UNIVERSITY OF TARTU

Faculty of Mathematics and Computer Science
Institute of Computer Science
Specialty of Information Technology

Dmitri Borissenko

Integrative Graph File Systems

Master Thesis (30 ECP)

Supervisor: Ulrich Norbisrath

Author: P “ June 2011
SUPEIVISOI: ..\ttt e Y “ June 2011

Allow to Defense:

Professor T “June 2011

TARTU 2011

Contents

EL2'51 Existing featired 11

Analvsis of opiniond 13

3 _FUSH 16

3.3 How does it work? 18
3.4 Ticensing issued 20

42

44

45

Acknowledgments

There are some people I would like to thank for their help in writing this thesis.
First of all, I would like to thank my supervisor Ulrich Norbisrath. He offered many
ideas about the thesis and helped me a great deal with many things, starting with
Python and Linux basics and finishing with conflicts around the conceptual ideas of
the thesis. I had many interesting discussions with Ulrich regarding the elicitation
of requirements and solving some inconsistencies with work concepts. I would also
like to thank Dmitri Danilov for the explanations about his work (Grapth3D) and for
qualified help with integration. Also, I would like to thank my parents, Lidia and
Aleksey Borissenko, who gave me the required mental support. A special thanks to
Artjom Lind, who showed me some tricks in Linux.

Chapter 1

Introduction

This chapter introduces the thesis and explains the motivations behind it with the
help of a sample scenario. Also, required knowledge and prerequisites are provided. A
short definition of the main goals for the future will be given here as well.

1.1 Motivation

The motivation of the current thesis is information overload. Each person has his or her
own unique collection of files: movies, various writings, presentations, images, photos,
audio files, blueprints, letters, etc. After a given period of time the amount of data
usually increases, and a simple operation could take much longer than expected. At the
moment it is difficult to sort knowledge and make sense of it without technology. The
huge variety of documentation covers many different subjects, and a single person can
become quite disoriented. Many pieces of information can cover the same idea, with
its unique deviation from the truth and errors inside. With the Internet, the ability of
society to navigate and organize through this mess has been increased multiple times.
Hypertext permits us to represent the information in a more natural way: the unified
web of knowledge sources.

Our memory works through associations — and this is the primary key in organizing
“semantic nets”. Modern navigation and search systems allow for different methods
of sorting information. Take the company Google, for example. They constructed
a search engine[7] which has assumed the lead position on the Web for a long time
of time. Grouping information by search type criteria allowed unnecessary pages to
be separated from desired ones. A ranking system for sites yields significantly better
results for a specific search. The main principle is pretty simple: the more attractive
and popular a web-site is, the more ranking points and better index position it has in
the global top. This is quite a simple and effective principle for qualifying information.
Additional features of the Google search engine are search options. There are additional
capacities for searching images, articles, mail, blogs, sites, and photos. Even a shopping
engine is available. It is a significant advantage that people are able to qualify from
the beginning the data they seek, and get back sorted and filtered results. The Google
example proves the necessity and importance of the procedure of information pre-
processing. If one company is able to earn good money by analyzing and sorting open
data sources, perhaps it is a signal for other (not Web) domains to do something similar.
For instance, public shared service of user space (e.g. the university), or even simple
home data collection (such as photos, music, text-documents, etc.).

In order to better understand the priority and significance of the problem, lets clas-
sify by groups the typical structures of user’s data organization methods, starting with
the user at home. It could be not necessarily limited to a single computer (however,
this is a major case in this group), but may be a small home-made network with a
couple of interconnected machines acting as a single system. User data is stored on 2-3
local PCs and united into a single private home network. It is traditional to classify
information in such systems using files and folders. So, the final user interacts only
with hierarchical data structure. Going to the upper level, the next group could be the
small business network of a small company or organization. Financial limitations do
not allow them to significantly upgrade the maintenance of inner data by developing
individual solutions. Therefore, the only solution is using existing ones (folders -+ files),
which means again storing, classifying and interacting with information mostly in the
hierarchical structure. The last group is composed of large-scale organizations, com-
munities and companies. The means of data organization could vary here appreciably,
starting from the small databases and interfaces for data access and finishing with the
large complex mash-ups[I3]. Most classifications and ways of organizing information
imply some work-specific interfaces. So, the third group can take care of its data rep-
resentation efficiency, the second one - slightly, while the first one actually has no such
opportunity.

Coming back to the data organization efficiency problem, it might be useful to
analyze the current state of the first and second groups mentioned in the previous
paragraph. So, in most cases, people organize their data with folders and files inside.
This means that the efficiency of data organizing could be optimized here. What are
“file” and “folder” actually? From a low-level perspective both of these types are quite
similar, except that the folder provides information about the files “inside” and the file
holds content itself. Earlier versions of hierarchical file systems (HFS) used flat table
structures[I0]. Then these structures were replaced with the Catalog File, which uses
a B-tree structure allowing for much faster searching. Currently, it is normal to see
something like files listed in some folder, ordered by time of creation or name.

1.2 Sample scenario

Now let us consider the following scenario as an example:

Suppose that Ted is a Senior Researcher at the university. He also received a
position as lecturer, which adds the responsibility of four active courses, and each
course assumes two lectures per week plus two practical lessons. Each course contains
20-50 students (at the end of the semester the total number of active students usually
decreases). Each semester lasts 16 weeks and this usually means that on at least 14
occasions there is a need to do special preparations (like updating old files, demos,
and presentations). Usually, preparatory operations take a lot of time and about
30% is spent searching for similar materials from previous years. Additionally, Ted
receives at least 50 e-mails per day, and every 10th e-mail is some student’s homework
solution. Since each year brings more new content, Ted wants to improve the efficiency
of interacting with his data.

Problem # 1. So, what Ted usually does is continuously sorting and updating
content. To do so, he splits data into separate categories: homework — all files from
students; teaching — all related content (such as slides, images, demos); personal —

7

private files; research — some test results and sample prototypes of software. There are
a lot of wide-spread file collections in a data tree, so sometimes it is very problematic
for Ted to find a specific file, especially in the case of an old file (Ted tends to forget
old file names).

Problem # 2. It is often not enough to physically put data into separate directo-
ries. For example, some brilliantly done homework, which Ted uses as lecture material.
In order to avoid file duplications, he creates links. However, when a particular file
becomes obsolete, it takes a lot of time and effort to delete it completely. When Ted
uses hard links, files remain in other locations (where the hard links were created).
When using soft links, many broken links remain somewhere in a data tree. In the case
of moving a target file to another location, the broken links problem is actual as well.

Problem # 3. After a few years of research work, Ted opens the “research”

category and notes that approximately half of these files (on different levels of the
data tree) can also be logically organized into three new subcategories: “prototypes”,
“utilities” and “manuals”. However, it is currently impossible to do so, because current
logical categorizations (by project) will be broken. In case of using links, Ted will be
required to create hundreds of links, since these files are wide spread in the hierarchy.

1.3 Bidirectional linking.

The main problems of the scenario described in the previous section can be easily
covered with one of Ted Nelson’s ideas |?| about the Internet model, which assumes
the presence of bidirectional relationships (bidirectional linking) between two objects.
The idea is simple: if one object points to another one, then it has to receive a kind
of confirmation or approval and only then such a reference will be legal. The Petri
Nets [?]| diagram [[LT] captures the possible states of three operations with links (link,
unlink and remove a target) between A and B locations. These locations can be
interpreted as some abstract points in any graph structure based system (e.g. two
files in file systems or two web-pages). Bidirectional linking assumes parallel editing
on both points, which causes many problems (such as synchronization, host
reachability and network delays) if the destination point is located somewhere in the
network. But, in general, if we deal exclusively with our own user space , then
bidirectional linking becomes more actual, since most of our troubles (like starting a
particular server on time, granting required access rights to a shared file) could be
solved personally by a user.

