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Automated Analysis of Customer Contacts – a Fintech Based 
Case Study 

Abstract: 

The rapid development of information technologies has brought along abnormal amounts 

of data being generated on a daily basis and the need to automatically analyse it to gain a 

competitive advantage. Traditional data mining techniques have been efficiently applied 

in a variety of commercial applications, yet they are only applicable on structured data. 

However, an overwhelming amount of existing data is in an unstructured (e.g. textual) 

form, hence it is crucial for companies to build solutions to automatically extract useful 

information from it. Given master’s thesis is with a practical nature and its purpose was 

to implement an automated text analysis model using data from TransferWise Ltd. that 

can be used to efficiently prioritise and measure incoming customer contacts. To achieve 

this, the author conducted numerous experiments via employing classical as well as novel 

natural language processing techniques. Apropos, employing novel methods did not 

ensure a noticeably better outcome. The established model is important for both the 

company as well as its customers since it can be used to prioritise incoming contacts 

based on their complexity or urgency. This ensures a convenient customer experience and 

is likely to accelerate growth by making operational procedures more efficient. Besides 

its practical value, given thesis also provides an extensive comparison of numerous 

natural language processing techniques, their suitability and opportunities. 

Keywords: text analysis, natural language processing, business intelligence, financial 

technologies. 

CERCS: P170 – computer science, numerical analysis, systems, control. 
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Automatiseeritud kliendikontaktide analüüs finantstehnoloogia 
sektori näitel 

Lühikokkuvõte: 

Seoses infotehnoloogia arenguga tekib igapäevaselt enneolematu kogus andmeid, mille 

automaatne analüüsimine konkurentsieelise saavutamiseks on otsustava tähtsusega. 

Traditsioonilised andmekaeve meetodid on leidnud laialdaselt ärilisi rakendusi, kuid ei 

ole sobivad struktureerimata (näiteks tekstiliste) andmete puhul. Seevastu on valdav osa 

andmetest just struktureerimata kujul, mistõttu on iseäranis oluline luua lahendusi neist 

olulise teabe eraldamiseks. Käesolev magistritöö on praktilise loomuga ning selle 

eesmärk oli luua automatiseeritud tekstianalüüsi mudel, mida saab kasutada sissetulevate 

kliendipäringute efektiivseks prioriseerimiseks ning mõõtmiseks kasutades TransferWise 

Ltd. andmeid. Tulenevalt püstitatud eesmärgist teostas autor arvukalt eksperimente 

kasutades nii klassikalisi kui ka uudseid loomuliku keele töötluse meetodeid. Seejuures 

ei taganud antud ülesande puhul uudsed tehnoloogiad märgatavat paremust klassikaliste 

meetodite ees. Töö tulemusena valminud mudel on oluline nii ettevõttele kui ka selle 

klientidele – mudel võimaldab prioriseerida sissetulevaid päringuid vastavalt nende 

keerukusele ning pakilisusele, mis parandab kliendikogemust ning soodustab ettevõtte 

kasvu muutes operatsioonilisi protsesse efektiivsemaks. Peale praktilise väärtuse pakub 

käesolev töö ka ulatuslikku ülevaadet erinevatest loomuliku keele töötluse meetoditest, 

nende sobivusest ning nendega kaasnevatest võimalustest.  

Võtmesõnad: tekstianalüüs, loomuliku keele töötlus, ärianalüüs, finantstehnoloogiad. 

CERCS: P170 – arvutiteadus, arvutusmeetodid, süsteemid, juhtimine. 
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1 Introduction 
The evolution of information technologies has led to unprecedented amounts of data 

being generated on a daily basis. To gain an advantage over its competitors, companies 

strive to make intelligent use of their data – automatically discovering patterns in large, 

structured datasets has been employed in a variety of commercial applications (Zhang & 

Zhou, 2004: 516-519). However, the majority of available data is in an unstructured, 

textual form (Gupta et al., 2009: 72) which makes building solutions to automatically 

extract useful information from it a high priority. This process is referred to as text mining 

and it is considered to be a powerful extension to traditional decision support systems 

(Gao et al., 2007: 110). An abundant source of information for businesses is customer 

contacts – there are thousands of incoming emails on a daily basis. These inquiries and 

feedback can be automatically analysed to accelerate growth via optimising operational 

procedures and offering a product that solves customer problems in the most convenient 

way.  

The classical methods of transforming textual data to a fixed structure are bag of words, 

n-grams and k-skip-n-grams. These methods have been thoroughly studied and despite 

their diverse shortcomings like high dimensionality, sparsity and putting semantic 

relationships aside, they generally ensure a strong baseline (Wang et al., 2002: 1). To 

overcome the inexpedient dimensionality, an appropriate feature engineering process 

needs to be in place. This is achieved by either rescaling features, selecting relevant terms 

based on a statistical measure or combining redundant terms by generating synthetic 

frames (Sahlgren & Cöster, 2004: 2). There have been numerous initiatives at capturing 

the semantic meaning of words, e.g. latent semantic indexing as well as novel, neural 

network based methods which have proven to generally ensure a better performance than 

classical methods (Mikolov et al., 2011: 608).  

The variety of machine learning algorithms that have been applied in the textual domain 

is abundant. According to some authors (e.g. Liu et al., 2017: 109), more complex 
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methods almost consistently outperform simple ones. However, besides its classification 

capacity, the decisions made by the algorithm should be fairly easily interpretable to build 

trust in the end users. Furthermore, complex algorithms are often computationally heavier 

and with only little improvement on the classification performance, they may remain 

unjustified. To evaluate the potential of more complex algorithms, the author will employ 

extreme gradient boosting and stacked ensembling in addition to interpretable models like 

Naïve Bayes and logistic regression. If they significantly outperform interpretable 

models, then an effort could be made at interpreting their predictions. To benefit from 

novel representation methods like word2vec, the author will employ clustering via 

Euclidean and cosine distances.  

Given thesis is with a practical nature and the purpose of it is to implement an automated 

text analysis model using data from TransferWise Ltd. that can be used to efficiently 

prioritise and measure incoming customer contacts. According to the purpose, the author 

has set up the following research tasks: 

• give an overview of the nature and topicality of various business problems 

that can be solved using text mining methods; 

• give an overview of text representation and feature engineering methods  

based on previous literature; 

• give an overview of applicable modelling methods based on previous 

literature; 

• give an overview of the dataset and research methodology; 

• assemble various representations of the initial dataset and employ feature 

engineering; 

• establish a classification model capable of prioritising and measuring 

incoming customer contacts. 

Based on the purpose and research tasks, the structure of this thesis is divided into four 

principal parts – in the first part, the author describes the practical motivation and the 

usefulness of building automated text analysis tools. The second part provides a thorough 

theoretical overview of appropriate text representation, feature engineering and machine 

learning methods. In the third part, the author describes the data, its gathering principles 

and the general experiment setup and methodology. In the last part, the author establishes 
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an optimal text analysis model, reports the progress of achieving it and evaluates its 

suitability qualitatively as well as quantitatively.  

The thesis is important for both the company as well as its customers – handling customer 

inquiries based on their urgency or complexity ensures operational efficiency and a 

convenient customer experience, which is likely to accelerate growth. Furthermore, a 

clear understanding of the scope of various customer pain-points allows the company to 

make product related changes in a rapid manner. Besides its practical application, the 

author will generalise the results of numerous experiments and give an overview of the 

suitability and efficiency of various text mining techniques.  
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2 Practical motivation 
To gain a competitive advantage, companies strive to make intelligent use of their existing 

data in decision-making. Arnott et al. (2017: 58) have stated that building efficient 

decision support systems is currently the largest area of IT investments in organisations. 

Traditional data mining methods have been efficiently applied on a variety of business 

tasks like financial fraud detection, revenue forecasting and product recommendation. 

However, most of these methods are applicable on structured data, leaving out by far the 

largest source of information in the form of text – it is estimated that nearly 80% of data 

in intranets and World Wide Web are in a textual form (Gupta et al., 2009: 72). The 

process of automatically analysing large quantities of information in the form of written 

materials is an extension of data mining referred to as text mining. Harnessing written 

customer feedback and inquiries is a powerful addition to traditional decision support 

systems that promotes growth through being customer-focused and operationally 

efficient. The purpose of this subchapter is to map out and give an overview of various 

opportunities automated customer contact analysis offers for companies operating in the 

sector of financial services. The author will estimate the capacity and potential impact of 

these tasks and focus on solving one of them throughout the thesis.  

Companies offering financial services receive thousands of customer contacts in a 

written form (e.g. emails) on a daily basis and in a standard set-up, they get handled on a 

first-in-first-out basis. However, this is not particularly efficient, as each contact has a 

different level of complexity and urgency. This raises the first opportunity – incoming 

customer contacts can be prioritised based on their complexity for the purpose of 

assigning more complex cases to more experienced agents. The latter is important for 

handling contacts in a more rapid and precise manner. Furthermore, as the number of 

contacts is somewhat seasonal (more payments are set up after paydays, which leads to 

more incoming contacts), then to avoid severe backlogs, contacts that are classified as 

“simple” by the algorithm, could occasionally be delegated to other teams besides 

customer support. To be scalable and cope with the increasing number of incoming 



 10 

contacts, businesses may benefit from automatic question answering, as simpler 

inquiries often do not need a personalised reply. This ensures that more complex inquiries 

get a precise reply in a timely manner. The author hypothesises that the complexity of an 

inquiry can be inferred by assuming that complex cases get a longer (in terms of handling 

time and reply length) and a more detailed reply from the company. However, measuring 

the efficiency of this approach is sophisticated and subjective, as there is no ground-truth 

to compare against, thus it is not in the scope of given thesis.  

