Evaluation

We implemented the proposed overprocessing prediction approach as a set of
scripts for the statistical software R, and applied them to two publicly available
real-life logs. Below, we describe the characteristics of the datasets, we report
on the accuracy of predictive models trained on these datasets, and we compare
our approach against the two baselines discussed above in terms of overprocess-
ing reduction. A package containing the R scripts, the datasets and the evaluation
results is available at http://apromore.org/platform/tools.

8.4.1. Datasets and Features

We used two datasets derived from real-life event logs. The first log records ex-
ecutions of the loan origination process of Bondora [13], an Estonian peer-to-
peer lending marketplace; the second one originates from an environmental per-
mit request process carried out by a Dutch municipality, available as part of the
CoSeLoG project [19]. Table 19 reports the size of these two logs in terms of
number of completed cases, and the rejection rate of each check. Each log has
three checks, the details of which are provided next.

Bondora dataset The Bondora dataset provides a snapshot of all loan data in the
Bondora marketplace that is not covered by data protection laws. This dataset
refers to two processes: the loan origination process and the loan repayment pro-

113

http://apromore.org/platform/tools

Table 19: Summary of datasets.

Dataset Completed Knockout checks
cases Name Rejection rate

Bondora
IdCancellation 0.080

40,062 CreditDecision 0.029
PostFundingCancellation 0.045

Environmental
permit

T02 0.005
1,230 T06 0.013

T10 0.646

cess. Only the first process features a knockout section, hence we filtered out the
data related to the second process. When a customer applies for a loan, they fill in
a loan application form providing information such as their personal data, income
and liabilities, with supporting documents. The loan origination process starts
upon the receipt of the application and involves (among other activities) three
checks: the identity check (associated with event IdCancellation in the log); the
credit worthiness assessment (associated to event CreditDecision); and the docu-
mentation verification (associated to event PostFundingCancellation). A negative
outcome of any of these checks leads to rejection of a loan application.

Bondora’s clerks perform these checks in various orders based on their expe-
rience and intuition of how to minimize work, but none of the checks requires
data produced by the others, so they can be reordered. Over time, the checks have
been performed in different orders. For example, during a period when listing
loans into the marketplace was a priority due to high investor demand, loans were
listed before all document verifications had been concluded, which explains why
the third check is called PostFundingCancellation, even though in many cases this
check is performed in parallel with the other checks.

In this log, the knockout section starts immediately after the case is lodged.
Thus, the only features we can use to build our predictive models are the case
attributes, i.e. the information provided by the borrower at the time of lodging the
application. These features can be grouped into three categories. Demographi-
cal features include age of the loan borrower, their gender, country of residence,
language, educational background, employment and marital status. Financial fea-
tures describe the borrower’s financial well-being and include information about
their income, liabilities, debts, credit history, home ownership, etc. Finally, the
third group includes loan features, such as amount of the applied loan, and its
duration, maximum acceptable interest rate, purpose of the loan and the applica-
tion type (timed funding or urgent funding). A more detailed description of each
attribute is available from the Bondora Web site [13].

It should also be noted that in the Bondora log there is no information about the
start time and the end time of each activity. Thus, we can only use it to estimate
the reject probabilities, not the processing times.

Environmental permit dataset The second dataset records the execution of the

114

receiving phase of an environmental permit application process in a Dutch mu-
nicipality [19]. The process discovered from the log has a knockout section (see
Figure 39) consisting of three activities: T02, to check confirmation of receipt,
T06, to determine necessity of stop advice, and T10, to determine necessity to stop
indication. In this scenario, the checks are not completely independent. Specif-
ically, T10 can only be done after either T02 or T06 has been performed – all
permutations compatible with this constraint are possible.

42

1080

65

81

97

1218

166

1079

239

181

20

1117

T02 Check confirmation of receipt

1368

T06 Determine necessity of stop advice

1416

T10 Determine necessity to stop indication

1283

Figure 39: Process map extracted from the environment permit log.

Another special feature of this knockout section is that in a small number of
cases some checks are repeated multiple times. If the first check in a case is
repeated multiple times, and then the second check is executed (and the first check
is not repeated anymore after that), we simply ignore the repetition, meaning that
we treat the first check as not having been repeated by discarding all occurrences
of this check except the last one. Similarly, we discarded incomplete cases as they
did not allow us to assess the existence of overprocessing.

Each case in the log refers to a specific application for an environmental per-
mit. The log contains both case attributes and event payload along with the stan-
dard XES attributes. Case attributes include channel by which the case has been
lodged, department that is responsible for the case, responsible resource and its
group. In addition to the case attributes, the predictive models can utilize at-
tributes of events that precede the knockout section. Generally, there is only one
such event, namely Confirmation of receipt, that includes attributes about the re-
source who performed it and its assigned group.

This log contains event completion timestamps but not event start timestamps.
So also for this second log we do not have enough information to predict the
processing time of each check, and we can only work with reject probabilities.

115

8.4.2. Prediction Accuracy

We split each dataset into a training set (80% of cases) to train the models, and a
test set (20%) to evaluate the predictive power of the models built. As a learning
algorithm we applied support vector machine (SVM) classification, trained using
the e1071 package in R. This choice allows us to build a probability model which
fits a logistic distribution using maximum likelihood to the decision values of all
binary classifiers, and computes the a-posteriori class probabilities for the multi-
class problem using quadratic optimization [78]. Therefore, it can output not only
the class label, but the probability of each class. The probability of a zero class
essentially gives us an estimation of the reject probability.

In both datasets the majority of cases pass all the checks successfully, thus the
datasets are highly imbalanced with respect to the class labels. A naive algorithm
that simply predicts all test examples as positive will have very low error, since
the negative examples are so infrequent. One solution to this problem is to use
a Poisson regression, which requires forming buckets of observations based on
the independent attributes and modeling the aggregate response in these buckets
as a Poisson random variable [48]. However, this requires discretization of all
continuous independent attributes, which is not desirable in our case. A simpler
and more robust solution would be to undersample positive cases. Weiss et al.
[140] showed that for binary classification the optimal class proportion in the
training set varies by domain and objective, but generally to produce probability
estimates, a 50:50 distribution is a good option. Thus, we leave roughly as many
positive examples as there are negative ones and discard the rest.

To ensure the consistency of the results we apply five-fold cross-validation.
Figure 40 shows the average ROC curves, across all ten runs. the AUC varies
from 0.812 (PostFundingCancellation) to 0.998 (CreditDecision) for the Bondora
dataset, and from 0.527 (T06) to 0.645 (T10) for the Environmental dataset. The
lower values in the latter dataset are due to the limited number of features that
can be extracted (see Section 8.4.1), as well as by the fact that the dataset has
much less completed cases for training (Table 19), which is further exacerbated
by having to remove many positive samples after undersampling.

8.4.3. Overprocessing Reduction

As stated in Section 8.3.2, the actual processing effort is given by Formula 8.1.
However, since the necessary timestamps are absent from our datasets, it is im-
possible to find the processing times Ti of the activities. Nor do we have data
about the resource costs Ri. Therefore, we assume TiRi = 1 for all activities. Then
the actual processing effort simply equals the number of performed activities in
the knockout section. It can be shown that in this case the optimal permutation
σ that minimizes the expected processing is equivalent to ordering the knockout
activities by decreasing reject probabilities.

In Table 20 we report the average number of checks and percentage of over-

116

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
False positive rate

T
ru

e
po

si
ti

ve
 r

at
e

baseline
CreditDecision
IdCancellation
PostFundingCancellation

(a)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
False positive rate

T
ru

e
po

si
ti

ve
 r

at
e

baseline
T02
T06
T10

(b)

Figure 40: ROC curves of predictive models for checks in Bondora (a) and Envi-
ronmental (b) datasets.

processing of our approach over the ten runs, against the two baselines (constant
probabilities for each check and random ordering – see Section 8.3.4). We found
that the actual number of performed checks in case of following our suggested
ordering is less than the number of checks performed in either baseline. Specif-
ically, for the Bondora dataset we are doing only 1.22% more checks than mini-
mally needed, which represents a 2.62 percentage points (pp) improvement over
the baseline with constant probabilities and 4.51 pp improvement over the base-
line with random ordering. However, for the environmental permit dataset the ad-
vantage of our approach over the constant probabilities baseline is very marginal.
This can be explained by the skewed distribution of the knockout frequencies for
the three checks in this dataset (the lowest knockout frequency being 0.5% and
the highest being 64.6%). Thus, it is clear that the check with the lowest knock-
out frequency has to be executed at the end. Additionally, as mentioned in the
Section 8.4.1, not all checks are independent in the second dataset. Therefore, the
solution space for the optimal permutation is rather limited.

Table 20: Average number of performed checks and overprocessing for test cases.

Average # of checks Average overprocessing, %
Bondora Environmental Bondora Environmental

Optimal 21,563 416 0 0
Our approach 21,828 576 1.22 38.49
Constant Pr

i ’s 22,393 577 3.85 38.89
Random 22,800 657 5.74 58.16

In addition, in Table 21 we report the number of cases with one, two or three
knockout checks performed. As shown before, for a dataset with three checks the

117

optimal number of checks is either one (if at least one check yields a negative out-
come) or three (if all checks are passed). Therefore, in the cases with two checks,
the second one should have been done first. In the Bondora dataset, such subopti-
mal choices are minimized; for the environmental dataset, again, our approach is
just as good as the one that relies on constant probabilities.

