
University of Tartu

Faculty of Science and Technology

Institute of Mathematics and Statistics

Robert Pikmets

Forecasting intraday electricity prices on the
Nord Pool using LASSO

Actuarial and Financial Engineering

Master’s Thesis (30 ECTS)

Supervisor: PhD Raul Kangro

Tartu 2021

FORECASTING INTRADAY ELECTRICITY PRICES ON THE

NORD POOL USING LASSO

Master’s thesis

Robert Pikmets

Abstract

This thesis aims to forecast hourly intraday electricity prices on the Nord

Pool’s continuous intraday market Elbas. For this, an aggregate volume-

weighted average price of all intraday transactions during the last 4 hours

prior to each delivery hour is predicted for the Nordic and Baltic price areas.

The main modelling technique used is the least absolute shrinkage and se-

lection operator (LASSO). Two of the most common forecasting frameworks

are compared, known as the univariate and multivariate frameworks in the

electricity price forecasting literature. The LASSO estimated model set in the

univariate framework is found to perform the best, beating the multivariate

framework as well as simple benchmark models in terms of forecast accuracy.

The best performing LASSO model achieves a MAE of 3.83 EUR/MWh

and RMSE of 6.99 EUR/MWh in the out-of-sample test period, representing

a 13.6% increase in forecasting accuracy compared to the best naive estimate.

CERCS research specialisation: P160 Statistics, operations research, pro-

gramming, financial and actuarial mathematics.

Key Words: Intraday electricity market, electricity price forecasting, Nord

Pool, LASSO, R (programming language).

1

NORD POOLI PÄEVASISESTE ELEKTRIHINDADE

PROGNOOSIMINE LASSO ABIL

Magistritöö

Robert Pikmets

Lühikokkuvõte

Selle magistritöö eesmärk on prognoosida tunniseid päevasiseseid elektri-

hindu Nord Pooli päevasiseseks kauplemiseks mõeldud Elbas turul. Selleks

ennustatakse Baltikumi ja Põhjamaade hinnaalade jaoks ühist kogusega kaa-

lutud keskmist hinda, mis sisaldab tehinguid, mis leiavad aset nelja viimase

tunni jooksul enne igat tarnetundi. Põhiline rakendatav meetod on LASSO

regressioon. LASSO puhul võrreldakse ühise mudeli sobitamist kõikide tar-

netundide jaoks (nn ühemõõtmeline juht) ning iga tarnetunni jaoks eraldi

mudeli loomist (nn mitmemõõtmeline mudeldamine). Tulemustest selgub, et

parima prognoosivõimega on ühemõõtmeline juht, mis saavutab võrreldes

naiivse hinnaprognoosiga 13, 6% madalama prognoosivea valimivälises test-

perioodis.

CERCS teaduseriala: P160 Statistika, operatsioonianalüüs, programmeer-

imine, finants- ja kindlustusmatemaatika.

Märksõnad: Päevasisene elektriturg, elektrihinna prognoosimine, Nord Pool,

LASSO, R (programmeerimiskeel).

2

Contents

Introduction 5

1 Literature review 7

1.1 Day-ahead price forecasting . 7

1.2 Intraday price forecasting . 8

1.3 Variable selection in intraday EPF 9

2 Nordic-Baltic electricity market overview 11

2.1 Elspot market . 11

2.2 Elbas market . 13

2.3 Regulating power market . 13

2.4 Importance of the Elbas market . 15

3 Data 17

3.1 Data collection and filtering . 17

3.2 Pre-processing . 19

3.3 VWAP calculation . 20

3.4 Data exploration . 22

4 Methodology 28

4.1 Univariate vs multivariate framework 28

4.2 The rolling window scheme . 30

4.3 LASSO regression . 30

4.4 Choice of LASSO parameter λ . 32

4.5 Error metrics . 33

4.6 Choice of explanatory variables . 35

4.7 Simple benchmark models . 37

5 Results and discussion 38

5.1 Benchmark model results . 38

3

5.2 LASSO-estimated models results and discussion 39

5.3 Variable selection . 42

Conclusions 45

References 46

Appendix 1. Market variables 49

Appendix 2. R code for data collection and pre-processing 50

Appendix 3. R code for data exploration and visualisation 63

Appendix 4. R code for LASSO and benchmark models 69

Appendix 5. Validated LASSO λ parameters in case of multivariate

framework 80

Appendix 6. Full list of variable selection 81

4

Introduction

One of the unique characteristics of power markets is the fact that a balance of

supply and demand of electricity is required at all times. The main mechanism

for ensuring this equilibrium is the auction-based day-ahead market, on which

the day-ahead prices for each hour of the following day are determined. Recent

years have seen a global rapid expansion of electricity generation from renewable

energy sources, such as wind and solar power. However, such energy sources are

characterised by variability due to its dependence on weather conditions and can

therefore be difficult to forecast ahead. Imbalances between supply and demand

are more likely to emerge after the closing of the day-ahead market, which poses a

challenge to the stability of the entire power grid.

One of the mechanisms for mitigating these imbalances is intraday trading, which

allows market participants to buy and sell electricity very close to the delivery hour.

Depending on the weather and market conditions, intraday trade prices can differ

significantly from the day-ahead prices. Given the increasing importance of intraday

markets, it becomes critical for market participants to be able to accurately forecast

these intraday prices in order to aid their decision-making, boost profitability and

also ensure the smooth functioning of the power system.

The purpose of the thesis is to develop a statistical method for forecasting an

aggregate measure of intraday price on the Nord Pool, which is the power exchange

that operates the intraday market Elbas in the Nordic and Baltic countries. More

specifically, the thesis aims to predict the volume-weighted average of all Elbas

trades that take place during the last 4 hours prior to the start of a given delivery

hour. This 4-hour window aims to capture the latest and therefore most relevant

price information and should give market participants enough time to act on their

own imbalances or other opportunities that the market can potentially offer.

The geographical focus is set on the intraday trades of six countries on the Nord

5

Pool – Estonia, Latvia, Lithuania, Finland, Sweden and Denmark. Trades for which

at least one of the counterparties, i.e. the buyer or the seller belong to the afore-

mentioned areas, have been included in the data set.

Inspired by existing research on both day-ahead and intraday price forecasting,

LASSO regression is applied as the main forecasting tool. The developed models

utilise a large variety of market variables and the most up-to-date information

in an attempt to offer market participants a way to improve their intraday price

forecasting accuracy.

Most of the existing academic research is concentrated on forecasting day-ahead

prices, which is why this thesis aims to contribute to the rather scarce literature of

intraday price forecasting. Intraday price forecasting has only recently started to

gather more attention, more so in the context of the German market. However, to

the best of knowledge of the author of this thesis, no research has considered the

Baltic price areas in the context of intraday price forecasting.

Firstly, a brief overview of the most relevant existing academic research on the

topic of electricity price forecasting is presented in Chapter 1. Secondly, Chapter 2

provides the reader with a general background on structure and functioning of the

electricity market in the Baltic and Nordic regions. Next, Chapter 3 outlines the

process of data collection, pre-processing, aggregation and performs data explo-

ration. In Chapter 4, the methodology and framework of forecasting is introduced

and explained. Lastly, results and discussion is presented in Chapter 5.

6

1 Literature review

This chapter provides an overview of the most relevant existing literature on elec-

tricity price forecasting (EPF). Chapter 1.1 discusses the developments in use of

statistical methods in day-ahead EPF. Chapter 1.2 focuses on the intraday price

forecasting and Chapter 1.3 discusses explanatory variable selection in intraday

EPF.

1.1 Day-ahead price forecasting

Lago et al. (2021) outline three main branches of methods for EPF – statistical,

deep learning (or more generally, machine learning) and hybrid methods. According

to the authors, most models in the statistical methods class rely on linear regression

and represent the dependent (or output) variable, i.e. price pd,h for day d and

hour h, by a linear combination of independent variables and usually also contain

autoregressive terms.

In the field of statistical methods, Lago et al. (2021) argue that the most relevant

key contribution in recent years has been the application of linear regression models

with a large number of input features that utilize regularization techniques, such

least absolute shrinkage and selection operator (LASSO) or its generalization the

elastic net. LASSO regression will be further introduced in Chapter 4.3. While

LASSO regression can be considered a machine learning technique by some authors,

Lago et al. (2021) classify it as statistical as the underlying model is autoregressive.

One of the most notable research papers to apply these regularization methods

in day-ahead EPF and achieve state-of-the-art results was authored by Uniejew-

ski, Nowotarski, and Weron (2016), who were one of the first to develop LASSO-

estimated models for a large set of predictors consisting of both autoregressive and

exogenous variables in this context. This model was also included in the empirical

study of Lago, De Ridder, and De Schutter (2018), in which 27 of the most promis-

7

ing methods for predicting prices on the Belgium day-ahead market were evaluated.

While the authors found that in general, deep learning models outperform the more

traditional statistical methods, they also show that models employing LASSO or

elastic net regularization outperform all other statistical methods. Lago et al. (2021)

argue that despite slightly lower forecasting accuracy of LASSO-models compared

to deep neural network (DNN) models, their advantage of up to 100 times lower

computational costs over DNN models makes them the best available option when

fast decision-making and low complexity are of the highest priority.

1.2 Intraday price forecasting

So far, a vast majority of research and its applications have concerned day-ahead

electricity prices (Marcjasz, Uniejewski, and Weron, 2020). When it comes to fore-

casting intraday electricity prices in European power markets, the literature is very

scarce (Uniejewski, Marcjasz, and Weron, 2019). However, recent years have seen

a shift in research focus to intraday price forecasting due to its increasing impor-

tance in balancing the demand and supply of electricity (Marcjasz, Uniejewski, and

Weron, 2020).

Uniejewski, Marcjasz, and Weron (2019) were one the first to publish a research pa-

per on intraday EPF in the context of a European power market. More specifically,

they consider 12 different models for predicting the ID-3 Price index (a widely used

measure for intraday electricity prices) on the German EPEX market. They find

that for an appropriately chosen value of the complexity parameter, the LASSO

model significantly outperforms alternative models.

However, Narajewski and Ziel (2020) also conduct an empirical study on intraday

EPF on the German market, but with controversial results. They conclude that

the German market for hourly intraday products is weak-form efficient, meaning

in fact the most recent transaction price is the best predictor and none of the more

8

complex models managed to significantly outperform the naïve most recent value.

In response to Narajewski and Ziel (2020), Marcjasz, Uniejewski, and Weron (2020)

publish another paper and show that it is in fact possible to build models that

significantly outperform the naïve benchmark. The authors develop a parameter-

rich model with four types of fundamental variables as inputs and show that the

naïve forecast can be significantly outperformed by combining (forecast averaging)

it with a prediction of a LASSO-estimated model.

Whereas the body of literature is starting to build up in the midst of fierce aca-

demic discussion regarding the German intraday electricity market, literature in

the context of Nordic, and especially Baltic markets is very scarce. To the best of

knowledge of the author of this thesis, there are only two works published on fore-

casting intraday prices in the Nordic area and none in the context of the Baltics.

Kolberg and Waage (2018) use deep learning to predict the volume-weighted av-

erage Elbas price over the period of six hours ahead of a given hour of power

delivery. In fact, this work is most closely related to the topic of this thesis, with

some key differences including the choice of bidding areas, prediction time (4 hours

vs 6 hours ahead of a delivery hour) and most importantly, the modelling tech-

nique (LASSO regression vs deep learning). Kolberg and Waage (2018) do actually

include LASSO as one of the simpler benchmark models in their work, but the

analysis is very limited as their research focus is clearly set on deep learning.

1.3 Variable selection in intraday EPF

Variable selection is a very important issue in EPF, and it may be even more crucial

for intraday markets than for day-ahead markets because of the vast amount of

data available (Uniejewski, Marcjasz, and Weron, 2019). The authors find in their

intraday study that the most important explanatory variables are the most recent

intraday price and the day-ahead price that corresponds to the same delivery hour.

9

In addition to the most recent intraday price and day-ahead price, Marcjasz,

Uniejewski, and Weron (2020) also include lagged hourly consumption and its day-

ahead forecast, lagged wind power generation and its day-ahead forecast and lagged

photovoltaic generation and its day-ahead forecasts in the model to beat the naive

benchmark (i.e. the most recent intraday price). Adding dummy variables as model

features to capture seasonal effects is also common, e.g. day of the week and hour

of the day as in Kolberg and Waage (2018).

10

2 Nordic-Baltic electricity market overview

The Nordic and Baltic electricity market can be divided into financial and physical

power markets. This thesis sets the focus on the physical market, which contains

day-ahead, intraday, and regulating power markets. (Spodniak, Ollikka, and Honka-

puro, 2021)

Trading on the day-ahead and intraday markets in the Baltic and Nordic countries

is provided to market participants by Nord Pool. In addition, Nord Pool also offers

intraday trading to customers in UK, Germany, Poland, France, the Netherlands,

Belgium and Austria. (Nord Pool, 2021b)

The power market is divided into many bidding areas (see Figure 1). The different

bidding areas help to indicate constraints in the transmission systems and ensure

that regional market conditions are reflected in the price. Due to bottlenecks in

the transmission system, bidding areas may get different prices called area prices.

When there are constraints in transmission capacity between two bidding areas,

power will always go from the low price area to the high price area. (Nord Pool,

2021a)

2.1 Elspot market

The most important market by volume and liquidity is the day-ahead market,

known as the Elspot market (Spodniak, Ollikka, and Honkapuro, 2021).

The primary role of the Elspot market is to establish a balance between production

and consumption of electricity. This equilibrium is especially important in power

markets because of the inability to store electricity and the high costs and poten-

tially serious consequences associated with power outages. The day-ahead market

at Nord Pool is an auction-based exchange for physical delivery of electricity. (Nord

Pool, 2021d)

11

Figure 1: Nord Pool bidding areas. Source: Nord Pool (2021a)

Elspot follows a uniform price auction in which buyers and sellers submit their bids

by 12:00 CET the day before for each hour of power delivery the following day.

Information about the transmission capacities is made available for the day-ahead

auction at 10:00 CET by Nord Pool. Nord Pool then sets the hourly prices so that

equilibrium is expected between supply and demand in each of the following day’s

24 delivery hours. The day-ahead prices are published shortly after the auction.

Therefore, information about the next day’s hourly prices is available to market

participants 12 hours ahead of the first delivery hour (00:00–01:00 day ahead) and

up to 36 hours ahead of the last delivery hour (23:00–00:00 day ahead). (Spodniak,

Ollikka, and Honkapuro, 2021)

The theoretical Elspot price that balances overall supply and demand in a market

with no transmission grid congestion is called the system price. The system price

is used as a reference for trading in the financial electricity markets. However, in

12

practice, there are constraints on how much power can be transmitted between

different areas. As a result, the Nord Pool market is divided into the bidding areas

as seen on Figure 1. (Kolberg and Waage, 2018)

2.2 Elbas market

Elbas is a continuous market, on which market participants can trade every day

around the clock until one hour before power delivery, and in some cases right

up until the delivery hour (Nord Pool, 2021c). This allows market participants

to address errors in their consumption and production forecasts and adjust the

commitments to receive or deliver electricity made during the day-ahead auction

(Spodniak, Ollikka, and Honkapuro, 2021). Therefore, the Elbas market comple-

ments the day-ahead market by providing an opportunity to adjust imbalances, i.e.

deviations from the participants’ day-ahead promises, closer to real time (Kolberg

and Waage, 2018).

Elbas market opens at 14:00 CET the day before delivery (Spodniak, Ollikka, and

Honkapuro, 2021), so market participants can start trading 10 hours before the

first delivery hour and up to 34 hours before the last delivery hour of the next

day. Market participants can place orders for 15-minute, 30-minute and hourly

products. A product in this context is the amount of electricity to be physically

delivered from the buyer to the seller during the given interval at the transaction

price. Prices are set based on a first-come, first-served principle, where best prices

come first, i.e. the highest buy price and lowest sell price. (Nord Pool, 2021c)

2.3 Regulating power market

Another alternative to the Elbas market for dealing with any imbalances emerging

after closing of the Elspot auction, is the regulating, or balancing, power market.

