
U N I V E R S I T Y O F T A R T U

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Ahto Truu

Standards for Hash-Linking Based

Time-Stamping Schemes

Master’s Thesis (60 ECP)

Supervisor: prof. A. Buldas

Author: . “ ” 2010

Supervisor: . “ ” 2010

TARTU 2010

Contents

Introduction 5

1 Cryptographic Time-Stamping 7

1.1 Hash Functions . 8

1.2 Hash-Linking . 9

1.3 Time-Stamping Standards . 11

1.4 Time-Stamping Systems . 11

2 Time-Stamping Standards 13

2.1 ASN.1 . 13

2.2 IETF . 15

2.2.1 RFC 3161 . 16

2.2.2 Protocol . 16

2.2.3 Token Format . 18

2.2.4 RFC 3628 . 24

2.3 ETSI . 24

2.3.1 TS 101 861 . 24

2.3.2 TS 102 023 . 24

2.4 ISO/IEC . 25

2.4.1 ISO/IEC 18014 . 25

2.4.2 Model . 26

2.4.3 Protocol . 26

2.4.4 Token Format . 29

2.4.5 Linking Info Format 32

3

2.5 ANSI . 36

2.5.1 ANS X9.95 . 36

2.5.2 Formats . 36

3 Binary Tree Based Linking 39

3.1 Merkle Trees . 39

3.2 Surety . 40

3.2.1 Architecture . 41

3.2.2 Formats . 42

3.3 GuardTime . 43

3.3.1 Architecture . 43

3.3.2 Formats . 45

4 Skip List Based Linking 47

4.1 Skip Lists . 47

4.2 CHRONOS . 48

4.2.1 Architecture . 48

4.2.2 Formats . 50

Summary 51

Kokkuvõte 53

Bibliography 55

4

Introduction

The world is more and more relying on the accuracy of digital data. At
the same time, most of the data is kept on easily and almost untraceably
updateable media. There’s an increasing need to have tools to ascertain the
time when a datum was created or last modified, and to conclusively prove
that it has not been tampered with since the last authorized change.

The most common approach today is to have a trusted third party, called
time-stamping authority, add a (presumably accurate) time reading to the
datum in question and sign the pair. This solution works only as far as the
parties relying on the data are willing to trust the authority to neither collude
with any of its customers nor issue false time-stamps by accident.

A way to reduce or even remove the need to trust the authority is to verifi-
ably link the time-stamps to each other and/or externally occurring widely
witnessed events, such as newspapers being published.

The one-wayness of cryptographic hash functions is somewhat similar to the
one-wayness of the time itself, where information can flow from the past to
the future, but not in the opposite direction. This property of hash functions
has given rise to several schemes for building independently verifiable time-
stamping systems.

For these systems to be usable in practice, the algorithms, protocols, and data
formats have to be standardized so that all parties would have a common
understanding of the meaning of each piece of evidence.

The goal of this paper is to survey existing standards for time-stamping
systems based on linking data items with cryptographic hash functions and
to investigate to what extent these standards are being followed by actual
implementations of time-stamping services.

5

We review the relevant standards from four major bodies: the Internet Engi-
neering Task Force, the European Telecommunications Standards Institute,
the International Organization for Standardization, and the American Na-
tional Standards Institute.

We also examine three time-stamping services — Surety, GuardTime, and
CHRONOS — for their compatibility with the standards.

6

Chapter 1

Cryptographic Time-Stamping

The purpose of a cryptographic time-stamping service is to provide, upon
request from the owner of some datum, evidence that can later be used to
verify the existence of that datum at the time the request was submitted to
the service. To avoid forgery, the evidence provided should be in a form that
allows detection of any subsequent modifications of either the datum or the
claimed time of its existence.

Until 1990, it was believed that the only way to provide such evidence is to
introduce a trusted third party, called time-stamping authority (TSA), who
would add a time reading to the datum submitted and then digitally sign
the pair to produce a time-stamp token. The problem with this scheme is
that it requires anyone relying on these tokens to trust the TSA.

Those who accept the time-stamps as evidence must believe that the TSA
is not colluding with its customers to insert false time values in the tokens.
Those who rely on the time-stamps to prove the integrity of their data have
to trust that the TSA keeps its signing key secure, as even a single instance
of unauthorized use of the key would cast a shadow of doubt on all tokens
ever signed with it.

In the early 1990s it was discovered that cryptographic hash functions can be
used to build efficient time-stamping schemes that do not require any relying
parties to trust the TSA.

7

1.1 Hash Functions

A cryptographic hash function is a deterministic procedure that takes an
arbitrary block of data and returns a fixed-size bit string, the hash value,
such that any change to the data (whether accidental or intentional) would,
with very high probability, cause the function to return a completely different
hash value.

The input data are often called the message, and then the hash value is called
the message digest or just digest.

For a cryptographic hash function H to be considered good, it should have
the following four main properties:

• given any message m, the procedure to compute the digest d = H(m)
should be efficient;

• given any digest value d, it should be infeasible to find a message m such
that H(m) = d; a function that has this property is called preimage
resistant ;

• given any message m1, it should be infeasible to find a message m2 such
that m1 6= m2, but H(m1) = H(m2); a function that has this property
is called second preimage resistant ;

• it should be infeasible to find two messages m1 and m2 such that m1 6=
m2, but H(m1) = H(m2); a function that has this property is called
collision resistant.

A cryptographic hash function H can be used to time-stamp a message m
without disclosing the message itself. One way to do it is to compute the
digest d = H(m) and publish it in a newspaper or an electronic message
board that is mirrored on many servers.

If the digest is published in a widely witnessed medium, it will be very hard
to remove or fake the evidence of when it was published. If the function H is
preimage resistant, this means that the message m must have existed before
the digest d was published. If the function H is second preimage resistant,
then even disclosing the message m at a later date does not allow anyone
else to find a slightly different message m′ (for example, changing the name
of the author on the original message m) that would have the same digest d.

8

In fact, this idea of time-stamping is quite old. It was used as early as
in 1610 by Galileo Galilei. Galilei, having recently invented the telescope,
discovered that Venus seemed to have phases that were inconsistent with the
geocentric model of the world generally accepted at the time. However, the
topic was quite sensitive and he did not want to publish his findings until he
had double-checked them. On the other hand, he wanted to make sure he
would get the credit of being the first to make the observation.

Thus, he published his findings as the anagram ‘haec immatura a me iam
frustra leguntur o.y.’ (which means “these are at present too young to be
read by me”) and only later revealed that the letters should really be read
in the order ‘Cynthiae figuras aemulatur mater amorum’ (which means “the
mother of love imitates the shapes of Cynthia” — Venus has the same phases
as the Moon). [17]

Another notable scientist to time-stamp his discoveries in a similar manner
was Robert Hooke, who published two anagrams in 1676. The first of these
anagrams he revealed in 1678 to be what we now know as the Hooke’s law of
elasticity and the second was shown in 1705, after Hooke’s death, to describe
the optimal shape of uniform freestanding arches. [23, 24, 25]

While this approach, when used with modern cryptographic hash functions,
would allow the verification of time-stamp tokens to be independent of trust
in any one third party, it would be rather expensive to publish a separate
hash value for each individual document.

1.2 Hash-Linking

In 1990, Haber & Stornetta [20, 21] proposed a time-stamping scheme where
each token issued by a TSA would include some information from the im-
mediately preceding one and a reference to the immediately succeeding one.
These back and forward references would link all the tokens ever issued by
the TSA into a linearly ordered list.

To avoid the linking information growing larger in each successive token,
and also to prevent anybody (including the TSA itself) from retroactively
inserting additional tokens into the list, part of the information from the
preceding token would be hashed using a cryptographic hash function before
being included in the current one.

9

Then anyone wanting to establish that a time-stamp token is authentic and
has not been issued falsely in a collusion between the TSA and its client
could follow the chain in both directions. The verifier could contact owners
of the older and newer tokens and check that the linking information in each
pair of adjacent tokens matches and the time values in them agree with the
claimed order of issuance.

Depending on how suspicious the verifier is, they could continue following
the chain as far as needed in both directions, in order to satisfy themselves
that so many parties colluding to fake a time-stamp token is too unlikely.

The main drawback of this scheme is that verification depends on all tokens
being available to the verifier. To alleviate this, Haber & Stornetta also
proposed a generalized version where, at the expense of k-fold increase of the
size of the linking information, the verification would still work if among any
k consecutive tokens at least one would be available to the verifier (k is a
parameter chosen by the TSA at time-stamping time).

In 1991, Benaloh & de Mare [5] proposed to increase the efficiency of hash-
linked time-stamping by having the time-stamping system operate in fixed-
length rounds. The messages to be time-stamped within one round would be
combined into a hierarchical structure from which a compact proof of par-
ticipation could be extracted for each message. The aggregation structures
would then be linked into a linear chain.

Bayer et al [4] described a similar idea and additionally suggested that the
linear chain linking the aggregation structures could be replaced with another
hierarchy to enable more efficient comparison of tokens from rounds distant
in time. However, they did not elaborate on how the hierarchy should be
maintained as new aggregation rounds would be added to it over time.