Table 21: Distribution of number of checks across the test cases.

Ordering by Bondora Environmental
1 2 3 1 2 3

Optimal 1237 0 6775 163 0 83
Our approach 974 261 6777 2 158 86
Constant Pr

i ’s 642 359 7011 3 155 88
Random 413 410 7189 1 78 167

8.4.4. Execution Times

Our approach involves some runtime overhead to find the optimal permutation as
compared to the baseline scenario in which checks are performed in a predefined
order. For real-time prediction it is crucial to output the results faster than the
mean arrival rate of cases. Thus, we also measured the average runtime overhead
of our approach. All experiments were conducted using R version 3.2.2 on a
laptop with a 2.4 GHz Intel Core i5 quad core processor and 8 Gb of RAM. The
runtime overhead generally depends on the length of the process cases and the
number of possible permutations of the checks. For the Bondora dataset, it took
around 70 seconds to construct the SVM classifiers (offline) for all the checks,
using default training parameters. In contrast, for the Environmental dataset with
much shorter feature vectors it took less than a second to train the classifier (see
Table 22). At runtime, it takes less than 2 milliseconds on average to find the
optimal permutation of knockout activities for an ongoing case for both datasets
(including preprocessing of the data and application of the classifier). This shows
that our approach performs within reasonable bounds for online applications.

Table 22: Execution times of various components of our approach in milliseconds.

Component Bondora Environmental
mean st dev mean st dev

Offline, overall Learn classifier 75,000 9,000 150 20

Online,
per case

Preprocess data 0.45 0.03 0.67 0.03
Apply classifier 1.37 0.15 0.12 0.02
Find optimal permutation 0.12 0 0.02 0

8.4.5. Threats to Validity

Threats to external validity are the limited number and type of logs we used for
the evaluation and the use of a single classifier. While we chose only two datasets

118

from two distinct domains (financial and government), these two datasets rep-
resent real-life logs well. They exhibit substantial differences in the number of
events, event classes and total number of traces, with one log being relatively
large (over 40,000 cases) and the other relatively small (around 1,200 cases).

Both datasets used in this evaluation did not have the required start and end
event timestamps to estimate the processing times of the knockout checks. Thus,
we assigned a constant time to all checks. The inability to estimate processing
time does not invalidate our approach. In fact, our approach would tend to further
reduce the amount of overprocessing if processing times were known.

In the Bondora dataset, the three checks have been performed in different or-
ders for different cases. When one of the checks leads to a negative outcome for a
given case, the checks that were not yet completed at that stage of the case some-
times remain marked as negative, even if it might be the case that these checks
would have led to positive outcomes should they have been completed. This issue
may have an effect on the reported results, but we note that it affects both the
reported performance of our approach and that of the baselines.

We reported the results with a single classifier (SVM). With decision trees and
random forests, we obtained qualitatively the same results, i.e. they all improved
over the baselines. However, we decided to only retain SVM because this clas-
sifier yielded the highest classification accuracy among all classifiers we tested.
However, our approach is independent of the classifier used. Thus, using a differ-
ent classifier does not in principle invalidate the results. That said, we acknowl-
edge that the goodness of the prediction, as in any classification problem, depends
on the particular classifier employed. Hence, it is important to test multiple clas-
sifiers for a given dataset, and to apply hyperparameter tuning, in order to choose
the most adequate classifier with the best configuration.

8.5. Summary

We have presented an approach to reduce overprocessing by ordering knockout
checks at runtime based on their reject probabilities and processing times deter-
mined via predictive models. Experimental results show that the proposed runtime
ordering approach outperforms a design-time ordering approach when the reject
probabilities of the knockout checks are close to each other. In the dataset where
one check had a considerably higher rejection rate than the other, the design-time
and the runtime ordering approach yielded similar results.

The proposed approach is not without limitations. One limitation of scope is
that the approach is applicable when the checks are independent (i.e. can be re-
ordered) and every check is performed once within one execution of the knockout
section. In particular, the approach is not applicable when some of the knockout
checks can be repeated in case of a negative outcome. This is the case for example
in a university admission process, where an eligibility check may initially lead to
a rejection, but the applicant can ask the application to be reconsidered (and thus

119

the check to be repeated) after providing clarifications or additional information.
In other words, the current approach is applicable when a negative outcome (“re-
ject”) is definite and cannot be revoked. Similarly, we assume that a check leading
to a positive outcome is definite and cannot be reconsidered. Designing heuris-
tics for cases where the outcomes of checks are revocable is a direction for future
work.

Another limitation is that the approach is designed to minimize overprocessing
only, without considering other performance dimensions such as cycle time (i.e.
mean case duration). If we add cycle time into the equation, it becomes desirable
to parallelize the checks rather than sequentializing them. In other words, rather
than performing the checks in a knockout section in strict sequence, some or all
of checks could be started in parallel, such that whenever the first check fails, the
other parallel checks are cancelled. On the one hand this parallelization leads to
higher overprocessing effort, since effort is spent in partially completed checks
that are later cancelled. On the other hand, it reduces overall cycle time, par-
ticularly when some of the checks involve idle time during their execution. For
example, in a university admission process when some documents are found to
be missing, the checks involving these documents need to be put on hold until
the missing documents arrive. If the goal is to minimize both overprocessing and
cycle time, this waiting time can be effectively used to perform other checks.

120

9. CONCLUSION AND FUTURE WORK

9.1. Summary of Contributions

Process monitoring forms an integral part of business process management. It
involves activities in which process execution data are collected and analyzed to
gauge process performance with respect to a set of performance objectives. Tra-
ditionally, process monitoring has been performed at runtime, providing a real-
time overview of process performance and identifying performance issues as they
arise. Recently, the rapid adoption of enterprise systems with logging capabilities
has spawned the active development of data-driven, predictive process monitoring
that exploits historical process execution data to predict the future course of on-
going instances of a business process. Thus, potentially deviant process behavior
can be anticipated and proactively addressed.

To this end, various approaches have been proposed to tackle typical predictive
monitoring problems, such as whether an ongoing process instance will fulfill its
performance objectives, or when will an instance be completed. However, due
to differences in experimental setup, choice of datasets, evaluation measures and
baselines, the relative performance of each method remains unclear. As such, the
first contribution of this thesis is a comprehensive analysis and classification of
state-of-the-art process monitoring techniques to predict the remaining execution
time of process instances. The relevant existing studies were identified through
a systematic literature review, which retrieved 23 original studies dealing with
the problem of remaining time prediction. Out of these, nine were considered to
contain a distinct contribution (primary studies). Through further analysis of the
primary studies, a taxonomy was proposed based on three main aspects, the type
of input data required, process awareness and the family of algorithms employed.
We found that most studies employ machine learning algorithms to train predictive
models and apply them at runtime. These methods were further broken down
into categories depending on how they divide the input traces into homogeneous
buckets and how these traces are encoded into feature vectors.

Following the literature survey, we identified that most of the proposed meth-
ods adopt a black-box approach, insofar as they predict a single scalar value with-
out decomposing this prediction into more elementary components. As such, in
this thesis, we designed and evaluated two explainable predictive monitoring tech-
niques for temporal process performance measures, using a mechanism known as
“Transparent Box Design”, specifically via decomposition of the prediction into
its elementary components. In the first technique, we used deep learning models,
specifically RNNs and LSTMs, that had been shown to achieve higher levels of
accuracy in predictive monitoring, owing to their ability to learn relevant features
from trace prefixes automatically. In order to make these models explainable, we
used an instance of multi-task learning where several related predictive monitor-
ing tasks were integrated into a single system which is trained jointly, as a way

121

to decompose the predictions. Namely, our technique provides a prediction of
the temporal measure in terms of the predicted temporal measures of each of the
activities in the most likely remaining path of the current trace.

The second technique to achieve explainable predictive monitoring is based on
a BPMN process model automatically discovered from the event log. In this tech-
nique, an ongoing case is replayed on the process model and for each activity and
each decision gateway reachable from the current execution state, we predict its
performance measure and branching probabilities respectively. These predictions
are then aggregated at the level of a process instance by means of flow analysis
techniques.

We conducted a comparative evaluation of two proposed explainable approaches
with each other and with various state-of-the-art baselines, using a unified exper-
imental set-up and 17 real-life event logs originating from different business do-
mains. The results of the evaluation highlighted the trade-off between the predic-
tion accuracy and explainability of predictions in the context of predictive mon-
itoring of temporal measures. The most accurate predictions were typically ob-
tained via black-box models. Specifically, in 13 out of 17 datasets, LSTM-based
models trained in a single-task learning setting achieve the best accuracy. At the
same time, explainable models are generally less accurate. This trade-off should
be considered by business process analysts when choosing a suitable prediction
method.

Next, in order to demonstrate the practical application of the research con-
ducted in this thesis, we designed and evaluated a prototype system for predictive
business process monitoring, namely Nirdizati. Nirdizati implements the tech-
niques for predicting future activities, processing and cycle times, and remaining
time presented in the thesis. Nirdizati has been validated in a case study involving
a small-scale logistics supplier. The results highlighted the merits of the proto-
type and the techniques it embodies, as well as provided valuable feedback and
avenues for future work.