The regulating power market is run by local transmission system operators (TSOs).

TSOs are neutral market members, who are responsible for the stable operation of

13

the electrical grid (Nord Pool, 2021e).

However, the Baltic and Nordic countries belong to two different synchronous areas,

which are subject to different regulating power market rules. Finland, Sweden,

Denmark and Norway form the Nordic synchronous area and Estonia, Latvia and

Lithuania form the Baltic synchronous area (Scharff and Amelin, 2016). Due to

data availability and differences in methods for balancing, this work only focuses

on the Nordic regulating market as data regarding this area has far more impact

on the thesis’ objective.

The purpose of the regulating market is to secure a constant balance of supply

and demand at all times. Electricity producers with flexible power generation can

submit bids to the regulating market, which in case of imbalances are activated.

Submission of regulating bids for market participants opens at 13:00 CET the day

before and closes 45 minutes before the delivery hour. (Kolberg and Waage, 2018)

The clearing methodology is marginal pricing based on the most expensive up-

regulation bid or the lowest down-regulation bid activated during the operation

hour. Transmission system operators can order up- or down-regulation from the

regulating energy market according to the power system requirements, where up-

regulation can be achieved by increasing production or reducing consumption, and

down-regulation by reducing production or increasing consumption. Additionally,

the up- and down-regulation prices also serve as the basis for imbalance prices in the

imbalance settlement process, which arises due to the difference between planned

and actual physical power delivery. After the delivery hour, deviations between the

consumption and production balance responsible bids and the actual amount of

electricity provided/used are determined. Local TSOs serve as open suppliers for

the balance responsible parties (BRPs) that are obligated to purchase or sell these

imbalances to/from the TSO. (Spodniak, Ollikka, and Honkapuro, 2021)

14

2.4 Importance of the Elbas market

As the topic of the thesis is intraday price forecasting, the importance of the El-

bas market should be further discussed. With the increasing amount of renewable

energy production, interest in trading in the intraday markets is increasing, as it be-

comes more and more challenging for market participants to avoid imbalances due

to the variable nature of renewable energy sources, such as wind and solar power.

Being balanced on the network closer to delivery time is beneficial for market par-

ticipants and for power systems alike by, among other reasons, reducing the need

for reserves and associated costs. In addition, the intraday market is an essential

tool that allows market participants to take unexpected changes in consumption

and outages into account. (Nord Pool, 2021c)

The remainder of the chapter is based on the work of Scharff and Amelin (2016).

There are several reasons as to why intraday trading can be considered beneficial

by market participants. Firstly, it acts as a way to reduce imbalance costs to which

market participants are subject to when supplying more or less electricity than

previously scheduled. These imbalance costs can be an important incentive for

all market participants to forecast production and consumption as accurately as

possible as well as to trade based on these forecasts. Reducing imbalance volumes

also helps to hedge against the uncertainty of the imbalances prices, which might

be significantly less favourable than day-ahead prices.

Secondly, market participants are motivated by the possibility to optimise their

own supply and demand schedules, e.g. by buying energy to cut down generation

in their own power plant that would be more costly to run otherwise.

Finally, intraday trading can also be utilised to offer flexibility in own production

or consumption to other market participants who are willing to pay more relative

to the costs of running and rescheduling of the power plants.

15

The benefits of intraday trading from the power grid’s perspective is that it can

reduce the volume of activated balancing services. For example in such a case

when errors related to variable renewable energy, such as wind power generation,

can be mitigated shortly before the delivery hour. Here, intraday trading can be

helpful because wind power forecasts updated on the day of the delivery hour are

on average more accurate than the forecasts made the day before.

16

3 Data

This section gives an overview of all of the data used in this thesis, such as its

original format and pre-processing steps required for turning it into suitable format

for model development. Furthermore, some of the most interesting aspects of the

data set are visualised and discussed in Chapter 3.4.

All data collection, manipulation and exploration was done using R software.

Scripts developed for data collection and pre-processing have been presented in

Appendix 2 and code for data exploration and visualisation is shown in Appendix

3.

3.1 Data collection and filtering

All of the necessary market data was provided by Nord Pool through its FTP server.

The aim of data collection is to create a set of time series of hourly resolution for

each of the model variables from 1st of January 2016 to 31st of December 2020.

Including two leap years, this makes up a total of 43848 hours (observations) over 5

years of data. However, since some variables of the model require past information

to be used, such as the autoregressive terms or forecast errors, the data collected

actually starts from 25th of December 2015. A full explanation of the variables

derived from data is provided in Chapter 4.6.

Due to the geographical focus of the thesis, data relevant only to the bidding areas

of EE, LV, LT, FI, DK1-DK2 and SE1-SE4 is collected. Note that Norwegian areas

(NO1-NO5) have been intentionally left out as they differ significantly from other

areas in terms of its power generation mix, which is exceptionally reliant on hydro

energy. As such, it is believed that the set of variables considered in this thesis is

not suitable for modelling Norwegian intraday prices.

As a very first step, all relevant files and folders were simply copied from the server

17

to a local computer. Then, R scripts were developed to read data correctly into the

R environment and filter out relevant data. The following data was collected:

• Elbas ticker data. This data is provided as daily CSV files and each file

contains all intraday transactions between all Nord Pool bidding areas on a

continuous basis for a given day. Each transaction contains the trade time,

product code, price, quantity, currency, both sides’ bidding area (i.e. buy and

sell areas) and whether the transaction was cancelled or not. The structure

of Elbas data actually changes mid-2018 to also allow for quarter-hourly

products being traded, which has to be taken into account. Firstly, Elbas

data is filtered to only contain data on hourly products and non-cancelled

trades. Secondly, transactions are filtered such that one of the sides (i.e.

buyer or seller) belongs to one of the bidding areas under focus. Then, for

each transaction, the transaction time, price (EUR/MWh), quantity (MWh),

buyer area, seller area, delivery hour and delivery date (derived from product

code) is extracted.

• Operating data. This data is provided as weekly SDV1 files for each of the

relevant countries separately on an hourly basis. Operating data is filtered to

contain the following variables for each available bidding area2 and for each

delivery hour:

– Total consumption (MWh)

– Day-ahead consumption prognosis (MWh)

– Total production (MWh)

– Day-ahead production prognosis (MWh)

– Settled wind production (MWh) excluding LT, FI, SE1-SE4

1SDV files in this context are similar to CSV files, but data points are separated with
semicolons. SDV files can be opened with a simple text editor software.

2For some areas, wind data was too sparse to impute the missing values and was omitted
completely for the area. Excluded areas are indicated below.

18

– Day-ahead wind production prognosis (MWh) excluding LT, FI

• Elspot prices. Elspot data i.e. the day-ahead hourly prices are provided as

weekly SDV files, 52-53 files per year. Whereas the files contain prices in

all local currencies as well, only prices in terms of EUR/MWh and for the

relevant bidding areas are collected. In addition, day-ahead system prices are

also collected.

• Regulating data. This data is provided similarly to Elspot prices, as weekly

SDV files. However, regulating data is only available for the Nordic price

areas (FI, DK, SE) due to reasons outlined in Chapter 2.3. Regulating data

contains the following variables for each available bidding area and for each

delivery hour:

– Down-regulating price (EUR/MWh)

– Up-regulating price (EUR/MWh)

– Imbalance settlement price for consumption (EUR/MWh)

– Imbalance purchase price for production (EUR/MWh)

– Imbalance selling price for production (EUR/MWh)

– Dominating regulation direction (1 = Up; -1 = Down; 0 = no regula-

tion)

3.2 Pre-processing

As a first step, after reading in all the necessary data, it was necessary to convert

everything to a tidy format, meaning there is only one row for each observation

(each delivery hour). This is important for being able to use R’s built-in libraries

for creating LASSO-estimated models. Before this can be done for the continuous

Elbas data, it has to be aggregated to an hourly level. The method of aggregation

is explained in Chapter 3.3.

19

Secondly, when dealing with hourly data, there is often an issue with the practice of

daylight savings time. In this context, it means that usually in March, when clocks

are turned one hour forward, there will be a missing hour, so data is available for

only 23 hours of that day. On the other hand, usually in October clocks are turned

one hour back and there will essentially be 25 hours in a day. To tackle this issue,

the example of Hinman and Hickey (2009) has been followed. The missing values

in spring have been interpolated by taking the average of the two neighbouring

values, whereas the "extra" hour in autumn is omitted. In case of further missing

values in predictor variables, related to the quality of data, linear interpolation has

been applied 3.

As a further note, it is worth mentioning that no outliers have been removed from

the data. Short-lived and generally unanticipated price spikes can be considered a

unique and important characteristic of the electricity market (Weron, 2014). Hence

it is important to train robust models that are as able to predict these spikes as

possible.

As a last step, all of the variables have to be merged into a single data structure

in R, which has 43848 rows. After this starts the model building process.

3.3 VWAP calculation

As most likely several or even hundreds of Elbas trades have been settled for each

hour of power delivery, a volume-weighted average price (VWAP) has to be cal-

culated as a measure of intraday price for a given delivery hour in the data set.

Following the example of Kolberg and Waage (2018), VWAP for a given delivery

hour at time t is defined as
3As an exceptional case, day-ahead total production and wind prognoses for EE are

missing for the entire day of 24.12.2019. Here it is assumed that the prognoses are equal
to the actual values for these 24 hours.

20

VWAPt =

∑n
i=1(Pi,t · Vi,t)∑n

i=1 Vi,t
,

where Pi,t is the price (EUR/MWh) and Vi,t is the volume (MWh) for trade i for

the delivery hour corresponding to time t. The total number of trades for time t is

n.

As mentioned in Chapter 2.2, the Elbas market opens at 14.00 CET the day before

delivery. Since the objective of this thesis is to predict the aggregate VWAP for the

4 hours preceding some delivery hour, it means that some trades for that hour have

likely already taken place. This is valuable information and can be used as one of

the predictor variables. Therefore, VWAP is split into near-VWAP and far-VWAP

based on the decision point in time (when the prediction is made), which is 4 hours

before the start of the delivery hour at time t. The output variable that is being

forecasted, is near-VWAP. This approach is similar to Kolberg and Waage (2018),

but with 4 hours as the dividing point instead of 6 hours before the start of delivery

hour.

For an example, let’s say we want to predict the near-VWAP of delivery hour

10, i.e. 09:00-10:00 today. The prediction for this is made at 05:00 and we aim to

predict the volume weighted average price of the trades made during the period

05:00-09:00. As one of the predictor variables, far-VWAP can be used, which is

based on trades made from 14:00 day before until 05:00 today. See Figure 2 for an

illustration of this example.

Figure 2: Illustration for the example of predicting near-VWAP for hour 10.

21

However, in some cases, it is also possible that no trades have taken place for some

delivery hour, either in the far-VWAP period, near-VWAP period or both periods.

In those situations, linear interpolation is used to derive the missing values, based

on the two adjacent values of the corresponding variables for both the previous and

next delivery hour. The fact that an aggregate near-VWAP is being predicted for

the entire Nordic-Baltic region helps to mitigate this issue to a manageable level.

In fact, the initial goal of the thesis was to attempt to predict near-VWAP for

each bidding area separately, but the low volume of trades, especially in the years

2016-2018 put a stop to that idea.

3.4 Data exploration

As a first step, data from the continuous Elbas market is explored. The intraday

trade price development throughout the day is perhaps best illustrated with an

example of a single delivery hour on a random day in the data set. Figure 3 displays

every trade with its price in EUR/MWh for delivery hour 22 (21:00-22:00) on

08.09.2019.

40

45

50

55

01:00 03:00 05:00 07:00 09:00 11:00 13:00 15:00 17:00 19:00
Time of trade

Tr
ad

e
pr

ic
e

(E
U

R
/M

W
h)

Figure 3: Elbas trades for delivery hour 22 of 08.09.2019.

Note that the trading activity seems to be lower in terms of number of trades

when there is more time until the delivery hour. As time approaches the delivery

22

hour, trading activity increases due to need to eliminate unforeseen imbalances

and trade prices seem to become more volatile. While this is an example of just

a single observation out of 43848 hours in the data set, similar characteristics can

be observed in case of other data points. This is one of the reasons why this type

of continuous Elbas trade data is transformed to a time series of volume-weighted

average price for each delivery hour in the data set.

Variability in trade price can be explained both by the inherent difference in price

levels across bidding areas and by the fact that sudden spikes in electricity prices

are rather common. The difference in mean trade prices across bidding areas is

further illustrated on Figure 4. It can be observed that the average trade price

tends to be higher in the Baltic bidding areas and lower in the Nordic areas with

the largest difference being almost 17 EUR/MWh on average between LV and SE2.

SE2

SE1

SE3

DK1

SE4

DK2

FI

LT

EE

LV

0 10 20 30 40
Average trade price (EUR/MWh)

B
id

di
ng

 a
re

a

Figure 4: Average price per buying area in EUR/MWh

By looking at Figure 5, one can observe that throughout the observed years, trading

activity on the Elbas market has increased both in terms of total number of trades

and volume traded. While volume has been on a moderate uptrend, number of

trades have multiplied across the years. This is likely due to increasing importance

of the Elbas market and the fact that since June 2018, Elbas intraday market was

extended to additional European areas besides just the Baltic and Nordic countries.

23

0

500 000

1 000 000

1 500 000

2016 2017 2018 2019 2020
Year

To
ta

l n
um

be
r

of
 tr

ad
es

0

2 000 000

4 000 000

6 000 000

8 000 000

2016 2017 2018 2019 2020
Year

To
ta

l v
ol

um
e

(M
W

h)

Figure 5: Left: Total number of trades in each of the years of the data set. Right:
Total volume in MWh in each of the years.

In further analysis of the different bidding areas under consideration, both buy

and sell volume is visualised by bidding area on Figure 6. Finland can be identified

as one of the most active counterparties by volume in Elbas trading as it has

bought the largest volume and sold the second largest volume of electricity in MWh.

Baltic areas are among the smaller counterparties as naturally their economies

and population consumes and produces less energy. Note that Elbas data under

consideration can contain other buying or selling bidding areas as well, such as

Germany. However, the focus is on the Baltic and Nordic countries and hence

other areas have been excluded from the figures.

Next, it would be interesting to gain insight on which of the 24 daily delivery hours

are most actively traded on the Elbas market. This has been illustrated on Figure

7. It can be seen that the number of trades tends to be lower for the delivery

hours of early morning and starts to ramp up starting from delivery hour 9, which

roughly corresponds to the start of regular office hours. The peak is reached at

delivery hour 17, which roughly corresponds to the end of regular office hours.

However, all of the intraday trades on the Elbas market will be used to construct

an aggregate measure of intraday price for the entire region during the 4 hours

24

LV

LT

EE

SE4

SE1

SE2

DK2

DK1

SE3

FI

0 1 000 000 2 000 000 3 000 000 4 000 000 5 000 000
Total volume (MWh)

B
uy

er
 a

re
a

EE

SE4

LV

LT

SE1

DK2

SE2

SE3

FI

DK1

0 2 000 000 4 000 000 6 000 000
Total volume (MWh)

S
el

le
r

ar
ea

Figure 6: Left: Volume (MWh) bought on Elbas by bidding area. Right: Volume
(MWh) sold on Elbas by bidding area.

prior to the delivery hour, which is the near-VWAP. One of the distinguishing

characteristics of electricity prices and therefore, also near-VWAP, is strong daily

seasonality. As an example, Figure 8 illustrates the development of near-VWAP

during a randomly chosen week from the data set. It can be observed that each

day, at least during the workdays, there seems to be 2 separate peak periods, of

which the first one roughly coincides once again with the start of regular office

hours and second one with the end of office hours.

The existence of these two daily peaks is further confirmed on Figure 9, which

displays the average near-VWAP for each of the 24 delivery hours. Higher near-

VWAP is associated with higher demand and vice-versa. On average, near-VWAP

is highest for delivery hour 9 and lowest for delivery hour 4.