It might be reasonable, before creating something more global and big, to make sure,
that such systems with bidirectional linking can exist. One possible solution was
found in the face of the FUSE platform|[?](see chapter Bl for more details). It provides
an extension platform for a variety of operating systems (OS) and allows for custom
implementations of some basic file system utilities, such as rename, delete, create
file/directory, link, unlink and others (see official documentation for complete list).
The first tries showed that such systems could exist on a small scale. More serious
approaches require more work-hours and more technologically advanced solutions.

remove A

®
/ (1B->A)?
| B-=A
A incoming B-=A B outcoming
®
A locatio B lofation
A outcormning B incoming
®

(1A->B)?

remove B

A -> B: target A points to B

' B -> A: target B removes pointer to A

A incoming: references to A from other targets
A outcoming: all A pointers to other targets

Figure 1.1: sample bidirectional linking

Prerequisites

To better understand this thesis, knowledge about the following is recommended:

[optional| Python[I5]. The source code is implemented purely in Python. FUSE
implementation is also in Python, but the original version of it can be found in
C+-+ language[2]. Thus, this knowledge could possibly provide some answers to
the technical questions.

e Graph structures|8] concept. The main work is done in graph structures. This is
required for the ability to understand the work features.

e In the current work some file systems utilities will be mentioned. Reader should
have a little hands-on experience with different types of file systems.

e [optional| Python supporting IDH] (e.g. Eclipse[d]). It is more likely for the
source code to be viewed through a special interface (not just open the code as
a text file). This will significantly increase the speed of navigating through the
code, reading and compiling ability.

e Petri Nets. Some of examples are explained through the Petri Nets diagrams.

Goals

The main goals of this work are to prove the possibility of the existence of an integrative
file system with bidirectional linking, and to demonstrate the advantages of such a
feature. Integration means the possibility to use such a file system with the standard
file operation and exploration tools available in current operating systems.

Outline

The thesis is organized as follows. Each chapter has a brief introduction of its content.
The first chapter introduces the thesis and explains the motivations behind it. As an
example, a possible scenario is provided. The key feature of the work “bidirectional
linking” is briefly introduced. Also, a list with the requisite knowledge is provided
along with the main goals of the work. The second and third chapters are mostly
about related work. In these chapters, an analysis of existing tools is provided. Also
some of the initial opinions of experienced people are discussed. Finally, the file system
in user space will be described as a part of related work. The fourth chapter covers the
requirements related issues. The fifth and final chapter gives a detailed explanation
about the implemented file system, its possible disadvantages and advantages, tests
and future works.

'IDE - integrated development environment.

10

Chapter 2

Related work

In this chapter, related works are described. First of all, the existing features are
analyzed using examples. This is followed by an analysis of some discussions by people
regarding problems that will be performed. Finally, an introduction to tagging is

covered.

2.1 Existing features

So, what features/utilities are available now and do they cover actual needs? It was
already mentioned at the end of the previous paragraph that files can be sorted by
properties. Lets take a closer look at the Unix command [23] command “Is”[22] as an
example. In listing 2.T] the fragment of “Is -1” output is provided with several properties

of files. These properties are:

1.
2.
3.

File type

Permissions

Number of hard links (we will cover hard links later)

4. Owner

© N

Group
Size
Date

File name

>ls —1 Pictures

—Trw—r—r— 1
drwxr—xr—x 2
—rw—r—r— 1
—rw—r—r— 1
—Trw—r—r— 1
—Trw—r—r— 1
—Trw—r—r— 1

user
user
user
user
user
user
user

user
user
user
user
user
user
user

125
4096
871
9359
104801
105017
14508

2010—-11-13
2011-03-06
2010-11-13
2010-11-13
2010—-11-13
2010—-11-13
2010-09-19

11

03:
19:
04:
03:
04:
04:
16:

Listing 2.1: Example of files sorting

48
35
36
46
39
38
03

alliance . gif
data

sample2 .png
sample . odg
Screen . jpg
Screen —1.png
tagging.odg

Current sample listing is ordered alphabetically by name (by default). The user also
can sort file lists by any given property, which in certain cases allows required files to
be found more quickly (e.g. if ~1000 files are in one directory or search recursively).
Also, the ability to applying multiple filter criteria is available. Combining standard
Unix tools such as “Is”, “cat”[20], “grep”|21] and others could provide nice search results.
But here the availability raises doubts: should all users be strong in Unix utilities? A
more intuitive and natural way of sorting data is provided by visual explorers. The
user still can sort files using different parameters, but with serious limitations (e.g. it
is impossible to temporarily hide some types from the output list). This results in time
delays in the case of long file lists. File searching in visual explorers is also limited and
usually works much slower than command line utilities.

Another tricky and efficient feature is linking[12]. The word “link” itself assumes
some reference or pointer to some data . With the link feature, the user is able to
create relatively more complex data organizations. It is an effective and simple way to
save some space and synchronize the data, because the user does not have to copy the
same files into multiple places. It is enough to store one file in a certain location and
make references from the others. Several types of links exist in HFSs, depending on
the platform. It is used to divide these types into two major categories: hard and soft
links.

A Hard Link[9] is a type of link which points to a file itself. Each target must
exist. The traditional Unix style of creating hard links implies setting the same inoddl
number to all references. A Hard link itself can also have a different name than its
target. So, in this case, no information is provided about the original name of the
target. Also, it is not possible to create a hard link for directories (only the root user is
allowed with an additional flag for safety) in most cases due to system restrictions (to
prevent recursive loops). Another problem with hard links is about sharing attributes
of the target, such as size (total directory size with a hard link is increased, as if there
would be a normal file inside).

A Symbolic Link[17] (also called soft link) is a type of link which points to a file
name. As with the hard links, this type can also have a different name that the target.
A soft link contains a relative or absolute path to the target and can also be pointed
towards directories. The OS and its utilities can determine the symbolic links and not
follow into recursion. A soft link covers most of what a hard link lacks, but in case a
target object is renamed /moved/deleted, it stops working because the path string does
not change.

Higher level utilities also exist, such as Google Desktop[6], Windows search (comes
with Vista or later versions of Windows), Spotlight and others (see some a list of desk-
top engines on http://en.wikipedia.org/wiki/List _of search engines). These desktop
utilities allow impressively fast searching to be performed through user space, and addi-
tionally provide some custom features. For example, one of Google Desktop’s features
is a sidebar. It allows one to view e-mail and news, and talk with other users through
Google Talk and view RSH feeds. With the Google Desktop Quick Find feature, users
do not have to specify the full name of target in the search-box, it is enough to provide
only a part of the name. This search engine is based on a continuous file indexing

Yinode - data structure in Uniz-like file systems that holds meta information about an object (such
as a file, directory)

2Chat for some Google services like email, http://www.google.com /talk/

3RSS - Really Simple Syndication, http://en.wikipedia.org/wiki/RSS

12

mechanism and can find the six most relevant results (by default) from the user’s local
disc. However, high-level utilities like Google Desktop are focused only on searching
and the results are shown within the bounds of current utility output. These utilities
also do not have a mechanism for the bidirectional relationship between objects, but
instead they provide a description of targets (which is only interpretable in the context
of the current utility).

One of the most relevant works by description is the Tagstore[19] project. Unfortu-
nately, there is no download link for source or binaries provided@. From the description
of Tagstore, it follows that it is an open-source project (however, the source as binaries
are hidden). The main feature of Tagstore is using so called “tag trees” (hierarchi-
cal tags) to navigate the user more effectively through his data tree. Due to missing
binaries or source code for testing, it is hard make a judgment about its disadvantages.

2.2 Analysis of opinions

This section presents the discussions and opinions of some people regarding data orga-
nization and the sorting problem[11]:

“Rich Kilmer:

What do you store in the namespace to allow applications to cross each others’
borders? An agreed-upon ontology is necessary to move beyond today’s mess.”

In other words, Rich Kilmer raised the problem which is illustrated in listing 2.2]
In most cases there are numerous file collections present in the user’s space.

/home/user
|—video
|——films
|-——wild wild west.avi
| -—music
|-——Aerosmith — I Don’t Wanna Miss A Thing (Armageddon). avi
|-—birthday . avi
|—-—party . avi
| -music
|——clips
|-——Aerosmith — T Don’t Wanna Miss A Thing (Armageddon). avi
|-—Aerosmith — Crazy .mp3

Listing 2.2: Simple types overlapping

Assume we want to add into our collection the file “Aerosmith - I Don’t Wanna Miss
A Thing (Armageddon).avi”. There are two possible locations that exist: “/home-
/user /video/music” and ¢ /home/user/music/clips”. How to determine which location
is actually suitable? It is possible to reorganize our structure by placing, for instance,
“ /home/user/music” into “ /home/user/video/music” since we have two identical fold-
ers. However, this solution is not very efficient, for at least two reasons: 1). we have
to think about logical reorganization 2). in ¢ /home/user/music” there is another file
type (.mp3) which is not related to the video directly. We can also leave the current
home-folder’s structure “as is” and put into the first location (video) a link, and into

4A demo version was requested from Tagstore support at the beginning of April 2011. However,
no response was received.

