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INTRODUCTION 

Sugars are extremely abundant in nature and are the preferred energy sources 
for yeasts. Yeasts prefer glucose to more complex sugars (sucrose, maltose and 
many others) down-regulating their utilization if glucose is present at suf-
ficiently high concentration. Respective regulatory mechanism is called glucose 
repression. Utilization of α-glucosidic disaccharides such as maltose and 
sucrose has been extensively studied in baker’s yeast Saccharomyces cerevisiae 
because baking, brewing and production of bioethanol mostly relies on these 
sugars as fermentation substrates. Repression of maltose and sucrose utilization 
by glucose in S. cerevisiae was among the first models in yeast glucose 
repression studies (Gancedo, 1998; Zimmermann and Scheel, 1977). About 
20 years ago, Tiina Alamäe’s research group chose a non-conventional methylo-
trophic yeast Ogataea polymorpha (earlier Hansenula polymorpha) as an alter-
native yeast model to study glucose repression mechanisms. Methanol utili-
zation in yeasts is very strongly repressed by sugars (Sibirny et al., 1988). As 
O. polymorpha also assimilates disaccharides maltose and sucrose, study of this 
yeast was expected to show light on glucose repression mechanisms in this 
yeast by addressing regulation of these two specific glucose-repressed meta-
bolic processes. As O. polymorpha diverged from the main evolution line of 
yeasts much earlier than S. cerevisiae (see Ref IV), glucose repression mecha-
nisms of this yeast were expected to differ from those shown for Saccharomyces.  

These studies led to assay of genetics, genomics and biochemistry of 
disaccharides metabolism in O. polymorpha. Most of the results of this work is 
presented in this dissertation. The obtained data was compared with those 
available for S. cerevisiae and some other yeasts and a hypothesis on regulation 
of MAL (maltose-related) genes in O. polymorpha was proposed. Though this 
work mostly contributes to basic science, some of the results have a bio-
technological value as well. So, the bidirectional promoter in the MAL gene 
cluster can be used for regulated co-expression of two genes (proteins) of 
interest. It is also interesting that O. polymorpha MAL1 promoter is perfectly 
recognized not only in another yeast S. cerevisiae, but also in a bacterium 
Escherichia coli, and has already been used for heterologous overexpression in 
E. coli of a biotechnologically relevant protein – levansucrase.   
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I OVERVIEW OF THE LITERATURE 

1.1. Overview of methylotrophic yeasts with emphasis  
on Ogataea polymorpha 

Methylotrophic yeasts are able to grow on methanol as a sole carbon source. 
Currently the following five yeast genera belong to methylotrophs: Candida, 
Pichia, Ogataea, Kuraishia and Komagataella (Limtong et al., 2008; Yurimoto 
et al., 2011 and references therein). 

Methylotrophic yeasts are found in decaying fruits, juice and other vegetable 
products, on plant leaves, in plant exudates, soil and insect gut (Limtong et al., 
2008; Morais et al., 2004; Negruţă et al., 2010) as these habitats provide 
methanol. Methanol that results from the turnover of cell-wall pectin is emitted 
by living plant leaves (Keppler et al., 2006; Nemecek-Marshall et al., 1995), it 
is also released in the soil at degradation of pectin and lignin of plant residues 
(Nakagawa et al., 2005). Kawaguchi et al. (2011) have shown for A. thaliana 
that methanol concentration in the phyllosphere of plant leaves is ~25 mM and 
rises up to 250 mM in wilting plants allowing growth of methylotrophs.  

Methylotrophic yeasts have been used as a model to study the biology of 
peroxisomes – the intracellular eukaryotic organelles harboring the key enzymes 
(methanol oxidase, dihydroxyacetone synthase) of methanol metabolism. Growth 
of yeasts on methanol is accompanied by massive proliferation of peroxisomes – 
they can occupy up to 80% of the cell mass. Transfer of methanol-grown cells 
to glucose or ethanol medium triggers transcriptional repression of methanol-
specific enzymes and rapid degradation of peroxisomes – pexophagy (Stasyk et 
al., 2007). Aside of peroxisome studies, methylotrophic yeasts have been used 
for the study of glucose repression, stress response, mating type switching, 
protein glycosylation and nitrate assimilation (see Wolf, 1996 and references 
therein). Importantly, methylotrophic yeasts, especially Komagataella phaffii 
(formerly Pichia pastoris) and Ogataea polymorpha have been and are used for 
heterologous large-scale production of biotechnologically relevant proteins 
using strong regulatable promoters from methanol pathway (Löbs et al., 2017 
and references therein). For example O. polymorpha has been used as a gene 
host in producing pharmaceuticals such as insulin for treatment of diabetes, 
hepatitis B vaccines or IFN α-2a for the treatment of hepatitis C and many 
enzymes such as the feed additive phytase, anticoagulants hirudin and saratin 
(reviewed in Ramezani-Rad et al., 2003). 

O. polymorpha is thermotolerant (can grow at temperatures up to 50 °C) and 
belongs to phylum Ascomycota, family Saccharomycetaceae. O. polymorpha 
was initially isolated from orange juice and described by Wickerham in 1951 
(NRRL Y-1798 (=ATCC14754)). At this time it was named Hansenula 
angusta. H. angusta was formally decsribed by Teunisson et al. (1960) and by 
Morais & Maia (1959) as H. polymorpha and in 1970 Wickerham considered 
H. angusta and H. polymorpha as synonyms (Naumov et al., 1997). Later, 
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H. polymorpha was renamed as Pichia angusta (Kurtzman, 1984). The new 
genus Ogataea was proposed for nitrate-assimilating methylotrophic yeasts by 
Yamada et al. (1994) and H. polymorpha as a nitrate-assimilating species was 
transferred to the new genus as O. polymorpha. In scientific literature, the 
names Pichia angusta, Hansenula polymorpha and Ogataea polymorpha are all 
used to designate the same species.  

Genomes of three independently isolated O. polymorpha strains: CBS 4732, 
NCYC 495 and DL-1 are sequenced. However, the DL-1 strain was re-classi-
fied as O. parapolymorpha in 2013 (Naumova et al., 2013). The first genome of 
O. polymorpha (CBS 4732) was sequenced 15 years ago (Ramezani-Rad et al., 
2003), but it is not yet released to the public domain. The genome sequences of 
O. polymorpha strain NCYC 495 and O. parapolymorpha strain DL-1 are 
publicly available in MycoCosm portal: http://genome.jgi.doe.gov/programs/ 
fungi/index.jsf (Grigoriev et al., 2014). The genomes of O. polymorpha and 
O. parapolymorpha are approximately 10% divergent in sequence (Ravin et al., 
2013; Riley et al., 2016).  
 
 

 1.2. α-Glucosidic sugars in nature 

Yeasts prefer sugars over other carbon sources and therefore they thrive in 
sugar-rich habitats. Many plants (such as sugar cane and sugar beet) and berries 
contain lots of sucrose – a disaccharide of glucose and fructose (for monomeric 
composition of α-glucosidic sugars and linkages see Figure 1). Sucrose is also 
synthesized by cyanobacteria and proteobacteria (Lunn, 2002). Importantly, 
sucrose can be converted to other sugars by isomerizing enzymes of many 
organisms including plants, yeasts, filamentous fungi, bacteria and even insects 
(Lee et al., 2011 and references therein). Turanose, palatinose and maltulose 
(Fig 1) are present for example in honey and are isomerization products of 
sucrose (Sawale et al., 2017). Importantly, palatinose is currently enzymatically 
produced from sucrose at large scale and advertised as a novel healthy sugar 
with low glycemic index and no cariogenic effect (Sawale et al., 2017). A 
trisaccharide melezitose (Fig 1) is a main constitute of aphid honeydew and is 
also found in honey (Daudé et al., 2012).  

α-Glucosidic sugars comprised of only glucose: maltose, isomaltose, mal-
totriose and panose (Fig 1) are resulting from starch and glucogen degradation 
by amylases (Janecek, 2009). For example, the beer wort contains 50–60% of 
maltose, 15–20% maltotriose and 10–15% glucose as major sugars (Stewart, 
2016). A trisaccharide panose is also considered an isomalto-oligosaccharide 
(IMO) as it contains an isomaltose moiety. IMOs are also considered as novel 
prebiotics – they stimulate growth of probiotic bacteria such as Bifidobacterium 
in the gut (Mäkeläinen et al., 2009). Ogataea species have been isolated from 
spoiled orange juice, leaf surfaces, plant exudates and insect guts (Limtong et 
al., 2008; Morais et al., 2004 and references therein). Both methanol and  
α-glucosidic sugars are available in these habitats and should enable the growth 
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of these yeasts. Tiina Alamäe’s research group was the first to deal with 
genetics and biochemistry of assimilation of α-glucosidic sugars in Ogataea – 
the first paper on this subject was published in 1998 (Alamäe and Liiv, 1998).  

Figure 1. α-Glucosidic di- and trisaccharides and the linkages within these sugars.  
 
 

1.3. MAL genes and clusters in yeasts  

In Saccharomyces cerevisiae, the genes required for maltose metabolism are 
genomically clustered forming so-called MAL clusters (loci) at subtelomeric 
regions of the chromosomes. Subtelomeres are gene-poor regions proximal to 
the telomeres. The length of subtelomeric region varies from 20 kb in some 
yeasts to several hundred kb in higher eukaryotes (Brown et al., 2010). 
Subtelomeric gene families show typical patterns of rapid expansion and 
evolution – frequent duplication events are followed by functional divergence 
of the genes yielding novel alleles that may allow for example metabolism of 
new carbohydrates (Brown et al., 2010). Genomic clustering of functionally 
related genes is not very common in eukaryotes. In addition to MAL clusters, 
genomic clusters have been characterised also for utilization of galactose, 
allantoine and nitrate in yeasts and filamentous fungi (Ávila et al., 2002; Kunze 
et al., 2014; Slot and Rokas, 2010; Wong and Wolfe, 2005). 

S. cerevisiae has five MAL clusters: MAL1, MAL2, MAL3, MAL4 and MAL6 
situated near the telomeres of chromosomes VII, III, II, XI and VIII (Brown et 
al., 2010; Charron et al., 1986; Needleman, 1991; Vanoni et al., 1989). Each 
MAL cluster in S. cerevisiae consists of three genes (Fig 2): MALx1 (maltose 
permease gene), MALx2 (maltase gene) and MALx3 (regulatory MAL-activator 
gene) (Chang et al., 1988; Charron et al., 1986; Dubin et al., 1985; Needleman, 
1991). The „x“ refers to the number of the cluster. 
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Figure 2. Composition of the S. cerevisiae MAL3 cluster. MAL31 – α-glucoside 
permease; MAL32 – maltase; MAL33 – MAL-activator. A star marks the location of the 
telomere. Lower panel depicts position of the MAL cluster (in blue) in chromosome 2 of 
S. cerevisiae S288C. Subtelomeric regions (50 kbp from the chromosome end) are 
shown in grey. Data on S. cerevisiae strain S288C was taken from the MycoCosm 
portal (https://genome.jgi.doe.gov/programs/fungi/index.jsf; Grigoriev et al. 2014). The 
chromosome was visualised using a web-based program PhenoGram  
(http://visualization.ritchielab.psu.edu/phenograms/plot). 