On the other hand, urgency based prioritisation of incoming contacts can be more 

direct. The majority of inquiries in given field are regarding a payment, hence the status 

of it can be a good label for assembling training data. The author hypothesises that 

contacts leading to cancelling the payment are more urgent and should be ranked higher 

in priority to avoid the cancellation. This is important due to numerous reasons, 

since handling an urgent inquiry in time is beneficial for the customer (ensures a better 

experience) as well as for the company (may result in a smaller cancellation rate). 

Furthermore, if after setting up a payment the customer sends an email which suggests 

that he/she has no intention on completing it, then an automated analysis system can be 

used to promptly take this into consideration for directing liquidity.  

Aside from prioritising incoming contacts based on their urgency or complexity, a similar 

approach could be used for measuring product related problems – a precise overview 

of customer pain-points can help in prioritising product improvements. Based on prior 

expertise, product teams are mostly aware of their problems but struggle with quantifying 

them. This makes automated text analysis especially beneficial, as it could provide an 

unbiased and precise measurement of the scope of various problems. 

Besides indirect ways, there are occasions where the dataset can be labelled directly – 

e.g. automatically extracting customer sentiment by using pre-labelled words. 

According to Jurafsky & Martin (2017: 74) the latter is relevant for every type of 

products. Furthermore, contacts with a negative sentiment could either be prioritised and 

attributed accordingly or used as measure of customer satisfaction. 

Another common application of commercial text mining is spam detection – a binary 

classification task that is used to assign a label (spam or not spam) to emails. This is 

relevant and can become handy, since opening and instantly closing spam emails can take 
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a lot of time in the big picture which could be contributed to solving actual customer 

problems. However, there are many built-in spam filters, thus it is not the most urgent 

problem to solve at the company level.  

Jurafsky & Martin (2017: 74) have also pointed out the relevance of determining the 

characteristics of a text’s author (e.g. gender, sex and native language). This is referred 

to as authorship attribution and based on prior domain knowledge, it can become handy 

in fighting financial crimes like fraud or money laundering. One of the methods money 

launderers use is performing payments in smaller batches to bypass the reporting 

requirements established by the law to not attract attention (Irwin et al., 2011: 94). The 

reporting requirements usually specify a threshold and a timeframe such that payments 

exceeding them need to be reported to the authorities by the company. To bypass this, 

criminals create and operate multiple accounts. This is where authorship attribution can 

be beneficial – determining based on written text if profile holders are unique or if one 

person operates multiple profiles (which may indicate structuring). Although the 

suspicious patterns of many users with a similar profile activity and written language have 

been observed, then in most of the cases there simply might not be enough data, because 

contacting the company via an email is optional and not mandatory for using the product. 

On the other hand, inferring characteristics like native language or age can be a useful 

addition to traditional know your customer (KYC) procedures by detecting mismatches 

between the inferred and provided information – e.g. if the customer has provided that 

he/she is 65 years old but written text resembles a youngster, then it may indicate 

fraudulent account takeover. The same applies for inferring the native language. Another 

beneficial characteristic to infer is stylometry – the way customers set up contacts (e.g. 

complexity of used words together and syntactic features) to detect possible account 

takeovers in case the written language changes significantly over customer lifetime. 

However, projects related to tightening KYC procedures are difficult to measure and their 

potential impact remains questionable. 

Gupta & Lehal (2009: 62) have stated the potential of text summarisation – a task that 

aims to reduce the length of the document while retaining the most relevant ideas and 

overall meaning. The method is particularly useful if there are thousands of documents, 

out of which the reader would like to find the most relevant. In case of customer contacts, 
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text summarisation can be used to build a deeper understanding of product-related 

problems since it can aid in choosing the most relevant emails for qualitative analysis. 

The latter is important for building products that solve actual customer problems in the 

most convenient way. Unlike prioritising and measuring product-related problems, the 

aim of this method is to guide people in solving problems revealed by the first. 

Building insight about product-related problems can also be achieved using concept 

linkage – a method that connects related documents by shared concepts that people might 

not notice due to the large amount of data (Gupta et al., 2009: 65). This can be used in 

addition to text summarisation, as it can aid a human in finding links to similar contacts 

more easily. However, evaluating these concepts is qualitative, which does not make it a 

suitable task for given thesis. 

To encourage customer contact analysis, the author sees the potential of feature 

extraction – a task that aims to recognise and classify significant terms (e.g. names or 

relations) in a document using part of speech information and pattern matching (Dörre et 

al., 1999: 399). In the financial sector, this could be used to automatically link contacts 

to corresponding payments via extracting relevant information (e.g. if the customer 

provides details like payment number) in case the contact can not automatically be linked 

(e.g. the email comes from an address that was not used for signing up). The latter is 

important as it can provide beneficial insights about the convenience of using the product 

via tracking metrics like contacts per transfer for various markets. Feature extraction 

could also be used to improve the efficiency of other operational procedures that rely on 

deriving information from texts. However, due to the specificity of the problem, the 

dataset needs to be manually annotated to extract references to payments, hence it is not 

in the scope of given thesis.  

Based on the potential impact and due to the limitations on the capacity of given thesis, 

the author will hereafter focus on prioritising and measuring incoming customer contacts. 

Admittedly there are providers on the market that have expertise in solving similar tasks, 

but as emails often contain very confidential data (e.g. card details), then it is favoured to 

solve this task in-house. Furthermore, the accompanied expertise can be applied on any 

other tasks described above.    
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3 Theoretical background 

3.1 Text representation 

Textual data is rich in information, yet it lacks a fixed structure that is essential for 

applying classical machine learning algorithms. To establish an automated text analysis 

model, the data needs to be transformed into a structured form where the feature vector 

is numerical and with a fixed length. The purpose of this subchapter is to give an overview 

of both classical as well as novel methods that can be used to represent textual data.  

3.1.1 Classical methods 

Bag of words (a.k.a. vector space model) is one of the most common text representation 

methods, where documents are broken down (tokenized) to words that are mapped into a 

feature vector such that each dimension represents a distinct word and values indicate the 

frequency at which the word occurred in a specific document. As a consequence, the 

number of features can often be significantly greater than the number of training 

instances, which is likely to degrade the classification performance (Murphy, 2012: 18). 

Furthermore, as each document is made up of relatively few distinct words, then the 

resulting feature vectors are very sparse. Another shortcoming of given method is 

ignoring the order of word occurrences, thus discarding the semantic and locational 

information of words (Bernotas et al., 2010: 218). Besides its shortcomings, it has ensured 

a strong baseline in various studies. The bag of words representation of a dataset 

consisting of the following sentences: (1) “I still have not received the money” and (2) “I 

have done the necessary” is presented in Table 1. 

Table 1. Bag of words representation of a sample dataset. 
 I still have not received the money done necessary 

1. 1 1 1 1 1 1 1 0 0 
2. 1 0 1 0 0 1 0 1 1 
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To tackle the aforementioned shortcomings, some authors have employed an extension 

called n-grams that aims to capture the information contained in adjacent words by 

considering sequences of n words instead of single words. Although the approach is 

theoretically justified, it generally does not outperform the standard bag of words 

(unigrams) method significantly – Apte et al. (1994: 237) observed that using only 

bigrams gives poor results, however, it might be useful for specific problems. Some 

authors (e.g. Wang et al., 2002: 1) have efficiently used bigrams in addition to bag of 

words to enhance the classification accuracy. Therefore the author of given thesis will 

employ bigrams and trigrams as well as their combinations with bag of words, since 

according to Fürnkranz (2003: 1-2) n-gram sequences longer than 3 are not any more 

useful. The bigram representation of the sample dataset is presented in Table 2. 

Table 2. Bigram representation of a sample dataset. 
 I still still 

have 
have 
not 

not 
received 

received 
the 

the 
money 

I 
have 

have 
done 

the 
necessary 

1. 1 1 1 1 1 1 0 0 0 
2. 0 0 0 0 0 0 1 1 1 

 
To overcome the sparsity problem accompanied by both of the aforementioned methods, 

Guthrie et al. (2006: 1225) proposed using k-skip-n-grams to efficiently model the 

coverage and context of documents. Unlike regular n-grams, this representation allows at 

most k (skip distance) words to be skipped while constructing the n-grams. D’hondt et al. 

(2012: 59, 62) observed that although using skip-grams improves the classification in 

terms of precision and recall, the accuracy tends to taper if skip-distance is greater than 

2. Based on the work of D’hondt et al., the author will only consider two-skip-bigrams, 

as it is seemingly a good trade-off between higher dimensionality and coverage of most 

important terms. The two-skip-bigram representation of the sample dataset is presented 

in Table 3. 

Table 3. Two-skip-bigram representation of a sample dataset.  
 I still I have I not still have . . . have 

necessary 
done 
the 

done 
necessary 

the 
necessary 

1. 1 1 1 1 . . . 0 0 0 0 
2. 0 0 0 0 . . . 1 1 1 1 
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The aforementioned methods can be used to construct a document-term matrix A where 

the entries 𝑎"# measure the presence (e.g. frequency) of term k in document i. The simplest 

schemes for populating the matrix are boolean and term frequency weighting. As the 

number of term occurrences carries more information and both of the methods are similar 

in principle, then the author will discard boolean weighting. An appropriate scheme for 

populating the matrix can assist in overcoming the deficiencies of the aforementioned 

methods. In various applications (e.g. Sahlgren & Cöster, 2004: 5) weighting by the 

product of term frequency and inverse document frequency (𝑡𝑓– 𝑖𝑑𝑓) has ensured the best 

classification performance. The	𝑡𝑓– 𝑖𝑑𝑓 of a term k in document i can be calculated as 

𝑡𝑓– 𝑖𝑑𝑓 𝑖, 𝑘 = 𝑓"#	×	𝑙𝑜𝑔
1
234
		, 

where N is the number of documents, 𝑑𝑓#  is the number of documents where term k occurs 

and 𝑓"# is the frequency of term k in document i (Jurafsky, 2017: 278). Therefore	𝑡𝑓– 𝑖𝑑𝑓 

assigns higher weights to terms that occur frequently in a specific document, but rarely 

in other documents and lower weights to terms that occur in many documents overall. 

