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INTRODUCTION 

Countries all over the world are establishing rules to reduce the amount of 
simple sugars (sucrose, glucose, fructose) added to foods and drinks, because 
while improving taste of the food, they also cause obesity (US Department of 
Agriculture 2015; Vos et al. 2017). The pyramid of food aids in choosing the 
proper food for staying healthy and preventing obesity-related diseases. The 
base of the food pyramid is composed of cereals and vegetables, leaving only 
minor space at the top for added sugars (Montagnese et al. 2015). Diet con-
taining a sufficient amount of whole grain cereals and vegetables is rich in food 
fibre. For commercial applications those complex carbohydrate molecules are 
extracted from plants or synthesized enzymatically. This PhD study deals with 
two enzymes applicable for synthesis of novel food fibre. 

Food fibre has a prebiotic function – it passes the stomach unchanged and is 
degraded only when it reaches the large intestine providing energy and carbon 
source for probiotic bacteria – bifidobacteria, lactobacilli and others (Verspreet 
et al. 2016). The most popular available prebiotic is inulin – a polymeric fructan 
extracted from plants (mostly chicory) in which fructose residues are bound by 
β-2,1 linkages. There is also another natural fructan – levan – which is syn-
thesized mostly by bacteria; it has β-2,6 linkage between the fructose residues 
and has usually a very high molecular weight. According to several reports, 
levan and levan-type fructo-oligosaccharides (L-FOS) have even higher pre-
biotic efficiency than inulin and inulin-type fructo-oligosaccharides (I-FOS) 
(Gimeno-Pérez et al. 2015; Porras-Domínguez et al. 2014; Yamamoto et al. 
1999).  

Our workgroup contributes extensively to synthesis and development of 
fructose-based novel prebiotics, focusing mainly on levan-type fructans. For 
that, we have been using two enzymatic approaches: i) synthesis of levan-type 
fructans using a levansucrase, and ii) hydrolysis of levan into fructo-
oligosaccharides (FOS) using an endo-levanase.  

Levansucrase Lsc3 from a plant-pathogen Pseudomonas syringae pv. tomato 
is highly active and stable catalyst which we have studied and used for the 
synthesis of levan and FOS (Refs I–IV). Through structure prediction and 
mutational analysis of Lsc3 we have identified the enzyme’s key catalytic 
amino acids and those implicated in its polymerizing function (Refs II–III).  

Endo-levanase BT1760 from human gut commensal Bacteroides thetaiotao-
micron characterized in Refs IV and V is the fastest endo-levanase described so 
far. Recently, we solved the crystal structure of this enzyme and of its catalyti-
cally inactive mutant (Ref V). As expected, the structures revealed a fold typical 
for a glycoside hydrolase family 32 (GH32) enzymes: an N-terminal β-propeller 
connected with a C-terminal β-sandwich module. The ligand-bound structure of 
the protein revealed a novel topology of the active site pocket among the 
fructan-acting enzymes. Ref V characterizes binding of the levan chain into the 
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substrate pocket, specific roles of C-terminal and N-terminal domains of the 
protein and deeper analysis of levan hydrolysis.  

This work was financed by Estonian Research Council (grants ETF7528, 
ETF9072, PUT1050), and by European Regional Development Fund (grant 
3.2.0701.12-0041). 
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I REVIEW OF LITERATURE 

1.1. Probiotics 

Bacterial community of the human gut contributes to biological functions 
crucial for health. It participates in vitamin synthesis and food fibre degradation, 
provides energetic metabolites for colonocytes, modulates immune response 
and exerts systemic effects on the host, influencing even the brain (Collins, 
Surette, and Bercik 2012; Hemarajata and Versalovic 2013; Sherwin et al. 2016; 
Thaiss et al. 2016). Disturbed gut microbiota-host homeostasis in humans is 
associated with several diseases and pathologies: irritable bowel disease, 
ulcerative colitis and Crohn’s disease as well as allergies, asthma, cardiovascular 
disease and obesity (Carding et al. 2015; Kamada et al. 2013; Toor et al. 2019). 

The concept of balancing the gut microbiota by oral consumption of 
beneficial (probiotic) microorganisms has intrigued humans for a long time. The 
term “probiotic” first appeared in 1974 and has evolved to a current-day 
definition: “Live microorganisms of human origin that confer a health benefit 
on the host when administered in adequate amounts” (Hill et al. 2014; Suez et 
al. 2019). Probiotic bacteria are commonly added to dairy products, snack and 
nutrition bars, breakfast cereals and infant formulas. Aside of food products, 
they are also commercialized as lyophilised bacteria in pills sold in pharmacies 
over the counter (Hoffmann et al. 2014). In general, probiotic bacteria are 
expected to reach the gut and stay and multiply there to exert positive effect on 
gut microbiota and human health. 

Probiotic bacteria have been successfully used as preventive or therapeutic 
agent against (antibiotic-associated) acute diarrhoea (Feizizadeh, Salehi-
Abargouei, and Akbari 2014; Van Niel et al. 2002; Szajewska et al. 2013) as 
well as Clostridium difficile-associated diarrhoea (Goldenberg et al. 2017; Shen 
et al. 2017), especially when administrated right after the treatment with anti-
biotics. Probiotics have also aided to relieve symptoms of irritable bowel 
syndrome, prevent neonatal sepsis and necrotizing enterocolitis (Ford et al. 
2018; Olsen et al. 2016; Rao et al. 2016). They suppress pathogens in the gut, 
improve the barrier function of the gut epithelium and provide protection 
against physiological stress (Suez et al. 2019). According to some reviews, 
probiotics even help to reduce the severity, duration and incidence of common 
cold (acute respiratory infections) (Hao et al. 2011; King et al. 2019).  

Among probiotic bacteria, certain strains of lactobacilli and bifidobacteria, 
as well as mixtures of these strains, have the longest history of marketing and 
safe usage (Douillard and de Vos 2019). Extensive research in the field of 
probiotics is currently focused on (i) identifying and selecting new strains of 
lactobacilli and bifidobacteria, (ii) genetically modifying already described ones 
and (iii) searching completely new, “next-generation” probiotic species 
(Douillard and de Vos 2019). These “next-generation therapeutic bacteria” are 
either butyrate producers such as Faecalibacterium prausnitzii or efficient poly-
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saccharide degraders such as species of Bacteroides (Chassard et al. 2008; 
Louis and Flint 2009; Martín, Bermúdez-Humarán, and Langella 2018; Sheridan 
et al. 2016; Sonnenburg et al. 2010). In general, fermentation of complex dietary 
fibre increases the level of short-chain fatty acids (SCFA), mostly acetate, 
butyrate and propionate in the gut lumen, which in turn increases the solubility 
and absorption of calcium and expression of calcium-binding proteins (Scholz-
Ahrens et al. 2007). From SCFA produced in the gut, butyrate is probably the 
most important: it is a key energy source for colonocytes, maintains epithelial 
hypoxia (<1% oxygen) protecting indigenous gut bacteria from toxic oxygen, 
and is an important regulator of gene expression, inflammation, differentiation 
and apoptosis of host cells (Hamer et al. 2008; Litvak, Byndloss, and Bäumler 
2018; Louis and Flint 2009). The dominant butyrate producers in the gut are 
F. prausnitzii, Roseburia spp., Eubacterium rectale, E. hallii and Anaerostipes 
spp. (Louis and Flint 2009; Sheridan et al. 2016). Importantly, the poly-
saccharide degraders (Bacteroides, Akkermansia muciniphila and others) can 
cross-feed butyrate producers with fermentation products (such as acetate and 
lactate) promoting thereby butyrate production in the gut (Belzer et al. 2017; 
Mahowald et al. 2009). 

As next-generation probiotic bacteria are natural gut residents, they are 
highly sensitive to oxygen and have longer colonisation time compared to tradi-
tional probiotics (Schmidt 2013). Therefore, their cultivation, manufacturing, 
preservation and administration is complicated (Broeckx et al. 2016; Fu et al. 
2018). An alternative approach to keep the gut microbiota in healthy balance is 
to support the growth of resident probiotic bacteria with specific food 
ingredients – prebiotics. 
 
 

1.2. Prebiotics 

Diet is one of the most important drives in gut microbiota manipulation. Thus, it 
is possible to enhance multiplication and activity of health-beneficial (probiotic) 
bacteria by consuming specific food ingredients – prebiotics. According to 
definition, prebiotics are substrates that are selectively utilized by microbiota of 
the host, producing health benefits to the host (Verspreet et al. 2016). In 
general, they are non-digestible di-, oligo- and polysaccharides and are often 
called the food fibre (Khangwal and Shukla 2019). Tolerance to gastric acid and 
resistance to mammalian digestive enzymes are the key properties of prebiotics 
ensuring their safe passage through stomach and small intestine (Cummings, 
Macfarlane, and Englyst 2001; Verspreet et al. 2016). After reaching the colon, 
prebiotics are fermented by gut microbiota mainly to SCFA, but vitamins and 
other compounds are produced as well (Fernando et al. 2018). Health benefits of 
dietary fibres depend on their properties as they differ in molecular size and 
composition, solubility, viscosity, water-binding ability and fermentability by 
colon microbiota (Fuller et al. 2016; Verspreet et al. 2016). In general, pre-
biotics stimulate the immune system, enhance absorption and digestion of 



 

13 

nutrients, and reduce adhesion and growth of pathogens (Cummings et al. 2001; 
Gibson et al. 2017; Khangwal and Shukla 2019). Dietary fibre also increases the 
volume of chyme and decreases the transit time thereby alleviating constipation 
and reducing the colon cancer risk (Cummings and Macfarlane 2002; Fuller et 
al. 2016; Pranami, Sharma, and Pathak 2017; Slavin 2013).  

In nature prebiotics occur in several vegetables such as leeks, onion, garlic, 
Jerusalem artichoke, chicory, soybeans, but also in mushrooms and cereals 
(Geigerová et al. 2017; Van Loo et al. 1995). Some commercially produced 
prebiotics are inulin and I-FOS (see next paragraph), isomalto- and galacto-
oligosaccharides (Khangwal and Shukla 2019; Madsen et al. 2017; Öner, 
Hernández, and Combie 2016). Inulin from chicory has received an EU health 
claim whereas other potential prebiotics, i.e. galacto- and xylo-oligosaccharides, 
soybean oligosaccharides and some others are considered as candidate prebiotics 
or novel foods (Gibson et al. 2017; Verspreet et al. 2016). Prebiotics are directly 
extracted from plants, produced by enzymatic or chemical degradation of 
polymeric sugars or synthesized enzymatically (Madsen et al. 2017). Many 
pharmaceutical and food companies have high interest in cost-efficient 
production of prebiotics, and specific enzymatic degradation of polymeric 
substrates into prebiotic oligosaccharides is the most common way to produce 
present-day high-quality prebiotics (Khangwal and Shukla 2019).  
 
 

1.3. Fructans as prebiotics 

Fructans can be divided into two groups according to linkage between the 
fructose residues in polymer or oligomer. Inulin and I-FOS are fructans cate-
gorized as “Generally Recognized as Safe” for use in food since 2002 (Flores, 
Morlett, and Rodríguez 2016). In inulin (degree of polymerization, DP>10) or  
I-FOS (DP<10) molecules β-2,1 linkage is synthesised between the fructose 
residues and every fructan chain starts with the glucose residue (Kelly 2008; 
Morris and Morris 2012). Inulin is extracted from plants: chicory and dahlia 
roots, or Jerusalem artichoke, but it is also synthesised by some microorganisms 
(Ni et al. 2019; Zhu et al. 2016). Inulin from plants has typically a linear 
structure whereas bacterial inulin has branches connected with the main β-2,1 
chain through β-2,6 linkages (van Hijum et al. 2006; Lopez, Mancilla-Margalli, 
and Mendoza-Diaz 2003).  

As required for prebiotics, inulin and I-FOS are not degraded by mammalian 
digestive enzymes, but are fermented in the colon by many health-beneficial 
bacteria, for example lactobacilli, bifidobacteria and butyrate-producing Rose-
buria inulinivorans (Roberfroid and Slavin 2000; Scott et al. 2006). Many 
species of Bacteroides are common residents of the gut. Of those, B. caccae, 
B. ovatus, B. uniformis and B. fragilis, were able to degrade inulin, though 
B. vulgatus and B. thetaiotaomicron were not (Sonnenburg et al. 2010). Inulin 
has many beneficial health effects to humans: acting against obesity, diabetes 
and hypertension, promoting mineral absorption in colon, controlling inflam-
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matory bowel disease, relieving constipation, stimulating the immune system 
and regulating endocrine system, glucose and lipid metabolism (Roberfroid 
1993, 2007; Schaafsma and Slavin 2015; Vogt et al. 2015; Wang 2009). Recent 
studies have shown that I-FOS produced from inulin using endo-inulinase, have 
a high potential to be used in infant milk formulas to mimic human milk 
oligosaccharides (Akkerman, Faas, and de Vos 2019). Importantly, a sweetener 
difructose dianhydride, which also has a prebiotic effect, is also produced 
enzymatically from inulin (Zhao et al. 2011). 

Levan, on the other hand, is a fructan with a backbone of β-2,6 linked fructose 
residues and branches added to it through β-2,1 linkage. Levan is produced 
from sucrose in levansucrase reaction by numerous bacteria as a biofilm com-
ponent (Benigar et al. 2016; Koczan et al. 2009; Laue 2006; Sutherland 2001; 
Velázquez-Hernández et al. 2011), by some halophilic archaea (Kırtel et al. 
2019) and by a limited number of plant species from family Poaceae (e.g. 
timothy, orchard, Harding and meadow soft grasses) (Arvidson, Rinehart, and 
Gadala-Maria 2006; Bonnett et al. 1997; Cairns et al. 1999; Kasperowicz et al. 
2016; Öner et al. 2016; Vijn and Smeekens 1999). Levans from various origin 
differ in molecular size and structure: bacterial levans have a high molecular 
weight (HMW) with multiple branching points (Jakob et al. 2013; Runyon et al. 
2014), while levan from plants has a rather low molecular weight (DP about 60) 
and has no branches (Bonnett et al. 1997; Cairns et al. 1999). 

