
UNIVERSITY OF TARTUFa
ulty of Mathemati
s and Computer S
ien
eInstitute of Computer S
ien
eSpe
ialty of Information Te
hnology
Dmitri BorissenkoIntegrative Graph File SystemsMaster Thesis (30 ECP)

Supervisor: Ulri
h Norbisrath
Author:�. � June 2011Supervisor: .�. � June 2011Allow to Defense:Professor ... �. �June 2011

TARTU 2011

2

Contents
A
knowledgments 51 Introdu
tion 61.1 Motivation . 61.2 Sample s
enario . 71.3 Bidire
tional linking. 82 Related work 112.1 Existing features . 112.2 Analysis of opinions . 132.3 Introdu
tion to Tagging . 153 FUSE 163.1 Virtual �le systems . 163.2 About FUSE . 173.3 How does it work? . 183.4 Li
ensing issues . 204 Requirements 214.1 Requirements eli
itation . 214.2 S
ope . 224.3 Requirements Spe
i�
ation . 245 Implemented File systems 295.1 Overridden methods . 295.2 System design des
ription . 315.3 Installation . 335.4 Usage . 335.5 Integration with Graph3d . 365.6 Advantages . 365.7 Disadvantages . 375.8 Tests and results . 385.9 Planned future works . 38Summary and outlook 39Resumee (Eesti keeles) 40Abstra
t 413

Bibliography 42Appendix A 44Appendix B 45

4

A
knowledgments
There are some people I would like to thank for their help in writing this thesis.First of all, I would like to thank my supervisor Ulri
h Norbisrath. He o�ered manyideas about the thesis and helped me a great deal with many things, starting withPython and Linux basi
s and �nishing with
on�i
ts around the
on
eptual ideas ofthe thesis. I had many interesting dis
ussions with Ulri
h regarding the eli
itationof requirements and solving some in
onsisten
ies with work
on
epts. I would alsolike to thank Dmitri Danilov for the explanations about his work (Grapth3D) and forquali�ed help with integration. Also, I would like to thank my parents, Lidia andAleksey Borissenko, who gave me the required mental support. A spe
ial thanks toArtjom Lind, who showed me some tri
ks in Linux.

5

Chapter 1Introdu
tionThis
hapter introdu
es the thesis and explains the motivations behind it with thehelp of a sample s
enario. Also, required knowledge and prerequisites are provided. Ashort de�nition of the main goals for the future will be given here as well.1.1 MotivationThe motivation of the
urrent thesis is information overload. Ea
h person has his or herown unique
olle
tion of �les: movies, various writings, presentations, images, photos,audio �les, blueprints, letters, et
. After a given period of time the amount of datausually in
reases, and a simple operation
ould take mu
h longer than expe
ted. At themoment it is di�
ult to sort knowledge and make sense of it without te
hnology. Thehuge variety of do
umentation
overs many di�erent subje
ts, and a single person
anbe
ome quite disoriented. Many pie
es of information
an
over the same idea, withits unique deviation from the truth and errors inside. With the Internet, the ability ofso
iety to navigate and organize through this mess has been in
reased multiple times.Hypertext permits us to represent the information in a more natural way: the uni�edweb of knowledge sour
es.Our memory works through asso
iations � and this is the primary key in organizing�semanti
 nets�. Modern navigation and sear
h systems allow for di�erent methodsof sorting information. Take the
ompany Google, for example. They
onstru
teda sear
h engine[7℄ whi
h has assumed the lead position on the Web for a long timeof time. Grouping information by sear
h type
riteria allowed unne
essary pages tobe separated from desired ones. A ranking system for sites yields signi�
antly betterresults for a spe
i�
 sear
h. The main prin
iple is pretty simple: the more attra
tiveand popular a web-site is, the more ranking points and better index position it has inthe global top. This is quite a simple and e�e
tive prin
iple for qualifying information.Additional features of the Google sear
h engine are sear
h options. There are additional
apa
ities for sear
hing images, arti
les, mail, blogs, sites, and photos. Even a shoppingengine is available. It is a signi�
ant advantage that people are able to qualify fromthe beginning the data they seek, and get ba
k sorted and �ltered results. The Googleexample proves the ne
essity and importan
e of the pro
edure of information pre-pro
essing. If one
ompany is able to earn good money by analyzing and sorting opendata sour
es, perhaps it is a signal for other (not Web) domains to do something similar.For instan
e, publi
 shared servi
e of user spa
e (e.g. the university), or even simplehome data
olle
tion (su
h as photos, musi
, text-do
uments, et
.).6

In order to better understand the priority and signi�
an
e of the problem, lets
las-sify by groups the typi
al stru
tures of user's data organization methods, starting withthe user at home. It
ould be not ne
essarily limited to a single
omputer (however,this is a major
ase in this group), but may be a small home-made network with a
ouple of inter
onne
ted ma
hines a
ting as a single system. User data is stored on 2-3lo
al PCs and united into a single private home network. It is traditional to
lassifyinformation in su
h systems using �les and folders. So, the �nal user intera
ts onlywith hierar
hi
al data stru
ture. Going to the upper level, the next group
ould be thesmall business network of a small
ompany or organization. Finan
ial limitations donot allow them to signi�
antly upgrade the maintenan
e of inner data by developingindividual solutions. Therefore, the only solution is using existing ones (folders + �les),whi
h means again storing,
lassifying and intera
ting with information mostly in thehierar
hi
al stru
ture. The last group is
omposed of large-s
ale organizations,
om-munities and
ompanies. The means of data organization
ould vary here appre
iably,starting from the small databases and interfa
es for data a

ess and �nishing with thelarge
omplex mash-ups[13℄. Most
lassi�
ations and ways of organizing informationimply some work-spe
i�
 interfa
es. So, the third group
an take
are of its data rep-resentation e�
ien
y, the se
ond one - slightly, while the �rst one a
tually has no su
hopportunity.Coming ba
k to the data organization e�
ien
y problem, it might be useful toanalyze the
urrent state of the �rst and se
ond groups mentioned in the previousparagraph. So, in most
ases, people organize their data with folders and �les inside.This means that the e�
ien
y of data organizing
ould be optimized here. What are��le� and �folder� a
tually? From a low-level perspe
tive both of these types are quitesimilar, ex
ept that the folder provides information about the �les �inside� and the �leholds
ontent itself. Earlier versions of hierar
hi
al �le systems (HFS) used �at tablestru
tures[10℄. Then these stru
tures were repla
ed with the Catalog File, whi
h usesa B-tree stru
ture allowing for mu
h faster sear
hing. Currently, it is normal to seesomething like �les listed in some folder, ordered by time of
reation or name.1.2 Sample s
enarioNow let us
onsider the following s
enario as an example:Suppose that Ted is a Senior Resear
her at the university. He also re
eived aposition as le
turer, whi
h adds the responsibility of four a
tive
ourses, and ea
h
ourse assumes two le
tures per week plus two pra
ti
al lessons. Ea
h
ourse
ontains20-50 students (at the end of the semester the total number of a
tive students usuallyde
reases). Ea
h semester lasts 16 weeks and this usually means that on at least 14o

asions there is a need to do spe
ial preparations (like updating old �les, demos,and presentations). Usually, preparatory operations take a lot of time and about30% is spent sear
hing for similar materials from previous years. Additionally, Tedre
eives at least 50 e-mails per day, and every 10th e-mail is some student's homeworksolution. Sin
e ea
h year brings more new
ontent, Ted wants to improve the e�
ien
yof intera
ting with his data.Problem # 1. So, what Ted usually does is
ontinuously sorting and updating
ontent. To do so, he splits data into separate
ategories: homework � all �les fromstudents; tea
hing � all related
ontent (su
h as slides, images, demos); personal �7

private �les; resear
h � some test results and sample prototypes of software. There area lot of wide-spread �le
olle
tions in a data tree, so sometimes it is very problemati
for Ted to �nd a spe
i�
 �le, espe
ially in the
ase of an old �le (Ted tends to forgetold �le names).Problem # 2. It is often not enough to physi
ally put data into separate dire
to-ries. For example, some brilliantly done homework, whi
h Ted uses as le
ture material.In order to avoid �le dupli
ations, he
reates links. However, when a parti
ular �lebe
omes obsolete, it takes a lot of time and e�ort to delete it
ompletely. When Teduses hard links, �les remain in other lo
ations (where the hard links were
reated).When using soft links, many broken links remain somewhere in a data tree. In the
aseof moving a target �le to another lo
ation, the broken links problem is a
tual as well.Problem # 3. After a few years of resear
h work, Ted opens the �resear
h�
ategory and notes that approximately half of these �les (on di�erent levels of thedata tree)
an also be logi
ally organized into three new sub
ategories: �prototypes�,�utilities� and �manuals�. However, it is
urrently impossible to do so, be
ause
urrentlogi
al
ategorizations (by proje
t) will be broken. In
ase of using links, Ted will berequired to
reate hundreds of links, sin
e these �les are wide spread in the hierar
hy.1.3 Bidire
tional linking.The main problems of the s
enario des
ribed in the previous se
tion
an be easily
overed with one of Ted Nelson's ideas [?℄ about the Internet model, whi
h assumesthe presen
e of bidire
tional relationships (bidire
tional linking) between two obje
ts.The idea is simple: if one obje
t points to another one, then it has to re
eive a kindof
on�rmation or approval and only then su
h a referen
e will be legal. The PetriNets [?℄ diagram 1.1
aptures the possible states of three operations with links (link,unlink and remove a target) between A and B lo
ations. These lo
ations
an beinterpreted as some abstra
t points in any graph stru
ture based system (e.g. two�les in �le systems or two web-pages). Bidire
tional linking assumes parallel editingon both points, whi
h
auses many problems (su
h as syn
hronization, hostrea
hability and network delays) if the destination point is lo
ated somewhere in thenetwork. But, in general, if we deal ex
lusively with our own user spa
e , thenbidire
tional linking be
omes more a
tual, sin
e most of our troubles (like starting aparti
ular server on time, granting required a

ess rights to a shared �le)
ould besolved personally by a user.It might be reasonable, before
reating something more global and big, to make sure,that su
h systems with bidire
tional linking
an exist. One possible solution wasfound in the fa
e of the FUSE platform[?℄(see
hapter 3 for more details). It providesan extension platform for a variety of operating systems (OS) and allows for
ustomimplementations of some basi
 �le system utilities, su
h as rename, delete,
reate�le/dire
tory, link, unlink and others (see o�
ial do
umentation for
omplete list).The �rst tries showed that su
h systems
ould exist on a small s
ale. More seriousapproa
hes require more work-hours and more te
hnologi
ally advan
ed solutions.8