The last but not least contribution of the thesis is the application of process
model driven predictive process monitoring techniques to reduce overprocessing.
Specifically, we showed how reordering process activities at runtime, based on
the predicted branching probabilities and cycle times of individual activities, can
reduce the unnecessary process work, and therefore, overall process cost.

9.2. Future Work

This thesis has laid the foundation for the explainable predictive process monitor-
ing. At the same time, our research contributions open up a number of directions
for future research.

We have designed and evaluated two techniques for explainable predictive pro-
cess monitoring of temporal performance measures based on the idea of decom-
posing a prediction into elementary components. A direction for future work

122

would be to validate how explainable the resulting predictions are for end users –
process workers and operational managers. In data mining and machine learning,
explainability is defined as the ability to explain or to provide the meaning in un-
derstandable terms to a human [44]. The level of explainability of a model may
have a significant impact on the usability of a model. Namely, when the reasoning
behind the prediction is unclear, users are less likely to trust that model.

A natural extension of the proposed predictive process monitoring techniques
is to recommend process workers and operational managers the best course of
actions in order to steer the process execution towards the declared process per-
formance targets. In other words, not only will the process participants receive the
accurate predictions, but they will also be guided as to how to act upon these pre-
dictions. These solutions constitute prescriptive process monitoring [123]. Pro-
viding predictions that are explainable can make process users more willing to
let the technology influence decision making and, thus, facilitate the adoption of
prescriptive monitoring systems.

The proposed techniques have been validated to predict temporal process per-
formance measures. A direction for future work would be to apply these tech-
niques to predict other quantitative measures, such as cost. One difficulty here is
to obtain an event log that contains the necessary measures. Another relevant di-
rection is to apply explainable techniques for the prediction of categorical targets
that are not readily decomposable, i.e. in the context of a classification problem.

In this work, we have identified a limitation of the process model driven ap-
proach when dealing with unstructured process models. As a result, we were not
able to evaluate the approach on some logs. An avenue for future work is to apply
process model structuring techniques such as the one proposed in [144] to lift, at
least partially, restrictions on the topology of the models.

Next, the proposed process model driven approach relies on the accuracy of
the reject probability estimates provided by the classification model. It is known
however that the likelihood probabilities produced by classification methods (in-
cluding random forests) are not always reliable. Methods for estimating the relia-
bility of such likelihood probabilities have been proposed in the machine learning
literature [62]. A possible enhancement of the proposed approach would be to
integrate heuristics that take into account such reliability estimates.

Another direction is to provide an API to allow integration of our process mon-
itoring platform, Nirdizati, with other tools. It would provide a simple way for
process users to export predictions about ongoing cases into their business analyt-
ics tools, such as Microsoft Power BI, for the purposes of monitoring and periodic
reporting.

Finally, it would be interesting to apply explainable predictive methods to re-
duce not only overprocessing but other types of waste, such as defect waste in-
duced when a defective execution of an activity subsequently leads to part of the
process having to be repeated in order to correct the defect (i.e. rework). The idea
is that if a defective activity execution can be detected earlier, the effects of this

123

defect can be minimized and corrected more efficiently. Predictive process moni-
toring can thus help us to detect defects earlier and to trigger corrective actions as
soon as possible.

124

BIBLIOGRAPHY

[1] IEEE standard for extensible event stream (XES) for achieving interoper-
ability in event logs and event streams. IEEE Std 1849-2016, pages 1–50,
Nov 2016.

[2] Robert Andrews, Suriadi Suriadi, Moe Wynn, Arthur H. M. ter Hofstede,
Anastasiia Pika, Hoang Nguyen, and Marcello La Rosa. Comparing static
and dynamic aspects of patient flows via process model visualisations.
QUT ePrints 102848, 2016.

[3] Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas, and Luciano
García-Bañuelos. Diagnosing behavioral differences between business pro-
cess models: An approach based on event structures. Information Systems,
56:304–325, 2016.

[4] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,
and Giorgio Bruno. Automated discovery of structured process models:
Discover structured vs. discover and structure. In Isabelle Comyn-Wattiau,
Katsumi Tanaka, Il-Yeol Song, Shuichiro Yamamoto, and Motoshi Saeki,
editors, Conceptual Modeling - 35th International Conference, ER 2016,
Gifu, Japan, November 14-17, 2016, Proceedings, volume 9974 of Lecture
Notes in Computer Science, pages 313–329, 2016.

[5] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,
Fabrizio Maggi, Andrea Marrella, Massimo Mecella, and Allar Soo. Au-
tomated discovery of process models from event logs: Review and bench-
mark. CoRR, abs/1705.02288, 2017.

[6] Gökhan BakIr, Thomas Hofmann, Bernhard Schölkopf, Alexander J
Smola, Ben Taskar, and SVN Vishwanathan. Predicting structured data.
MIT Press, 2007.

[7] Jörg Becker, Dominic Breuker, Patrick Delfmann, and Martin Matzner. De-
signing and implementing a framework for event-based predictive mod-
elling of business processes. In Fernand Feltz, Bela Mutschler, and Benoît
Otjacques, editors, Enterprise modelling and information systems architec-
tures - EMISA 2014, Luxembourg, September 25-26, 2014, volume 234 of
LNI, pages 71–84. GI, 2014.

[8] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell., 35(8):1798–1828, 2013.

[9] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for hyper-parameter optimization. In John Shawe-Taylor, Richard S.
Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 24:
25th Annual Conference on Neural Information Processing Systems 2011.

125

Proceedings of a meeting held 12-14 December 2011, Granada, Spain.,
pages 2546–2554, 2011.

[10] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13:281–305, 2012.

[11] Antonio Bevacqua, Marco Carnuccio, Francesco Folino, Massimo Guaras-
cio, and Luigi Pontieri. A data-driven prediction framework for analyz-
ing and monitoring business process performances. In Slimane Ham-
moudi, José Cordeiro, Leszek A. Maciaszek, and Joaquim Filipe, editors,
Enterprise Information Systems - 15th International Conference, ICEIS
2013, Angers, France, July 4-7, 2013, Revised Selected Papers, volume
190 of Lecture Notes in Business Information Processing, pages 100–117.
Springer, 2013.

[12] Alfredo Bolt and Marcos Sepúlveda. Process remaining time prediction
using query catalogs. In Niels Lohmann, Minseok Song, and Petia Wohed,
editors, Business Process Management Workshops - BPM 2013 Interna-
tional Workshops, Beijing, China, August 26, 2013, Revised Papers, vol-
ume 171 of Lecture Notes in Business Information Processing, pages 54–
65. Springer, 2013.

[13] Bondora. Loan Dataset. https://www.bondora.ee/en/invest/
statistics/data_export. Accessed: 2015-10-23.

[14] Guillaume Bouchard and Bill Triggs. The tradeoff between generative and
discriminative classifiers. In 16th IASC International Symposium on Com-
putational Statistics (COMPSTAT’04), pages 721–728, 2004.

[15] Andrew P. Bradley. The use of the area under the ROC curve in the eval-
uation of machine learning algorithms. Pattern Recognition, 30(7):1145–
1159, 1997.

[16] Leo Breiman et al. Statistical modeling: The two cultures (with comments
and a rejoinder by the author). Statistical science, 16(3):199–231, 2001.

[17] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

[18] Dominic Breuker, Martin Matzner, Patrick Delfmann, and Jörg Becker.
Comprehensible predictive models for business processes. MIS Quarterly,
40(4):1009–1034, 2016.

[19] J.C.A.M. Buijs. 3TU.DC Dataset: Receipt phase of an environmental per-
mit application process (WABO). https://data.3tu.nl/repository/
uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6. Accessed: 2015-10-
30.

[20] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
[21] Michelangelo Ceci, Pasqua Fabiana Lanotte, Fabio Fumarola, Dario Pietro

Cavallo, and Donato Malerba. Completion time and next activity predic-
tion of processes using sequential pattern mining. In Saso Dzeroski, Pance

126

https://www.bondora.ee/en/invest/statistics/data_export
https://www.bondora.ee/en/invest/statistics/data_export
https://data.3tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://data.3tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6

Panov, Dragi Kocev, and Ljupco Todorovski, editors, Discovery Science
- 17th International Conference, DS 2014, Bled, Slovenia, October 8-10,
2014. Proceedings, volume 8777 of Lecture Notes in Computer Science,
pages 49–61. Springer, 2014.

[22] Eugenio Cesario, Francesco Folino, Massimo Guarascio, and Luigi Pon-
tieri. A cloud-based prediction framework for analyzing business pro-
cess performances. In Francesco Buccafurri, Andreas Holzinger, Peter
Kieseberg, A Min Tjoa, and Edgar R. Weippl, editors, Availability, Reli-
ability, and Security in Information Systems - IFIP WG 8.4, 8.9, TC 5 In-
ternational Cross-Domain Conference, CD-ARES 2016, and Workshop on
Privacy Aware Machine Learning for Health Data Science, PAML 2016,
Salzburg, Austria, August 31 - September 2, 2016, Proceedings, volume
9817 of Lecture Notes in Computer Science, pages 63–80. Springer, 2016.

[23] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting sys-
tem. In Krishnapuram et al. [61], pages 785–794.

[24] François Chollet. Keras. https://github.com/fchollet/keras, 2015.
[25] Ronan Collobert and Jason Weston. A unified architecture for natural

language processing: deep neural networks with multitask learning. In
William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Ma-
chine Learning, Proceedings of the Twenty-Fifth International Conference
(ICML 2008), Helsinki, Finland, June 5-9, 2008, volume 307 of ACM In-
ternational Conference Proceeding Series, pages 160–167. ACM, 2008.