13

another location (music) the file itself. Corresponding to link type we have different
troubles. So, what else can be done? Here is an idea from Dominic Amann:

“Start with an efficient file systems that allows small files (such as ReiserFS). Then
add an OS browser/shell level extension that allows each folder to contain a special
object. This object is a viewer/file systems "plugin" that tells the shell/browser which
indezxes are available for the folder, and the shell/browser can decide how to display
them.

This would allow e-mail to be viewed by a variety of programs, and searchable/use-
able even by non-email apps because, for example, /var/spool/mail/dominic/ appears
to contain

./thread ./subject ./date ./to ./from ./keywords”

Dominic Amann proposed the idea of mixing multiple spaces, which will allow users
to work with their different data types across all programs. Each object (it could be
even little file structure) has a fixed meta-data about its location, type and special
type properties (regarding type). A new file system could significantly increase the
efficiency of a user’s different interaction activities with information (like simple file
searching). For example, a person looks for file F, which is actually located somewhere
in e-mails on server M1 (see listing 2.3)).

united FS
| —home directory
|—video
| —documents
|-mails
|—from server Ml
| | —...
|—from server M2
|—from: mail from Ted
|—to:
|—subject: hi pall
|-body: some content
|—attachments: important file (F)

Listing 2.3: Sample file systems view

Now there is no need to perform separate searches through M1 and M2 e-mail
servers and local hard disc, since all related data is indexed in the united file systems
and is reachable by the user while an Internet connection is up. Once an indexing
operation is performed, there is no need to keep an active connection constantly with
M1 and M2 mail servers (even an off-line search is available now). These file systems
could support some basic simple operation set like CRU. The only thing that might
be needed is data synchronization requests from time to time (deleted or new letters).
There is also no need to download files from the email account. Coming back to the
previous case in listing [2.2], it is now impossible to create a regular link to file in e-mail
space from the local storage and vice versa. Instead of traditional links in file systems,
URL can be used.

“Alezander G.M. Smith:

5CRUD abbreviation coming from words “create”, “read”, “update” and “delete”

14

The next step would be to make it (file systems) non-hierarchical. As mentioned
elsewhere you want to have relationships bidirectional between a phone number and the
person, so a cyclic graph structure of relationships would be needed. Of course, some
commands — like "ls -R" — would need to be improved to handle cyclic directories.”

Alexander talks here about earlier attempts of user space customization like shown
in figure [T The idea Alexander follows is breaking traditional hierarchy of some
standard file systems and replacing it with a cyclic graph structure instead, with bidi-
rectional relationships between two objects. It could provide an effective bonus in
navigation across multiple locations, so the user can always go back to the start point.
Of course, having such a cyclic graph structure assumes certain problems for the stan-
dard tools (e.g. mentioned "Is -R"). So, there is a need to make these standard utilities
behave more flexibly, according to a specific system of current space.

2.3 Introduction to Tagging

A Tag is a form of meta-data[l8]. It could be a single keyword (in some cases also a
short sentence), or an image, or a specific sound which is assigned to some part of the
information. This feature helps to describe an item by referring it to some special set of
items with similar properties. The name of a tag expresses the nature of tagged items.
Tagging allows searching performance to be increased significantly, thereby reducing
the total number of viewed elements (items).

Possible obstacles to the use of tags in searching engines are missing information
about the meaning of tags. Relatively similar sets of items could be tagged with
different tags. In a listing we described a similar problem regarding the relevance
of an item. Now, consider the case where instead of one directory “video” there are two
similar names: “movies” and “films”. Or the case when the user makes a grammatical
mistake (or uses singular and plural forms) which leads to the creation of a duplicate
tag. Both situations have the same problem: the semantics of all tags are equal and the
user can apply both tags. Mentioned obstacles also could lead to possible overloading
of tags and the effect of search speedup will disappear, because users have to search
through long list of tags beforehand.

Another similar problem with tagging is related to the individuality of the “tag
vendor”. Of course, the flexibility of tagging allows users to categorize their items
in any useful way they can find, but personalized terms can lead to inappropriate
relationships between items. This issue can be the reason behind inefficient searches
for information about a subject. For example, the tag IT can refer to information
technology, or income tax, or Internet television, or the time zone of Iran.

15

Chapter 3

FUSE

This chapter will continue with related work. It will introduce briefly the definition of
virtual file systems along with some examples. Then file systems in user space will be
introduced. The introduction part implies:

e platform integrability

e already known virtual file systems that are based on FUSE
e work process description of FUSE

e integration points

e license issues

3.1 Virtual file systems

By definition, a Virtual File System[24] (VFS) is a kind of abstraction layer on top of a
more concrete file system. The main purpose of a VFS is to allow client applications to
access different types of specific file systems in a uniform way. That means that VFE'S,
for example, can be used to access local and network storage devices transparently,
without any difference to the client application. So it does not matter if we keep data
in Windows, Mac OS or Unix file systems — the client application can access the data
uniformly.

A VFS specifies an interface between the kernel and a specific file system. Therefore,
it is easy to add support for new file system types to the kernel simply by
implementing the interface. It is possible that VE'S can eliminate an incompatibility
from release to release. For example, a case where the client application requires a
certain version of a specific file system. VFS can even guarantee further stable work
with future releases. This means that there are a lot of benefits to using VFS.

Also, VFS sometimes refers to a certain file or even bunch of files that act as a
manageable container with the functionality of specific file systems. For example,
such containers are SolFS[?| or a single-file virtual file systems in an emulator like
WinUAE[28|, Sun’s VirtualBox[25], Microsoft’s Virtual PC[27], VM Ware[26], etc.
The main benefit of this type of VFS is that it is well centralized and easy to remove
if need. A single-file VF'S can include all the basic features of any specific file

16

systems, but access to internal structure is often limited. Another drawback of such
VF'S is low performance because of the high cost of shuffling virtual files when data is
written or deleted from virtual file systems.

3.2

About FUSE

The acronym FUSE comes from the words “File systems in User Space”. It is a sep-
arate executable VFS which was originally developed as AVFS[I], but later became a
separate project. It represents itself as a loadable kernel module, basically for Unix-like
operating systems. There is also the possibility to apply FUSE in Microsoft Windows,
but FUSE does not support the lowest-level file system access application programming
interfaces in Windows. Therefore, not all client applications will be able to access file
systems that are implemented through FUSE extensions.

Basically, FUSE allows users to create (as an extension) their own customized file
systems without kernel code modification. So, actually, FUSE is a “bridge” between
user-side created system customization and actual kernel interface.

FUSE main features are:

Simple library API

Simple installation (no need to patch or recompile the kernel)
Secure implementation

User space - kernel interface is very efficient

Usable by non-privileged users

Runs on Linux kernels 2.4.X and 2.6.X

Has proven very stable over time

Originally FUSE was written in C language, but nowadays quite an impressive variety
of other language implementations exist (Java, Python, C#, PHP, Sh, Perl etc). There
are many FUSE-based file systems[16] in different categories:

ArchiveFile systems - accessing files inside archives (tar, cpio, zip, etc.)

CompressedFile systems - accessing files in a compressed image (gz, zlib, LiveCDs,
etc.)

DatabaseFile systems - storing files in a relational database (MySQL, Berke-
leyDB, etc.) or ones allowing searching using tags or SQL queries

EncryptedFile systems - storing files in a more secure way by using a secret key

MediaFile systems - storing files on media devices such as cameras and music
players or accessing and categorizing media files

HardwareFile systems - provide access to weird hardware

17

U= W N =

o~ O

11
12
13

e MonitoringFile systems - provide notification when a file changes

e NetworkFile systems - storing files on remote computers, including file servers
and web sites

e NonNativeFile systems - traditional disk-based file systems that aren’t standard
on Linux (NTFS, ZFS, etc.)

e UnionFile systems - merging multiple file systems into a single tree

e VersioningFile systems - file systems that remember old versions of files and ones
which provide access to version control systems

These are the only know categories (extra FUSE-based projects could be found in
addition).

3.3 How does it work?

As it was mentioned in the previous section, FUSE is only a “bridge”. The Figure
[B.1] illustrates the basic principles of the operation of FUSE. Initially the user writes
his custom FUSE extension and runs it with parameters. In the given case we run
“example/hello” file within a user specified mounted folder “/tmp/fuse”. This means
that FUSE will work only inside mounted folder and has no effect on other files outside.
There is also the possibility to specify a data folder (by default it takes the same
directory where “example/hello” runs). So, basically, the user can control his space
with the kernel API through FUSE. The main difficulty is to pick up the required
combination of atomic system operations in order to capture more complex actions
(some operations, such as copying a file or deleting a folder with content, consist of
sequences of other operations).