A -> B: target A points to B! B -> A: target B removes pointer to AA in
oming: referen
es to A from other targetsA out
oming: all A pointers to other targetsFigure 1.1: sample bidire
tional linking
9

PrerequisitesTo better understand this thesis, knowledge about the following is re
ommended:
• [optional℄ Python[15℄. The sour
e
ode is implemented purely in Python. FUSEimplementation is also in Python, but the original version of it
an be found inC++ language[2℄. Thus, this knowledge
ould possibly provide some answers tothe te
hni
al questions.
• Graph stru
tures[8℄
on
ept. The main work is done in graph stru
tures. This isrequired for the ability to understand the work features.
• In the
urrent work some �le systems utilities will be mentioned. Reader shouldhave a little hands-on experien
e with di�erent types of �le systems.
• [optional℄ Python supporting IDE1 (e.g. E
lipse[3℄). It is more likely for thesour
e
ode to be viewed through a spe
ial interfa
e (not just open the
ode asa text �le). This will signi�
antly in
rease the speed of navigating through the
ode, reading and
ompiling ability.
• Petri Nets. Some of examples are explained through the Petri Nets diagrams.

GoalsThe main goals of this work are to prove the possibility of the existen
e of an integrative�le system with bidire
tional linking, and to demonstrate the advantages of su
h afeature. Integration means the possibility to use su
h a �le system with the standard�le operation and exploration tools available in
urrent operating systems.OutlineThe thesis is organized as follows. Ea
h
hapter has a brief introdu
tion of its
ontent.The �rst
hapter introdu
es the thesis and explains the motivations behind it. As anexample, a possible s
enario is provided. The key feature of the work �bidire
tionallinking� is brie�y introdu
ed. Also, a list with the requisite knowledge is providedalong with the main goals of the work. The se
ond and third
hapters are mostlyabout related work. In these
hapters, an analysis of existing tools is provided. Alsosome of the initial opinions of experien
ed people are dis
ussed. Finally, the �le systemin user spa
e will be des
ribed as a part of related work. The fourth
hapter
overs therequirements related issues. The �fth and �nal
hapter gives a detailed explanationabout the implemented �le system, its possible disadvantages and advantages, testsand future works.
1IDE - integrated development environment. 10

Chapter 2Related workIn this
hapter, related works are des
ribed. First of all, the existing features areanalyzed using examples. This is followed by an analysis of some dis
ussions by peopleregarding problems that will be performed. Finally, an introdu
tion to tagging is
overed.2.1 Existing featuresSo, what features/utilities are available now and do they
over a
tual needs? It wasalready mentioned at the end of the previous paragraph that �les
an be sorted byproperties. Lets take a
loser look at the Unix
ommand [23℄
ommand �ls�[22℄ as anexample. In listing 2.1 the fragment of �ls -l� output is provided with several propertiesof �les. These properties are:1. File type2. Permissions3. Number of hard links (we will
over hard links later)4. Owner5. Group6. Size7. Date8. File name>l s − l P i
 tu r e s
−rw−r−−r−− 1 user user 125 2010−11−13 03 :48 a l l i a n
 e . g i fdrwxr−xr−x 2 user user 4096 2011−03−06 19 :35 data
−rw−r−−r−− 1 user user 871 2010−11−13 04 :36 sample2 . png
−rw−r−−r−− 1 user user 9359 2010−11−13 03 :46 sample . odg
−rw−r−−r−− 1 user user 104801 2010−11−13 04 :39 S
reen . jpg
−rw−r−−r−− 1 user user 105017 2010−11−13 04 :38 S
reen −1.png
−rw−r−−r−− 1 user user 14508 2010−09−19 16 :03 tagg ing . odgListing 2.1: Example of �les sorting11

Current sample listing is ordered alphabeti
ally by name (by default). The user also
an sort �le lists by any given property, whi
h in
ertain
ases allows required �les tobe found more qui
kly (e.g. if ~1000 �les are in one dire
tory or sear
h re
ursively).Also, the ability to applying multiple �lter
riteria is available. Combining standardUnix tools su
h as �ls�, �
at�[20℄, �grep�[21℄ and others
ould provide ni
e sear
h results.But here the availability raises doubts: should all users be strong in Unix utilities? Amore intuitive and natural way of sorting data is provided by visual explorers. Theuser still
an sort �les using di�erent parameters, but with serious limitations (e.g. itis impossible to temporarily hide some types from the output list). This results in timedelays in the
ase of long �le lists. File sear
hing in visual explorers is also limited andusually works mu
h slower than
ommand line utilities.Another tri
ky and e�
ient feature is linking[12℄. The word �link� itself assumessome referen
e or pointer to some data . With the link feature, the user is able to
reate relatively more
omplex data organizations. It is an e�e
tive and simple way tosave some spa
e and syn
hronize the data, be
ause the user does not have to
opy thesame �les into multiple pla
es. It is enough to store one �le in a
ertain lo
ation andmake referen
es from the others. Several types of links exist in HFSs, depending onthe platform. It is used to divide these types into two major
ategories: hard and softlinks.A Hard Link[9℄ is a type of link whi
h points to a �le itself. Ea
h target mustexist. The traditional Unix style of
reating hard links implies setting the same inode1number to all referen
es. A Hard link itself
an also have a di�erent name than itstarget. So, in this
ase, no information is provided about the original name of thetarget. Also, it is not possible to
reate a hard link for dire
tories (only the root user isallowed with an additional �ag for safety) in most
ases due to system restri
tions (toprevent re
ursive loops). Another problem with hard links is about sharing attributesof the target, su
h as size (total dire
tory size with a hard link is in
reased, as if therewould be a normal �le inside).A Symboli
 Link[17℄ (also
alled soft link) is a type of link whi
h points to a �lename. As with the hard links, this type
an also have a di�erent name that the target.A soft link
ontains a relative or absolute path to the target and
an also be pointedtowards dire
tories. The OS and its utilities
an determine the symboli
 links and notfollow into re
ursion. A soft link
overs most of what a hard link la
ks, but in
ase atarget obje
t is renamed/moved/deleted, it stops working be
ause the path string doesnot
hange.Higher level utilities also exist, su
h as Google Desktop[6℄, Windows sear
h (
omeswith Vista or later versions of Windows), Spotlight and others (see some a list of desk-top engines on http://en.wikipedia.org/wiki/List_of_sear
h_engines). These desktoputilities allow impressively fast sear
hing to be performed through user spa
e, and addi-tionally provide some
ustom features. For example, one of Google Desktop's featuresis a sidebar. It allows one to view e-mail and news, and talk with other users throughGoogle Talk2 and view RSS3 feeds. With the Google Desktop Qui
k Find feature, usersdo not have to spe
ify the full name of target in the sear
h-box, it is enough to provideonly a part of the name. This sear
h engine is based on a
ontinuous �le indexing1inode - data stru
ture in Unix-like �le systems that holds meta information about an obje
t (su
has a �le, dire
tory)2Chat for some Google servi
es like email, http://www.google.
om/talk/3RSS - Really Simple Syndi
ation, http://en.wikipedia.org/wiki/RSS12

me
hanism and
an �nd the six most relevant results (by default) from the user's lo
aldis
. However, high-level utilities like Google Desktop are fo
used only on sear
hingand the results are shown within the bounds of
urrent utility output. These utilitiesalso do not have a me
hanism for the bidire
tional relationship between obje
ts, butinstead they provide a des
ription of targets (whi
h is only interpretable in the
ontextof the
urrent utility).One of the most relevant works by des
ription is the Tagstore[19℄ proje
t. Unfortu-nately, there is no download link for sour
e or binaries provided4. From the des
riptionof Tagstore, it follows that it is an open-sour
e proje
t (however, the sour
e as binariesare hidden). The main feature of Tagstore is using so
alled �tag trees� (hierar
hi-
al tags) to navigate the user more e�e
tively through his data tree. Due to missingbinaries or sour
e
ode for testing, it is hard make a judgment about its disadvantages.2.2 Analysis of opinionsThis se
tion presents the dis
ussions and opinions of some people regarding data orga-nization and the sorting problem[11℄:�Ri
h Kilmer:What do you store in the namespa
e to allow appli
ations to
ross ea
h others'borders? An agreed-upon ontology is ne
essary to move beyond today's mess.�In other words, Ri
h Kilmer raised the problem whi
h is illustrated in listing 2.2.In most
ases there are numerous �le
olle
tions present in the user's spa
e./home/ user|−video|−− f i lm s|−−−wild wi ld west . av i|−−musi
|−−−Aerosmith − I Don ' t Wanna Miss A Thing (Armageddon) . av i|−−birthday . av i|−−party . av i|−musi
|−−
 l i p s|−−−Aerosmith − I Don ' t Wanna Miss A Thing (Armageddon) . av i|−−Aerosmith − Crazy .mp3Listing 2.2: Simple types overlappingAssume we want to add into our
olle
tion the �le �Aerosmith - I Don't Wanna MissA Thing (Armageddon).avi�. There are two possible lo
ations that exist: �/home-/user/video/musi
� and � /home/user/musi
/
lips�. How to determine whi
h lo
ationis a
tually suitable? It is possible to reorganize our stru
ture by pla
ing, for instan
e,�/home/user/musi
� into � /home/user/video/musi
� sin
e we have two identi
al fold-ers. However, this solution is not very e�
ient, for at least two reasons: 1). we haveto think about logi
al reorganization 2). in � /home/user/musi
� there is another �letype (.mp3) whi
h is not related to the video dire
tly. We
an also leave the
urrenthome-folder's stru
ture �as is� and put into the �rst lo
ation (video) a link, and into4A demo version was requested from Tagstore support at the beginning of April 2011. However,no response was re
eived. 13