However, 𝑡𝑓– 𝑖𝑑𝑓 might not be sufficient as it does not take into consideration that 

documents can be of different length. As the length of incoming emails can differ 

significantly, then based the work of Salton & Buckley (1988: 518) the author will use 

cosine normalised 𝑡𝑓– 𝑖𝑑𝑓 (referred to as 𝒕𝒇𝒄) that can be calculated as  

𝑡𝑓𝑐(𝑖, 𝑘) =
𝑡𝑓– 𝑖𝑑𝑓(𝑖, 𝑘)	

𝑓";	×	𝑙𝑜𝑔
𝑁
𝑑𝑓;

	=
;>?

@
			, 

where 𝑓"; is the frequency of term t in document i, 𝑑𝑓; is the number of documents where 

term t occurs and M is the number of terms. Concisely, the denominator is the length of 

the vector of document i 𝑡𝑓– 𝑖𝑑𝑓 values.  

3.1.2 Novel methods 

As machine learning techniques have developed rapidly over the recent years, then neural 

network based models have proven to outperform the aforementioned classical methods 
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(Mikolov et al., 2011: 608). The research around novel representation methods has mostly 

focused on capturing the semantic meaning of terms.  

According to Goldberg & Levy (2014: 1), one of the most prevalent methods that 

provides state of the art word embeddings through capturing the semantic meaning is 

word2vec. The model learns a high dimensional vector representation of words such that 

semantically similar words are close to one another in the vector space. This is achieved 

by formulating the training process as a supervised problem, where a neural network with 

one hidden layer is trained to predict a word or the surroundings of a word based on some 

input that is parametrised by the window size. The obtained weights between the input 

and the hidden layer can then be used as word embeddings. The most prevalent 

architectures for efficiently learning a distributed representation of words are skip-gram 

and continuous bag of words (CBOW). In the first case, the network tries to predict the 

surrounding words given an input word. Inversely, making use of the CBOW architecture, 

the network tries to predict a target word from its surroundings. Mikolov et al. (2013: 5) 

observed that the CBOW architecture works better on both syntactic and semantic tasks. 

Both of the architectures are illustrated in Table 4. Apropos, the window size in both 

examples is 2 and the sample sentence is “Where is my money?”.  

Table 4. Difference of CBOW and skip-gram architectures on a sample sentence. 
Method Training sample(s) Target variable(s) 

CBOW 

1. [is,my,money] 
2. [where,my,money] 
3. [where,is,money] 
4. [is,my] 

1. where 
2. is 
3. my 
4. money 

Skip-gram 

1. where 
2. is 
3. my 
4. money 

1. [is,my] 
2. [where,my,money] 
3. [where,is,money] 
4. [is,my] 

 

According to Mikolov et al, (2013: 7), word2vec models require a large vocabulary (size 

in billions) for training an accurate model, thus the domain-specific corpus is not 

sufficient and the author will use a pre-trained model published by the same authors at 

Google. The model was trained on Google News corpus of nearly 100B words with a 

hidden layer of 300 neurons (Google Code Archive).  
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However, word2vec modes learn a representation for each word, not the whole document. 

Mikolov & Le (2014: 1188) have proposed using a similar method called paragraph2vec 

that learns a dense, fixed-length vector representation of documents with varying length. 

Unfortunately interpreting and qualitatively analysing document level embeddings 

learned by neural networks is complicated (Kim et al., 2017: 336). Furthermore, 

paragraph2vec models trained on a different context can not be generalized similarly to 

word2vec and as there is not enough data for training, then this method is discarded. There 

are multiple ways on how to obtain document representations from word embeddings. 

The simplest method is coordinate-wise aggregation (e.g. taking maximum, minimum or 

average) of a document’s word embeddings. Some authors have also proposed using the 

average of word vectors weighted by 𝑡𝑓– 𝑖𝑑𝑓 (e.g. Lilleberg et al., 2015: 136), but have 

not observed any improvement in classification accuracy. The shortcoming of these 

approaches is discarding the semantic information of words that is obtained by using 

word2vec. To make use of the semantic relationships and tackle the problem of 

synonymy, similar words can be divided into K clusters that can be used to construct any 

of the aforementioned classical representations. Kim et al. (2017: 344) referred to this as 

bag of concepts and showed that compared to a regular bag of words, latent semantic 

analysis and word2vec averaging, it ensured a significantly better classification accuracy. 

Furthermore, the concept clusters are interpretable, which makes it a suitable method in 

given context. 

3.2 Feature engineering 

As the dimensionality of aforementioned methods is dependant on the number of terms, 

then it can get unreasonably large. Kohavi & John (1997: 275) have pointed out that many 

machine learning algorithms deteriorate in terms of accuracy if there are too many 

features (of which not all might be relevant). Therefore the obtained representations are 

often refined before used in machine learning algorithms. The process is referred to as 

feature engineering and according to Sahlgren & Cöster (2004: 2), it consists of feature 

selection and feature extraction.  
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3.2.1 Feature selection 

Feature selection is a task that aims to reduce the dimensionality of the dataset by 

discarding irrelevant terms. According to Sebastiani (2002: 16) this is mostly done by 

using wrapper or filtering methods. The wrapper approach is used to construct a feature 

set by training classifiers on various feature subsets. Although it has an advantage of 

combining a feature set that fits best for a specific algorithm, it is computationally 

intractable and hence will not be considered in given thesis. Filtering is an approach 

where features are selected based on a statistical measure. Yang & Pedersen (1997: 412) 

observed in their comparative study of various feature selection methods on textual data 

that information gain and chi-square are the most effective metrics in terms of 

classification accuracy. These methods rely on the assumption that best terms for 

classification are the ones that are distributed most differently between classes. At the 

same time, they admitted that document frequency thresholding performs relatively well 

and has the lowest computational cost.  

Information gain is a metric that indicates how many bits of information the presence of 

a word entails (Jurafsky & Martin, 2017: 99). A more intuitive definition states that 

information gain measures the reduction in entropy of the target variable after a specific 

term has been observed. The most useful features are the ones that reduce the entropy the 

most, by occurring more frequently in one class than others. The information gain (G) of 

a term k can be calculated as 

𝐺 𝑘 = − 𝑃 𝑐" 	×	𝑙𝑜𝑔	𝑃
D

">?

𝑐" + 	𝑃 𝑘 𝑃 𝑐" 𝑘 	×	𝑙𝑜𝑔
D

">?

	𝑃 𝑐" 𝑘

+ 		𝑃 𝑘 𝑃 𝑐" 𝑘 	×	𝑙𝑜𝑔
D

">?

	𝑃 𝑐" 𝑘 	, 

where 𝑐" is the i-th class, k and 𝑘	correspondingly indicate if a document does or does not 

contain term k (Yang & Pedersen, 1997: 415). This method has been widely used in 

similar contexts, thus it will also be considered as one of the feature selection metrics in 

given thesis. 
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Chi-square statistic is used to measure how the results from an observation differ from 

the expected results. The chi-square value of term k in class c is defined as 

𝜒@ 𝑘, 𝑐 = 	
𝑁	×	(𝐴𝐷 − 𝐶𝐵)@

𝐴 + 𝐶 	×	 𝐵 + 𝐷 	×	 𝐴 + 𝐵 	×	 𝐶 + 𝐷
	, 

where N is the total number of documents, A is the number of times term k occurs in class 

c, B is the number of times term k occurs outside class c, C is the number of times term k 

does not occur in class c and D is the number of times neither term k or class c occur 

(Yang & Pedersen, 1997: 415). The aforementioned occurrences are summarised in Table 

5.  

Table 5. Contingency matrix for calculating chi-square statistic.  
 c 𝒄 

k A B 
𝒌 C D 

 

Concisely, the statistic is equal to 0 if term k and class c are independent. Therefore terms 

with a low chi-square value should be discarded as they have a low predictive value. The 

author of given thesis will rely on the work of Khoo et al. (2006: 22) and only consider 

words with largest chi-square values. However, one must take into account that the 

statistic is known to be not reliable for low-frequency terms as a high significance may 

be detected for features with a low effect on classification.  

Document frequency thresholding is a simple yet effective feature selection method 

where terms that occur less than a predefined threshold are removed from the feature 

space. Despite the fact that the method is simple and its computational complexity scales 

almost linearly, it is not considered to be a principled approach (Yang & Pedersen, 1997:  

413). Although rarely occurring terms are often considered to be informative, the same 

authors (1997: 419) showed in a number of experiments that it is possible to remove 

nearly 90% of terms without making concessions on classification accuracy. However, if 

the distribution of term occurrences has a long tail of rare terms, then there is a risk of 

discarding features that jointly may cover a large proportion of the documents. Unlike 

aforementioned methods, it can be computed without knowing the class labels, thus it is 

an appropriate method to consider in given thesis. 
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There is a large variety of feature selection metrics, but as they generally perform 

similarly  (Khoo et al., 2006: 22), then the author of given thesis sees information gain, 

chi-squared test and document frequency thresholding as sufficient. 

3.2.2 Feature extraction 

Feature extraction is a method that is used to combine redundant terms (e.g. synonyms) 

or terms that need distinction (e.g. homonyms) by generating synthetic terms using term 

clustering or latent semantic analysis (Sebastiani, 2002: 18).  