Currently, levan is permitted as functional food additive in Japan and South 
Korea (Kang et al. 2009) whereas it is currently not commercially produced and 
employed in Europe. For the production of levan at larger scale, precipitation of 
enzymatically synthesized levan by ethanol is used, followed by dialysis and 
lyophilization. For feasible commercial production, this methodology needs to 
be scaled up. FOS can also be purified from the levansucrase reaction mixture, 
because levansucrases produce both, levan and FOS with proportions depending 
on reaction conditions and intrinsic properties of the levansucrase (Bersaneti et 
al. 2018; Porras-Domínguez et al. 2015). In order to purify FOS from the 
levansucrase reaction mixture, the interfering sugars: glucose, fructose and 
residual sucrose should be removed (Adamberg et al. 2014; Öner et al. 2016).  

Despite technological difficulties, levan and L-FOS have been tested for 
applications in food, medicine and chemical industry (Gomes et al. 2018; Kazak 
Sarilmiser and Toksoy Oner 2014; Liu et al. 2017; Öner et al. 2016; Srikanth, 
Siddartha, et al. 2015). Levan and L-FOS have shown promising effects on 
probiotic bacteria of human gut consortia (Adamberg et al. 2015, 2018; Cai et 
al. 2019; Jang et al. 2003; Marx, Winkler, and Hartmeier 2000; Porras-Domín-
guez et al. 2014; Visnapuu, Mardo, and Alamäe 2015). During fermentation of 
L-FOS, bifidobacteria, especially Bifidobacterium adolescentis, exhibited 
fastest growth and SCFA production (Marx et al. 2000). Of six studied Bac-
teroides species, only B. thetaiotaomicron was capable of growth on levan. 
Notably, B. fragilis that is considered a potential pathogen, could not use levan 
(Sonnenburg et al. 2010). This is important, because prebiotics should not 
support the growth of pathogenic bacteria. Aside of Bacteroides, levan also 
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enhanced the growth of Faecalibacterium and some other species in gut 
consortia of healthy humans (Adamberg et al. 2015). A study on fecal consortia 
of overweight children showed that levan affected microbiota composition as 
well as SCFA pattern positively (Adamberg et al. 2018). Bondarenko et al. used 
levan to produce levan-coated mineral nanoparticles (Bondarenko et al. 2016). 
They recommended combination of levan and nutritionally important micro-
elements (selenium, iron and cobalt) in the form of nanoparticles to be used as 
food supplements. This combination adds a safe and efficient alternative delivery 
method of microelements to humans and supports beneficial gut microbiota 
with nutritional oligosaccharides. However, additional data on physiological 
effects of levans and L-FOS demand production of these substrates in higher 
amounts. 
 
 

1.4. Glycosyl hydrolase family 68 and 32 enzymes 
synthesizing and hydrolysing fructans 

The glycosyl hydrolase clan J (GH-J) is composed of two families: GH68 and 
GH32. Enzymes belonging to GH-J share a common 5-blade β-propeller 
structure of the catalytic domain (Lammens et al. 2009). The GH68 family 
contains two main types of bacterial enzymes producing fructans from sucrose: 
levansucrases (EC 2.4.1.10) and inulosucrases (EC 2.4.1.9). Aside of these two, 
few invertases (β-fructofuranosidases) which also have some polymerizing 
activity, also belong to GH68 family (Henrissat and Davies 1997). Inulosucrases 
covert sucrose into inulin-type fructans – these have β-2,1 linkage in the main 
chain and β-2,6 linkages at the branching points. Levansucrases perform in the 
opposite way – they synthesize β-2,6 linkages for the main chain and β-2,1 
linkages to add branches. The GH32 family contains mostly fructosyltrans-
ferases of plants and hydrolytic enzymes (invertases, exo/endo-inulinases and 
exo/endo-levanases) of mostly microbial origin (Lombard et al. 2014). This 
PhD work is focused on one enzyme from the GH68 family – levansucrase Lsc3 
of Pseudomonas syringae and one enzyme of the GH32 family – the endo-
levanase (EC 3.2.1.65) BT1760 of Bacteroides thetaiotaomicron. 
 
 

1.4.1. Levansucrases: distribution in bacteria and general features 

Levansucrases (alternative names: β-2,6-fructosyltransferase, sucrose 6-fructo-
syltransferase) have been described from numerous bacteria. The following 
Gram-positive bacterial species have levansucrases: Bacillus subtilis, B. mega-
terium, B. amyloliquefaciens, C. acetobutylicum, Streptococcus mutans, S. sali-
varius, Leuconostoc mesenteroides, L. citreum, Lactobacillus sanfranciscensis, 
Lb. gasseri, Lb. johnsonii and Lb. reuteri. Among Gram-negative bacteria, 
levansucrases have been described in Zymomonas mobilis, Gluconacetobacter 
diazotrophicus, Erwinia amylovora, Rahnella aquatilis, Halomonas smyrnensis, 
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P. chlororaphis subsp. aurantiaca, P. fluorescens and many P. syringae strains 
((Lombard et al. 2014); www.cazy.org).  

Usually, levansucrases of Gram-positive bacteria are bigger than respective 
proteins of Gram-negative species. For instance, levansucrases of Gram-positive 
bacteria Lb. sanfranciscensis (879 aa), Lb. gasseri (768 aa), Lb. johnsonii 
(788 aa), Lb. reuteri (796 aa), S. salivarius (969 aa) and S. mutans (795 aa) are 
much larger than levansucrases of Gram-negative bacteria Z. mobilis (423 aa), 
E. amylovora (415 aa), H. smyrnensis (416 aa), P. savastanoi pv. phaseolicola 
(431 aa), P. syringae pv. tomato DC3000 (431 aa) and G. diazotrophicus (584 
aa). Levansucrases of Bacillus (Gram-positive bacteria) are exceptions as they 
have quite moderate size: B. subtilis (473 aa), B. megaterium (484 aa) and 
B. licheniformis (481 aa) (UniProt Consortium 2018). 

Another specific feature of levansucrases from Gram-positive bacteria is 
their dependence on Ca2+ ions, which stabilize the protein fold (van Hijum et al. 
2006; Meng and Fütterer 2003). Levansucrases of Gram-negative bacteria are 
not Ca2+– dependent. In the case of levansucrase of G. diazotrophicus, a 
disulphide bridge stabilizes the protein’s conformation (Martínez-Fleites et al. 
2005). Levansucrase from a halophilic bacterium H. smyrnensis requires NaCl 
for activity (Kirtel et al. 2018), while other stabilizing mechanisms for levan-
sucrases have not yet been described. 
 
 

1.4.2. Levansucrases: the structure 

Despite the differences between levansucrases of Gram-positive and Gram-
negative bacteria, they all possess a similar overall structure: a five-bladed  
β-propeller, which accommodates the active site in the centre of a funnel-
shaped cavity (Figure 1). The first five-bladed β-propeller fold was observed in 
tachylectin-2 (Beisel et al. 1999). From this point, many protein structures with 
the same overall architecture have been determined. The first structure of 
levansucrase was solved in 2003 for SacB from B. subtilis (Table 1) (Meng and 
Fütterer 2003). The active site of SacB has three acidic amino acids crucial for 
catalytic activity: two aspartates and a glutamate, also called a catalytic triad 
(Meng and Fütterer 2003). The bottom of the funnel, harbouring the active site, 
was shown to be closed by a loop, which forces product molecules to exit the 
active centre through the entrance (Wuerges et al. 2015).  
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Table 1. Overview of crystallized levansucrases and one fructosyl transferase with 
similar activity 

Organism and 
protein 

Mutation PDB ID Ligand Diffraction 
(Å) 

Reference 

Bacillus subtilis 
168 SacB 

– 1OYG – 1.50 (Meng and 
Fütterer 
2003) 

Acid/base 
catalyst E342A 

1PT2 Sucrose 2.07 

Acid/base 
catalyst E342A 

3BYN Raffinose 2.03 
(Meng and 

Fütterer 
2008) 

Gluconacetobacter 
diazotrophicus 
SRT4 LsdA 

– 1W18 – 2.50 
(Martínez-
Fleites et 
al. 2005) 

Bacillus 
megaterium SacB 

Stabilizer D257A 3OM2 – 1.9 

(Strube et 
al. 2011) 

K373A 3OM4  1.75 

N252A 3OM5  1.95 

Y247A 3OM6  1.96 

Y247W 3OM7  1.86 

Microbacterium 
saccharophilum 
MsFFase 

– 3VSR – 2.0 (Tonozuka 
et al. 2012) – 3VSS Fructose 1.97 

– 3WPU Glycerol 1.60 

(Ohta et al. 
2014) 

T47S/F447V/F47
0Y/P500S 

3WPV Glycerol 1.81 

T47S/S200T/F44
7V/P500S 

3WPY – 2.00 

T47S/S200T/F44
7P/F470Y/P500S

3WPZ – 2.27 

Erwinia 
amylovora EaLsc 

– 4D47 
Fructose, 
Glucose 

2.77 
(Wuerges 

et al. 2015) 

Erwinia 
tasmaniensis 
EtLsc 

– 6FRW – 1.52 
(Polsinelli 
et al. 2019) 
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Figure 1. (A) The structure of Bacillus subtilis levansucrase SacB in complex with 
raffinose (PDB 3BYN); (B) the zoomed in active site of SacB with catalytic triad and 
raffinose bound at –1, +1 and +2 subsites of the substrate-binding pocket indicated. The 
structure was visualized using PyMOL 1.8.6.0 (Schrödinger, LLC 2015). 
 
The function of the catalytic triad residues is following. An aspartate (Asp86 of 
B. subtilis SacB) acts as a nucleophile and is responsible for the formation of 
covalent fructosyl-enzyme intermediate (Lammens et al. 2009). Asp of the 
RDP-motif (Asp247 in SacB) acts as a transition state stabilizer, which is not 
directly involved in the catalysis, but supports binding of fructose to the active 
site via C3 and C4 groups. The acid/base catalyst in levansucrases is generally a 
glutamate – Glu342 in SacB (Meng and Fütterer 2003). The catalytic triad 
residues of SacB are designated in Figure 1, panel B. Functions of catalytic 
amino acids are described in the next section.  
 
 

1.4.3. Levansucrases: substrate-binding subsites and  
catalytic mechanism 

Levansucrase works via double displacement, also referred to as Ping-Pong 
mechanism, retaining the configuration of the anomeric carbon after the hydro-
lysis (Chambert and Gonzy-Treboul 1976; Hernandez et al. 1995; Martínez-
Fleites et al. 2005).  

The proposed catalytic reaction of levansucrase on sucrose proceeds as 
follows: in the first glycosylation step, a nucleophilic attack is performed on the 
anomeric carbon of fructose residue of sucrose which is bound at subsite –1 by 
the carboxylate of the nucleophile – Asp68 in the case of SacB, and fructosyl-
enzyme intermediate arises (Chambert and Gonzy-Treboul 1976; Martínez-
Fleites et al. 2005; Meng and Fütterer 2003, 2008). The acid/base catalyst 
(Glu342 in SacB) acts as a general acid and donates a proton to enable release 
of glucose. In the second deglycosylation step, the acid/base catalyst acts as a 
general base and removes a proton from the incoming fructosyl acceptor. When 
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the entering acceptor molecule is water (Figure 2), fructose is released as a 
product of hydrolysis. When the acceptor is appropriate sugar (binds at subsites 
+1 and further), the released product is elongated by one fructosyl unit 
(Figure 2) (Lammens et al. 2009). In general, molecules containing α-1,2 glyco-
sidic linkage between glucose and fructose, such as sucrose, raffinose and 
stachyose are suitable substrates for levansucrases (Meng and Fütterer 2008; 
Öner et al. 2016; Visnapuu, Mäe, and Alamäe 2008; Visnapuu et al. 2015; 
Yanase et al. 2002). 

 

Figure 2. The products produced from sucrose by the levansucrase. Nucleophile (Asp86 
in the case of levansucrase SacB of Bacillus subtilis) forming a covalent enzyme-
fructosyl intermediate with fructose bound at –1 subsite is indicated in the centre of the 
figure. Reactions with various fructosyl acceptors (water and sucrose) create a variety of 
products: neokestose, 1-kestose and 6-kestose. The latter one is polymerized into levan 
in further steps of transfructosylation, parenthesis indicate multiple copies of fructose 
residues attached via β-2,6 linkage.  
 
According to the nomenclature for sugar-binding subsites in glycosyl hydro-
lases proposed by Davis et al., hydrolysis of glycosidic linkage takes place 
between –1 and +1 subsites, whereas fructosyl residue is positioned into –1 
subsite (Figure 1, panel B; Figure 2) (Davies, Wilson, and Henrissat 1997). 
Acceptor binding starts from the +1 subsite of the levansucrase (Lammens et al. 
2009; Meng and Fütterer 2008; Ozimek et al. 2006). It is proposed that 
arrangement of catalytic amino acids in –1 subsite is conserved among GH32 
and GH68 family enzymes, but the selectivity of further plus-subsites: +1, +2, 
+3 is quite low (Chuankhayan et al. 2010; Raga-Carbajal et al. 2018). 
Therefore, relaxed acceptor specificity and regioselectivity of levansucrases 
allow the usage of several traditional fructosyl acceptors such as kestoses, 
sucrose, glucose and fructose, as well as numerous non-conventional acceptors 
(described further in more detail). 
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1.4.4. Levansucrases: processive and non-processive activity 

Levan and fructo-oligosaccharide synthesis can proceed either via processive or 
non-processive mechanism. Processivity is an enzyme’s ability to catalyse con-
secutive reactions without releasing its substrate. For example, DNA poly-
merases are processive enzymes – they synthesize a novel DNA strand by 
adding up to 1000 nucleotides per second without releasing the template strand 
(Johansson and Dixon 2013). In cellulose hydrolysis, both processive and non-
processive enzymes are involved. For instance, endo-glucanases which act non-
processively, cleave cellulose chain randomly creating new free chain ends 
while cellobiohydrolases attack these ends and produce cellobiose processively 
(Várnai et al. 2014). In the case of levansucrase from B. subtilis, processive and 
non-processive synthesis has been described producing different types of levan: 
HMW (2 300 kDa) levan in the case of processive and low molecular weight 
(7.2 kDa; LMW) levan in the case of non-processive synthesis. Processive 
synthesis occurs when levansucrase concentration is low (0.1 U/mL), and LMW 
levan is synthesized at a high enzyme concentration (10 U/mL) (Raga-Carbajal 
et al. 2016, 2018). 