another lo
ation (musi
) the �le itself. Corresponding to link type we have di�erenttroubles. So, what else
an be done? Here is an idea from Domini
 Amann:�Start with an e�
ient �le systems that allows small �les (su
h as ReiserFS). Thenadd an OS browser/shell level extension that allows ea
h folder to
ontain a spe
ialobje
t. This obje
t is a viewer/�le systems "plugin" that tells the shell/browser whi
hindexes are available for the folder, and the shell/browser
an de
ide how to displaythem.This would allow e-mail to be viewed by a variety of programs, and sear
hable/use-able even by non-email apps be
ause, for example, /var/spool/mail/domini
/ appearsto
ontain./thread ./subje
t ./date ./to ./from ./keywords�Domini
 Amann proposed the idea of mixing multiple spa
es, whi
h will allow usersto work with their di�erent data types a
ross all programs. Ea
h obje
t (it
ould beeven little �le stru
ture) has a �xed meta-data about its lo
ation, type and spe
ialtype properties (regarding type). A new �le system
ould signi�
antly in
rease thee�
ien
y of a user's di�erent intera
tion a
tivities with information (like simple �lesear
hing). For example, a person looks for �le F, whi
h is a
tually lo
ated somewherein e-mails on server M1 (see listing 2.3).united FS|−home d i r e
 t o r y|−video|−do
uments|−mai l s|− from s e r v e r M1| | − . . .|− from s e r v e r M2|− from : mail from Ted|− to : . . .|− s ub j e
 t : h i pal !|−body : some
ontent|−atta
hments : important f i l e (F)Listing 2.3: Sample �le systems viewNow there is no need to perform separate sear
hes through M1 and M2 e-mailservers and lo
al hard dis
, sin
e all related data is indexed in the united �le systemsand is rea
hable by the user while an Internet
onne
tion is up. On
e an indexingoperation is performed, there is no need to keep an a
tive
onne
tion
onstantly withM1 and M2 mail servers (even an o�-line sear
h is available now). These �le systems
ould support some basi
 simple operation set like CRUD5. The only thing that mightbe needed is data syn
hronization requests from time to time (deleted or new letters).There is also no need to download �les from the email a

ount. Coming ba
k to theprevious
ase in listing 2.2, it is now impossible to
reate a regular link to �le in e-mailspa
e from the lo
al storage and vi
e versa. Instead of traditional links in �le systems,URL
an be used.�Alexander G.M. Smith:...5CRUD abbreviation
oming from words �
reate�, �read�, �update� and �delete�14

The next step would be to make it (�le systems) non-hierar
hi
al. As mentionedelsewhere you want to have relationships bidire
tional between a phone number and theperson, so a
y
li
 graph stru
ture of relationships would be needed. Of
ourse, some
ommands � like "ls -R" � would need to be improved to handle
y
li
 dire
tories.�Alexander talks here about earlier attempts of user spa
e
ustomization like shownin �gure 1.1. The idea Alexander follows is breaking traditional hierar
hy of somestandard �le systems and repla
ing it with a
y
li
 graph stru
ture instead, with bidi-re
tional relationships between two obje
ts. It
ould provide an e�e
tive bonus innavigation a
ross multiple lo
ations, so the user
an always go ba
k to the start point.Of
ourse, having su
h a
y
li
 graph stru
ture assumes
ertain problems for the stan-dard tools (e.g. mentioned "ls -R"). So, there is a need to make these standard utilitiesbehave more �exibly, a

ording to a spe
i�
 system of
urrent spa
e.2.3 Introdu
tion to TaggingA Tag is a form of meta-data[18℄. It
ould be a single keyword (in some
ases also ashort senten
e), or an image, or a spe
i�
 sound whi
h is assigned to some part of theinformation. This feature helps to des
ribe an item by referring it to some spe
ial set ofitems with similar properties. The name of a tag expresses the nature of tagged items.Tagging allows sear
hing performan
e to be in
reased signi�
antly, thereby redu
ingthe total number of viewed elements (items).Possible obsta
les to the use of tags in sear
hing engines are missing informationabout the meaning of tags. Relatively similar sets of items
ould be tagged withdi�erent tags. In a listing 2.2 we des
ribed a similar problem regarding the relevan
eof an item. Now,
onsider the
ase where instead of one dire
tory �video� there are twosimilar names: �movies� and ��lms�. Or the
ase when the user makes a grammati
almistake (or uses singular and plural forms) whi
h leads to the
reation of a dupli
atetag. Both situations have the same problem: the semanti
s of all tags are equal and theuser
an apply both tags. Mentioned obsta
les also
ould lead to possible overloadingof tags and the e�e
t of sear
h speedup will disappear, be
ause users have to sear
hthrough long list of tags beforehand.Another similar problem with tagging is related to the individuality of the �tagvendor�. Of
ourse, the �exibility of tagging allows users to
ategorize their itemsin any useful way they
an �nd, but personalized terms
an lead to inappropriaterelationships between items. This issue
an be the reason behind ine�
ient sear
hesfor information about a subje
t. For example, the tag IT
an refer to informationte
hnology, or in
ome tax, or Internet television, or the time zone of Iran.

15

Chapter 3FUSEThis
hapter will
ontinue with related work. It will introdu
e brie�y the de�nition ofvirtual �le systems along with some examples. Then �le systems in user spa
e will beintrodu
ed. The introdu
tion part implies:
• platform integrability
• already known virtual �le systems that are based on FUSE
• work pro
ess des
ription of FUSE
• integration points
• li
ense issues3.1 Virtual �le systemsBy de�nition, a Virtual File System[24℄ (VFS) is a kind of abstra
tion layer on top of amore
on
rete �le system. The main purpose of a VFS is to allow
lient appli
ations toa

ess di�erent types of spe
i�
 �le systems in a uniform way. That means that VFS,for example,
an be used to a

ess lo
al and network storage devi
es transparently,without any di�eren
e to the
lient appli
ation. So it does not matter if we keep datain Windows, Ma
 OS or Unix �le systems � the
lient appli
ation
an a

ess the datauniformly.A VFS spe
i�es an interfa
e between the kernel and a spe
i�
 �le system. Therefore,it is easy to add support for new �le system types to the kernel simply byimplementing the interfa
e. It is possible that VFS
an eliminate an in
ompatibilityfrom release to release. For example, a
ase where the
lient appli
ation requires a
ertain version of a spe
i�
 �le system. VFS
an even guarantee further stable workwith future releases. This means that there are a lot of bene�ts to using VFS.Also, VFS sometimes refers to a
ertain �le or even bun
h of �les that a
t as amanageable
ontainer with the fun
tionality of spe
i�
 �le systems. For example,su
h
ontainers are SolFS[?℄ or a single-�le virtual �le systems in an emulator likeWinUAE[28℄, Sun's VirtualBox[25℄, Mi
rosoft's Virtual PC[27℄, VMWare[26℄, et
.The main bene�t of this type of VFS is that it is well
entralized and easy to removeif need. A single-�le VFS
an in
lude all the basi
 features of any spe
i�
 �le16

systems, but a

ess to internal stru
ture is often limited. Another drawba
k of su
hVFS is low performan
e be
ause of the high
ost of shu�ing virtual �les when data iswritten or deleted from virtual �le systems.3.2 About FUSEThe a
ronym FUSE
omes from the words �File systems in User Spa
e�. It is a sep-arate exe
utable VFS whi
h was originally developed as AVFS[1℄, but later be
ame aseparate proje
t. It represents itself as a loadable kernel module, basi
ally for Unix-likeoperating systems. There is also the possibility to apply FUSE in Mi
rosoft Windows,but FUSE does not support the lowest-level �le system a

ess appli
ation programminginterfa
es in Windows. Therefore, not all
lient appli
ations will be able to a

ess �lesystems that are implemented through FUSE extensions.Basi
ally, FUSE allows users to
reate (as an extension) their own
ustomized �lesystems without kernel
ode modi�
ation. So, a
tually, FUSE is a �bridge� betweenuser-side
reated system
ustomization and a
tual kernel interfa
e.FUSE main features are:
• Simple library API
• Simple installation (no need to pat
h or re
ompile the kernel)
• Se
ure implementation
• User spa
e - kernel interfa
e is very e�
ient
• Usable by non-privileged users
• Runs on Linux kernels 2.4.X and 2.6.X
• Has proven very stable over timeOriginally FUSE was written in C language, but nowadays quite an impressive varietyof other language implementations exist (Java, Python, C#, PHP, Sh, Perl et
). Thereare many FUSE-based �le systems[16℄ in di�erent
ategories:
• Ar
hiveFile systems - a

essing �les inside ar
hives (tar,
pio, zip, et
.)
• CompressedFile systems - a

essing �les in a
ompressed image (gz, zlib, LiveCDs,et
.)
• DatabaseFile systems - storing �les in a relational database (MySQL, Berke-leyDB, et
.) or ones allowing sear
hing using tags or SQL queries
• En
ryptedFile systems - storing �les in a more se
ure way by using a se
ret key
• MediaFile systems - storing �les on media devi
es su
h as
ameras and musi
players or a

essing and
ategorizing media �les
• HardwareFile systems - provide a

ess to weird hardware17

• MonitoringFile systems - provide noti�
ation when a �le
hanges
• NetworkFile systems - storing �les on remote
omputers, in
luding �le serversand web sites
• NonNativeFile systems - traditional disk-based �le systems that aren't standardon Linux (NTFS, ZFS, et
.)
• UnionFile systems - merging multiple �le systems into a single tree
• VersioningFile systems - �le systems that remember old versions of �les and oneswhi
h provide a