Term clustering is a method that aims to group together terms that are semantically 

similar and according to Lewis (1992: 38), the clusters are formed by terms that tend to 

co-occur in documents. However, there have not been any major achievements in using 

unsupervised term clustering and the usefulness remains questionable, as the clusters are 

most often formed randomly (ibidem). Slonim & Tishby (2001: 8) encouraged to use 

supervised clustering instead – they reported a higher accuracy on various datasets by 

forming word clusters using information bottleneck method. However, applying 

additional transformations increases the latency and with little or no improvement on 

classification capacity, it remains unjustified and will be discarded in this form for now.  

Latent semantic analysis (LSA) is a method proposed by Deerwester et al. that maps a 

document-term matrix into a semantic space and uses singular value decomposition to 

generate orthogonal factors that can be arranged so that less important influences are 

ignored (1990: 391). As a result of this mapping, the new dimensions are a linear 

combination of original features, which apropos are not anymore interpretable. The 

method infers the theme of a document by analysing word co-occurrences (relying on the 

assumption that words with a similar meaning occur in similar documents) and has been 

proven to improve the classification accuracy significantly (Schütze et al., 1995: 2, 8). 

Based on Sebastiani (2002: 20), the shortcoming of given method is that if a term is very 

good itself, then its discriminative power may be lost in the new feature space.  

3.3 Classification algorithms 

Text classification (a.k.a text categorization) is a supervised learning task which aims to 

assign unseen documents to pre-defined classes by learning from a training set of labelled 

documents. There is a large variety of classical algorithms that have been applied in text 
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classification – according to Desmet & Hoste (2018: 66), one of the most prevalent 

algorithms are Naïve Bayes and support vector machines. In addition to this, Aggarwal 

& Zhai (2012: 165) have stated that text classification is often performed using decision 

trees. In a recent edition of Speech and Language Processing (Jurafsky & Martin, 2017: 

75, 92), the authors pointed out the common use of neural networks, logistic regression 

and random forests for text analysis.  

3.3.1 Algorithm selection  

As the set of algorithms employed in previous literature is abundant and their 

performance dependant on the specifics of the corpus (e.g. document type or capacity), 

then comparing them all is not in the scope of this thesis. Furthermore, their performance 

is often reported on disparate datasets, thus they can not be directly compared. Therefore 

the author has set up a relevant selection criteria – besides its classification capacity, the 

decisions made by the algorithm should be fairly easily interpretable. The latter is 

admittedly important in given context for building trust in the end users, as predictions 

without a clear justification are not sufficient to act upon. However, if a more complex 

model significantly outperforms simple ones, then an effort could be made at producing 

interpretable results (e.g. via employing proxy models). As the training process is not 

time-critical, then the author has not set up any restrictions on the computational 

complexity. The purpose of this subchapter is to evaluate the suitability of forementioned 

prevalent algorithms for given task and select a reasonable subset of them for further 

experiments. The selected algorithms will be more thoroughly analysed in the next 

subchapter. 

According to Ikonomakis et al. (2005: 971), support vector machines generally provide 

poor results in terms of recall, which due to the nature of given research problem is not 

advisable. The same condition was observed by the author while conducting the initial 

experiments. Similarly, as single decision trees can be very unstable and sensitive, then 

they will be discarded. Mar & Naing (2008: 514) have stated that figuring out the optimal 

architecture for neural networks is difficult and as the results are hard to interpret, then it 

is not in the scope of given thesis.  

Naïve Bayes has been applied in a variety of text categorisation problems. Although the 

naïve assumption implies that features are equally important (which in turn may result in 
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biased posteriors), many authors (e.g. Hastie et al., 2001: 211) have stated that the model 

often outperforms more complex ones. Furthermore, its naïve assumption makes it 

computationally efficient, which is beneficial as the number of experiments to be carried 

out is relatively large. Logistic regression has similarly been extensively applied in the 

textual domain due to its interpretability and efficiency. It is particularly useful for 

modelling textual data due to a built-in regularisation.   

Random forest is an ensemble classifier proposed by Breiman (2001: 29) that builds 

numerous weak decision trees on random subsets of data such that each single tree is built 

using a random subset of features. It is proven to often ensure a better performance than 

support vector machines or neural networks (Breiman, 2001). Based on previous 

experience, the author acknowledges that building single trees in an additive manner 

instead of independent trees (like random forest) is more efficient. This process is referred 

to as gradient tree boosting, as each subsequent tree tries to correct the mistakes made by 

the previous tree. Gradient tree boosting has been widely used in various applications to 

achieve state of the art results. Liu et al. (2017: 109) used xgboost implementation of 

gradient boosting in a textual domain and reported that it almost consistently 

outperformed random forests, decision trees and logistic regression, which makes it a 

suitable model to consider.  

Zhu et al. (2015: 2) have stated that a single classifier is often not optimal for large, 

heterogeneous problems and have proposed to use multiple classifier systems (MCS) to 

improve the accuracy. Although the approach of combining strong learners is 

counterintuitive compared to the studies of ensembling weak learners (e.g. random 

forests), Laan et al. (2007: 17) proved that using a super learner (a.k.a stacking) often 

ensures a better discriminative performance.  

Concisely, the author will employ interpretable models such as logistic regression and 

Naïve Bayes and use more complex models like xgboost and stacking to ascertain if more 

complex models significantly outperform simple ones and an effort should be made to 

put them in practice. 

3.3.2 Interpretable models	 

Naïve Bayes is a simple and computationally efficient probabilistic classifier that has 

been efficiently applied in a variety of natural language processing tasks. The algorithm 
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is derived from Bayesian inference, in which the class of a document is predicted by 

considering the product of prior class probability and the likelihood of a document. 

However, as there is a large number of possible feature combinations, then the calculation 

of conditional probabilities becomes intractable. To overcome this, the algorithm makes 

a naïve assumption on conditional independence when calculating class probabilities, 

such that the probabilities could simply be multiplied as 

𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥O∈Q	𝑃 𝑐 𝑃 𝑤" 𝑐
"∈STUVWXYVZ[

	, 

where C is the assigned class, 𝑃(𝑐) the percentage of documents in the training data from 

class c and	𝑃(𝑤"|𝑐) the fraction of how often word 𝑤𝑖 appears among all other words in 

class c (Jurafsky & Martin, 2017: 77). Unfortunately the latter imposes a problem 

because estimating the likelihood of a word that does not occur in class c (but occurs in 

others) results in 𝑃 𝑤" 𝑐 = 	0 and since the probabilities are naively multiplied, then the 

probability of class c is equal to zero despite other indicators. A simple way to overcome 

this is to use Laplace smoothing by incrementing the numerator and denominator to 

achieve non-zero probabilities as 

𝑝 𝑤" 𝑐 = 	
𝑐𝑜𝑢𝑛𝑡 𝑤", 𝑐 + 1
𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐b∈c ) 	+ |𝑉|

	, 

where |𝑉| is the size of the vocabulary (Jurafsky & Martin, 2017: 47). According to Peng 

et al. (2003: 320) Laplace smoothing is usually not efficient. Another way to overcome 

zero probabilities is by specifying and assigning a minimum value to probabilities less 

than a predefined threshold. Based on the previous empirical literature, the author will 

assemble a grid of the following parameters – minimum probability, threshold and 

Laplace smoothing parameter. The algorithm is particularly suitable for the scope of this 

thesis, as it provides great justification behind its predictions – the importance of a word 

could simply be inferred by comparing the posterior probabilities by classes.  

Logistic regression is a prevalent discriminative method used for modelling problems 

where the target is a categorical variable with two categories. Similarly to Naïve Bayes, 

it is a linear classifier – the posterior probabilities are modelled via a linear combination 
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of input features (Hastie et al., 2009: 119). To squash the linear outputs to a legitimate 

probability range, a logistic function in the form of 

𝑝 𝑐 𝑥 = 	
𝑒fghihj	

1 + 𝑒fghihj	
	, 

is applied, where 𝛽 is the weight vector, 𝛽l the bias term (intercept) and x the input 

features (Hastie et al., 2009: 119). The weights of the model are learned using conditional 

maximal likelihood estimation – the weights are chosen with the purpose of maximising 

the probability p of class c given input features x (a.k.a 𝑝 𝑐 𝑥 ). The objective function 

can be defined as a penalized likelihood  

1
𝑁

𝑦" 𝑥"n𝛽 + 𝛽l − log 1 + 𝑒fr
ghihj − 	𝜆 𝛼 𝛽 	? +

1
2
1 − 𝛼 𝛽 	@@	

1

">?

	, 

where the N is the number of observations. The second part of the objective function 

stands for penalisation using a combination of Lasso and Ridge regression (a.k.a elastic 

net penalty) which is important to avoid overfitting (Jurafsky & Martin, 2017: 97, Hastie 

et al., 2009: 73). In the first case, the ℓ? norm of weights is penalised, which results in a 

sparse solution. As many weights will be equal to zero, then it is a good method for feature 

selection. Ridge regression on the other hand penalises the ℓ@ norm of the weights (they 

are proportionally shrinked), which ensures that the weights do not get too large. The 𝜆 

parameter controls the amount of penalisation applied, whereas 𝛼 controls the distribution 

between ℓ? and ℓ@ penalisation. Given optimisation task is a convex problem (Jurafsky 

& Martin,  2017: 97), thus methods like gradient ascent can efficiently be applied. In this 

case, the weights are updated based on the partial derivative of the objective function with 

respect to the weights. To find the optimal model, the author will assemble a grid of 𝜆 

and 𝛼 values. 