Sample user file systems in “hello world” style:

#include <fuse.h>

#include
static const char xhello str = "Hello_World!\n";
static const char xhello path = "/hello";

static int hello getattr(const char xpath, struct stat xstbuf)

{

.if (stremp (path, hello _path) = 0) {
stbuf —st _mode = S IFREG | 0444;
stbuf—st nlink — 1;
stbuf—>st_size = strlen (hello_str);

}

static int hello readdir(const char xpath, void xbuf,
fuse fill dir t filler , off t offset , struct fuse file info

«fi) {

18

14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29

example/hello fmp/fuse
= :
........................ .. * |
‘ Ls =1 fop'fuse [libfuse]
A
[glibe [glihe J
el %,
wserspace e e e
kernel
FUSE
YFS
‘ MEFS
‘ Ext3
J

Figure 3.1: FUSE structure (image source [?])

filler (buf, hello path + 1, NULL, 0);

static int hello open(const char xpath, struct fuse file info
«fi) { .}

static int hello read (const char xpath, char xbuf, size t size
, off t offset , struct fuse file info =*fi) {

if (stremp (path, hello path) != 0) return —ENOENT;
len = strlen (hello_str);

if (offset < len) {

if (offset + size > len) size = len — offset;
memcpy (buf, hello str + offset , size);

} else size = 0;

return size;

}

Listing 3.1: sample FUSE extension

It is quite easy to specify your own customized actions instead of standard file system
operations (see FUSE APT for full list of operations). In listing Bl such “atomidy” file

L Atomic operations in the FUSE context are those which do not call another operations (e.g. “copy”

19

OO Ut i W+

~/fuse /example$ mkdir /tmp/fuse

~/fuse /example$./hello /tmp/fuse

~/fuse /example$ 1s —1 /tmp/fuse

total 0

—r—r—r— 1 root root 13 Jan 1 1970 hello
~/fuse /example$ cat /tmp/fuse/hello Hello World!
~/fuse /example$ fusermount —u /tmp/fuse

~/fuse /example$

Listing 3.2: Example user session

systems operations, such as getting attributes from a specific object (hello getattr),
reading directory content (hello readdir), opening (hello open) and reading

(hello read) filaq were overridden. The custom prefix could be also specified for
methods names. In the current example, the user sessio will look like Listing [3.2]

After the script “hello” is launched with the starting folder “/tmp/fuse/” as a
parameter, the user can access the customized user space in the mentioned directory.
How to understand how this stuff works? In the custom user space folder, the usual
“cat” command actually does not work with a real file, but for input is an output
stream from FUSE instead. In a listing B.1] hello read custom operation assumes,
that if work path = hello_path = " /hello", then hello str is printed ("Hello
World!\n"). This is exactly what we have in listing B.2for output. So basically, it is
always possible to assign any custom content for any path in the user space.

3.4 Licensing issues

The kernel part is released under the GNU GPL[4]. Libfuse is released under the
GNU LGPL[5]. All other parts (examples, fusermount, etc) are released under the
GNU GPL. This means, that modified versions of code can be sold for money (see
http://www.gnu.org/licenses/gpl-faq.html#DoesTheGPLAllowMoney), but the source
code should be also provided with binaries (or with first customer request). Also
GPL assumes that further modifications of code should be also open-code products
and can not be distributed only as binary files. (http://www.gnu.org/licenses/gpl-
faq.html#Modified JustBinary). Current work uses only Libfuse source. Since Libfuse
is under LGPL license, the source code can be hidden from customers and may also be
distributed under payment obligation term.

is a complex operation). Generally, FUSE allows only extension of atomic operations.
2Note that file operations can be also defined as a separate class.
3see sample user session at http://fuse.sourceforge.net,/

20

Chapter 4

Requirements

This chapter introduces the functional and non-functional requirements, gives a brief
description of project scope and final product perspective, and provides requirement
specification. The last one will be described through use cases.

4.1 Requirements elicitation

The first step to meet the desired outcome for any project or work is to elicit the goals
and requirements. First of all, possible stakeholders should be introduced:

e university personal (lecturers, researchers, secretaries, assistants, programmers
and others who accumulate data)

e students
e business organizations, companies
e other people (anyone who cares about their data organization efficiency)

There are different techniques existing for requirements elicitation. The stakeholder
interview is a commonly used technique, but in the case of current work a specialist’s
opinion (a person already familiar with the problem) is more likely suitable.

The key ideas of the section are captured as the following requirements:

functional requirements
1. File categorization feature (tagging as maintaining speedup)

(a) bidirectional relationships (for file tagging/categorization)
(b) Hierarchical categorization of files (category in category)

(c) Basic file operations support]] (no regression)

2. Uniform file meta-data representation (for cross-platforms)

LFUSE platform assumes the usage of atomic file operations. Any such operation can be customized
in a different way. The requirement position tells about not losing functionality for the end-user. For
example, the copy operation consists of 1) reading of target location 2) reading of destination directory
3) creation inode structure in destination point 4) filling with relevant content. The requirement
assumes that the end-user can copy target files after customization.

21

(a) index storage of all meta-information
(b) common meta-data structure skeleton per object

(c) Virtual property files support (will be needed for creation of more complex
solutions and more file structures will be supported)

nonfunctional requirements

1.

Integration: the outcome of current work should be suitable for future cross-
platform developments

Python implementation

. FUSE platform based

Fiile management should be improved

. Final product should not slow down an operation’s performance below 25%

The source code should have explanations or descriptions of functions

System should be able to be started /finished within 5 seconds after corresponding
command

. All end-user’s operation can be performed at least in the command prompt win-

dow.

4.2 Scope

In this work the usability of Unix-like file systems will be improved by FUSE extension.

External deliverables:

1.

2.

Generated meta-data for each file (except links)

Usability improvement feature: hierarchical tagging

Internal deliverables:

1.

2.

3.

4.

Current, specification.
FUSE extension script in Python programming language
Functions descriptions in a source code

Additional utilities (like cleaning data from meta-information)

22

Functionality:
e extension mount/unmount

e meta-data generation

meta-data access (even unmounted system)
e hierarchical tagging
e traveling opportunity over the tags

e CRUDA support as other file systems

Structure: See[3.1]for technical structure.
Assumptions:

1. FUSE will work under Windows platform also (for future modifications)
2. Project will continue

3. Additional generated files will not create a serious trouble for users

4. FUSE is stable

5. Work output is not a final product

6. Most future related work could be relocated to other platform

7. Current project may become a commercial one.

product perspective Current work output is planned as a future base platform for
development and research. Also there is a possibility of future commercial outcome (in
the long-term perspective, in case of success). Figure] illustrates the final product
perspective. By custom operations and file view assumed Inferato FS integration with
user standard file systems operations.

End-user operates withing his customized piece of space, where it is possible hav-
ing some custom file views, bidirectional files relationships, perform a customized file
operations (which nothing more than normal operations adopted to a new container
context). A traditional hierarchy could be broken by file categories: file can be located
in multiple places in parallel. From the other side, some piece of user space could be
out of extension (user may want not to use customization to whole data).

2The minimal set of actions with file: create, read, update, delete.

23

file system

userl space

user2 space

user... space

_operates»

"

user space

user space extension

User

custom operations bidirectional relationship

custom file views hierarchical categories

other space

Figure 4.1: Product perspective

4.3 Requirements Specification

The name of delivered file systems is “Inferato F'S”. It should extend FUSE platform.
The list of requirements in section [A.1] implies following use cases:

Id 1
Use case Objeciﬁ tagging (categorization)
Description User places tag-folder into meta-folder “tags” of chosen
object. Inferato F'S tags the file.
Actors User, extended file systems (Inferato FS)
Dependency None
Preconditions In one window user pick the file and opens its

meta-folder “tags”. In another window user picks the
tag-folder. Inferato F'S is running.

Postconditions | File is tagged: tag-folder contains a link to tagged file,

meta-data of tagged file contains link to tag.

Alternatives Tagging functionality call could be performed with
of the main third party plug-in which is compatible with current
scenario Inferato F'S.

DO
=~

Select target
meta-data

Inferato F5

)

Move tag

Produce bidirectiona

User
link in meta-data to target
meta-data
Figure 4.2: Tagging
Id 2
Use case Object deleting
Description User deletes the chosen object. Inferato F'S validates
and delete object with related meta-information
Actors User, Inferato FS
Dependency None

Preconditions | User picks an object to delete. Inferato F'S is running.

Postconditions| The chosen object is deleted with all meta-information.