ess to version
ontrol systemsThese are the only know
ategories (extra FUSE-based proje
ts
ould be found inaddition).3.3 How does it work?As it was mentioned in the previous se
tion, FUSE is only a �bridge�. The Figure3.1 illustrates the basi
 prin
iples of the operation of FUSE. Initially the user writeshis
ustom FUSE extension and runs it with parameters. In the given
ase we run�example/hello� �le within a user spe
i�ed mounted folder �/tmp/fuse�. This meansthat FUSE will work only inside mounted folder and has no e�e
t on other �les outside.There is also the possibility to spe
ify a data folder (by default it takes the samedire
tory where �example/hello� runs). So, basi
ally, the user
an
ontrol his spa
ewith the kernel API through FUSE. The main di�
ulty is to pi
k up the required
ombination of atomi
 system operations in order to
apture more
omplex a
tions(some operations, su
h as
opying a �le or deleting a folder with
ontent,
onsist ofsequen
es of other operations).Sample user �le systems in �hello world� style:1 #in
lude <fu s e . h>2 #in
lude . . .3 stat i

onst
har ∗ he l l o_s t r = "Hel lo World ! \ n" ;4 stat i

onst
har ∗hel lo_path = "/ h e l l o " ;5 stat i
 int he l l o_ge t a t t r (
onst
har ∗path , stru
t s t a t ∗ s tbu f){6 . . . i f (str
mp (path , hel lo_path) == 0) {7 stbuf−>st_mode = S_IFREG | 0444 ;8 stbuf−>st_nl ink = 1 ;9 stbuf−>st_s i z e = s t r l e n (h e l l o_s t r) ;10 }11 . . .12 }13 stat i
 int he l l o_readd i r (
onst
har ∗path , void ∗buf ,f u s e_ f i l l_d i r_t f i l l e r , o f f_t o f f s e t , stru
t f u s e_ f i l e_ in f o
∗ f i) { 18

Figure 3.1: FUSE stru
ture (image sour
e [?℄)14 . . .15 f i l l e r (buf , hel lo_path + 1 , NULL, 0) ;16 . . .17 }18 stat i
 int hel lo_open (
onst
har ∗path , stru
t f u s e_ f i l e_ in f o
∗ f i) { . . . }19 stat i
 int hel lo_read (
onst
har ∗path ,
har ∗buf , s i ze_t s i z e, o f f_t o f f s e t , stru
t f u s e_ f i l e_ in f o ∗ f i) {20 . . .21 i f (str
mp (path , hel lo_path) != 0) return −ENOENT;22 l en = s t r l e n (h e l l o_s t r) ;23 i f (o f f s e t < l en) {24 i f (o f f s e t + s i z e > l en) s i z e = l en − o f f s e t ;25 mem
py(buf , h e l l o_s t r + o f f s e t , s i z e) ;26 } else s i z e = 0 ;27 return s i z e ;28 }29 . . . Listing 3.1: sample FUSE extensionIt is quite easy to spe
ify your own
ustomized a
tions instead of standard �le systemoperations (see FUSE API for full list of operations). In listing 3.1 su
h �atomi
1� �le1Atomi
 operations in the FUSE
ontext are those whi
h do not
all another operations (e.g. �
opy�19

1 ~/ fu s e /example$ mkdir /tmp/ fu s e2 ~/ fu s e /example$. / h e l l o /tmp/ fu s e3 ~/ fu s e /example$ l s − l /tmp/ fu s e4 t o t a l 05 −r−−r−−r−− 1 root root 13 Jan 1 1970 h e l l o6 ~/ fu s e /example$
at /tmp/ fu s e / h e l l o He l lo World !7 ~/ fu s e /example$ fusermount −u /tmp/ fu s e8 ~/ fu s e /example$ Listing 3.2: Example user sessionsystems operations, su
h as getting attributes from a spe
i�
 obje
t (hello_getattr),reading dire
tory
ontent (hello_readdir), opening (hello_open) and reading(hello_read) �le2 were overridden. The
ustom pre�x
ould be also spe
i�ed formethods names. In the
urrent example, the user session3 will look like Listing 3.2.After the s
ript �hello� is laun
hed with the starting folder �/tmp/fuse/� as aparameter, the user
an a

ess the
ustomized user spa
e in the mentioned dire
tory.How to understand how this stu� works? In the
ustom user spa
e folder, the usual�
at�
ommand a
tually does not work with a real �le, but for input is an outputstream from FUSE instead. In a listing 3.1 hello_read
ustom operation assumes,that if work path = hello_path = "/hello", then hello_str is printed ("HelloWorld!\n"). This is exa
tly what we have in listing 3.2for output. So basi
ally, it isalways possible to assign any
ustom
ontent for any path in the user spa
e.3.4 Li
ensing issuesThe kernel part is released under the GNU GPL[4℄. Libfuse is released under theGNU LGPL[5℄. All other parts (examples, fusermount, et
) are released under theGNU GPL. This means, that modi�ed versions of
ode
an be sold for money (seehttp://www.gnu.org/li
enses/gpl-faq.html#DoesTheGPLAllowMoney), but the sour
e
ode should be also provided with binaries (or with �rst
ustomer request). AlsoGPL assumes that further modi�
ations of
ode should be also open-
ode produ
tsand
an not be distributed only as binary �les. (http://www.gnu.org/li
enses/gpl-faq.html#Modi�edJustBinary). Current work uses only Libfuse sour
e. Sin
e Libfuseis under LGPL li
ense, the sour
e
ode
an be hidden from
ustomers and may also bedistributed under payment obligation term.
is a
omplex operation). Generally, FUSE allows only extension of atomi
 operations.2Note that �le operations
an be also de�ned as a separate
lass.3see sample user session at http://fuse.sour
eforge.net/20

Chapter 4RequirementsThis
hapter introdu
es the fun
tional and non-fun
tional requirements, gives a briefdes
ription of proje
t s
ope and �nal produ
t perspe
tive, and provides requirementspe
i�
ation. The last one will be des
ribed through use
ases.4.1 Requirements eli
itationThe �rst step to meet the desired out
ome for any proje
t or work is to eli
it the goalsand requirements. First of all, possible stakeholders should be introdu
ed:
• university personal (le
turers, resear
hers, se
retaries, assistants, programmersand others who a

umulate data)
• students
• business organizations,
ompanies
• other people (anyone who
ares about their data organization e�
ien
y)There are di�erent te
hniques existing for requirements eli
itation. The stakeholderinterview is a
ommonly used te
hnique, but in the
ase of
urrent work a spe
ialist'sopinion (a person already familiar with the problem) is more likely suitable.The key ideas of the se
tion 2.2 are
aptured as the following requirements:fun
tional requirements1. File
ategorization feature (tagging as maintaining speedup)(a) bidire
tional relationships (for �le tagging/
ategorization)(b) Hierar
hi
al
ategorization of �les (
ategory in
ategory)(
) Basi
 �le operations support1 (no regression)2. Uniform �le meta-data representation (for
ross-platforms)1FUSE platform assumes the usage of atomi
 �le operations. Any su
h operation
an be
ustomizedin a di�erent way. The requirement position tells about not losing fun
tionality for the end-user. Forexample, the
opy operation
onsists of 1) reading of target lo
ation 2) reading of destination dire
tory3)
reation inode stru
ture in destination point 4) �lling with relevant
ontent. The requirementassumes that the end-user
an
opy target �les after
ustomization.21

(a) index storage of all meta-information(b)
ommon meta-data stru
ture skeleton per obje
t(
) Virtual property �les support (will be needed for
reation of more
omplexsolutions and more �le stru
tures will be supported)nonfun
tional requirements1. Integration: the out
ome of
urrent work should be suitable for future
ross-platform developments2. Python implementation3. FUSE platform based4. File management should be improved5. Final produ
t should not slow down an operation's performan
e below 25%6. The sour
e
ode should have explanations or des
riptions of fun
tions7. System should be able to be started/�nished within 5 se
onds after
orresponding
ommand8. All end-user's operation
an be performed at least in the
ommand prompt win-dow.4.2 S
opeIn this work the usability of Unix-like �le systems will be improved by FUSE extension.External deliverables:1. Generated meta-data for ea
h �le (ex
ept links)2. Usability improvement feature: hierar
hi
al taggingInternal deliverables:1. Current spe
i�
ation.2. FUSE extension s
ript in Python programming language3. Fun
tions des
riptions in a sour
e
ode4. Additional utilities (like
leaning data from meta-information)
22

Fun
tionality:
• extension mount/unmount
• meta-data generation
• meta-data a

ess (even unmounted system)
• hierar
hi
al tagging
• traveling opportunity over the tags
• CRUD2 support as other �le systemsStru
ture: See 3.1 for te
hni
al stru
ture.Assumptions:1. FUSE will work under Windows platform also (for future modi�
ations)2. Proje
t will
ontinue3. Additional generated �les will not
reate a serious trouble for users4. FUSE is stable5. Work output is not a �nal produ
t6. Most future related work
ould be relo
ated to other platform7. Current proje
t may be
ome a
ommer
ial one.produ
t perspe
tive Current work output is planned as a future base platform fordevelopment and resear
h. Also there is a possibility of future
ommer
ial out
ome (inthe long-term perspe
tive, in
ase of su

ess). Figure 4.1 illustrates the �nal produ
tperspe
tive. By
ustom operations and �le view assumed Inferato FS integration withuser standard �le systems operations.End-user operates withing his
ustomized pie
e of spa
e, where it is possible hav-ing some
ustom �le views, bidire
tional �les relationships, perform a
ustomized �leoperations (whi
h nothing more than normal operations adopted to a new
ontainer
ontext). A traditional hierar
hy
ould be broken by �le
ategories: �le
an be lo
atedin multiple pla
es in parallel. From the other side, some pie
e of user spa
e
ould beout of extension (user may want not to use
ustomization to whole data).2The minimal set of a
tions with �le:
reate, read, update, delete.