Lastly, a summary of descriptive statistics for near-VWAP is presented in Table 1.

As will be explained in Chapter 4.2, the data set is divided into 3 parts - initial

calibration set, validation set and test set. Summary statistics are presented for

each of the data sets separately.

By far the biggest outlier of 701.77 EUR/MWh can be found in the test set. On

25

0

50 000

100 000

150 000

200 000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery hour

N
o

of
 tr

ad
es

Figure 7: No of trades regarding each delivery hour.

further inspection, this outlier belongs to delivery hour 20 on 15.09.2020, following

unexpected outages of several Swedish nuclear stations. Negative prices can be a

result of increased share of cheap and variable renewable energy in the energy mix

of the Baltic and Nordic markets, the lowest near-VWAP across the data sets being

-48.09 EUR/MWh.

Table 1: Summary statistics for near-VWAP

Data set Min 1st Qu. Median Mean 3rd Qu. Max SD NA’s

Initial
calibration
set

-22.12 22.12 28.09 29.71 34.92 221.60 12.55 11

Validation
set

3.21 27.35 30.12 30.55 33.13 72.65 7.28 0

Test set -48.09 25.86 35.42 35.82 45.35 701.77 17.43 56

26

30

40

50

60

70

22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00 10:00 16:00 22:00 04:00
Time of delivery hour

N
ea

r−
V

W
A

P
 (

E
U

R
/M

W
h)

Figure 8: Near-VWAP (EUR/MWh) over a course of week from the first delivery
hour of 02.09.2019 until the last delivery hour of 08.09.2019.

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery hour

N
ea

r−
V

W
A

P
 (

E
U

R
/M

W
h)

Figure 9: Average near-VWAP (EUR/MWh) per delivery hour.

27

4 Methodology

In this section the methodology used for forecasting intraday electricity prices will

be introduced. Chapter 4.1 discusses two different commonly used frameworks for

modelling electricity prices. Chapter 4.2 explains the rolling window scheme that

is used for model calibration. Chapters 4.3 and 4.4 discuss LASSO regression and

the method of choosing its complexity parameter. Chapter 4.5 introduces the error

metrics used for model training and comparisons to benchmark models, which are

discussed in Chapter 4.7. Chapter 4.6 describes all of the explanatory variables

used in the LASSO-estimated models.

All model building and evaluation was done using R software. The relevant R

scripts are presented in Appendix 4.

4.1 Univariate vs multivariate framework

In EPF literature, there exist two main methods for the representation of the

price series – univariate and multivariate frameworks4. Modelling implemented

in a multivariate fashion consists of separate models for each of the 24 delivery

hours, whereas within a univariate framework, one large model is constructed to

produce forecasts for each delivery hour using the same set of parameters (Ziel and

Weron, 2018). Based on Ziel and Weron (2018), the multivariate framework can be

formulated as
4Note that univariate and multivariate in this context is different from univariate and

multivariate regression analysis as described in the more classical regression literature. In
this thesis, whenever univariate or multivariate models or modelling is discussed, it is in
the context of models set in the univariate or multivariate framework as defined in the
EPF literature and Section 4.1.

28

yd,1 = f1(xd,1,1, xd,1,2, . . . , xd,1,p) + εd,1,

...

yd,24 = f24(xd,24,1, xd,24,2, . . . , xd,24,p) + εd,24,

where εd,h is the innovation (noise) term for day d and delivery hour h, fh(·)

are some functions of the explanatory variables xd,h,j and p is the total number of

explanatory variables used. The jth predictor belongs to a set of features introduced

in Chapter 4.6.

The univariate framework is defined (Ziel and Weron, 2018) as

yt = f(xt,1, xt,2, . . . , xt,p) + εt,

where εt is the innovation term at time t, and f(·) is some function of the explana-

tory variables xt,j . Time t can be defined as t = 24d+ h.

The fact that each load period (delivery hour) tends to display a rather distinct

price profile, reflecting the daily variations in demand, supply, costs and opera-

tional constraints speaks to the advantage of the multivariate model. However, the

disadvantage can be that the estimated set of models in the multivariate framework

might not take into account the potentially important dependencies between the

variables across different delivery hours. (Ziel and Weron, 2018)

Ziel and Weron (2018) perform an extensive empirical study on the two frameworks’

predictive abilities and argue that the results are inconclusive – the multivariate

models do not uniformly outperform the univariate models across all data sets,

seasons of the year or hours of the day, and is sometimes outperformed by the

latter. Hence, it is one of the objectives of this thesis to implement models both in

the univariate and multivariate framework and compare their forecast accuracy in

29

the context of Nordic-Baltic intraday electricity market.

4.2 The rolling window scheme

Following the example of many research articles 5 on electricity price forecasting, a

rolling window model calibration scheme is implemented. To account for seasonality

in data, Uniejewski and Weron (2018a) advise that the model calibration window

length should be a multiple of the weekly and annual periodicities, such as 364 or

728 days, corresponding to 1 and 2 years worth of data respectively. In this thesis,

a 364-day rolling window scheme and been chosen, such as in Marcjasz, Uniejewski,

and Weron (2020).

As a first step, the first 364 days of the data set is defined as the initial calibration

window (see Figure 10). In this case, data from first hour of 01.01.2016 to last

hour of 29.12.2016 is used for fitting the first model (models in case of multivariate

structure). Whether this corresponds to 364 hours of data or 24·364 = 8736 hours of

data depends on whether the model is univariate or multivariate. Using the fitted

models, predictions for the 24 hours of 30.12.2016 are made. Next, the window

is rolled forward by one day, all models are re-estimated and the next set of 24

predictions are made for 31.12.2016. This procedure is repeated until all forecasts

in both the validation set and test set have been made. The validation set is used for

model tuning and will be explained further in Chapter 4.4. Out-of sample test set

will be used for calculating error metrics (Chapter 4.5) for measuring the model’s

predictive abilities.

4.3 LASSO regression

LASSO (least absolute shrinkage and selection operator) regression is a regulariza-

tion method that shrinks the regression coefficients by imposing a penalty on their

5Uniejewski, Nowotarski, and Weron (2016), Narajewski and Ziel (2020), Marcjasz,
Uniejewski, and Weron (2020).

30

Figure 10: Initial calibration window, λ validation window and out-of-sample win-
dow

size. Hastie, Tibshirani, and Friedman (2009) define the LASSO estimate of model

coefficients as

β̂lasso = arg min
β
{1

2

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |},

where N is the total number of observations in the data set.

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage: the

larger the value of λ, the greater the amount of shrinkage. The coefficients are

shrunk toward zero. However, in the case of the LASSO, the penalty term has

the effect of forcing some of the coefficient estimates to be exactly equal to zero

when λ is sufficiently large. Hence, the LASSO performs variable selection. (Hastie,

Tibshirani, and Friedman, 2009)

Before applying regularization methods, James et al. (2013) recommend standard-

ising the predictors using the formula

x̃i,j =
xi,j√

1
N

∑N
i=1(xi,j − x̄j)2

,

31

where xi,j is the ith value of the jth predictor. The aim of this is for all the predictors

to have unit variance and all be on the same scale.

LASSO models are developed using the glmnet6 package in R. Note that the glmnet

package performs predictor variable standardisation by default.

4.4 Choice of LASSO parameter λ

For choosing the optimal LASSO hyperparameter λ, a commonly used setup in ma-

chine learning literature is considered. Namely, the data set is divided into training

set (i.e. the initial 364-day calibration window introduced in 4.2), validation set

(91 days or roughly quarter of a year) and test set (1372 days) as illustrated on

Figure 10. The validation set starts on 30.12.2016 and ends with the last hour of

30.03.2017. Multiple LASSO models are fit, each given a different λ parameter from

a predefined grid of values as their performance is evaluated on the validation set.

Depending on the modelling framework, two different grids of exponentially in-

creasing parameter λ values are considered. In case of univariate framework, the λ

grid is defined as λi = 10−
31−i

6 , i = 1, 2, . . . , 31, resulting in 31 values on a log-scale

ranging from 10−5 to 100. In case of univariate framework, the λ grid is defined as

λj = 10−
10−j

6 , j = 4, 5, . . . , 19, resulting in 16 values on a log-scale ranging from

10−1 to approximately 31.6.

The reasons for this difference of grid length and magnitude of values is mainly

due to limitation of computational resources. Firstly, the validation of multivariate

framework models was found to be quite a bit more time-consuming, hence a shorter

grid of 15 values is used. Secondly, by initial trial and error, it was found that the

best-performing multivariate models (on the validation set) tend to use larger λ

values.
6https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf

32

https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf

For each corresponding grid value, RMSE (see Chapter 4.5 for more information

on error metrics) is calculated for the entire validation period. In the univariate

framework, a single optimal λ is chosen for all 24 delivery hours based on the

lowest validation set RMSE. However, in the multivariate framework, it is possible

to find an optimal λ value for each of the 24 delivery hours since each hour is

modelled separately. These λ parameter values will then be used in the rolling

window modelling scheme for making forecasts in the test set.

While choosing the window length and method for the calibration of λ, computa-

tional speed has to be weighed against the possible gains in accuracy. Uniejewski

and Weron (2018b) argue that it is important to select a period of at least 60 days

for the calibration process. A 91-day validation window confirms to this rule of

thumb and also follows the example of Uniejewski, Nowotarski, and Weron (2016),

who used the same window length and validation set approach as this thesis. An

alternative for finding a fixed value of λ for the entire out-of-sample test set would

be to recalibrate the parameter daily throughout the test period, which according

to Uniejewski and Weron (2018b) does offer improved accuracy, but comes with

heavy and perhaps impractical computational requirements.

4.5 Error metrics

In order to choose optimal values for the parameter λ and make comparisons be-

tween different models, it’s important to define some error metrics. In the field of

EPF, the most widely used metrics to measure the accuracy of point forecasts are

the mean absolute error (MAE) and the root mean square error (RMSE) (Lago

et al., 2021).

MAE and RMSE for the univariate framework are defined as

33

MAE =
1

Nh

Nh∑
i=1

|ŷi − yi|,

RMSE =

√√√√ 1

Nh

Nh∑
i=1

(ŷi − yi)2,

where yi and ŷi are respectively the observed and forecasted price for the hour i,

Nh is the total number of hours in the data set under observation.

For the multivariate framework, Lago et al. (2021) define MAE and RMSE as

MAE =
1

24Nd

Nd∑
d=1

24∑
h=1

|ŷd,h − yd,h|,

RMSE =

√√√√ 1

24Nd

Nd∑
d=1

24∑
h=1

(ŷd,h − yd,h)2,

where yd,h and ŷd,h are respectively the observed and forecasted price for delivery

hour h (h = 1, . . . , 24) on day d, and Nd is the number of days in the data set

under observation.

In this thesis, RMSE (lower RMSE is desirable) is taken as the main criterion in

the model training process and comparison. RMSE is known to penalise bigger

errors more severely, hence, it is hoped that RMSE-based decisions would result

in more robust models that are able to handle the volatile nature of the electricity

market better than its MAE-based counterparts.

However, a case could also be made for using MAE for training the models, if the

model’s user has access to some kind of expert knowledge at times of unforeseen

price spikes or outages and could therefore rely on that, rather than model pre-

34

dictions. Furthermore, MAE can be considered more interpretable for forecasting

users and according to Lago et al. (2021), is a more accurate representation of

the underlying problem in most electricity market applications. For these reasons,

MAE is also calculated and presented for the reader of this thesis.

4.6 Choice of explanatory variables

One of the main advantages of using LASSO is that a potentially very large set of

predictors could be considered as it is able to perform feature selection.

Firstly, features to capture the daily and weekly seasonal effects on intraday prices

are included – dummy variables for weekday (1, . . . , 7) and delivery hour (1, . . . , 24).

This can be useful as each delivery hour tends to display a distinct profile in terms of

price, consumption and production. Furthermore, day of the week can play a role as

for example consumption profiles of workdays and weekends can differ significantly.

Note that the delivery hour dummy variable is only required for the univariate

model as each multivariate model only considers data for the same delivery hour.

Next, from the operating data (described in Chapter 3.1), last available errors

(i.e. the difference between day-ahead prognosis and realised value) and prognoses

of total production, wind production and consumption have been calculated and

added as model features (up to 6 features per bidding area, 52 in total). Note that

last available for errors here means the errors inherently have a 5-hour information

lag, from the moment when the prediction in made until the last second of the

delivery hour, which is forecasted. While for example the production prognosis has

been made available the day before, the realised production value is not available

at the time of decision - that is 5 hours prior to the end of that delivery hour.

Therefore, for instance if we want to predict near-VWAP for delivery hour 12

(11:00-12:00), the last available production error is for delivery hour 7 (06:00-

07:00), made available at 07:00am. It must be mentioned that this kind of lag

35

assumes almost instantaneous exchange of information and might be too short of a

delay in practice. Depending on the actual speed of data exchange, this lag would

have to be adjusted in a real-world setting. While the error is delayed, it is hoped

that it acts as a proxy for the general level of quality of weather, production and

consumption forecasts for the actual delivery hour.

For the Nordic bidding areas, all 6 variables of regulating data (as described in

Chapter 3.1) have been added as well, which have to be delayed in a similar manner

to errors of operating data for the same underlying reasons. This makes up a total

of 42 input variables in addition.

Furthermore, day-ahead prices, determined at the Elspot auction on the previous

day, should be a valuable source of information. Since the output variable near-

VWAP is an aggregate volume-weighted price over several bidding areas, day-ahead

prices for all the relevant areas have been included as predictor variables. In ad-

dition, the system price (theoretical equilibrium price in case of no congestion) is

included, which makes up a total of 11 new variables.

Finally, and perhaps most importantly, 7 additional features are added to include

information about past and last available near-VWAP as well as the available in-

formation about already settled intraday trades (at the time of prediction) for a

given delivery hour. Past near-VWAP information is introduced as two autoregres-

sive terms, at d− 1 and d− 7 (near-VWAP same hour one day ago and one week

ago). Following the same logic of lagged errors of operating data, 5-hour lagged

near-VWAP values and total transaction volume of the same period have also been

included. Regarding the already settled trade information, far-VWAP and total

volume during the far-VWAP period are included as predictors. But in addition

to far-VWAP, a feature called latest-VWAP is engineered as well. The far-VWAP

period can be up to 29 hours long, given the Elbas market opens at 14:00 the

day before and the end of the far-VWAP window for delivery hour 24 is at 19:00

36

pm. However, it is reasonable to believe that as we move closer to the delivery

hour in time, intraday transaction prices become more representative of the true

near-VWAP value. Latest-VWAP aims to capture that information as it is the

volume-weighted average price of the hour closest7 to (but before of) the time of

prediction. In some cases of low trading volume, it is possible that far-VWAP and

latest-VWAP are in fact the same, but mostly new information is introduced.

Therefore, in total as much as 114 predictor variables are fit in the LASSO-

estimated models. A comprehensive overview of all the model variables in a form

of a table is provided in Appendix 1.

4.7 Simple benchmark models

To assess whether the use of this parameter-rich LASSO-estimated model is jus-

tified in practice, it should be compared to some simple benchmark models that

require little time and resources to develop to see whether significantly improved

forecasting accuracy is achieved.

As perhaps the most logical choices of such benchmark, values of far-VWAP and

latest–VWAP variables for some delivery hour at time t could be considered as

naive forecasts for the same hour’s near-VWAP. For a comprehensive comparison,

SE3 day-ahead price8, 5-hour lagged near-VWAP and d − 1 near-VWAP are also

considered as simple benchmark models. The results are discussed in Chapter 5.1.

7To tackle the issue that some hours of intraday trading do not have any trades at all
regarding some delivery hour, VWAP is calculated separately for each of the 5 hours prior
to delivery hour, latest hour taking priority.

8SE3 day-ahead price was found to be the best simple benchmark in terms of MAE
and RMSE in the work of Kolberg and Waage (2018).

37

5 Results and discussion

This section presents the results of benchmark models and LASSO models set in

both univariate and multivariate framework, followed by discussion on forecast

performance and feature selection performed by the LASSO models.