Both of these proposals traded efficiency for accuracy, as messages submitted
wihin one round would be considered time-stamped simultaneously and could
not be ordered in time.

From 1998 to 2000, Buldas et al [11, 10, 13] proposed a series of time-
stamping schemes based on binary linking that allowed any two tokens to be
ordered in time, even if they were issued within the same round.

10

1.3 Time-Stamping Standards

For time-stamping to be widely usable in practice, the time-stamp token
formats, protocols to communicate to the time-stamping services, and verifi-
cation procedures need to be standardized. In chapter 2, we review existing
time-stamping related standards.

Standards from the Internet Engineering Task Force (IETF), the European
Telecommunications Standards Institute (ETSI), the International Organi-
zation for Standardization (ISO), and the American National Standards In-
stitute (ANSI) are included in the review. While there is no doubt that there
are many local or specialized standards that have been left out, we believe
the coverage to be comprehensive as far as general-purpose standards from
internationally recognized bodies are concerned.

In reviewing the standards, we concentrate on technical specifications for
time-stamp token formats and generally neglect the requirements placed on
the equipment and operating procedures of a time-stamping service provider.
Stapleton [42] has published an overview and comparison of the IETF, ISO,
and ANSI standards from that perspective.

1.4 Time-Stamping Systems

In chapters 3 and 4, we review existing time-stamping services that issue
hash-linking based tokens, organized by the underlying authenticated data
structures.

In chapter 3, the binary tree based systems of Surety and GuardTime are
covered. These two are commercial services available to the general public.

In chapter 4, we study the skip list based CHRONOS, a research prototype
of the University of Pau (France). While the prototype is not a generally
available service, we found the concept to be interesting enough to warrant
its inclusion in the report.

We deliberately ignore providers of independently signed tokens, even though
this category still encompasses the majority of publicly available services
(both commercial and non-commercial) available in the world today.

11

We also leave out services such as the BALTICTIME [37] and the OCSP
responder of Sertifitseerimiskeskus [41] that only use hash-linking in their
internal audit logs. As the audit logs are not accessible to the end users, we
believe they should not be considered to add full “widely-witnessed” quality
to the service, even if control certificates are published for the benefit of
accredited auditors.

In the systems we do review, we consider the standards-compatibility on two
levels. First we investigate if the linking mechanism used (more precisely,
the hash links extracted from the underlying authenticated data structure)
could be embedded in the data structures designated for that purpose by the
standards. Then we check if the messages exchanged and tokens issued by
the services are actually formatted in accordance with the standards.

12

Chapter 2

Time-Stamping Standards

In the following sections we will review the major standards related to time-
stamping, with focus on their support for producing hash-linked tokens.

2.1 ASN.1

All of the time-stamping standards reviewed in the following sections employ
Abstract Syntax Notation One (ASN.1) to define their message formats.

ASN.1 consists of a data definition language to describe data structures and
several sets of encoding rules to specify encoding and decoding of populated
instances of those structures as bit strings. It is a joint standard published
simultaneously by the Telecommunication Standardization Sector (ITU-T) of
the International Telecommunication Union (ITU) and the Joint Technical
Committee One (JTC1) of the International Organization for Standardiza-
tion (ISO) and the International Electrotechnical Commission (IEC).

Below we try to summarize the bare minimum needed to comprehend the
material cited from the time-stamping standards in the following sections.
To develop a working knowledge of the notation, at least the material of
the parts of the standard that cover the basic notation (ITU-T X.680 [33],
ISO/IEC 8824-1 [28]) and the basic and distinguished encoding rules (ITU-T
X.690 [34], ISO/IEC 8825-1 [29]) has to be absorbed.

In the most general level, the ASN.1 notation includes a set of basic data

13

types and a set of constructs to combine them.

Most of the basic data types, such as INTEGER and BOOLEAN, behave quite as
would be expected by anyone with any programming experience.

The OCTET STRING and ANY types can be used for keeping any data, with the
principal difference between them being that an ASN.1 data parser should in
general not expect to be able to interpret the contents of an OCTET STRING,
but may assume that a value of type ANY embeds another ASN.1 object
(whose internal structure is not necessarily known in advance).

The OBJECT IDENTIFIER type represents a globally unique identifier. The
identifiers are managed in hierarchical manner. An organization is assigned a
prefix and gets the responsibility to manage allocation of all identifiers with
that prefix and often further delegates different branches to different units.
For example, the prefix 2.16.840 is assigned to the USA, which designated
2.16.840.1.101 for the government, which in turn assigned 2.16.840.1.101.3.4
to NIST for algorithm identifiers, which in turn defined the identifier of the
SHA2-256 hash function to be 2.16.840.1.101.3.4.2.1.

The SEQUENCE models an ordered collection of variables that may in general
be of any ASN.1 type. For example, the ASN.1 snippet

s :: SEQUENCE {

i INTEGER,

b BOOLEAN

}

defines a structure s consisting of two fields, an integer i and a boolean b.

A field in a structure may be designated as OPTIONAL, which means the
value may be absent in some instances of the structure; the DEFAULT keyword
also declares a field optional, but additionally specifies a default value to be
assumed in case the field is absent.

The SEQUENCE OF models an ordered and SET OF an unordered collection of
variables that are all of the same type.

For encoding data under either the basic or distinguished rules, each of the
data types and constructs is assigned a tag and a value is encoded as the
type tag, followed by the length of the value, followed by the value itself.

For a non-basic data type, the value consists of the concatenated encodings

14

of the members. Note that the field names are not included in the encoded
form, which may present a problem in parsing structures with several optional
members. For example, given the type

t1 :: SEQUENCE {

a INTEGER DEFAULT 1,

b INTEGER DEFAULT 2

}

and the value { 0 }, it is not possible to determine if the value 0 is intended
for the field a (and the field b should take the default value 2) or for the
field b (and the field a should take the default value 1).

To resolve such ambiguities, it is possible to tag members of a SEQUENCE. For
example, given the type

t2 :: SEQUENCE {

a [1] INTEGER DEFAULT 1,

b [2] INTEGER DEFAULT 2

}

and the value { [2] 0 }, it is now clear that the value 0, having been tagged
with 2, is intended for the field b and the field a is the one that should assume
its default value 1.

The EXPLICIT and IMPLICIT designations can be safely ignored by all readers
who do not intend to manually encode and decode ASN.1 data.

The basic encoding rules (BER) allow for more than one possible encoding
for some data elements. Since this is not acceptable in some situations (in
particular for time-stamped or digitally signed material), the distinguished
encoding rules (DER) remove the ambiguities.

2.2 IETF

The Internet Engineering Task Force (IETF) is an international community
of network designers, operators, vendors, and researchers concerned with
the evolution of the Internet architecture and the smooth operation of the

15

Internet. It is open to any interested individual. While many participants
engage in IETF activities as part of their work, the IETF officially always
views them as individuals, not as company representatives.

The IETF’s products are documents published as Requests For Comments
(RFCs). The RFCs relevant to time-stamping have been produced by the
Network Working Group. As the name might suggest, not all RFCs are
standards, some are just informational.

2.2.1 RFC 3161

The IETF time-stamping specification was published as RFC 3161: Internet
X.509 Public Key Infrastructure Time-Stamp Protocol [1] and is based on the
CMS syntax published as RFC 2630: Cryptographic Message Syntax [26].
The official status of both of them is “proposed standard”.

The RFC 3161 only defines a mechanism for producing individually signed
independent time-stamp tokens. While this may seem to make it irrelevant
for the current work dedicated to hash-linked tokens, it is not so. All the
standards described in the following sections re-use the basic structures de-
fined in the RFC 3161.

2.2.2 Protocol

The basic interaction protocol defined in the RFC 3161 is very simple: a
client sends to the service a time-stamping request containing a hash value
of the datum to be time-stamped and the service returns a response.

The RFC 3161 defines the syntax of a time-stamping request to be:

TimeStampReq ::= SEQUENCE {

version INTEGER,

messageImprint MessageImprint,

reqPolicy TSAPolicyId OPTIONAL,

nonce INTEGER OPTIONAL,

certReq BOOLEAN DEFAULT FALSE,

extensions [0] IMPLICIT Extensions OPTIONAL

}

16

The field version contains the version number of the request syntax. The
current version is 1.

The field messageImprint contains a digest of the datum to be stamped,
together with the identifier of the hash algorithm used to produce the digest
value:

MessageImprint ::= SEQUENCE {

hashAlgorithm AlgorithmIdentifier,

hashedMessage OCTET STRING

}

The field reqPolicy, if present, contains the object identifier of the time-
stamping policy under which the token should be provided. The policy is a
statement from the TSA regarding the terms of service. The informational
RFC 3628 (see section 2.2.4) discusses the issues that a TSA should address
in its policy.

TSAPolicyId ::= OBJECT IDENTIFIER

The field nonce, if present, contains a presumably freshly generated random
value that enables the client to check that the token returned by the TSA
was in fact generated in response to this particular request.

If the field certReq is present and contains TRUE, the returned time-stamp
token must include the certificate for the key used by the TSA to sign it.

