
1Tartu 2022

ISSN 2613-5906
ISBN 978-9916-27-074-5

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
38

G
A

M
A

L ELK
O

U
M

Y
	

Privacy-Enhancing Technologies for B
usiness Process M

ining

GAMAL ELKOUMY

Privacy-Enhancing Technologies
for Business Process Mining

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

38

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

38

GAMAL ELKOUMY

Privacy-Enhancing Technologies
for Business Process Mining

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Supervisor

Prof. Marlon Dumas
University of Tartu, Estonia

Opponents

Prof. Han van der Aa
University of Mannheim, Germany

Assist. Prof. Marwan Hassani
Eindhoven University of Technology, The Netherlands

The public defense will take place on December 12, 2022, at 10:15 a.m. at Delta
Building, Narva mnt 18, Room 1021.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright © 2022 by Gamal Elkoumy

University of Tartu Press
http://www.tyk.ee/

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in Computer Science on 2nd November, 2022 by the Council of
the Institute of Computer Science, University of Tartu.

ISSN 2613-5906
ISBN 978-9916-27-074-5 (print) ISBN 978-9916-27-075-2 (PDF)

ISSN 2806-2345 (PDF)i(print)

http://www.tyk.ee/

ABSTRACT

Process mining techniques enable organizations to analyze business process ex-
ecution traces to identify opportunities for improving operational performance.
The applicability of process mining techniques hinges on the availability of event
logs capturing the execution of a business process. These event logs may contain
private information in some use cases, particularly those involving customer-facing
processes. Data protection regulations, such as the GDPR, restrict the use of such
event logs for analysis purposes. In such cases, organizations need to deploy
Privacy-Enhancing Technologies (PETs) to strike a balance between the benefits
they get from analyzing these data and the requirements imposed on them by pri-
vacy regulations. In particular, this thesis aims to minimize re-identification risks
(e.g., singling out of individuals) when event logs are disclosed to a process analyst
within an organization and to enable the secure inter-organizational process analy-
sis. The main contributions of this thesis are four approaches that focus on applying
PETs to process mining to help organizations to achieve privacy-preserving process
mining. Each technique tackles a specific setting to provide the user with various
alternatives that best suit the situation at hand. We present event log anonymization
approaches that provide proven differential privacy guarantees. Also, we offer
an approach that adopts the secure multi-party computation protocol to enable
multiple organizations to analyze their shared logs jointly. We conduct an empirical
evaluation showing that the proposed approaches outperform the state-of-the-art
in terms of data utility (accuracy) loss and computational efficiency. Furthermore,
we provide the end user with GDPR-compliant open source tools to mitigate their
privacy risks.

5

CONTENTS

1. Introduction 12
1.1. Problem Statement . 13
1.2. Previous Work and Research Gaps 16
1.3. Research Method . 17
1.4. Contributions . 17
1.5. Outline . 19

2. Background 20
2.1. Privacy and Confidentiality . 20
2.2. Process Mining: Preliminaries 21
2.3. Group-based privacy Techniques (M1) 25
2.4. Differential Privacy (M2) . 26

2.4.1. Models of Computation 26
2.4.2. Formalizing Differential Privacy 26
2.4.3. Qualitative Properties of Differential Privacy 28

2.5. Secure Multi-party Computation (M3) 28

3. Privacy-Preserving Process Mining: Review and Conceptual Frame-
work 31

3.1. Threats for Privacy and Confidentiality in Process Mining 31
3.1.1. Re-identification Threats (T1) 32
3.1.2. Reconstruction Threats (T2) 33
3.1.3. Membership Disclosure Threats (T3) 33
3.1.4. Cryptanalysis Threats (T4) 34

3.2. Conceptual Model and Requirements of PPPM 34
3.3. Existing Approaches for Privacy-Preserving Process Mining . . . 37

3.3.1. Group-based Approaches 38
3.3.2. Differential Privacy Approaches 39
3.3.3. Cryptographic privacy models 40
3.3.4. Other studies on Privacy-Preserving Process Mining 40

3.4. Summary . 41

4. Differentially Private Event Logs: An Oversampling Approach 43
4.1. Attack Model . 44
4.2. Differential Privacy Mechanism 44

4.2.1. Event Log Representation 45
4.2.2. Privacy Mechanism . 47
4.2.3. Risk Quantification . 49

4.3. Computing Differentially Private Event Logs 52
4.3.1. ε Estimation . 52
4.3.2. Weighted Oversampling of Cases 53

6

4.3.3. Noise Injection . 54
4.3.4. Correctness proofs of Algorithm 1 54

4.4. Summary . 59

5. Differentially Private Release of Event Logs: An Under- and Oversam-
pling Approach 61

5.1. Approach . 61
5.1.1. Event Log State-Annotation 62
5.1.2. Prior Knowledge Estimation 62
5.1.3. Case Filtering . 64
5.1.4. ε Estimation . 64
5.1.5. Case Sampling . 67
5.1.6. Privacy Proof of Algorithm 2 70
5.1.7. Timestamp Compression 72

5.2. Software Implementation . 73
5.2.1. Functionality . 74
5.2.2. Maturity and Availability 75

5.3. Evaluation . 76
5.3.1. Evaluation Measures . 76
5.3.2. Event Logs . 77
5.3.3. Experiment Setup . 77
5.3.4. Results . 79
5.3.5. Evaluation Conclusion . 84