5.1 Benchmark model results

For making conclusions about forecasting accuracy, it is usually most important to

compare model performance on completely unseen data, i.e. the test set. However,

looking at validation error metrics can also provide useful information, hence MAE

and RMSE are presented for both the validation set and test set in Table 2.

Table 2: Simple benchmark models results

Validation Test

Benchmark MAE RMSE MAE RMSE

Far-VWAP 3.118 4.791 4.355 8.088

Latest-VWAP 3.288 5.947 4.507 8.231

SE3 day-ahead price 3.401 5.452 5.825 10.408

d− 1 near-VWAP 5.419 7.702 8.961 15.034

h− 5 near-VWAP 5.616 8.053 9.998 16.031

It turns out that in terms of test set RMSE, far-VWAP performs the best with MAE

of 4.36 EUR/MWh and RMSE of 8.09 EUR/MWh. Second best, with comparable

results, is the latest-VWAP benchmark. The fact that these two models perform

the best, is in fact expected as they both are essentially versions of a naive9 forecast

for near-VWAP. By design, far-VWAP contains information about a larger number

of trades and might be the reason as to why it seems to outperform latest-VWAP

9i.e. the most recent intraday price, which was introduced as one of the most important
variables in Chapter 1.3.

38

by a small margin. The rest of the benchmark models demonstrate significantly

lower forecasting accuracy in the test set. Moving forward, far-VWAP benchmark

is chosen as the one to beat by the more complicated LASSO-estimated models.

In all cases, there is a noticeable difference in validation and test set performances,

the error metrics being higher in the test set. This seems to indicate that perhaps

the market conditions have become more volatile and simple benchmark models

are not able to explain this increased variability.

5.2 LASSO-estimated models results and discussion

MAE and RMSE for both univariate and multivariate frameworks are presented in

Table 3.

Table 3: LASSO models results

Validation Test

Framework MAE RMSE MAE RMSE

Univariate 2.584 3.955 3.831 6.989

Multivariate 5.162 6.987 8.403 12.709

Optimal λ parameter based on the lowest RMSE on the validation set in the uni-

variate framework is 0.01, i.e. the 19th value on the grid of 31 values as defined in

Chapter 4.4. In case of multivariate framework, optimal λ parameters were found

for each of the 24 delivery hours, which are presented in Appendix 5. The most

common λ across the hours is found to be approximately 4.64, i.e. the 11th value

on the grid of 16 values.

By looking at the error metrics, it is immediately clear that the univariate frame-

work outperforms the multivariate framework by a considerable margin as its

RMSE is 6.99 EUR/MWh, compared to multivariate’s RMSE of 12.71 EUR/MWh.

39

Forecasting accuracy of the univariate framework is also superior to the best bench-

mark model in both the validation and test set and in terms of both MAE and

RMSE. The improvement of the best performing LASSO model over the far-VWAP

benchmark is 0.524 EUR/MWh in terms of MAE and 1.099 EUR/MWh in terms

of RMSE, which is a roughly 13.6% decrease in RMSE. It can again be observed

that the error metrics of the validation set are lower than in the test set, which is

expected as the parameter λ is chosen such that it would minimise RMSE in the

validation set, whereas the test set comprises of completely unseen data.

However, such a low level of performance of the multivariate framework is surpris-

ing and quite disappointing – it is even outperformed by 3 of the 5 considered

benchmark models. Given this level of forecasting accuracy, it can be said that this

framework in its current form is not suitable for use in practice. In fact, the results

seem to indicate that it is a severe case of overfitting on the validation set. This

is most likely due to the combination of several factors. Firstly, a much smaller

number of observations is used to train each model10, whereas the number of pre-

dictor variables (114) is relatively high. Some of these predictors are categorical, so

the actual number of model coefficients to be estimated is even higher. Secondly,

the multivariate framework was allowed to fit much larger values of λ due to the

fact that these larger values were observed to achieve better validation set results.

However, as it turns out that, these very large λ values diminished nearly all model

coefficients to zero and achieved very poor test set results. Thirdly, it is likely that

the validation set, which only covers the first quarter of 2017, has become less rep-

resentative of the more recent times, i.e. the test set, due to changes in the market

environment.

To test out whether the reasoning behind overfitting holds true, another approach

in the implementation of the multivariate framework is considered. As a first step,

10Remember that 364 observations are used to train models in the multivariate frame-
work compared to 8736 in the univariate framework.

40

20 of the most important explanatory variables in the univariate framework are

determined, which is explained more in-depth in Chapter 5.3. Then, LASSO models

are fit under multivariate framework using the same methodology as previously,

but with two key differences - only these 20 most important features instead of the

entire set of 114 features are used and a vector of smaller λ parameters is defined for

the validation process. This new vector is defined as λk = 10−
19−i

6 , k = 1, 2, . . . , 15,

resulting in 15 values on a log-scale ranging from 10−3 to approximately 0.22. In

terms of magnitude of the values, they are similar to the ones originally defined for

the univariate framework.

It turns out that these two adjustments greatly improve the forecasting results of

the multivariate framework in the test set. In the validation set, MAE of 6.435

EUR/MWh and RMSE of 8.696 EUR/MWh is achieved, while the test set MAE is

3.917 EUR/MWh and RMSE is 7.178 EUR/MWh. The most commonly chosen λ is

approximately 0.22, the full table is provided in Appendix 5. So while multivariate’s

test set results are still slightly worse than univariate framework results, they are

now comparable and manage to beat all benchmark models. However, what is most

curious in this case is that the validation set errors seem to be larger than those

of the test set. Perhaps this confirms one of the initial suspicions, which is that

the validation set and test set represent market conditions that have become too

different. As a possibility for future research, a different approach to choosing the

appropriate λ parameter could be considered.

While the LASSO model in the univariate framework can be considered best overall,

it could also be interesting to evaluate performance across each of the daily 24

delivery hours. MAE and RMSE error metrics of the test set have been compared

for the best baseline model (i.e. far-VWAP benchmark), univariate LASSO model

and the best multivariate LASSO model per delivery hour on Figure 11.

As it can be seen, errors seem to be proportional to the average level of near-VWAP

41

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery hour

M
A

E
 (

E
U

R
/M

W
h)

Model Far−VWAP baseline Multivariate LASSO Univariate LASSO

5

7

9

11

13

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Delivery hour

R
M

S
E

 (
E

U
R

/M
W

h)
Model Far−VWAP baseline Multivariate LASSO Univariate LASSO

Figure 11: MAE and RMSE of the test set for each of the daily 24 delivery hours.

as illustrated on Figure 9. Furthermore, it looks as if the multivariate framework

can perform slightly better in some very early morning (hours 1–5) or late night

hours (hours 23-24), but in other hours, univariate is consistently more accurate.

As further research, it could be interesting to experiment combining predictions for

different delivery hours from both frameworks as a final forecast. As an additional

note, it must be mentioned that the extreme outlier of near-VWAP, identified in

Table 1, seems to have quite a significant effect on the entire RMSE of delivery

hour 20.

5.3 Variable selection

As the test set consists of 1372 days and the LASSO model is calibrated daily in

the univariate framework, 1372 models have been fitted as well. Each model can

perform feature selection, so by looking at the most frequently used variables across

the test set, one could gain important insight on the most important variables

for predicting intraday prices on the Nord Pool. Top 10 of the most frequently

used variables by the univariate LASSO model, accompanied by the number of

occurrences, are the following:

42

• Wind production error of DK1: 1372

• Production error of SE2: 1372

• Latest-VWAP: 1372

• FI day-ahead price: 1372

• Far-VWAP: 1372

• h− 5 near-VWAP: 1370

• d− 1 near-VWAP: 1370

• Day-ahead wind production prognosis of LV: 1369

• Production error of SE1: 1367

• Imbalance price for consumption of DK1: 1358

It can be seen that there are 5 variables, which were included in the LASSO model

for each and every one of the days in the test set. The fact that wind production

error of DK1 was one of them makes sense - DK1 is one of the largest wind power

generating areas on the Nord Pool and variable wind energy and its forecast errors

has been described as one of the main factors for the increasing importance of

intraday trading. Additionally, both of the variables used in the two best performing

benchmark models are always included, i.e. latest-VWAP and far-VWAP.

On the other hand, top 10 of the least frequently used variables by the univariate

LASSO model with the number of occurrences are the following:

• Down-regulating price of DK1: 282

• Down-regulating price of SE2: 291

• Imbalance selling price for production of SE2: 298

43

• Up as the dominating regulating direction of SE2: 311

• Up-regulating price of FI: 344

• Up as the dominating regulating direction of SE1: 415

• Day-ahead price of SE2: 482

• Down-regulating price of FI: 523

• Up as the dominating regulating direction of SE4: 544

• Imbalance settlement price for consumption of SE2: 555

It turns out that 9 out of 10 least used features belong to regulating data, pointing

to the weakest predictive capabilities of information coming from the regulating

market compared to all other sources of information. It is possible that all six

types of regulating data are highly correlated with each other and therefore just

the use of all of them is excessive.

The full list of variable frequency can be found in Appendix 6.

44

Conclusions

The recent shift of focus from the more traditional sources of electricity to vari-

able renewable energy has brought along larger price fluctuations and challenges

for keeping the system stable at all times and avoiding imbalance costs from the

perspective of the market participants. The Elbas intraday market offers an oppor-

tunity to adjust commitments made on the day-ahead market and trade electricity

very close to the delivery hour. Therefore, reliable and accurate intraday price fore-

casts can be crucial for market participants for making the best trading decisions.

The objective of the thesis was to provide a practical and robust statistical method

for predicting an aggregate volume-weighted average intraday price over the last

four hours prior to the delivery hour on the Nord Pool power exchange, limited to

Estonian, Latvian, Lithuanian, Finnish, Danish and Swedish price areas. The the-

sis succeeds in demonstrating how LASSO regression in combination with a large

variety of most recent information can be employed to generate forecasts that out-

perform the naive estimates for the intraday price. Of the two most commonly im-

plemented forecasting structures, the so-called univariate framework, where each of

the 24 delivery hours are forecasted based on the same set of model coefficients, has

been found to achieve higher forecasting accuracy. Regarding the use of the mul-

tivariate framework, several potential pitfalls have been identified and addressed.

Furthermore, it is hoped that the reader has been provided with useful insight

of the functioning of the Nordic-Baltic electricity market and the most important

explanatory variables for predicting intraday prices.

Future research could investigate alternative approaches to choosing an appropriate

λ parameter for the LASSO regression or perhaps implement neural network based

models known from the deep learning literature in the context of both Baltic and

Nordic intraday electricity markets.

45

References

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The ele-

ments of statistical learning: data mining, inference and prediction. 2nd ed.

Springer. url: https://web.stanford.edu/~hastie/ElemStatLearn/

printings/ESLII_print12_toc.pdf.

Hinman, Jennifer and Emily Hickey (2009). “Modeling and Forecasting Short-

term Electricity Load Using Regression Analysis”. In: url: https://irps.

illinoisstate.edu/downloads/research/documents/LoadForecastingHinman-

HickeyFall2009.pdf.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013).

An Introduction to Statistical Learning. 2nd ed. Springer. doi: https:

//doi.org/10.1007/978-1-4614-7138-7.

Kolberg, Johannes Krokeide and Kristin Waage (2018). “Artificial Intelli-

gence and Nord Pool’s intraday electricity market Elbas : a demonstration

and pragmatic evaluation of employing deep learning for price prediction

: using extensive market data and spatio-temporal weather forecasts”. In:

url: https://openaccess.nhh.no/nhh-xmlui/handle/11250/2560898.

Lago, Jesus, Fjo De Ridder, and Bart De Schutter (2018). “Forecasting spot

electricity prices: Deep learning approaches and empirical comparison of

traditional algorithms”. In: Applied Energy 221, pp. 386–405. doi: 10.

1016/j.apenergy.2018.02.069. url: https://linkinghub.elsevier.

com/retrieve/pii/S030626191830196X.

Lago, Jesus, Grzegorz Marcjasz, Bart De Schutter, and Rafał Weron (2021).

“Forecasting day-ahead electricity prices: A review of state-of-the-art algo-

rithms, best practices and an open-access benchmark”. In: Applied Energy

293, p. 116983. doi: 10.1016/j.apenergy.2021.116983. url: https:

//linkinghub.elsevier.com/retrieve/pii/S0306261921004529.

46

https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf
https://irps.illinoisstate.edu/downloads/research/documents/LoadForecastingHinman-HickeyFall2009.pdf
https://irps.illinoisstate.edu/downloads/research/documents/LoadForecastingHinman-HickeyFall2009.pdf
https://irps.illinoisstate.edu/downloads/research/documents/LoadForecastingHinman-HickeyFall2009.pdf
https://doi.org/https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/https://doi.org/10.1007/978-1-4614-7138-7
https://openaccess.nhh.no/nhh-xmlui/handle/11250/2560898
https://doi.org/10.1016/j.apenergy.2018.02.069
https://doi.org/10.1016/j.apenergy.2018.02.069
https://linkinghub.elsevier.com/retrieve/pii/S030626191830196X
https://linkinghub.elsevier.com/retrieve/pii/S030626191830196X
https://doi.org/10.1016/j.apenergy.2021.116983
https://linkinghub.elsevier.com/retrieve/pii/S0306261921004529
https://linkinghub.elsevier.com/retrieve/pii/S0306261921004529

Marcjasz, Grzegorz, Bartosz Uniejewski, and Rafał Weron (2020). “Beat-

ing the Naïve—Combining LASSO with Naïve Intraday Electricity Price

Forecasts”. In: Energies 13.7, p. 1667. doi: 10.3390/en13071667. url:

https://www.mdpi.com/1996-1073/13/7/1667.

Narajewski, Michał and Florian Ziel (2020). “Econometric modelling and

forecasting of intraday electricity prices”. In: Journal of Commodity Mar-

kets 19, p. 100107. doi: 10.1016/j.jcomm.2019.100107. url: https:

//linkinghub.elsevier.com/retrieve/pii/S2405851319300728.

Nord Pool (2021a). Bidding areas. url: https://www.nordpoolgroup.com/

the-power-market/Bidding-areas/ (visited on 11/05/2021).

– (2021b). Day-ahead and intraday power trading. url: https : / / www .

nordpoolgroup.com/trading/ (visited on 11/05/2021).

– (2021c). Intraday market. url: https://www.nordpoolgroup.com/the-

power-market/Intraday-market/ (visited on 06/04/2021).

– (2021d). Price formation. url: https://www.nordpoolgroup.com/the-

power - market / Day - ahead - market / Price - formation/ (visited on

11/05/2021).

– (2021e). The market members. url: https://www.nordpoolgroup.com/

the-power-market/The-market-members/ (visited on 11/05/2021).

Scharff, Richard and Mikael Amelin (2016). “Trading behaviour on the con-

tinuous intraday market Elbas”. In: Energy Policy 88, pp. 544–557. doi:

10.1016/j.enpol.2015.10.045. url: https://linkinghub.elsevier.

com/retrieve/pii/S0301421515301713.

Spodniak, Petr, Kimmo Ollikka, and Samuli Honkapuro (2021). “The im-

pact of wind power and electricity demand on the relevance of different

short-term electricity markets: The Nordic case”. In: Applied Energy 283,

47

https://doi.org/10.3390/en13071667
https://www.mdpi.com/1996-1073/13/7/1667
https://doi.org/10.1016/j.jcomm.2019.100107
https://linkinghub.elsevier.com/retrieve/pii/S2405851319300728
https://linkinghub.elsevier.com/retrieve/pii/S2405851319300728
https://www.nordpoolgroup.com/the-power-market/Bidding-areas/
https://www.nordpoolgroup.com/the-power-market/Bidding-areas/
https://www.nordpoolgroup.com/trading/
https://www.nordpoolgroup.com/trading/
https://www.nordpoolgroup.com/the-power-market/Intraday-market/
https://www.nordpoolgroup.com/the-power-market/Intraday-market/
https://www.nordpoolgroup.com/the-power-market/Day-ahead-market/Price-formation/
https://www.nordpoolgroup.com/the-power-market/Day-ahead-market/Price-formation/
https://www.nordpoolgroup.com/the-power-market/The-market-members/
https://www.nordpoolgroup.com/the-power-market/The-market-members/
https://doi.org/10.1016/j.enpol.2015.10.045
https://linkinghub.elsevier.com/retrieve/pii/S0301421515301713
https://linkinghub.elsevier.com/retrieve/pii/S0301421515301713

p. 116063. doi: 10.1016/j.apenergy.2020.116063. url: https://

linkinghub.elsevier.com/retrieve/pii/S030626192031494X.