[26] Raffaele Conforti, Massimiliano de Leoni, Marcello La Rosa, Wil M. P.
van der Aalst, and Arthur H. M. ter Hofstede. A recommendation system
for predicting risks across multiple business process instances. Decision
Support Systems, 69:1–19, 2015.

[27] Fred J. Damerau. A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3):171–176, 1964.

[28] Massimiliano de Leoni, Wil M. P. van der Aalst, and Marcus Dees. A
general framework for correlating business process characteristics. In
Shazia Wasim Sadiq, Pnina Soffer, and Hagen Völzer, editors, Business
Process Management - 12th International Conference, BPM 2014, Haifa,
Israel, September 7-11, 2014. Proceedings, volume 8659 of Lecture Notes
in Computer Science, pages 250–266. Springer, 2014.

[29] Massimiliano de Leoni, Wil M. P. van der Aalst, and Marcus Dees. A gen-
eral process mining framework for correlating, predicting and clustering
dynamic behavior based on event logs. Information Systems, 56:235–257,
2016.

[30] Janez Demsar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, 2006.

127

https://github.com/fchollet/keras

[31] Chiara Di Francescomarino, Marlon Dumas, Fabrizio Maggi, and Irene
Teinemaa. Clustering-based predictive process monitoring. CoRR,
abs/1506.01428, 2015.

[32] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of Business Process Management, Second Edition. Springer,
2018.

[33] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. A deep learning
approach for predicting process behaviour at runtime. In Marlon Dumas
and Marcelo Fantinato, editors, Business Process Management Workshops
- BPM 2016 International Workshops, Rio de Janeiro, Brazil, September
19, 2016, Revised Papers, volume 281 of Lecture Notes in Business Infor-
mation Processing, pages 327–338, 2016.

[34] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. Predicting process
behaviour using deep learning. Decision Support Systems, 100:129–140,
2017.

[35] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ra-
masamy Uthurusamy, editors. Advances in Knowledge Discovery and Data
Mining. AAAI/MIT Press, 1996.

[36] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. Discovering
context-aware models for predicting business process performances. In
Robert Meersman, Hervé Panetto, Tharam S. Dillon, Stefanie Rinderle-Ma,
Peter Dadam, Xiaofang Zhou, Siani Pearson, Alois Ferscha, Sonia Berga-
maschi, and Isabel F. Cruz, editors, On the Move to Meaningful Internet
Systems: OTM 2012, Confederated International Conferences: CoopIS,
DOA-SVI, and ODBASE 2012, Rome, Italy, September 10-14, 2012. Pro-
ceedings, Part I, volume 7565 of Lecture Notes in Computer Science, pages
287–304. Springer, 2012.

[37] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. Discovering
high-level performance models for ticket resolution processes. In Robert
Meersman, Hervé Panetto, Tharam S. Dillon, Johann Eder, Zohra Bel-
lahsene, Norbert Ritter, Pieter De Leenheer, and Dejing Dou, editors, On
the Move to Meaningful Internet Systems: OTM 2013 Conferences - Con-
federated International Conferences: CoopIS, DOA-Trusted Cloud, and
ODBASE 2013, Graz, Austria, September 9-13, 2013. Proceedings, vol-
ume 8185 of Lecture Notes in Computer Science, pages 275–282. Springer,
2013.

[38] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. Mining pre-
dictive process models out of low-level multidimensional logs. In Jarke
et al. [55], pages 533–547.

[39] Brady Fowler, Monica Rajendiran, Timothy Schroeder, Nicholas Bergh,
Abigail Flower, and Hyojung Kang. Predicting patient revisits at the uni-
versity of virginia health system emergency department. In Systems and

128

Information Engineering Design Symposium (SIEDS), 2017, pages 253–
258. IEEE, 2017.

[40] Keinosuke Fukunaga and Raymond R. Hayes. Effects of sample size in
classifier design. IEEE Trans. Pattern Anal. Mach. Intell., 11(8):873–885,
1989.

[41] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech
recognition with deep recurrent neural networks. In IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2013,
Vancouver, BC, Canada, May 26-31, 2013, pages 6645–6649. IEEE, 2013.

[42] Daniela Grigori, Fabio Casati, Malú Castellanos, Umeshwar Dayal,
Mehmet Sayal, and Ming-Chien Shan. Business process intelligence. Com-
puters in Industry, 53(3):321–343, 2004.

[43] Christoph Gröger, Florian Niedermann, and Bernhard Mitschang. Data
mining-driven manufacturing process optimization. In Proceedings of the
world congress on engineering, volume 3, pages 4–6, 2012.

[44] Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and
Fosca Giannotti. A survey of methods for explaining black box models.
CoRR, abs/1802.01933, 2018.

[45] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The elements
of statistical learning: data mining, inference, and prediction, 2nd Edition.
Springer series in statistics. Springer, 2009.

[46] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28(1):75–105,
2004.

[47] Ben J. Hicks. Lean information management: Understanding and eliminat-
ing waste. Int J. Information Management, 27(4):233–249, 2007.

[48] Shawndra Hill, Foster Provost, and Chris Volinsky. Network-Based Mar-
keting: Identifying Likely Adopters via Consumer Networks. Statistial
Science, 21(2):256–276, 2006.

[49] Tin Kam Ho. Random decision forests. In Third International Confer-
ence on Document Analysis and Recognition, ICDAR 1995, August 14 -
15, 1995, Montreal, Canada. Volume I, pages 278–282. IEEE Computer
Society, 1995.

[50] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral Computation, 9(8):1735–1780, 1997.

[51] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and
Bart Baesens. An empirical evaluation of the comprehensibility of decision
table, tree and rule based predictive models. Decision Support Systems,
51(1):141–154, 2011.

[52] Jae Pil Hwang, Seongkeun Park, and Euntai Kim. A new weighted ap-
proach to imbalanced data classification problem via support vector ma-

129

chine with quadratic cost function. Expert Syst. Appl., 38(7):8580–8585,
2011.

[53] Rob J. Hyndman and Anne B. Koehler. Another look at measures of fore-
cast accuracy. International Journal of Forecasting, 22(4):679–688, 2006.

[54] Monique H. Jansen-Vullers, Mariska Netjes, and Hajo A. Reijers. Business
process redesign for effective e-commerce. In Marijn Janssen, Henk G.
Sol, and René W. Wagenaar, editors, Proceedings of the 6th International
Conference on Electronic Commerce, ICEC 2004, Delft, The Netherlands,
October 25-27, 2004, volume 60 of ACM International Conference Pro-
ceeding Series, pages 382–391. ACM, 2004.

[55] Matthias Jarke, John Mylopoulos, Christoph Quix, Colette Rolland, Yan-
nis Manolopoulos, Haralambos Mouratidis, and Jennifer Horkoff, editors.
Advanced Information Systems Engineering - 26th International Confer-
ence, CAiSE 2014, Thessaloniki, Greece, June 16-20, 2014. Proceedings,
volume 8484 of Lecture Notes in Computer Science. Springer, 2014.

[56] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In Proceedings of the 3rd International Conference for Learning
Representations, 2015.

[57] Barbara Kitchenham. Procedures for performing systematic reviews.
Keele, UK, Keele University, 33(2004):1–26, 2004.

[58] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas. Data preprocess-
ing for supervised learning. International Journal of Computer Science,
1(2):111–117, 2006.

[59] Josua Krause, Adam Perer, and Kenney Ng. Interacting with predictions:
Visual inspection of black-box machine learning models. In Jofish Kaye,
Allison Druin, Cliff Lampe, Dan Morris, and Juan Pablo Hourcade, editors,
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, San Jose, CA, USA, May 7-12, 2016, pages 5686–5697. ACM,
2016.

[60] R. Krishnan, G. Sivakumar, and P. Bhattacharya. Extracting decision trees
from trained neural networks. Pattern Recognition, 32(12):1999–2009,
1999.

[61] Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggar-
wal, Dou Shen, and Rajeev Rastogi, editors. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17, 2016. ACM, 2016.

[62] Meelis Kull and Peter A. Flach. Reliability maps: A tool to enhance proba-
bility estimates and improve classification accuracy. In Toon Calders, Flo-
riana Esposito, Eyke Hüllermeier, and Rosa Meo, editors, Machine Learn-
ing and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part II,

130

volume 8725 of Lecture Notes in Computer Science, pages 18–33. Springer,
2014.

[63] M. Laguna and J. Marklund. Business Process Modeling, Simulation and
Design, Second Edition. Taylor & Francis, 2013.

[64] Julia Lasserre, Christopher M. Bishop, and J. M. Bernardo. Generative
or Discriminative? Getting the Best of Both Worlds, volume 8. Oxford
University Press, 2007.

[65] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Na-
ture, 521(7553):436–444, 2015.

[66] Anna Leontjeva, Raffaele Conforti, Chiara Di Francescomarino, Marlon
Dumas, and Fabrizio Maggi. Complex symbolic sequence encodings for
predictive monitoring of business processes. In Hamid Reza Motahari-
Nezhad, Jan Recker, and Matthias Weidlich, editors, Business Process
Management - 13th International Conference, BPM 2015, Innsbruck, Aus-
tria, August 31 - September 3, 2015, Proceedings, volume 9253 of Lecture
Notes in Computer Science, pages 297–313. Springer, 2015.