Non-processive synthesis of LMW levan by SacB of B. subtilis proceeds 
through sequential elongation of earlier produced intermediate oligosaccharides 
taken from the reaction medium. Three stages of this process (Raga-Carbajal et 
al. 2018) are as follows:  

i. During the early phase with duration of about 30 minutes, SacB converts 
about 20% of initial sucrose into glucose, fructose and various transfructo-
sylation products, mainly neokestose, followed by 1- and 6-kestoses 
(Figure 2), which are elongated rapidly in further transfructosylation steps 
via β-2,6 linkage (Figure 2, polymerization). DP of transfructosylation pro-
ducts produced in the early phase reaches 30.  

ii. Late phase of the LMW levan synthesis starts when about 20% of sucrose is 
converted and new low-DP products such as erlose, inulobiose, blastose and 
levanbiose arise. The two latter ones initiate blasto-FOS and oligolevan 
synthesis. Secondary intermediates (DP 3–20) are detectable after one hour 
of reaction and differ from the primary intermediates. Oligomers syn-
thesised in the early phase are further elongated to DP higher than 40.  

iii. Sucrose depletion phase starts after 2 hours of incubation (over 60% of 
sucrose converted): LMW levan of DP50 is produced, and the reaction 
mixture contains both primary and secondary intermediates and their elon-
gated products. The concentration of neo-kestose and 6-neo-nystose is 
decreasing as they are used as fructosyl donors in blasto-FOS synthesis.  

Synthesis of HMW levan from sucrose proceeds without accumulation of LMW 
levan and intermediate oligosaccharides (Raga-Carbajal et al. 2016, 2018) 
requiring permanent contact between the acceptor and enzyme molecule. 
However, dissociation of acceptor-protein complex may shift the process 
towards non-processive elongation, resulting in production of LMW levan. 
Dissociation may be triggered by many factors, for example high ionic strength 
of the buffer (Tanaka, Oi, and Yamamoto 1979). 
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Most commonly, levansucrases of bacteria produce HMW levan: R. aquatilis 
(380 kDa), M. laevaniformans (710 kDa) and H. smyrnensis (1483 kDa) (Kazak 
Sarilmiser et al. 2015; Yoo et al. 2004). Some bacterial levansucrases produce 
levan with bimodal size: LevU of Z. mobilis (3 000 kDa and 5 kDa) and SacB 
of B. subtilis TH4-2 (660 kDa and 6 kDa) (Byun, Lee, and Mah 2014; Porras-
Domínguez et al. 2015). But, for example, the levansucrase from a plant patho-
gen G. diazotrophicus produces mostly I-FOS (1-kestose), and only a small 
amount of levan (Támbara et al. 1999; Trujillo et al. 2001). Still the structure 
and working mechanism of this enzyme is similar to levansucrases producing 
mostly levan.  

Literature data on variety of oligo- and polymeric fructans produced by 
levansucrases is presented in Table 2. 

 
Table 2. Product spectrum of levansucrases from Gram-negative and -positive bacteria 

The host 
bacterium 

Product spectrum Substrate [C]; 
reaction time 

Reference 

Gram-negative bacteria 

Erwinia 
tasmaniensis 

Levan; FOS DP* 2–6 (levanbiose, 
levantriose, 6-kestose, 6-nystose, 
6,6,6-kestopentaose) 

1 M Suc; 
24 h 

(Polsinelli et al. 
2019) 

Erwinia 
amylovora 

Levan; FOS DP 2–6 (levanbiose, 
levantriose, 6-kestose, 6-nystose, 
6,6,6-kestopentaose) 

1 M Suc; 
24 h 

(Polsinelli et al. 
2019) 

Gluconaceto-
bacter 
diazotrophicus 

Small amount of levan; FOS DP 
3–4 (1-kestotriose and  
1,1-kestotetraose) 

0.8 M Suc; 
7 h 

(Hernandez  
et al. 1995) 

Halomonas 
smyrnensis 
AAD6T 

Levan, FOS DP 2–5  
(blastose, inulobiose, levanbiose, 
neokestose, 1-kestotriose,  
6-kestotriose, 1-kestotetraose,  
6-kestotetraose, GF3, GF4) 

1.5 M Suc; 
NA 

(Kirtel et al. 
2018) 

Rahnella 
aquatilis  
JCM-1683 

Levan 0.29 M Suc; 
48 h 

(Ohtsuka et al. 
2009) 

Zymomonas 
mobilis 

Levan; FOS DP 3–4 0.6 M Suc; 
12 h 

(Yanase et al. 
2002) 

Gram-positive bacteria 

Bacillus subtilis Mainly levan 0.8 M Suc; 
7 h 

(Hernandez et al. 
1995) 

Bacillus 
megaterium 

Levan; FOS DP 2–4  
(1-kestose, blastose, 6‐kestoase, 
neokestose, nystose) 

0.5 M Suc; 
19 h 

(Homann et al. 
2007) 

Lactobacillus 
sanfranciscensis 

Levan; 1-kestose 0.5 M Suc; 
24 h 

(Tieking et al. 
2005) 

NA – data not available; *FOS DP – fructo-oligosaccharides with the degree of poly-
merization.
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1.4.5. Levansucrases: non-conventional acceptors for 
transfructosylation 

The fructosyl acceptor site of levansucrases (the +1 subsite) accommodates a 
wide range of non-conventional acceptors for transfructosylation reaction, 
enabling synthesis of hetero-oligofructans (HOFs) (Davies et al. 1997; Meng 
and Fütterer 2003, 2008; Seibel et al. 2006). For example, the B. subtilis 
NCIMB 1187 levansucrase accepts and transfructosylates D-galactose, D-xylose, 
D-fucose, their L-isomers and also disaccharides such as cellobiose, maltose, 
isomaltose, melibiose and lactose (Seibel et al. 2006). The transfructosylation 
product is always one fructosyl longer than the acceptor molecule. The short 
HOFs can be further transfructosylated. So, β-fructofuranosidase of Aspergillus 
niger can elongate the HOFs synthesized by B. subtilis levansucrase, to produce 
XylF, ManF and GalF fructans with DP 3–4 (Zuccaro et al. 2008). It was shown 
that these newly synthesised fructans had no toxic effect nor suppressed cell 
growth of human epithelial cells and may act as prebiotic oligosaccharides with 
extended biological effect. EG-6 fructosyltransferases of B. macerans can 
transfructosylate many acceptors, of which D-xylose was the most appropriate, 
followed by L-arabinose, L-sorbose, D-galactose, maltose, D-mannose, lactose 
and raffinose (Nam et al. 2000). Levansucrase from B. licheniformis trans-
fructosylates galactose, cellobiose, xylose, maltose, lactose, arabinose, and 
trehalose (Lu et al. 2014). Levansucrases from M. laevaniformans and 
B. amyloliquefaciens prefer disaccharides (cellobiose, lactose, melibiose) as 
fructosyl acceptors to monosaccharides such as D-arabinose, D-xylose and D-
galactose (M. Li, Seo, and Karboune 2015; Park et al. 2003). The levansucrase 
from a halophilic bacterium H. smyrnensis elongates efficiently disaccharides 
cellobiose and lactose and monosaccharides arabinose and galactose when 
provided as acceptors (Kirtel et al. 2018).  

One of the best-characterized HOFs is lactosucrose – a trisaccharide 
consisting of D-glucose, D-galactose, and D-fructose. In transfructosylation 
reaction, lactose and sucrose are used as a fructosyl acceptor and donor, 
respectively (W. Li et al. 2015). Levansucrases of Aerobacter levanicum, 
B. natto, B. subtilis KCCM 32835, B. subtilis NCIMB 11871, B. methylo-
trophicus SK21.002, B. licheniformis 8-37-0-1, B. amyloliquefaciens, Paeni-
bacillus polymyxa IFO 3020, Sterigmatomyces elviae ATCC 18894 and 
Z. mobilis have been reported to produce lactosucrose (Avigad 1957; Choi et al. 
2004; Han et al. 2009; Lee, Lim, Park, et al. 2007; Lee, Lim, Song, et al. 2007; 
M. Li et al. 2015; Lu et al. 2014; Park, Choi, and Oh 2005; Seibel et al. 2006; 
Takahama et al. 1991; Wu et al. 2015). It has been shown that lactosucrose has 
prebiotic properties: it enhances intestinal calcium absorption, reduces body fat 
and prevents obesity (Li et al., 2015). 
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1.5. Levan: occurrence and functions in nature  

Some bacterial biofilms contain levan among other components. Soil bacteria 
B. megaterium and B. subtilis synthesize levan-containing biofilm to protect 
themselves from drying (Dogsa et al. 2013; Homann et al. 2007). A Gram-
negative sugarcane endophyte G. diazotrophicus uses levan capsule to create 
appropriate microaerobic environment for nitrogen fixation (Hernandez et al. 
1995; Velázquez-Hernández et al. 2011). Many plant-pathogenic bacteria use 
levan as a virulence factor. For example, E. amylovora and P. syringae use 
levan to hide from plant defence mechanisms (Koczan et al. 2009; Mehmood et 
al. 2015). P. syringae pv tomato DC3000 levansucrase, which is characterized 
in this PhD work, causes necrotic specs of tomato leaves (Preston 2000). The 
bacterium enters the intercellular spaces of leaves through stomata and 
multiplies in the apoplast asymptomatically prior to disease’s development. 
Since sucrose is present in the plant apoplast, extracellular levansucrase of the 
bacterium produces levan that acts as a morphological spacer between the plant 
cell wall and a bacterium, inhibiting hypersensitive response of the plant 
(Kasapis et al., 1994; Hettwer, Gross and Rudolph, 1995). 
 
 

1.6. Levan: biotechnological potential 

Levans have many potential applications. Due to low viscosity (Arvidson et al. 
2006), high water-binding ability (Gupta et al. 2011; Han and Clarke 1990; 
Srikanth, Reddy, et al. 2015) and other intrinsic properties, levans are applicable 
in (i) food industry as a prebiotic, stabilizer and fat substitute, (ii) in cosmetics 
as a whitener and moisturizer, and (iii) in pharmacy as an anti-oxidant,  
-inflammatory, -clotting and -cancer agent (Kim et al. 2005; Korakli et al. 2003; 
Moscovici 2015; Öner et al. 2016; Srikanth, Reddy, et al. 2015; Yoo et al. 
2004). Importantly, according to the ‘The Human Repeated Insult Patch Test’, 
levan meets every safety criteria: it shows neither skin or eye irritation nor 
allergic reaction, and has no cytotoxic effect (Montana Polysaccharides Corp. 
2017). Due to a high film-forming ability, biocompatibility and strong adhesivity, 
levan has a superb potential as a biopolymer for medical applications (Ates 
2015; Kazak Sarilmiser et al. 2015; Öner et al. 2016). For example, levan from 
H. smyrnensis has been recommended as material for nano- and microcarriers 
for drugs (Sezer et al. 2011, 2017), an adhesive nanostructured multilayer film 
for new-generation bandages (Costa et al. 2013), biodegradable and temperature-
responsive hydrogel for controlled drug release (Osman, Oner, and Eroglu 
2017), a heparin mimetic for antithrombotic treatment (Erginer et al. 2016), and 
a material for tissue engineering (Avsar et al. 2018). 

Prebiotic effects of levan have also been reported (Kang et al. 2009; Öner et 
al. 2016; Srikanth, Reddy, et al. 2015). Levan fermentation by human faecal 
samples supported the growth of next-generation probiotics such as species of 
Bacteroides and Faecalibacterium (Adamberg et al. 2015, 2018). Novel 
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candidates for prebiotics are most often tested on rodents first. Feeding rats with 
levan-supplemented food reduced obesity, hyperlipidaemia, adipocyte hyper-
trophy, serum triglycerides and cholesterol (Kang et al. 2004). According to 
another study, combination of levan and fermented ginseng reduced body and 
white adipose tissue weight, fasting blood glucose level and insulin resistance 
when fed to rats (Oh et al. 2014).  

Levan has also been suggested as feed additive of farm animals to replace 
prophylactic growth-promoting antibiotics (Öner et al. 2016). When diet of pigs 
was supplemented with levan, improvement of the growth performance, digesti-
bility and immune response of pigs was clearly visible (Li and Kim 2013). 
Similar results were observed in the case of chicken – levan administration 
improved the growth performance, decreased the concentrations of excreted 
ammonia, increased the levels of probiotic bacteria and decreased the patho-
genic bacteria in the cecum (Zhao, Wang, and Kim 2013). When the diet of 
common carp was supplemented with levan, it fully survived after experimental 
Aeromonas hydrophila infection (Rairakhwada et al. 2007).  

Unfortunately, only limited number of companies are producing levan 
commercially: Natural Polymers Inc. (using B. subtilis), Real Biotech Co., Ltd., 
(using Z. mobilis), Advance Co., Ltd (using S. salivarius) and Rahn AG (Öner 
et al. 2016). Currently, the main bottleneck in application of levan is its high 
price and limited availability. 
 