23

Figure 4.1: Produ
t perspe
tive4.3 Requirements Spe
i�
ationThe name of delivered �le systems is �Inferato FS�. It should extend FUSE platform.The list of requirements in se
tion 4.1 implies following use
ases:Id 1Use
ase Obje
t3 tagging (
ategorization)Des
ription User pla
es tag-folder into meta-folder �tags� of
hosenobje
t. Inferato FS tags the �le.A
tors User, extended �le systems (Inferato FS)Dependen
y NonePre
onditions In one window user pi
k the �le and opens itsmeta-folder �tags�. In another window user pi
ks thetag-folder. Inferato FS is running.Post
onditions File is tagged: tag-folder
ontains a link to tagged �le,meta-data of tagged �le
ontains link to tag.Alternativesof the mains
enario Tagging fun
tionality
all
ould be performed withthird party plug-in whi
h is
ompatible with
urrentInferato FS.

24

Figure 4.2: TaggingId 2Use
ase Obje
t deletingDes
ription User deletes the
hosen obje
t. Inferato FS validatesand delete obje
t with related meta-informationA
tors User, Inferato FSDependen
y NonePre
onditions User pi
ks an obje
t to delete. Inferato FS is running.Post
onditions The
hosen obje
t is deleted with all meta-information.Alternativesof the mains
enario There
ould be any other a
tor dealing with �le deletinginstead of user (like
lient program or some systempro
ess).

Figure 4.3: Deleting
25

Id 3Use
ase Obje
t
opyingDes
ription Obje
t dupli
ate
reating.A
tors User, Inferato FSDependen
y 5Pre
onditions Target obje
t and lo
ation for dupli
ate are
hosen.Inferato FS is running.Post
onditions An obje
t is
opied and the
orrespondingmeta-information is
reated.Alternativesof the mains
enario There
ould be any other a
tor dealing with �le
opyinginstead of user (like
lient program or some systempro
ess). User also may do �le
opy operation whileInferato FS is not running4.

Figure 4.4: CopyingId 4Use
ase Obje
t movingDes
ription User moves obje
t inside his spa
e from one lo
ation toanother.A
tors User, Inferato FSDependen
y 2,5Pre
onditions Target obje
t and its new destination dire
tory are
hosen. Inferato FS is running.Post
onditions The path is
hanged. No �le dupli
ations are
reated.Meta-link stays not a�e
ted.Alternativesof the mains
enario There
ould be any other a
tor dealing with �le movinginstead of user (like
lient program or some systempro
ess). Inferato FS
ould be not running.
26

Figure 4.5: MovingId 5Use
ase A new obje
t
reatingDes
ription Inferato FS
reates
orresponding meta-information fornewly added/
reated obje
t.A
tors User, Inferato FSDependen
y NonePre
onditions User provides a new obje
t. Inferato FS is running.Post
onditions The meta-data is
reated.Alternativesof the mains
enario There
ould be any other a
tor dealing with the obje
t
reation instead of user (like
lient program or somesystem pro
ess). Inferato FS
ould be not running.

Figure 4.6: Creating
27

Figure 4.7: Hierar
hi
al taggingId 6Use
ase Hierar
hi
al taggingDes
ription Ea
h tag
an in
lude or be in
luded into another tag.A
tors User, Inferato FSDependen
y 1Pre
onditions Inferato FS is running. Existing two tags are
hosen byuser.Post
onditions Chosen tag appears inside another tag as a new entry.Alternativesof the mains
enario User
an also
reate a new tag inside the target (whi
his also a tag).

28

Chapter 5Implemented File systemsThis
hapter des
ribes the implementation of Inferato FS. First of all, integrationpoints with FUSE will be introdu
ed. This is followed by a general des
ription of theimplementation of ideas with problemati

ases of requirements and proposed solutions.This
hapter will also provide a detailed explanation of installation, integration withother tools, and usage pro
ess. Followed by a short summary of the advantages andshort
omings of Inferato FS. At the end of the
hapter, some tests and future workswill be dis
ussed as well.5.1 Overridden methodsInferato FS was implemented as an extension to FUSE Python implementation. Thename of the base s
ript is �inferatoFS.py�. The following methods of FUSE originals
ripts were overridden:getattr Getter for attributes of obje
t on provided path (method parameter).Generally, this is the most used method, be
ause other operations are working throughit. Current method performs three things:
• ignores some �les and folders1, whi
h FUSE s
ripts expe
t to see in the rootof mounted system. These expe
tations are: "autorun.inf", ".Trash", ".Trash-1000", "BDMV", ".xdg-volume-info", ".dire
tory", ".kr
dirs", ".kate
on�g".
• provides the attributes for regular obje
ts2.
• in
ase of Inferato obje
t, method provides
ustomized properties. The obje
tsare: virtual �les, meta-links and meta-storage with
orresponding
ontent.readdir This method retrieves the obje
t list from the given path (method pa-rameter) and
reates a virtual mirror of entries. Besides regular obje
ts,
ustomizationalso adds to the mirror image Inferato spe
ial �les where needed. This method is1On the FUSE homepage some manuals and do
umentation are provided. However, there is stillnot enough information provided. The �les expe
ted by FS s
ript are not mentioned in do
umentationpages. Only �autorun.inf� des
ription is provided (last
he
k in April 2011).2Term �regular obje
ts� implies any obje
t in �le systems, whi
h is not de�ned as a part of InferatoFS. 29

also a key method for future extension based on virtual �les3, sin
e here is de�ned aninitialization of �fakes�.unlink Unlink method serves as a delete operation for obje
ts that are other thanthe dire
tory. In addition to unlink operations from a standard Python �OS� pa
kage,this method also handles an unlinking of the spe
ial Inferato meta-stru
tures.rmdir Originally
alls �os.rmdir�. As the unlink method, this one is For thedeleting operation and
alled only in
ase of a dire
tory parameter. The user is notallowed to delete spe
ial stru
tures while Inferato FS is running.symlink A symboli
 link
reation is handled here. All user links are a

eptedex
ept those, whi
h
an possibly break the normal work of Inferato FS.rename The tagging fun
tionality is based on this method. Movement of sensi-tive obje
ts is restri
ted. Basi
ally, rename operation means not only a target name
hange, but a path
hange as well. It is used to refer to path
hanging as obje
t �mov-ing� and name
hanging as �renaming�, but, in general, these a
tions are the same.For example, assume that the user has �sample.�le� in lo
ation � /home/user/�. Usageof Unix standard utility �rename� will a�e
t only the end of the path string �/home-/user/sample.�le� after last �/�, while �mv�
an
hange any part of path (should have
orresponding permissions).
hmod For this method, only the sensitive permission
hanges are restri
ted.Basi
ally repeats �
hmod� utility in �le systems.mkdir Method
alls OS system �mkdir�utility. As extension, restri
ts folder
re-ation in meta-spa
e4.a

ess A se
ure poli
y
an be spe
i�ed in this method. Currently, extension usesthis method
alling for the handling of meta-information generation. If an obje
t isnot a

essed by a user after Inferato FS was started, then no meta-information will be
reated. The �rst a

ess is usually performed when reading dire
tory entries (for ea
hentry).fsinit This method is
alled only when the system is started. Extension modi�-
ations here are related to the initialization of meta-information stru
tures.Besides
ustomized normal FS operations, abstra
t �le behaviours were also
us-tomized. Class InferatoFile implements ne
essary modi�
ations of FUSE original ex-ample. The following method was also overridden:__init__ The initialization of virtual �les are added here.3Virtual �les probably will be needed for holding the parameters about the target.4Meta-spa
e - any lo
ation or obje
t in Inferato FS, whi
h is used for meta-information
30

5.2 System design des
riptionFollowing those requirements des
ribed in
hapter 4, there is a need to
reate a type ofstru
ture that
ould maintain the meta-information. On the other hand, it should beavailable from any lo
ation in the mounted system (FUSE mounts a parti
ular folderand a
ts therein as a separate �le system). So Inferato FS uses for a meta-data registerits own meta-stru
ture in one single folder named �#[meta-storage℄#�. Generally, it
ontains the data stru
tures that des
ribe
orresponding �les in the user spa
e. Inlisting 5.1, the example of meta-storage view on a mounted system is provided. Afterthe �rst mounting, meta-storage will be saved in user data. In the example listing�/home/user/data� path is spe
i�ed as a root5 for data and �/home/user/mnt� as amounting spa
e./home/ user /mnt/#[meta−s to rage ℄#|−
ustom tag−f 0 0 f
 f 8 4 −76ad−11e0−b2
2−00215d34df04| |− tags| |− l ength|− f o lde r1 −015b0d62−76ae−11e0−b2
2−00215d34df04| |− tags| |−
ustom tag| |− l ength. . . Listing 5.1: Example of meta-stru
tureGenerally, the stru
ture on example listing
ontains one unique re
ord per ea
h known�le in Inferato FS spa
e. The �le is known when and only when the system somehowa

esses it. These �lazy� initializations should prevent a long pause in the
ase offet
hing large data. Ea
h re
ord is named by following
onvention: original obje
tname + unique identi�er. The last one is generated with Python �uuid� pa
kage bymethod �uuid1�. It basi
ally uses for generation a host ID, sequen
e number (also seed)and
urrent time. This should be enough to avoid dupli
ates if Inferato FS migratesto shared systems.Ea
h re
ord also
ould
ontain some properties of the obje
t in the fa
e of virtual�les. The example of su
h property is �length� �le. It in
ludes the name length ofthe target. For example, for �folder1� with 7
hara
ters in name the �le �length� willprodu
e �7� for output. Virtual �les are only visible in mounted spa
e (�mnt� dire
tory)and their behaviour and output is generated by Inferato FS �on �y�. Another entry ofmeta-re
ord is �tags� folder. Generally, if the target obje
t was somehow tagged, thisfolder will
ontain a referen
e to the tag.All used names in meta-stru
tures (in
luding virtual �les)
ould be
on�guredthrough �templates.py� �le that
omes with Inferato FS distribution.After the �rst Inferato FS start, per ea
h obje
t in the same dire
tory there will begenerated also a link, whi
h points to the target meta-re
ord lo
ation in meta-storage.The name
onversion for links is: target name + su�x, where su�x some unique
hara
ter set for system (initially it is �[#℄�).The tagging me
hanism implies following key points:
• ea
h folder is a tag5The root of data
ontains physi
al meta-data without virtual �les, while mount lo
ation in
ludesonly a fake mirror of data. 31