[67] Arnon Levy. Machine-likeness and explanation by decomposition. Ann
Arbor, MI: Michigan Publishing, University of Michigan Library, 2014.

[68] Zachary C. Lipton. The mythos of model interpretability. Commun. ACM,
61(10):36–43, 2018.

[69] Zachary Chase Lipton. A critical review of recurrent neural networks for
sequence learning. CoRR, abs/1506.00019, 2015.

[70] Matthias Lohrmann and Manfred Reichert. Effective application of process
improvement patterns to business processes. Software and System Model-
ing, 15(2):353–375, 2016.

[71] Fabrizio Maggi, Chiara Di Francescomarino, Marlon Dumas, and Chiara
Ghidini. Predictive monitoring of business processes. In Jarke et al. [55],
pages 457–472.

[72] Selma Limam Mansar and Hajo A. Reijers. Best practices in business pro-
cess redesign: validation of a redesign framework. Computers in Industry,
56(5):457–471, 2005.

[73] Marc Kerremans. Market Guide for Process Mining, 2018.
https://www.gartner.com/doc/3870291/market-guide-process-mining.

[74] Alfonso Eduardo Márquez-Chamorro, Manuel Resinas, and Antonio Ruiz-
Corts. Predictive monitoring of business processes: a survey. IEEE Trans-
actions on Services Computing, PP(99):1–1, 2017.

[75] Nijat Mehdiyev, Joerg Evermann, and Peter Fettke. A multi-stage deep
learning approach for business process event prediction. In Peri Loucopou-
los, Yannis Manolopoulos, Oscar Pastor, Babis Theodoulidis, and Jelena
Zdravkovic, editors, 19th IEEE Conference on Business Informatics, CBI

131

2017, Thessaloniki, Greece, July 24-27, 2017, Volume 1: Conference Pa-
pers, pages 119–128. IEEE Computer Society, 2017.

[76] Nijat Mehdiyev, Joerg Evermann, and Peter Fettke. A novel business pro-
cess prediction model using a deep learning method. Business & Informa-
tion Systems Engineering, Jul 2018.

[77] Andreas Metzger, Philipp Leitner, Dragan Ivanovic, Eric Schmieders, Rod
Franklin, Manuel Carro, Schahram Dustdar, and Klaus Pohl. Comparing
and combining predictive business process monitoring techniques. IEEE
Trans. Systems, Man, and Cybernetics: Systems, 45(2):276–290, 2015.

[78] David Meyer, Evgenia Dimitriadou, Kurt Hornik, and Andreas Weingessel.
e1071: Misc Functions of the Department of Statistics, Probability Theory
Group, TU Wien, 2015.

[79] Daniele Micci-Barreca. A preprocessing scheme for high-cardinality cat-
egorical attributes in classification and prediction problems. SIGKDD Ex-
plorations, 3(1):27–32, 2001.

[80] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their compo-
sitionality. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani,
and Kilian Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Information Pro-
cessing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 3111–3119, 2013.

[81] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. CoRR, abs/1706.07269, 2017.

[82] Tom M. Mitchell. Machine learning. McGraw-Hill, 1997.
[83] A Möller, V Ruhlmann-Kleider, C Leloup, J Neveu, N Palanque-

Delabrouille, J Rich, R Carlberg, C Lidman, and C Pritchet. Photometric
classification of type ia supernovae in the supernova legacy survey with
supervised learning. Journal of Cosmology and Astroparticle Physics,
2016(12):008, 2016.

[84] Nicolò Navarin, Beatrice Vincenzi, Mirko Polato, and Alessandro Sper-
duti. LSTM networks for data-aware remaining time prediction of business
process instances. In 2017 IEEE Symposium Series on Computational In-
telligence, SSCI 2017, Honolulu, HI, USA, November 27 - Dec. 1, 2017,
pages 1–7. IEEE, 2017.

[85] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative clas-
sifiers: A comparison of logistic regression and naive bayes. In Thomas G.
Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances in
Neural Information Processing Systems 14 [Neural Information Processing
Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancou-
ver, British Columbia, Canada], pages 841–848. MIT Press, 2001.

132

[86] Florian Niedermann, Sylvia Radeschütz, and Bernhard Mitschang. Busi-
ness process optimization using formalized optimization patterns. In
Witold Abramowicz, editor, Business Information Systems - 14th Inter-
national Conference, BIS 2011, Poznan, Poland, June 15-17, 2011. Pro-
ceedings, volume 87 of Lecture Notes in Business Information Processing,
pages 123–135. Springer, 2011.

[87] Randal S. Olson, William La Cava, Zairah Mustahsan, Akshay Varik, and
Jason H. Moore. Data-driven advice for applying machine learning to
bioinformatics problems. CoRR, abs/1708.05070, 2017.

[88] Anastasiia Pika, Wil M. P. van der Aalst, Colin J. Fidge, Arthur H. M. ter
Hofstede, and Moe Thandar Wynn. Predicting deadline transgressions us-
ing event logs. In Marcello La Rosa and Pnina Soffer, editors, Business
Process Management Workshops - BPM 2012 International Workshops,
Tallinn, Estonia, September 3, 2012. Revised Papers, volume 132 of Lec-
ture Notes in Business Information Processing, pages 211–216. Springer,
2012.

[89] Anastasiia Pika, Wil M. P. van der Aalst, Colin J. Fidge, Arthur H. M. ter
Hofstede, and Moe Thandar Wynn. Profiling event logs to configure risk
indicators for process delays. In Camille Salinesi, Moira C. Norrie, and
Oscar Pastor, editors, Advanced Information Systems Engineering - 25th
International Conference, CAiSE 2013, Valencia, Spain, June 17-21, 2013.
Proceedings, volume 7908 of Lecture Notes in Computer Science, pages
465–481. Springer, 2013.

[90] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano
de Leoni. Data-aware remaining time prediction of business process in-
stances. In 2014 International Joint Conference on Neural Networks,
IJCNN 2014, Beijing, China, July 6-11, 2014, pages 816–823. IEEE, 2014.

[91] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano
de Leoni. Time and activity sequence prediction of business process in-
stances. Computing, 100(9):1005–1031, 2018.

[92] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. The triconnected
abstraction of process models. In Umeshwar Dayal, Johann Eder, Jana
Koehler, and Hajo A. Reijers, editors, Business Process Management, 7th
International Conference, BPM 2009, Ulm, Germany, September 8-10,
2009. Proceedings, volume 5701 of Lecture Notes in Computer Science,
pages 229–244. Springer, 2009.

[93] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified com-
putation and generalization of the refined process structure tree. In Mario
Bravetti and Tevfik Bultan, editors, Web Services and Formal Methods -
7th International Workshop, WS-FM 2010, Hoboken, NJ, USA, September
16-17, 2010. Revised Selected Papers, volume 6551 of Lecture Notes in
Computer Science, pages 25–41. Springer, 2010.

133

[94] Alireza Pourshahid, Gunter Mussbacher, Daniel Amyot, and Michael
Weiss. An aspect-oriented framework for business process improve-
ment. In Gilbert Babin, Peter G. Kropf, and Michael Weiss, editors, E-
Technologies: Innovation in an Open World, 4th International Confer-
ence, MCETECH 2009, Ottawa, Canada, May 4-6, 2009. Proceedings,
volume 26 of Lecture Notes in Business Information Processing, pages
290–305. Springer, 2009.

[95] Marc’Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun.
Unsupervised learning of invariant feature hierarchies with applications to
object recognition. In 2007 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Min-
neapolis, Minnesota, USA. IEEE Computer Society, 2007.

[96] Sarunas Raudys and Anil K. Jain. Small sample size effects in statisti-
cal pattern recognition: Recommendations for practitioners. IEEE Trans.
Pattern Anal. Mach. Intell., 13(3):252–264, 1991.

[97] Hajo A. Reijers, Irene T. P. Vanderfeesten, and Wil M. P. van der Aalst.
The effectiveness of workflow management systems: A longitudinal study.
Int J. Information Management, 36(1):126–141, 2016.

[98] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I
trust you?” Explaining the predictions of any classifier. In Krishnapuram
et al. [61], pages 1135–1144.

[99] Andreas Rogge-Solti and Mathias Weske. Prediction of remaining service
execution time using stochastic petri nets with arbitrary firing delays. In
International Conference on Service-Oriented Computing (ICSOC), pages
389–403. Springer, 2013.

[100] Andreas Rogge-Solti and Mathias Weske. Prediction of business process
durations using non-markovian stochastic petri nets. Information Systems,
54:1–14, 2015.

[101] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. nature, 323(6088):533, 1986.

[102] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Ap-
proach (3. internat. ed.). Pearson Education, 2010.

[103] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable
artificial intelligence: Understanding, visualizing and interpreting deep
learning models. CoRR, abs/1708.08296, 2017.

[104] Johannes Schneider, Joshua Peter Handali, and Jan vom Brocke. Increas-
ing trust in (big) data analytics. In Raimundas Matulevicius and Remco M.
Dijkman, editors, Advanced Information Systems Engineering Workshops -
CAiSE 2018 International Workshops, Tallinn, Estonia, June 11-15, 2018,
Proceedings, volume 316 of Lecture Notes in Business Information Pro-
cessing, pages 70–84. Springer, 2018.