The field extensions is a placeholder for a generic way to add additional
information. The RFC 3161 does not define any extensions.

The RFC 3161 defines the syntax of a time-stamping response to be:

TimeStampResp ::= SEQUENCE {

status PKIStatusInfo,

timeStampToken TimeStampToken OPTIONAL

}

The field status is used to indicate the success or failure in processing the
time-stamping request and in case of failure to indicate the cause.

17

In case of success, the field timeStampToken contains the freshly issued time-
stamp token. The inner structure of this field is defined in section 2.2.3.

The RFC 3161, with reference to the RFC 2510: Internet X.509 Public Key
Infrastructure Certificate Management Protocols [2], defines the status info
to have the following structure:

PKIStatusInfo ::= SEQUENCE {

status PKIStatus,

statusString PKIFreeText OPTIONAL,

failInfo PKIFailureInfo OPTIONAL

}

PKIStatus ::= INTEGER

The field status indicates the success or failure in processing the request.
A value 0 or 1 means success and in this case the response must contain a
time-stamp token. Any other value indicates a failure and in this case the
response must not contain a time-stamp token.

The field statusString is a free text message explaining the cause of the
failure. The field failInfo is a bit-field indicating the cause(s) of the failure.

The RFC 3161 and RFC 2510 contain detailed explanations of the possible
values of the status and failInfo fields.

2.2.3 Token Format

The RFC 3161 defines a time-stamp token to be a CMS message and the
RFC 2630 defines a CMS message to have the following structure:

TimeStampToken ::= ContentInfo

ContentInfo ::= SEQUENCE {

contentType ContentType,

content [0] EXPLICIT ANY DEFINED BY contentType

}

ContentType ::= OBJECT IDENTIFIER

18

The contentType field determines the expected syntax and interpretation
of the content field. The RFC 3161 defines time-stamp tokens to use the
SignedData type and the RFC 2630 defines the content of a SignedData

message to be:

SignedData ::= SEQUENCE {

version CMSVersion,

digestAlgorithms DigestAlgorithmIdentifiers,

encapContentInfo EncapsulatedContentInfo,

certificates [0] IMPLICIT CertificateSet OPTIONAL,

crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,

signerInfos SignerInfos

}

CMSVersion ::= INTEGER

DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

CertificateSet ::= SET OF CertificateChoices

CertificateRevocationLists ::= SET OF CertificateList

SignerInfos ::= SET OF SignerInfo

The field version indicates the version number of the syntax of the structure,
which the RFC 2630 defines to be 3 for SignedData messages.

The field digestAlgorithms is a collection of message digest algorithm iden-
tifiers, with the intention that digesting the signed data with the listed algo-
rithms yields the digests needed to verify the signatures in the signerInfos

collection. Since the RFC 3161 allows for only one signature in a time-stamp
token, it is expected that any token has just one item in this collection, but
this is not an actual requirement.

The field encapContentInfo embeds the signed content, consisting again of
a content type identifier and the content itself.

The field certificates is a collection of certificates, with the intention that
the set will be sufficient to contain chains from recognized certification au-
thorities to all of the signers in the signerInfos field, although the set is
allowed to be either incomplete or redundant, or both.

19

The field crls is a collection of certificate revocation lists (CRLs), with
the intention that the set will be sufficient to establish the validity of the
certificates given in the certificates field; again, the set is allowed to be
either incomplete or redundant, or both.

The field signerInfos is defined in the RFC 2630 to be a collection of
per-signer information items, each containing the signature value and any
signer-specific data needed to verify the signature. The RFC 3161 restricts
this for time-stamp tokens and requires the collection to contain just the
signature of the TSA that issued the token.

The RFC 2630 defines the encapsulated content of a SignedData message to
have the following structure:

EncapsulatedContentInfo ::= SEQUENCE {

eContentType ContentType,

eContent [0] EXPLICIT OCTET STRING OPTIONAL

}

ContentType ::= OBJECT IDENTIFIER

As in ContentInfo, also in EncapsulatedContentInfo, the eContentType

field determines the syntax and interpretation of the eContent field.

The RFC 3161 defines the encapsulated content to be of type TSTInfo:

TSTInfo ::= SEQUENCE {

version INTEGER,

policy TSAPolicyId,

messageImprint MessageImprint,

serialNumber INTEGER,

genTime GeneralizedTime,

accuracy Accuracy OPTIONAL,

ordering BOOLEAN DEFAULT FALSE,

nonce INTEGER OPTIONAL,

tsa [0] GeneralName OPTIONAL,

extensions [1] IMPLICIT Extensions OPTIONAL

}

TSAPolicyId ::= OBJECT IDENTIFIER

20

MessageImprint ::= SEQUENCE {

hashAlgorithm AlgorithmIdentifier,

hashedMessage OCTET STRING

}

Accuracy ::= SEQUENCE {

seconds INTEGER OPTIONAL,

millis [0] INTEGER (1..999) OPTIONAL,

micros [1] INTEGER (1..999) OPTIONAL

}

The field version indicates the version number of the syntax of the structure.
Only version 1 is currently defined.

The field policy contains the identifier of the policy under which the time-
stamp token was issued by the TSA.

The field messageImprint contains the digest of the time-stamped datum.
Obviously, the contents of this field must be the same as the corresponding
field in the time-stamping request for which the token was generated.

The field serialNumber contains an integer assigned to the token by the
TSA; the RFC 3161 requires that the serial number combined with the name
of the TSA must be unique, and consequently requires clients to be able to
handle values up to 160 bits long.

The field genTime contains the time at which the token was created by the
TSA. It is expressed as Coordinated Universal Time (UTC) using the syntax
YYYYMMDDhhmmss[.s...]Z, where the terminating Z indicates that the time
is given in UTC.

The field accuracy defines the time deviation around the time contained in
genTime. Subtracting the accuracy from and adding it to the value contained
in genTime gives the lower and upper bounds to the actual time of creation of
the token by the TSA. The value zero must be assumed for any missing sub-
fields within this structure. If the whole structure is missing, the accuracy
of the time can still be available through other means (for example, it may
be specified by the time-stamping policy).

21

If the field ordering is present and contains the value TRUE, any two tokens
from the same TSA can be ordered based on the values in their genTime

fields. Otherwise two tokens can only be ordered if the difference of the
values of their genTime fields is greater than the sum of the values of their
accuracy fields.

The field nonce must contain the value from the corresponding field in the
request, or be missing if the field was absent in the request.

The field tsa contains the name of the TSA that issued the token.

The field extensions is a placeholder location for a generic way to add
additional information to the time-stamp tokens. The RFC 3161 does not
define any extensions.

The RFC 2630 defines the per-signer information to have the following struc-
ture:

SignerInfo ::= SEQUENCE {

version CMSVersion,

signerIdentifier SignerIdentifier,

digestAlgorithm DigestAlgorithmIdentifier,

signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,

signatureAlgorithm SignatureAlgorithmIdentifier,

signature SignatureValue,

unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL

}

CMSVersion ::= INTEGER

SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

Attribute ::= SEQUENCE {

attrType OBJECT IDENTIFIER,

attrValues SET OF AttributeValue

}

AttributeValue ::= ANY

SignatureValue ::= OCTET STRING

22

The field version contains the version number of syntax of the SignerInfo

structure. Currently versions 1 and 3 are defined, and their use depends on
the way the signer is identified in the SignerIdentifier structure.

The field signerIdentifier specifies the signer’s public key certificate to
be used for verifying the signature.

The field digestAlgorithm identifies the message digest algorithm used
by the signer. The digest is computed on the DER-encoded form of the
EncapsulatedContent structure and stored in the message-digest attribute
in the signedAttrs collection.

The field signedAttrs is a collection of type/value pairs of the attributes
whose values are protected by the signature. The RFC 2630 specifies that this
field is mandatory for the SignedData type and at least the content-type

and message-digest attributes must be present. The RFC 3161 further
specifies that the ESSCertID attribute must be present.

The field signatureAlgorithm identifies the algorithm used by the signer to
generate the signature and the field signature contains the signature value.

The field unsignedAttrs is a collection of attributes that are not signed.

Figure 2.1 illustrates how the different hashing and signing steps are layered
to have the time-stamped data and the time value protected by the signature
in the time-stamp token.

Datum

TimeStampToken
SignedData

EncapsulatedContentInfo
TSTInfo

MessageImprint

GeneralizedTime

SignerInfo
SignedAttributes

MessageDigest

SignatureValue

Figure 2.1: Data dependencies in an RFC 3161 time-stamp token.

23

2.2.4 RFC 3628

The RFC 3628: Policy Requirements for Time-Stamping Authorities [39]
defines a recommended baseline time-stamping policy. The official status of
this RFC is “informational”.

The initial version of the baseline policy was developed in cooperation be-
tween the IETF and the ETSI and the technical content of the RFC 3628 is
identical to the first edition of the ETSI TS 102 023 (see section 2.3.2).