Alternatives | There could be any other actor dealing with file deleting
of the main instead of user (like client program or some system
scenario process).

Select a target
[
Inferato F5 V\

Vo,
«extends» | ﬁlncludesw

{if target was deleted}
User
delete meta-data

Figure 4.3: Deleting

25

Id 3
Use case Object copying
Description Object duplicate creating.
Actors User, Inferato FS
Dependency 5
Preconditions Target object and location for duplicate are chosen.
Inferato F'S is running.
Postconditions An object is copied and the corresponding
meta-information is created.
Alternatives | There could be any other actor dealing with file copying
of the main instead of user (like client program or some system
scenario process). User also may do file copy operation while

Inferato F'S is not running/l.

Select a target

{if target was copied} |

create meta-data

«extendss» | iuinn:ludes:o

User

validate
destinatio

Figure 4.4: Copying

Id 4
Use case Object moving
Description User moves object inside his space from one location to
another.
Actors User, Inferato FS
Dependency 2,5
Preconditions Target object and its new destination directory are
chosen. Inferato FS is running.
Postconditions| The path is changed. No file duplications are created.
Meta-link stays not affected.
Alternatives | There could be any other actor dealing with file moving
of the main instead of user (like client program or some system
scenario process). Inferato F'S could be not running.

26

Select a target
\

Inferato FS
¢includes»
validate User
destination
Figure 4.5: Moving
Id 5
Use case A new object creating
Description Inferato F'S creates corresponding meta-information for
newly added/created object.
Actors User, Inferato FS
Dependency None
Preconditions User provides a new object. Inferato FS is running.
Postconditions The meta-data is created.
Alternatives | There could be any other actor dealing with the object
of the main creation instead of user (like client program or some
scenario system process). Inferato F'S could be not running.
Provide a ne
object

A
AN
/ tilncludes»

Inferato FS «extends» ¢

.-"" A
, .
{if validation succeed},” validate
: destination
generate meta-data

User

Figure 4.6: Creating

27

5

Inferato F5

Select a tag
/f \\

«extendss “gincludes»
{if validation Succeed}
&

&
&
Put another tag

A

"
validate
estination

d User
Figure 4.7: Hierarchical tagging
Id 6
Use case Hierarchical tagging
Description Each tag can include or be included into another tag.
Actors User, Inferato FS
Dependency 1

Preconditions | Inferato F'S is running. Existing two tags are chosen by

user.

Postconditions| Chosen tag appears inside another tag as a new entry.
Alternatives | User can also create a new tag inside the target (which
of the main is also a tag).

scenario

28

Chapter 5

Implemented File systems

This chapter describes the implementation of Inferato FS. First of all, integration
points with FUSE will be introduced. This is followed by a general description of the
implementation of ideas with problematic cases of requirements and proposed solutions.
This chapter will also provide a detailed explanation of installation, integration with
other tools, and usage process. Followed by a short summary of the advantages and
shortcomings of Inferato F'S. At the end of the chapter, some tests and future works
will be discussed as well.

5.1 Overridden methods

Inferato FS was implemented as an extension to FUSE Python implementation. The
name of the base script is “inferatoFS.py”. The following methods of FUSE original
scripts were overridden:

getattr Getter for attributes of object on provided path (method parameter).
Generally, this is the most used method, because other operations are working through
it. Current method performs three things:

e ignores some files and folder, which FUSE scripts expect to see in the root
of mounted system. These expectations are: "autorun.inf", ".Trash", ".Trash-
1000", "BDMV", ".xdg-volume-info", ".directory", ".krcdirs", ".kateconfig".

e provides the attributes for regular object.

e in case of Inferato object, method provides customized properties. The objects
are: virtual files, meta-links and meta-storage with corresponding content.

readdir This method retrieves the object list from the given path (method pa-
rameter) and creates a virtual mirror of entries. Besides regular objects, customization
also adds to the mirror image Inferato special files where needed. This method is

1On the FUSE homepage some manuals and documentation are provided. However, there is still
not enough information provided. The files expected by FS script are not mentioned in documentation
pages. Only “autorun.inf” description is provided (last check in April 2011).

2Term “regular objects” implies any object in file systems, which is not defined as a part of Inferato
FS.

29

also a key method for future extension based on virtual ﬁleﬂ, since here is defined an
initialization of “fakes”.

unlink Unlink method serves as a delete operation for objects that are other than
the directory. In addition to unlink operations from a standard Python “OS” package,
this method also handles an unlinking of the special Inferato meta-structures.

rmdir Originally calls “os.rmdir”. As the unlink method, this one is For the
deleting operation and called only in case of a directory parameter. The user is not
allowed to delete special structures while Inferato FS is running.

symlink A symbolic link creation is handled here. All user links are accepted
except those, which can possibly break the normal work of Inferato F'S.

rename The tagging functionality is based on this method. Movement of sensi-
tive objects is restricted. Basically, rename operation means not only a target name
change, but a path change as well. It is used to refer to path changing as object “mov-
ing” and name changing as “renaming”, but, in general, these actions are the same.
For example, assume that the user has “sample.file” in location “ /home/user/”. Usage
of Unix standard utility “rename” will affect only the end of the path string “/home-
/user /sample.file” after last “/”, while “mv” can change any part of path (should have
corresponding permissions).

chmod For this method, only the sensitive permission changes are restricted.
Basically repeats “chmod” utility in file systems.

mkdir Method calls OS system “mkdir’utility. As extension, restricts folder cre-
ation in meta-space’.

access A secure policy can be specified in this method. Currently, extension uses
this method calling for the handling of meta-information generation. If an object is
not accessed by a user after Inferato F'S was started, then no meta-information will be
created. The first access is usually performed when reading directory entries (for each
entry).

fsinit This method is called only when the system is started. Extension modifi-
cations here are related to the initialization of meta-information structures.

Besides customized normal F'S operations, abstract file behaviours were also cus-
tomized. Class InferatoFile implements necessary modifications of FUSE original ex-
ample. The following method was also overridden:

_init The initialization of virtual files are added here.

3Virtual files probably will be needed for holding the parameters about the target.
4Meta-space - any location or object in Inferato FS, which is used for meta-information

30

5.2 System design description

Following those requirements described in chapter [l there is a need to create a type of
structure that could maintain the meta-information. On the other hand, it should be
available from any location in the mounted system (FUSE mounts a particular folder
and acts therein as a separate file system). So Inferato F'S uses for a meta-data register
its own meta-structure in one single folder named “#[meta-storage|#”. Generally, it
contains the data structures that describe corresponding files in the user space. In
listing B.1], the example of meta-storage view on a mounted system is provided. After
the first mounting, meta-storage will be saved in user data. In the example listing
“/home/user/data” path is specified as a root] for data and “/home/user/mnt” as a
mounting space.

/home/user /mnt/#|[meta—storage|#
|—custom tag—f00fcf84 —76ad—11e0—b2¢2—-00215d34df04

| |—tags

| |—length

|—folderl —015b0d62 —76ae —11e0—b2¢2 —00215d34df04
| |—tags

| |—custom tag

| |—length

Listing 5.1: Example of meta-structure

Generally, the structure on example listing contains one unique record per each known
file in Inferato F'S space. The file is known when and only when the system somehow
accesses it. These “lazy” initializations should prevent a long pause in the case of
fetching large data. Each record is named by following convention: original object
name -+ unique identifier. The last one is generated with Python “uuid” package by
method “uuid1”. It basically uses for generation a host ID, sequence number (also seed)
and current time. This should be enough to avoid duplicates if Inferato F'S migrates
to shared systems.

Each record also could contain some properties of the object in the face of virtual
files. The example of such property is “length” file. It includes the name length of
the target. For example, for “folderl” with 7 characters in name the file “length” will
produce “7” for output. Virtual files are only visible in mounted space (“mnt” directory)
and their behaviour and output is generated by Inferato F'S “on fly”. Another entry of
meta-record is “tags” folder. Generally, if the target object was somehow tagged, this
folder will contain a reference to the tag.

All used names in meta-structures (including virtual files) could be configured
through “templates.py” file that comes with Inferato F'S distribution.

After the first Inferato F'S start, per each object in the same directory there will be
generated also a link, which points to the target meta-record location in meta-storage.
The name conversion for links is: target name + suffix, where suffix some unique
character set for system (initially it is “[#]”).

The tagging mechanism implies following key points:

e each folder is a tag

>The root of data contains physical meta-data without virtual files, while mount location includes
only a fake mirror of data.