134

[105] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond. Adaptive
computation and machine learning. MIT Press, 2002.

[106] Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini, Kerwin
Jorbina, and Fabrizio Maggi. Intra and inter-case features in predictive
process monitoring: A tale of two dimensions. In Josep Carmona, Gregor
Engels, and Akhil Kumar, editors, Business Process Management - 15th
International Conference, BPM 2017, Barcelona, Spain, September 10-15,
2017, Proceedings, volume 10445 of Lecture Notes in Computer Science,
pages 306–323. Springer, 2017.

[107] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avishai Mandel-
baum. Queue mining - predicting delays in service processes. In Jarke
et al. [55], pages 42–57.

[108] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avishai Mandel-
baum. Queue mining for delay prediction in multi-class service processes.
Information Systems, 53:278–295, 2015.

[109] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong,
and Wang-chun Woo. Convolutional LSTM network: A machine learn-
ing approach for precipitation nowcasting. In Corinna Cortes, Neil D.
Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 802–810, 2015.

[110] F. Shull, J. Singer, and D.I.K. Sjøberg. Guide to Advanced Empirical Soft-
ware Engineering. Springer London, 2007.

[111] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep in-
side convolutional networks: Visualising image classification models and
saliency maps. CoRR, abs/1312.6034, 2013.

[112] David Spiegelhalter, Mike Pearson, and Ian Short. Visualizing uncertainty
about the future. science, 333(6048):1393–1400, 2011.

[113] I. Steinwart and A. Christmann. Support Vector Machines. Information
Science and Statistics. Springer New York, 2008.

[114] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In Tina Eliassi-Rad, Lyle H. Ungar,
Mark Craven, and Dimitrios Gunopulos, editors, Proceedings of the Twelfth
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Philadelphia, PA, USA, August 20-23, 2006, pages 374–383.
ACM, 2006.

[115] Charles A. Sutton and Andrew McCallum. An introduction to conditional
random fields. Foundations and Trends in Machine Learning, 4(4):267–
373, 2012.

135

[116] B.G. Tabachnick and L.S. Fidell. Using Multivariate Statistics. Number v.
1 in Using Multivariate Statistics. HarperCollins College Publishers, 1996.

[117] P.N. Tan, M. Steinbach, A. Karpatne, and V. Kumar. Introduction to Data
Mining. What’s New in Computer Science Series. Pearson Education,
2013.

[118] Niek Tax, Sebastiaan J. van Zelst, and Irene Teinemaa. An experimental
evaluation of the generalizing capabilities of process discovery techniques
and black-box sequence models. In Jens Gulden, Iris Reinhartz-Berger,
Rainer Schmidt, Sérgio Guerreiro, Wided Guédria, and Palash Bera, ed-
itors, Enterprise, Business-Process and Information Systems Modeling -
19th International Conference, BPMDS 2018, 23rd International Confer-
ence, EMMSAD 2018, Held at CAiSE 2018, Tallinn, Estonia, June 11-12,
2018, Proceedings, volume 318 of Lecture Notes in Business Information
Processing, pages 165–180. Springer, 2018.

[119] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. Predictive
business process monitoring with LSTM neural networks. In Eric Dubois
and Klaus Pohl, editors, Advanced Information Systems Engineering - 29th
International Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017,
Proceedings, volume 10253 of Lecture Notes in Computer Science, pages
477–492. Springer, 2017.

[120] Irene Teinemaa, Marlon Dumas, Marcello La Rosa, and Fabrizio Maggi.
Outcome-oriented predictive process monitoring: Review and benchmark.
CoRR, abs/1707.06766, 2017.

[121] Irene Teinemaa, Marlon Dumas, Anna Leontjeva, and Fabrizio
Maggi. Temporal stability in predictive process monitoring. CoRR,
abs/1712.04165, 2017.

[122] Irene Teinemaa, Marlon Dumas, Fabrizio Maggi, and Chiara Di Francesco-
marino. Predictive business process monitoring with structured and un-
structured data. In Marcello La Rosa, Peter Loos, and Oscar Pastor, edi-
tors, Business Process Management - 14th International Conference, BPM
2016, Rio de Janeiro, Brazil, September 18-22, 2016. Proceedings, vol-
ume 9850 of Lecture Notes in Computer Science, pages 401–417. Springer,
2016.

[123] Irene Teinemaa, Niek Tax, Massimiliano de Leoni, Marlon Dumas, and
Fabrizio Maggi. Alarm-based prescriptive process monitoring. In Mathias
Weske, Marco Montali, Ingo Weber, and Jan vom Brocke, editors, Business
Process Management Forum - BPM Forum 2018, Sydney, NSW, Australia,
September 9-14, 2018, Proceedings, volume 329 of Lecture Notes in Busi-
ness Information Processing, pages 91–107. Springer, 2018.

[124] Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Michael Adams, and
Nick Russell, editors. Modern Business Process Automation - YAWL and
its Support Environment. Springer, 2010.

136

[125] L. Torlay, Marcela Perrone-Bertolotti, E. Thomas, and Monica Baciu. Ma-
chine learning-XGBoost analysis of language networks to classify patients
with epilepsy. Brain Informatics, 4(3):159–169, 2017.

[126] Ruben Urraca-Valle, Javier Antoñanzas, Fernando Antoñanzas-Torres, and
Francisco Javier Martínez de Pisón. Estimation of daily global horizontal
irradiation using extreme gradient boosting machines. In Manuel Graña,
José Manuel López-Guede, Oier Etxaniz, Álvaro Herrero, Héctor Quintián,
and Emilio Corchado, editors, International Joint Conference SOCO’16-
CISIS’16-ICEUTE’16 - San Sebastián, Spain, October 19th-21st, 2016,
Proceedings, volume 527 of Advances in Intelligent Systems and Comput-
ing, pages 105–113, 2016.

[127] Wil M. P. van der Aalst. Re-engineering knock-out processes. Decision
Support Systems, 30(4):451–468, 2001.

[128] Wil M. P. van der Aalst. Process discovery: Capturing the invisible. IEEE
Comp. Int. Mag., 5(1):28–41, 2010.

[129] Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[130] Wil M. P. van der Aalst, M Helen Schonenberg, and Minseok Song. Time
prediction based on process mining. Information Systems, 36(2):450–475,
2011.

[131] Sjoerd van der Spoel, Maurice van Keulen, and Chintan Amrit. Pro-
cess prediction in noisy data sets: A case study in a Dutch hospital. In
Philippe Cudré-Mauroux, Paolo Ceravolo, and Dragan Gasevic, editors,
Data-Driven Process Discovery and Analysis - Second IFIP WG 2.6, 2.12
International Symposium, SIMPDA 2012, Campione d’Italia, Italy, June
18-20, 2012, Revised Selected Papers, volume 162 of Lecture Notes in
Business Information Processing, pages 60–83. Springer, 2012.

[132] Boudewijn F. van Dongen, R. A. Crooy, and Wil M. P. van der Aalst. Cycle
time prediction: When will this case finally be finished? In Robert Meers-
man and Zahir Tari, editors, On the Move to Meaningful Internet Systems:
OTM 2008, OTM 2008 Confederated International Conferences, CoopIS,
DOA, GADA, IS, and ODBASE 2008, Monterrey, Mexico, November 9-14,
2008, Proceedings, Part I, volume 5331 of Lecture Notes in Computer Sci-
ence, pages 319–336. Springer, 2008.

[133] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process
structure tree. Data Knowl. Eng., 68(9):793–818, 2009.

[134] Vladimir Vapnik. Statistical learning theory. Adaptive and learning sys-
tems for signal processing, communications, and control. Wiley, 1998.

[135] Ilya Verenich. A general framework for predictive business process moni-
toring. In Oscar Pastor, Stefanie Rinderle-Ma, Roel Wieringa, Selmin Nur-
can, Barbara Pernici, and Hans Weigand, editors, Proceedings of CAiSE
2016 Doctoral Consortium co-located with 28th International Conference

137

on Advanced Information Systems Engineering (CAiSE 2016), Ljubljana,
Slovenia, June 13-17, 2016., volume 1603 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2016.

[136] Ilya Verenich, Marlon Dumas, Marcello La Rosa, Fabrizio Maggi, and
Chiara Di Francescomarino. Complex symbolic sequence clustering and
multiple classifiers for predictive process monitoring. In Manfred Reichert
and Hajo A. Reijers, editors, Business Process Management Workshops -
BPM 2015, 13th International Workshops, Innsbruck, Austria, August 31 -
September 3, 2015, Revised Papers, volume 256 of Lecture Notes in Busi-
ness Information Processing, pages 218–229. Springer, 2015.

[137] Ilya Verenich, Hoang Nguyen, Marcello La Rosa, and Marlon Dumas.
White-box prediction of process performance indicators via flow analy-
sis. In Reda Bendraou, David Raffo, LiGuo Huang, and Fabrizio Maggi,
editors, Proceedings of the 2017 International Conference on Software and
System Process, Paris, France, ICSSP 2017, July 5-7, 2017, pages 85–94.
ACM, 2017.

[138] Mark von Rosing, Henrik von Scheel, and August-Wilhelm Scheer, edi-
tors. The Complete Business Process Handbook: Body of Knowledge from
Process Modeling to BPM, Volume I. Morgan Kaufmann/Elsevier, 2015.