Uniejewski, Bartosz, Grzegorz Marcjasz, and Rafał Weron (2019). “Under-

standing intraday electricity markets: Variable selection and very short-

term price forecasting using LASSO”. In: International Journal of Fore-

casting 35.4, pp. 1533–1547. doi: 10.1016/j.ijforecast.2019.02.

001. url: https://www.sciencedirect.com/science/article/pii/

S0169207019300123.

Uniejewski, Bartosz, Jakub Nowotarski, and Rafał Weron (2016). “Auto-

mated Variable Selection and Shrinkage for Day-Ahead Electricity Price

Forecasting”. In: Energies 9.8, p. 621. doi: 10.3390/en9080621. url:

https://www.mdpi.com/1996-1073/9/8/621.

Uniejewski, Bartosz and Rafał Weron (Aug. 2018a). “Efficient Forecasting of

Electricity Spot Prices with Expert and LASSO Models”. In: Energies 11,

p. 2039. doi: 10.3390/en11082039.

– (2018b). “Efficient Forecasting of Electricity Spot Prices with Expert and

LASSO Models”. In: Energies 11.8, p. 2039. doi: 10.3390/en11082039.

url: http://www.mdpi.com/1996-1073/11/8/2039.

Weron, Rafał (2014). “Electricity price forecasting: A review of the state-of-

the-art with a look into the future”. In: International Journal of Forecast-

ing 30.4, pp. 1030–1081. doi: 10.1016/j.ijforecast.2014.08.008. url:

https://linkinghub.elsevier.com/retrieve/pii/S0169207014001083.

Ziel, Florian and Rafał Weron (2018). “Day-ahead electricity price forecast-

ing with high-dimensional structures: Univariate vs. multivariate model-

ing frameworks”. In: Energy Economics 70, pp. 396–420. doi: 10.1016/

j.eneco.2017.12.016. url: https://linkinghub.elsevier.com/

retrieve/pii/S014098831730436X.

48

https://doi.org/10.1016/j.apenergy.2020.116063
https://linkinghub.elsevier.com/retrieve/pii/S030626192031494X
https://linkinghub.elsevier.com/retrieve/pii/S030626192031494X
https://doi.org/10.1016/j.ijforecast.2019.02.001
https://doi.org/10.1016/j.ijforecast.2019.02.001
https://www.sciencedirect.com/science/article/pii/S0169207019300123
https://www.sciencedirect.com/science/article/pii/S0169207019300123
https://doi.org/10.3390/en9080621
https://www.mdpi.com/1996-1073/9/8/621
https://doi.org/10.3390/en11082039
https://doi.org/10.3390/en11082039
http://www.mdpi.com/1996-1073/11/8/2039
https://doi.org/10.1016/j.ijforecast.2014.08.008
https://linkinghub.elsevier.com/retrieve/pii/S0169207014001083
https://doi.org/10.1016/j.eneco.2017.12.016
https://doi.org/10.1016/j.eneco.2017.12.016
https://linkinghub.elsevier.com/retrieve/pii/S014098831730436X
https://linkinghub.elsevier.com/retrieve/pii/S014098831730436X

Appendix 1. Market variables

Table 4: Explanatory variables

Dataset Variable Unit Lag
Near-VWAP one day ago EUR/MWh d− 1
Near-VWAP one week ago EUR/MWh d− 7

Elbas data Far-VWAP EUR/MWh
Far-VWAP volume MWh
Last available near-VWAP EUR/MWh h− 5
Last available near-VWAP volume MWh h− 5
Latest-VWAP EUR/MWh

Elspot data Elspot prices EUR/MWh
(per area)

Consumption prognosis MWh
Total production prognosis MWh

Operating data Wind production prognosis MWh
(per available area) Consumption prognosis error MWh h− 5

Total production prognosis error MWh h− 5
Wind production prognosis error MWh h− 5

Up-regulation price EUR/MWh h− 5
Down-regulation price EUR/MWh h− 5

Regulating data Imbalance consumption price EUR/MWh h− 5
(per Nordic area) Imbalance prod. price (purchase) EUR/MWh h− 5

Imbalance prod. price (sell) EUR/MWh h− 5
Dominating regulation direction 1 = Up; h− 5

-1 = Down;
0 = no regulation

Seasonal dummies Hour of day 1 . . . 24
Day of week 1 . . . 7

49

Appendix 2. R code for data collection and pre-

processing
1 library(tidyverse); library(lubridate); library(zoo)

2

3 #source for load_data function: https :// stackoverflow.com/questions

/23190280/

4 load_data <- function(path) {

5 files <- dir(path , pattern = ’\\.csv’, full.names = TRUE)

6 tables <- lapply(files , read_csv)

7 bind_rows(tables)

8 }

9

10 ##transform into tibble , change column names , filter to hourly products only

, filter to buy or sell areas under consideration only and omit

irrelevant columns

11 #for data after 13th of June 2018

12 prepare_data_post <- function(df, areas , columns) {

13 new_df <- as_tibble(df)

14 colnames(new_df) <- columns

15

16 new_df <- new_df %>%

17 filter ((buyer %in% areas | seller %in% areas) & type %in% c("P60MIN", "

PH")) %>%

18 select(-c(currency , cancelled , id, type))

19

20 new_df <- new_df %>%

21 mutate(timestamp = ymd_hms(new_df$trade_time , tz="UTC"),

22 delivery_day = ymd(substring(new_df$power_hour , 4, 11)),

23 delivery_hour = as.numeric(substring(new_df$power_hour , 13, 14))

24) %>%

25 select(-c(trade_time , power_hour)) %>%

26 relocate(timestamp , delivery_day , delivery_hour)

27

28 return(new_df)

29 }

30

31 #for data before 13th of June 2018

32 prepare_data_pre <- function(df, areas , columns) {

33 new_df <- as_tibble(df)

34 colnames(new_df) <- columns

50

35

36 new_df <- new_df %>%

37 filter ((buyer %in% areas | seller %in% areas), cancelled == 0) %>%

38 select(-c(currency , cancelled))

39

40 new_df <- new_df %>%

41 mutate(timestamp = ymd_hms(new_df$trade_time , tz="UTC"),

42 delivery_day = ymd(substring(new_df$type , 4, 11)),

43 delivery_hour = as.numeric(substring(new_df$type , 13, 14)),

44 product = substring(new_df$type , 1,2)

45) %>%

46 filter(product == "PH") %>%

47 select(-c(trade_time , type , product)) %>%

48 relocate(timestamp , delivery_day , delivery_hour)

49

50 return(new_df)

51 }

52

53 #calculate volume -weighted average price

54 calculate_vwap <- function(data) {

55 agg_data <- data %>%

56 group_by(delivery_day , delivery_hour) %>%

57 summarise(volume = sum(qty), vwap = round(sum(price*qty)/volume , 2))

58 return(agg_data)

59 }

60

61 far_vwap <- function(df, hours) {

62

63 new_df <- df %>%

64 mutate(end_time = ymd_h(paste(delivery_day , delivery_hour)),

65 interval = floor(difftime(end_time , timestamp , units = "hours")))

%>%

66 filter(interval > hours)

67

68 new_df <- calculate_vwap(new_df)

69 return(new_df)

70 }

71

72 near_vwap <- function(df, hours) {

73

74 new_df <- df %>%

51

75 mutate(end_time = ymd_h(paste(delivery_day , delivery_hour)),

76 interval = floor(difftime(end_time , timestamp , units = "hours")))

%>%

77 filter(interval <= hours)

78

79 new_df <- calculate_vwap(new_df)

80 return(new_df)

81 }

82

83 exact_vwap <- function(df, hours) {

84

85 new_df <- df %>%

86 mutate(end_time = ymd_h(paste(delivery_day , delivery_hour)),

87 interval = floor(difftime(end_time , timestamp , units = "hours")))

%>%

88 filter(interval == hours)

89

90 new_df <- calculate_vwap(new_df)

91 return(new_df)

92 }

93

94 #calculates the latest -vwap variable

95 latest_vwap_fn <- function(df) {

96 latest_price _5 <- exact_vwap(df, 5)

97 latest_price _6 <- exact_vwap(df, 6)

98 latest_price _7 <- exact_vwap(df, 7)

99 latest_price _8 <- exact_vwap(df, 8)

100 latest_price _9 <- exact_vwap(df, 9)

101

102 join_latest <- list(latest_price_5, latest_price_6, latest_price_7,

103 latest_price_8, latest_price _9) %>%

104 reduce(full_join , by = c("delivery_day", "delivery_hour"))

105

106 #more recent price info takes priority

107 join_latest$vwap.x[is.na(join_latest$vwap.x)] <- join_latest$vwap.y[is.na(

join_latest$vwap.x)]

108 join_latest$vwap.x[is.na(join_latest$vwap.x)] <- join_latest$vwap.x.x[is.

na(join_latest$vwap.x)]

109 join_latest$vwap.x[is.na(join_latest$vwap.x)] <- join_latest$vwap.y.y[is.

na(join_latest$vwap.x)]

110 join_latest$vwap.x[is.na(join_latest$vwap.x)] <- join_latest$vwap[is.na(

52

join_latest$vwap.x)]

111

112 join_latest <- join_latest[,c(1,2,4)]

113 names(join_latest)[3] <- "latest_vwap"

114 return(join_latest)

115 }

116

117 create_vwap_df <- function(data , hours) {

118 near_vwap_data <- near_vwap(data , hours)

119

120 far_vwap_data <- far_vwap(data , hours)

121

122 vwap_data <- full_join(far_vwap_data , near_vwap_data , by = c("delivery_day

", "delivery_hour"))

123 names(vwap_data)[3: length(vwap_data)] <- c("far_vol","far_vwap", "near_vol

", "near_vwap")

124

125 vwap_data$delivery_hour <- as.factor(vwap_data$delivery_hour)

126

127 vwap_data <- vwap_data %>%

128 ungroup () %>%

129 mutate(h5_near_vwap = lag(near_vwap , 5),

130 h5_near_vwap_vol = lag(near_vol , 5),

131 d1_near_vwap = lag(near_vwap , 24),

132 d7_near_vwap = lag(near_vwap , 168)) %>%

133 select(-near_vol) %>%

134 filter(year(delivery_day) >2015)

135 return(vwap_data)

136 }

137

138 prepare_elbas <- function(data _2015 , data _2016, data _2017, data _2018, data

_2019, data _2020, price_areas , names1 , names2){

139

140 data _2015 <- prepare_data_pre(data _2015, price_areas , names1)

141 data _2016 <- prepare_data_pre(data _2016, price_areas , names1)

142 data _2017 <- prepare_data_pre(data _2017, price_areas , names1)

143 data _2019 <- prepare_data_post(data _2019 , price_areas , names2)

144 data _2020 <- prepare_data_post(data _2020 , price_areas , names2)

145

146 #2018 first half data

147 data _2018a <- data _2018[1: which(is.na(data _2018) , arr.ind=TRUE)[1]-1,]

53

148 data _2018a <- data _2018a[, colSums(is.na(data _2018a)) == 0]

149 data _2018a <- prepare_data_pre(data _2018a, price_areas , names1)

150

151 #2018 second half data

152 data _2018b <- data _2018[which(is.na(data _2018) , arr.ind=TRUE)[1]: nrow(data

_2018) ,]

153 data _2018b <- data _2018b[, colSums(is.na(data _2018b)) == 0]

154 names _2018b <- c("power_hour", "currency", "price","qty", "buyer",

155 "seller", "cancelled", "trade_time", "type", "id")

156 data _2018b <- prepare_data_post(data _2018b, price_areas , names _2018b)

157

158 #merge 2018

159 data _2018 <- bind_rows(data _2018a, data _2018b)

160

161 elbas_data <- bind_rows(data _2015, data _2016, data _2017, data _2018, data

_2019, data _2020)

162 return(elbas_data)

163 }

164

165 ##### Elbas data #####

166 setwd("/Users/Roobu/Documents/University of Tartu/ L o p u t o o /data/")

167

168 #before 13th of June 2018

169 names1 <- c("trade_time", "type", "currency", "price",

170 "qty", "buyer", "seller", "cancelled")

171

172 #after 13th of June 2018

173 names2 <- c("trade_time", "type", "id", "power_hour", "currency", "price",

174 "qty", "buyer", "seller", "cancelled")

175

176 #restrict areas to EE,FI,SE,DK , LV , LT

177 price_areas <- c("EE", "FI", "SE1", "SE2", "SE3", "SE4", "DK1", "DK2", "LV",

"LT")

178

179

180 #2016 -2020 data , assumes working directory has been set correctly

181 data _2015 <- load_data("2015")

182 data _2016 <- load_data("2016")

183 data _2017 <- load_data("2017")

184 data _2018 <- load_data("2018")

185 data _2019 <- load_data("2019")

54

186 data _2020 <- load_data("2020")

187

188 elbas_data <- prepare_elbas(data _2015, data _2016, data _2017, data _2018, data

_2019, data _2020, price_areas , names1 , names2)

189

190

191 ###### VWAP variables ######

192 vwap_data <- create_vwap_df(elbas_data , 4)

193

194 join_latest <- latest_vwap_fn(elbas_data)

195 join_latest$delivery_hour <- as.factor(join_latest$delivery_hour)

196

197

198 ####### Operating data #######

199 setwd("/Users/Roobu/Documents/University of Tartu/ L o p u t o o /data/

operating")

200

201 sdv_fun <- function(filename , skip) {

202 op_data <- read.csv(filename , skip = skip , header = FALSE ,

203 as.is = TRUE , sep = ";", na.strings = "")

204 op_data <- op_data %>%

205 filter(V1 != "AL", V2 != "U") %>%

206 mutate(delivery_day = dmy(V6)) %>%

207 select(-c(V1, V3, V4, V6, V11 , V33)) %>%

208 relocate(delivery_day) %>%

209 filter(year(delivery_day) %in% c(2015:2020))

210 return(op_data)

211 }

212

213 load_data_sdv <- function(path , skip) {

214 files <- dir(path , pattern = ’\\.sdv’, full.names = TRUE)

215 tables <- lapply(files , sdv_fun , skip=skip)

216 bind_rows(tables)

217 }

218

219 op_data_fun <- function(path , skip , flag = FALSE) {

220 #specify folder

221 setwd(path)

222 #initiate dataframe with first year

223 for (year in c(2016:2020)){

224 if (flag == FALSE) {

55

225 flag = TRUE

226 first_df <- load_data_sdv(as.character(year), skip)

227 next

228 }

229 new_df <- load_data_sdv(as.character(year), skip)

230 first_df <- bind_rows(first_df, new_df)

231 }

232 return(first_df)

233 }

234

235 #for areas with all operating data available

236 tidy_sdv_wind <- function(op_data) {

237 names(op_data)[5: length(op_data)] <- c(1:24) #delivery hours

238 names(op_data)[2:4] <- c("code", "weekday", "area") #meaningful names

239

240 #change data types

241 op_data$weekday <- factor(op_data$weekday)

242 op_data [5: length(op_data)] <- lapply(op_data [5: length(op_data)], as.

numeric)

243

244 #turn 24 delivery hour columns into one column

245 op_data <- op_data %>%

246 pivot_longer(cols = -c(1:4), names_to = "delivery_hour", values_to = "

value") %>%

247 group_by(code , area , delivery_day) %>%

248 mutate(row = row_number ()) %>%

249 pivot_wider(names_from = code , values_from = value) %>%

250 select(-row) %>%

251 ungroup ()