 

1.7. Fructan utilization locus of  
Bacteroides thetaiotaomicron 

Bacteroidetes is a predominant bacterial phylum of the human normal colonic 
microbiota (Moore and Holdeman 1974). In general, Bacteroides species stay in 
the gut, but at rupture of the gastrointestinal tract or after intestinal surgery, few 
of them (e.g. B. fragilis) may cause anaerobic infections (Wexler 2007). Bacte-
roides species are anaerobic, asporogenic, bile-resistant Gram-negative rods that 
are passed from mother to child via vaginal birth. Generally, mutualism is 
considered as the relationship between Bacteroides species and humans, 
because both partners experience increased fitness as a result (Wexler 2007).  

The genome of B. thetaiotaomicron (6.26 Mbp, ATCC 29148) was sequenced 
in 2003 and the organism itself is the most studied species of Bacteroidetes (Xu 
et al. 2003). This bacterium is famous for its superior ability to degrade food 
fibre. The toolbox for this function comprises 269 glycoside hydrolases, 87 
glycosyl transferases, 15 polysaccharide lyases, and 19 carbohydrate esterases 
(Lombard et al. 2014; Ravcheev et al. 2013). Aside of food fibre, B. thetaiotao-
micron can utilize mucin-derived polysaccharides of the host and catabolize 
mono- and oligosaccharides present in breast milk (Wexler 2007). In com-
parison, the human genome (2.85 Gbp) encodes only 97 glycoside hydrolases, 
and no polysaccharide lyases. Eight glycoside hydrolases of humans are directly 
involved with digestion, and nine are possibly digestive enzymes, but the 
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remaining 80 enzymes have no roles in food digestion (El Kaoutari et al. 2013). 
Importantly, humans have no enzymes to degrade common food fibre species, 
for example xylan, pectin, and arabinose-containing polysaccharides, while 
B. thetaiotaomicron has 64 corresponding enzymes hydrolysing these substrates 
(Xu and Gordon 2003).  

Genes for glycan degradation are clustered in the genome to polysaccharide 
utilizing loci (PULs). The B. thetaiotaomicron possesses 88 PULs which differ 
in polysaccharide specificity (Martens, Chiang, and Gordon 2008; Sonnenburg 
et al. 2010). The starch utilization system (Sus), described about twenty years 
ago, was the first PUL characterized in B. thetaiotaomicron (Reeves, Wang, and 
Salyers 1997). The system encodes eight clustered genes SusRABCDEFG, 
whereas a pair of SusC and SusD genes mostly defines the characteristics of the 
PUL. Outer membrane SusCD complex binds and imports starch oligo-sac-
charides previously hydrolysed by the cell surface amylase SusG (Bjursell, 
Martens, and Gordon 2006; Sonnenburg et al. 2010). We have been interested 
in fructan PUL of B. thetaiotaomicron VPI-5482 which encodes: (i) GH32 
family hydrolases (SusG homologues) responsible for degradation of glycosidic 
linkage in a fructan; (ii) outer membrane transporter and glycan binding 
proteins (SusC/SusD homologues), responsible for fructan recognition and 
transport, and (iii) a hybrid two-component system sensor regulator that 
transcriptionally activates the PUL in response to fructose (Joglekar et al. 2018; 
Sonnenburg et al. 2006, 2010). B. thetaiotaomicron is constantly ready for levan 
degradation, meaning immediate response upon fructan arrival into the distal gut 
environment (Sonnenburg et al. 2010). Levan is captured by outer membrane-
bound levan-binding proteins and cleaved extracellularly by the endo-levanase 
BT1760. The resulting FOS are actively imported by the outer-membrane 
transporter complex (SusC/SusD homologues). In the periplasm, the exo-
fructanases liberate fructose from FOS. A small amount of fructose binds to the 
periplasmic two-component system sensor/regulator and upregulates the whole 
fructan PUL, while majority of liberated fructose is transported via the inner 
membrane transporter into the cytoplasm for fermentation (Bolam and 
Sonnenburg 2011; Sonnenburg et al. 2010). A recent study reveals that B. 
thetaiotaomicron 8736, a close relative of B. thetaiotaomicron VPI-5482 cannot 
utilize levan and uses inulin instead. The fructan PUL of B. thetaiotaomicron 
8736 lacks the endo-acting fructanase on the cell surface, and inulin is probably 
transported unmodified into the periplasm. The SusC/SusD homologues forming 
outer-membrane transporter complex are responsible for specific recognition and 
import of inulin (Joglekar et al. 2018).  

 
 

1.7.1. Endo-acting fructanases and their applications 

Only scarce information is available on endo-fructanases. Table 3 summarizes 
the literature concerning microbial endo-inulinases, endo-levanases and their 
products. With regard to endo-inulinases, a recent work on a yeast Lipomyces 
starkeyi refers to the most active endo-inulinase described so far. This enzyme 
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has 1.5–4 times higher specific activity (2263 U/mg) than respective enzymes of 
filamentous fungi (Bao et al. 2019). The optimal temperature for the catalysis of 
L. starkeyi enzyme is 70 °C, that gives the enzyme a powerful advantage over 
other endo-inulinases used in biotechnology, since high temperature ensures 
solubility of inulin, prevents microbial contamination and thereby lowers the 
production costs (Gao et al. 2009; Rocha et al. 2006). The most valuable feature 
of endo-inulinase is the I-FOS production, for which the endo-inulinase from 
L. starkeyi is perfectly capable, producing FOS with DP 3–6 within 30 minutes 
(Bao et al. 2019). Other characterized endo-inulinases hydrolyse inulin with 
lower rate or require elevated concentration of the substrate (Table 3). 
Even less information is available for L-FOS production using endo-levanases. 
Data in Table 3 indicate that the endo-levanase from B. thetaiotaomicon is a 
promising tool to produce L-FOS (Sonnenburg et al. 2010). This enzyme was 
further characterized in current PhD work.  

Prebiotic properties of inulin-type FOS (I-FOS) with DP < 10 have been 
demonstrated (Gibson et al. 2004) and they are important components in 
industrially produced prebiotic foods (Kolida and Gibson 2007). I-FOS are 
commercially produced either from sucrose by using fungal fructosyl 
transferases, or from plant inulin using microbial endo-inulinases (Roberfroid 
2007; Singh and Singh 2010). However, the production of I-FOS from plant 
inulin has seasonal limitations (Mussatto et al. 2012), and therefore new 
methods for continuous FOS production are highly valued.  

Levan-type FOS (DP 2–3, levanbiose and -triose respectively) are 
commercially available from Megazyme (https://www.megazyme.com/), but 
they are extremely expensive – 1 g costs about 7 500 euros. Thus, novel low-
price production methods are in high demand. So far, only little information on 
physiological effects of L-FOS is available and mostly they have been 
investigated as novel candidates for prebiotics (Adamberg et al. 2018; Marx et 
al. 2000; Porras-Domínguez et al. 2014). There are three possibilities to produce 
L-FOS: (i) bacterial levansucrases are producing high amount of levan and 
some L-FOS from sucrose, (ii) levan can be hydrolyzed to FOS by partial acid 
hydrolysis or (iii) using enzymatic hydrolysis with bacterial endo-levanase.  

The endo-levanase LevB1 of Bacillus licheniformis was used to produce L-
FOS from levan synthesized by B. subtilis levansucrase (Porras-Domínguez et 
al. 2014). The obtained FOS showed higher prebiotic potential towards 
probiotic bacteria Bifidobacterium bifidum, B. longum var. infantis NRRL 4661 
and B. breve than levan (Porras-Domínguez et al. 2014). Probably, these 
probiotic strains had no enzymatic machinery for levan hydrolysis, but they can 
metabolize the L-FOS. Production of L-FOS has also been described for endo-
levanase from B. lehensis G1 (Table 3). The resulting FOS enhanced the growth 
of lactic acid bacteria Lb. casei and Lb. rhamnosus (Fattah et al. 2018).  

Strict linkage-dependence of endo-levanase has been used to determine the 
content of levan from fermented foods such as wheat sourdough or fava bean 
dough (Shi et al. 2019) and to determine the linkage type in branched fructans. 
For example, the endo-levanase LevB from B. subtilis was used to assay the 
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ratio of different linkage types in graminans – fructans with mixed β-2,1 and β-
2,6 linkages (Jensen et al. 2016).  

 
Table 3. Microorganisms with characterized endo-inulinases and -levanases. The spect-
rum of products formed at indicated conditions is presented. 

Organism Substrate Product 
spectrum 

Substrate [C]; 
time; 

temperature 

Reference 

Endo-inulinases 

Lipomyces starkeyi 
NRRL Y-11557 

Chicory 
inulin 

DPa 2–6 
5 g/L; 0.5 h;  

70 °C 
(Bao et al. 
2019) 

Bacillus smithii T7 Inulin* DP 1–8 
20 g/L; 12 h; 

60 °C 
(Gao et al. 
2009) 

Arthrobacter sp. S37 Inulin* DP 2 
20 g/L; 6 h;  

35 °C 
(Li et al. 2012) 

Xanthomonas  
oryzae No. 5 

Chicory 
inulin 

DP 5–7 
50 g/L; 10 h; 

50 °C 
(Cho and Yun 
2002) 

Aspergillus  
ficuum JNSP5-06 

Chicory 
inulin 

DP 3–4 
50 g/L; 24 h; 

55 °C 
(Chen et al. 
2013) 

A. niger  
CICIM F0620 

Chicory 
inulin 

DP 2–5 
400 g/L; 8 h; 

50 °C 
(He et al. 
2014) 

A. fumigatus Cl1 Inulin* DP 3–5 
20 g/L; 24 h; 

55 °C 
(Chen et al. 
2014) 

Endo-levanases 

Bacteroides 
thetaiotaomicon 

Zymomonas 
mobilis levan 

DP 2–4 5 g/L; 1 h; 37 °C
(Sonnenburg et 
al. 2010) 

Bacillus  
licheniformis Ibt1 

Bacillus 
subtilis levan 

DP 2–8 
100 g/L; 1 h, 

35 °C 

(Porras-
Domínguez et 
al. 2014) 

B. subtilis 168 
Erwinia 
herbicola 
levan 

DP 2–6, 
levan 

11 g/L; 24 h; 
35 °C 

(Jensen et al. 
2016) 

B. lehensis G1 levan* DP 3–4 
10 g/L; 2 h;  

30 °C 
(Fattah et al. 
2018) 

Paenibacillus 
amylolyticus 

E. herbicola 
levan 

DP1, low 
DP FOSb, 
levan 

2 g/L; 48 h;  
30 °C 

(Shi et al. 
2019) 

Treponema  
zioleckii kT 

Timothy 
grass levan 

DP 3–6 or 
DP 1–4 

2 g/L; 24 h;  
40 °C 

(Kasperowicz 
et al. 2010) 

Butyrivibrio 
fibrisolvens 3071 

Timothy 
grass levan 

DP 3–7, 
levan 

2 g/L; 24 h;  
40 °C 

(Kasperowicz 
et al. 2016) 

* The origin of the fructan was not specified; a – degree of polymerization, b – fructo-
oligosaccharides 
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II AIMS OF THE STUDY 

The main goal of this study was to characterize and evaluate new catalysts for 
the production of prebiotic fructans. For that, two biotechnologically promising 
enzymes: the levansucrase Lsc3 of P. syringae pv tomato and the endo-levanase 
BT1760 of B. thetaiotaomicron, were heterologously produced, purified and 
validated as catalysts for fructan synthesis.  

Levansucrase Lsc3 was assayed for structure-function relationship using 
random and site-directed mutagenesis of the protein (Refs I–III). Catalytic 
properties of obtained levansucrase mutants were assayed using traditional and 
high-throughput methods (Ref III). Endo-levanase was thoroughly characterized 
using biochemical methods (Refs IV–V) and its 3D structure was solved 
(Ref V).  
 
The more detailed aims of this work were following: 

i. To create a panel of levansucrase mutants using random and site-directed 
mutagenesis. To characterize polymerizing ability, thermostability and 
pattern of reaction products of created mutants. 

ii. To elaborate new cost-efficient and high-throughput methods for 
characterizing levansucrase activities. 

iii. To clone and express endo-levanase of B. thetaiotaomicron and cha-
racterize its ability to cleave various bacterial and plant levans. 

iv. To obtain crystals of the wild-type and catalytically inactive ligand-bound 
mutant of endo-levanases, to solve and analyze the 3D structures of 
respective proteins. 
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III RESULTS AND DISCUSSION 

3.1. Characterization of the levansucrase Lsc3 using  
random- and site-specific mutagenesis (Ref I, II and III) 

3.1.1. Lsc3 is a powerful catalyst 

The levansucrase Lsc3 of P. syringae pv tomato DC3000 studied and charac-
terized in this work was expressed in Escherichia coli and purified to homo-
geneity (Refs I–III). The Lsc3 is one of most active levansucrases described so 
far. It uses sucrose, raffinose and stachyose as a substrate (Visnapuu et al. 
2008). The KM of the levansucrase for sucrose cleavage is 18.5 mM and for 
raffinose, the affinity is about twice lower: the Ki for raffinose cleavage is 
39.9 mM (Table 1 in Ref I). Catalytic efficiency of sucrose cleavage by Lsc3 is 
27.3 mM–1 s–1, that is higher compared to levansucrases from B. subtilis 
(20.3 mM–1 s–1), G. diazotrophicus (5.5 mM–1 s–1), Z. mobilis (0.2 mM–1 s–1), but 
still lower than that of the B. megaterium levansucrase (254 mM–1 s–1) (Refs  
I–III; (Martínez-Fleites et al. 2005; Ortiz-Soto et al. 2008; Strube et al. 2011; 
Yanase et al. 2002)). 
 