31

e all content inside a directory is automatically tagged by it

e usage of tagging is only for cases when there is a need to break a traditional
hierarchy (tree structure)

There is also one special case when the system tries to tag two targets with the same
name. This could potentially make the collisions in Inferato FS work. In listing
is shown a situation, when the user may want to perform tagging of two (or more)
identical names.

/home/user /mnt/
| -Downloads
| |-Hans Zimmer feat. Lisa Gerrard — Now We Are Free.mp3
| -music
| | -Hans Zimmer feat. Lisa Gerrard — Now We Are Free.mp3
| -soundtracks

Listing 5.2: Names conflict

Assume that the user tagged a file “.../music/Hans Zimmer feat. Lisa Gerrard —
Now We Are Free.mp3” as “soundtracks”. In the “soundtracks” Folder, a new reference
to the target has now appeared. Now, if the user wants to tag another file in the
“Downloads” folder, then there will be a name clash, because possible candidate names
for the second target file will be the same as the existing one in “soundtracks”. These
two files may have different content (e.g. total size, sound quality, length). Thus,
this name collision should be resolved considering both targets. In order to prevent
such conflicts, a reference in the “soundtracks” folder points to a structure, which
basically has two references per each duplicate. One reference points to the source
directory of the target and another one to the target itself. Name convention: x,
x_sourcedir (where x is a non-negative number starting from 0, which defines the
order of tagging registrationﬁ). In a visa-versa situation, when there are two or more
duplicate candidates for a target as a tag, Inferato FS does not allow for the creation
of two duplicate tags for one target.

Design assumptions

e User does not use a special Inferato FS suffix for meta-links. This may lead to
unstable system work while dealing with tag information A

User does not change the meta-records content directly.

The key generating mechanism for meta-record never generates the duplicates.

User acts as a “single thread”.

Inferato FS will be used as a shared service for Windows-like systems in order to
avoid FUSE lacks.

6Numbers are taken sequentially, but, in the case of object deletion, some numbers may be free
and will be assigned to new duplicate candidates starting from the lowest one.
"However, a special meta-suffix could be used by the user differently from the suffix name position.

32

5.3 Installation

Since Inferato FS was written and tested under a Linux-like OS, it is highly recom-
mended to use the same OS type. Inferato F'S is a Python script and does not require
any additional configuration, except the environment. The following packages should
be installed:

e Python 2.6 or later (if not installed)

user@Qubuntu:~$ sudo apt—get install python2.6
e python-dev
user@Qubuntu:~$ sudo apt—get install python2.6—dev

e FUSE libraries

This step implies that one of stable version was downloaded from:
“http:/ /sourceforge.net /projects/fuse/files/fuse-2.X /"

user@ubuntu:~$ cd Downloads/

user@ubuntu:~ /Downloads$ tar —xf fuse —2.8.5.tar.gz
user@ubuntu:~ /Downloads$ cd fuse —2.8.5/
user@Qubuntu:~ /Downloads/fuse —2.8.5% ./configure
user@ubuntu:~ /Downloads/fuse —2.8.5% make

e Fuse Python

user@Qubuntu:~$ sudo apt—get install python—fuse

After this step, the scrip “inferatoFS.py” will be able to run. Environment installa-
tion is now complete. Note that distribution packages for your location may be different
from examples.

5.4 Usage

Inferato F'S startup. First of all, the user should decide which data system should
be used and which folder should be used for a mounted system (should be empty).
Assume that Inferato F'S installation path is $inf _home = ”/home/user /inferato”, data
folder $data — ”/home/user/data” and mounting point $mnt — ”/home/user/mnt”.
Then sample startup session with few debug message in terminal window will look
as follows:

user@ubuntu:~$ python $inf home/inferatoFS.py —f —o root=%$data
$mnt

creating meta—storage ’'/home/user/data’

...done

8Specifying the flag -f is a kind of trick to reduce the amount of debug information from FUSE.

33

If you do not want to receive any messages:

user@Qubuntu:~$ python S$inferato home/inferatoFS.py —o root—
$data $mnt

Starting “inferatoFS.py” with -d flag will allow the complete debug information to be
printed. After the system is started, each object in user data will have a generated
duplicate with suffix “[#]”. This is a link to meta-information of target. As long as this
script stays running, in $mnt path will be reflected exact virtual copy of $data path
content. A new folder “#|meta-storage|#” contains all related meta-information. Now
open another terminal window and go to $mnt path. If everything is done correctly,
the session will look as follows:

user@ubuntu:~$ 1s $data

1 f1|#| f2 f2[#] +#|meta—storage|# tag tag|#| target
target [#]

user@Qubuntu:~$ Is $mnt/

f1 f1[#]| f2 f2[#] +#|meta—storage|# tag tag|[#| target

target [#]
user@Qubuntu:~$ cd $mnt/

Target meta-data request. Assume now that the user wants to get more informa-
tion about “$mnt/f1” folder. It is possible to see the tags and one property file “length”,
which tells the actual number of characters in the name of the target. This is done
as an example of a virtual file for programmers who will develop Inferato FS in the
future. The sample session will look as follows:

user@ubuntu:~ /mnt$ 1s f1\[#\]/ length tags
user@Qubuntu:~ /mnt$ 1s f1\[#\]|/tags/
user@ubuntu:~ /mnt$ cat f1\[#\]/ length tags/
user@Qubuntu:~ /mnt$ cat f1\[#\]/length

1 user@Qubuntu:™/mnt$ Is \#\[meta—storage\|#/ —1

2 total 16

3 drwxr—xr—x 3 user user 4096 2011—-05—15 19:15 f1 —-82771e00—-7
f0e —11e0—b690—-00215d34df04

4 drwxr—xr—x 3 user user 4096 2011—-05—15 19:15 f2—-82784a8c—7
f0e —11e0—b690 —00215d34df04

5 drwxr—xr—x 3 user user 4096 2011-05—15 19:15 tag—8277e6b4—7
f0e —11e0—b690—-00215d34df04

6 drwxr—xr—x 3 user user 4096 2011—-05—15 19:15 target —827782b4
—7f0e —11e0—b690 —00215d34df04

7 user@ubuntu:” /mnt$ ls \#\[meta—storage\|#/f1 —82771e00—-7f0e
—11e0—b690—-00215d34df04/

8 length tags

9 user@Qubuntu:”~/mnt$ cat \#\[meta—storage\|#/f1 —82771e00—7f0e
—11e0—b690—-00215d34df04 /length 2

34

Tagging. There are two possible ways of tagging Inferato FS supports. The first
way provides the opportunity to tag one target with one or multiple tags, the second
one — visa-versa. Assume that the user wants to mark “target” folder as “f1” and “f2”.
Sample sessionﬁ:

1 user@ubuntu:™ /mnt$ mv —t tag\[#\|/tags f1 f2

2 user@ubuntu:”/mnt$ ls tag\[#\]|/tags/ f1 {2

3 user@Qubuntu:~ /mnt$ 1s tag\[#\]|/tags/ —I

4 total 0

5 lrwxrwxrwx 1 user user 30 2011-05—15 23:39 f1 —> /home/user/
data/f1

6 lrwxrwxrwx 1 user user 30 2011-05—15 23:39 f2 —> /home/user/
data /f2

7 user@ubuntu:” /mnt$ ls f1 —I

8 total 4

9 drwxr—xr—x 2 user user 4096 2011-05—09 00:15 tag

10 drwxrwxrwx 5 root root 0 1970—01-01 03:00 tag]|#]

11 drwxrwxrwx 5 root root 0 1970—01—01 03:00 target [#]
12 user@ubuntu:”/mnt§ ls f2 —1

13 total 4

14 drwxr—xr—x 2 user user 4096 2011-05—-08 22:17 tag

15 drwxrwxrwx 5 root root 0 1970—01-01 03:00 tag|#]

16 drwxrwxrwx 5 root root 0 1970—01—01 03:00 target [#]

Assume that user did not performed previous step and now wants to tag objects “f1”
and “f2” as “target”. The second way of tagging will look as follows:

user@ubuntu:” /mnt$ mv —t target\[#\]/ f1 {2
user@ubuntu:”™ /mnt$ 1s target

FL[#] £2[#]

user@ubuntu:~ /mnt$ 1s f1\[#\]/tags/
target

user@Qubuntu:~ /mnt$ 1s f2\[#\]|/tags/
target

Untagging. Asis the case with tagging, an untag action can be done in two ways.
For the untag operation a user needs to delete the meta-link. The following sample
session covers both cases:

user@Qubuntu:~ /mnt$ rm f1\[#\]/tags/target
user@ubuntu:~ /mnt$ 1s f1\[#\]/tags

user@Qubuntu:~ /mnt$ ls target f2[#]|
user@ubuntu:”™/mnt$ rm target/f2\[#\]/

rm: cannot remove ’'target/f2[#]/’: Is a directory
user@ubuntu:~ /mnt$ rmdir 2 {2/ f2 [#]/
user@Qubuntu:~ /mnt$ rmdir target/f2\[#\]|/
user@Qubuntu:~ /mnt$ ls target

user@Qubuntu:~ /mnt$ 1s f2\[#\]|/tags/

9Tn this example both “f1” and “f2” directories have an entry “tag” which is nothing more than a
regular folder.