2.3 ETSI

The European Telecommunications Standards Institute (ETSI) is a non-
profit organization that produces standards for information and communica-
tion technologies. ETSI’s purpose is to produce and perform the maintenance
of the technical standards and other deliverables as required by its member
organizations. The membership is not limited to European organizations.

Time-stamping related work is done in the Electronic Signatures and Infra-
structures Technical Committee (ESI).

2.3.1 TS 101 861

The TS 101 861: Time Stamping Profile [15] is an application profile on top
of the IETF RFC 3161 (see section 2.2.1). The profile specifies the minimal
list of algorithms and optional fields that implementations must support, etc.
It does not introduce any technological innovation over the RFC 3161 and is
mentioned here only for the completeness of coverage.

2.3.2 TS 102 023

The TS 102 023: Policy Requirements for Time-Stamping Authorities [16]
defines a recommended baseline time-stamping policy.

The initial version of the baseline policy was developed in cooperation be-
tween the ETSI and the IETF and the technical content of the first edition
of the TS 102 023 was identical to the IETF RFC 3628 (see section 2.2.4).

24

2.4 ISO/IEC

The International Organization for Standardization (ISO) is a network of
national standards institutes, with membership limited to one organization
per country, the one “most representative of standardization in its country”.

The time-stamping related work is done in the Joint Technical Committee
One (JTC1) that the ISO formed together with the International Electro-
technical Commission (IEC), a global organization dedicated to preparing
and publishing international standards for electrical, electronic and related
technologies.

2.4.1 ISO/IEC 18014

The standard ISO/IEC 18014: Information Technology — Security Tech-
niques — Time-Stamping Services is published in three parts.

The ISO/IEC 18014-1: Time-Stamping Services — Part 1: Framework [30]
describes the general model of time-stamping and defines the basic protocols
of interaction with the time-stamping service.

The ISO/IEC 18014-2: Time-Stamping Services — Part 2: Mechanisms Pro-
ducing Independent Tokens [31] describes, as the title implies, the generation
and verification of time-stamp tokens that are independent of each other and
can be verified individually. The mechanism based on digital signatures is
compatible with the RFC 3161 (see section 2.2.1). Two additional mecha-
nisms are defined: one based on message authentication codes and the other
based on archival of evidence by the TSA. Since we are not interested in
either of these mechanisms, we will mostly ignore the Part 2 for the rest of
our discussion.

The ISO/IEC 18014-3: Time-Stamping Services — Part 3: Mechanisms Pro-
ducing Linked Tokens [32] describes the mechanisms for producing time-
stamp tokens linked to each other to enhance the security of the tokens and
reduce the level of trust that both the requestors and verifiers need to place
in the TSA. It gives the general model for services of this type, defines the
data structures and protocols used to interact with such a service, and also
discusses some possible implementations.

25

2.4.2 Model

In the ISO/IEC 18014-3 model, a TSA producing linked time-stamp tokens
is expected to use cryptographic hash functions to link each new token to
other tokens previously generated by the TSA in a way that ensures that a
false token cannot be inserted into the collection. The process includes an
optional aggregation step, a linking step, and a publishing step.

A linking step consists of forming a verifiable binding between the new token
and links produced by the TSA previously. The linking method must ensure
that the most recently produced link provides a cryptographic summary of
all time-stamp tokens that ever participated in the linking process.

A TSA may perform linking operations on aggregated groups rather than
individual tokens. An aggregation step takes a group of events as inputs and
produces a verifiable cryptographic link between each event and the rest of
the group. The resulting aggregate value is then linked by the TSA in a way
similar to the case of the single time-stamp token. The TSA should assign
the same time-value to all tokens involved in an aggregation step.

The goal of the publishing step is to distribute the links in order to make them
“widely witnessed” and thus generate independently verifiable statements of
when the tokens were issued by the system. A common way is to publish
the links in a newspaper or on a message board that is mirrored on many
servers. The value published should at least depend on all tokens generated
by the TSA since the previous publishing event.

2.4.3 Protocol

The ISO/IEC 18014 extends the protocol given by the RFC 3161 (see sec-
tion 2.2.2) in two ways:

• In addition to the time-stamping request and response messages of the
RFC 3161, the ISO/IEC 18014 also defines verification request and
response messages to enable a client to request the information needed
to link a particular time-stamp token to a value published by the TSA.

• The ISO/IEC 18014 defines three types of extensions that a client may
include in the time-stamping requests.

26

Verification

The format of a verification request is as follows:

VerifyReq ::= SEQUENCE {

version Version,

tst TimeStampToken,

requestID [0] OCTET STRING OPTIONAL

}

The field version contains the version number of the request syntax. The
current version is 1.

The field tst contains the time-stamp token that needs to be linked to a
control publication.

The field requestID, if present, contains a value that enables the client to
match the response returned by the TSA to the request.

The format of a verification response is as follows:

VerifyResp ::= SEQUENCE {

version Version,

status PKIStatusInfo,

tst TimeStampToken,

requestID [0] OCTET STRING OPTIONAL

}

The field version contains the version number of the response syntax. The
current version is 1.

The field status is used to indicate the success or failure in processing the
verification request and in case of failure to indicate the cause in the same
manner as in the time-stamping protocol (see section 2.2.2).

The field tst contains the time-stamp token from the request, but updated
with the linking info that connects it to a control publication.

The field requestID must contain the value from the corresponding field in
the request, or be missing if the field was absent in the request.

27

Extensions

The general format of an extension is

Extension ::= SEQUENCE {

extnId OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

}

The extnId contains the type of the extension and the field extnValue a
value whose interpretation depends on the type specified by extnId.

If the field critical is present and set to TRUE, the extension is deemed
critical. Any party that receives a message containing an unknown critical
extension must issue an error response and refuse to process the message.
Unknown non-critical extensions should be ignored.

ExtMethod Extension

The function of the ExtMethod extension is to enable a client to request the
TSA to use a specific method for generating a time-stamp token. The exten-
sion is submitted to the server in the extensions field of TimeStampReq and
the server, in addition to using one of the requested methods for generating
the time-stamp token, also copies the extension into the extensions field
of TSTInfo of the generated token. The extnValue field of an ExtMethod

extension embeds the following structure:

ExtMethod ::= SEQUENCE SIZE(1..MAX) OF Method

Method ::= OBJECT IDENTIFIER

ExtHash Extension

The function of the ExtHash extension is to enable a client to submit for
time-stamping more than one hash value derived from the same datum. The
extension is submitted to the server in the extensions field of TimeStampReq

28

and the server processes it by copying the extension into the extensions field
of TSTInfo of the generated time-stamp token. The extnValue field of an
ExtHash extension embeds the following structure:

ExtHash ::= SEQUENCE SIZE(1..MAX) OF MessageImprint

Submitting multiple hash values derived from a single datum using different
hash functions allows the client to insulate the resulting time-stamp token
from the cryptographic failure of any single hash function.

ExtRenewal Extension

The function of the ExtRenewal extension is to enable a client to submit an
existing time-stamp token to be time-stamped together with the hash value
of a datum. The extension is submitted to the server in the extensions field
of TimeStampReq and the server processes it by copying the extension into
the extensions field of TSTInfo. The extnValue field of an ExtRenewal

extension embeds the following structure:

ExtRenewal ::= TimeStampToken

Time-stamping a datum and an existing time-stamp token allows the client
to insulate the existing token from the impending failure of any cryptographic
function used by the token. The time value in the new token indicates that
the old token existed before the cryptographic function failed and thus could
not have been falsely generated by taking advantage of the weakness. There-
fore, the time value in the old token can be relied on as the actual time when
the datum was time-stamped.

2.4.4 Token Format

The ISO/IEC 18014-3 extends the time-stamp token format given by the
RFC 3161 (see section 2.2.3) to allow two new time-stamp token generation
methods, the “linked” and the “linked-and-signed” method.

29

Linked Token

A time-stamp token generated using the “linked” method is encapsulated in
the DigestedData type instead of the SignedData type. The RFC 2630 [26]
defines a DigestedData message to have the following structure:

DigestedData ::= SEQUENCE {

version CMSVersion,

digestAlgorithm DigestAlgorithmIdentifier,

encapContentInfo EncapsulatedContentInfo,

digest Digest

}

Digest ::= OCTET STRING

The meaning of the version, digestAlgorithm, and encapContentInfo

fields is the same as for the SignedData case (see section 2.2.3).

The digest field should contain a DER-encoded BindingInfo structure (see
section 2.4.5) that links the TSTInfo embedded in encapContentInfo to the
other tokens produced by the TSA.

Figure 2.2 illustrates how the hashing and linking steps are layered to have
the time-stamped data and the time value protected in the time-stamp token.

Datum

TimeStampToken
DigestedData

EncapsulatedContentInfo
TSTInfo

MessageImprint

GeneralizedTime

Digest
BindingInfo

Other links

Figure 2.2: Data dependencies in a linked time-stamp token.

A time-stamp token generated using the “linked” method has to be verified
based on the linking info, as explained in section 2.4.5.

30

Linked-and-Signed Token

A time-stamp token generated using the “linked-and-signed” method is en-
capsulated in the SignedData type (see section 2.2.3), with the signedAttrs
collection containing an extra attribute.