• all
ontent inside a dire
tory is automati
ally tagged by it
• usage of tagging is only for
ases when there is a need to break a traditionalhierar
hy (tree stru
ture)There is also one spe
ial
ase when the system tries to tag two targets with the samename. This
ould potentially make the
ollisions in Inferato FS work. In listing 5.2is shown a situation, when the user may want to perform tagging of two (or more)identi
al names./home/ user /mnt/|−Downloads| |−Hans Zimmer f e a t . L i sa Gerrard − Now We Are Free .mp3|−musi
| |−Hans Zimmer f e a t . L i sa Gerrard − Now We Are Free .mp3|− soundtra
ks. . . Listing 5.2: Names
on�i
tAssume that the user tagged a �le �.../musi
/Hans Zimmer feat. Lisa Gerrard �Now We Are Free.mp3� as �soundtra
ks�. In the �soundtra
ks� Folder, a new referen
eto the target has now appeared. Now, if the user wants to tag another �le in the�Downloads� folder, then there will be a name
lash, be
ause possible
andidate namesfor the se
ond target �le will be the same as the existing one in �soundtra
ks�. Thesetwo �les may have di�erent
ontent (e.g. total size, sound quality, length). Thus,this name
ollision should be resolved
onsidering both targets. In order to preventsu
h
on�i
ts, a referen
e in the �soundtra
ks� folder points to a stru
ture, whi
hbasi
ally has two referen
es per ea
h dupli
ate. One referen
e points to the sour
edire
tory of the target and another one to the target itself. Name
onvention: x,x_sour
edir (where x is a non-negative number starting from 0, whi
h de�nes theorder of tagging registration6). In a visa-versa situation, when there are two or moredupli
ate
andidates for a target as a tag, Inferato FS does not allow for the
reationof two dupli
ate tags for one target.Design assumptions
• User does not use a spe
ial Inferato FS su�x for meta-links. This may lead tounstable system work while dealing with tag information 7.
• User does not
hange the meta-re
ords
ontent dire
tly.
• The key generating me
hanism for meta-re
ord never generates the dupli
ates.
• User a
ts as a �single thread�.
• Inferato FS will be used as a shared servi
e for Windows-like systems in order toavoid FUSE la
ks.6Numbers are taken sequentially, but, in the
ase of obje
t deletion, some numbers may be freeand will be assigned to new dupli
ate
andidates starting from the lowest one.7However, a spe
ial meta-su�x
ould be used by the user di�erently from the su�x name position.32

5.3 InstallationSin
e Inferato FS was written and tested under a Linux-like OS, it is highly re
om-mended to use the same OS type. Inferato FS is a Python s
ript and does not requireany additional
on�guration, ex
ept the environment. The following pa
kages shouldbe installed:
• Python 2.6 or later (if not installed)user�ubuntu :~ $ sudo apt−get i n s t a l l python2 . 6
• python-devuser�ubuntu :~ $ sudo apt−get i n s t a l l python2.6−dev
• FUSE librariesThis step implies that one of stable version was downloaded from:�http://sour
eforge.net/proje
ts/fuse/�les/fuse-2.X/�user�ubuntu :~ $
d Downloads/user�ubuntu :~/Downloads$ ta r −xf fuse −2 .8 . 5 . t a r . gzuser�ubuntu :~/Downloads$
d fuse −2.8.5/user�ubuntu :~/Downloads/ fuse −2.8.5 $. /
 on f i gu r euser�ubuntu :~/Downloads/ fuse −2.8.5 $ make
• Fuse Pythonuser�ubuntu :~ $ sudo apt−get i n s t a l l python−f u s eAfter this step, the s
rip �inferatoFS.py� will be able to run. Environment installa-tion is now
omplete. Note that distribution pa
kages for your lo
ation may be di�erentfrom examples.5.4 UsageInferato FS startup. First of all, the user should de
ide whi
h data system shouldbe used and whi
h folder should be used for a mounted system (should be empty).Assume that Inferato FS installation path is $inf_home = �/home/user/inferato�, datafolder $data = �/home/user/data� and mounting point $mnt = �/home/user/mnt�.Then sample startup session with few debug messages8 in terminal window will lookas follows:user�ubuntu :~ $ python $inf_home/ in f e ra toFS . py −f −o root=$data$mnt
 r e a t i ng meta−s to rage '/home/ user /data ' done8Spe
ifying the �ag -f is a kind of tri
k to redu
e the amount of debug information from FUSE.33

If you do not want to re
eive any messages:user�ubuntu :~ $ python $inferato_home / in f e ra toFS . py −o root=$data $mntStarting �inferatoFS.py� with -d �ag will allow the
omplete debug information to beprinted. After the system is started, ea
h obje
t in user data will have a generateddupli
ate with su�x �[#℄�. This is a link to meta-information of target. As long as thiss
ript stays running, in $mnt path will be re�e
ted exa
t virtual
opy of $data path
ontent. A new folder �#[meta-storage℄#�
ontains all related meta-information. Nowopen another terminal window and go to $mnt path. If everything is done
orre
tly,the session will look as follows:user�ubuntu :~ $ l s $dataf1 f 1 [#℄ f 2 f 2 [#℄ #[meta−s to rage ℄# tag tag [#℄ t a r g e tt a r g e t [#℄user�ubuntu :~ $ l s $mnt/f1 f 1 [#℄ f 2 f 2 [#℄ #[meta−s to rage ℄# tag tag [#℄ t a r g e tt a r g e t [#℄user�ubuntu :~ $
d $mnt/Target meta-data request. Assume now that the user wants to get more informa-tion about �$mnt/f1� folder. It is possible to see the tags and one property �le �length�,whi
h tells the a
tual number of
hara
ters in the name of the target. This is doneas an example of a virtual �le for programmers who will develop Inferato FS in thefuture. The sample session will look as follows:user�ubuntu :~/mnt$ l s f 1 \[#\℄/ l ength tagsuser�ubuntu :~/mnt$ l s f 1 \[#\℄/ tags /user�ubuntu :~/mnt$
at f 1 \[#\℄/ l ength tags /user�ubuntu :~/mnt$
at f 1 \[#\℄/ l ength2or1 user�ubuntu :~/mnt$ l s \#\[meta−s to rage \℄#/ − l2 t o t a l 163 drwxr−xr−x 3 user user 4096 2011−05−15 19 :15 f1−82771e00−7f0e−11e0−b690−00215d34df044 drwxr−xr−x 3 user user 4096 2011−05−15 19 :15 f2−82784a8
−7f0e−11e0−b690−00215d34df045 drwxr−xr−x 3 user user 4096 2011−05−15 19 :15 tag−8277e6b4−7f0e−11e0−b690−00215d34df046 drwxr−xr−x 3 user user 4096 2011−05−15 19 :15 target −827782b4
−7f0e−11e0−b690−00215d34df047 user�ubuntu :~/mnt$ l s \#\[meta−s to rage \℄#/ f1−82771e00−7f0e
−11e0−b690−00215d34df04/8 length tags9 user�ubuntu :~/mnt$
at \#\[meta−s to rage \℄#/ f1−82771e00−7f0e
−11e0−b690−00215d34df04/ length 234

Tagging. There are two possible ways of tagging Inferato FS supports. The �rstway provides the opportunity to tag one target with one or multiple tags, the se
ondone � visa-versa. Assume that the user wants to mark �target� folder as �f1� and �f2�.Sample session9:1 user�ubuntu :~/mnt$ mv −t tag \[#\℄/ tags f 1 f 22 user�ubuntu :~/mnt$ l s tag \[#\℄/ tags / f1 f 23 user�ubuntu :~/mnt$ l s tag \[#\℄/ tags / − l4 t o t a l 05 lrwxrwxrwx 1 user user 30 2011−05−15 23 :39 f1 −> /home/ user /data/ f16 lrwxrwxrwx 1 user user 30 2011−05−15 23 :39 f2 −> /home/ user /data/ f27 user�ubuntu :~/mnt$ l s f 1 − l8 t o t a l 49 drwxr−xr−x 2 user user 4096 2011−05−09 00 :15 tag10 drwxrwxrwx 5 root root 0 1970−01−01 03 :00 tag [#℄11 drwxrwxrwx 5 root root 0 1970−01−01 03 :00 t a r g e t [#℄12 user�ubuntu :~/mnt$ l s f 2 − l13 t o t a l 414 drwxr−xr−x 2 user user 4096 2011−05−08 22 :17 tag15 drwxrwxrwx 5 root root 0 1970−01−01 03 :00 tag [#℄16 drwxrwxrwx 5 root root 0 1970−01−01 03 :00 t a r g e t [#℄Assume that user did not performed previous step and now wants to tag obje
ts �f1�and �f2� as �target�. The se
ond way of tagging will look as follows:user�ubuntu :~/mnt$ mv −t t a r g e t \[#\℄/ f 1 f 2user�ubuntu :~/mnt$ l s t a r g e tf 1 [#℄ f 2 [#℄user�ubuntu :~/mnt$ l s f 1 \[#\℄/ tags /t a r g e tuser�ubuntu :~/mnt$ l s f 2 \[#\℄/ tags /t a r g e tUntagging. As is the
ase with tagging, an untag a
tion
an be done in two ways.For the untag operation a user needs to delete the meta-link. The following samplesession
overs both
ases:user�ubuntu :~/mnt$ rm f1 \[#\℄/ tags / t a r g e tuser�ubuntu :~/mnt$ l s f 1 \[#\℄/ tagsuser�ubuntu :~/mnt$ l s t a r g e t f 2 [#℄user�ubuntu :~/mnt$ rm ta r g e t / f 2 \[#\℄/rm :
annot remove ' t a r g e t / f 2 [# ℄ / ' : I s a d i r e
 t o r yuser�ubuntu :~/mnt$ rmdir f 2 f 2 / f2 [#℄/user�ubuntu :~/mnt$ rmdir t a r g e t / f 2 \[#\℄/user�ubuntu :~/mnt$ l s t a r g e tuser�ubuntu :~/mnt$ l s f 2 \[#\℄/ tags /9In this example both �f1� and �f2� dire
tories have an entry �tag� whi
h is nothing more than aregular folder. 35