 
Maltase and maltose permease genes are next to each other also in the genome 
of several other yeasts, for example Kluyveromyces lactis (Fairhead and Dujon, 
2006; Goffrini et al., 2002; Leifso et al., 2007) and Torulaspora delbrueckii 
(Alves-Araújo et al., 2004). Multiple MAL clusters are present in the genome of 
Scheffersomyces (Pichia) stipitis which is exceptionally rich in gene clusters 
having at least 35 clusters of functionally linked genes (Jeffries et al., 2007; 
Jeffries and Van Vleet, 2009). No MAL clusters have been described in a 
phylogenetically ancient yeast Schizosaccharomyces pombe.  
 
 

1.4 Transport of maltose and other α-glucosidic  
sugars into a yeast cell  

α-Glucosidic sugars can be hydrolyzed extracellularly by secreted or mem-
brane-bound enzymes or intracellularly after the sugar has been transported into 
the cell. S. cerevisiae hydrolyzes maltose intracellularly. Yet, there are some 
other yeasts (Lipomyces starkeyi, Saccharomycopsis fibuligera and Malbran-
chea sulfurea), filamentous fungi (for example Aspergillus species) and bacteria 
(Lactobacillus acidophilus, Thermococcus sp. and Bacillus sp.) that can 
hydrolyze maltose outside the cell (Jansen et al., 2006 and references therein). 
Both possibilities have been shown for S. pombe (Chi et al., 2008; Jansen et al., 
2006). 

For those yeasts that hydrolyze α-glucosidic sugars inside the cell, the first 
step in metabolism of these sugars is their transport across the plasma memb-
rane into the cytosol. So, maltose is transported into the cell unchanged by 
maltose permease, and only then the disaccharide is hydrolyzed into two glucose 
molecules by cytoplasmic maltase and further metabolized (Klein et al., 1998; 
Needleman, 1991). Maltose is transported into S. cerevisiae (and other yeasts) 
cells actively in 1:1 symport with protons while glucose is transported only 

S. cerevisiae
Chr 2, 813 184 bp

MAL32 MAL31 MAL33
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using downhill facilitated diffusion (Van Leeuwen et al., 1992). Active uphill 
transport is reasonable as the intracellular maltase has low affinity for maltose 
(see Table 2) – therefore maltose has to be concentrated into the cell to allow 
the further hydrolysis (Alamäe and Liiv, 1998; Needleman et al., 1978). 

A high-affinity maltose transport system was initially discovered in S. cere-
visiae (see Novak et al., 2004 for a review). A high-affinity maltose permease 
gene MAL61 was cloned by Cheng and Michels in 1989 and kinetic properties 
of the permease protein were studied by the same authors in 1991 (Cheng and 
Michels, 1991). This permease has Km of 4 mM for maltose and its expression 
is maltose-induced (Cheng and Michels, 1991). The MAL61 protein is 614 aa 
long, has twelve transmembrane domains and the N- and C-termini of the 
permease are located at the cytoplasmic side (Cheng and Michels, 1989; 
Table 1). Aside of transcriptional control by glucose, the maltose permease of 
S. cerevisiae is inactivated in the presence of glucose – addition of glucose into 
the medium causes inactivation of the maltose transport system within 
90 minutes and transfer of the cells back to maltose triggers its fast (within 1 h) 
regeneration (see references in Novak et al., 2004). Inactivation of the maltose 
permease starts with ubiquitination of the permease and thereafter the protein is 
degraded in the vacuole (Medintz et al., 1998, 1996). It has been also shown 
that glucose-caused catabolite inactivation of maltose permeases is related to 
the presence of PEST sequences (which are rich in proline, glutamate, serine 
and threonine) in the N-terminal cytoplasmic domains, but these sequences have 
not been found in AGT1 and MPHx transporters (Day, Higgins, et al., 2002; 
Dietvorst et al., 2005; Medintz et al., 2000). Differently from maltose permease, 
maltase protein is not inactivated when glucose is added into the medium – 
regulation of maltase by glucose occurs only at transcriptional level (Federoff et 
al., 1983).  

The α-glucoside transporter AGT1 (MAL11 according to Saccharomyces 
Genome Database) has wider substrate range than MAL61 that transports only 
maltose and turanose, yet it plays a role also in maltose entry (Cheng and 
Michels, 1991; Table 1). The AGT1 gene is a mutant allele of the permease 
gene of the MAL1 locus situated in subtelomeric region of chromosome VII 
(Han et al., 1995; Needleman, 1991). The AGT1 permease (as MAL61 and 
other α-glucoside transporters) is a member of the Sugar Porter family (TCDB 
2.A.1.1) of the Major Facilitator Superfamily (MFS) (http://www.tcdb.org) and 
has similarly to MAL61 twelve transmembrane domains. Its sequence identity 
to MAL61 permease is 57% (Han et al., 1995). The AGT1 is a maltose/proton 
symporter with relaxed substrate specificity. It has high affinity for trehalose 
and sucrose (Km 8 mM), medium affinity for maltose (Km 5–17.8 mM), 
maltotriose (Km 18.1 mM) and α-methylglucoside (Km 20–35 mM), and low 
affinity for isomaltose, melezitose and palatinose (Han et al., 1995; Stambuk et 
al., 1999; Table 1). The preferred substrate for the AGT1 permease is trehalose 
while MAL1 and MPHx permeases cannot transport this disaccharide (Vidgren 
et al., 2005). The AGT1 expression is transcriptionally induced by maltose as of 
MALx1 and the induction is mediated by the MALx3 (Mal-activator) protein. 
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This is explained by identical UASMAL region in the promoters of the both genes 
(Han et al., 1995). Gallone et al. (2016) found that beer yeast strains have 
significantly higher capacity to consume maltotriose compared to wine strains 
which lack this ability. Efficient metabolism of maltotriose has been explained 
by the presence of MAL1 locus (contains the AGT1 gene) in several copy 
numbers (Gallone et al., 2016).  

A new α-glucoside transporter was independently characterized in 2005 by 
two groups (Dietvorst et al., 2005; Salema-Oom et al., 2005) in industrial 
strains of brewer’s, baker’s and distiller’s yeasts. These new transporters are 
coded by MTT1 (also called MTY1) genes, which are 90% and 54% identical to 
S. cerevisiae MALx1 and AGT1 genes, respectively (Vidgren et al., 2009; 
Table 1). The MTT1 transporters have lower Km values for maltotriose (16–27 
mM) than for maltose (61–88 mM), being therefore different from all other  
α-glucoside transporters (Dietvorst et al., 2005; Salema-Oom et al., 2005; 
Table 1). The MTT1 permease also transports trehalose and turanose (Dietvorst 
et al., 2005; Salema-Oom et al., 2005). The ability to efficiently transport 
maltotriose is very important in brewing where maltotriose makes up about 20% 
of the wort sugars and is usually the most abundant sugar at later stages of 
fermentation (Magalhães et al., 2016).  

Day et al. (2002) characterized two additional maltose permease genes in 
S. cerevisiae: MPH2 ja MPH3 (Table 1). These genes encode two identical 
proteins with 75% identity to S. cerevisiae permeases MAL31 and MAL61 and 
55% identity to AGT1. Day et al. (2002) showed that MHPx permease can 
transport maltose (Km ~4.4 mM), maltotriose (Km ~7 mM), turanose and 
methyl-α-D-glucopyranoside (α-MG) (Table 1). Interestingly, general α-glu-
coside permeases such as AGT1 and MPH2 were also able to mediate glucose 
transport while overexpressed in a hxt1-17 gal2-deletion strain (Wieczorke et 
al., 1999).  

Maltose transport has also been studied in Torulaspora delbrueckii (Alves-
Araújo et al., 2004) and S. pombe (Reinders and Ward, 2001). Alves-Araújo et 
al. (2004) described a T. delbrueckii gene TdMAL11 (Table 1), which shares 
similarity with genes of maltose permeases from S. cerevisiae (identity 71%) 
and Klyuveromyces lactis (identity 57%). Disruption of the TdMAL11 gene 
indicated that there are at least two maltose transporters in this yeast (Alves-
Araújo et al., 2004). Reinders and Ward (2001) described α-glucoside transpor-
ter SUT1 (Table 1) from S. pombe which is most similar to sucrose transporters 
of plants. SUT1 was expressed in S. cerevisiae and assayed for kinetics and 
range of transported sugars. Differently from plant sucrose transporters, the 
affinity of the transporter for maltose (Km 6.5 mM) was higher than for sucrose 
(Km 36 mM) (Reinders and Ward, 2001; Table 1). Expression of TdMAL11 and 
SUT1 are both regulated by carbon source as of maltose transporters of 
S. cerevisiae – induced by maltose and repressed by glucose (Alves-Araújo et 
al., 2004; Reinders and Ward, 2001). A summary of the more thoroughly 
characterized α-glucoside permeases is presented in Table 1. No data was 
available in the literature on maltose transport in O. polymorpha. 
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The role of specific amino acid residues in α-glucoside permeases has been 
studied by few groups. Trichez (2007) identified four charged amino acid 
residues in transmembrane domains of the AGT1 permease of S. cerevisiae: 
Glu120, Asp123, Glu167 and Arg504 which are conserved within α-glucoside 
transporters of several yeast species. The importance of these amino acids was 
investigated by generating AGT1 mutants at Glu120, Asp123 and Arg504 and 
testing the growth of S. cerevisiae on maltotriose and p-nitrophenyl-α-D-
glucopyranoside (PNPG, a specific substrate for AGT1 and similar permeases) 
uptake in mutant strains having only this permease variant (Trichez, 2007). The 
strain with an Arg504Ala variant of AGT1 lost the ability to grow on 
maltotriose while strains with AGT1 variants Asp123Gly and Glu120Ala had 
only reduced maltotriose transport (Trichez, 2007). Trichez (2007) suggested 
that Glu120 and Asp123 residues of AGT1 are involved in proton translocation 
and Arg504 is responsible for binding of the sugar. Ten years later, Henderson 
and Poolman (2017) performed site-directed mutagenesis of key acidic residues 
in the membrane-embedded domain of MAL11 (AGT1) and showed that the 
transmembrane acidic residues Glu120, Asp123 addressed also by Trichez 
(2007) and Glu167 are all essential for effective binding of maltose and proton 
co-transport. Notably, triple mutants of the three acidic residues were 
completely deficient in uphill maltose transport, but maintained full downhill 
efflux and exchange activity (facilitated diffusion process), and mutation of any 
or all of these three acidic residues introduced substrate leakage from the cell 
(Henderson and Poolman, 2017). 

Maltose transport in O. polymorpha was first studied in Tiina Alamäe’s 
research group – respective data are included in current theses. Earlier, two 
kinetically different glucose transport systems were described by this group for 
O. polymorpha: a low-affinity transport system (Km for glucose 1.75 mM) 
present in glucose-repressed cells and a high-affinity transport system (Km for 
glucose ~0.05 mM) detected in glucose-derepressed cells (Karp and Alamäe, 
1998). The first hexose transporter gene HXT1 of O. polymorpha was cloned 
and successfully expressed in a hexose transporterless mutant of S. cerevisiae 
by Stasyk et al. in 2008. Low-affinity glucose transport was strongly reduced in 
hxt1 mutants of O. polymorpha indicating that HXT1 protein is a low-affinity 
glucose transporter (Stasyk et al., 2008). According to Stasyk et al. (2008) there 
are at least six glucose transporters and two fructose transporters encoded in the 
genome of O. polymorpha. There are 20 hexose transporter-related genes in 
S. cerevisiae and 34 sugar permease genes in total (Wieczorke et al., 1999).  