3.3.3 Complex models 

XGBoost (extreme gradient boosting) is a highly efficient tree boosting implementation 

that is considered to be the de-facto choice of ensemble methods that has been applied in 

various tasks including natural language processing (Chen & Guestrin, 2016: 785). The 

algorithm employs gradient boosting by building numerous models in an additive fashion 
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on the gradient of the loss function being minimised (Friedman, 2002: 367). The set of K 

additive functions is learned by minimising the regularised objective that is defined as  

ℒ 𝜙 = 	 𝑙 𝑦", 𝑦" +	 𝛺 𝑓#
#"

	, 

where 𝑙 is a differentiable loss function (e.g. logloss) that measures the differences 

between predicted 	𝑦" and true values 𝑦" and 𝛺 is a penalisation term of model complexity 

(Chen & Guestrin, 2016: 786). The predicted values can be obtained by using all K trees 

as 

𝑦" = 	 𝑓#(𝑥"

z

#>?

)	,	 

where 𝑓# is the prediction from k-th decision tree and 𝑥" the input features of i-th 

observation. The additive learning starts from a constant prediction and adds a new 

function 𝑓# at each iteration. The complexity penalisation 𝛺 for each of the k trees is 

defined as  

𝛺 = 𝛾𝑇 +	
1
2
𝜆 𝑤}@	,

n

}>?

 

where the complexity of each tree is penalised in regards to the number of leaves (T) and 

the scores (w) on leaves by parameter 𝛾. The tree structure is then obtained in a greedy 

manner by using information gain as a split criterion.  

It has been shown (Friedman, 2002: 367) that the accuracy, risk of overfitting and speed 

of training can be significantly improved by considering a random subsample of training 

data. Similarly, Chen & Guestrin (2016: 787) stated it is beneficial to consider a random 

subsample of features for additive model and shrink the weights to avoid overfitting. The 

latter is accomplished by scaling the weights after each iteration by a learning rate 

coefficient. It is recommended to set the learning rate as low as possible, yet this may 

result in a slower convergence, because the influence of previous trees is reduced and 

more trees may be needed. As single trees are learned in a greedy manner, then to avoid 

overfitting, the author will set different limits on their depth. Concisely, the author will 

combine a grid of the following parameters to tune – learning rate, column sampling rate, 
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row sampling rate, the number of trees and maximum tree depth. Although the model is 

not easily interpretable, it will be used in given thesis due to its capacity that has ensured 

the first place at numerous machine learning competitions.   

Stacking is a process that includes training a second level learner on top of base learners. 

Da Silva et al. (2014: 178) showed that combining classifiers trained on diversified 

components can provide state-of-the-art results on various textual datasets. The same 

authors have stated that for an efficient ensembling procedure, the learners should be as 

diverse as possible to cover a prediction space as large as possible.  Therefore the author 

will use stacking to combine strong and diverse classifiers into one ensemble via logistic 

regression (as learning from just a few features does not require a more sophisticated 

approach). This also implies that the same parameters and principles described above 

apply to the super learner as well as base learners. 

3.4 Clustering algorithms 

To apply any of these supervised algorithms on word2vec embeddings, the words that 

appear in similar context will be grouped together to assemble a bag of concepts 

representation. The terms are grouped via clustering, which according to Zhang & Zhou 

(2004: 514) is an unsupervised task that aims to group similar observations into clusters 

while maximising the inter- and minimising the intracluster similarities. According to 

Passalis & Tefas (2017: 277), term vectors are most often grouped using k-means 

clustering such that the centers are used as new features. The algorithm works in an 

unsupervised and iterative manner by initialising K cluster centers (𝜇) and assigning 

observations (x) to a closest cluster (k) using Euclidean distance as  

𝑧"∗ = 𝑎𝑟𝑔𝑚𝑖𝑛#| 𝑥" − 𝜇# |@@	. 

After the reassignment, the cluster centers are updated as 

𝜇# = 	
1
𝑁#

𝑥"
":�r>#

	, 

where 𝑁# is the number of observations in cluster k (Murphy, 2012: 352). The process is 

repeated until no observations will be a reassigned. The initial cluster centers can be 

obtained in numerous principled ways, but due to their computational complexities, the 
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author will set the initial centers on a random basis. This process will be repeated multiple 

times to ensure that the model converged to a global optimum.  

However, according to Huang (2008: 51), Euclidean distance performs poorly on textual 

data and one of the most popular similarity measures applied is cosine distance that is 

defined as  

cos 𝑥, 𝑦 = 	
𝑥"𝑦"1

">?

𝑥"@1
">? 𝑦"@1

">?

	, 

where N is the dimensionality of the word embedding and 𝑥" and 𝑦" the value in i-th 

position of the corresponding word embedding. The cosine similarity of words x and y 

can be calculated using the inner product, therefore the measure is between minus one 

and one, where larger values indicate greater similarity and zero indicates decorrelation 

(orthogonality). This type of clustering is also referred to as spherical k-means (Dhillon 

& Modha, 2000: 149). Cosine similarity is particularly useful in given context, as 

according to Jurgovsky et al. (2016: 203) arithmetic operations on word2vec 

representations accurately reflect the semantic and syntactic properties, which makes the 

angle more relevant than the magnitude.  

Concisely, the author will employ will employ unsupervised algorithms like k-means and 

spherical k-means to make aforementioned supervised algorithms applicable on 

word2vec embeddings. 
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4 Experiment setup 
The empirical part of given thesis relies on a corpus that is compiled by the author using 

data from TransferWise Ltd. The raw corpus consists of ~13000 most recent incoming 

customer contacts in English. As the dataset contains sensitive and confidential 

information, then the contents (as well as the exact class distributions) can not be 

disclosed. The documents are annotated by the customer at the time of submitting the 

inquiry through a special contact form. The form includes a list of predefined categories 

that cover a variety of issues (e.g. questions around new products, verification, funding 

the payments etc.) that customers, once logged in, can choose from. However, not all 

annotations may be correct as the categories are rather generic and customers may not be 

familiar with the scope of them. To verify that we can be confident in labels provided by 

the customer, the author manually went over a relatively large subset of contacts.  

The corpus was compiled by following the principles of stratified sampling – the ratio of 

contacts from other categories is alike. The classification problem is set up as one-vs-

all – the author chose an issue with the highest potential and urgency and labelled all 

other categories as not related to this specific problem. The size of given corpus is limited 

to ~13000 documents due to a large number of experiments carried out using various 

methods described in the first chapter. The limit was set by gathering all contacts in the 

previous N days. It is estimated that nearly half of all incoming contacts are through the 

form. Based on prior expertise, the author is certain that there is no heavy bias between 

form and non-form contacts (e.g. in topics or quality of text) and as the issues can be 

ranked based on their urgency and complexity, then it is an excellent way for gathering 

training data.  

The optimal model will be obtained by employing classical as well as novel text 

representation methods combined with appropriate weighting schemes and carefully 

tuned classifiers. As the author has access to all contacts, then the optimal model together 

with corresponding feature representation, engineering and weighting method will be put 
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into practice using a significantly larger corpus by considering a longer look-back period. 

Once the model is put into practice, then to enhance its performance further, an 

operational procedure for relabelling the contacts can be implemented. The latter implies 

that wrong predictions get marked accordingly to avoid similar mistakes in the next 

training iteration. The applicability of the final model will be evaluated quantitatively as 

well as qualitatively. 

Before converting the corpus to any of the representations described in subchapter 1.2, 

the author will apply the following common filters: 

• lower case conversion – the case of a term is mostly irrelevant, thus words 

will be converted to their lower case to be interpreted alike; 

• removing stopwords due to their very low discriminative value;  

• grouping domain-specific words – the author has compiled a list of words 

that should be interpreted alike (e.g. names of partner banks, dates, 

reference numbers etc) that are concatenated into unified tokens; 

• removing words occurring in less than 5 documents, as they rarely carry 

any discriminative value. Along with this – email addresses, links etc. are 

removed;  

• removing punctuation, whitespaces, numbers and non-ASCII characters. 

After filtering, the number of words was reduced from ~20 000 to ~3000. This magnitude 

indicates the importance of filtering before applying any further transformations. The 

obtained training corpus is summarised in Table 6. Similarly, after converting the corpus 

to aforementioned classical representations, the author obtained ~8500 bigrams, ~2500 

trigrams and ~25000 two-skip-bigrams.  

Table 6. Summary of the corpus after filtering. 
Number of documents ~13000 
Document type Incoming customer contacts (in English) 
Annotation Contacts related to a specific problem 

Annotation type Boolean (one-vs-all), annotated by customers using a drop-
down of predefined values 

Class distributions 20% related to problem of interest, 80% all others 

Sampling strategy Most recent contacts; similar distributions amongst other 
contact types 
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The classification capacity will be evaluated on a confusion matrix, which assembles all 

predictions made by the model together with their actual labels. Based on this, false 

positives (FP) and false negatives (FN) can be distinguished. In the first case, the model 

classifies a contact to be related to the problem of our interest, whereas actually it is not. 

In case of false negatives, the inverse is true – the model classifies a contact to not be 

related to a problem of our interest, whereas it actually is. According to Ikonomakis 

(2005: 972), a common metric considered in evaluating text classifiers is accuracy, which 

indicates the overall ratio of correct decisions. However, it might not be suitable for this 

specific task due to the unbalanced dataset, as a high accuracy could be achieved by just 

assigning each document to the majority class. Sebastiani (2002: 37) has stated that 

precision and recall are one of the most common metrics used to evaluate the efficiency 

of text classification. Precision (a.k.a positive predictive value) is the fraction of true 

positives out of all positive predictions. This essentially indicates the fraction of contacts 

that is actually related to the problem of our interest out of all the contacts that the model 

predicts to be related. This is one of the most important metrics for adequately measuring 

product-related problems, however, a high value could be achieved by simply predicting 

the class of interest rarely. To make sure the model can retrieve most of the relevant 

contacts, the author will use recall (a.k.a sensitivity). This metric essentially measures the 

fraction of contacts related to the problem of our interest that the model was able to recall. 