252

253 op_data$delivery_hour <- as.factor(op_data$delivery_hour)

254

255 #create lagged error columns

256 #PE - Day -ahead production prognosis , P - Total production

257 #WE - Day -ahead wind production prognosis , WS - Settled wind production

258 #F - Total consumption , E - Day -ahead consumption prognosis

259 op_data <- op_data %>%

260 mutate(load_error = lag(E - ‘F‘, 5), prod_error = lag(PE - P, 5), wind_

error = lag(WE - WS , 5)) %>%

261 select(-c(‘F‘, P, WS)) %>%

262 filter(year(delivery_day) > 2015) %>%

56

263 pivot_wider(names_from = area , values_from = c("PE", "WE", "E", "load_

error", "prod_error", "wind_error"), names_sep = "_")

264

265 return(op_data)

266 }

267

268 #for areas that do not have wind data available

269 tidy_sdv_nowind <- function(op_data , columns) {

270 names(op_data)[5: length(op_data)] <- c(1:24) #delivery hours

271 names(op_data)[2:4] <- c("code", "weekday", "area") #meaningful names

272

273 #change data types

274 op_data$weekday <- factor(op_data$weekday)

275 op_data [5: length(op_data)] <- lapply(op_data [5: length(op_data)], as.

numeric)

276

277 #turn 24 delivery hour columns into one column

278 op_data <- op_data %>%

279 pivot_longer(cols = -c(1:4), names_to = "delivery_hour", values_to = "

value") %>%

280 group_by(code , area , delivery_day) %>%

281 mutate(row = row_number ()) %>%

282 pivot_wider(names_from = code , values_from = value) %>%

283 select(-row) %>%

284 ungroup ()

285

286 op_data$delivery_hour <- as.factor(op_data$delivery_hour)

287

288 #create lagged error columns , no wind error

289 op_data <- op_data %>%

290 mutate(load_error = lag(E - ‘F‘, 5), prod_error = lag(PE - P, 5)) %>%

291 select(-c(‘F‘, P)) %>%

292 filter(year(delivery_day) > 2015) %>%

293 pivot_wider(names_from = area , values_from = columns , names_sep = "_")

294

295 return(op_data)

296 }

297

298 #interpolate missing values linearly

299 missing_val <- function(df){

300 idx <- colSums(is.na(df)) != 0

57

301 df[, idx] <- na.approx(df[, idx])

302 new_df <- df %>%

303 mutate(across(where(is.numeric), round , 2))

304 return(new_df)

305 }

306

307 #read in all data

308 op_data_ee <- op_data_fun("/Users/Roobu/Documents/University of Tartu/

L o p u t o o /data/operating/estonia", 12)

309 op_data_fi <- op_data_fun("/Users/Roobu/Documents/University of Tartu/

L o p u t o o /data/operating/finland", 15)

310 op_data_dk <- op_data_fun("/Users/Roobu/Documents/University of Tartu/

L o p u t o o /data/operating/denmark", 19)

311 op_data_lv <- op_data_fun("/Users/Roobu/Documents/University of Tartu/

L o p u t o o /data/operating/latvia", 12)

312 op_data_lt <- op_data_fun("/Users/Roobu/Documents/University of Tartu/

L o p u t o o /data/operating/lt", 14)

313 op_data_se <- op_data_fun("/Users/Roobu/Documents/University of Tartu/

L o p u t o o /data/operating/sweden", 33)

314

315 ##### EE #####

316 #24.12.2019 PE and WE are missing , assume prognosis equals realised values

and derive PE and WE as such

317 where_christmas <- op_data_ee[op_data_ee$delivery_day == "2019 -12 -24"

,][3:4,]

318 where_christmas [,2] <- c("PE", "WE")

319 op_data_ee <- rbind(op_data_ee, where_christmas)

320

321 tidy_ee <- op_data_ee %>%

322 tidy_sdv_wind() %>%

323 missing_val()

324

325 ##### FI #####

326 tidy_fi <- op_data_fi %>%

327 filter(V2 %in% c("E", "F", "PE", "P")) %>% # no wind variables

328 tidy_sdv_nowind(c("PE", "E", "load_error", "prod_error")) %>%

329 missing_val()

330

331 ##### DK #####

332 tidy_dk <- op_data_dk %>%

333 filter(V2 %in% c("E", "F", "PE", "P", "WS", "WE"), V7 != "DK")# omit

58

regulating data for now

334

335 tidy_dk$V7[tidy_dk$V7 == "JY"] <- "DK1"

336 tidy_dk$V7[tidy_dk$V7 == "SJ"] <- "DK2"

337

338 tidy_dk <- tidy_dk %>%

339 tidy_sdv_wind() %>%

340 missing_val()

341

342 ##### SE #####

343 tidy_se <- op_data_se %>%

344 filter(V2 %in% c("E", "F", "PE", "P", "WE"), V7 != "SE") %>%

345 tidy_sdv_nowind(c("PE", "E", "WE", "load_error", "prod_error")) %>%

346 missing_val()

347

348 ##### LV #####

349 tidy_lv <- op_data_lv %>%

350 tidy_sdv_wind() %>%

351 missing_val()

352

353 ##### LT #####

354 tidy_lt <- op_data_lt %>%

355 filter(V2 %in% c("E", "F", "PE", "P")) %>%

356 tidy_sdv_nowind(c("PE", "E", "load_error", "prod_error")) %>%

357 missing_val()

358

359

360 #merge tidy_ee , tidy_lv, tidy_lt, tidy_fi , tidy_dk, tidy_se

361 op_merge <- list(tidy_ee, tidy_lv , tidy_lt, tidy_fi, tidy_dk , tidy_se) %>%

362 reduce(left_join , by = c("delivery_day", "weekday", "delivery_hour"))

363

364

365 ###### Day -ahead price data ######

366 sdv_spot_all <- function(filename , skip) {

367 spot_data <- read.csv(filename , skip = skip , header = FALSE ,

368 as.is = TRUE , sep = ";", na.strings = "")

369 spot_data <- spot_data %>%

370 mutate(delivery_day = dmy(V6)) %>%

371 relocate(delivery_day) %>%

372 select(-c(V1,V2 ,V3 ,V4,V6,V12 ,V34)) %>%

373 filter(year(delivery_day) %in% c(2015:2020) , V8 == "EUR") %>%

59

374 select(-V8)

375 return(spot_data)

376 }

377

378 load_spot_sdv <- function(path , skip) {

379 files <- dir(path , pattern = ’\\.sdv’, full.names = TRUE)

380 tables <- lapply(files , sdv_spot_all , skip=skip)

381 bind_rows(tables)

382 }

383

384 spot_data_fun <- function(path , skip , flag=FALSE) {

385 #specify folder

386 setwd(path)

387 #initiate dataframe with first year

388 for (year in c(2016:2020)){

389 if (flag==FALSE) {

390 flag = TRUE

391 first_df <- load_spot_sdv(as.character(year), skip)

392 next

393 }

394 new_df <- load_spot_sdv(as.character(year), skip)

395 first_df <- bind_rows(first_df, new_df)

396 }

397 return(first_df)

398 }

399

400 tidy_sdv_spot <- function(spot_data) {

401 names(spot_data)[4: length(spot_data)] <- c(1:24) #delivery hours

402 names(spot_data)[2:3] <- c("weekday", "area") #meaningful names

403

404 #change data types

405 spot_data$weekday <- factor(spot_data$weekday)

406 spot_data [4: length(spot_data)] <- lapply(spot_data [4: length(spot_data)],

gsub , pattern = ",", replacement = ".")

407 spot_data [4: length(spot_data)] <- lapply(spot_data [4: length(spot_data)],

as.numeric)

408

409 #turn 24 delivery hour columns into one column

410 spot_data <- spot_data %>%

411 filter ((area %in% c("NO1", "NO2", "NO3", "NO4", "NO5", "FRE")) == FALSE)

%>%

60

412 pivot_longer(cols = -c(1:3), names_to = "delivery_hour", values_to = "

value") %>%

413 filter(year(delivery_day) > 2015) %>%

414 pivot_wider(names_from = area , values_from = value , names_glue = "{area

}_spot")

415

416 spot_data$delivery_hour <- as.factor(spot_data$delivery_hour)

417 return(spot_data)

418 }

419

420 spot_data <- spot_data_fun("/Users/Roobu/Documents/University of Tartu/

L o p u t o o /data/elspot", 25)

421

422 tidy_spot <- spot_data %>%

423 tidy_sdv_spot() %>%

424 missing_val()

425

426

427 ###### Regulating data #######

428 regulating <- op_data_fun("/Users/Roobu/Documents/University of Tartu/

L o p u t o o /data/regulating", skip = 22)

429

430 tidy_regulating <- function(regu_data) {

431 names(regu_data)[5: length(regu_data)] <- c(1:24) #delivery hours

432 names(regu_data)[2:4] <- c("code", "weekday", "area") #meaningful names

433

434 regu_data <- regu_data %>%

435 filter(area %in% c("DK1", "DK2", "FI", "SE1", "SE2", "SE3", "SE4"))

436

437 #change data types

438 regu_data$weekday <- factor(regu_data$weekday)

439 regu_data [5: length(regu_data)] <- lapply(regu_data [5: length(regu_data)],

gsub , pattern = ",", replacement = ".")

440 regu_data [5: length(regu_data)] <- lapply(regu_data [5: length(regu_data)],

as.numeric)

441

442 #turn 24 delivery hour columns into one column

443 regu_data <- regu_data %>%

444 pivot_longer(cols = -c(1:4), names_to = "delivery_hour", values_to = "

value") %>%

445 group_by(code , area , delivery_day) %>%

61

446 mutate(row = row_number ()) %>%

447 pivot_wider(names_from = code , values_from = value) %>%

448 select(-row) %>%

449 ungroup ()

450

451 regu_data$delivery_hour <- as.factor(regu_data$delivery_hour)

452 regu_data$DD <- as.factor(regu_data$DD)

453

454 regu_data <- regu_data %>%

455 pivot_wider(names_from = area , values_from = c("RO", "RN", "RC", "RP", "

RS", "DD"), names_sep = "_") %>%

456 ungroup () %>%

457 mutate(across (4:45, lag , n=5)) %>%

458 filter(year(delivery_day) >2015)

459

460 return(regu_data)

461 }

462

463 regu_data <- regulating %>%

464 tidy_regulating () %>%

465 missing_val()

466

467 #due to na.approx approximating DD factors as well , deal with one 0,5 value

manually

468 regu_data[regu_data$DD_DK2 == " -0.5",]$DD_DK2 <- 0 #neutral value

469 regu_data <- regu_data %>% mutate(across (39:45 , factor))

62

Appendix 3. R code for data exploration and

visualisation
1 library(ggplot2)

2

3 #Division into initial calibration window , validation set and test set

4 ggplot(merge_all3 , aes(delivery_day , near_vwap))+

5 geom_line(color = "dodgerblue2") +

6 labs(x = "Date", y = "near -VWAP") +

7 scale_x_date(breaks = as.Date(c("2016 -01 -01", "2016 -12 -30", "2017 -03 -31",

"2020 -12 -31")),

8 guide = guide_axis(n.dodge=2))+

9 geom_vline(xintercept = as.numeric(as.Date("2016 -12 -30")), linetype=2)+

10 geom_vline(xintercept = as.numeric(as.Date("2017 -03 -31")), linetype=2)+

11 scale_y_continuous(breaks = seq(0, 600, by = 50)) +

12 annotate("text", x=as.Date("2016 -06 -01"), y=400, label= "Initial

calibration window") +

13 annotate("text", x=as.Date("2017 -03 -01"), y=400, label= "Lambda validation

") +

14 annotate("text", x=as.Date("2018 -07 -01"), y=400, label= "Out -of -sample

test period") +

15 theme_classic ()

16

17

18 #An example of Elbas trades for a given delivery hour: 08.09.2019 , hour 22

19 elbas_example <- elbas_data %>% filter(delivery_day == "2019 -09 -08",

delivery_hour == 22)

20

21 library(scales)

22 ggplot(elbas_example , aes(x=timestamp , y=price))+

23 geom_line(color="dodgerblue2")+

24 scale_x_datetime(labels = date_format("%H:00"), date_breaks = "2 hours") +

25 labs(x="Time of trade", y="Trade price (EUR/MWh)") +

26 theme_classic ()

27

28

29 #An example of two weeks of near -vwap

30 example_near_vwap <- merge_all3 %>%

31 filter(delivery_day >= "2019 -09 -02", delivery_day <= "2019 -09 -08") %>%

32 select(delivery_day , delivery_hour , near_vwap)

33

63

34 example_near_vwap$time <- ymd_h(paste(example_near_vwap$delivery_day ,

35 as.character(example_near_vwap$delivery_

hour),

36 sep = ","))

37

38 ggplot(example_near_vwap , aes(x=time , y=near_vwap))+

39 geom_line(color = "dodgerblue2")+

40 scale_x_datetime(labels = date_format("%H:00"), date_breaks = "6 hours") +

41 labs(y = "Near -VWAP (EUR/MWh)", x="Time of delivery hour")+

42 theme_classic ()

43

44 #Near -VWAP average for each of the 24 delivery hours

45 near_vwap_per_hour <- merge_all3 %>%

46 group_by(delivery_hour = factor(delivery_hour , levels = c(1:24))) %>%

47 summarise(avg_near_vwap = mean(near_vwap))

48

49 ggplot(near_vwap_per_hour , aes(x=delivery_hour , y=avg_near_vwap))+

50 geom_col(fill="dodgerblue2") +

51 labs(x="Delivery hour", y="Near -VWAP (EUR/MWh)") +

52 theme_classic ()

53

54 #Total volume per buyer and seller bidding area

55 price_areas <- c("EE", "FI", "SE1", "SE2", "SE3", "SE4", "DK1", "DK2", "LV",

"LT")

56 total_vol_buyer <- elbas_data %>%

57 filter(year(delivery_day) > 2015, buyer %in% price_areas) %>%

58 group_by(buyer) %>%

59 summarise(total_volume = round(sum(qty), 0))

60 total_vol_buyer$buyer <- as.factor(total_vol_buyer$buyer)

61

62 total_vol_seller <- elbas_data %>%

63 filter(year(delivery_day) > 2015, seller %in% price_areas) %>%

64 group_by(seller) %>%

65 summarise(total_volume = sum(qty))

66 total_vol_seller$seller <- as.factor(total_vol_seller$seller)

67

68 library(gridExtra)

69 buyer_plot <- ggplot(total_vol_buyer , aes(x=reorder(buyer , total_volume), y=

total_volume)) +

70 geom_col(fill="dodgerblue2")+

71 coord_flip() +

64

72 labs(y="Total volume (MWh)", x="Buyer area") +

73 scale_y_continuous(labels = number) +

74 theme_classic ()

75

76 seller_plot <- ggplot(total_vol_seller , aes(x=reorder(seller , total_volume),

y=total_volume)) +

77 geom_col(fill="dodgerblue2")+

78 coord_flip() +

79 labs(y="Total volume (MWh)", x="Seller area") +

80 scale_y_continuous(labels = number) +

81 theme_classic ()

82

83 grid.arrange(buyer_plot , seller_plot , ncol=2)

84

85

86 #Yearly total volume and no of trades

87 overall_volume <- elbas_data %>%

88 filter(year(delivery_day) > 2015) %>%

89 group_by(year = year(delivery_day)) %>%

90 summarise(total_volume = sum(qty), trades = n())

91

92 yearly_vol_graph <- ggplot(data = overall_volume , aes(x=year , y = trades)) +

93 geom_bar(stat = "identity", fill="dodgerblue2") +

94 labs(x="Year", y = "Total number of trades") +

95 scale_y_continuous(labels = number) +

96 theme_classic ()

97

98 yearly_trade_graph <- ggplot(data = overall_volume , aes(x=year , y = total_

volume)) +

99 geom_bar(stat = "identity", fill="dodgerblue2") +

100 labs(x="Year", y = "Total volume (MWh)") +

101 scale_y_continuous(labels = number) +

102 theme_classic ()