 
 

 1.5. Yeast α-glucosidases and their evolution 

Yeast α-glucosidases belong to a group of glycoside hydrolases (EC 3.2.1.–). 
Glycoside hydrolases (GHs) are a widespread group of enzymes which hydro-
lyze the glycosidic bond between two or more carbohydrates or between a 
carbohydrate and a non-carbohydrate moiety (Lombard et al., 2014). For 
example, α-glucosidase of O. polymorpha can hydrolyze an α-glycosidic bond 
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not only in maltose and sucrose, but also in α-MG (methyl-α-D-glucopyra-
noside) and PNPG liberating methanol and p-nitrophenol from respective 
substrates (Liiv et al., 2001). Hydrolysis of a chromogenic substrate PNPG is 
widely used for quantitating of catalytic activity of α-glucosidases (Zimmer-
mann et al., 1977). Yeast α-glucosidases degrade di- and oligosaccharides 
rapidly, large polysaccharides (starch) are hydrolyzed slowly or not at all (Deng 
et al., 2014; Needleman et al., 1978; Table 2).  

The most extensively studied yeast S. cerevisiae has two types of α-gluco-
sidases for the hydrolysis of α-glucosidic sugars: maltases (EC 3.2.1.20) and 
isomaltases (EC 3.2.1.10) (Table 2). Enzymes of the latter group have also been 
named oligo-1,6-glucosidases, sucrase-isomaltases and α-methylglucosidases.  

There are 146 Glycoside Hydrolases (GH) Families in the CAZY database 
(http://www.cazy.org). Maltases and isomaltases belong to GH13 family which 
in turn contains 42 subfamilies (Lombard et al., 2014). In addition to maltases 
and isomaltases, the GH13 family includes for example α-amylases, cyclo-
dextrin glucantransferases, pullulanases, isoamylases, trehalose synthases, 
trehalose-6-phosphate hydrolases, branching enzymes, neopullulanases and 
some others (http://www.cazy.org). The similarity of the amino acid sequences 
within the GH13 family proteins is low, however they all share four highly 
conserved regions and three acidic catalytic residues located in conserved 
regions (Yamamoto et al., 2010). α-Glucosidases have been found in a variety 
of organisms and short overview of most thoroughly characterized α-gluco-
sidases from yeasts and other organisms are found in Tables 3 and 4 respec-
tively. Many putative α-glucosidases have also been disclosed through genome 
mining. However the enzymes deduced from the genomes mostly remain 
uncharacterized.  

Maltases have a quite narrow substrate range – they degrade maltose and 
maltotriose (both α-1,4 linked) while cannot degrade isomaltose, an α-1,6 linked 
starch degradation product (Needleman et al., 1978; Voordeckers et al., 2012; 
Tables 2 and 3). For isomaltose degradation, Saccharomyces yeasts have 
specific enzymes – isomaltases IMA1 to IMA5 (Naumoff and Naumov, 2010; 
Teste et al., 2010; Table 2). IMA1–IMA5 genes are located in S. cerevisiae at 
subtelomeric regions of chromosomes VII, XV, IX, X and X, respectively.  

The first glycoside hydrolases were crystallized in 1980s. The first crystal 
structures resolved for glycoside hydrolases were of TAKA-amylase A 
(Brzozowski and Davies, 1997; Matsuura et al., 1984) and porcine pancreatic  
α-amylase (Buisson et al., 1987; Qian et al., 1993). By now, there are quite 
many α-glucosidases with solved structures (Table 3): human maltase-
glucoamylase (MGAM) and sucrase-isomaltase (SI) (Sim et al., 2010), oligo-
1,6-glucosidase (malL) from Bacillus cereus (Watanabe et al., 1997), malL of 
Bacillus subtilis (Hobbs et al., 2013), α-glucosidase GSJ of Geobacillus sp. 
(Shirai et al., 2008), α-glucosidase (HaG) of Halomonas sp. (Shen et al., 2015). 
The common structure of GH13 family enzymes consists of three domains: an 
N-terminal catalytic domain (domain A) folded into a (β/α)8-barrel, an 
additional domain (domain B) extending out of the barrel, and a β-sheet-rich 
domain in the C-terminus (domain C) (Yamamoto et al., 2010). 
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From yeast α-glucosidases, three-dimensional structure has been determined 
only for S. cerevisiae isomaltase 1 (IMA1; PDB ID 3AJ7 and 3A4A) (Yama-
moto et al., 2010). Its structure in complex with a competitive inhibitor maltose 
has uncovered the active site bordering (signature) amino acids (Y158, V216, 
G217, S218, L219, M278, Q279, D307, E411) the Val216 being crucial for 
selective binding of the substrate (Yamamoto et al., 2010; Table 4).  
 
Table 4. Signature amino acids of α-glucosidases with known substrate specificity. The 
table is mostly based on the data from Figure 4 in Voordeckers et al., 2012. Background 
coloring in the table is as follows: maltases (pink), isomaltases (green) and maltase-
isomaltases (blue). The position corresponding to Val216 of Sc IMA1 is of key 
importance in determination of substrate specificity of α-glucosidases and is shown in 
red frame. AncMALS – a resurrected hypothetical ancestor protein of Sc maltases/ 
isomaltases (Voordeckers et al., 2012); Le – Lodderomyces elongisporus (GenBank 
accession XP_001526531.1; Voordeckers et al., 2012); Sc – S. cerevisiae; Sp – Schizo-
saccharomyces pombe; Bs – Bacillus stearothermophilus; Bt – Bacillus thermo-
glucosidasius. 

 
The structures of the IMA1 mutant E277A of S. cerevisiae in complex with 
isomaltose and maltose were also determined by Yamamoto et al. (2011). The 
signature amino acids from Sc IMA1 compared to other α-glucosidases with 
known substrate specificity are shown in Table 4. Analysis of the amino acid 
sequences of α-glucosidases with known function showed that α-glucosidases 
hydrolyzing the α-1,6-glycosidic linkage have a Val residue following the 
catalytic nucleophile in region II. The corresponding residue of α-glucosidases 

α-glucosidase 

Signature amino acids  
(numbering as in Sc IMA1) Substrate 

specificity 
158 216 217 218 219 278 279 307 411

ancMALS 
F T A G L V G D E 

maltase-
isomaltase 

Le α-glucosidase 
H T A G M V G D N 

maltase-
isomaltase 

Sc MAL12 F T A G L V A E D maltase 

Sc MAL32 F T A G L V A E D maltase 

Sp Mal1 Y A I N M M P D E maltase  

Bs α-1,4-
glucosidase 

I A I S H A N G A maltase  

Bt oligo-1,6-
glucosidase 

V V I N M T P D E isomaltase 

Sc IMA1 Y V G S L M Q D E isomaltase 

Sc IMA2 Y V G S L M Q D E isomaltase 

Sc IMA3/4 Y V G S L M R D E isomaltase 

Sc IMA5 F V G S M V G S E isomaltase 
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acting on the α-1,4-glycosidic linkage is Thr (Yamamoto et al., 2010; see also 
residues inside the red frame in Table 4). Another important position in IMA1 is 
Gln279 (see Table 4) which is located in the vicinity of catalytic acid/base 
residue (Yamamoto et al., 2010). Isomaltase mutants Val216Thr and Gln279Ala 
gained the ability to hydrolyze maltose, so the amino acid residues at these 
positions are certainly responsible for determining the substrate specificity of  
α-glucosidases (Yamamoto et al., 2010). Tsujimoto et al. (2007) have shown 
the importance of the position Ala/Val200 (corresponds to Val216 in Sc IMA1) 
also in Bacillus stearothermophilus α-1,4-glucosidase and Bacillus thermo-
glucosidasius oligo-1,6-glucosidase (Tables 3 and 4).  

Voordeckers et al. (2012) predicted in silico and resurrected in vitro a 
hypothetical ancestor protein ancMALS (Table 4) of maltases and isomaltases 
of Saccharomyces yeasts (see also Figure 4 in Voordeckers et al., 2012). The 
ancMalS was predicted as bifunctional being primarily active on maltose-like 
substrates, but also having a minor activity on isomaltose-like sugars. The 
present-day α-glucosidases of S. cerevisiae preferentially hydrolyze either iso-
maltose-like sugars (IMA1, IMA2 and IMA5) or maltose-like sugars (MAL12, 
MAL32, MAL62) (Voordeckers et al., 2012). The authors speculate that it is 
difficult to fully optimize these two activities in one protein – so the catalytic 
activity of the promiscuous ancestral protein stays quite low. Gene duplication 
and subfunctionalization of the gene product resolved this adaptive conflict 
optimizing the subfunctions separately in different paralogs (Voordeckers et al., 
2012). Gabriško (2013) has studied the evolutionary origin of GH13  
α-glucosidases and pointed out that respective fungal enzymes are always 
closely related to the prokaryotic group. Gabriško hypothesised that fungal  
α-glucosidases may originate from bacterial ancestors and current enzymes 
retain certain similarity with ancestral ones, but he also considers (ancient) 
horizontal gene transfer from bacteria as a possibility (Gabriško, 2013). Herein 
it should be noted that the maltase Mal1 of an ‘ancient’ yeast S. pombe and a 
bacterial maltase (from B. stearothermophilus) both have an Ala and Ile at 
positions corresponding to Val216 and Gly217 of S. cerevisiae IMA1 protein 
(Table 4). S. cerevisiae maltases have Thr and Ala at this position. Interestingly, 
the MAL1 gene of O. polymorpha has also a property of a bacterial gene – its 
promoter region is perfectly recognized in a bacterium Escherichia coli – it 
possesses two pairs of sigma 70-like sequences (Alamäe et al., 2003). 

 

1.6. Regulation of the MAL genes and proteins in  
S. cerevisiae and some other yeasts 

The preferred carbon sources for yeasts are monosaccharides glucose and 
fructose. In the presence of these sugars, the enzymes required for utilization of 
other carbon sources are synthesized at a low level or not at all. This phenomen 
is known as glucose repression. Glucose repression in yeasts has mostly been 
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studied using S. cerevisiae as a model organism and invertase and maltase genes 
as model genes (Gancedo, 1998; Ronne, 1995; Zimmermann and Scheel, 1977).  
 
 

1.6.1. S. cerevisiae: glucose sensing, inactivation and  
repression by glucose 

To sense low and high concentrations of glucose, two specific transporter-like 
transmembrane proteins SNF3 and RGT2 with long C-terminal cytosolic 
extensions are present in S. cerevisiae (Gancedo, 1998; Fig 3). In the presence 
of glucose, maltose utilization in S. cerevisiae is prevented at three levels: 
transcriptional, translational and posttranslational (Klein et al., 1996). Firstly, if 
glucose is present, maltose transporter is inactivated and degraded as described 
in chapter 1.4. Thereby maltose does not reach the cell and transcription from 
MAL genes is not induced (Brondijk et al., 1998; Hicke et al., 1997; Lucero et 
al., 1993; Medintz et al., 2000). Secondly, adding glucose to induced cells will 
result in mRNA lability of the glucose repressed genes and that has also an 
effect on translational efficiency. For example, the functional half-life of 
MAL62 mRNA decreases from 25 to 6 min in the presence of glucose (Federoff 
et al., 1983; Gancedo, 1998).  