 

3.1.2. The Asp62, Asp219 and Glu303 comprise  
the catalytic triad of Lsc3 

Three key catalytic amino acids: nucleophile, transition-state stabilizer and 
acid/base catalyst of Lsc3 were experimentally proven to be Asp62, Asp219 and 
Glu303 (Ref II). Mutation of these amino acids to alanine caused drastic 
reduction of kcat values from 5 000 to 126 000 times compared to the wild-type 
enzyme, while affinity of the enzyme for sucrose remained almost unaltered 
(Table 2 in Ref II). Similar inactivation due to alanine substitution of catalytic 
amino acids was observed for levansucrases of B. subtilis, B. megaterium, Lb. 
reuteri and G. diazotrophicus (Batista et al. 1999; Meng and Fütterer 2003; 
Ortiz-Soto et al. 2008; Ozimek et al. 2004). Additional Glu303Gln mutant of 
Lsc3 was unable to hydrolyse nor polymerize and showed seven-fold decreased 
affinity for sucrose (Table 1 in Ref III). In the case of Z. mobilis levansucrase, 
the acid/base catalyst substitution with aspartate caused only 30-fold decrease of 
the kcat, while the KM for sucrose remained the same (Yanase et al. 2002).  
 
 

3.1.3. Mutations obtained through random mutagenesis reveal  
a great importance of His113 and Asp300 in the catalysis 

Random mutagenesis of proteins is a powerful tool to reveal amino acids with a 
specific function. Refs I and III describe random mutants of Lsc3 obtained 
using chemical (ethylmethane sulfonate) mutagenesis. Three mutated genes of 
levansucrase, from colonies of nonmucoid phenotype on sucrose plate, revealed 
ten point-mutations. Respective mutations were investigated separately in silico 
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and subsequently Asp31Asn, His113Gln, Asp300Asn and Thr302Pro single 
point-mutations were introduced in lsc3 (Ref I and III). The Asp31Asn mutant 
was thermally unstable and tended to precipitate. A homology modelling of 
Lsc3 shows Asp31 location in the first secondary structure element of the  
N-terminal part of the protein – an α-helix, lining the outer surface of Lsc3. 
According to our data, the Asp31Asn mutation disturbed polymerization 
reaction of Lsc3 more strongly than sucrose cleavage (Figure 5 in Ref III), 
hinting that this position may have a role in binding of the growing FOS chain. 
Substitution of His113 with glutamine had a strong negative effect on catalytic 
activity (Table 4; Figure 5 in Ref III). The sucrose cleavage and polymerization 
reactions were severely hampered by His113Gln mutation (Figs 5 and 6 of Ref 
III). To better understand the role of His113, the additional mutant – 
His113Ala – was constructed. Both mutants, His113Gln and His113Ala, had 
nearly ten times decreased affinity for sucrose, low transfructosylating ability 
and a very low capability to produce FOS (Table 4 and Ref III). The crystal 
structure of the fructose-bound fructosyltransferase MsFFase (PDB 3VSS) of a 
Microbacterium saccharophilum K-1 revealed positioning of His147 
(homologous to His113 in Lsc3) in MsFFase (Figure 3). His147 of MsFFase is 
at H-bondage distance (2.9 Å) from C6 of fructose bound at –1 subsite 
(Figure 3). Predicted position of His113 in Lsc3 suggests its contribution to 
binding of the substrate at both donor and acceptor subsites. Thus, mutation of 
this residue affects both sucrose cleavage as well as polymerization. Notably, a 
helix harbouring His147 of MsFFase is missing in several levansucrases, for 
example in SacB of B. subtilis, but is present in levansucrases of halophilic 
archaea (Kırtel et al. 2019; Ortiz-Soto et al. 2019). 

Figure 3. Catalytic center of levansucrase MsFFase of Microbacterium saccharophilum 
K-1 (PDB 3VSS). Catalytic triad (Asp112, Asp282 and Glu374) is indicated in dark 
blue. Fructose molecule (magenta) is residing at subsite –1. Position His147, equivalent 
to His113 in Lsc3, is indicated in light blue. The structure was visualized using PyMOL 
1.8.6.0 (Schrödinger, LLC 2015). 
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Table 4. Affinity for sucrose and ability to polymerize Lsc3 and its mutants. Table is 
slightly modified from Ref II. 

Levansucrase KM 
increased 

(times) 

TAa

(%) 
DPb … continues 

Levansucrase
KM 

increased 
(times) 

TAa 
(%) 

DPb 

Lsc3 18.5 mM 74 3–7 Glu236GlnIII 14.4 50 3–6 

Asp31AsnIII 0.8 70 3–6 Val248AlaIII 0.8 72 3–6 

Trp61AlaII 7.8 69 3–6 Asp300AlaIII 1.0 58 3–8 

Trp61AsnII 47.0 51 3–4 Asp300AsnI 2.7 60 3–10 

Asp62AlaII 1.1 ND ND Gln301AlaII 17.0 24 3–4 

Thr63AlaII 0.9 71 3–7 Gln301GluII 1.3 45 3–5 

Leu66AlaII 1.5 73 3–7 Thr302MetII 0.8 70 3–6 

Trp109AlaIII 1.6 77 3–7 Thr302ProI 2.3 52 3–6 

Trp109PheIII 0.5 74 3–7 Glu303AlaII 1.5 ND ND 

Trp109ArgIII 13.5 40 3 Glu303GlnIII 7.0 ND ND 

Glu110AspIII 3.1 70 3–7 Arg304AlaII 3.6 70 3–6 

His113AlaIII 9.2 41 3–6 Arg304CysII 0.7 69 3–4 

His113GlnIII 10.3 51 3–6 His306AlaII 1.1 72 3–7 

Glu146GlnIII 2.2 76 3–6 His321LeuI 19.0 20 3 

Asp219AlaII 2.3 ND ND His321LysI 28.6 27 3–4 

Pro220AlaII 1.3 75 3–6 His321ArgI 24.4 25 3–4 

Asp225AlaII 0.7 71 3–7 His321SerI 27.2 23 3–4 

Asp225AsnII 1.0 71 3–7 Asp333AlaIII 1.5 68 3–5 

   … Asp333AsnIII 2.2 80 3–7 

a – transfructosylating activity; b – degree of polymerization; ND – activity not detected; 
I, II, III – first discussed in Ref I, II and III, respectively. The mutants of catalytic triad are 
shown in bold font. 
 
The Lsc3 mutants Asp300Asn and Thr302Pro (Refs I–III) had kcat/KM values 
decreased by about 4 times (Table 1 in Ref I). They differed from the wild-type 
enzyme mostly by their polymerizing properties producing less FOS. In 
addition, the size-pattern of produced FOS differed from that of the wild type. 
The Asp300Asn variant produced FOS with DP 3–10 while the wild-type 
enzyme produced FOS with DP 3–7 (Table 3 in Ref II). Intriguingly, the 
Asp300Asn mutant synthesized more levan (8.6 mg/mL) than the wild-type 
enzyme (7.2 mg/mL) (Ref I). Further investigation of levan produced by 
Asp300Asn showed that the mutant Asp300Asn produced only LMW levan – 
two size-fractions of that (16.6 kDa and 7.4 kDa) were characterized by us 
(Table 1 in Ref IV). Interestingly, the activity of Asp300Ala mutant was almost 
identical to the wild type (Table 4; Figure 5 in Ref III). The position equivalent 
to Asp300 of Lsc3 has been earlier mutated in levansucrase of Z. mobilis 
levansucrase: respective mutant Asp275Asn behaved like the wild-type enzyme 
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(Yanase et al. 2002). Levansucrases of Gram-positive bacteria stabilize their 
levansucrases with Ca2+ ion. Importantly, in levansucrase of Lb. reuteri 121, 
Asp500 that is equivalent to Asp300 in Lsc3, was assumed to participate is Ca-
binding. When Asp500 was replaced by either Asn or Ala, both the catalytic 
activity and ability to bind calcium were reduced (Ozimek et al. 2005). The 
Thr302Pro mutation, also originating from random mutagenesis, caused a slight 
negative effect on levansucrase activity. When Thr302 was replaced with 
methionine to make the enzyme similar to invertases, the mutant had the 
activity of wild-type enzyme (Ref II–III). In the case of B. subtilis levansucrase, 
the Ile341Val mutant (Ile341 resides at position homologous to Thr302 of 
Lsc3), behaved like the wild-type enzyme (Ortiz-Soto et al. 2008). To sum up, 
random mutagenesis disclosed two positions (His113 and Asp300) in Lsc3 
crucial for the catalysis (Ref I–III).  
 
 

3.1.4. Mutations around the nucleophile Asp62 

The catalytic triad of Lsc3 is surrounded by amino acids, which are strongly 
conserved among levansucrases (Figure 2 in Ref III). For example, an invariant 
Trp61 is located next to the nucleophile Asp62 (Ref II). Substitution of Trp61 
with Asn or Ala caused drastic reduction in sucrose-splitting and polymerizing 
activities (Table 4). Out of those two mutants, Trp61Ala mutant retained partial 
activity and produced slightly more levan and FOS than the Trp61Asn mutant 
(Ref II). Respective position has been changed to His, Ala and Asn in other 
levansucrases, whereas the His and Asn variants had decreased catalytic 
efficiency by 700 and 94 times, respectively (Li et al. 2011; Ozimek et al. 2006). 
The aromatic Trp61 of Lsc3 probably forms hydrogen bonds with the fructosyl 
moiety bound at –1 subsite, and as substitutions in this position do not support 
H-bonding, binding of the substrate is hampered.  

Positions Thr63 and Leu66 of Lsc3 (Ref II) have not been targeted in 
levansucrases before. Changing Thr63 to alanine reduced catalytic efficiency of 
Lsc3 ten-fold, leaving the affinity for sucrose and the FOS production unaltered 
(Ref II). Though leucine in position 66 is invariant among levansucrases, its 
mutation into alanine had only subtle negative effect on the catalysis and 
product formation. According to structure modelling, Thr63 and Leu66 are both 
buried residues and thereby may affect the enzyme’s activity indirectly (Ref II).  

The position of Trp109 was substituted with alanine, phenylalanine and 
arginine. Changes of Trp109 to alanine or arginine hindered the catalysis 
(Table 4 and Ref III). Intriguingly, the Trp109Phe mutant seemed to be better 
catalyst than the wild-type Lsc3 – increased affinity with boosted synthesis of 
levan. In Z. mobilis levansucrase, homologous Trp80Arg mutation caused 
disturbed HMW levan synthesis (Yanase et al. 2002). Possibly, Trp109 of Lsc3 is 
involved in substrate (acceptor) binding at +2 subsite and arginine or alanine at 
this position does not fulfil this function.  
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Mutant levansucrases, Glu110Asp and Glu146Gln, had 2–3 times decreased 
affinity for sucrose compared to the wild-type Lsc3, while the Vmax and trans-
fructosylating activities remained unchanged (Table 4 and Ref III). Glu110 is 
located next to a catalytically important Trp109 and is possibly required for 
substrate binding at +2 subsite and for levan synthesis. The Glu146Gln 
mutation in Lsc3 caused decrease in affinity and increase in FOS synthesis, 
possibly at the expense of levan. The equivalent position of Glu146 was 
mutated in Z. mobilis levansucrase previously: the Glu117Gln mutant had 
reduced affinity for sucrose and increased polymerizing activity (Yanase et al. 
2002). 
 
 

3.1.5. Mutations around the stabilizer Asp219 

Pro220 is located next to the transition-state stabilizer Asp219 in Lsc3. The 
Pro220Ala mutant was created to mimic respective region of inulosucrases. This 
mutation did not cause any reduction in levansucrase activity compared to the 
wild-type enzyme (Table 4 and Ref II). Asp225 was mutated to alanine and 
asparagine to reveal catalytic significance of this acidic residue (Table 4 and 
Ref II). As respective mutants behaved like the wild type, Asp225 has no role in 
the catalysis. Intriguingly, Asp306 in Arthrobacter globiformis β-fructofurano-
sidase that is equivalent of Asp225 in Lsc3, has been erroneously predicted as a 
transition-state stabilizer (discussed in Ref II). 

The Glu236Gln mutant showed decrease in sucrose hydrolysis and FOS 
production, and complete disability to produce levan (Table 4 and Ref III). 
Homologous position has been mutated in Z. mobilis levansucrase (Glu211Gln) 
showing similar consequences (Yanase et al. 2002). According to the crystal 
structure of B. subtilis levansucrase (PDB 3BYN), the Glu262 corresponding to 
Glu236 of Lsc3 is located spatially close to the stabilizer and acid/base catalyst. 
Respective glutamate forms hydrogen bonds to the substrate bound at –1 and +1 
subsites over water molecule, thereby contributing to anchoring of the substrate 
(Meng and Fütterer 2008). Similarly, to Glu236Gln mutation, the Val248Ala 
mutation decreased the enzyme’s ability to produce FOS, but the affinity for 
sucrose and levan-producing activity remained unchanged (Table 4 and Ref III). 
Interestingly the Thermofluor assay showed a decreased melting temperature 
for this mutant, which could point to importance of Val248 in protein folding.  
 
 

3.1.6. Mutations around the acid/base catalyst Glu303 

Acid-base catalyst Glu303 is surrounded with conserved amino acids such as 
Asp300, Gln301, Thr302 Arg304 and His306. The effect of Asp300Asn/Ala 
and Thr302Pro/Met mutations was discussed already in “Mutations obtained 
through random mutagenesis reveal a great importance of His113 and Asp300 
in the catalysis” section. The Gln301Ala mutant of Lsc3 was capable of sucrose 
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splitting but had a very low affinity for sucrose and was defective in trans-
fructosylation. While the Gln301Glu mutant was competent in sucrose splitting, 
it was poor in polymerization and acted mainly hydrolytically (Table 4 and 
Ref II). According to the structure of B. subtilis levansucrase, Glu340 (corres-
ponds to Gln301 of Lsc3) locates in +1 subsite and is involved in binding of 
fructosyl acceptor (Meng and Fütterer 2008). Thus, Gln301 of Lsc3 most 
probably plays role in polymerisation. Next, no previous functional data is 
available for positions Arg304 and His306 of Lsc3. The mutations Arg304Ala 
and Arg304Cys of Lsc3 had a significant decrease of both sucrose-splitting and 
FOS-producing abilities (Table 4 and Ref II). The Arg304Cys mutation was 
constructed based on alignment of GH32 and GH86 enzymes. Most GH32 
enzymes have a cysteine in respective position, so the side-chain of arginine at 
this position was suggested to be crucial for levansucrase activity. Changing 
His306 into alanine did not cause any significant changes in enzyme activity – 
the mutant behaved almost similarly to the wild-type Lsc3 (Ref II). 