103

104 grid.arrange(yearly_vol_graph , yearly_trade_graph , ncol=2)

105

106

107 #No of trades across delivery hours

108 hour_trades <- elbas_data %>%

109 filter(year(delivery_day) > 2015) %>%

110 group_by(delivery_hour) %>%

65

111 summarise(trades = n())

112

113 ggplot(data = hour_trades , aes(x=delivery_hour , y = trades)) +

114 geom_bar(stat = "identity", fill="dodgerblue2") +

115 labs(x="Delivery hour", y="No of trades") +

116 scale_x_continuous(breaks = seq(1, 24, by = 1)) +

117 scale_y_continuous(labels = number) +

118 theme_classic ()

119

120

121 #Mean elbas trade price per buyer area

122 area_prices <- elbas_data %>%

123 filter(year(delivery_day) > 2015, buyer %in% price_areas) %>%

124 group_by(buyer) %>%

125 summarise(mean_price = mean(price))

126

127 ggplot(area_prices , aes(x=reorder(buyer , mean_price), y = mean_price)) +

128 geom_col(fill="dodgerblue2") +

129 coord_flip() +

130 labs(x="Bidding area", y="Average trade price (EUR/MWh)") +

131 theme_classic ()

132

133

134 ##### Summary statistics for near -VWAP

135 #on data that has not yet had its missing values imputed

136 training_set <- vwap_data %>% filter(delivery_day < "2016 -12 -30") %>%

arrange(delivery_day , delivery_hour)

137 validation_set <- vwap_data %>% filter(delivery_day >= "2016 -12 -30",

delivery_day < "2017 -03 -31") %>% arrange(delivery_day , delivery_hour)

138 test_set <- vwap_data %>% filter(delivery_day >= "2017 -03 -31") %>% arrange(

delivery_day , delivery_hour)

139

140 summary(training_set$near_vwap)

141 summary(validation_set$near_vwap)

142 summary(test_set$near_vwap)

143 rbind(sd(training_set$near_vwap , na.rm = TRUE),

144 sd(validation_set$near_vwap),

145 sd(test_set$near_vwap , na.rm = TRUE))

146

147

148

66

149 #MAE/RMSE per delivery hour compared for best 1) benchmark 2) univariate and

3) multivariate

150 #baseline

151 baseline_matrix <- matrix(baseline1_errors_test , ncol = 24, byrow = TRUE)

152 #univariate

153 uni_matrix <- matrix(uni_test_set_errors , ncol = 24, byrow = TRUE)

154

155 hour_wise_metrics <- function(error_matrix){

156 mae <- colSums(abs(error_matrix))/nrow(error_matrix)

157 rmse <- (colSums(abs(error_matrix)**2)/nrow(error_matrix))**(1/2)

158 return(cbind(mae ,rmse))

159 }

160

161 rmse_df <- data.frame("delivery_hour" = c(1:24) ,

162 "baseline" = hour_wise_metrics(baseline_matrix)[,2],

163 "Univariate" = hour_wise_metrics(uni_matrix)[,2],

164 "Multivariate" = hour_wise_metrics(mv_test_results_

small [[1]]) [,2])

165

166 mae_df <- data.frame("delivery_hour" = c(1:24) ,

167 "baseline" = hour_wise_metrics(baseline_matrix)[,1],

168 "Univariate" = hour_wise_metrics(uni_matrix)[,1],

169 "Multivariate" = hour_wise_metrics(mv_test_results_

small [[1]]) [,1])

170

171 rmse_graph <- ggplot(rmse_df, aes(delivery_hour))+

172 geom_line(aes(y=baseline , colour="Far -VWAP baseline"))+

173 geom_line(aes(y=Univariate , colour="Univariate LASSO"))+

174 geom_line(aes(y=Multivariate , colour="Multivariate LASSO"))+

175 labs(x="Delivery hour", y="RMSE (EUR/MWh)", colour="Model")+

176 scale_x_continuous(breaks = seq(1, 24, by = 1))+

177 scale_y_continuous(breaks = seq(1, 16, by = 2))+

178 theme_classic ()+

179 theme(legend.position = "bottom")

180

181 mae_graph <- ggplot(mae_df, aes(delivery_hour))+

182 geom_line(aes(y=baseline , colour="Far -VWAP baseline"))+

183 geom_line(aes(y=Univariate , colour="Univariate LASSO"))+

184 geom_line(aes(y=Multivariate , colour="Multivariate LASSO"))+

185 labs(x="Delivery hour", y="MAE (EUR/MWh)", colour="Model")+

186 scale_x_continuous(breaks = seq(1, 24, by = 1))+

67

187 scale_y_continuous(breaks = seq(1, 6, by = 1))+

188 theme_classic ()+

189 theme(legend.position = "bottom")

190

191 grid.arrange(mae_graph , rmse_graph , ncol=2)

68

Appendix 4. R code for LASSO and benchmark

models
1 library(tidyverse); library(lubridate); library(zoo); library(glmnet)

2

3 ####### merging all data frames #######

4

5 vwap_op_merge <- left_join(op_merge , vwap_data , by = c("delivery_day", "

delivery_hour"))

6

7 #missing value imputation

8 vwap_op_merge <- vwap_op_merge %>% missing_val()

9

10 merge_all <- left_join(vwap_op_merge , tidy_spot , by = c("delivery_day", "

weekday", "delivery_hour"))

11 merge_all2 <- left_join(merge_all , regu_data , by = c("delivery_day", "

weekday", "delivery_hour"))

12 merge_all3 <- left_join(merge_all2 , join_latest , by = c("delivery_day", "

delivery_hour"))

13 merge_all3 <- merge_all3 %>%

14 missing_val()

15

16 variables3 <- merge_all3 %>%

17 ungroup () %>%

18 select(-delivery_day)

19

20 #define initial training set , validation and test set

21 calibration_window <- 364

22 validation_window <- 91

23 test_window <- nrow(variables3)/24-(calibration_window+validation_window)

24

25

26 ###### Baseline models ######

27

28 calc_errors <- function(errors){

29 mae <- sum(abs(errors))/length(errors)

30 rmse <- (sum(errors**2)/length(errors))**(1/2)

31 return(cbind(mae , rmse))

32 }

33

34 y_var <- merge_all3$near_vwap

69

35 val_idx <- (24*calibration_window +1) :(24*(calibration_window+validation_

window))

36 test_idx <- (length(y_var) -24*test_window +1):length(y_var)

37

38 #baseline 1 - far -VWAP

39 baseline1_errors_val <- variables3$far_vwap[val_idx] - y_var[val_idx]

40 baseline1_errors_test <- variables3$far_vwap[test_idx] - y_var[test_idx]

41 baseline1_val <- calc_errors(baseline1_errors_val)

42 baseline1_test <- calc_errors(baseline1_errors_test)

43

44 #baseline 2 latest -VWAP

45 baseline2_errors_val <- variables3$latest_vwap[val_idx] - y_var[val_idx]

46 baseline2_errors_test <- variables3$latest_vwap[test_idx] - y_var[test_idx]

47 baseline2_val <- calc_errors(baseline2_errors_val)

48 baseline2_test <- calc_errors(baseline2_errors_test)

49

50 #baseline 3 SE3 price

51 baseline3_errors_val <- variables3$SE3_spot[val_idx] - y_var[val_idx]

52 baseline3_errors_test <- variables3$SE3_spot[test_idx] - y_var[test_idx]

53 baseline3_val <- calc_errors(baseline3_errors_val)

54 baseline3_test <- calc_errors(baseline3_errors_test)

55

56 #baseline 4 h-5 near -vwap

57 baseline4_errors_val <- variables3$h5_near_vwap[val_idx] - y_var[val_idx]

58 baseline4_errors_test <- variables3$h5_near_vwap[test_idx] - y_var[test_idx]

59 baseline4_val <- calc_errors(baseline4_errors_val)

60 baseline4_test <- calc_errors(baseline4_errors_test)

61

62 #baseline 5 d-1 near -vwap

63 baseline5_errors_val <- variables3$d1_near_vwap[val_idx] - y_var[val_idx]

64 baseline5_errors_test <- variables3$d1_near_vwap[test_idx] - y_var[test_idx]

65 baseline5_val <- calc_errors(baseline5_errors_val)

66 baseline5_test <- calc_errors(baseline5_errors_test)

67

68

69 ###### LASSO models ######

70

71 freq <- 24 #univariate model window rolled forward by 24 hours

72 lambda_vec_longer <- 10**(-(31-c(1:31))/6) #from 0.00001 to 1, for

univariate

73 lambda_vec_mv3 <- c(10**(-(10-c(4:19))/6)) #for initial multivariate

70

framework

74 lambda_vec <- 10**(-(19-c(1:15))/6) # from 0.001 to 0.22, for adjusted

multivariate framework

75

76

77 ##### UNIVARIATE #####

78

79 #this function builds a univariate model , given a index for lambda vector

80 build_validation_model <- function(x_vars , y_var , calibration_window ,

validation_window , freq , lambda , lambda_vec){

81

82 errors <- rep(NA, validation_window*freq)

83

84 #roll the window by 24 (freq) hours each model calibration

85 for (i in 0:(validation_window -1)) {

86 #set train and validation indexes , which will be used to index x_vars

and y_var

87 train <- (1+ freq*i):(freq*(calibration_window+i))

88 validation <- (freq*(calibration_window+i)+1):(freq*(calibration_window+

i+1))

89

90 #train a Lasso model on a 364-day calibration window aka training data

91 model <- glmnet(x_vars[train ,], y_var[train], alpha = 1, lambda = lambda

_vec[lambda])

92

93 pred <- predict(model , s = lambda_vec[lambda], newx = x_vars[validation

,])

94 errors [(1+i*freq):(i*freq+freq)] <- pred -y_var[validation]

95 }

96 return(errors)

97 }

98

99 #this function iterates over a given lambda vector and calls build_

validation_model

100 validate_lambda <- function(df, calibration_window , validation_window , freq ,

lambda_vec) {

101

102 start.time <- Sys.time()

103

104 y_var <- df$near_vwap

105 x_vars <- model.matrix(near_vwap~. , df)[,-1]

71

106

107 mae <- rep(NA ,length(lambda_vec))

108 rmse <- rep(NA ,length(lambda_vec))

109 error_matrix <- matrix(NA, nrow = validation_window*freq , ncol = length(

lambda_vec))

110

111 for (lambda in 1: length(lambda_vec)) {

112 errors <- build_validation_model(x_vars , y_var , calibration_window ,

validation_window , freq , lambda , lambda_vec)

113

114 error_matrix[,lambda] <- errors

115 mae[lambda] <- sum(abs(errors))/length(errors)

116 rmse[lambda] <- (sum(errors**2)/length(errors))**(1/2)

117 }

118

119 end.time <- Sys.time()

120 time.taken <- end.time - start.time

121 print(time.taken)

122

123 return(list(error_matrix , as.data.frame(cbind(lambda_vec , mae , rmse))))

124 }

125

126 #this model takes in a given lambda value and calculates prediction errors

on the test set

127 evaluate_test_set <- function(df , lambda , calibration_window , validation_

window , freq) {

128

129 start.time <- Sys.time()

130

131 test_window <- nrow(df)/24-(calibration_window+validation_window)

132 y_var <- df$near_vwap

133 x_vars <- model.matrix(near_vwap~. , df)[,-1] #drops the intercept , added

by glmnet automatically

134

135 predictions <- rep(NA, test_window*freq)

136 model_coefs <- matrix(nrow = test_window , ncol = ncol(x_vars)+1) #+1 for

intercept

137

138 #roll the window by 24 (freq) hours each model calibration

139 for (i in 0:(test_window -1)) {

140 #shift forward by validation window , assume validation is done

72

141 train <- (1+ freq*(validation_window+i)):(freq*(calibration_window+

validation_window+i))

142 #first test day is 24 hours of 2017 -03 -31

143 test <- (freq*(calibration_window+validation_window+i)+1):(freq*(

calibration_window+validation_window+i+1))

144

145 #train a Lasso model on a 364-day calibration window aka training data

146 model <- glmnet(x_vars[train ,], y_var[train], alpha = 1, lambda = lambda

)

147 model_coefs[(i+1) ,] <- matrix(coef(model))[,1]

148

149 pred <- predict(model , s = lambda , newx = x_vars[test ,])

150 predictions [(1+i*freq):(i*freq+freq)] <- pred

151 }

152 errors <- predictions - y_var[(length(y_var) -24*test_window +1):length(y_

var)]

153 coef_names <- dimnames(coef(model))[[1]] #save coefficient names once

154

155 end.time <- Sys.time()

156 time.taken <- end.time - start.time

157 print(time.taken)

158

159 return(list(cbind(predictions , errors), model_coefs , coef_names))

160 }

161

162

163 ###### MULTIVARIATE ######

164

165 #given an index for the lambda vector , builds the model

166 build_validation_model_mv <- function(x_vars , y_var , calibration_window ,

validation_window , freq , lambda , lambda_vec){

167

168 errors <- matrix(NA, nrow = validation_window , ncol = freq)

169

170 for (i in 0:(validation_window -1)) {

171 train <- (1+1*i):(1*(calibration_window+i))

172 validation <- (1*(calibration_window+i)+1) :(1*(calibration_window+i+1))

173

174 y_train <- y_var[train ,]

175

176 for (j in c(1:24)) {

73

177 x_train <- x_vars[x_vars$delivery_hour == j,][train ,] %>% select(-

delivery_hour)

178 x_train_matrix <- model.matrix(near_vwap~. , x_train)[,-1]

179

180 x_val <- x_vars[x_vars$delivery_hour == j,][validation ,] %>% select(-

delivery_hour)

181 x_val_matrix <- t(as.matrix(model.matrix(near_vwap~. , x_val)[,-1]))

182

183 y_var_train <- pull(y_train[,j]) #pull gets the vector from a tibble/

dataframe

184

185 #model is trained on the training set and prediction made on

validation set

186 #lambda here is an index for the vector of lambda values (lambda_vec)

187 model <- glmnet(x_train_matrix , y_var_train , alpha = 1, lambda =

lambda_vec[lambda])

188 pred <- predict(model , s = lambda_vec[lambda], newx = x_val_matrix)

189 errors[i+1,j] <- pred -pull(y_var[i+validation ,j])

190 }

191 }

192 return(errors)

193 }

194

195 #iterates over a vector of lambda values , calls build_validation_model_mv

each time

196 validate_lambda_mv <- function(df, calibration_window , validation_window ,

freq , lambda_vec) {

197

198 start.time <- Sys.time()

199

200 y_var <- df %>% select(c("delivery_hour", "near_vwap"))

201

202 y_var_mv <- y_var %>%

203 group_by(delivery_hour) %>%

204 mutate(row = row_number ()) %>% #has to be done for unique distinguishing

of each data point

205 pivot_wider(names_from = delivery_hour , values_from = near_vwap , names_

prefix = "hour") %>%

206 select(-row)

207

208 mae_matrix <- matrix(NA, nrow=length(lambda_vec), ncol=24)

74

209 rmse_matrix <- matrix(NA, nrow=length(lambda_vec), ncol=24)

210

211 #three -dimensional error array

212 error_array <- array(NA , c(validation_window , freq , length(lambda_vec)))

213

214 for (lambda in 1: length(lambda_vec)) {

215 errors <- build_validation_model_mv(df , y_var_mv, calibration_window ,

validation_window , freq , lambda , lambda_vec)

216

217 error_array[,,lambda] <- errors

218 mae_matrix[lambda ,] <- colSums(abs(errors))/nrow(errors)

219 rmse_matrix[lambda ,] <- (colSums(errors**2)/nrow(errors))**(1/2)

220 print(lambda) #for keeping track when code is running

221

222 }

223

224 end.time <- Sys.time()

225 time.taken <- end.time - start.time

226 print(time.taken)

227

228 return(list(mae_matrix , rmse_matrix , error_array))