The main repressive effect of carbon source is executed at transcriptonal 
level (Gancedo, 1998) and it is described below in more detail. The key 
components of the glucose repression are shown on Figure 3. It is accepted that 
the signal for glucose repression is transmitted to transcriptional machinery via 
hexokinases in S. cerevisiae, with hexokinase PII (HXK2) playing a major role 
(Ahuatzi et al., 2004; Gancedo, 2008; Mayordomo and Sanz, 2001; Moreno and 
Herrero, 2002; Zimmermann and Entian, 1997). Transcriptional repression is 
executed by a repressor protein MIG1. At high glucose concentrations, HXK2 
and MIG1 enter the nucleus, where MIG1 leads corepressors TUP1 and CYC8 
to target promoters whereas HXK2 stabilizes the repressor complex (Ahuatzi et 
al., 2007; Gancedo, 1998; Kayikci and Nielsen, 2015; Santangelo, 2006). MIG1 
is a C2H2 zinc finger protein which binds to several promoters of genes 
repressed by glucose such as SUC2 and most genes of the MEL-GAL regulon 
(Nehlin et al., 1991; Nehlin and Ronne, 1990). When glucose concentration 
reduces, the SNF1 protein kinase will inactivate MIG1 by phosphorylation and 
MIG1 will be exported from the nucleus, allowing transcriptional activation of 
the promoters (Ahuatzi et al., 2004, 2007; Gancedo, 2008; Kayikci and Nielsen, 
2015; Moreno and Herrero, 2002). The recognition sequence in promoters for 
MIG1 is (G/C)(C/T)GGGG, an AT-rich sequence is needed at the 5’ end of the 
GC-box (Lundin et al., 1994; Needham and Trumbly, 2006; Santangelo, 2006). 
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Figure 3. A simplified scheme of glucose-repression and maltose-induction in S. cere-
visiae. The arrows indicate inducing effects and a hammerheaded line indicates 
repressing effects. 
 
 

1.6.2. S. cerevisiae: induction by maltose  

The presence of maltose in the medium induces the transcription of the MALx2 
(maltase) and MALx1 (maltose permease) genes in S. cerevisiae (Jiang et al., 
2000; Wang et al., 1997; Wang and Needleman, 1996; Yao et al., 1994). 
Maltose permease and maltase genes share a 700 bp bi-directional promoter 
region that coordinate transcription of both genes (Bell et al., 1995; Dubin et 
al., 1985; Meurer et al., 2017; Needleman et al., 1984). In the presence of 
maltose, the transcription of both genes is induced via binding of the MAL-
activator (MALx3) to the bi-directional promoter (Chang et al., 1988); Kim and 
Michels, 1988; Sirenko et al., 1995; Meurer et al., 2017; Fig 3). Glucose 
represses expression of both genes through binding of the MIG1 repressor even 
if the inducer maltose is present (Klein et al., 1998). So, the activation/ 
repression of the MALx1 – MALx2 bi-directional promoter may be explained by 
competition between MIG1 and MAL63 for GC-binding boxes (Gancedo, 
1998).  

MAL63 is a 470 aa zinc finger protein belonging to C6 zinc cluster proteins 
and it binds to the DNA as a dimer (Chang et al., 1988; Kim and Michels, 1988; 
Sirenko et al., 1995). Mutation in MAL63 gene unables the induction of maltase 
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and maltose permease genes (Novak et al., 2004). Some laboratory strains of 
S. cerevisiae (for example S288C and W303-1A) fail to grow on maltose and 
other α-glucosidic sugars because of a nonfunctional MAL-activator allele (Brown 
et al., 2010; Meurer et al., 2017). The DNA sequence recognized by MALx3 is 
not yet clear. Initially it was suggested that motif GAAA(A/T)TTTCGC is 
important, but later on sequences CGGN9CGG, CGCN9CGC and CGGN9CGC 
(N9 is AT rich) were proposed as crucial for maltose-induced activation of 
promoters (Gancedo, 1998). It has been hypothesized that binding of maltose to 
MAL63 causes confirmational changes in the activator and leads to 
transcriptional activation (Danzi et al., 2000; Wang and Needleman, 1996), but 
the exact mechanism is unknown (Fig 3). Constitutive alleles of MAL63 encode 
proteins with several mutations in C-terminal regions which may lead to active 
confirmation even if no maltose is present (Wang and Needleman, 1996). 
Expression of MAL63 is repressed by glucose via MIG1 repressor protein – 
removal of MIG1 binding sites in MAL63 promoter and in the MIG1-disruption 
mutant the MAL63 is expressed in the presence of glucose (Wang and 
Needleman, 1996).  
 
 

1.6.3. Regulation in O. polymorpha and some other yeasts 

In 2004, Stasyk et al. characterized a hexose transporter homologue GCR1 in 
O. polymorpha that was similar to glucose sensors SNF3 and RGT2 of 
S. cerevisiae, but lacked the C-terminal cytosolic „tail“ (Stasyk et al., 2004) 
which has been shown essential in SNF3 for glucose sensing (Santangelo, 2006; 
Vagnoli et al., 1998). The GCR1-deletion mutant grew well on high glucose 
and the authors suggested that GCR1 could be involved in high-affinity glucose 
transport or its regulation (Stasyk et al., 2004). In 2008, Stasyk et al. charac-
terized another transporter-like protein – HXS1 – with similarity to S. cerevisiae 
RGT2 and SNF3. The HXS1 gene did not complement the hexose transporter-
less mutant of S. cerevisiae indicating that HXS1 is not a functional transporter, 
but rather a sensor (Stasyk et al., 2008).  

Induction of maltase synthesis by maltose and sucrose, and repression by 
glucose was shown for O. polymorpha already in 1998 (Alamäe and Liiv, 
1998). Growth of O. polymorpha on glycerol and ethanol allowed derepression 
of maltase synthesis (Alamäe and Liiv, 1998). Literature data show that glucose 
repression mechanisms of O. polymorpha differ from those described for 
Saccharomyces. Differently from S. cerevisiae, both hexokinase and gluco-
kinase can mediate glucose repression in O. polymorpha whereas fructose 
repression is mediated only by hexokinase (Kramarenko et al., 2000; Laht et al., 
2002). Therefore, phosphorylation of the sugar seems to be important for 
initiation of the repression. Stasyk et al. (2007) described S. cerevisiae MIG1 
and MIG2 homologues of O. polymorpha. The identity of OpMIG2 and 
OpMIG1 to ScMIG1 is up to 76% and 80% when N-terminal conserved regions 
are compared (Stasyk et al., 2007). The OpMIG1 and OpMIG2 are respectively 
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480 aa and 204 aa long and they are 33% identical to each other (Stasyk et al., 
2007). Disruption of MIG1 and MIG2 genes in O. polymorpha had only a minor 
effect on glucose repression of alcohol oxidase (Stasyk et al., 2007) and no 
effect on glucose repression of maltase (unpublished data). As hexokinase and 
MIG1 proteins have no specific role in glucose repression in O. polymorpha, 
some mechanism alternative to that of S. cerevisiae should be involved. O. poly-
morpha MAL1 gene was expressed in S. cerevisiae maltase-negative mutant 
100-1B and it was regulated the same way as the S. cerevisiae native maltase 
(Alamäe et al., 2003). It may allow to hypothesize that regulator proteins from 
S. cerevisiae are able to bind the promoter of O. polymorpha MAL1. The 
analysis of the promoter region of O. polymorpha MAL1 also showed that there 
are potential MIG1 and MAL63 binding sites (Alamäe et al., 2003).  

MAL63 homolog a zinc finger protein CaSUC1 has been found in 
C. albicans and it complements the MAL63 mutant of S. cerevisiae (Kelly and 
Kwon-Chung, 1992). The CaSUC1 shares 28% identity with S. cerevisiae 
MAL63. CaSUC1 is required to up-regulate expression of C. albicans α-
glucosidase by maltose and sucrose (Kelly and Kwon-Chung, 1992).  

S. cerevisiae MIG1 homologs have been found from C. albicans (Zaragoza 
et al., 2000), Kluyveromyces lactis (Cassart et al., 1995), C. utilis (Delfin et al., 
2001), S. pombe, Scwanniomyces occidentalis (Carmona et al., 2002) and 
Aspergillus sp. (Gancedo, 1998; Klein et al., 1998). MIG1 homologs from 
K. lactis and K. marxianus complement the S. cerevisiae MIG1 mutant restoring 
glucose repression (Cassart et al., 1995, 1997). C. albicans CaMIG1 was also 
able to complement the MIG1 deficiency in S. cerevisiae, but disruption of 
CaMIG1 did not relieve glucose repression (Zaragoza et al., 2000). So, the 
mechanism of MIG1 functioning in C. albicans is not yet known.  

Alves-Araujo et al. (2004) cloned T. delbueckii maltose permease TdMAL11 
and further sequencing revealed the presence of maltase gene TdMAL12 
transcribed from the opposite strand. The expression of both of the genes is  
regulated by glucose. Analysis of the intergenic region of TdMAL11-TdMAL12 
genes revealed the presence of two potential MAL-activator and MIG1 binding 
sites and one of these site was overlapping as in S. cerevisiae (Alves-Araújo et 
al., 2004). This finding is in good correlation as the expression of maltose 
permease TdMAL11 is regulated the same way as in S. cerevisiae. No MAL-
activator has been found in this yeast (Bussereau et al., 2006; Fairhead and 
Dujon, 2006). 
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II AIMS OF THE STUDY 

The main aim of the study was to characterize the genes and proteins respon-
sible for metabolism of α-glucosidic disaccharides in O. polymorpha.  
 

In more detail, the aims of my work are as follows: 
• To identify the genomic clustering of MAL genes in O. polymorpha (Refs 

I and II) 
• To characterize transport of α-glucosidic sugars and respective 

transporter OpMAL2 in O. polymorpha (Refs I, II and III) 
• To characterize substrate specificity of the α-glucosidase OpMAL1 and 

significance of Thr200 in its substrate selection (Ref IV) 
• To characterize the regulation of expression of α-glucosidase OpMAL1 

and α-glucoside permease OpMAL2 by carbon sources (Refs I, II, III, 
IV) 
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III RESULTS AND DISCUSSION 

3.1. The MAL cluster of O. polymorpha (Refs I and II) 

The maltase structural gene (MAL1) of O. polymorpha was isolated from a 
genomic library by Tiina Alamäe’s research group in 2001 (Liiv et al., 2001). 
An open reading frame of 1695 bp encoding a 564 aa protein with calculated 
molecular weight of 65.3 kD (see Table 2) was characterized in the genomic 
insert of the library plasmid p51 (Liiv et al., 2001). 