The tsp-signedData attribute should contain a DER-encoded BindingInfo

structure (see section 2.4.5) that links the TSTInfo structure embedded in
encapContentInfo to the other tokens produced by the TSA.

Note that, since tsp-signedData is a signed attribute, the linking process
has to be performed before the token is signed by the TSA.

Figure 2.3 illustrates how the hashing, linking, and signing steps are layered
to have the time-stamped data and the time value protected in the time-
stamp token.

Datum

TimeStampToken
SignedData

EncapsulatedContentInfo
TSTInfo

MessageImprint

GeneralizedTime

SignerInfo
SignedAttributes

MessageDigest

BindingInfo

SignatureValue

Other links

Figure 2.3: Data dependencies in a linked-and-signed time-stamp token.

A time-stamp token generated using the “linked-and-signed” method may be
verified based either on the linking info, as explained in section 2.4.5, or the
signature, at verifier’s choice.

31

2.4.5 Linking Info Format

The linking information for both the “linked” and the “linked-and-signed”
time-stamp tokens is represented in a structure that follows the general model
described in section 2.4.2:

BindingInfo ::= SEQUENCE {

version Version,

msgImprints MessageImprints,

aggregate [0] Chains OPTIONAL,

links Links,

publish [1] Chains OPTIONAL,

extensions [2] Extensions OPTIONAL

}

MessageImprints ::= SEQUENCE SIZE (1..MAX) OF MessageImprint

The field version contains the version number of this data structure. The
current version is 1.

The field msgImprints contains the digest or digests computed on the en-
capsulated TSTInfo structure.

The field aggregate contains the results of aggregating the msgImprints

field with other members of the aggregation. The field may contain more
than one group of aggregation data when multi-tiered aggregation schemes
are supported.

The field links contains the the results of linking operations (from prior time
values) that were used as input to the linking operation for the time value
in the encapsulated TSTInfo digested in msgImprints. It always includes
the result of the linking operation for the immediately preceding time value,
which represents the running summary of the cumulative linking operations
so far. If the aggregate field is present, the contents of the links field
are linked to the result of the computation of the aggregate field. If the
aggregate field is absent, the contents of the links field are linked to the
contents of the msgImprints field.

The field publish, if present, contains the results of aggregating the time-
stamp token with publishing data.

32

The field extensions is a placeholder for a generic way to add additional
information. Two types of extensions, ExtName and ExtTime, are defined in
the ISO/IEC 18014.

A sequence of operations representing an aggregation or publishing process
is contained in the Chain structure:

Chains ::= SEQUENCE SIZE (1..MAX) OF Chain

Chain ::= SEQUENCE {

algorithm ChainAlgorithmIdentifier,

links Links

}

The field algorithm contains the object identifier of the algorithm used to
compute the chain of links and the field links contains the links that form
the elements of the chain.

The ISO/IEC 18014 mentiones some algorithms that could be used, but does
not specify any of them in sufficient detail for implementation, nor assign
any identifiers. So, for now, this should be considered a framework that any
actual provider has to fill in.

A single linking operation or a single step of an aggregation is represented
by the Link data structure:

Links ::= SEQUENCE SIZE (1..MAX) OF Link

Link ::= SEQUENCE {

algorithm [0] LinkAlgorithmIdentifier OPTIONAL,

identifier [1] INTEGER OPTIONAL,

members Nodes

}

The field algorithm contains the object identifier of the algorithm used to
compute the link. The field may be absent if the algorithm used to compute
the link is specified at a higher level, for example in the containing Chain

structure.

The field identifier contains a local link identifier. This is used when the
link is referred to (used as input) by other links.

33

The field members contains the data items or identifiers of data items to be
linked in this step.

A single input element to a linking operation or to a step of an aggregation
is represented by the Node structure:

Nodes ::= SEQUENCE SIZE (1..MAX) OF Node

Node ::= CHOICE {

imprints [0] Imprints,

reference [1] INTEGER

}

Imprints ::= SEQUENCE SIZE (1..MAX) OF Imprint

Imprint ::= OCTET STRING

If the imprints field is present, the node contains the actual data items to
be used as input to the current operation.

If the reference field is present, the node identifies another Link structure
whose result is to be used as input to the current operation; in this case
the value of the reference field corresponds to the value of the identifier

field of the Link structure whose results are to be included in the current
operation.

The value 0 in the reference field indicates that the data item to be used
as input is obtained from a source external to the local group of links being
computed. One example of such source is the msgImprints field.

Verification

According to the ISO/IEC 18014-3, the verification of a BindingInfo struc-
ture is performed as follows:

• the verifier uses the verification protocol to communicate to the issu-
ing TSA or a third-party service that has access to the issuing TSA’s
summary links;

• if there is no summary link value for the time value in the submitted
time-stamp token’s encapsulated TSTInfo structure, the verification
fails;

34

• the encapsulated TSTInfo structure is checked against all hash values
in the msgImprints in the BindingInfo; if there is a mismatch, the
verification fails;

• if the aggregate field is present in the BindingInfo structure:

– the aggregation algorithm is applied to the msgImprints and
aggregate fields assuming that a 0 reference value within a
Node refers to the msgImprints field;

– the linking algorithm is applied to the result and the links field
assuming that a 0 reference value within a Node refers to the
previous result;

• if the aggregate field is absent:

– the linking algorithm is applied to the msgImprints and links

fields assuming that a 0 reference value within a Node refers to
the msgImprints field;

• the result of the linking algorithm is compared to the archived summary
link for the time value in the time-stamp token’s encapsulated TSTInfo

structure.1

ExtName Extension

The function of the ExtName extension is to enable the TSA to assign, for
auditing or record-keeping purposes, names to the steps of the time-stamping
process. The extension may be added to extensions field of BindingInfo.
The extnValue field of an ExtName extension embeds a GeneralName struc-
ture, as defined in the RFC 2459 [27].

ExtTime Extension

The function of the ExtName extension is to enable the TSA to record, for
auditing or record-keeping purposes, times of performing the steps of the
time-stamping process. The extension may be added to extensions field

1Curiously, the field publish of BindingInfo is not referenced at all.

35

of BindingInfo. The extnValue field of an ExtName extension embeds a
GeneralizedTime value.

2.5 ANSI

The American National Standards Institute (ANSI) coordinates the devel-
opment and use of voluntary consensus standards in the United States and
represents United States in the ISO, the IEC, etc. The ANSI itself does
not develop standards; rather it accredits other organizations as standards
developers.

The time-stamping related work has been done by the Accredited Standards
Committee X9 (ASC X9), accredited by ANSI to develop, establish, main-
tain, and promote standards for the financial services industry.

2.5.1 ANS X9.95

From our viewpoint, the ANS X9.95: Trusted Time Stamp Management and
Security [3] is very similar to the ISO/IEC 18014 (see section 2.4.1).

Compared to the ISO/IEC 18014, the ANS X9.95 removes the time-stamping
scheme based on archival of evidence by the TSA and adds one based on
signing the time-stamp tokens with extremely short-lived keys. Neither of
the changes are relevant to generating hash-linked time-stamp tokens.

The ANS X9.95 is much more detailed in the procedural requirements that
the TSA is expected to follow to maintain the accuracy of its clocks and the
security of its systems, but these changes are also outside the scope of the
current work.

2.5.2 Formats

In addition to the ASN.1 syntax used exclusively for all protocol messsages
and tokens by other standards we have surveyed, the ANS X9.95 adds the
possibility to encode all these items in XML. However, no system we know
of actually uses the XML based syntax, so we abstain from citing the format
specification here.

36

The ASN.1 based formats in ANS X9.95, including the standard extensions,
both for the time-stamping requests and the linking information, are the
same as in the ISO/IEC 18014.

The only significant change for hash-linked time-stamp token formats is the
definition of a Merkle tree based aggregation algorithm.

Verification

Compared to the ISO/IEC 18014, the ANS X9.95 corrects the omission in the
specification of the verification procedure and specifies that, after performing
the aggregation and linking steps of the hash chains, also the publishing steps
have to be executed before arriving at a final result that can be compared to
a control publication distributed by the TSA.

37

38

Chapter 3

Binary Tree Based Linking

Binary trees are ubiquitous in computer science, and therefore it should not
surprise anyone to encounter them in time-stamping as well. In the following
sections we will study systems where the tokens are linked into binary tree
based structures.

3.1 Merkle Trees

A Merkle tree (figure 3.1, left) is a binary tree where leaf nodes are populated
with some hash values and each non-leaf node contains the hash value of the
concatenation of its child nodes. The concept was introduced by Merkle [35,
36] in order to enable efficient signing of multiple documents with a single
digital signature.

x18 = H(x14||x58)

x58 = H(x56||x78)

x12 = H(x1||x2)

x1 x2 x3 x4 x5 x6 x7 x8

x58

x12

x3 x4

Figure 3.1: A Merkle tree (left) and the hash chain for x3 (right).

39

Having a signature on the hash value in the root node of the tree, a chain of
about log N hashing steps (figure 3.1, right) can be extracted for each one of
the N leaf nodes to prove independently from all other values in the tree that
the hash value in that particular leaf indeed participated in the computation
that produced the signed root hash value.