Gu et al. (2008: 1023) have stated that precision and recall solely may not be sufficient, 

therefore the author will use their harmonic mean (F1-score). As models with similar F1-

scores can differ remarkably in their applicability, then similar models will additionally 

be compared based on their precision and recall. Thus, F1-score is used to solely rank 

numerous models, out of which the better-performing ones will be analysed more 

thoroughly.  

Fawcett (2003: 3) has stated that the analysis of receiver operating characteristic (ROC) 

curve is an efficient method to evaluate classification models on unbalanced datasets as 

it is a good trade-off between true positive and false positive rates. The author will use 

ROC curve analysis to take into consideration the class imbalance – the performance will 

be evaluated using the area under the ROC curve (AUC) which is always between zero 

and one (where greater values indicate a better model). The intuition behind constructing 

a ROC curve lies in ordering the predictions by probabilities and moving step-by-step 
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upward (if the decision is correct) and to the right (if the decision is incorrect) from the 

origin of coordinates. Therefore the AUC value for a model which makes no mistakes 

will be 1, as the curve will be constructed by only moving upwards. The latter implies 

that the false and true positive rates are correspondingly equal to 0 and 1. On the other 

hand, AUC value 0.5 is considered as a random baseline. Furthermore, analysing the ROC 

curve can provide useful insights about the behavior of different models and can aid in 

finding the optimal decision threshold that keeps false and true positive rates at an 

acceptable level to make the model applicable in practice. The principle of ROC curve is 

illustrated on Figure 1. 

 
Figure 1. Principle of ROC curve analysis. 

 
The performance of a model is traditionally evaluated by splitting the dataset into two 

– one that is used for training and one that is used for testing. It is important to evaluate 

the model on unseen data, otherwise the results will be too optimistic. According to Kuhn 

& Johnson (2013: 77-78) it may not be sufficient to evaluate the performance on a single 

holdout set, as the results may be biased. Furthermore, as the implementation is carried 

out iteratively, then there is a risk of overfitting towards the holdout set and obtaining a 

model that does not generalize well in practice. Kohavi (1995: 1145) observed that 

stratified 10 fold cross-validation has the lowest bias and variance compared to other 

cross-validation schemes and bootstrapping. Therefore the author will split the data into 

10 mutually exclusive subsets that follow similar class distributions. Thereupon 90% of 
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the data is used to train 10 models, leaving out a different 10% for validation at each time 

and the overall goodness of models will be estimated by averaging the F1-scores and 

AUC values obtained on corresponding holdout sets. The ROC curves for cross-validated 

models will be visualised by aggregating sensitivity and specificity pairs over every fold 

and prediction. 

The stacked model will be trained and evaluated in a similar manner – the author will first 

train a set of strong base learners (one for each model type) using grid search and stratified 

10 fold cross-validation while also saving the prediction probabilities on validation folds. 

These predictions will then be used to construct a new NxL training frame, where N is 

the number of rows in the training set and L is the number of base learners. This data is 

used to implement a logistic regression based meta-learner, using the same cross-

validation scheme as proposed above. 

The plentiful set of methods that the author will employ is summarised on Figure 2.  

 
Figure 2. Overview of applicable methods.  

 

Concisely, the author will train numerous model combinations using various text mining 

techniques to establish an automated text analysis model that can be used to prioritise and 

measure incoming customer contacts.  
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5 Results 

5.1 Classical methods benchmark 

The purpose of this subchapter is to establish a performance benchmark by using classical 

text representation methods. To achieve this, the author will train numerous models on 

each representation by considering every combination of aforementioned classification, 

feature engineering and weighting methods. Furthermore, the author will establish 

baselines for every model by using the complete dataset. 

Bag of words  

The progress of obtaining an optimal model using a bag of words representation 

combined with TFC weighting is presented on Figure 3.  

Figure 3. Unigram classifier performances by feature selection method using TFC 
weighting. 
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It is evident that using information gain and chi-square test ensure nearly similar results 

for every classifier. On the other hand, document frequency thresholding tends to perform 

slightly differently but is generally able to converge to the same optimal value, although 

at a slower pace. For methods other than Naïve Bayes, the convergence to baseline is 

achieved by using only 12.5% of original features. However, the incremental 

improvement is marginal and in case of computational limitations, using solely ~1% of 

the original features ensures more or less the same performance. Furthermore – the author 

reckoned that the performance did not improve any further by considering more than 

12.5% of features. In case of Naïve Bayes classifier, the performance on complete data is 

worse than using only a fraction of features seemingly due to the absence of regularisation 

in the algorithm. The best performance for the latter was achieved by selecting 3.125% 

of features with the highest chi-square values. Furthermore, the models tend to perform 

rather alike on various feature subsets. The same progress using TF weighting is presented 

in Appendix 1 due to the similar results. The optimal performance for each classifier and 

weighting scheme is summarised in Table 7.  

Table 7. Optimal unigram model performance by weighting method. 

 F1 AUC Feature selection 
metric 

% / number of 
features chosen 

Naïve Bayes 
TF 0.67 0.847 Chi-square 3.125% / ~95 

TFC 0.674 0.84 Information gain 12.5% / ~375 

Stacked ensemble 
TF 0.744 0.919 Chi-square 

12.5% / ~375 
TFC 0.75 0.925 Information gain 

XGBoost 
TF 0.735 0.917 

None 100% 
TFC 0.732 0.912 

Logistic regression 
TF 0.739 0.915 

Information gain 12.5% / ~375 
TFC 0.747 0.927 

 
The optimal model in terms of F1-score was obtained using a stacked ensemble. On the 

other hand, the greatest AUC value was achieved by logistic regression. Unlike previous 

studies, complex models like XGBoost and stacked ensembling did not outperform 

logistic regression considerably. Likewise, using a more sophisticated weighting scheme 

seemingly does not have any significant influence on the performance using bag of words 

representation. An F1-score of 0.75 is a relatively strong baseline – in that instance, the 

recall and precision were correspondingly 0.721 and 0.782. Thus the model was able to 

detect ~72% of relevant cases (related to the problem of our interest) and ~78% of its 
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relevant class predictions were correct. On the other hand, the superiority is insignificant 

compared to logistic regression, which had a recall and precision value correspondingly 

of 0.794 and 0.706. It is evident, that although the models have similar F1 values, they 

have a different behavior. In given context, the author sees logistic regression more 

suitable due to its interpretability and an advantage of detecting ~7% more contacts of 

our interest.  

Bigrams  
The author repeated the same analysis using a bigram representation. The progress on 

Figure 4 is reported using TFC weighting and the initial results of using TF weighting are 

similarly presented in Appendix 2. In case of bigrams, the complete data baseline, as well 

as the optimal model was achieved using only 6.25% of features instead of 12.5% as in 

the bag of words approach. However, as there are nearly three times more bigrams, then 

the actual number of features used was greater. 

 
Figure 4. Bigram classifier performance by feature selection method using TFC 
weighting. 
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The above-presented figure confirms that supervised feature selection methods ensure a 

similar performance. Furthermore, it is occasionally even impossible to distinguish their 

performance (e.g. in case of a stacked ensemble). The performance of Naïve Bayes 

classifier drops significantly using chi-square test after selecting ~3.125% of original 

features, whereas for other selection methods the convergence towards a weak baseline 

is slower. This collection of features also ensured the best performance for Naïve Bayes 

classifier. The optimal model for bigram representation was obtained by considering all 

of the features and using a stacked ensemble classifier. However, approximately the same 

results were obtained by using logistic regression on 6.25% of original features. The 

optimal performance for each classifier and weighting scheme are presented in Table 8.  

Table 8. Optimal bigram model performance by weighting method. 

 F1 AUC Feature selection 
metric 

% / number of 
features chosen 

Naïve Bayes 
TF 0.615 0.754 Chi-square 1.562% / ~135 

TFC 0.656 0.789 Information gain 3.125% / ~265 

Stacked ensemble 
TF 0.708 0.895 Chi-square 6.25% / ~530 

TFC 0.75 0.926 None 100% / ~8500 

XGBoost 
TF 0.69 0.88 Information gain 

6.25% / ~530 
TFC 0.718 0.908 Information gain 

Logistic regression 
TF 0.70 0.893 Information gain 6.25% / ~530 

TFC 0.746 0.922 None 100% / ~8500 

 

It is evident that the performance of stacked ensembling on bigrams is equivalent to the 

one obtained on unigrams, yet the performance of other algorithms tends to deteriorate. 

Besides this, having an appropriate weighting scheme is presumably relevant for bigrams, 

as each algorithm seems to perform significantly better using TFC weighting compared 

to TF. In view of the fact that using ~8500 bigrams achieves the same result as using ~375 

unigrams, the use of bigrams remains unjustified and will not be analysed more 

thoroughly. 

Trigrams 

The number of trigrams is appreciably smaller (even less than there are unigrams). The 

results on Figure 5 are reported using TFC weighting and the outcome of TF weighting 

is presented in Appendix 3. In case of trigrams, the complete data baseline in terms of 

F1-score was slightly below 0.7 for logistic regression and stacked ensembling. On the 
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other hand, XGBoost and Naïve Bayes perform noticeably worse – their best performance 

is correspondingly 0.676 and 0.539. Once again, the difference of F1-scores for two best 

models is insignificant.  

 
Figure 5. Trigram classifier performance by feature selection method using TFC 
weighting. 
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performances for every model with corresponding weighting method are summarised in 

Table 9.  
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It is evident that the overall best result in terms of F1-score was obtained using logistic 

regression – the precision and recall were correspondingly 0.68 and 0.76. However, in 

terms of AUC value, a slightly better result was obtained using stacked ensembling. In 

this case, the precision and recall were correspondingly 0.67 and 0.755.  

Table 9. Optimal trigram model performance by weighting method. 