His321 in Lsc3 was mutated to lysine, leucine, arginine and serine following 
the previous reports (Chambert and Petit-Glatron 1991; Yanase et al. 2002). 
Lsc3 did not tolerate any of the above-mentioned substitutions – the affinity of 
His321 replacement mutants towards sucrose increased over 25 times, and 
catalytic efficiency decreased by over 30 times. In addition, the mutants could 
produce only short FOS – with DP up to four (Table 1 and Figure 2 in Ref I). 
This position close to +1 subsite of levansucrases was shown as determinant of 
transfructosylation, stabilizing glucose moiety of the donor sucrose (Meng and 
Fütterer 2008). His321 equivalents in levansucrase from Z. mobilis, B. subtilis 
and B. megaterium are His296, Arg360 and Arg370 respectively (Homann et al. 
2007; Ortiz-Soto et al. 2008; Yanase et al. 2002). Yanase and co-workers 
reported similar reduction in activity and polymerization in case of Z. mobilis 
enzyme (Yanase et al. 2002), while the Arg360Ser and Arg360Lys of the 
B. subtilis levansucrase became more hydrolytic, producing only FOS and almost 
no levan (Ortiz-Soto et al. 2008). As suggested by (Ortiz-Soto et al. 2008), these 
mutants could not hold the acceptor molecule in +1 subsite strongly enough to 
enable efficient polymerization. 

The Asp333Ala/Asn mutants were constructed to mimic Asp308Asn 
mutation of Z. mobilis levansucrase. The asparagine substitution altered the 
catalytic activity only slightly – it lowered the affinity of the enzyme for sucrose. 
Yet, the alanine substitution decreased the mutant’s ability to synthesise FOS 
and levan (Table 4 and Ref III), therefore Asp333 of Lsc3 can be involved in 
substrate binding and elongation of the fructan chain. 

All investigated positions and mutations mostly decreased either the 
enzyme’s sucrose-splitting or polymerization activity, or both. Besides shaping 
the central cavity, amino acids surrounding the catalytic triad also assist in 
catalysis. Regarding FOS and levan production, the mutants Glu146Gln, 
Thr302Met and Asp333Asn had slightly enhanced FOS production, while 
Trp109Phe mutant showed enhanced levan production (Ref III).  
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3.2. The yield and spectrum of polymerization products  
of Lsc3 (Refs I, II and IV) 

Levansucrases have gained attention from biotechnologists and food scientists 
because of the synthesis of potentially prebiotic sugars from cheap commercial 
substrates such as sucrose. We have thoroughly studied one of the levansucrases – 
Lsc3 of P. syringae pv tomato ((Visnapuu et al. 2009, 2015); Refs I–III of this 
PhD work). The most suitable substrate for the Lsc3 protein is sucrose, 
followed by raffinose and stachyose. Even levan can be hydrolysed by levan-
sucrases when other substrates are not available (Méndez-Lorenzo et al. 2015). 
However, hydrolysis of levan by Lsc3 is low – it constitutes less than 1% of 
sucrose-splitting activity, and the hydrolysis produces only fructose that is not 
considered prebiotic (Ref I).  

Lsc3 produces two types of fructans: highly polymerized levan and FOS. In 
Ref IV we showed that levan synthesised by Lsc3 from 1.2 M sucrose had a bi-
modal distribution of molecular weight: 4733 ± 125 kDa (HMW) and 10.7 ± 
1.0 kDa (LMW). A similar feature has also been reported for levan produced by 
the levansucrase of B. subtilis (Ortiz-Soto et al. 2008; Porras-Domínguez et al. 
2015; Raga-Carbajal et al. 2016). Using Lsc3 as a catalyst, about 13 g of levan 
can be produced per mg of protein (Adamberg et al. 2014). The yield of FOS 
(DP 3–7) per 1 mg of Lsc3 is approximately 15 g (Ref II). Aside of levan, FOS 
and fructose (the latter is a hydrolysis product of sucrose), residual sucrose and 
lots of glucose is present in the reaction mixture of Lsc3 reacted with 1.2 M 
sucrose at 23 °C for 20 hours (Adamberg et al. 2014). A quantitative analysis of 
respective FOS fraction revealed 1-kestose (37% out of total FOS, DP3),  
6-kestose (9.2%; DP3), nystose (28.4%; DP4), fructosyl nystose (19.7%; DP5), 
DP6 FOS (7%) and DP7 FOS (3.6%) (Adamberg et al. 2014). This result 
clearly shows that Lsc3 produces from sucrose both I-FOS and L-FOS. We 
have used invertase-negative mutant of Saccharomyces cerevisiae to remove 
excess glucose and fructose from the FOS mixture, but it is time- and money-
consuming (Adamberg et al. 2014; Jõgi et al. 2015). Recently, a naturally 
invertase-negative yeast Hansenula polymorpha was used to remove fructose 
and glucose from the FOS mixture produced by a mutant levansucrase of 
B. megaterium (Possiel et al. 2019). Absence of invertase in the microorganism 
used for removing glucose and fructose is crucial, because otherwise the FOS 
will be hydrolysed (Adamberg et al. 2014; Nobre et al. 2018; Yoon, Mukerjea, 
and Robyt 2003). Recently, a new promising FOS purification method with 
phenylboronic acid was introduced removing glucose, fructose and residual 
sucrose that resulted with 97% of purity (Porras-Domínguez et al. 2019). As 
concluded above, Lsc3 is probably not the best for L-FOS production, but the 
Lsc3-produced levan opens new biotechnological opportunities – it can be 
enzymatically hydrolysed to L-FOS using a proficient endo-levanase (Ref IV). 

Hetero-oligofructans, for example lactosucrose, have exhibited high pre-
biotic efficiency (Ibrahim 2018; Mu et al. 2013). Our work has shown that Lsc3 
can synthesize HOFs with DP up to 5 by transfructosylation of non-con-
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ventional acceptors such as D-xylose, D-fucose, L- and D-arabinose, D-ribose, 
D-sorbitol, xylitol, xylobiose, D-mannitol, D-galacturonic acid, methyl-α-D-
glucopyranoside (Ref I form this PhD work and (Visnapuu et al. 2009)).  
 
 

3.3. Study of levansucrase mutants using  
high-throughput methods (Ref III) 

If a protein is heterologously synthesized in an expression host (most often 
E. coli) that does not have respective background activity, the activity of 
expressed enzyme (e.g. maltase or levansucrase) can be studied in crude cell 
extract of the host (Liiv, Pärn, and Alamäe 2001; Visnapuu et al. 2008). 
Permeabilization of bacteria and yeasts can also be used to measure activities of 
intracellular enzymes (Alamäe et al. 2012; Alamäe and Järviste 1995; Jamur 
and Oliver 2010; Maleknia, Ahmadi, and Norouzian 2011). Though P. syringae 
levansucrases are extracellular enzymes, they are not excreted from the cell if 
heterologously synthesized in E. coli – 88% of produced protein residing in the 
cytoplasm (Visnapuu et al. 2008). In Ref III, permeabilization of levansucrase-
expressing E. coli cells was used in a microplate-based high-throughput 
approach to evaluate enzymatic properties of Lsc3 mutants. Figure 4 illustrates 
evaluation of sucrose-splitting activity of Lsc3 mutants in permeabilized cells.  
 

Figure 4. Sucrose-splitting activity of Lsc3 and its mutants in CTAB-permeabilized 
levansucrase-expressing Escherichia coli cells. The activity of wild-type Lsc3 is taken 
for 100% and permeabilized cells carrying the empty vector (pURI3), McIllvaine’s 
buffer (C) along with uninoculated LB media (LB) are used as controls. The image is 
taken from Ref II. 
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The data from experiments with permeabilized E. coli cells were compared with 
respective results of purified proteins. However, pure recombinant proteins, 
especially mutated ones, often aggregate and precipitate from the solution. 
Thus, other methods should also be considered for the study of enzymes to 
over-come for example problems of solubility. 

In Ref III, a panel of 36 mutants of Lsc3 along with the wild-type enzyme 
were characterised for (i) sucrose-splitting activity, (ii) the amount and 
spectrum of produced FOS, (iii) the ability and kinetics of levan synthesis, and 
(iv) thermal stability of the proteins. In most cases, a microplate-format was 
applied. 

Sucrose-splitting activity of Lsc3 mutants can be evaluated using 
permeabilized recombinant E. coli cells as catalysts. Figure 5 shows good 
correlation between the sucrose-splitting activities measured using two 
methods, one of which uses purified enzymes and the other permeabilized E. 
coli cells. In this work, 0.1% cetyltrimethylammonium bromide (CTAB), that 
had only a minor inhibitory effect on levansucrase activity, was used for cell 
permeabilization (Ref III).  

Figure 5. Sucrose-splitting activity of levansucrase Lsc3 and its mutants. The activities 
of thirty-seven proteins were assayed by two methods: using CTAB-permeabilized 
E. coli cells expressing levansucrase assayed on a microplate (upper panel) and using 
purified proteins (lower panel). Mutants of catalytic triad are shown in green; mutants 
characterized for the first time in Ref III are designated in red. The 100% value is the 
respective value of the wild-type Lsc3. The image is from Ref III. 
 
FOS synthesis evaluated using permeabilized E. coli cells expressing levan-
sucrase yielded similar results as the study of purified enzymes. For example, 
both assays indicated that the Asp300Asn mutant of Lsc3 produced FOS with 
extended chain length (DP up to 9–10), while the wild-type Lsc3 produced the 
FOS with DP up to 7 (Table 1 in Ref III). In addition, the transfructosylating 
activity of mutants correlated well between the two assays, indicating that the 
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high-throughput cost-efficient methods are feasible for the analysis of 
levansucrases. 

Ref III additionally shows that a high-throughput differential scanning 
fluorimetry (also known as Thermofluor), is a suitable method to study thermal 
stability of levansucrase mutants. The results obtained from a Thermofluor 
experiment (total volume of the analysed sample only 20 µL) nicely correlated 
with the results of traditional inactivation assay, where the protein is kept at 
certain temperature and then its residual catalytic activity is measured. The 
melting temperature of the wild-type Lsc3 according to Thermofluor assay was 
65.4 °C, which was higher than that of E. amylovora levansucrase (57 °C) (Ref 
III) (Caputi, Cianci, and Benini 2013). Some Lsc3 mutants with reduced 
catalytic activity such as Asp31Asn, Val248Ala and Thr302Pro had decreased 
Tm ranging from 44–55 °C, showing that loss of catalytic performance was 
probably due to improper folding causing instability of the protein. 
 

3.4. Cleavage of bacterial and plant levans into  
fructo-oligosaccharides by the endo-levanase BT1760 of  

B. thetaiotaomicron (Ref IV) 

To produce FOS from levan, two biotechnologically proficient enzymes are 
required: a levansucrase to produce levan, and an endo-levanase to ‘chop’ levan 
into FOS. We have shown that the levansucrase Lsc3 has certainly properties of 
a feasible biotechnological catalyst: it is highly active in sucrose splitting and 
levan synthesis (Refs I–III) and very stable, maintaining its full activity even 
after keeping the protein for 200 days at a relatively high temperature (37 °C) 
(Ref IV). Its high stability can be explained by extracellular nature of the 
enzyme in the natural host – extracellular enzymes have to tolerate harsh 
environmental conditions (Hettwer et al. 1995; Visnapuu et al. 2008).  

The endo-levanase BT1760 was first isolated and briefly analysed by 
(Sonnenburg et al. 2010), Ref IV offers more detailed characterization of the 
enzyme. As stated in Ref IV, the BT1760 should be considered the most active 
endo-levanase described so far: it hydrolyses levan 300 times more rapidly than 
the endo-levanase LevB1 from B. licheniformis.  

The performance of BT1760 was assayed using six different levans, 
including one levan of plant origin – extracted from timothy grass. All levans 
served as substrates for BT1760 (see further). At the same time, dahlia inulin, 
xylo-oligosaccharides, raffinose and stachyose were not hydrolysed by the 
enzyme. Activity of BT1760 was only modest on I-FOS preparations P95 and 
Synergy1 (Ref IV). Considering the six different levans, the enzyme had the 
highest affinity for levans produced by Z. mobilis and by mutant levansucrase 
Lsc3Asp300Asn, followed by levans of timothy grass and levan produced by 
H. smyrnensis. Levans produced by P. syringae levansucrase Lsc3 from sucrose 
or raffinose were less suited substrates, according to the affinity parameter 
(Ref IV). It seemed, that the endo-levanase prefers LMW levans as 
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Lsc3Asp300Asn-produced levan (16.6 kDa) and timothy grass levan (about 
60 kDa) were the most suited levans for the enzyme (Kasperowicz et al. 2016; 
Nelson and Spollen 1987). The four other bacterial levans used in Ref IV as 
endo-levanase substrates had a high molecular weight, reaching megadaltons, 
and the catalytic efficiency of BT1760 towards these levans was lower 
compared to LMW levans (Table 2 in Ref IV). Branching of levan most 
probably also affects its endo-degradation. According to the literature, the 
Z. mobilis levan is branched, whereas the H. smyrnensis levan is reported as 
unbranched, which is quite unusual among bacterial levans (Benigar et al. 2014; 
Kazak Sarilmiser et al. 2015). We assume that levan synthesized by Lsc3 is 
branched.  