For example, to show that the value x3 participated, the claimant needs
to additionally produce the three pairs (x4, R), (x12, L), (x58, R), where the
second member of each pair indicates the order in which the “incoming”
hash value and the first member of the pair should be concatenated. This is
enough to re-compute x34 = H(x3||x4), x14 = H(x12||x34), x18 = H(x14||x58).

A relying party can then perform the computation and compare the final
result with the originally signed root hash value. If the hash function H
used is cryptographically secure, then a match of the two values is a strong
indication that the value x3 submitted by the claimant is indeed the same as
what was in the tree at the time the root value was signed.

Bayer et al [4] were the first to explicitly propose using Merkle trees to
increase the efficiency of hash-linking based time-stamping schemes. The
aggregation method by Benaloh & de Mare [5] is specified in less detail, but
the idea is essentially the same.

Buldas et al [14, 12, 8, 9] have extensively researched theoretical security
bounds of such schemes in the context of time-stamping.

3.2 Surety

Surety is an information assurance software and services company founded
in 1994 by Bellcore scientists, including Stuart Haber and W. Scott Stor-
netta who pioneered the concept of hash-linking based timestamping. The
company currently has offices in the USA and Korea.

We didn’t succeed in locating an official technical reference for the system,
so some of the following descriptions are based on secondary sources.

40

3.2.1 Architecture

According to a 1997 paper by Haber & Stornetta [22], the initial version
of Surety’s time-stamping system (figure 3.2) used Merkle trees to aggregate
requests received in time-stamping rounds and a linear hash chain to link the
aggregate hashes of the rounds. There is no mention of publishing control
certificates or enabling users of the service to access the hash chain.

yt−1

rt−1

yt = H(yt−1||rt)

rt

xt,1 xt,2 xt,3 xt,4

yt+1

rt+1

· · · · · ·

Figure 3.2: Surety’s old system with Merkle aggregation and linear linking.
In round t, the requests xt,i are aggregated into a Merkle tree (dashed arrows).
The root hash rt is then linked into a linear hash chain (solid arrows).

· · · · · ·

Publish

Last week This week Next week

Figure 3.3: Surety’s new system with Merkle aggregation, linear linking, and
Merkle publishing. This week’s new linking hashes (gray nodes) are aggre-
gated into a Merkle tree (black nodes) and the root of the tree is published.

According to a 2005 technical report from GMU [44] and Surety’s own 2008
whitepaper [43], they have added another layer of Merkle trees to aggregate
the linked hashes for weekly publishing (figure 3.3).

41

The language in the control publication (figure 3.4) and analysis of sample
tokens seems to indicate that only the new linking hashes added since the
last publication are included in each subsequent one.

Figure 3.4: Surety’s control publication in the New York Times.

This approach to aggregating, linking, and publishing seems to fit very well
into the general model shared by the ISO/IEC 18014 and the ANS X9.95.

3.2.2 Formats

Due to lack of documentation, we can’t judge the standards-compliance of
the time-stamping and verification requests and responses of Surety’s service.
We did, however, manually parse and annotate a sample time-stamp token
and discovered no deviations from the ANS X9.95 specification.

Surety’s whitepaper [43] claims ANS X9.95 and ISO/IEC 18014-3 compli-
ance and in the light of the above we have quite no grounds to contest that
claim, aside from the fact that the Merkle tree based aggregation algorithm,
while standard in the ANS X9.95, looks like a non-standard extension rela-
tive to the ISO/IEC 18014. But as there are no algorithms defined in the
ISO/IEC 18014, any working implementation would be an extension.

Since Surety’s tokens use the DigestedData encapsulation, they are definitely
not RFC 3161 compatible.

42

3.3 GuardTime

GuardTime is a data integrity service provider founded in 2006 by crypto-
graphers Märt Saarepera and Ahto Buldas. The company currently has
offices in Estonia, Singapore, and Japan.

The descriptions that follow are based on public specifications released by
the company.

3.3.1 Architecture

According to the specification [18], GuardTime’s time-stamping system uses
Merkle trees to aggregate requests received in one-second time-stamping
rounds and one constantly growing Merkle tree (the calendar tree) to link
the aggregate values of the rounds (figure 3.5). The hash value currently in
the root of the calendar tree is published monthly as a control certificate that
encompasses all tokens issued by the service until that time.

. . .

. . .

Publish

Older months This month Next month

Figure 3.5: GuardTime’s system with Merkle aggregation and combined
Merkle linking/pubishing. This months’s new aggregate hashes together with
the full past (gray nodes) are linked into a Merkle tree (black nodes) and the
root of the tree is published.

Since the calendar tree is updated continuously and the hash chains extracted
from it are included in each time-stamp token issued, it could be viewed as
the linking mechanism in the general model shared by the ISO/IEC 18014
and the ANS X9.95.

43

On the other hand, a snapshot of the same calendar tree is also used to
perform the publishing operation from the general model. While this obser-
vation would make it conceivable to embed the hash chain extracted from the
calendar tree in the publish field of the BindingInfo structure, we would
then face the problem that there is nothing left to be put into the mandatory
links field. The field could also not be populated by a single-step identity
function as it is required to include a link summarizing all rounds preceding
the current one.

So, in the end it seems that, if GuardTime were to use the BindingInfo

structure in their time-stamp tokens, the hash chains extracted from the
calendar tree should go to the links field and only the information regarding
the control publication should be put into the publish field. In reality they
use a quite different encapsulation for their hash chains, though.

Figure 3.6: GuardTime’s control publications in the Financial Times (left)
and Äripäev (right).

An interesting property arises from the fixed length of the aggregation rounds
and the fact that the merging order in building the calendar tree from the
aggregation round summaries is deterministic. The shape of the hash chain
(that is, the information whether the sibling hash is on the left or on the right
in each hashing step) uniquely determines the position of the leaf relative to
the root of the tree. Since it is known when the root was extracted from the
calendar tree, the shape of the hash chain effectively encodes the time value
for the aggregation round.

However, taking advantage of that information would certainly be a non-
standard extension, even if the hash chains were encoded into otherwise
compatible BindingInfo structure.

44

3.3.2 Formats

According to the format specification [19]:

• the time-stamping request and response messages used by GuardTime
are compatible with the RFC 3161 specification (and therefore also
with the ISO/IEC 18014 and the ANS X9.95);

• the verification request and response messages are completely non-
standard;

• the time-stamp token format is based on using the SignedData encap-
sulation and treating the hash chains as a signature produced using a
non-standard signing algorithm.

We did also parse and annotate a sample time-stamp token and discovered
two minor deviations from the RFC 3161, both related to the closed-system
PKI keys used to temporarily authenticate the calendar tree hash chains
while there is no control publication available yet:

• the RFC 3161 requires the ESSCertID attribute to be present in the
signedAttrs field of the SignerInfo structure, but it is absent in the
GuardTime tokens;

• the RFC 3161 requires the tsa field, if present in the TSTInfo structure,
to contain one of the subject names included in the certificate that is to
be used to verify the token, but in a GuardTime token the field instead
contains the hostname of the gateway that issued the token.

For both issues, it could be argued that the RFC 3161 requirements techni-
cally do not apply because the PKI key is used to sign the root hash value
from the calendar tree, rather than the signedAttrs structure, as was the
intention when the RFC requirements were drafted.

Perhaps more importantly, in a time-stamp token from GuardTime, unlike
the general RFC 3161 case, the PKI signature is a temporary authentication
device. Therefore it is sensible to avoid polluting permanent components of
the token with references to a temporary helper object.

45

Of course, the main practical issue is that a generic RFC 3161-compliant
client is unable to parse and verify the GuardTime-specific TimeSignature

structure.

Since the GuardTime solution presents the hash chains as a signature scheme
rather than a hash-linking scheme, the requirements for “linked” and “linked-
and-signed” tokens in the ISO/IEC 18014 and the ANS X9.95 sense do not
apply. The compatibility concerns when viewing the tokens as “signed” are
the same as relative to the RFC 3161.

46

Chapter 4

Skip List Based Linking

In the following sections we will study a data structure called skip list and
a time-stamping system where the tokens are linked into a skip list based
authenticated dictionary.

4.1 Skip Lists

A skip list (figure 4.1) is a linked list augmented with extra pointers to allow
the list to be traversed faster by skipping some entries (hence the name).
Each entry is assigned a level, a level k entry has pointers for levels 0 . . . k,
and a level i pointer points to the next entry whose level is i or higher.

H 1 2 3 4 5 6 7 8 9 10 11 T
0
1
2

Figure 4.1: A skip list. H is head, T is tail, 1. . . 11 are data, 0. . . 2 are levels.

Skip lists were introduced in 1990 by Pugh [40] as an alternative to binary
search trees. In Pugh’s initial design the assignment of levels to entries was
randomized, which gave O(log n) time searches, insertions, and deletions
in an n-entry list on average, but could sometimes degrade to much worse
(similarly to QuickSort, the degenerate cases are very rare and can mostly

47

be ignored in practice). Nevertheless, in 1992 Munro et al [38] proposed
several deterministic versions that have guaranteed O(log n) time searches,
insertions, and deletions.