Inspection of several Génolevures project (Blandin et al., 2000; Feldmann, 
2000) library clones of O. polymorpha CBS 4732 showed that genomic inserts 
of the clones BB0AA021D05, BB0AA011B12 and BB0AA003C10 (Fig 4) 
contained fragments of different MAL genes. Further analysis of these clones 
disclosed composition of the O. polymorpha MAL locus. In Ref 1 a bidirectional 
promoter region was identified between the MAL1 and MAL2 genes of 
O. polymorpha (see scheme of BB0AA011B12 in Figure 4) and regulation from 
this promoter by carbon sources was studied (will be discussed in chapter 3.3). 
In addition to N-terminal fragment of the maltase gene and full-length sequence 
of the permease gene, the clone BB0AA011B12 contained the N-terminal 
fragment of a putative Zn-finger MAL-activator gene (Fig 4). From analysis of 
sequences of library clones BB0AA011B12 and BB0AA021D05 present in the 
Génolevures database, it was considered that O. polymorpha has a three-gene 
MAL locus (Ref 1). However, sequencing of the genomic insert of the clone 
BB0AA021D05 showed that sequence AL434102.1 belongs to the MAL-
activator 2 gene instead of MAL-activator 1 gene as was erroneously reported in 
Ref I (see Fig 1a of Ref I). In fact, the genomic library clone BB0AA021D05 
contains the complete sequence of the MAL-activator 1 gene and a sequence 
coding a C-terminal fragment of the putative MAL-activator 2 (see Fig 4, 
BB0AA021D05 correct). To conclude, O. polymorpha has two hypothetical Zn-
finger transcription factor genes next to the MAL2 gene which were named 
MAL-activator 1 (MAL-ACT 1) and MAL-activator 2 (MAL-ACT 2). Full-length 
MAL-activator 2 gene is present in the library clone BB0AA003C10 (Fig 4).  

As shown in Figures 4 and 5, the composition of the O. polymorpha MAL 
locus is almost the same as of MAL-loci of S. cerevisiae except for the number 
of MAL-activator genes (two vs one) and the transcriptional direction of the first 
MAL-activator gene. For composition of a MAL locus of S. cerevisiae see 
Figure 2.  

GenBank accession numbers of the genes from the MAL locus of O. poly-
morpha CBS 4732 are given in Figure 5. Full-length sequence of the MAL locus 
of O. polymorpha CBS 4732 is accessible under the number MH252366 (shown 
also on Fig 5). Comparison of genomic sequences of MAL clusters from 
O. polymorpha strains NCYC 495 leu1.1 and CBS 4732 showed their identity. 
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Figure 4. Composition of the O. polymorpha MAL locus. Genomic inserts in the 
Génolevures library clones are shown within the frame. Respective GenBank numbers 
of sequences belonging to MAL genes are shown on top of the frames. MAL1 gene 
encoding a maltase is shown in yellow, MAL2 gene encoding the permease is shown in 
green and the putative MAL-activator genes are shown in pink. The corrected scheme of 
the insert in clone BB0AA021D05 is also shown.  
 
As MAL loci of S. cerevisiae are positioned subtelomerically, the chromosomal 
location of the O. polymorpha MAL locus was inspected. The first O. poly-
morpha genome – of strain CBS 4732 – was sequenced in 2003 (Ramezani-Rad 
et al. 2003), but the sequence is not yet public. Therefore, the genome of 
O. polymorpha strain NCYC 495 leu1.1 (Grigoriev et al., 2014; MycoCosm 
portal https://genome. jgi.doe.gov/programs/fungi/index.jsf) was used instead to 
illustrate the chromosomal position of the MAL locus in O. polymorpha. Figure 
5 (bottom) shows that in O. polymorpha the MAL cluster is not subtelomeric. 
 

 
Figure 5. Composition of MAL clusters in O. polymorpha CBS 4732 and NCYC 495 
leu1.1. Maltase gene is yellow, permease gene is green and MAL-activator genes are 
pink. Accession numbers of CBS 4732 MAL gene sequences and the full-length MAL 
cluster deposited to GenBank are given next to coloured line referring to the respective 
gene sequence. The lower panel depicts position of the MAL cluster (in blue) in 
chromosome 1 of O. polymorpha NCYC 495 leu1.1. Subtelomeric regions (50 kbp) are 
shown in grey. The chromosome was visualised using a PhenoGram program 
(http://visualization.ritchielab.psu.edu/phenograms/plot).  
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Analysis of the N-terminal fragment of the putative MAL-activator 1 (Op 
MALACT 1) also encoded in the Génolevures clone BB0AA011B12 (Fig 4) 
revealed presence of a Zn-finger motif containing six conserved cysteins (Ref I) 
as in the case of MAL-activators MAL63 from S. cerevisiae and CaSUC1 from 
Candida albicans (Chang et al., 1988; Kelly and Kwon-Chung, 1992). 
Alignment of the N-terminal parts of yeast MAL-activators is shown in Figure 
6. At this time there was information on only one putative MAL-activator gene 
(MAL-activator 1). Further analysis of the MAL cluster revealed the presence of 
another putative MAL-activator next to it (Figs 5 and 6).  

Figure 6. Alignment of the N-terminal parts of the putative MAL-activator proteins. 
The figure was adjusted from Ref I, Figure 2b, by adding the sequence of the 
OpMALACT 2. CaSUC1 from Candia albicans (P33181); MAL13 from S. cerevisiae 
(P53338); DeHa, a hypothetical MAL-activator from Debaryomyces hansenii (Q6BYN4). 
Six cysteine residues of zinc fingers are shown in red. The crosses above the alignment 
designate the predicted nuclear transport motif of the CaSUC1 protein (Blandin et al., 
2000). 
 
The N-terminal part of both hypothetical Mal-activators of O. polymorpha 
aligns well with yeast Mal-activators and contains six conserved cysteins (Fig 6). 
Both putative MAL-activator genes of O. polymorpha have been sequenced and 
submitted to the GenBank under accession numbers HM624022.1 and 
HM624023.1 (Fig 5). Proteins deduced from respective gene sequences are 570 
aa (MAL-activator 1) and 628 aa (MAL-activator 2) long. The identity between 
these two proteins is only 26%, their identity to C. albicans CaSUC1 is 23-24%, 
and the identity to the S. cerevisiae MAL63 is even less – 15–16% (unpublished 
data). Despite the low identity (only 28%) between the CaSUC1 and MAL63 
proteins of S. cerevisiae, CaSUC1 of C. albicans can replace the function of the 
MAL-activator of S. cerevisiae (Kelly and Kwon-Chung, 1992). 

Southern blot has confirmed presence of a single maltase gene in O. poly-
morpha (Liiv et al., 2001). The fact that disruptants of O. polymorpha MAL1 
and MAL2 genes lose the ability to grow on α-glucosidic sugars (Refs II and IV) 
confirms that these genes encode sole functional proteins for the transport and 
hydrolysis of α-glucosidic sugars. On the basis of information available it can 
be concluded that the O. polymorpha has a single MAL locus that consists of 
four genes: maltase (maltase-isomaltase), maltose (α-glucoside) permease and 
two putative MAL-activators. The published experimental data confirm that 
MAL1 and MAL2 genes are indispensable for utilization of α-glucosidic sugars 

            +++++++++ 

CaSUC1 7 APYTRPCDSCSFRKVKCDMK----TPCSRCVLNNLKCTNNRIRKKCGPKKIRDRTREAIN 62 

ScMAL13 7 TCAKQACDCCRIRRVKCDGK----RPCSSCLQNSLDCTYLQPSRKRGPKSIRLRSLKRIA 62 

OpMALACT1 20 RPYIRPCDACAFKRVRCDAEFKLDRRCTNCLVNGIECTNNRVKQRSGPRKIHNKTKEAIK 79 

OpMALACT2 9 RQRPRPCDACAIRRVKCDIDICTGGICSNCLTHQVPCTNLRVRHKSGPKKSTRTVKNTED 68 

DeHa 20 GILLRPCDGCALRKVRCNRQ----KPCSQCIKHNVSCTSKRIKKKCGPKQIHKKTKETIQ 75 

Identitity         ** *    * *     *  *      **          ** 
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by O. polymorpha. Functionality and role of two putative MAL-activators still 
have to be proven. There is indirect support of functionality for at least MAL-
activator 1 gene. Namely, the promoter of this gene was regulated by carbon 
sources the same way as the promoters of MAL1 and MAL2 genes (Table 4 in 
Ref II).  

MAL clusters have been previously identified in Scheffersomyces stipitis 
(Jeffries and Van Vleet, 2009) and Kluyveromyces lactis (Fairhead and Dujon, 
2006; Leifso et al., 2007) though no MAL-locus identical to O. polymorpha has 
been found.  

In addition to the MAL cluster, the nitrate cluster has been described in O. 
polymorpha. It consists of five genes: a nitrate transporter YNT1, a nitrite 
reductase YNI1, a nitrate reductase YNR1 and transcription factors YNA1 and 
YNA2 (Silvestrini et al., 2015; Siverio, 2002). Genes required for nitrate 
assimilation are also clustered in B. (Arxula) adeninivorans (Böer et al., 2009), 
Aspergillus fumigatus (Amaar and Moore, 1998), A. nidulans (Johnstone et al., 
1990) and A. oryzae (Amaar and Moore, 1998; Johnstone et al., 1990; Kitamoto 
et al., 1995). Recently a gene cluster involved in MEL (mannosylerythritol 
lipids) biosynthesis was described in basidiomycetous yeast Pseudozyma 
tsukubaensis (Saika et al., 2016). S. stipitis is exceptionally rich in gene clusters – 
at least 35 clusters of functionally related genes were discovered after se-
quencing of the genome (Jeffries and Van Vleet, 2009). As noted by Jeffries 
and Van Vleet (2009), genes coding proteins with physiologically related 
functions may have a survival advantage when coinherited. Hurst et al. (2004) 
have proposed the “coregulation” model – metabolic gene clustering through 
selection for more precise coordination of gene regulation pathway. 
 
 

3.2. The α-glucoside permease of O. polymorpha  
(Refs I, II and IV) 

The putative maltose permease gene MAL2 from the MAL cluster of O. poly-
morpha was sequenced and the deduced protein sequence was aligned with 
other permeases (Ref I). Comparison of O. polymorpha maltose permease 
protein (582 aa) deduced from the MAL2 gene revealed 39–57% identity with 
yeast maltose permeases (Table 1 in Ref I) with the hypothetical maltose 
permeases of D. hansenii and C. albicans being the closest homologs but these 
transporters have not yet been biochemically characterized. These yeasts are 
also neighbors on the phylogenetic tree and their maltase proteins are also 
highly similar (Liiv et al., 2001; Ref I). The closest homolog of O. polymorpha 
MAL2 from S. cerevisiae is an experimentally characterized permease – the 
general α-glucoside transporter AGT1 (identity 41%; Ref I).  