35

TThe reason why meta-links are shown as directories is as follows: in case two or
more targets with the same name were tagged by one tag, then meta-links points to
structure, where all duplicates are described. So, basically, it could be compared with
a folder, which stores all “incoming” references (see figure [L.T).

Other file operations are available as in a normal file system, except in cases dealing
with special data.

Unmount. If a user wants to unmount Inferato F'S; then all opened files/directories
should be closed. Otherwise the system will print a corresponding message:

user@ubuntu:~$ fusermount —u mnt

umount: /home/user/mnt: device is busy.

(In some cases useful info about processes that use
the device is found by Isof(8) or fuser (1))

//closing all work and trying again
user@Qubuntu:~$ fusermount —u mnt
user@Qubuntu:~$
Data cleaning. Distribution archive of Inferato F'S includes script “fsclean.py”. This
allows a user to clean his data:

user@ubuntu:~$ python $inf home/fsclean.py $data
Cleaning is done

user@Qubuntu:~$ ls $data

f1 f2 tag target

5.5 Integration with Graph3d

For simple test purposes, Inferato F'S was integrated with Graph?)dE. This is a simple
3d browser, which could shows different structures through graph structure. For exam-
ple, different data trees in a file system, or social network connections between people,
or web-pages and links between them. Originally written on Panda 3d[I4] engine by
Dmitri Danilov as a part of his master thesis.

In the context of Inferato F'S, the integration with Graph 3d means an opportunity
to demonstrate how flexible this file system could be for other utilities. Graph3d itself
does not support any file operations. It only can navigate through a user’s data tree.

5.6 Advantages

e User does not have to go deeply into data hierarchy, but instead, he can create
custom views in a root of the file system. Each view can contain references to
data from a different hierarchical level.

10Grapth3d repository link: svn://www.dougdevel.org/misc/publications/theses/Master /DmitriDanilov

36

All tags are always up-to-date. There are no broken links. If a user deletes or
moves a target to another location, all meta-data automatically changes.

Intuitive and natural way while working. Inferato F'S mixes an existing hierarchy
of data. For example, users do not have to specify that all files inside the directory
“/home/user/Video” should be tagged as “Video”.

Data safety. Inferato F'S do not interact directly with user data. It only affects
meta-data in addition to user actions.

User always knows which files are tagged by target and visa-versa.

Meta-content is available as regular data. User can browse through his files via
non-integrated file browsers and use the features of Inferato F'S.

5.7 Disadvantages

The purpose of the current list of disadvantages is not only to show the possible lacks
of concepts. Some disadvantages are actually “to be done” features that this works
assumes.

Project scope

FUSE related risks: current work is based on FUSE platform and this brings some
restrictions (see section for more details). It may be necessary to overwrite
some FUSE part, for example “fusermount”. In this case, GNU license restrictions
for open source software will apply.

FUSE is not fully functional in Windows family operating systems (see section
for more details).

The complete list of meta-properties for system is unknown yet.

Implementation

Implementation in Python. From the optimal performance it is more likely to
use C++ programming language. In case of big user data structures the final
performance could have a sensitive difference.

Only a prototype. There is a need to do a lot of tests and patches for providing
more stable system work before real users start trying it.

Operation back up mechanism for Inferato FS specific operation is missing, as
missing user action tracking utility.

No suitable user interface yet. All tagging actions are performed manually.

The maximum length of meta-structure names is actually shorter (for 37 symbols)
than usual file name capacity assumes.

37

5.8 Tests and results

Inferato F'S work was tested with different amounts of data. Basic functionality was
tested with the small data tree and did not not show serious troubles in work. Also, a
real data collection was given as input. Usability test was done with a real collection
of files (my university materials, collected from 2003 to 2010). A total input of 35
188 files and 9 557 Directories, with a total size approximately 2.2 Gb. It was a good
experience to tag the real files. The major problem in usage was that an effective user
interface is not available yet. Despite this shortcoming, the system demonstrated itself
as an effective method of organizing data. My experience showed, that conception
“each folder is a tag” was working perfectly for me. For test purposes, I created some
custom views from different programming language materials and this view has covered
many of my university courses.

5.9 Planned future works

User interface. Inferato FS needs a suitable user interface (UI), which will provide
a more flexible and faster way to tag/untag files. At the moment, each file has a meta-
link which points to meta-data. It would be perfect if these links were hidden from
the user. The generation of these links is possible on-the-fly and should not be a big
problem for UI implementation.

BACKUP mechanism. Currently, Inferato F'S supports a basic actions tracking
utility. No restoring feature is implemented yet.

New architecture. With suitable Ul there will be a great possibility to physically
eliminate the meta-links. Meta-storage could also be placed into each directory. For
example, it could be more flexible to store in each directory meta-storage as hidden
“.meta-storage”. There are three major advantages of such architecture:

1. Such meta-storage splitting will prevent possible problems with performance
when a user is trying to access it. For example, this is very actual in case of
having 100 000 files.

2. There will be no need to generate meta-links, because each meta-storage will hold
only meta-data for a particular folder. Thus, it will be easy for Ul to generate a
pointer to meta-information of target.

3. The need for a unique name in meta-storage will be obsolete. Usually, hierarchical
file systems assume that no duplicate names can exist in the same path. Thus,
there will be no duplicates in meta-storage either.

38

Summary and outlook

The main goal of this work is to prove the possibility of the existence of integrative file
systems with bidirectional linking and to show the advantages of such a feature.

The work analysed and evaluated research of similar existing approaches and pre-
sented an own solution based on the FUSE (File system in User Space) extension
platform. The design of the solution is flexible and supports other add-on modifi-
cations to the current system. This will allow, in the future, for the extension of the
project to handle more effectively complex data structures in a graph based file system.

The first chapter of this work introduced the thesis and explained motivations
behind it with the help of a sample scenario. The second and third chapters were
dedicated to related work. The core platform was introduced here. The fourth chapter
covered the requirements related issues. The fifth chapter gave detailed explanations
about the implemented file system, its advantages and shortcomings, tests and future
works.

The main goal of this work was met. It was proved that such file systems with
bidirectional linking can exist. The advantages of such feature were presented. The re-
sults and output of the current work will be used as a development base for commercial
projects.

39

Integreeritavad failisiisteemid

Magistrit66 (30 EAP)

Dmitri Borissenko

Resumee

Kéesoleva t66 peaeesmérk on toestada kahesuunalise linkimisega integreeritavate fail-
isiisteemide voimalikkust ning tuua esile sellise funktsiooni eelised.

T66 kiigus analiiiisiti ning hinnati uuringuid sarnaste olemasolevate ldhenemiste
kohta ning esitati omapoolne lahendus, mis pohineb FUSE (File System in User Space
— kasutajakeskkonnas olev failisiisteem) lisaplatvormil. Lahenduse disain on paindlik
ning toetab teisi praeguse siisteemi lisand- modifikatsioone. See voimaldab tulevikus
projekti laiendada, et tegeleda tohusemalt keeruliste andmestruktuuridega graafikal
baseeruvas failisiisteemis.

Kéesoleva t00 esimeses osas selgitatakse t66 eesmérki ning selle valiku pohjuseid
pohinedes néidisstsenaariumile. Teine ja kolmas osa on piihendatud seotud todde
1dbi viimise kirjeldamisele. Siin tutvustatakse ka pohiplatvormi. Noudmistega seotud
kiisimuste osas antakse iilevaade neljandas osas. Viiendas osas selgitatakse pohjaliku-
malt failisiisteemi rakendamist, selle eeliseid ja puuduseid, testimist ja sellega seotud
edasist t60d.

Kéesoleva t60 peaeesmirk saavutati. Toestati, et selline kahesuunalise linkimisega
failisiisteem saab olemas olla. Vilja toodi selle funktsiooni eelised. T66 tulemusi ning
viljundit kasutatakse tulevikus alusena kommertsprojektide arendamisel.