The skip list shown on figure 4.1 is a perfect skip list: each pointer on level i
points exactly 2i entries forward. Skip lists where insertions and deletions
may occur at arbitrary positions can’t be kept perfect efficiently, but append-
only skip lists can.

For the insertions to always go to the end of the list, new entries have to
arrive in non-decreasing order of keys. While a data structure that requires
entries to be added in the order of keys is not very useful in general, it is just
perfect for time-stamping.

4.2 CHRONOS

CHRONOS, unlike the other systems reviewed in this work, is not a publicly
available commercial service. It is a research prototype built in the University
of Pau based on design by Kaouthar Blibech and Alban Gabillon.

There is no technical specification available, the following discussion is based
on the academic papers of Blibech & Gabillon [6, 7].

4.2.1 Architecture

CHRONOS uses skip list based aggregation (figure 4.2) to ensure provable
total order of requests within each round. What was considered a single entry
(with multiple pointers) in the generic skip list is now viewed as multiple
nodes linked to each other via hashing. Among the nodes representing one
entry, the highest one is called a plateau node.

An aggregation round builds the skip list as follows:

1. The head of the list (column H on the figure) is seeded with the last
round’s summary hash (node A on the figure).

2. As new entries are added to the list, each new node is computed by
hashing together one or two data items. Data always flows from the re-

48

quest upwards to the higher-level nodes corresponding to that request;
data flows to the right only from the plateau nodes.

3. When a new request is added to the list, its index and head proof
are returned to the requestor at once. The head proof contains most
recent items from every level, except non-plateau nodes are excluded.
The rationale is that the head proof is the minimal set of nodes that
summarizes the state of the half-constructed skip list for that moment.
For example, for request 6 on the figure, only the nodes I and J are
needed; there is no entry for level 1 in the head proof.

4. When the round is finished accepting requests, the tail of the list (col-
umn T) is computed and the value in the highest level of the tail (node Z
on the figure) becomes the summary hash for this round, which is pub-
lished as a control certificate.

5. Then a second response is sent to each requestor, containing the sum-
mary hash and the tail proof of the request. The tail proof contains
all the extra nodes that are needed to re-compute the summary hash
from the request. For request 6, the nodes K and L are the tail proof.

H 1 2 3 4 5 6 7 8 9 10 11 T

0

1

2

A

I

J

6

K

L

Z

Figure 4.2: CHRONOS’s aggregation graph for a round with 11 requests.
Arrows show data flow. Node A is seeded with last round’s summary hash.
Node Z will contain this round’s summary hash. Nodes I and J are the head
proof and nodes K and L the tail proof for the request 6.

As can be seen from above, the aggregation rounds are linked linearly in
CHRONOS, and each round is published. Because the requests are totally
ordered within rounds, the service can afford to make the rounds so long that
it is feasible to publish all round summaries without any further aggregation
for publishing.

49

The head and tail proofs can’t be used in isolation, however. They have to
be merged to create a hash chain that proves participation of a request in the
round. For example, the hash chain computation for request 6 on figure 4.2
would need the node J from the head proof first, then node K from the tail
proof, then node I from the head and then node L from the tail proof.

The hash chain obtained by merging the head and tail proofs encompasses
the functions of all three mechanisms — aggregating, linking, and publishing
— of the general model shared by the ISO/IEC 18014 and the ANS X9.95.
Since the links member of the BindingInfo is mandatory, it seems sensible
to put the hash chain there to satisfy the formal requirement.

However, an important consideration is that a generic verifier performing just
the hash chain re-computation will only prove that the request participated
in the round, but is unable to use the hash chains to establish the relative
temporal order of two timestamps from the same round. Taking advantage
of that additional information would be a non-standard extension.

4.2.2 Formats

The CHRONOS project claims ISO/IEC 18014 compliance. Unfortunately,
we were unable to obtain sample time-stamp tokens from the service and
there is no token format specification, so we can’t offer any evidence neither
to support nor to counter this claim.

50

Summary

The goal of this work was to survey the existing standards for hash-linking
based time-stamping systems and investigate the compatibility of actual sys-
tems with those standards.

Relevant standards from four major bodies — the Internet Engineering Task
Force (IETF), the European Telecommunications Standards Institute (ETSI),
the International Organization for Standardization (ISO), and the American
National Standards Institute (ANSI) — were reviewed.

From our review we can conclude that in the historic progression of the
technical standards from the IETF RFC 3161 to the ISO/IEC 18014 to the
ANSI ANS X9.95, each following standard has taken care to remain back-
wards compatible with the predecessor for those users who do not need the
new features added in the more recent specification.

We discovered only one case where a feature that was present in an older
standard was revoked by a newer one. This is the “archive” time-stamping
method specified in the ISO/IEC 18014, but not in the ANS X9.95. Con-
sidering that supporting any given method is optional for any service, and
especially in view of the security risks that this method carried, we feel its
absence from the ANSI standard is really not a great loss for anyone.

We also examined the following time-stamping services for their compatibility
with the technical standards mentioned above.

The Surety time-stamping service claims full compliance with the ANS X9.95
standard and we found no evidence to the contrary. The service also claims
compliance with the ISO/IEC 18014, regarding which the only reservation
is that the Merkle tree based aggregation algorithm used by Surety is not
defined in the ISO standard and could therefore be viewed as a non-standard

51

extension. However, the ISO standard does not define any algorithms at
all, so any working system would be a non-standard extension in this sense.
The service neither claims nor delivers any compatibility with the RFC 3161
specification.

The GuardTime time-stamping service claims partial compliance with the
RFC 3161 standard, as they package their hash-linking based evidence in
the form of a non-standard signature scheme for inserting it into other-
wise RFC 3161-like time-stamp tokens. Since their tokens are based on the
forward-compatible RFC 3161 specification, they are just as compliant with
the ISO and ANSI standards.

The CHRONOS prototype service claims compliance with the ISO/IEC 18014
standard. While there is no evidence that it could not be compatible, there
is also no proof, as we were unable to obtain sample tokens for independent
analysis.

52

Räsiahelatel põhinevate
ajatemplisüsteemide standardid

Magistritöö

Ahto Truu

Kokkuvõte

Inimkond sõltub üha enam informatsioonist, mida sageli hoitakse kergesti ja
märkamatult muudetavatel andmekandjatel. Seoses sellega kasvab vajadus
vahendite järele, mis võimaldaks tuvastada, millal mingi andmeobjekt loodi
ja kontrollida, et seda pole volitamata isikute poolt muudetud.

Tänapäeval levinuim lahendus on tuua selleks süsteemi usaldusväärne kol-
mas osapool, ajatempliteenus, mis lisab andmetele (eeldatavasti õige) aja ja
signeerib saadud paari digitaalselt. See lahendus töötab ainult eeldusel, et
kõik osapooled usuvad, et teenus ei võltsi ajatempleid ei meelega (näiteks
mõne kliendi tellimusel) aga kogemata (näiteks süsteemi tõrke tõttu).

Üks võimalus vähendada või isegi üldse loobuda vajadusest ajatempliteenust
usaldada on siduda ajatemplid omavahel ja/või mingite väliste sündmustega,
näiteks ajalehtede ilmumisega.

Krüptograafiliste räsifunktsioonide ühesuunalisus on mõnevõrra sarnane aja
enda ühesuunalise kulgemisega — informatsioon liigub minevikust tuleviku
suunas, kuid mitte vastupidi. Räsifunktsioonide ühesuunalisusel põhinevad
mitu skeemi sõltumatult kontrollitavate ajatemplisüsteemide loomiseks.

53

Selleks, et neid süsteeme praktikas edukalt juurutada, tuleb standardida
nende kasutatavad algoritmid, protokollid ja andmevormingud. Vastasel
juhul ei tarviste süsteemi kasutajad jõuda üksmeelele ühe või teise tõendi
tähenduse osas.

Käesoleva töö eesmärk oli uurida räsiahelatel põhinevate ajatempliskeemide
standardeid ja reaalsete süsteemide vastavust neile standarditele.

Töö esimeses osas vaatlesime nelja suure standardiasutuse — Internet Engi-
neering Task Force (IETF), European Telecommunications Standards Insti-
tute (ETSI), International Organization for Standardization (ISO) ja Amer-
ican National Standards Institute (ANSI) — standardeid.

Nende asutuste välja antud standardid — IETF RFC 3161, ISO/IEC 18014
ja ANSI ANS X9.95 — ühilduvad omavahelt üldiselt väga hästi. Me leidsime
ainult ühe näite, kus uuem standard ei toeta mingit vanemas standardis
kirjeldatud võimalust.

Töö teises osas uurisime olemasolevaid räsiahelatel põhinevaid ajatempli-
teenuseid ja nende ühilduvust eelnimetatud standarditega.