 F1 AUC Feature selection 
metric 

% / number of 
features chosen 

Naïve Bayes 
TF 0.4 0.54 DF thresholding 1.562% / ~40 

TFC 0.539 0.693 Chi-square 3.125% / ~80 

Stacked ensemble 
TF 0.7 0.89 Information gain 50% / ~1250 

TFC 0.709 0.907 Chi quare 25% / ~625 

XGBoost 
TF 0.59 0.795 Chi-square 25% / ~625 

TFC 0.676 0.86 Chi-square 12.5% / ~315 

Logistic regression 
TF 0.7 0.89 Information gain 50% / ~1250 

TFC 0.713 0.904 Chi-square 25% / ~625 
 

For a trigram representation, it is preferable to employ logistic regression compared to 

stacked ensembling due to the slightly better precision and recall values. However, as 

none of the above-presented combinations outperform the simple unigram model, then 

the author will not go into any further details of given models.  

Bag of uni-, bi- and trigrams 
As every representation method seems to have its own strengths, then for the following 

experiments, the author combined them all together. The results on Figure 6 are reported 

using TFC weighting and the same progress on TF weighting is presented in Appendix 4.  

It is evident that document frequency thresholding ensures noticeably worse results for 

every model except stacked ensembling. However, the results are noticeably better using 

TF weighting – document frequency thresholding seems to perform comparably well for 

every model except Naïve Bayes. Furthermore, for Naïve Bayes the latter seems to ensure 

appreciably better results when using TF weighting. The fastest convergence towards a 

complete data baselines was ensured using XGBoost. However, its optimal result is 

outperformed by logistic regression and stacked ensemble. The best result for every 

model except Naïve Bayes was obtained using ~6.25% of features (~875). On the other 

hand, the optimal Naïve Bayes model was achieved using 1.562% (~220) features. 

However, as it is substantially worse than other methods, then it will not be considered. 
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Figure 6. Uni-, bi- and trigram classifier performances by feature selection method 
using TFC weighting. 

 
Document frequency thresholding ensures nearly an optimal result for stacked ensemble, 

whereas for other algorithms the F1-score does not seem to converge near the optimum. 

The optimal model performances are presented in Table 10. 

Table 10. Uni-, bi- and trigram optimal model performances by weighting method. 

 F1 AUC Feature selection 
metric 

% / number of 
features chosen 

Naïve Bayes 
TF 0.682 0.81 

Information gain 1.562% / ~220 
TFC 0.67 0.8 

Stacked ensemble 
TF 0.757 0.924 None 100% / ~14000 

TFC 0.762 0.931 Chi-square 6.25% / ~875 

XGBoost 
TF 0.74 0.918 None 100% / ~14000 

TFC 0.727 0.916 Information gain 6.25% / ~875 

Logistic regression 
TF 0.751 0.924 

Information gain 6.25% / ~875 
TFC 0.756 0.933 

 
It can be seen that for Naïve Bayes and XGBoost, the optimal performance was achieved 

using TF weighting, whereas for other algorithms, using TFC ensured a slightly better 
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result. The best performance for XGBoost was achieved by using all ~14000 features, yet 

it is not advised due to the computational complexity. The optimal model in terms of F1-

score was achieved by using ~875 features and a stacked ensemble. In this case, the 

precision and recall were correspondingly 0.716 and 0.816. However, nearly the same 

result was obtained using the same number of features with logistic regression, where the 

precision and recall were correspondingly 0.723 and 0.798.  

Two-skip-bigrams 
By far the computationally heaviest experiments were conducted using two-skip-bigrams. 

The results obtained on TF weighting are presented in Appendix 5. The complete data 

baseline for latter was established only for logistic regression, as other methods were not 

capable of handling ~25000 features. The results on Figure 7 are reported using TFC 

weighting. 

Figure 7. Two-skip-bigram classifier performances by feature selection method using 
TFC weighting. 

 
Once again it is evident, that logistic regression and stacked ensemble ensure similar 

performances. On the other hand, the optimal performance of XGBoost is slightly worse 
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compared to the aforementioned models. It can be seen, that for large dimensional 

datasets, information gain and document frequency thresholding ensure indistinguishably 

similar results. For every model except Naïve Bayes, the convergence towards complete 

data baseline was achieved using at least 3.125% (~785) features. Considering the 

computational complexity added by including additional features, the author sees using 

only ~1% of features sufficient, as the incremental improvements after this are marginal. 

Furthermore, the author observed that considering more than 6.25% of features do not 

enhance the performance any further. The optimal performances for every model are 

presented in Table 11.  

Table 11. Two-skip-bigram optimal model performances by weighting method. 

 F1 AUC Feature selection 
metric 

% / number of 
features chosen 

Naïve Bayes 
TF 0.652 0.78 

Information gain 0.781% / ~195 
TFC 0.645 0.773 

Stacked ensemble 
TF 0.735 0.919 Information gain 

6.25% / ~1565 
TFC 0.745 0.926 Chi-square 

XGBoost 
TF 0.715 0.9 

Information gain 6.25% / ~1565 
TFC 0.706 0.897 

Logistic regression 
TF 0.73 0.919 Information gain 

6.25% / ~1565 
TFC 0.748 0.923 Chi-square 

 

It can be seen that the choice of weighting scheme does not affect the performance 

remarkably. For XGBoost and Naïve Bayes, the optimal performance was achieved using 

TF weighting, yet the difference compared to TFC weighting is marginal. The best model 

in terms of F1-score was achieved using ~1565 features deemed important by chi-square 

statistic. The F1-score of 0.748 was obtained by recall and precision values being 

correspondingly 0.77 and 0.736. On the other hand, the best model in terms of AUC value 

(0.926) was obtained using a stacked ensemble, which had recall and precision values 

correspondingly equal to 0.72 and 0.77. Considering the interpretability and 

performances of both, the author sees logistic regression as a better choice.  

Latent semantic analysis 

To ascertain if methods that aim to capture the semantic meaning of words further 

enhance the performance, the author employed latent semantic analysis using TF and TFC 
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weighting. On Figure 8, the number of factors was varied proportionally to the fraction 

of words that were considered in the unigram feature selection process. 

 
Figure 8. LSA classification performance by weighting method and number of factors. 

 

As it can be seen, then an appropriate weighting scheme is relevant for latent semantic 

analysis – the optimal performance is nearly achieved by using only 3 factors and TFC 

weighting. However, considering additional factors does not seem to improve the 

performance remarkably in this case. The optimal performances using latent semantic 

analysis are presented in Table 12. 

Table 12. LSA optimal model performances by weighting method. 
 F1 AUC Number of factors  

Naïve Bayes 
TF 0.57 0.79 11 

TFC 0.7 0.89 23 

Stacked ensemble 
TF 0.733 0.91 

361 
TFC 0.743 0.922 

XGBoost 
TF 0.709 0.9 

361 
TFC 0.738 0.918 

Logistic regression 
TF 0.732 0.909 

361 
TFC 0.745 0.923 

 

In given case, the models tend to converge to similar performances regardless of 

employed weighting method. Although using latent semantic analysis does not generally 

provide a better result, then for Naïve Bayes it ensured the best performance compared to 

every other representation method. The optimal performance is obtained by using logistic 

regression, 361 factors and TFC weighting – the corresponding F1 and AUC values are 
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0.745 and 0.923. In that case, the precision and recall were correspondingly 0.72 and 

0.774. However, as the factors are not directly interpretable and using LSA does not 

outperform the current benchmark, then it is not favored. Furthermore, the performance 

is actually worse than of any other classical text representation method (except trigrams).  

The optimal interpretable and complex models for every classical representation method 

are summarised in Table 13.  

Table 13. Optimal models for classical representation methods. 
Rank Algorithm Representation F1 AUC # of predictors 

1. 
Stacked ensemble Uni-, bi- and 

trigrams 
0.762 0.931 

~875 
Logistic regression 0.756 0.933 

2./3. 
Stacked ensemble 

Unigrams 
0.75 0.925 

~375 
Logistic regression 0.747 0.927 

2./3. 
Stacked ensemble 

Bigrams 
0.75 0.926 

~8500 
Logistic regression 0.746 0.922 

4. 
Stacked ensemble 

Two-skip-bigrams 
0.745 0.926 

~1565 
Logistic regression 0.748 0.923 

5. 
Stacked ensemble 

LSA 
0.743 0.91 

361 
Logistic regression 0.745 0.923 

6. 
Stacked ensemble 

Trigrams 
0.709 0.907 

~625 
Logistic regression 0.713 0.904 

 

It is evident that models built upon any representation except trigrams perform alike. 

Combining uni-, bi- and trigrams ensures a slightly better performance than other 

methods. It appeared that for every representation, the optimal complex model was 

stacked ensemble and the optimal interpretable model was logistic regression. Harnessing 

bigrams and two-skip-bigrams is not advised due to the large dimensionality and the 

training complexity accompanied by this. Furthermore, it is evident that optimal complex 

models do not outperform logistic regression noticeably. Referring to the analysis 

provided above, the author favours using logistic regression and a combination of uni-, 

bi- and trigrams. Concisely, this is the established baseline that will be considered for 

further analysis. 
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5.2 Novel methods benchmark 

To evaluate the expediency of recognising the semantic meaning of words, the author 

employed word2vec embeddings by creating a bag of concepts representation such that 

the number of clusters was varied proportionally to the fraction of words that were 

considered in the unigram feature selection process. As a baseline, the author used simple 

coordinate-wise averaging such that all word embeddings in a specific document were 

summed up and the resulting vector was divided by the number of words in given 

document. The progress of obtaining an optimal model using word2vec embeddings is 

presented on Figure 9.  

 
Figure 9.  Bag of concepts performance by weighting method and number of concepts. 
 