40

Abstract

The main concept of the proposed Integrative Graph File Systems is based on bidirec-
tional relationship between two objects (bidirectional linking). The main features are
up-to-date links, no broken references, and improved organization of existing file hier-
archy. Nowadays, it is hard to maintain the variety of a constantly increasing number
of files. Over time, even a simple file can be lost in the deep hierarchy of user files.
With the work proposed here, it is possible to prevent such a loss by offering different
ways to traverse the hierarchies while still ending up at the same file. This method
is similar to tagging. The work allows the user to easily place a single file in multiple
locations on meta-info level and quickly find the incoming links. Thus, the user always
knows all objects which are pointing to the target and vice-versa. All basic file oper-
ations are supported (like delete, move or rename). The main goals of this work are
to prove the possibility of the existence of integrative file systems with bidirectional
linking and to show the advantages of such a feature. Integration means the possibility
to use such a file system with the standard file operation and exploration tools available
in current operating systems. The work analyzes and evaluates research of similar ap-
proaches and presents an own solution, based on the FUSE (File system in User Space)
extension platform. This solution is applied to several example scenarios. The design
supports other add-on modifications to the current system, allowing the extension of
the project to unify and sort different data in a graph based file system. As this is an
integrative approach, no explicit user interface will be provided. The future work will
hint at possible extensions to a collaborative multi-user file system, which assumes the
combination of local space and different network or cloud based data providers.

41

Bibliography

[1] AVFS - a virtual file system. http://avf.sourceforge.net/[Last accessed on May
20, 2011].

[2] C++ language tutorial - ct+ documentation.
http://www.cplusplus.com/doc/tutorial /[Last accessed on May 20, 2011].

[3] Eclipse - the eclipse foundation open source community website.
http://www.eclipse.org/|Last accessed on May 20, 2011].

[4] The GNU general public license v3.0 - GNU project - free software foundation
(FSF). http://www.gnu.org/licenses/gpl.html[Last accessed on May 20, 2011].

[5] GNU lesser general public license v3.0 - GNU project - free software foundation
(FSF). http://www.gnu.org/licenses/lgpl.html[Last accessed on May 20, 2011].

[6] Google. http://www.google.com /|Last accessed on May 20, 2011|.

[7] Google desktop - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Google Desktop|Last accessed on May 20, 2011].

[8] Graph theory - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Graph_theory|Last accessed on May 20, 2011].

[9] Hard link - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Hard _link|Last accessed on May 20, 2011].

[10] Hierarchical file system - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Hierarchical _File System|Last accessed on May
20, 2011].

[11] Jon udell: The future of the file system. http://jonudell.net/bytecols/2001-05-
30.html[Last accessed on May 20, 2011].

[12] Link - wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Link|Last
accessed on May 20, 2011].

[13] Mashup (web application hybrid) - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Mashup_ %28web_application_ hybrid%29[Last
accessed on May 20, 2011].

[14] Panda3D - free 3D game engine. http://www.panda3d.org/|Last accessed on May
20, 2011].

42

[15] Python programming language - official website. http://www.python.org/|Last
accessed on May 20, 2011].

[16] SourceForge.net: FileSystems - file systems using fuse.
http://sourceforge.net /apps/mediawiki/fuse/index.php?title=FileSystems|Last
accessed on May 20, 2011].

[17] Symbolic link - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Symbolic_ link[Last accessed on May 20, 2011].

[18] Tag (metadata) - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Tag %28metadata%29|Last accessed on May
20, 2011].

[19] tagstore - a new way of storing and accessing files.
http://tagstore.ist.tugraz.at/[Last accessed on May 20, 2011].

[20] UNIX man pages : cat (). http://unixhelp.ed.ac.uk/CGI/man-cgi?cat|Last ac-
cessed on May 20, 2011].

[21] UNIX man pages : grep (). http://unixhelp.ed.ac.uk/CGI/man-cgi?grep|Last ac-
cessed on May 20, 2011].

[22] UNIX man pages : Is (). http://unixhelp.ed.ac.uk/CGI/man-cgi?ls|Last accessed
on May 20, 2011].

[23] The UNIX system, UNIX system. http://www.unix.org/[Last accessed on May
20, 2011].

[24] Virtual file system - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Virtual _file_system|Last accessed on May 20,
2011].

[25] VirtualBox. http://www.virtualbox.org/[Last accessed on May 20, 2011].

[26] VMware virtualization software for desktops, servers & virtual machines for public
and private cloud solutions. http://www.vmware.com/[Last accessed on May 20,
2011].

[27] Windows virtual PC: home page. http://www.microsoft.com/windows/virtual-
pc/|Last accessed on May 20, 2011].

[28] WINUAE. http://www.winuae.net/[Last accessed on May 20, 2011].

43

Appendix A

All related materials (such as source code, example pictures, current writing) could be
found in public SVN repository:
“svn://www.dougdevel.org/misc/publications/theses/Master /DmitriBorissenko”

44

O O Ot i W N+

= e
Y O W N~ O O

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

32
33
34
35

Appendix B

A Gpraph3d integration code:

from
from
from
from

ConfigParser import ConfigParser
parser import Parser

templates import FSTemplates
metautils import PathUtils

import networkx as nx
import os

class simpleGraph:

graph = {}
root = None
data = None

def init_ (self):

#load properties start

cfgfile = os.path.split(__file)[0] + os.sep + "sys.
properties"

parser — ConfigParser()

parser.read(cfgfile)

self.root = parser.get("init", "root")

self.data = parser.get("init", "dat")

#load properties end

self .myLoad ()

def getRoot(self):

return self.root

def getNameLengthString(self , path):
ret = 0
#make sure that this is not a special file and the
special link exists
if not Parser(path).isMeta():
length = path + FSTemplates. suffix + os.sep +
FSTemplates. file len
file = open(length, "r")
#we need to read only the first line
if file:
ret = file.readline ()

45

36
37
38
39
40
41
42
43
44
45
46

47
48

49
50
51
52
93
54

%)
26

S7

28
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
7
76

return ret

def explore(self, arg, dir, files):
if not Parser(dir).isMeta():
for f in files:
if not Parser(dir + f).isMeta():

if not self.graph.has node(dir):
self .addNode(dir, "root of FS")

meta = f + " is entry of " + dir + "\n"

meta += "length of name: "

meta +— self.getNameLengthString(dir + os.

sep + f)
self.addNode(dir + os.sep + f, meta)
self.addEdge((dir, dir + os.sep + f + ""),

" H)

def loadRelations(self , arg, dir, files):
if not Parser(dir).isMeta():
for f in files:
if not Parser(dir + os.sep + f).isMeta():
fmeta tags — dir + os.sep + f +
FSTemplates. suffix + os.sep +
FSTemplates. folder tags
for en in os.listdir (fmeta tags):
tag = PathUtils(fmeta tags + os.sep -+
en).getRealPath(self.data, self.
root)
self.addEdge ((tag, dir + os.sep + f),
"tag")

def myLoad(self):
self.graph = nx.MultiDiGraph (name="File System’)
os.path.walk(self.root, self.explore, "")
os.path.walk(self.root, self.loadRelations, "")

def getNXGraph(self):
return self.graph

#add node to the graph
index: key
xdata: data in text format
pointers: pointers in text format "1,2,3.,4,5,rr,dsf"
#point
def addNode(self , index, xdata):
self.graph.add node(index, data=xdata)
#links

def addEdge(self, index, type):

46

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

def

def

def

self.graph.add edge(index|[0], index|[1], data=type)

getNodeData (self , index):
return self.graph.node|index ||’ data’]

getNodeLink (self , index):
#return self.graph.node|index || url ’|
return index

getEdgeType(self , index):

retArray = ||

try:
list = self.graph|[index [0]]|[index [1]]. values()
for innerDict in list:
retArray .append (innerDict . get (*data’))

except KeyError:
print "ERROR: missing edge index:", index
return ||

return retArray

47

	Acknowledgments
	Introduction
	Motivation
	Sample scenario
	Bidirectional linking.

	Related work
	Existing features
	Analysis of opinions
	Introduction to Tagging

	FUSE
	Virtual file systems
	About FUSE
	How does it work?
	Licensing issues

	Requirements
	Requirements elicitation
	Scope
	Requirements Specification

	Implemented File systems
	Overridden methods
	System design description
	Installation
	Usage
	Integration with Graph3d
	Advantages
	Disadvantages
	Tests and results
	Planned future works

	Summary and outlook
	Resumee (Eesti keeles)
	Abstract
	Bibliography
	Appendix A
	Appendix B