Surety lubab oma ajatempliteenuse olevat ANS X9.95-ühilduva ja me ei leid-
nud ühtki põhjust vastupidist väita. ISO/IEC 18014-ühilduvuse osas on ainus
reservatsioon asjaolu, et Surety teenuses kasutatav agregeerimisalgoritm ei
ole ISO standardis kirjeldatud ja seda võiks seega lugeda mittestandardseks
laienduseks. Tasub aga silmas pidada, et ISO standard ei defineeri ühtki
konkreetset agregeerimisalgoritmi ja seega oleks igasugune töötav süsteem
sellest seisukohast võttes mittestandardne laiendus. RFC 3161’ga Surety
teenus ei ühildu.

GuardTime väidab oma ajatempliteenuse olevat põhimõtteliselt RFC 3161-
ühilduva. Nende lahendus pakendab räsiahelatel põhineva tõendusmaterjali
mittestandardse signatuuri kujule, et see siis muus osas RFC 3161-ühilduva
vormiga ajatemplile lisada. Kuna ISO ja ANSI standardid on RFC 3161
laiendused, on GuardTime’i ajatemplid nendega täpselt sama ühilduvad kui
RFC 3161’ga.

CHRONOSe projekt väidab oma prototüübi olevat ISO/IEC 18014-ühilduva.
Me ei näe küll olulist põhjust, miks see peaks võimatu olema, aga kuna meil
ei õnnestunud hankida selle teenuse ajatemplite näidiseid, ei saa me seda
väidet ka kinnitada.

54

Bibliography

[1] Carlisle Adams, Pat Cain, Denis Pinkas, and Robert Zuccherato. Inter-
net X.509 public key infrastructure time-stamp protocol (TSP). IETF
RFC 3161, 2001. http://www.ietf.org/rfc/rfc3161.txt [2010-07-
01].

[2] Carlisle Adams and Stephen Farrell. Internet X.509 public key in-
frastructure certificate management protocols. IETF RFC 2510, 1999.
http://www.ietf.org/rfc/rfc2510.txt [2010-07-01].

[3] ANSI ASC X9. Trusted time stamp management and security. ANS
X9.95, 2005.

[4] Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improving the ef-
ficiency and reliability of digital time-stamping. In Sequences II: Meth-
ods in Communication, Security and Computer Science, pages 329–334.
Springer, 1992.

[5] Josh Benaloh and Michael de Mare. Efficient broadcast time-stamping.
Technical report, Clarkson University, 1991.

[6] Kaouthar Blibech and Alban Gabillon. CHRONOS: an authenticated
dictionary based on skip lists for timestamping systems. In SWS ’05:
Proceedings of the 2005 Workshop on Secure Web Services, pages 84–90.
ACM, 2005.

[7] Kaouthar Blibech and Alban Gabillon. A new timestamping scheme
based on skip lists. In Computational Science and Its Applications —
ICCSA 2006, pages 395–405. Springer, 2006.

55

[8] Ahto Buldas and Aivo Jürgenson. Does secure time-stamping imply
collision-free hash functions? In Provable Security — ProvSec 2007.
Springer, 2007.

[9] Ahto Buldas, Aivo Jürgenson, and Margus Niitsoo. Optimally tight
security proofs for hash-then-publish time-stamping. In Information
Security and Privacy — ACISP 2010. Springer, 2010.

[10] Ahto Buldas and Peeter Laud. New linking schemes for digital time-
stamping. In Proceedings of The 1st International Conference on In-
formation Security and Cryptology — ICISC ’98, pages 3–14. Korea
Institute of Information Security and Cryptology, 1998.

[11] Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-
stamping with binary linking schemes. In Advances in Cryptology —
CRYPTO ’98, pages 486–501. Springer, 1998.

[12] Ahto Buldas and Sven Laur. Do broken hash functions affect the secu-
rity of time-stamping schemes? In Applied Cryptography and Network
Security — ACNS 2006. Springer, 2006.

[13] Ahto Buldas, Helger Lipmaa, and Berry Schoenmakers. Optimally effi-
cient accountable time-stamping. In Public Key Cryptography — PKC
’00, pages 293–305. Springer, 2000.

[14] Ahto Buldas and Märt Saarepera. On provably secure time-stamping
schemes. In Advances in Cryptology — ASIACRYPT 2004, pages 500–
514. Springer, 2004.

[15] ETSI ESI. Time stamping profile. ETSI TS 101 861 v1.3.1, 2006.

[16] ETSI ESI. Policy requirements for time-stamping authorities. ETSI TS
102 023 v1.2.2, 2008.

[17] Owen Gingerich. The Galileo affair. Scientific American, 247(2):133–
143, 1982.

[18] GuardTime AS. GuardTime technical reference. GuardTime,
2010. http://www.guardtime.com/downloads/GuardTimeTechRef.

pdf [2010-07-01].

56

[19] GuardTime AS. GuardTime technical reference — formats and algo-
rithms. GuardTime, 2010. http://www.guardtime.com/downloads/

GuardTimeTechRefApp.pdf [2010-07-01].

[20] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital
document. In Advances in Cryptology — CRYPTO ’90, pages 437–455.
Springer, 1991.

[21] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital
document. Journal of Cryptology, 3(2):99–111, 1991.

[22] Stuart Haber and W. Scott Stornetta. Secure names for bit-strings.
In CCS ’97: Proceedings of the 4th ACM conference on Computer and
communications security, pages 28–35. ACM, 1997.

[23] Robert Hooke. Description of helioscopes. Printed by T.R. for John
Martyn, London, 1676.

[24] Robert Hooke. Lectures de potentia restitutiva, or, Of spring. Printed
for John Martyn, London, 1678.

[25] Robert Hooke and Richard Waller. The posthumous works of Robert
Hooke. Royal Society, London, 1705.

[26] Russell Housley. Cryptographic message syntax. IETF RFC 2630, 1999.
http://www.ietf.org/rfc/rfc2630.txt [2010-07-01].

[27] Russell Housley, Warwick Ford, Tim Polk, and David Solo. Internet
X.509 public key infrastructure certificate and CRL profile. IETF RFC
2510, 1999. http://www.ietf.org/rfc/rfc2459.txt [2010-07-01].

[28] ISO/IEC JTC1. Abstract Syntax Notation One (ASN.1): Specification
of basic notation. ISO/IEC 8824-1, 2002.

[29] ISO/IEC JTC1. ASN.1 encoding rules: Specification of basic encoding
rules (BER), canonical encoding rules (CER) and distinguished encoding
rules (DER). ISO/IEC 8825-1, 2002.

[30] ISO/IEC JTC1. Time-stamping services — Part 1: Framework.
ISO/IEC 18014-1, 2002.

57

[31] ISO/IEC JTC1. Time-stamping services — Part 2: Mechanisms pro-
ducing independent tokens. ISO/IEC 18014-2, 2002.

[32] ISO/IEC JTC1. Time-stamping services — Part 3: Mechanisms pro-
ducing linked tokens. ISO/IEC 18014-3, 2004.

[33] ITU-T. Abstract Syntax Notation One (ASN.1): Specification of basic
notation. ITU-T X.680, 2002.

[34] ITU-T. ASN.1 encoding rules: Specification of basic encoding rules
(BER), canonical encoding rules (CER) and distinguished encoding rules
(DER). ITU-T X.690, 2002.

[35] Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems.
PhD thesis, Stanford University, 1979.

[36] Ralph C. Merkle. Protocols for public key cryptosystems. In IEEE
Symposium on Security and Privacy, pages 122–134, 1980.

[37] R. Miskinis, D. Smirnov, E. Urba, A. Burokas, B. Malysko, P. Laud,
and F. Zuliani. Digital time stamping system based on open source
technologies. In Frequency Control Symposium, 2009 Joint with the
22nd European Frequency and Time forum, pages 700–705. IEEE, 2009.

[38] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic
skip lists. In SODA ’92: Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms, pages 367–375. Society for Industrial
and Applied Mathematics, 1992.

[39] D. Pinkas, N. Pope, and J. Ross. Policy requirements for time-stamping
authorities (TSAs). IETF RFC 3628, 2003. http://www.ietf.org/

rfc/rfc3628.txt [2010-07-01].

[40] William Pugh. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM, 33(6):668–676, 1990.

[41] Sertifitseerimiskeskus AS. Time-stamping service principles. Sertifitseer-
imiskeskus, 2002. http://www.sk.ee/pages.php/0203040506 [2010-
07-01].

58

[42] Jeff Stapleton. Trusted time stamp standards: A comparison and guide-
line of ANS X9.95. Technical report, Information Assurance Consortium,
Innové LLC, 2007. http://www.infoassurance.org/Public%20Docs/
TTSS%2020070429%20IAC.pdf [2010-07-01].

[43] Surety, LLC. Ensuring record integrity with AbsoluteProof. Surety,
2008.

[44] Michael Thimblin, NagaSree Chandu Kamisetty, Padmanabhan Raman,
and Anupama Paila. Implementation of an evidentiary record validation
utility and security analysis for Surety’s AbsoluteProof. Technical re-
port, George Mason University, 2005. http://bass.gmu.edu/courses/
ECE543/project/reports 2005/TIMESTAMPING report.pdf [2010-07-
01].

59