Kinetics of FOS release from levans (5 g/L) was monitored during a 72-hour 
period. The endo-levanase BT1760 produced FOS most rapidly from LMW 
levans: the Lsc3Asp300Asn levan and timothy grass levan (Figure 6, panels C 
and F; Ref IV). It took only 15 minutes to degrade timothy grass levan into  
L-FOS (4.16 g/L, DP 2–9) (Figure 6, panel F; Table 3 in Ref IV). In case of 
Lsc3Asp300Asn levan, the highest amount of FOS (4.56 g/L, DP 2–7) was 
produced by 60 min of BT1760 reaction. In both cases, the major product 
during the rapid phase of the hydrolysis was levantriose (DP3). During pro-
longed incubation, the DP3 product was further hydrolyzed into DP2 oligomer 
(levanbiose) and fructose (Figure 6 and Ref IV). Depolymerization of Z. mobilis 
levan yielded the highest FOS amount (3.28 g/L, DP 2–9) by 180 minutes of the 
reaction. Levans from H. smyrnensis and P. syringae Lsc3 were much less 
convenient substrates for FOS production by BT1760, and the most resistant to 
endo-hydrolysis was levan produced by Lsc3 from raffinose, yielding 3.15 g/L 
of FOS (DP 2–8) by 72 h of reaction (Figure 7 in Ref IV). 

During the endo-levanase reaction, levan is first hydrolysed into long FOS, 
which are further cleaved into smaller oligomers until levanbiose and fructose 
remain as final products. Accumulation of fructose and levanbiose indicates that 
BT1760 is an endo-acting enzyme and that levanbiose is not its substrate. 
Similarly, L-FOS with DP 2–8 were produced by endo-levanase LevB1 of 
B. licheniformis whereas extended incubation resulted in levanbiose as the main 
product (Porras-Domínguez et al. 2014). 91.2% of levan turned into FOS, when 
LMW Lsc3Asp300Asn-produced levan was used as a substrate. This high yield 
is close to 97% reported for the endo-levanase LevB1 of B. licheniformis 
(Porras-Domínguez et al. 2014). Our data (Figure 6 and Ref IV) showed that 
even though timothy grass levan is cleaved by BT1760 the most rapidly, this 
levan is not the best substrate for FOS production, because of the enhanced 
fructose production (Figure 6, panel F; Ref IV). It can be due to absence of 
branching of this LMW levan that makes it easily accessible for the endo-
hydrolysis.  

We consider that endo-levanases are appropriate for the production of  
L-FOS from polymeric levan. Both, LevB1 from B. licheniformis and BT1760 
from B. thetaiotaomicron are perfect proofs of that (Ref IV, (Porras-Domínguez 
et al. 2014)).  
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Figure 6. Time course of hydrolysis of six different levans by the BT1760. *Levans 
synthesized by Lsc3 from sucrose; raffinose or its mutant D300N. The figure is taken 
from Ref IV. 
 
 

3.5. The structure of the endo-levanase BT1760 (Ref V) 

The glycoside hydrolases are grouped into families and clans based on their 
amino acid sequence and fold. So far, eight protein structures have been de-
termined for GH68 family members: seven levansucrases and one inulosucrase 
(Table 1). They all comprise a single domain with acidic active site located in 
the middle of the β-propeller (Figure 1). The catalytic differences between the 
enzymes are created by loops lining the active site influencing kinetics, product 
spectrum and stability of the enzymes.  

The GH32 family consists of invertases, endo/exo-inulinases and endo/exo-
levanases (Lombard et al. 2014). By 2019, thirteen protein structures were 
solved for this family: mostly invertases, but also exo- and endo-inulinases from 
a filamentous fungus Aspergillus (Lombard et al. 2014). All these proteins share 
a bimodular fold: a catalytic N-terminal five-bladed β-propeller connected to a 
C-terminal β-sandwich domain. The N-terminal domain structure is super-
imposable with that of GH68 proteins.  

In 2019, we solved the structure of the endo-levanase of B. thetaiotaomicron 
revealing a bimodular domain arrangement as shown for other GH32 proteins 
(Ref V). The structure of wild-type enzyme (PDB: 6R3R) with a MES [2-(N-
morpholino)ethanesulfonic acid] molecule bound to the active centre was 
solved at 1.65 Å resolution. The N-terminal domain was folded into 5-bladed  
β-propeller, every blade of which had a classical ‘W’ topology comprising four 
antiparallel β-strands (Figure 7). The negatively charged active centre was 
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located at the central pond-like cavity of the propeller. The C-terminal domain 
folded into β-sandwich, with two β-sheets formed from seven and eight 
antiparallel β-strands, respectively. No ligand-binding pockets were detected in 
the β-sandwich domain (Ref V). The BT1760 structure was solved using 
molecular replacement method with endo-inulinase structure (PDB 3RWK) 
applied as a template. The alignment of protein sequences showed that like 
other GH32 and GH68 family proteins, the BT1760 had three acidic key 
catalytic amino acids: a nucleophile Asp41, a stabilizer Asp169 and an 
acid/base catalyst Glu221. We experimentally proved the function of Glu221 in 
BT1760: the Glu221Ala mutant was catalytically inactive. In the case of 
acid/base catalyst mutant, substrate is expected to remain tightly bound to the 
enzyme. Proceeding with this knowledge, the Glu221Ala mutant was 
considered a suitable variant of the endo-levanase to be crystallized in ligand-
bound state. The structure of endo-levanase mutant Glu221Ala with 
levantetraose in its active site was solved at resolution of 1.90 Å (PDB: 6R3U).  

 

 

Figure 7. The overall structure of endo-levanase BT1760. A schematic view of the 
protein in complex with levantetraose (magenta), color is ramped from the N-terminus 
(blue) to C-terminus (red). The figure is taken from Ref V. 
 
 

3.5.1. The N-terminal catalytic domain 

In Ref V we compared the binding of substrates to the catalytic cavity of endo-
inulinase, exo-inulinase and endo-levanase. The exo-inulinase INUE (of 
A. awamori) has a deep funnel-shaped active site cavity, accommodating only 
one fructose residue at its bottom (Nagem et al. 2004). Comparison of INUE, 
INU2 (endo-inulinase of A. ficuum) and BT1760 structures revealed different 
shapes for their substrate-binding cavities as well as different modes of ligand 
binding (Figure 8, panel B). In levantetraose-bound BT1760 structure fructose 
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in –1 subsite lied at the bottom of the pocket, whereas fructose residues bound 
at –2 and +1 subsites reached upwards along the pocket edges. The substrate-
binding cavity of the endo-inulinase of A. ficuum binds at least three fructose 
residues of the ligand, kestopentaose (FFFFG), at –3, –2 and –1 subsites located 
at the flat bottom while fructose and glucose residues binding at +1 and +2 line 
the edge of the pocket (Pouyez et al. 2012).  

Figure 8. The structures of exo-inulinase, endo-inulinase and endo-levanase. In panel 
(A) the catalytic N-terminal domains are colored turquoise, while the C-terminal  
β-sandwich domains have dark blue color. Ligands are in magenta color. Panel 
(B) shows binding mode of ligands in the active site pocket: a fructose for Aspergillus 
awamori exo-inulinase (PDB 1Y9G), two fructoses for A. ficuum endo-inulinase 
(PDB 3RWK) and levantetraose for endo-levanase of Bacteroides thetaiotaomicron 
(PDB 6R3U). The figure is taken from Ref V. 
 
Comparison of the structures of endo-inulinase INU2 and exo-inulinase INUE 
(Pouyez et al., 2012; Nagem et al., 2004) indicated that the four loops (1–4) at 
the edges of the active center and three tryptophan residues in loop regions 
shaped the active site of these proteins (Nagem et al. 2004; Pouyez et al. 2012). 
In exo-inulinase INUE, the positions of Trp residues narrowed the substrate- 
binding cavity at the bottom, whereas in endo-inulinase INU2, the tryptophans 
left enough space to accommodate more than one fructose residue at the bottom 
of the cavity. Positions of loops 1 and 4 enlarged the active site of the endo-
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inulinase, while loops 2 and 3 were shown overlapping in structures of endo- 
and exo-inulinase (Nagem et al. 2004; Pouyez et al. 2012). When compared to 
endo-inulinase structure, the loops 1 and 4 of the endo-levanase were pushed 
even farther towards the edge of the protein, and the long loop 4 partially 
covered the C-terminal β-sandwich module (Figure 3 in Ref V). Notably, the 
active site region of the endo-levanase has no tryptophan residues at positions 
suggested to determine and limit the active site borders in the case of INU2 and 
INUE (Pouyez et al. 2012). We suggest that absence of tryptophans and wide 
spacing between the loops 1 and 4 in endo-levanase creates a moderately deep 
pond-like cavity for substrate binding required for endo-hydrolysis.  
 
 

3.5.2. The C-terminal β-sandwich module 

We propose that the C-terminal β-sandwich domain of endo-levanase from 
B. thetaiotaomicron is required for the correct folding, stability and solubility of 
the protein (Ref V). In ligand-bound structure of catalytically inactive BT1760, 
no electron density of the ligand in the C-terminal domain was observed 
(Figure 9, blue). The dissection of two modules of endo-levanase through cloning 
and separate expression resulted in fast precipitation of respective proteins and 
loss of activity. The separately expressed modules could not bind levan, but co-
incubation of N- and C-terminal modules resulted in low, but clearly detectable 
levan-hydrolysing activity (Figure 7 in Ref V). We hypothesize that (i) the 
exposure of hydrophobic surfaces after dissection of the modules caused 
aggregation and precipitation in the aqueous solution and (ii) the modules 
merged through hydrophobic contacts between these surfaces, restoring some 
activity to the enzyme (Ref V). So far, different functions for the C-terminal 
domain have been proposed for GH32 enzymes. In Thermotoga maritima 
invertase the C-terminal domain most probably contributes to stabilization of 
the protein – no ligand was detected bound to this domain, and raffinose was 
bound only to the active center (Alberto et al. 2006). The endo-inulinase from 
A. ficuum was co-crystallized with kestopentaose, and again, the fructose 
residues of the ligand were detected only in the active site. In this work, the 
authors did not assign any function to the C-terminal module (Pouyez et al. 
2012). In contrast to that, in fructosyl transferase of Paenarthrobacter 
ureafaciens (PDB 4FFI), both, the C-terminal domain and the active site of the 
β-propeller domain, bound levanbiose and -triose (Park et al. 2012). The authors 
proposed that the enzyme’s C-terminal domain (Figure 9, grey) helps to anchor 
levan chain to the enzyme, and so its non-reducing end can reach the catalytic 
centre for the hydrolysis. Crystallization of the C-terminal carbohydrate-biding 
module CBM66 of the B. subtilis exo-levanase also showed binding of the 
ligand – levantriose (Figure 9, green) (Cuskin et al. 2012). The study proposes 
that the CBM66 confers specificity for levan through an “avidity” mechanism in 
which the C-terminal module and the catalytic module bind the termini of 
different branches of the levan molecule.  
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Figure 9. The C-terminal domains of three GH32 family proteins. Grey domain belongs 
to fructosyl transferase of Paenarthrobacter ureafaciens (PDB 4FFI-B) with magenta 
levantriose bound to its surface. Green represents the CBM66 structure (exo-levanase of 
Bacillus subtilis, PDB 4B1M-A) and the blue C-terminal domain belongs to the endo-
levanase of B. thetaiotaomicron (PDB 6R3U-A). Image is taken from (Ref V) with 
slight modifications. 
 
 

3.5.3. How does the endo-levanase operate? 

The ligand-bound structure of endo-levanase indicated that levantetraose was 
bound to the enzyme at four subsites. According to binding subsites designation 
(Davies et al. 1997), the non-reducing end of the levan chain is bound at a ‘–‘ 
subsite and the reducing end at ‘+’ subsites.  

We suggest that similarly to other GH32 family proteins (Lammens et al. 
2009), endo-levanase BT1760 works by retaining the configuration of the 
anomeric carbon of fructose using double displacement mechanism. In the first 
step of the reaction, a nucleophile Asp41 attacks the anomeric carbon (C2) in 
fructose monomer, forming a covalent fructosyl-enzyme intermediate. At the 
same time, Glu221 acts as a general acid and donates a proton to the leaving 
fructosyl group. In the second step, Glu221 functions as a general base and 
removes a proton from the water molecule resulting in hydrolysis of the 
fructosyl-enzyme intermediate. The positions of catalytically important amino 
acids are shown in Figure 10. 

In experiments described in Ref V, we used levan from timothy grass that is 
linear (Kasperowicz et al. 2016; Nelson and Spollen 1987) and should provide 
L-FOS with uniform structure after the hydrolysis. After the reaction of timothy 
levan with endo-levanase BT1760 (described in Ref IV), products of different 
DP were isolated. Levan oligomers with DP 3–5 were used in Ref V as sub-
strate for endo-levanase to determine the shortest L-FOS that can be hydrolysed 
by the enzyme and to characterize the product spectrum. Figure 11 shows that 
DP3 (levantriose) remained in the solution along with products from its 
hydrolysis: fructose and levanbiose (DP2). Levantetraose (DP4) was rapidly 
cleaved into fructose and levantriose, which was subsequently cleaved into 
fructose and levanbiose. Levanpentaose (DP5) was cleaved mostly into 
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levanbiose and -triose, but some fructose and levantetraose were also produced 
(Figure 11). In Ref IV we showed that at rapid phase of levan degradation, 
mostly levantriose was produced, whereas levanbiose was accumulating at the 
end of the reaction. Figure 11 clearly shows that levantriose is the shortest L-
FOS cleaved by BT1760. We assume that at hydrolysis of L-FOS of DP ≥ 4, the 
DP3 oligomer is released from the levan chain bound at subsites –3 to –1 in 
endo-levanase active centre (Ref V).  

  

Figure 10. Superimposed apo- and ligand-bound (E221A mutant with levantetraose) 
structures of endo-levanase (in light and dark blue, respectively). Levantetraose (in 
magenta) is bound at –3, –2, –1 and +1 subsites. No conformational changes are 
observed in catalytic pocket region except for missing side-chain of Ala221 and Gln239 
presented by two alternate rotamers in E221A model. The figure is taken from Ref V.  