TThe reason why meta-links are shown as dire
tories is as follows: in
ase two ormore targets with the same name were tagged by one tag, then meta-links points tostru
ture, where all dupli
ates are des
ribed. So, basi
ally, it
ould be
ompared witha folder, whi
h stores all �in
oming� referen
es (see �gure 1.1).Other �le operations are available as in a normal �le system, ex
ept in
ases dealingwith spe
ial data.Unmount. If a user wants to unmount Inferato FS, then all opened �les/dire
toriesshould be
losed. Otherwise the system will print a
orresponding message:user�ubuntu :~ $ fusermount −u mntumount : /home/ user /mnt : dev i
 e i s busy .(In some
a s e s u s e f u l i n f o about p r o
 e s s e s that usethe dev i
 e i s found by l s o f (8) or f u s e r (1))//
 l o s i n g a l l work and t ry ing againuser�ubuntu :~ $ fusermount −u mntuser�ubuntu :~ $Data
leaning. Distribution ar
hive of Inferato FS in
ludes s
ript �fs
lean.py�. Thisallows a user to
lean his data:user�ubuntu :~ $ python $inf_home/ f s
 l e a n . py $dataCleaning i s doneuser�ubuntu :~ $ l s $dataf1 f 2 tag t a r g e t5.5 Integration with Graph3dFor simple test purposes, Inferato FS was integrated with Graph3d10. This is a simple3d browser, whi
h
ould shows di�erent stru
tures through graph stru
ture. For exam-ple, di�erent data trees in a �le system, or so
ial network
onne
tions between people,or web-pages and links between them. Originally written on Panda 3d[14℄ engine byDmitri Danilov as a part of his master thesis.In the
ontext of Inferato FS, the integration with Graph 3d means an opportunityto demonstrate how �exible this �le system
ould be for other utilities. Graph3d itselfdoes not support any �le operations. It only
an navigate through a user's data tree.5.6 Advantages
• User does not have to go deeply into data hierar
hy, but instead, he
an
reate
ustom views in a root of the �le system. Ea
h view
an
ontain referen
es todata from a di�erent hierar
hi
al level.10Grapth3d repository link: svn://www.dougdevel.org/mis
/publi
ations/theses/Master/DmitriDanilov

36

• All tags are always up-to-date. There are no broken links. If a user deletes ormoves a target to another lo
ation, all meta-data automati
ally
hanges.
• Intuitive and natural way while working. Inferato FS mixes an existing hierar
hyof data. For example, users do not have to spe
ify that all �les inside the dire
tory�/home/user/Video� should be tagged as �Video�.
• Data safety. Inferato FS do not intera
t dire
tly with user data. It only a�e
tsmeta-data in addition to user a
tions.
• User always knows whi
h �les are tagged by target and visa-versa.
• Meta-
ontent is available as regular data. User
an browse through his �les vianon-integrated �le browsers and use the features of Inferato FS.5.7 DisadvantagesThe purpose of the
urrent list of disadvantages is not only to show the possible la
ksof
on
epts. Some disadvantages are a
tually �to be done� features that this worksassumes.Proje
t s
ope
• FUSE related risks:
urrent work is based on FUSE platform and this brings somerestri
tions (see se
tion 3.4 for more details). It may be ne
essary to overwritesome FUSE part, for example �fusermount�. In this
ase, GNU li
ense restri
tionsfor open sour
e software will apply.
• FUSE is not fully fun
tional in Windows family operating systems (see se
tion3.2 for more details).
• The
omplete list of meta-properties for system is unknown yet.Implementation
• Implementation in Python. From the optimal performan
e it is more likely touse C++ programming language. In
ase of big user data stru
tures the �nalperforman
e
ould have a sensitive di�eren
e.
• Only a prototype. There is a need to do a lot of tests and pat
hes for providingmore stable system work before real users start trying it.
• Operation ba
k up me
hanism for Inferato FS spe
i�
 operation is missing, asmissing user a
tion tra
king utility.
• No suitable user interfa
e yet. All tagging a
tions are performed manually.
• The maximum length of meta-stru
ture names is a
tually shorter (for 37 symbols)than usual �le name
apa
ity assumes.

37

5.8 Tests and resultsInferato FS work was tested with di�erent amounts of data. Basi
 fun
tionality wastested with the small data tree and did not not show serious troubles in work. Also, areal data
olle
tion was given as input. Usability test was done with a real
olle
tionof �les (my university materials,
olle
ted from 2003 to 2010). A total input of 35188 �les and 9 557 Dire
tories, with a total size approximately 2.2 Gb. It was a goodexperien
e to tag the real �les. The major problem in usage was that an e�e
tive userinterfa
e is not available yet. Despite this short
oming, the system demonstrated itselfas an e�e
tive method of organizing data. My experien
e showed, that
on
eption�ea
h folder is a tag� was working perfe
tly for me. For test purposes, I
reated some
ustom views from di�erent programming language materials and this view has
overedmany of my university
ourses.5.9 Planned future worksUser interfa
e. Inferato FS needs a suitable user interfa
e (UI), whi
h will providea more �exible and faster way to tag/untag �les. At the moment, ea
h �le has a meta-link whi
h points to meta-data. It would be perfe
t if these links were hidden fromthe user. The generation of these links is possible on-the-�y and should not be a bigproblem for UI implementation.BACKUP me
hanism. Currently, Inferato FS supports a basi
 a
tions tra
kingutility. No restoring feature is implemented yet.New ar
hite
ture. With suitable UI there will be a great possibility to physi
allyeliminate the meta-links. Meta-storage
ould also be pla
ed into ea
h dire
tory. Forexample, it
ould be more �exible to store in ea
h dire
tory meta-storage as hidden�.meta-storage�. There are three major advantages of su
h ar
hite
ture:1. Su
h meta-storage splitting will prevent possible problems with performan
ewhen a user is trying to a

ess it. For example, this is very a
tual in
ase ofhaving 100 000 �les.2. There will be no need to generate meta-links, be
ause ea
h meta-storage will holdonly meta-data for a parti
ular folder. Thus, it will be easy for UI to generate apointer to meta-information of target.3. The need for a unique name in meta-storage will be obsolete. Usually, hierar
hi
al�le systems assume that no dupli
ate names
an exist in the same path. Thus,there will be no dupli
ates in meta-storage either.
38

Summary and outlookThe main goal of this work is to prove the possibility of the existen
e of integrative �lesystems with bidire
tional linking and to show the advantages of su
h a feature.The work analysed and evaluated resear
h of similar existing approa
hes and pre-sented an own solution based on the FUSE (File system in User Spa
e) extensionplatform. The design of the solution is �exible and supports other add-on modi�-
ations to the
urrent system. This will allow, in the future, for the extension of theproje
t to handle more e�e
tively
omplex data stru
tures in a graph based �le system.The �rst
hapter of this work introdu
ed the thesis and explained motivationsbehind it with the help of a sample s
enario. The se
ond and third
hapters werededi
ated to related work. The
ore platform was introdu
ed here. The fourth
hapter
overed the requirements related issues. The �fth
hapter gave detailed explanationsabout the implemented �le system, its advantages and short
omings, tests and futureworks.The main goal of this work was met. It was proved that su
h �le systems withbidire
tional linking
an exist. The advantages of su
h feature were presented. The re-sults and output of the
urrent work will be used as a development base for
ommer
ialproje
ts.

39

Integreeritavad failisüsteemidMagistritöö (30 EAP)Dmitri BorissenkoResumeeKäesoleva töö peaeesmärk on tõestada kahesuunalise linkimisega integreeritavate fail-isüsteemide võimalikkust ning tuua esile sellise funktsiooni eelised.Töö käigus analüüsiti ning hinnati uuringuid sarnaste olemasolevate lähenemistekohta ning esitati omapoolne lahendus, mis põhineb FUSE (File System in User Spa
e� kasutajakeskkonnas olev failisüsteem) lisaplatvormil. Lahenduse disain on paindlikning toetab teisi praeguse süsteemi lisand- modi�katsioone. See võimaldab tulevikusprojekti laiendada, et tegeleda tõhusemalt keeruliste andmestruktuuridega graa�kalbaseeruvas failisüsteemis.Käesoleva töö esimeses osas selgitatakse töö eesmärki ning selle valiku põhjuseidpõhinedes näidisstsenaariumile. Teine ja kolmas osa on pühendatud seotud töödeläbi viimise kirjeldamisele. Siin tutvustatakse ka põhiplatvormi. Nõudmistega seotudküsimuste osas antakse ülevaade neljandas osas. Viiendas osas selgitatakse põhjaliku-malt failisüsteemi rakendamist, selle eeliseid ja puuduseid, testimist ja sellega seotudedasist tööd.Käesoleva töö peaeesmärk saavutati. Tõestati, et selline kahesuunalise linkimisegafailisüsteem saab olemas olla. Välja toodi selle funktsiooni eelised. Töö tulemusi ningväljundit kasutatakse tulevikus alusena kommertsprojektide arendamisel.

40

Abstra
tThe main
on
ept of the proposed Integrative Graph File Systems is based on bidire
-tional relationship between two obje
ts (bidire
tional linking). The main features areup-to-date links, no broken referen
es, and improved organization of existing �le hier-ar
hy. Nowadays, it is hard to maintain the variety of a
onstantly in
reasing numberof �les. Over time, even a simple �le
an be lost in the deep hierar
hy of user �les.With the work proposed here, it is possible to prevent su
h a loss by o�ering di�erentways to traverse the hierar
hies while still ending up at the same �le. This methodis similar to tagging. The work allows the user to easily pla
e a single �le in multiplelo
ations on meta-info level and qui
kly �nd the in
oming links. Thus, the user alwaysknows all obje
ts whi
h are pointing to the target and vi
e-versa. All basi
 �le oper-ations are supported (like delete, move or rename). The main goals of this work areto prove the possibility of the existen
e of integrative �le systems with bidire
tionallinking and to show the advantages of su
h a feature. Integration means the possibilityto use su
h a �le system with the standard �le operation and exploration tools availablein
urrent operating systems. The work analyzes and evaluates resear
h of similar ap-proa
hes and presents an own solution, based on the FUSE (File system in User Spa
e)extension platform. This solution is applied to several example s
enarios. The designsupports other add-on modi�
ations to the
urrent system, allowing the extension ofthe proje
t to unify and sort di�erent data in a graph based �le system. As this is anintegrative approa
h, no expli
it user interfa
e will be provided. The future work willhint at possible extensions to a
ollaborative multi-user �le system, whi
h assumes the
ombination of lo
al spa
e and di�erent network or
loud based data providers.