It is evident that the weighting scheme, as well as the distance measure in given context 

have no noticeable impact on the performance. Furthermore, despite the choice of 

underlying method, the best performance on bag of concepts representation was obtained 

using a stacked ensemble. However, in most of the cases logistic regression behaves 
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on the other hand performs noticeably worse than other algorithms and it is the only 

algorithm that does not converge to the baseline obtained by averaging the word 

embeddings. It can be seen that simply averaging the embeddings provides a relatively 

strong baseline, yet from a practical perspective using a bag of concepts is preferred due 

to its interpretability. To have a better overview of the concepts, the author performed a 

sanity check and listed random subsets of words belonging to clusters formed by both 

clustering methods in Table 14. It needs to be stated, that the concepts are not ordered, 

thus they do not need to be similar for both methods. 

Table 14. An example of grouped terms by clustering method. 
K-means 

 Concept 1 Concept 2 Concept 3 

Words 

happy 
pleased 

impressed 
satisfied 
excited 

inconvenience 
delay 
glitch 

delayed 

dollar 
euro 
rand 
rupee 
peso 

Spherical K-means 
 Concept 1 Concept 2 Concept 3 

Words 

companies 
businesses 
providers 
vendors 
suppliers 

indicate 
reflect 

indication 
suggest 

indicating 

dollar 
currency 

euro 
rand 

sterling 
 

It can be seen that both clustering methods work relatively well, as the concepts are 

meaningful in given context. For k-means, concepts 1 and 2 both indicate customer 

satisfaction, although different polarity, thus grouping them differently seems reasonable. 

Same applies for currency-related concepts – both methods happened to have one such 

cluster. For spherical k-means, concept 1 could be labelled as organisations and concept 

two seems to resemble any indications. It is evident that both clustering methods perform 

relatively well, as the clusters seem reasonable.  

Concisely, the optimal results for stacked ensembling and logistic regression are alike, 

yet considering their interpretability, using the latter is advisable. The benchmark for 

novel methods was obtained using logistic regression, TFC weighting and spherical 

clustering with 361 clusters. Its F1-score of 0.72 is ensured by precision and recall values 
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being correspondingly 0.68 and 0.77. Although it is not better than the optimal model 

obtained on a classical representation, it needs to be stated that both representations have 

their own strengths, which may make them qualitatively exceedingly different. Therefore 

it is beneficial to evaluate its suitability in the next subchapter. 

5.3 Optimal model comparison 

Subsequently, the author will compare the performances of optimal models obtained on 

both classical (logistic regression with 6.25% of uni-, bi- and trigrams) and novel (logistic 

regression with 361 spherical clusters) representations. The purpose of this subchapter is 

to evaluate the practical applicability of given models quantitatively as well as 

qualitatively. The performance of comparable models is recalled in Table 15. 

Table 15. Optimal novel and classical method performances. 
 F1 AUC Precision Recall 

Novel benchmark 0.722 0.91 0.685 0.768 
Classical benchmark 0.756 0.933 0.723 0.797 

 

The optimal model on classical representation was achieved using the following 

parameters – 𝛼 = 0	&	𝜆 = 0.0332. This means that the weights of the model were 

penalised using only Ridge regression. The latter indicates that the feature selection 

process was efficient, as the optimal result was obtained using all the predictors. Out of 

~875 features used, 36% were unigrams, 48% bigrams and 16% trigrams. On the other 

hand, the novel benchmark was obtained using elastic net penalty, such that 𝛼 =

0.2	&	𝜆 = 0.0536. This indicates, that some learned concepts were irrelevant and using 

a feature selection process for given representation may be beneficial.  

To provide an overview of the qualitative differences between aforementioned models, 

the author will disclose and rank the 5 most important terms in Table 16 based on the 

learned weights. The author will also provide if they increase (+) or decrease (–) the 

probability of the contact being related to the problem of our interest. Furthermore, for 

the bag of concepts benchmark, the author will provide two terms related to the 

corresponding concepts. From a qualitative perspective it is evident, that both models use 

remarkably different features. This indicates the potential of stacking, as the models 

seemingly cover a different prediction space.  
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Table 16. TOP5 predictors for classical and novel benchmark models. 
Classical benchmark Novel benchmark 

1. status (+) 
2. transfer (+) 
3. status transfer (+) 
4. money (+) 
5. card (–) 

1. concept 96 (+) 
2. concept 115 (–) 
3. concept 251 (+) 
4. concept 346 (+) 
5. concept 276 (–) 

(question, query) 
(launched, introduced) 
(permanently, temporarily) 
(difficult, challenging) 
(property, land) 

 

To have a better overview of the covered prediction space, the author has visualised the 

relevant class predictions (only the ones we are interested in, the minority class) that were 

the same for both models on Figure 10. Apropos, the color indicates if the decision was 

correct. 

 
Figure 10. Relevant class predictions and their correctness. 
 
It is evident that the models make distinguishably different mistakes, as the union of their 

predictions only covers ~10% of all relevant cases. However, both models are good on 

their own. Furthermore, it can be seen that for cases where the classical benchmark is 

very certain in its prediction (probability near 1), the probability assigned by the novel 

benchmark varies greatly. As the predictions are rather diverse, then it confirms the 

potential of stacking, such that the base learners are obtained on different (classical and 

novel) representation schemes.  

To apply any of these benchmark models in practice, we need to be sure they generalise 

on unseen data, thus we have not overfitted them. To evaluate their suitability, the author 
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has visualised corresponding ROC curves obtained on training and cross-validation sets 

on Figure 11.  

 
Figure 11.  Train and cross-validation sets ROC curves. 

 

It can be seen that there is no evident indication of overfitting – the curves reported on 

train and cross-validation sets are relatively similar. Therefore we can be certain, that the 

models apply in practice as expected. 

To have a more principled overview of their applicability, the author will visualise 

corresponding cross-validation ROC curves on Figure 12.  

 
Figure 12. ROC curves of benchmark models.  
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The author has also noted the decision thresholds (horisontal and vertical lines) that 

ensure an acceptable level of false and true positives that is necessary for applying the 

models in practice. For the classical benchmark, the decision threshold which maximises 

the F1-score ensures false and true positive rates correspondingly 0.0851 and 0.7824. In 

other words, the model is able to detect ~78.2% of relevant cases such that ~8.5% of 

contacts that are not of our interest are falsely marked as relevant. For the novel approach, 

the corresponding values are ~76.6% and 10.6%.  

Considering the above-presented analysis, the author sees both models applicable in 

practice, yet using the one obtained on classical representation is favoured.  
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Conclusion 
In a world of stiff competition, it is crucial for companies to build decision support 

systems that can extract useful information from one of the most abundant sources of 

information – written text. Given thesis was with a practical nature and the purpose of it 

was to implement an automated text analysis model using data from TransferWise Ltd. 

that can be used to efficiently prioritise and measure incoming customer contacts. The 

practical application of given thesis is particularly important – automatically analysing 

thousands of customer inquiries provides exceptionally valuable insights that can be used 

to optimise operational procedures and solve customer problems in the most convenient 

way.   

In the first part of the thesis, the author gave an overview of the practical motivation 

behind building automated text analysis solutions. Thereby the author also affirmed the 

potential of other apparent text mining opportunities. The theoretical part mainly focused 

on providing a thorough overview of applicable text representation, feature engineering 

and machine learning methods. Apropos, besides prevalent methods, the author also 

considered novel text representation techniques like word2vec and complex classification 

algorithms like xgboost and stacking. The empirical part relied on a corpus compiled by 

the author using data from TransferWise Ltd. To establish the optimal model, the author 

carried out numerous experiments on every method combination by using grid search and 

stratified 10-fold cross-validation. The numerous models were ranked based on their F1-

score and the suitability of top performing models was respectively analysed using AUC 

value and ROC curve analysis as well as the building blocks of F1-score – the precision 

and recall.  

The tangible model was established using logistic regression with a mixture of uni-, bi- 

and trigrams. It was sufficient to only consider 6.25% of most relevant terms based on 

either information gain or chi-square statistic. It appeared that both supervised feature 

selection methods broadly ensured alike performances. Furthermore, the only 



 51 

unsupervised feature selection criteria, document frequency thresholding, generally 

converged to the same optimum, but at a slower pace. It was evident, that for rather short 

texts like emails, the choice of weighting scheme is mostly irrelevant. Similarly, context-

aware embeddings like word2vec and latent semantic analysis did not ensure a better 

result. In case of underlying classification algorithms, it was evident that the superiority 

of more complex models is insignificant and considering their lack of interpretability, the 

use of them remains unjustified.  

The purpose of given thesis was fulfilled – the established model was able to detect on 

average ~80% of contacts related to the problem of our interest such that ~72% of its 

relevant class predictions were correct. Although there is room for further enhancements, 

this is a relatively strong baseline and the author sees the model efficiently applicable in 

practice. The model is considerably better than a first-in-first-out approach, thus it can be 

used for prioritising incoming contacts.  

As a next step, the author sees retraining the model on a significantly larger dataset and 

integrating it to operational procedures. Besides this, the author emphasizes the potential 

of complexity based prioritisation, thus the similar framework shall be applied on a 

slightly different assignment. From a theoretical perspective, the author sees the potential 

of employing alternative distance measures for compiling a bag of concepts 

representation as well as compiling the same representation on sequences of words 

instead of unigrams. Furthermore, as models trained on novel and classical 

representations made distinguishably different mistakes, then it can be beneficial to train 

a stacked ensemble by using corresponding representations for different base learners.  
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Appendices 
Appendix 1. Unigram classifier performances by feature selection method using term 
frequency weighting 
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Appendix 2. Bigram classifier performances by feature selection method using term 
frequency weighting 
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Appendix 3. Trigram classifier performances by feature selection method using term 
frequency weighting 
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Appendix 4. Uni-, bi- and trigram classifier performances by feature selection method 
using term frequency weighting 
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Appendix 5. Two-skip-bigram classifier performances by feature selection method 
using term frequency weighting 
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