 
Figure 11. Hydrolysis of levantriose (DP3), levantetraose (DP4) and levanpentaose 
(DP5) by the endo-levanase BT1760. The mixture of fructose (F), sucrose (S), 1-kestose 
(1-K), nystose (N) and levan (L) was used as a marker. The numbers 1–5 indicate 
degree of polymerization (DP) of the fructan. The Figure is taken from Ref V. 
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Levans may have a very high DP and molecular weight reaching several mega-
daltons (Table 1 in Ref IV). Hydrolysis of that big molecule is probably not a 
simple task for an endo-acting enzyme. According to the theory presented in 
Ref V, during hydrolysis of levan, the first endo-cuts into high-DP levan chains 
are probably done randomly. To enable the first cuts, bending of the levan chain 
into the substrate-binding pocket is probably required, producing levan 
oligomers of moderate DP. After binding of moderate-length levan oligomers 
with their non-reducing ends at –3 subsite, levantriose is released. This theory 
explains why levantriose is a prominent product formed at the rapid phase of 
levan degradation by BT1760 (Refs IV and V). 
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CONCLUSIONS 

This doctoral thesis is focused on levans, L-FOS and enzymes that can be used 
for their production. So far, many possible applications of levans in medicine, 
pharmacy, agriculture, food industry etc. are proposed while in the case of L-
FOS, their bifidogenic effect is mostly emphasized. Levans and mixtures of I- 
and L-FOS are synthesised by bacterial levansucrases, while production of pure 
L-FOS is probably biotechnologically feasible using enzymatic endo-hydrolysis 
of levan. Despite many beneficial properties of levan-type fructans, costs for 
large-scale manufacturing yet remain unacceptable for the industry.  

Here, in this thesis, two perspective catalysts for the production of levan and 
L-FOS are thoroughly described.  
 
The main results of this thesis are summarized as follows:  

i. Levansucrase Lsc3 from a plant pathogen Pseudomonas syringae is one 
of the most active levansucrases described so far. It uses sucrose, raffi-
nose and stachyose as substrates producing levan with bimodal size 
distribution: 4 733 kDa and 10.7 kDa, as well as FOS: 1-kestose, 6-kestose, 
nystose, fructosyl nystose, and longer FOS, of DP 6 and 7. When 
alternative fructosyl acceptors are provided, Lsc3 produces hetero-
oligofructans. 

ii. A panel of 36 random and site-directed mutants of Lsc3 was constructed 
and assayed in order to specify the functions for each residue:  
a. The catalytic triad of Lsc3 – Asp61, Asp219 and Glu303 – was identi-

fied through construction and assay of alanine substitution mutants. 
Respective mutants were catalytically inactive.  

b. A set of mutated positions obtained from random mutagenesis, was 
analyzed in silico and four positions were selected for site-specific 
mutagenesis. In vitro analysis revealed the importance of Asp300, 
which was shown to participate in determination of length of the 
synthesized product. Levan synthesized by the Asp300Asn mutant had 
a low molecular weight, which turned out to be a preferred substrate 
for the endo-levanase. The His113 was shown to contribute to both 
sucrose splitting and polymerization, presumably participating in 
substrate binding at both –1 and +1 subsites. 

c. The Glu146Gln, Thr302Met and Asp333Asn mutants had slightly 
enhanced FOS production, and the Trp109Phe mutant produced more 
levan than the wild-type enzyme. All others investigated mutations 
decreased catalytic performance of the Lsc3. 

iii. Cost-efficient and high-throughput methods were proven suitable for the 
characterization of Lsc3 and its mutants. Permeabilized cells of E. coli 
expressing Lsc3 variants could be used as ‘levansucrase preparations’ in 
evaluation of both sucrose-splitting and FOS-producing activities. Diffe-



 

48 

rential scanning fluorimetry was shown as a feasible high-throughput 
method to evaluate thermal stability of levansucrases. 

iv. The endo-levanase BT1760 from a human gut commensal B. thetaiotao-
micron was heterologously expressed, purified and proven as the most 
active endo-levanase described so far. 

v. Substrate specificity assay of BT1760 revealed that it specifically cleaved 
β-2,6 linkage in levan-type fructans longer than DP2. Dahlia inulin, xylo-
oligosaccharides, raffinose and stachyose did not serve as substrates for 
BT1760. The endo-levanase BT1760 preferred low-molecular weight 
levans (e.g. timothy grass levan) to levans with high molecular weight.  

vi. The first step of endo-levanase reaction on levan is random hydrolysis of 
levan chains into long FOS. These FOS are then further cleaved into 
shorter species.  

vii. Glu221 was specified as acid/base catalyst of the endo-levanase BT1760. 
Alanine substitution of Glu221 inactivated the endo-levanase enabling 
co-crystallization of this mutant with a ligand – levantetraose.  

viii. The structures of endo-levanase BT1760 and its catalytically inactive 
ligand-bound mutant were solved. The structure of BT1760 revealed a bi-
modular fold of N-terminal five-bladed β-propeller connected with  
C-terminal β-sandwich domain. The levantetraose-bound structure 
exposed a novel architecture for the active site pocket among fructan-
acting enzymes. The substrate binding cavity of the endo-levanase was 
wider compared to that of the exo-inulinase from Aspergillus awamori, 
but narrower at its bottom when compared to the active site cavity of the 
endo-inulinase from A. ficuum. No role in the catalysis was revealed for 
the C-terminal β-sandwich domain – it was suggested to participate in 
folding and stabilization of the entire protein. 
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SUMMARY IN ESTONIAN 

Levaansukraasi Lsc3 ja endo-levanaasi BT1760 iseloomustamine ja 
rakendatavus uudsete prebiootikumide tootmises 

Toidus sisalduvatest süsivesikutest on kiudained inimese soolebakteritele kõige 
sobilikumad. Need polümeersed keerulise ehitusega suhkrud toimivad pre-
biootikumidena: jõuavad seedumata jämesoolde ja lagundatakse inimese 
tervisele kasulike (probiootiliste) bakterite, nt bifidobakterite ja laktobatsillide 
toimel. Selle tulemusena moodustuvad kiudainetest lühikese ahelaga rasv-
happed, millest näiteks võihape ehk butüraat on peamiseks energiaallikaks meie 
soolt vooderdavatele epiteelirakkudele.  

Prebiootikumide manustamine on meie igapäevaelus üsna tavaline: neid 
lisatakse näiteks imikute piimasegudele, kasutatakse toidulisandina või apteegis 
müüdava suukaudse preparaadina. Fruktoosi polümeer inuliin ja selle hüdro-
lüüsil saadavad frukto-oligosahhariidid on enimuuritud prebiootikumid maa-
ilmas. Sigurist eraldatud inuliini lubatakse kasutada toidus juba 2002. aastast. 
Lisaks inuliinile on looduses olemas ka teise sidemetüübiga fruktoosi polümeer – 
levaan. Levaani sünteesivad peamiselt bakterid, kuid ka mõned taimed kõrre-
liste hulgast. Levaanil ja levaani-tüüpi frukto-oligosahhariididel on näidatud 
prebiootikumidele iseloomulikke toimeid, kuid tootmiskulude kõrge hinna tõttu 
on neid veel väga vähe uuritud.  

Dotsent Tiina Alamäe töögrupis on tegeldud levaani-tüüpi prebiootikumide 
ensümaatilise sünteesiga juba üle kümne aasta. Antud doktoriväitekiri kesken-
dub kahele biotehnoloogiliselt olulisele ensüümile: levaansukraasile ja endo-
levanaasile, mille abil on võimalik neid fruktoosi polü- ja oligomeere toota 
tavalisest lauasuhkrust. Mõlemad ensüümid on pärit bakteritest.  

Taimepatogeeni Pseudomonas syringae levaansukraas Lsc3 lõhustab sahha-
roosi, rafinoosi ja stahhüoosi molekuli ning polümeriseerib neist pärinevad 
fruktoosi jäägid frukto-oligosahhariidideks ja kõrgmolekulaarseks levaaniks. 
Bakter ise kasutab levaanuskraasi endale limase levaankapsli sünteesiks, et 
varjuda taime kaitsemehhanismide eest, kuid meile pakkusid huvi selle ensüümi 
struktuuri ja funktsiooni vahelised suhted ning kasutus prebiootiliste suhkrute 
sünteesiks. Lsc3 on üks efektiivsemaid levaansukraase, mis senini on kirjel-
datud. Kui ta reageerib sahharoosiga, siis moodustub produktide segu: tekib 
inuliini- ja levaani-tüüpi frukto-oligosahhariide ning ka levaani. Ebasoovitavaks 
produktiks on suur kogus glükoosi, mis takistab oligo-fruktaanide segu 
kasutamist prebiootikumina ilma eelneva puhastuseta.  

Valgu katalüüsis oluliste aminohapete kindlakstegemiseks on parim meetod 
mutatsioonanalüüs, mida antud töös rakendasin ka levaansukraasi Lsc3 puhul. 
Senikirjeldatud levaansukraaside struktuure analüüsides ennustasin Lsc3 valgu 
struktuuri ning katalüütilisi aminohappeid. Kohtsuunatud mutagenees kinnitas 
ennustuse õigsust: ensüümi katalüütilise kolmiku moodustavad kolm happelist 
aminohapet: Asp62, Asp219 ja Glu303. Lisaks selgitasin, et katalüütilist 
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kolmikut ümbritsevad aminohapped on samuti katalüüsis olulised, toetades 
substraadi sidumist, lõhustamist ja fruktoosijääkide polümeriseerimist. Kokku 
iseloomustati doktoritöös Lsc3 valgu 36 erinevat mutanti. Enamasti olid mutandid 
algsest valgust katalüütiliselt ’kehvemad’, kuid paaril mutantsel valgul oli ka 
potentsiaali biotehnoloogiliseks kasutamiseks. Näiteks sünteesis Trp109Phe 
mutant enam levaani kui algne valk ning Asp300Asn mutandi sünteesitud 
levaan oli väikese molekulmassiga ning osutus väga heaks substraadiks endo-
levanaasile. Seega saaks seda mutanti kasutada frukto-oligosahhariidide toot-
miseks sobiva levaani sünteesimisel.  

Doktoritöös kirjeldatud Lsc3 valgu 36 mutandi iseloomustamiseks kasutasin 
lisaks traditsioonilisele analüüsile ka uudseid säästlikke ja kiireid meetodeid. 
Töös näitasin, et levaansukraasi sisaldavaid kolibakteri rakke saab kasutada 
preparaadina levaansukraasi omaduste uurimisel. Kui kolibakteri rakumemb-
raan keemiliselt augustada, siis pääseb levaansukraas rakust välja ning kokkku-
puutel sahharoosiga toimub nii sahharoosi lõhustamine kui ka polümeriseeri-
mine. Tõestasin, et kolibakteris ’peidus’ oleva levaansukraasiga mikroplaatidel 
tehtud analüüsi tulemused on usaldusväärsed ja korreleeruvad hästi tule-
mustega, mis saadi puhastatud valke ning traditsioonilisi meetodeid kasutades.  

Lsc3 produktidest on ilmselt olulisim levaan, sest levaani on lihtne lahusest 
sadestamisega puhastada ning selle ensümaatilisel hüdrolüüsil saaks toota ainult 
levaani-tüüpi sidemeid sisaldavaid frukto-oligosahhariide, millel on mitmete 
uuringute alusel eriti tugev prebiootiline toime. Sobivaks levaani lagundavaks 
ensüümiks osutus inimese jämesoolebakteri Bacteroides thetaiotaomicron endo-
levanaas BT1760. Näitasin, et kolibakteris sünteesitud endo-levanaas BT1760 
oli väga tõhus ja ’tükeldas’ efektiivselt kõiki testitud levaane. Selgus, et pari-
maks substraadiks talle on väikese molekulmassi ja hargnemata ahelaga timutist 
pärinev levaan.  

Levaan ei ole ensüümile lihtne substraat lagundamiseks, sest koosneb väga 
pikkadest ahelatest, mis on enamasti ka hargnenud. Seetõttu huvitas meid, 
milline näeb see ensüüm välja, milline on tema substraaditasku ja kuidas toimub 
levaani tükeldamine. Vastuse saamiseks otsustasime endo-levanaasi kristalli-
seerida, et oleks võimalik tema ehitust uurida. Koostöös Tallinna Tehnikaüli-
kooliga see meil ka õnnestus. Selgus, et ensüümil on kaks moodulit: katalüüsi 
läbi viiv N-terminaalne viielabaline β-propeller, mis on ühendatud C-
terminaalse β-võileiva struktuuriga. Propelleri keskel asub aktiivtsenter, kus 
toimub substraadi ankurdamine ja hüdrolüüs. Substraadi seostumise 
selgitamiseks kristalliseerisime endo-levanaasi inaktiivse mutandi koos 
levaantetraoosiga aktiivtsentris. Selgus, et endo-levanaasi substraaditasku 
meenutab sügavat kaussi, mille põhjas toimub lõike tegemine. Seega peab pikk 
levaaniahel painduma substraaditaskusse, et oleks võimalik esimese lõike 
tegemine. Selgitasin ka välja, et endo-levanaasi β-võileiva moodul ei osale ei 
katalüüsis ega levaaniahela sidumises ning tema rolliks on pigem terve valgu 
kooshoidmine. 

Käesolev doktoritöö panustab kindlasti ka biotehnoloogiasse. Näitasin, et 
P. syringae levaanuskraasiga on odavast toorainest (lauasuhkrust) võimalik 
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sünteesida polümeerset levaani ja frukto-oligosahhariide. Sellise produktide 
segu kasutamine prebiootilise preparaadina ei ole hea variant, sest temas on 
erineva sidemetüübiga frukto-oligosahhariide ning kõrvaproduktina väga suures 
koguses glükoosi. Levaani-tüüpi sidemega frukto-oligosahhariide on seetõttu 
otstarbeks toota levaansukraasiga sünteesitud levaani ensümaatilisel hüdro-
lüüsil, milleks sobib väga hästi bakteri B. thetaiotaomicron endo-levanaas.  
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