41

Bibliography[1℄ AVFS - a virtual �le system. http://avf.sour
eforge.net/[Last a

essed on May20, 2011℄.[2℄ C++ language tutorial -
++ do
umentation.http://www.
plusplus.
om/do
/tutorial/[Last a

essed on May 20, 2011℄.[3℄ E
lipse - the e
lipse foundation open sour
e
ommunity website.http://www.e
lipse.org/[Last a

essed on May 20, 2011℄.[4℄ The GNU general publi
 li
ense v3.0 - GNU proje
t - free software foundation(FSF). http://www.gnu.org/li
enses/gpl.html[Last a

essed on May 20, 2011℄.[5℄ GNU lesser general publi
 li
ense v3.0 - GNU proje
t - free software foundation(FSF). http://www.gnu.org/li
enses/lgpl.html[Last a

essed on May 20, 2011℄.[6℄ Google. http://www.google.
om/[Last a

essed on May 20, 2011℄.[7℄ Google desktop - wikipedia, the free en
y
lopedia.http://en.wikipedia.org/wiki/Google_Desktop[Last a

essed on May 20, 2011℄.[8℄ Graph theory - wikipedia, the free en
y
lopedia.http://en.wikipedia.org/wiki/Graph_theory[Last a

essed on May 20, 2011℄.[9℄ Hard link - wikipedia, the free en
y
lopedia.http://en.wikipedia.org/wiki/Hard_link[Last a

essed on May 20, 2011℄.[10℄ Hierar
hi
al �le system - wikipedia, the free en
y
lopedia.http://en.wikipedia.org/wiki/Hierar
hi
al_File_System[Last a

essed on May20, 2011℄.[11℄ Jon udell: The future of the �le system. http://jonudell.net/byte
ols/2001-05-30.html[Last a

essed on May 20, 2011℄.[12℄ Link - wikipedia, the free en
y
lopedia. http://en.wikipedia.org/wiki/Link[Lasta

essed on May 20, 2011℄.[13℄ Mashup (web appli
ation hybrid) - wikipedia, the free en
y
lopedia.http://en.wikipedia.org/wiki/Mashup_%28web_appli
ation_hybrid%29[Lasta

essed on May 20, 2011℄.[14℄ Panda3D - free 3D game engine. http://www.panda3d.org/[Last a

essed on May20, 2011℄. 42

[15℄ Python programming language - o�
ial website. http://www.python.org/[Lasta

essed on May 20, 2011℄.[16℄ Sour
eForge.net: FileSystems - �le systems using fuse.http://sour
eforge.net/apps/mediawiki/fuse/index.php?title=FileSystems[Lasta

essed on May 20, 2011℄.[17℄ Symboli
 link - wikipedia, the free en
y
lopedia.http://en.wikipedia.org/wiki/Symboli
_link[Last a

essed on May 20, 2011℄.[18℄ Tag (metadata) - wikipedia, the free en
y
lopedia.http://en.wikipedia.org/wiki/Tag_%28metadata%29[Last a

essed on May20, 2011℄.[19℄ tagstore - a new way of storing and a

essing �les.http://tagstore.ist.tugraz.at/[Last a

essed on May 20, 2011℄.[20℄ UNIX man pages :
at (). http://unixhelp.ed.a
.uk/CGI/man-
gi?
at[Last a
-
essed on May 20, 2011℄.[21℄ UNIX man pages : grep (). http://unixhelp.ed.a
.uk/CGI/man-
gi?grep[Last a
-
essed on May 20, 2011℄.[22℄ UNIX man pages : ls (). http://unixhelp.ed.a
.uk/CGI/man-
gi?ls[Last a

essedon May 20, 2011℄.[23℄ The UNIX system, UNIX system. http://www.unix.org/[Last a

essed on May20, 2011℄.[24℄ Virtual �le system - wikipedia, the free en
y
lopedia.http://en.wikipedia.org/wiki/Virtual_�le_system[Last a

essed on May 20,2011℄.[25℄ VirtualBox. http://www.virtualbox.org/[Last a

essed on May 20, 2011℄.[26℄ VMware virtualization software for desktops, servers & virtual ma
hines for publi
and private
loud solutions. http://www.vmware.
om/[Last a

essed on May 20,2011℄.[27℄ Windows virtual PC: home page. http://www.mi
rosoft.
om/windows/virtual-p
/[Last a

essed on May 20, 2011℄.[28℄ WINUAE. http://www.winuae.net/[Last a

essed on May 20, 2011℄.

43

Appendix AAll related materials (su
h as sour
e
ode, example pi
tures,
urrent writing)
ould befound in publi
 SVN repository:�svn://www.dougdevel.org/mis
/publi
ations/theses/Master/DmitriBorissenko�

44

Appendix BA Gpraph3d integration
ode:1 from Conf igParser import Conf igParser2 from par s e r import Parser3 from templates import FSTemplates4 from metaut i l s import PathUt i l s5 import networkx as nx6 import os78
 l a s s simpleGraph :910 graph = {}11 root = None12 data = None1314 de f __init__(s e l f) :15 #load p r op e r t i e s s t a r t16
 f g f i l e = os . path . s p l i t (__file__) [0 ℄ + os . sep + " sys .p r o p e r t i e s "17 par s e r = Conf igParser ()18 par s e r . read (
 f g f i l e)19 s e l f . root = par s e r . get (" i n i t " , " root ")20 s e l f . data = par s e r . get (" i n i t " , "dat ")21 #load p r op e r t i e s end22 s e l f .myLoad()2324 de f getRoot (s e l f) :25 return s e l f . root2627 de f getNameLengthString (s e l f , path) :28 r e t = 029 #make sure that t h i s i s not a s p e
 i a l f i l e and thes p e
 i a l l i n k e x i s t s30 i f not Parser (path) . isMeta () :31 l ength = path + FSTemplates . _su f f i x + os . sep +FSTemplates . f i l e_ l e n32 f i l e = open (length , " r ")33 #we need to read only the f i r s t l i n e34 i f f i l e :35 r e t = f i l e . r e a d l i n e ()45

36 return r e t3738 de f exp lo r e (s e l f , arg , d ir , f i l e s) :39 i f not Parser (d i r) . isMeta () :40 f o r f in f i l e s :41 i f not Parser (d i r + f) . isMeta () :42 i f not s e l f . graph . has_node (d i r) :43 s e l f . addNode (dir , " root o f FS")44 meta = f + " i s entry o f " + d i r + "\n"45 meta += " length o f name : "46 meta += s e l f . getNameLengthString (d i r + os .sep + f)47 s e l f . addNode (d i r + os . sep + f , meta)48 s e l f . addEdge ((dir , d i r + os . sep + f + "") ,"")4950 de f l oadRe la t i on s (s e l f , arg , d ir , f i l e s) :51 i f not Parser (d i r) . isMeta () :52 f o r f in f i l e s :53 i f not Parser (d i r + os . sep + f) . isMeta () :54 fmeta_tags = d i r + os . sep + f +FSTemplates . _su f f i x + os . sep +FSTemplates . f o lde r_tags55 f o r en in os . l i s t d i r (fmeta_tags) :56 tag = PathUt i l s (fmeta_tags + os . sep +en) . getRealPath (s e l f . data , s e l f .root)57 s e l f . addEdge ((tag , d i r + os . sep + f) ," tag ")5859 de f myLoad(s e l f) :60 s e l f . graph = nx . MultiDiGraph (name=' F i l e System ')61 os . path . walk (s e l f . root , s e l f . explore , "")62 os . path . walk (s e l f . root , s e l f . l oadRe lat ions , "")6364 de f getNXGraph (s e l f) :65 return s e l f . graph6667 #add node to the graph68 # index : key69 # xdata : data in t ex t format70 # po in t e r s : p o i n t e r s in t ex t format "1 ,2 , 3 , 4 , 5 , rr , d s f "71 #point72 de f addNode (s e l f , index , xdata) :73 s e l f . graph . add_node (index , data=xdata)74 #l i n k s7576 de f addEdge (s e l f , index , type) :46

77 s e l f . graph . add_edge (index [0 ℄ , index [1 ℄ , data=type)7879 de f getNodeData (s e l f , index) :80 return s e l f . graph . node [index ℄ [' data ' ℄8182 de f getNodeLink (s e l f , index) :83 #return s e l f . graph . node [index ℄ [' ur l ' ℄84 re turn index8586 de f getEdgeType (s e l f , index) :87 retArray = [℄88 t ry :89 l i s t = s e l f . graph [index [0 ℄ ℄ [index [1 ℄ ℄ . va lue s ()90 f o r inne rD i
 t in l i s t :91 retArray . append (inne rD i
 t . get (' data '))92 ex
ept KeyError :93 p r i n t "ERROR: miss ing edge index : " , index94 return [℄95 return retArray

47

	Acknowledgments
	Introduction
	Motivation
	Sample scenario
	Bidirectional linking.

	Related work
	Existing features
	Analysis of opinions
	Introduction to Tagging

	FUSE
	Virtual file systems
	About FUSE
	How does it work?
	Licensing issues

	Requirements
	Requirements elicitation
	Scope
	Requirements Specification

	Implemented File systems
	Overridden methods
	System design description
	Installation
	Usage
	Integration with Graph3d
	Advantages
	Disadvantages
	Tests and results
	Planned future works

	Summary and outlook
	Resumee (Eesti keeles)
	Abstract
	Bibliography
	Appendix A
	Appendix B