[139] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl,
and Perry MacNeille. A bayesian framework for learning rule sets for in-
terpretable classification. Journal of Machine Learning Research, 18:70:1–
70:37, 2017.

[140] Gary M. Weiss and Foster J. Provost. Learning when training data are
costly: The effect of class distribution on tree induction. J. Artif. Intell.
Res., 19:315–354, 2003.

[141] Michael Westergaard and Fabrizio Maggi. Modeling and verification of a
protocol for operational support using coloured petri nets. In Lars Michael
Kristensen and Laure Petrucci, editors, Applications and Theory of Petri
Nets - 32nd International Conference, PETRI NETS 2011, Newcastle, UK,
June 20-24, 2011. Proceedings, volume 6709 of Lecture Notes in Computer
Science, pages 169–188. Springer, 2011.

[142] S. Wexler, J. Shaffer, and A. Cotgreave. The Big Book of Dashboards:
Visualizing Your Data Using Real-world Business Scenarios. John Wiley
& Sons, Incorporated, 2017.

[143] Philip C. Woodland and Daniel Povey. Large scale discriminative train-
ing of hidden markov models for speech recognition. Computer Speech &
Language, 16(1):25–47, 2002.

[144] Yong Yang, Marlon Dumas, Luciano García-Bañuelos, Artem Polyvyanyy,
and Liang Zhang. Generalized aggregate quality of service computation for
composite services. Journal of Systems and Software, 85(8):1818–1830,
2012.

138

[145] Xiaoxin Yin and Jiawei Han. CPAR: classification based on predictive
association rules. In Daniel Barbará and Chandrika Kamath, editors, Pro-
ceedings of the Third SIAM International Conference on Data Mining, San
Francisco, CA, USA, May 1-3, 2003, pages 331–335. SIAM, 2003.

[146] Sai Zeng, Prem Melville, Christian A. Lang, Ioana M. Boier-Martin, and
Conrad Murphy. Using predictive analysis to improve invoice-to-cash col-
lection. In Ying Li, Bing Liu, and Sunita Sarawagi, editors, Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pages
1043–1050. ACM, 2008.

[147] Zhi-Hua Zhou, Yuan Jiang, and Shifu Chen. Extracting symbolic rules
from trained neural network ensembles. AI Commun., 16(1):3–15, 2003.

139

Appendix A. SOURCE CODE AND
SUPPLEMENTARY MATERIALS

To ensure reproducibility of our experiments, as well as to enable future researchers
to build upon our work with minimal effort, we release source code and other sup-
plementary materials for each chapter of the thesis into the public domain. The
relevant URLs are listed below.

Material URL
Chapter 3 (SLR) https://goo.gl/kg6xZ1
Chapter 4 https://verenich.github.io/ProcessSequencePrediction/
Chapter 5 https://github.com/verenich/new-flow-analysis/
Chapter 6 https://github.com/verenich/time-prediction-benchmark/
Chapter 7 https://github.com/nirdizati/nirdizati-training-backend/
Chapter 8 https://verenich.github.io/caise2016overprocessing/

140

https://goo.gl/kg6xZ1
https://verenich.github.io/ProcessSequencePrediction/
https://github.com/verenich/new-flow-analysis/
https://github.com/verenich/time-prediction-benchmark/
https://github.com/nirdizati/nirdizati-training-backend/
https://verenich.github.io/caise2016overprocessing/

ACKNOWLEDGMENTS

Writing this thesis has been a long journey and the most important phase in my
academic career. I would like to thank a number of supportive people who have
contributed to the completion of my dissertation in many different ways.

First of all, I would like to express my gratitude to Professor Marlon Dumas,
without whom I would not have been able to start nor complete this perilous jour-
ney. Marlon was the person who “discovered” me and introduced me to the ex-
citing world of process mining. I appreciate his flexibility, patience, motivation,
contributions of time, ideas, immense knowledge and financial support. His pre-
cious guidance helped me in all the time of research and writing of this thesis.

Secondly, I am deeply grateful to my co-supervisor Professor Marcello La
Rosa for his help at all times. He and Marlon have always been supportive of my
research, even when things did not go as expected. I am indebted to him for he has
not only guided me throughout my thesis work but has also helped me in securing
academic collaborations and post-graduation opportunities.

Thirdly, I really appreciate having worked with Professor Arthur ter Hofstede.
He has always been available to discuss and give valuable advice on my research.
His academic support and input are greatly appreciated.

I would also like to acknowledge useful feedback from Associate Professor
Fabrizio Maria Maggi, Associate Professor Richi Nayak and Dr Sander Leemans.
Their comments were very helpful in crafting the final draft of the thesis.

I would like to thank the HPC and Research Support Group, Queensland Uni-
versity of Technology for providing me with computational resources to run all of
my research experiments.

I also acknowledge the financial assistance in the form of scholarships from
University of Tartu, the Estonian Research Council (grant IUT20-55) and Queens-
land University of Technology. This has also helped me to attend numerous con-
ferences and summer schools, adding a lot to my experience.

This thesis would not have been possible without the support I received from
my colleagues – the members of the BPM research group – who provided a wel-
coming and challenging environment to work in. I am particularly grateful to
Andrii, Stanislav and Simon who helped me transform my ideas into actions by
providing assistance with the implementation of the Nirdizati dashboard. I can-
not forget to thank all my friends who surrounded me during these years in Tartu,
Brisbane and Melbourne.

I would also like to express my gratitude to my alma maters, South Ural State
University and University of Tartu, for providing me with an outstanding educa-
tional base and an opportunity to learn from the many distinguished teachers.

Finally, I feel a deep sense of gratitude to my wonderful family: my mom, dad,
sister as well as grandparents who supported my decision to do my PhD thousands
of miles away from home. Thank you for believing and encouraging me all this
time!

141

Äriprotsesside ajaliste näitajate selgitatav ennustav jälgimine

Äriprosside jälgimine on keskosa igas äriprotsesside juhtimise initsiatiivis. Prot-
sesside jälgimine annab analüütikutele ning juhtidele võimalust tuvastada ala-
jõudustatud protsessid ning reageerida õigeaegselt. Traditsioonilised protsessi jäl-
gimistehnikad on kujundatud nii, et anda ülevaadet protsessi hetkesest jõudlusest.
Sellisena nad annavad meile võimalust tuvastada kahanemis-sündmusi tagantjärgi
ja selle tõttu nad ei luba meil käituda ennustavalt.

Masinõppe valdkonna edasiareng koos protsesside operatiivsus-admestikke lai-
kättesaadavusega tõi ette ennustatavad protsessijälgimistehnikad. Need meetodid
lubavad meile ennustada protsessi tuleviku oleku, ja seega annavad töötajatele
ning operatiivjuhtidele võimalust reageerida reaalajas selleks, et vältida või töö-
delda jõudlusprobleeme ning ühilduvuse rikkeid.

Viimastel aastatel said pakutud erinevaid lahendusi selleks, et lahendada tüü-
pilisi ennustatava protsessijälgimise küsimusi, näitkes kas antud jooksev protsess
saab olla vastavuses oma jõudlus eesmärkidega, või millal protsess lõpetab oma
tööd. See doktoritöö algab süstemaatilisest valdkonna ülevaadest ja äriprotsesside
ajalise näitajate ennustatava jälgimise meetodite taksonoomiast. Üks põhipuudus,
mis saab selle töö raames tuvastatud on olemasolevate meetodite puudulik tugi
selgitatavuses. Kuigi praktikas selgitatavus on ennustatavate meetodite kriitiline
omadus. Tihtipeale ei piisa täpsest ennustamist, et jooksev protsess saavutab mit-
terahuldatava tulemust. Kasutaja jaoks on ka tähtis saada aru miks protsessi tulev
olek on ennustatud niipidid ning kuidas vältida seda mitterahuldatava tulemust.

Et lahendada seda puudust, antud teesis pakub meetodeid, mis võimaldavad
ehitada ennustatavaid mudeleid ajaliste näidete jälgimiseks selgitaval viisil. Töö
panus on ajaliste jõudlusenäidete jaoks selgitav-ennustavate protsessijälgimis mee-
todite kujundus ja nende hinnang, mis on ka tuntud nime „Läbipaistva Kasti Ku-
jundus” (Transparent Box Design) all. Nimelt, lahutavad pakutud meetodid en-
nustamis ülessannet elementaarseteks komponendideks.

Selle üldise idee integreerides me rakendasime sügav närvvõrgu mudeleid, mis
on näidanud kõrgema täpsuse ennustava protsessijälgimise kontekstis. Selleks, et
teha neid mudeleid seletavaks me kasutame mitme-ülesanne õpimist (multi-task
learning) isendi, kus mitu seotud ennustava jälgimis ülessannet on integreeritud
ühte süsteemi, mis on treenitud tervikuna. Järgmises integratsioonis me pakume
selgitav-ennustava protsessjälgimis meetodi. Meetod eeldab BPMN protsessi mu-
deli sündmuste logidest väljavõtmist, ajalise jõudluse ennustamist tegevuste tase-
mel ja järgnevat ennustuste koondamist terve protsessi tasemel kasutades voolu
analüüsi (flow analysis) meetodeid. Need mõlemad integratsioonid pakuvad lo-
kaalse interpretatsiooni ennustustest, mis said tehtud iga protsessi isendi kohta.