To investigate functionality of the MAL2 protein, the MAL2 gene was 
disrupted in O. polymorpha genome using homologous recombination (Fig 1b 
in Ref II). The gene disruption was highly (95%) efficient hinting that this is the 
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only copy of maltose permease gene as previously shown also for the MAL1 
gene (Liiv et al., 2001). The MAL2 disruptant of O. polymorpha mutant lost the 
ability to grow on maltose, sucrose, trehalose, maltotriose and turanose. Even 
though the MAL2 permease of O. polymorpha is responsible for the transport of 
trehalose, the MAL1 protein does not hydrolyze this sugar (Liiv et al., 2001) 
and the MAL1 disruption mutant of O. polymorpha grows on trehalose (Fig 6 in 
Ref II). Though internalized through the MAL2 permease, trehalose is hydro-
lyzed in O. polymorpha cell not by a maltase but a specific enzyme – trehalase 
(Ishchuk et al., 2009). Even though MAL2 was responsible for trehalose uptake, 
its expression was not induced during growth on trehalose (Ref II). Comple-
mentation of the permease disruption mutant with the MAL2 gene on a plasmid 
restored the growth on maltose and sucrose showing that the MAL2 permease is 
solely responsible for the transport of these sugars (Ref II). The MAL2 
permease was also functional in a S. cerevisiae maltose permease-negative 
mutant restoring its growth on maltose (Ref I).  

In addition to natural α-glucosidic sugars the MAL2 permease (and for 
example the AGT1 permease of S. cerevisiae) also transports a synthetic 
chromogenic α-glucosidic substrate PNPG (Hollatz and Stambuk, 2001; Ref II). 
PNPG transport is very convinient to measure (Hollatz and Stambuk, 2001) and 
this is why this method was applied to characterize the properties of the MAL2 
permease. 

Study of energization of the MAL2 permease indicated that similarly to α-
glucoside transporters of other yeasts (Stambuk et al., 2000; Hollatz and 
Stambuk, 2001; Reinders and Ward, 2001), transport by MAL2 of O. polymorpha 
was characterized as energy-dependent proton-symport. In good accordance 
with that, PNPG transport in O. polymorpha was dependent on pH (with pH 
optimum of 5.0; Fig 4 in Ref II). The pH optimum 5.0 for PNPG transport has 
previously been shown also for S. cerevisiae (Stambuk, 2000). The transport by 
MAL2 in O. polymorpha was sensitive to protonophores-energy uncouplers 
carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and sodium azide (NaN3) 
(Table 2 in Ref II).  

Inhibition of PNPG transport by various α-glucosidic substrates was used to 
reveal substrate specificity of the MAL2 permease. The Ki values calculated 
from inhibition studies reflect the affinity of the MAL2 permease for these 
sugars. The MAL2 has a high affinity (Km 0.51 mM) for PNPG (Table 3 in Ref 
II). The Km value of the AGT1 permease of S. cerevisiae for PNPG is ~3 mM 
whereas maltose permeases MAL21 and MAL61 of S. cerevisiae do not 
transport PNPG (Table 1 and references therein). Sucrose, maltose, trehalose, 
maltotriose, turanose and α-MG competitively inhibited the transport by MAL2 
in O. polymorpha (respective Ki values were between 0.23 and 1.47 mM; Table 
3 in Ref II). α-MG is probably able to bind the MAL2 permease and also the 
MAL1 (inhibits respectively PNPG transport and hydrolysis), but O. poly-
morpha does not grow on this synthetic substrate. High affinity maltose 
transport system has also reported for C. utilis with the Km for maltose 0.4 mM 
(Peinado et al., 1987). S. cerevisiae AGT1 has much lower affinities for its 
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substrates (Table 1): Km for maltose is 5.1–17.8 mM (Day, Higgins, et al., 2002; 
Stambuk and de Araujo, 2001), Km for sucrose is ~ 8 mM (Stambuk et al., 
2000), Km for trehalose is 7 mM (Stambuk and de Araujo, 2001) and for 
maltotriose 4–18.1 mM (Day, Rogers, et al., 2002; Stambuk et al., 2000). 
Glucose also inhibited PNPG transport by O. polymorpha MAL2 (Ki ~1 mM, 
but in noncompetitive manner; Table 3 in Ref II).  

To conclude, considering a wide range of substrates transported by the 
MAL2 permease, it should be defined as an α-glucoside permease rather than a 
maltose permease (Ref II). It was shown using the MAL2-disruption mutant that 
this permease is responsible for the transport of a at least maltose, sucrose, 
turanose, maltotriose, maltulose, melezitose, isomaltose, palatinose and IMOs 
(Ref IV).  

The affinity of the MAL2 permease for maltose and sucrose is much higher 
(respective Ki values were 0.23 and 0.38 mM; Table 3 in Ref II) than that of the 
maltase for these sugars (respective Km values 51.8 and 25.1 mM; Table 2 in 
Ref IV). This indicates that these substrates must be concentrated into the cell to 
enable their efficient hydrolysis. Also, transport is most probably a limiting step 
in the utilisation of α-glucosidic sugars by O. polymorpha as also shown for 
S. cerevisiae (Chang et al., 1989). Transport of α-glucosidic sugars is also 
crucial for the induction of MAL genes. It has been proven for S. cerevisiae that 
intracellular maltose is required for the induction of maltase gene expression 
(Wang et al., 2002). The same was shown by us for O. polymorpha by using a 
MAL2-disruptant mutant – though maltose was present in the growth medium, 
no maltase gene induction was seen (Table 4 in Ref II).  
 
 

3.3. Regulation of the MAL genes in O. polymorpha  
(Refs I, II and III) 

Regulation of the expression from the MAL1 promoter in O. polymorpha and 
S. cerevisiae has been investigated previously (Alamäe et al., 2003). S. cere-
visiae maltase gene MAL62 was repressed by glucose and induced by maltose 
and sucrose when expressed from its native promoter in maltase-negative 
mutant of O. polymorpha (Alamäe et al., 2003). The same was true vice versa – 
the O. polymorpha MAL1 promoter was recognized and correctly regulated by 
the carbon source in a S. cerevisiae maltase-negative mutant (Alamäe et al., 
2003). As the promoters of the maltase genes of these two yeast species were 
crosswise recognized, it was hypothesized that transcriptional regulators of 
S. cerevisiae MAL genes (MAL-activator and MIG1 repressor) probably partici-
pate in the regulation of the expression of the O. polymorpha maltase gene 
(Alamäe et al., 2003). Potential S. cerevisiae MAL-activator and MIG1 binding 
sites in O. polymorpha have been discussed by Alamäe et al. (2003). It is also 
interesting that the promoter of the MAL1 gene of O. polymorpha is perfectly 
recognized in a prokaryote Escherichia coli (Alamäe et al., 2003). 
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Regulation of expression from the bidirectional MAL1-MAL2 promoter 
region of O. polymorpha was investigated in Ref I by using a single- and a two-
reporter test system. The MAL1-MAL2 bidirectional promoter was coordinately 
regulated by carbon sources in both directions: repressed by glucose and 
induced by maltose, while the basal expression was higher in the direction of 
the permease gene (Fig 4 in Ref I). It is reasonable, because the permease 
activity is first required to provide intracellular maltose that is needed for 
induction of the MAL genes (Ref II). Coordinated expression by carbon sources 
has been also described for S. cerevisiae MAL61-MAL62 bi-directional pro-
moter, except that for MAL61–MAL62 the basal expression was higher in the 
maltase direction (Bell et al., 1995; Levine et al., 1992). As S. cerevisiae strains 
usually have several MAL loci, they most probably have sufficiently high basal 
activity of maltose transport to ensure the MAL genes induction. It is also 
noteworthy that induction of the O. polymorpha bidirectional MAL1-MAL2 
promoter is stronger in the maltase direction (Table 4 in Ref II) and induced 
strength of the MAL1 promoter (induced by maltose or sucrose) constitutes up 
to 70% of that of the MOX promoter (Alamäe et al., 2003). This knowledge can 
be used in biotechnological applications. The MAL1 promoter has already been 
successfully used to overexpress and purify a biotechnologically relevant 
levansucrase protein from E. coli (Visnapuu et al., 2008). 

When testing the O. polymorpha MAL2 permease functionality in a S. cere-
visiae permease-negative mutant, no growth complementation on maltose was 
seen when the MAL2 was expressed from its own promoter (Table 2 in Ref I). 
Maltose growth appeared only after replacement of the native promoter with 
that of the S. cerevisiae maltose permease gene (Table 2 in Ref I). Thus, the 
MAL1-MAL2 promoter of O. polymorpha is functional in S. cerevisiae only in 
the direction of the maltase gene. Potential MAL-activator and MIG1 repressor 
binding sites were searched from the MAL2 promoter region. In S. cerevisiae 
the consensus sequence for MAL-activator binding is proposed to be 
CGG/CN9CGG/C where N9 region is AT-rich (Gancedo, 1998). As matching 
binding sites were not found in O. polymorpha MAL2 promoter region (un-
published data), it allows to conclude that S. cerevisiae MAL-activator most 
probably cannot bind the MAL2 promoter and induce the transcription from the 
MAL2 gene. 

In Ref II the regulation of the MAL-activator 1 promoter was also assayed. 
The intergenic region between the MAL2 and putative MAL-activator 1 gene is 
AT-rich and rather short (238 bp) (Ref I). The reporter gene assay showed that 
expression from that promoter region was regulated similarly to MAL1-MAL2 
promoter: induced by maltose and sucrose, repressed by glucose and dere-
pressed during glycerol growth (Table 4 in Ref II). Therefore, the MAL-
activator 1 gene may encode a functional regulator.  

The signal for glucose repression is mediated by hexokinases in S. cere-
visiae, with the main role of hexokinase PII (HXK2) (see subchapter 1.6.1 for 
review). O. polymorpha has two hexose kinases: a hexokinase phosphorylating 
both glucose and fructose, and a glucose-specific glucokinase (Kramarenko et 
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al., 2000). It has been shown in S. cerevisiae that hexokinase-negative mutants 
lack glucose repression (Moreno and Herrero, 2002; Zimmermann and Scheel, 
1977). In contrast to S. cerevisiae, hexokinase has no specific role in glucose 
repression in O. polymorpha – the absence of both glucose phosphorylating 
enzymes is required to abolish glucose repression. In hexokinase-negative 
mutants only fructose repression is lost whereas glucose repression is retained 
(Kramarenko et al., 2000). Study of hexose kinase mutants of O. polymorpha 
showed that monosaccharides glucose and fructose repressed the MAL1 pro-
moter only if these monosaccharides were phosphorylated by the cell, whereas 
if the cell could not phosphorylate these sugars, activation of the MAL1 
promoter was observed (Table 4 and Fig 8 in Ref III). For example, if a double 
kinase-negative mutant of O. polymorpha (has no glucose phosphorylating 
enzymes and cannot grow on glucose) was cultivated on glycerol in the 
presence of glucose, a high maltase activity was recorded in the cells (Fig 8 in 
Ref III). This phenomenon allowed to raise a hypothesis according to which 
phosphorylated glucose (glucose-6-phosphate, Glc6P) acts as a signalling 
metabolite for sugar repression in O. polymorpha (Fig 7) whereas glucose that 
stays unphosphorylated acts as an activator of MAL genes (Ref III). Hypothesis 
on Glc6P as a repressing metabolite is supported by the fact that 2-deoxy-D-
glucose (2DG; a glucose analogue) also causes glucose repression even though 
not metabolized further the phosphorylation step (Ref III).  

The proposed scheme of regulation of the expression from MAL1-MAL2 
bidirectional promoter and the role of hexokinase and glucokinase proteins is 
shown in Figure 7.  