229 }

230

231 #function parameter lambda has to be a vector of 24 indexes for lambda_vec

232 #assumes validation is done , calculates model errors on the test set

233 evaluate_test_set_mv <- function(df , lambda , calibration_window , validation_

window , freq , lambda_vec) {

234

235 start.time <- Sys.time()

236

237 test_window <- nrow(df)/24-(calibration_window+validation_window)

238

239 y_var <- df %>% select(c("delivery_hour", "near_vwap"))

240

241 y_var_mv <- y_var %>%

242 group_by(delivery_hour) %>%

243 mutate(row = row_number ()) %>% #has to be done for unique distinguishing

of each data point

244 pivot_wider(names_from = delivery_hour , values_from = near_vwap , names_

prefix = "hour") %>%

245 select(-row)

75

246

247 errors <- matrix(NA, nrow = test_window , ncol = freq)

248 model_coefs <- array(NA , c(test_window , 24,

249 dim(model.matrix(near_vwap~. , df %>% select(-

delivery_hour)))[2]))

250

251 for (i in 0:(test_window -1)) {

252 #shift forward by validation window , assume validation is done

253 train <- (1+1*(validation_window+i)):(1*(calibration_window+validation_

window+i))

254 test <- (1*(calibration_window+validation_window+i)+1):(1*(calibration_

window+validation_window+i+1))

255

256 y_train <- y_var_mv[train ,]

257

258 for (j in c(1:24)) {

259 #filter x variables to only contain data for given hour j

260 x_train <- df[df$delivery_hour == j,][train ,] %>% select(-delivery_

hour)

261 x_train_matrix <- model.matrix(near_vwap~. , x_train)[,-1]

262

263 #test set

264 x_val <- df[df$delivery_hour == j,][test ,] %>% select(-delivery_hour)

265 #transposing model matrix is necessary because R treats a single row

dataframe

266 #as a vector and a bug arises , which is fixed with t() command

267 x_val_matrix <- t(as.matrix(model.matrix(near_vwap~. , x_val)[,-1]))

268

269 y_var_train <- pull(y_train[,j])

270

271 model <- glmnet(x_train_matrix , y_var_train , alpha = 1, lambda =

lambda_vec[lambda[j]])

272 pred <- predict(model , s = lambda_vec[lambda[j]], newx = x_val_matrix)

273

274 errors [(i+1),j] <- pred -pull(y_var_mv[test ,j])

275 model_coefs[(i+1),j,] <- matrix(coef(model))[,1]

276 }

277

278 coef_names <- dimnames(coef(model))[[1]] #coefficient names saved once

279 print(i) #keeping track

280 }

76

281

282 end.time <- Sys.time()

283 time.taken <- end.time - start.time

284 print(time.taken)

285

286 return(list(errors , model_coefs , coef_names))

287 }

288

289 ##### Univariate results #####

290

291 #validation results

292 uni_val_results <- validate_lambda(variables3 , calibration_window ,

validation_window , freq , lambda_vec_longer)

293 #best lambda based on RMSE criteria

294 uni_lambda <- lambda_vec_longer[which.min(uni_val_results [[2]]$rmse)]

295 #test set results with previously found optimal lambda

296 uni_test_results <- evaluate_test_set(variables3 , uni_lambda , calibration_

window , validation_window , freq)

297

298 #validation set accuracy

299 uni_val_mae <- uni_val_results [[2]]$mae[which.min(uni_val_results [[2]]$rmse)

]

300 uni_val_rmse <- uni_val_results [[2]]$rmse[which.min(uni_val_results [[2]]$

rmse)]

301

302 #test set accuracy

303 uni_test_set_errors <- uni_test_results [[1]][,2]

304 test_set_accuracy <- calc_errors(uni_test_set_errors)

305

306

307 ###### Multivariate results ######

308

309 #validation set , initial lambda vector

310 mv_val_results <- validate_lambda_mv(variables3 , calibration_window ,

validation_window , freq , lambda_vec_mv3)

311

312 calc_mv_val_error <- function(mv_val_results) {

313 mv_val_rmse <- sum(apply(mv_val_results [[2]], 2, min))/24

314 mv_val_mae <- sum(apply(mv_val_results [[1]] , 2, min))/24

315 return(cbind(mv_val_mae ,mv_val_rmse))

316 }

77

317

318 calc_mv_val_error(mv_val_results)

319

320 #a vector of 24 indexes , each specifying the optimal lambda for all 24

delivery hours of the day

321 mv_lambda <- apply(mv_val_results [[2]], 2, which.min)

322 #test set results

323 mv_test_results <- evaluate_test_set_mv(variables3 , mv_lambda , calibration_

window , validation_window , freq , lambda_vec_mv3)

324

325 #RMSE of multivariate test set

326 (sum(abs(mv_test_results [[1]])**2)/(24*nrow(mv_test_results [[1]])))**(1/2)

327 #MAE of multivariate test set

328 sum(abs(mv_test_results [[1]]))/(24*nrow(mv_test_results [[1]]))

329

330

331 ##### Adjusted multivariate framework #####

332 #less variables and smaller lambda values

333

334 #occurrence of predictors in univariate framework is counted on all test set

days

335 coef_names <- uni_test_results [[3]]

336 model_coefs <- uni_test_results [[2]]

337 coef_count <- colSums(model_coefs != 0) #non zero coefficients

338 coef_percent <- coef_count/nrow(model_coefs)

339

340 coef_data <- as.data.frame(cbind(coef_names , coef_count , coef_percent))

341 coef_data$coef_count <- as.numeric(as.character(coef_data$coef_count))

342 coef_data$coef_percent <- as.numeric(as.character(coef_data$coef_percent))

343

344 #get top 20 variables , excluding intercept , which is the first element

345 top_sorted_coef <- coef_data[order(-coef_count) ,][2:21,]

346 #bottom 10 variables

347 bot_sorted_coef <- coef_data[order(coef_count) ,][1:10 ,]

348

349 top_sorted_coef_names <- as.character(top_sorted_coef$coef_names)

350 #manually rename factor variables , e.g. DD_FI1 to DD_FI

351 #because entire variable has to be chosen

352 top_sorted_coef_names[top_sorted_coef_names=="DD_FI1"] <- "DD_FI"

353 #last 3 are delivery_hour9 , delivery_hour12 , weekday7

354 #d7_near_vwap as 21st most frequent substitutes one of the delivery_hour

78

variables

355 top_sorted_coef_names <- top_sorted_coef_names [1:(length(top_sorted_coef_

names) -3)]

356 top _20_ coef_names <- c(top_sorted_coef_names , "delivery_hour", "weekday", "

d7_near_vwap")

357

358 #subset the main dataframe of x variables

359 variables3_small <- variables3[,top _20_ coef_names]

360 variables3_small$near_vwap <- variables3$near_vwap #add near -vwap (output)

as well

361

362 #smaller lambda values , from 0.001 to 0.215

363 mv_val_results_small <- validate_lambda_mv(variables3_small , calibration_

window , validation_window , freq , lambda_vec)

364 #validation set errors

365 calc_mv_val_error(mv_val_results_small)

366

367 #determine best lambdas

368 mv_lambda_small <- apply(mv_val_results_small [[2]], 2, which.min)

369

370 #test set results

371 mv_test_results_small <- evaluate_test_set_mv(variables3_small , mv_lambda_

small , calibration_window , validation_window , freq , lambda_vec)

372 #test set RMSE

373 (sum(abs(mv_test_results_small [[1]])**2)/(24*nrow(mv_test_results_small

[[1]])))**(1/2)

374 #test set MAE

375 sum(abs(mv_test_results_small [[1]]))/(24*nrow(mv_test_results_small [[1]]))

79

Appendix 5. Validated LASSO λ parameters in

case of multivariate framework

Table 5: LASSO parameter λ values for both the initial and adjusted model in the
multivariate framework.

Delivery hour Initial model λ’s Adjusted model λ’s

1 4.642 0.215
2 4.642 0.215
3 4.642 0.215
4 4.642 0.215
5 4.642 0.215
6 4.642 0.215
7 4.642 0.001
8 21.544 0.215
9 14.678 0.215
10 14.678 0.215
11 14.678 0.001
12 14.678 0.215
13 10.000 0.215
14 6.813 0.215
15 6.813 0.215
16 4.642 0.215
17 6.813 0.215
18 10.000 0.215
19 6.813 0.215
20 10.000 0.001
21 10.000 0.215
22 6.813 0.215
23 6.813 0.215
24 4.642 0.215

80

Appendix 6. Full list of variable selection

Table 6: Frequency of variables used in univariate LASSO models in the 1372-day
test period

Variable name Count Proportion

wind_error_DK1 1372 1.00

prod_error_SE2 1372 1.00

far_vwap 1372 1.00

FI_spot 1372 1.00

latest_vwap 1372 1.00

h5_near_vwap 1370 1.00

d1_near_vwap 1370 1.00

WE_LV 1369 1.00

prod_error_SE1 1367 1.00

RC_DK1 1358 0.99

DK1_spot 1352 0.99

load_error_DK2 1350 0.98

far_vol 1347 0.98

SP1_spot 1345 0.98

DD_FI1 1345 0.98

WE_DK1 1337 0.97

wind_error_DK2 1335 0.97

delivery_hour9 1328 0.97

delivery_hour12 1319 0.96

weekday7 1318 0.96

d7_near_vwap 1315 0.96

load_error_SE4 1313 0.96

prod_error_EE 1301 0.95

load_error_FI 1296 0.94

WE_EE 1290 0.94

delivery_hour14 1287 0.94

RS_DK1 1286 0.94

load_error_SE2 1271 0.93

81

Variable name Count Proportion

E_DK2 1269 0.92

PE_SE2 1269 0.92

prod_error_FI 1266 0.92

weekday6 1265 0.92

load_error_LV 1265 0.92

DK2_spot 1264 0.92

WE_SE3 1263 0.92

load_error_DK1 1260 0.92

E_FI 1259 0.92

weekday4 1252 0.91

delivery_hour18 1252 0.91

delivery_hour3 1246 0.91

delivery_hour13 1243 0.91

PE_SE3 1238 0.90

wind_error_EE 1232 0.90

RC_SE1 1232 0.90

load_error_SE3 1231 0.90

RS_DK2 1229 0.90

load_error_EE 1227 0.89

prod_error_LT 1225 0.89

delivery_hour11 1220 0.89

delivery_hour8 1210 0.88

prod_error_LV 1208 0.88

prod_error_DK2 1208 0.88

load_error_LT 1205 0.88

weekday3 1201 0.88

WE_SE1 1196 0.87

delivery_hour5 1190 0.87

delivery_hour4 1187 0.87

delivery_hour16 1185 0.86

prod_error_SE3 1176 0.86

82

Variable name Count Proportion

RC_DK2 1169 0.85

PE_LV 1167 0.85

delivery_hour22 1166 0.85

delivery_hour10 1164 0.85

wind_error_LV 1163 0.85

PE_FI 1151 0.84

PE_EE 1147 0.84

delivery_hour24 1144 0.83

RP_FI 1141 0.83

prod_error_DK1 1138 0.83

h5_near_vwap_vol 1137 0.83

PE_LT 1132 0.83

load_error_SE1 1129 0.82

DD_DK10 1125 0.82

delivery_hour23 1117 0.81

SE4_spot 1105 0.81

PE_DK2 1103 0.80

RC_FI 1103 0.80

weekday2 1095 0.80

PE_SE1 1094 0.80

delivery_hour20 1093 0.80

delivery_hour19 1090 0.79

weekday5 1089 0.79

RC_SE4 1073 0.78

DD_SE40 1073 0.78

E_DK1 1072 0.78

delivery_hour21 1071 0.78

delivery_hour7 1067 0.78

delivery_hour6 1052 0.77

DD_DK21 1042 0.76

PE_DK1 1037 0.76

83

Variable name Count Proportion

SE1_spot 1032 0.75

delivery_hour15 1029 0.75

RS_SE3 1029 0.75

delivery_hour17 1021 0.74

prod_error_SE4 1021 0.74

E_SE1 1014 0.74

WE_SE2 1012 0.74

RP_SE4 1005 0.73

DD_DK11 1000 0.73

DD_DK20 990 0.72

LT_spot 977 0.71

RP_DK2 976 0.71

WE_DK2 969 0.71

E_SE2 956 0.70

E_SE4 947 0.69

DD_FI0 934 0.68

RP_SE1 885 0.65

SE3_spot 879 0.64

E_LT 878 0.64

RP_DK1 873 0.64

delivery_hour2 867 0.63

RP_SE3 860 0.63

RO_DK1 846 0.62

DD_SE10 822 0.60

RO_SE1 813 0.59

PE_SE4 812 0.59

RC_SE3 811 0.59

RO_SE3 789 0.58

RS_SE4 783 0.57

LV_spot 755 0.55

RN_SE3 754 0.55

84

Variable name Count Proportion

RO_DK2 747 0.54

DD_SE31 741 0.54

DD_SE30 706 0.51

DD_SE20 702 0.51

E_LV 701 0.51

E_SE3 686 0.50

RN_DK2 684 0.50

RN_SE1 647 0.47

EE_spot 643 0.47

RO_SE4 643 0.47

RS_SE1 636 0.46

RS_FI 634 0.46

RO_SE2 586 0.43

WE_SE4 571 0.42

RN_SE4 561 0.41

E_EE 560 0.41

RP_SE2 557 0.41

RC_SE2 555 0.40

DD_SE41 544 0.40

RN_FI 523 0.38

SE2_spot 482 0.35

DD_SE11 415 0.30

RO_FI 344 0.25

DD_SE21 311 0.23

RS_SE2 298 0.22

RN_SE2 291 0.21

RN_DK1 282 0.21

Explanations for shorthand variable names in Appendix 5:

• RN – Regulating market: Down-regulating

85

• RO – Regulating market: Up-regulating

• RC – Imbalance price for consumption (used in settlement)

• RP – Imbalance price for production (purchase)

• RS – Imbalance price for production (sell)

• DD – Dominating regulation direction.

• E – Day-ahead consumption prognosis

• WE – Day-ahead wind production prognosis

• PE – Day-ahead production prognosis

• prod_error – Last known difference between production prognosis and actual

production

• load_error – Last known difference between consumption prognosis and ac-

tual consumption

• wind_error – Last known difference between wind production prognosis and

actual wind production

• area_spot – Day-ahead price for that area

86

Non-exclusive licence to reproduce thesis and make thesis public

I, Robert Pikmets,

1. herewith grant the University of Tartu a free permit (non-exclusive licence)

to reproduce, for the purpose of preservation, including for adding to the

DSpace digital archives until the expiry of the term of copyright, Forecasting

intraday electricity prices on the Nord Pool using LASSO, supervised by

Raul Kangro.

2. I grant the University of Tartu a permit to make the work specified in p. 1

available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives, under the Creative Commons li-

cence CC BY NC ND 3.0, which allows, by giving appropriate credit to the

author, to reproduce, distribute the work and communicate it to the public,

and prohibits the creation of derivative works and any commercial use of the

work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and

2.

4. I certify that granting the non-exclusive licence does not infringe other per-

sons’ intellectual property rights or rights arising from the personal data

protection legislation.

Robert Pikmets

25/05/2021

87

	Introduction
	Literature review
	Day-ahead price forecasting
	Intraday price forecasting
	Variable selection in intraday EPF

	Nordic-Baltic electricity market overview
	Elspot market
	Elbas market
	Regulating power market
	Importance of the Elbas market

	Data
	Data collection and filtering
	Pre-processing
	VWAP calculation
	Data exploration

	Methodology
	Univariate vs multivariate framework
	The rolling window scheme
	LASSO regression
	Choice of LASSO parameter
	Error metrics
	Choice of explanatory variables
	Simple benchmark models

	Results and discussion
	Benchmark model results
	LASSO-estimated models results and discussion
	Variable selection

	Conclusions
	References
	Appendix 1. Market variables
	Appendix 2. R code for data collection and pre-processing
	Appendix 3. R code for data exploration and visualisation
	Appendix 4. R code for LASSO and benchmark models
	Appendix 5. Validated LASSO parameters in case of multivariate framework
	Appendix 6. Full list of variable selection