Masinõppe valdkonnas sai märgatud fundamentaalne kompromiss selgitavuse
ning täpsuse vahel. Selleks et hinnata seda kompromissi me teostame pakutud

142

SUMMARYiINIESTONIAN

meetodite võrdleva hindamist omavahel ning vastu erinava kaasaegse lähtejoont,
kaasarvatud musta kasti meetodeid, mis ei tooda selgitavaid ennustusi. Hindamine
on osutud kasutades 17 päris-elu sündmuste logisid, mis väljendavad erinevaid
omadusi ning tulenevad erinevatest valdkondadest.

Töö teadusuuringute panus on koonsolideeritud ühtse platvormi ennustava äri-
protsesside jälgimise jaoks, nimelt Nirdizati. Nirdizati on veebipõhine äriprotses-
side ennustav-jälgimise mootor, mille abil saab treenida ennustus mudeleid kasu-
tades selles töös kirjeldatud meetodid ning ka kolmanda osapoole meetodeid, ja
seejärel ennustada reaalajas jooksva protsessi isendid. Nirdizati sa hinnatud koos-
töös potentsiaalsete kasutajatega, kes andis väärtusliku tagasisidet selle kohta kui-
das see tehnoloogia võiks leida kasutust ettevõtte tasemel.

Lõppkokkuvõtus me esitame pakutud selgitav-ennustava jälgimis meetodite
rakendust eesmärgiga parandada äriprotsessi efektiivsust. Nimelt, me demonst-
reerime kuidas need meetodid saavad olla rakendatud selleks et vähendada üle-
töötlemis jäätmed järjestades teatud tegevused käitusajal lähtudest nende oletatud
tulemusest ja pingutusest, mis on määratud ennustus mudelite poolt.

143

CURRICULUM VITAE

Personal data

Name: Ilya Verenich
Data of birth: 11.05.1990
Citizenship: Russian
Language: English, Russian

Education

2014–2018 University of Tartu, Faculty of Mathematics and Computer
Science, doctoral studies, specialty: computer science.

2012–2014 University of Tartu, Faculty of Mathematics and Computer
Science, master studies, specialty: software engineering.

2006–2010 South Ural State University, Faculty of Mathematics and
Computer Science, bachelor studies, specialty: electronics
engineering.

Employment

2012–2014 STACC OÜ, research engineer

144

ELULOOKIRJELDUS

Isikuandmed

Nimi: Ilya Verenich
Sünnikuupäev: 11.05.1990
Kodakondsus: Vene
Keelteoskus: inglise, vene

Haridus

2014–2018 Tartu Ülikool, Matemaatika-informaatikateaduskond, dok-
toriõpe, eriala: informaatika.

2012–2014 Tartu Ülikool, Matemaatika-informaatikateaduskond, ma-
gistriõpe, eriala: software engineering.

2006–2010 Uurali Riiklik Ülikool, Matemaatika- informaatikateadus-
kond, bakalaureuseõpe, eriala: elektrotehnika.

Teenistuskäik

2012–2014 STACC OÜ, teadur

145

LIST OF ORIGINAL PUBLICATIONS

Over the course of this research, seven peer-reviewed publications (3 A-rank con-
ference papers, 2 demonstration papers, 1 workshop, 1 doctoral consortium) have
been produced and published. In addition, three technical reports have been au-
thored of which two have been submitted to journals and are awaiting the review-
ers’ feedback. Following is the list of the original contributions in chronological
order:

[I] I. Verenich, M. Dumas, M. L. Rosa, F. M. Maggi, and C. D. Francesco-
marino. Complex symbolic sequence clustering and multiple classifiers
for predictive process monitoring. In Business Process Management Work-
shops – BPM 2015, 13th International Workshops, Innsbruck, Austria, pages
218-229, 2015.

[II] I. Verenich, M. Dumas, M. L. Rosa, F. M. Maggi, and C. D. Francesco-
marino. Minimizing overprocessing waste in business processes via predic-
tive activity ordering. In Advanced Information Systems Engineering – 28th
International Conference, CAiSE 2016, Ljubljana, Slovenia. Proceedings,
pages 186-202, 2016.

[III] I. Verenich. A general framework for predictive business process monitor-
ing. In Proceedings of CAiSE 2016 Doctoral Consortium co-located with
28th International Conference on Advanced Information Systems Engineer-
ing, 2016.

[IV] I. Verenich, M. Dumas, M. La Rosa, F. M. Maggi, D. Chasovskyi, and A.
Rozumnyi. Tell me what’s ahead? Predicting remaining activity sequences
of business process instances. Technical report. In QUT ePrints 96732,
2016.

[V] N. Tax, I. Verenich, M. L. Rosa, and M. Dumas. Predictive business pro-
cess monitoring with LSTM neural networks. In Advanced Information
Systems Engineering – 29th International Conference, CAiSE 2017, Essen,
Germany. Proceedings, pages 477-492, 2017.

[VI] I. Verenich, H. Nguyen, M. L. Rosa, and M. Dumas. White-box predic-
tion of process performance indicators via flow analysis. In Proceedings of
the 2017 International Conference on Software and System Process, Paris,
France, pages 85-94, 2017. [Awarded as the Best Paper]

[VII] K. Jorbina, A. Rozumnyi, I. Verenich, C. D. Francescomarino, M. Dumas,
C. Ghidini, F. M. Maggi, M. L. Rosa, and S. Raboczi. Nirdizati: A web-
based tool for predictive process monitoring. In Proceedings of the BPM
Demo Track and BPM Dissertation Award co-located with 15th Interna-
tional Conference on Business Process Modeling (BPM 2017), Barcelona,
Spain, 2017. [Awarded as the Best Demo Paper]

[VIII] I. Verenich, M. Dumas, M. L. Rosa, H. Nguyen, and A. ter Hofstede. Pre-
dicting process performance: A white-box approach. Technical report. In

146

QUT ePrints 117379, 2018.
This manuscript is a significantly extended version of [VI], submitted to the
special issue of Journal of Software: Evolution and Process on December
29, 2017, revised and resubmitted on June 5, 2018 following reviewers’
comments.

[IX] I. Verenich, S. Mõškovski, S. Raboczi, M. Dumas, M. La Rosa, and F. M.
Maggi. Predictive process monitoring in Apromore. In CAiSE Forum 2018,
Tallinn, Estonia. Proceedings, volume 317 of Lecture Notes in Business
Information Processing, pages 244-253, Springer, 2018. [Awarded as the
Best Demo Paper]

[X] I. Verenich, M. Dumas, M. La Rosa, F. Maggi, and I. Teinemaa. Sur-
vey and cross-benchmark comparison of remaining time prediction meth-
ods in business process monitoring. Technical report. In arXiv preprint
arXiv:1805.02896, 2018.
Manuscript submitted to ACM Transactions on Intelligent Systems and Tech-
nology on May 10, 2018.

147

148

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

149

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

150

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

151

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

	Introduction
	Problem Area
	Problem Statement
	Explainable Predictions
	Process Performance Measures
	Research Questions
	Solution Criteria

	Research Benefits and Innovation
	Research Approach
	Thesis Outline

	Background
	Process Mining
	Process Models
	Temporal Process Performance Measures
	Machine Learning
	Overview
	Learning Algorithms
	Hyperparameter Optimization

	Explainability in Machine Learning

	State of the Art in the Prediction of Temporal Process Measures
	Search Methodology
	Research Questions
	Study Retrieval

	Analysis and Classification of Methods
	Input Data
	Process Awareness
	Family of Algorithms
	Evaluation Data and Domains
	Implementation
	Predictive Monitoring Workflow
	Primary and Subsumed (Related) Studies

	Taxonomy of Methods
	Prefix Bucketing
	Prefix Encoding
	Discussion

	Summary

	Deep Learning for Prediction of Temporal Process Measures
	Introduction
	Deep learning
	Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory for Sequence Modeling

	Next Activity and Timestamp Prediction
	Approach
	Experimental setup
	Results

	Future Path Prediction
	Approach
	Experimental Setup
	Results

	Remaining Cycle Time Prediction
	Summary

	Process Model Driven Prediction of Temporal Process Measures
	Introduction
	Overview of Flow Analysis
	Discovering Process Models from Event Logs
	Replaying Partial Traces on Process Models
	Obtaining the Flow Analysis Formulas
	Computing Cycle Times and Branching Probabilities
	Summary

	Experimental Evaluation
	Datasets
	Experimental Setup
	Data Preprocessing
	Data Split
	Evaluation Metrics
	Baselines
	Hyperparameter Optimization

	Evaluation Results
	Evaluation of Flow Analysis-based Techniques
	Evaluation of the Proposed Techniques and State-of-the-art Techniques

	Threats to Validity
	Summary

	Nirdizati: An Integrated Predictive Process Monitoring Platform
	Introduction
	Apromore Platform
	Training Plugin Bundle
	Runtime Plugin Bundle
	Validation
	Summary

	Application of Process Model Driven Prediction to Overprocessing Reduction
	Introduction
	Background and Related Work
	Approach
	Overview
	Estimation of Expected Processing Effort
	Feature Encoding
	Prediction of Reject Probability and Processing Time

	Evaluation
	Datasets and Features
	Prediction Accuracy
	Overprocessing Reduction
	Execution Times
	Threats to Validity

	Summary

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography
	Source Code and Supplementary Materials
	Acknowledgments
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