It is presumed that O. polymorpha senses by yet unknown mechanism intra-
cellular concentration of Glc6P and in response down-regulates the transcription 
from MAL1-MAL2 promoters (Ref III). In double kinase-negative mutants of 
O. polymorpha unphosphorylated glucose accumulates in the cell and activates 
the transcription of MAL1-MAL2 promoters which are trivially considered 
glucose-repressible (Fig 7; Ref III). Glc6P also signals for fructose repression as 
the Fru6P will be isomerized to Glc6P after phosphorylation by hexokinase (Ref 
III). Considering this hypothesis, growth of yeasts on disaccharides is compli-
cated and metabolism must be well balanced – intracellular hydrolysis products 
of disaccharides cause initial derepression of MAL genes, but later on may cause 
MAL promoter repression if phosphorylated glucose accumulates. It has been 
shown for S. cerevisiae that if transport, intracellular hydrolysis and further 
catabolism of hydrolysis products is not balanced, the cells lyse due to 
accumulation of a toxic amount of sugar in the cell (Henderson and Poolman, 
2017). Involvement of two potential MAL-activators of O. polymorpha in 
regulation disaccharides utilization still needs to be investigated. 
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Figure 7. A hypothetical scheme of regulation of sugar metabolism via hexose kinases 
in O. polymorpha. Modified from Figure 5 in Ref III. 
 
 
3.4. Substrate specificity of O. polymorpha maltase protein 

and its similarity to a hypothetical ancestor of yeast 
maltases and isomaltases (Ref IV) 

Disruption of MAL1 in the O. polymorpha genome and further complementation 
with a MAL1 gene on a plasmid confirmed that MAL1 is responsible for the 
utilization of maltose and sucrose in this yeast (Alamäe et al., 2003; Liiv et al., 
2001). Substrate specificity assay of the MAL1 protein in crude extract of 
E. coli expressing the MAL1 showed that it can also hydrolyze α-MG  
(α-methylglucoside) but cannot hydrolyze trehalose, melibiose and cellobiose 
concluding that MAL1 is active on α-1,4 (as in maltose) and α-1,2 (as in 
sucrose) glycosidic linkages (Liiv et al., 2001). So, quite interestingly, O. poly-
morpha MAL1 can hydrolyze both maltose-like (maltose and sucrose) and 
isomaltose-like (α-MG) substrates. In Ref IV the substrate specificity of MAL1 
was investigated in more detail and it was shown that it could hydrolyze the 
following maltose-like substrates with affinities decreasing in the order: 
maltulose, maltotriose, sucrose, turanose, maltose and melezitose (Table 2 in 
Ref IV). From isomaltose-like substrates palatinose was the most suitable 
substrate, followed by isomaltose and α-MG (Table 2 in Ref IV). It was also 
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showed that MAL1 hydrolyzed also fructooligosaccharides (FOS) 1-kestose and 
6-kestose, this property has not been shown before for α-glucosidases (Fig 2 in 
Ref IV). Respective products inulo- and levanbiose are short fructooligo-
saccharides which act as prebiotics for beneficial gut bacteria (Adamberg et al., 
2014; Visnapuu et al., 2015). Trisaccharides melezitose and panose are also 
substrates for MAL1, the preferred linkage type is α-1,3 and α-1,6 respectively 
over α-1,2 linkage (Ref IV; for monomeric composition of α-glucosidic sugars 
and linkages see Figure 1). Phylogenetic analysis of α-glucosidase sequences 
shows that MAL1 of O. polymorpha clusters together with maltase proteins 
from S. stipitis, L. elongisporus, C. albicans and D. hansenii (Figure 6 in Ref 
IV). From those yeasts maltase has been characterized only from C. albicans 
and it hydrolyses maltose, sucrose (maltose-like substrates) and α-MG (an 
isomaltose-like substrate), but not isomaltose (Geber et al., 1992; Table 2).  
α-Glucosidase from Torulaspora pretoriensis (phylogenetically close to S. cere-
visiae) can use PNPG, maltotriose, isomaltose, α-MG, sucrose and maltose 
(Oda et al., 1993; Table 2). It was not possible to analyze the substrate 
specificity-related amino acids of the T. pretoriensis α-glucosidase as respective 
protein sequence is not available. α-Glucosidases have been also studied in 
phylogenetically „old“ yeast S. pombe. The intracellular MAL1 of S. pombe 
hydrolyzes PNPG, maltose, sucrose and also dextrin and soluble starch (Chi et 
al., 2008; Table 2). In addition, S. pombe has extracellular maltase AGL1 which 
is specific for maltose and does not hydrolyze maltose-like sugars maltotriose 
and turanose (Jansen et al., 2006; Table 2). 

Malt extract and IMOs were also tested as substrates for O. polymorpha 
MAL1 and it can be concluded that the DP4 oligosaccharide is the longest 
substrate for MAL1 (Fig 2 in Ref IV). From this aspect, MAL1 is different from 
some other yeast α-glucosidases/maltases. For example, the S. pombe extra-
cellular α-glucosidase uses maltooligosaccharides with size up to maltoheptaose 
(Okuyama et al., 2005). Bacterial α-glucosidases also hydrolyze longer oligo-
saccharides (up to maltoheptaose) and also polysaccharides starch and dextrin in 
some cases (Table 3). In older publications, the O. polymorpha MAL1 has been 
defined as a maltase, but according to the substrate specificity it should be 
rather considered as maltase-isomaltase.  

It was also shown that glucose released from maltose and maltotriose has 
inhibitory effect on the enzyme (Table 3 in Ref IV). As in living yeast cells 
glucose released from di- and trisaccharides will be further metabolized in the 
glycolysis, the in vivo inhibitory effect of glucose is probably lower than that 
recorded in vitro.  

Substrate specificity of the MAL1 and MAL2 proteins can be illustrated by a 
simple growth ability assay (Table 5).  
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Table 5. Growth of wild-type (wt) O. polymorpha and mutants with deleted maltase-
isomaltase (ΔMAL1) or α-glucoside permease genes (ΔMAL2) on solid medium 
supplemented with different α-glucosidic substrates. Table is modified from Table 4 in 
Ref IV. Maltose-like substrates are on pink backround and isomaltose-like substrates on 
green backround. 

 
The data on growth confirmed that wild-type O. polymorpha does not grow on 
α-MG. Reason for this is unclear as the MAL1 protein hydrolyzes α-MG and 
MAL2 is able to transport this substrate. Both proteins, MAL1 and MAL2, are 
required for growth on maltose, sucrose, turanose, maltotriose, maltulose, 
melezitose, isomaltose, palatinose and isomaltooligosaccharides (Table 4 in Ref 
IV). Only α-glucoside permease is needed for growth on trehalose as this 
substrate is hydrolyzed in the cell by a trehalase and not by MAL1 (Liiv et al., 
2001; Ref II). 

As described in subchapter 1.5, S. cerevisiae maltases use maltose, maltulose, 
turanose and maltotriose, isomaltases use isomaltose, α-MG and palatinose, and 
both use sucrose (see also substrate specificity pattern in Fig 8). Voordeckers et 
al. (2012) raised a hypothesis that modern maltases and isomaltases as those 
present in S. cerevisiae have evolved from a common promiscuous ancestor.  

 Substrate Monomers/linkage 
O. polymorpha 

wt ΔMAL1 ΔMAL2 

Maltose + – – 

Sucrose + – – 

Turanose + – – 

Maltotriose + – – 

Maltulose + – – 

Melezitose + – – 

Trehalose + + – 

α-MG – – – 

Isomaltose + – – 

Palatinose  + – – 

Isomaltooligo-
saccharides 

+ – – 

Glc CH3

α(1- )6Glc Glc
n

α(1-4)Glc Glc

α(1- )4Glc Fru

α(1-3) β(2-1)Glc GlcFru

α(1- )6Glc Fru

α(1-2)Glc Fru

α(1- )1Glc Glc

α(1- )3Glc Fru

α(1-4) α(1-4)Glc Glc Glc

α(1- )6Glc Glc
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Comparison of the amino acids bordering the active site pocket of α-gluco-
sides from different yeasts showed that maltases have a Thr and isomaltases 
have a Val at the position corresponding to Val216 in S. cerevisiae isomaltase 
IMA1 (Voordeckers et al., 2012; Table 4). If Val216 was replaced with a Thr in 
IMA1, the enzyme gained the ability to hydrolyze maltose (Yamamoto et al., 
2004). The O. polymorpha MAL1 has a Thr at respective position and 
substitution of Thr200 with a Val in MAL1 reduced the hydrolysis of maltose-
like substrates by the enzyme significantly. Thus, the mutant enzyme became 
more similar to isomaltases (Fig 8).  

 
Figure 8. Catalytic efficiencies, kcat/Km (mM/min) of Op maltase-isomaltase MAL1, 
ancient maltase ancMALS (G279), maltase of Lodderomyces elongisporus (Le), maltase 
MAL12 of S. cerevisiae (Sc), isomaltase IMA1 of Sc and the T200V mutant of the Op 
MAL1 (Fig 3 in Ref IV). Data on other proteins, except for the Op MAL1 and its 
mutant, are taken from Voordeckers et al. (2012). Signature amino acid sequence (see 
Figure 3 in Ref IV and Table 4 of current theses) is presented with the residue 
corresponding to V216 (Val216) of Sc IMA1, shown in red. 
 
A catalytically inactive mutant Asp199Ala (D199A) of MAL1 was constructed 
and differential scanning fluorimetry (DSF) was performed to evaluate binding 
of α-glucosides and some selected monosaccharides as ligands to the enzyme 
(Fig 5 in Ref IV). DSF showed that a trisaccharide maltotriose increased the 
thermostability of the Asp199Ala protein most significantly suggesting that it 
binds most strongly to the protein and that substrate binding pocket of MAL1 
most probably has two plus-subsites for substrate binding (see also Fig 1 in Ref 
IV). Three monosaccharide binding subsites have been also shown for the 
S. cerevisiae maltase protein (Yao et al., 2003). 

Intriguingly, considering the substrate range and the signature amino acids of 
the substrate-binding pocket, the OpMAL1 protein is highly similar to 
ancMALS – a resurrected hypothetical ancestor of Saccharomyces maltases and 
isomaltases (Fig 3 in Ref IV). Even though Voordeckers et al. (2012) claimed 
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that both maltase and isomaltase activities cannot be fully optimized in a single 
ancestral enzyme, it was shown that MAL1 is a good example of a promiscuous 
enzyme with perfect catalytic ability to hydrolyze a wide range of substrates.  

Gabriško has analyzed putative α-glucosidase proteins from yeasts and sug-
gested that (i) a common ancestor of the Ascomycota had two α-glucosidase 
genes, (ii) in the subphylum Saccharomycotina the gene coding for isomaltase 
was lost during the evolution and the gene coding for maltase had further 
lineage-specific duplication (Gabriško, 2013). Gabriško (2013) suggested that 
in Saccharomycotina evolution, isomaltase-type specificity of α-glucosidases 
evolved independently and repeatedly in distinct lineages. Brown et al. (2010) 
studied the evolution of subtelomeric gene families in yeasts focusing on MAL 
gene families and suggested that the common ancestor of yeasts had only few 
MAL genes which have completely disappeared in some yeast lineages whereas 
in the others multiple recent duplication events occurred. With regard to early 
ancestry of fungal α-glucosidases, phylogenetic analysis has shown that the  
α-glucosidase mal1 of an “ancient” yeast S. pombe shares similarity with  
α-glucosidases of Bacillus bacteria (see Table 4 for signature amino acids) 
referring that yeast maltases may have bacterial ancestry. Gabriško (2013) has 
also hypothesized that fungal α-glucosidases may originate from bacterial 
ancestors.  
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CONCLUSIONS 

The main results of this work are summarized as follows: 
1. MAL genes are genomically clustered in O. polymorpha similarly to S. cere-

visiae, but the cluster is not subtelomeric. O. polymorpha has a single geno-
mic MAL cluster that consists of four genes coding for maltase (maltase-
isomaltase), maltose (α-glucoside) permease and two putative MAL-
activators. MAL1 and MAL2 genes are indispensable for utilization of α-
glucosidic sugars by O. polymorpha. Functionality and role of two putative 
MAL-activators still have to be proven. 

2. The MAL2 transporter of O. polymorpha is a proton symporter with pH 
optimum of 5.0. The MAL2 permease is responsible for the transport of 
maltose, sucrose, trehalose, turanose, maltotriose, maltulose, melezitose, iso-
maltose, palatinose and isomaltooligosaccharides. 

3. The MAL1 protein hydrolyzes maltose-like substrates maltulose, malto-
triose, sucrose, turanose, maltose and melezitose and isomaltose-like sub-
strates palatinose, isomaltose and α-methylglucoside. The MAL1 hydrolyzes 
also fructooligosaccharides 1-kestose and 6-kestose and a trisaccharide 
panose. Maltotetraose is the longest oligosaccharide hydrolyzed by MAL1.  

4. O. polymorpha MAL1 has a Thr at the key position determining binding of 
α-glucosidic sugars. Substitution of Thr200 with Val reduces the hydrolysis 
of maltose-like substrates significantly, making the MAL1 enzyme more 
similar to isomaltases. Differential scanning fluorimetry (DSF) performed 
with catalytically inactive mutant Asp199Ala of MAL1 showed that a 
trisaccharide maltotriose increases the thermostability of the Asp199Ala 
protein most significantly suggesting that substrate binding pocket of MAL1 
has two plus-subsites.  

5. The MAL1 has a wide-substrate specificity similar to the promiscuous 
ancestor of maltases and isomaltases predicted by Voordeckers et al. (2012). 
O. polymorpha MAL1 has been defined as a maltase (Liiv et al., 2001), but 
according to currently revealed substrate specificity it should be considered 
as maltase-isomaltase.  

6. The MAL1-MAL2 bidirectional promoter is coordinately regulated in both 
directions: repressed by glucose and induced by maltose, while the basal 
expression is higher in the direction of the permease gene. Induction of the 
bidirectional MAL1-MAL2 promoter is stronger in the maltase direction. The 
promoter of MAL-activator 1 gene is regulated the same way as MAL1-
MAL2 promoter: induced by maltose and sucrose, repressed by glucose and 
derepressed during glycerol and trehalose growth. It can be suggested that 
the gene encodes a functional regulator.  

7. Monosaccharides glucose and fructose repress the MAL1 promoter only if 
phosphorylated in the cell, whereas unphosphorylated monosaccharides acti-
vate expression from the MAL1 promoter. It can be proposed that glucose-6-
phosphate is a sugar repression signalling metabolite for O. polymorpha.  
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SUMMARY IN ESTONIAN 

α-glükosiidsete suhkrute kasutamine pärmil Ogataea (Hansenula) 
polymorpha 

Suhkrud on looduses laialt levinud ning paljudele mikroorganismidele eelis-
tatuim energiaallikas. Suhkrute transporti ning rakusisest kasutamist on põhja-
likult uuritud pagaripärmis Saccharomyces cerevisiae tema laialdase kasutuse 
tõttu pagaritööstuses, alkohoolsete jookide kääritamisel ning ka bioetanooli 
tootmisel. Õllevirde põhilise komponendi maltoosi (kahest glükoosi molekulist 
koosnev α-1,4 sidemega seotud disahhariid) kasutamises osalevaid geene nime-
tatakse MAL-geenideks ning need paiknevad pagaripärmil MAL-lookuses. 
Pagaripärmi MAL-lookustes on reeglina klasterdunud kolm geeni, mis kodeeri-
vad maltaasi, maltoosi transporterit ning nende geenide aktivaatorit. Need 
lookused paiknevad genoomis telomeeride lähedal ning pärmil on vaja vähemalt 
ühte lookust, et maltoosi kasutada.  

Tiina Alamäe töögrupis on uuritud suhkrute kasutamist metülotroofsel pärmil 
Ogataea (Hansenula) polymorpha juba aastast 1998. Metülotroofsed pärmid on 
pärmide hulgas erandlikud võime poolest kasvada ühesüsinikulisel inimesele 
väga mürgisel alkoholil – metanoolil. Seetõttu on metülotroofsetes pärmides 
peamiselt uuritud metanooli metabolismiks vajalike spetsiaalsete organellide – 
peroksisoomide – biogeneesi ning ka tugevaid metanooliga indutseeritavaid 
promootoreid, mida saab kasutada biotehnoloogias võõrvalkude tootmiseks. Kuna 
O. polymorpha suudab kasvada ka disahhariididel, näiteks maltoosil ja sahha-
roosil, saab teda kasutada ka disahhariidide metabolismi geenide, valkude ja 
regulatsiooni uurimiseks. See annab hea võimaluse võrrelda disahhariidide 
kasutamist ja selle regulatsiooni pagaripärmil ja temast evolutsiooniliselt palju 
‘vanemal’ pärmil O. polymorpha.  

Käesoleva töö eesmärgiks oli iseloomustada disahhariidide kasutamiseks 
vajalikke geene ja valke pärmil O. polymorpha. Valkudest oli põhitähelepanu 
suunatud α-glükosiidide transporterile MAL2 ja maltaas-isomaltaasile MAL1.  

O. polymorpha genoomse DNA sekveneerimine näitas, et MAL1 geenil on ‘ 
head naabrid’– tema kõrval paikneb α-glükosiidide transporteri geen MAL2 ning 
kaks hüpoteetilist MAL-aktivaatorgeeni. Seega paiknevad O. polymorpha MAL-
geenid genoomse klastrina nagu pagaripärmilgi, erinev on vaid MAL-aktivaator 
geenide arv (1 vs 2) ja MAL-aktivaator 1 geeni suund. Erinevalt pagaripärmist ei 
paikne O. polymorpha MAL-lookus subtelomeerselt. Lookuses paiknevatest 
geenidest tõestasin funktsiooni MAL1 ja MAL2 geenidel ning iseloomustasin 
vastavaid valke, kuid oletatavate MAL-aktivaator geenide funktsioon vajab veel 
tõestamist. 

Maltaasi MAL1 substraadispetsiifilisuse uurimine näitas, et see ensüüm ei 
ole tüüpiline maltaas ega ka isomaltaas, sest on võimeline hüdrolüüsima väga 
paljusid erinevaid α-glükosiidseid suhkruid: maltoosi, maltuloosi, maltotrioosi, 
sahharoosi, turanoosi ja meletsitoosi (maltoosi-tüüpi suhkrud) ning palatinoosi, 
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isomaltoosi ja α-metüülglükosiidi (isomaltoosi-tüüpi suhkrud). Seetõttu oleks 
tema korrektne nimetus maltaas-isomaltaas. Oma substraadivaliku poolest on 
O. polymorpha MAL1 valk väga sarnane tänapäevaste pagaripärmis leiduvate 
maltaaside ja isomaltaaside hüpoteetilise eellasega – nn ‘ürgmaltaasiga’, mis oli 
Voordeckers’i jt. (2012) hüpoteesi kohaselt vähevaliv. Seega võiks O. poly-
morpha maltaas-isomaltaasi pidada ürgse valgu tänapäevaseks esindajaks ja 
sellise valgu olemasolu pagaripärmist evolutsiooniliselt ‘vanemal’ pärmil 
O. polymorpha toetab maltaaside ja isomaltaaside evolutsioneerumist vähevali-
kulisest eellasest.  

Uurisin O. polymorpha MAL1 valgu substraadivalikut ka mutatsioonanalüü-
siga. S. cerevisiae maltaasid ja isomaltaasid erinevad substraadi sidumistasku 
ümbruses paiknevate aminohapete poolest. Pärmide maltaasidest ja isomal-
taasidest on kristallstruktuur lahendatud pagaripärmi isomaltaasil 1 (IMA1), 
mille valgu 216. positsioonis on valiin (Val). Maltaasidel on vastavas posit-
sioonis treoniin (Thr). Näitasin, et O. polymorpha MAL1 mutant Thr200Val 
hüdrolüüsib maltoosi-tüüpi substraate oluliselt kehvemini kui metsiktüüpi 
MAL1, muutudes seega isomaltaasile sarnasemaks.  

O. polymorpha α-glükosiidide permeaas MAL2 on kõrge afiinsusega 
prootonsümporter. Nii nagu MAL1 valku, iseloomustab ka MAL2 transporterit 
väga lai substraadivalik. MAL2 geeni katkestamine genoomis tõestas, et see 
transporter on vajalik maltoosi, sahharoosi, trehaloosi, turanoosi, maltotrioosi, 
maltuloosi, meletsitoosi, isomaltoosi, palatinoosi ja isomaltooligosahhariidide 
transpordiks.  

O. polymorpha MAL1 ja MAL2 geenidel on ühine kahesuunaline promootor-
ala, millelt ekspressioon on mõlema geeni suunas koordineeritult indutseeritud 
maltoosi ja sahharoosiga ning represseeritud glükoosiga. Induktsioon on tuge-
vam MAL1 suunal ning basaalne ekspressioon on tugevam permeaasi geeni 
MAL2 suunas. O. polymorpha mutantide uurimisel selgus, et MAL1 promootori 
represseerimiseks glükoosiga on vajalik glükoosi fosforüülimine rakus. Samas 
on fosforüülimata glükoos võimeline aktiveerima promootori ekspressiooni, mis 
on väga üllatav tulemus. Püstitasin hüpoteesi, mille kohaselt toimib repres-
seeriva signaalina glükoos-6-fosfaat.  

O. polymorpha maltaas-isomaltaasi saaks kasutada valkude evolutsiooni 
uurimisel mudelina – muteerides teda võiks temast konstrueerida kitsa sub-
straadivalikuga ensüüme, mis on sarnased pagaripärmi maltaasidele ja isomal-
taasidele. Kahesuunaline MAL1-MAL2 promootorala võimaldab samaaegselt ja 
koordineeritult ekspresseerida kahte erinevat geeni või siis ühe ja sama geeni 
kahte koopiat. Viimane variant peaks suurendama sünteesitava valgu hulka. 
Kuna O. polymorpha MAL1 geeni promootor on äratuntav ka soolekepikeses 
E. coli, on seda juba edukalt kasutatud biotehnoloogilise potentsiaaliga võõr-
valgu levaansukraasi ekspresseerimisel ja puhastamisel sellest bakterist.  
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