5.4. Summary . 85

6. Differentially Private Release of Event Logs: A Subsampling Approach 86
6.1. Approach . 86

6.1.1. Clipping rare Cases . 87
6.1.2. Event Log Subsampling 87
6.1.3. Subsamples Anonymization 88
6.1.4. Statistical Post-processing of SubSamples 89
6.1.5. Combining Subsamples 90
6.1.6. Event Log Anonymization Algorithm 91

6.2. Evaluation . 91
6.2.1. Evaluation Measures . 93
6.2.2. Event Logs . 93
6.2.3. Experiment Setup . 93
6.2.4. Results . 94

6.3. Summary . 95

7. Secure Multi-Party Computation for Inter-Organizational Process
Mining 96

7.1. Attack Model . 96
7.2. Approach . 97

7

7.2.1. Model for Inter-organizational Process Mining 97
7.2.2. MPC Architecture for Process Mining 98
7.2.3. Performance Optimizations 101

7.3. Software Implementation . 102
7.3.1. Overview of Shareprom 103
7.3.2. Tool Packaging and Maturity 104

7.4. Evaluation . 105
7.4.1. Event Logs . 105
7.4.2. Experimental Setup . 106
7.4.3. Results . 106

7.5. Summary . 108

8. Conclusion 110
8.1. Summary of Contributions . 110
8.2. Future work . 112

Bibliography 114

Acknowledgement 124

Sisukokkuvõte (Summary in Estonian) 125

Curriculum Vitae 127

Elulookirjeldus (Curriculum Vitae in Estonian) 128

List of original publications 129
Publications in the scope of the thesis 129
Publications out of the scope of the thesis 129

8

LIST OF FIGURES

1. Process discovery and conformance checking shown based on the
event log from Table 1. A process model in BPMN was discovered
and used for conformance checking towards the first trace of the log.
One of the events of the trace (Blood Test) should not have occurred
according to the model. 23

2. A frequency annotated DFG based on the combined results of process
discovery and conformance checking. When only considering the
presentation layer of the process mining application, the analyst may
only see such a visualization of the underlying event log. Occurrence
frequencies of activities (in black) and of the transitions between
activities (in gray) are added as annotation to the model. 23

3. A UML class diagram linking threats and requirements to the remain-
ing concepts used. 36

4. DAFSA of the event log in Table 5 47
5. Approach . 52
6. Approach . 61
7. Overview of Amun . 74
8. Upload an event log and anonymize it using a selected approach . 74
9. Variant Analysis comparison between Unrine. and Sepsis event logs

and their anonymized versions, with δ = 0.2, average ε = 1.31 for
Sepsis, and average ε = 2.87 for Unrine. The figures are zoomed by
70%. 83

10. Approach . 87
11. Aircraft ground handling process. 97
12. Overview of the proposed approach 99
13. Example of two event logs and their processing steps inside the system 100
14. Overview of Shareprom . 104
15. Example of two event logs and their processing steps inside the system 107

9

LIST OF TABLES

1. A fragment of a simplified event log obtained from a hospital: each
row corresponds to an event. 12

2. Research questions, requirements, thesis contributions and publica-
tions. 19

3. Summary of privacy-preserving process mining approaches w.r.t. the
requirements, the protection models, and the threats (the symbol
✓means fulfillment, ∗ means partial fulfillment, - means does not
fulfill, and NA stands for not applicable) 42

4. Example of an event log . 45
5. DAFSA State-Annotated Event log 48
6. DAFSA Transitions Contingency Table 48
7. DAFSA State-Annotated Event log 63
8. Filtered DAFSA State-Annotated Event log 65
9. DAFSA Transitions Contingency Table, and the generated Random

Noise every DAFSA Transition for δ=0.3 and estimated εd=1.238 67
10. Differentially Private Event Log with δ=0.3 73
11. Descriptive Statistics of Event Logs 78
12. Jaccard Distance for the output of different anonymization approaches.

A “-” means that the approach ran out of memory or timed out. . . 80
13. Earth Movers’ Distance for the output of different anonymization

approaches. A “-” means that the approach ran out of memory or
timed out. 81

14. Execution time experiment. The time is measured in minutes for an
input δ = 0.2. A “-” means that the approach ran out of memory or
timed out. 84

15. Earth Movers’ Distance for the output of different anonymization
approaches. A “-” means that the approach ran out of memory or
timed out, and A “N/A” means the engine returns an empty log. . . 94

16. Execution time experiment. The time is measured in seconds for an
ε
′ = 0.37. A “-” means that the approach ran out of memory or timed

out. 95
17. Event Logs for Evaluation . 105

10

LIST OF ABBREVIATIONS

Business Process Intelligence Challenge BPIC

Business Process Model and Notation BPMN

Contingency Table CT

Cumulative Distribution Function CDF

Deterministic Acyclic Finite State Automata DAFSA

Differential Privacy DP

Directly-Follows Graph DFG

Earth Movers’ Distance EMD

Garbled Circuit GC

Homomorphic Encryption HE

Hospital Information System HIS

Jaccard Distance JD

Multi-Party Computation MPC

Predicate Singling Out PSO

Prior Knowledge PK

Privacy-Enhancing Technologies PETs

Privacy-Preserving Process Mining PPPM

Renyi Differential Privacy RDP

Single-Instruction Multiple-Data SIMD

Social Security Number SSN

Structured Query Language SQL

Symmetric Mean Absolute Percentage Error SMAPE

eXtensible Event Stream XES

11

1. INTRODUCTION

In order to fulfill the needs of their customers and stakeholders, organizations need
to continuously optimize their day-to-day operations. One way of achieving this
continuous optimization imperative is by putting in place initiatives to understand,
analyze, redesign and monitor their business processes. A business process is
“a collection of inter-related events, activities, and decision points that involve a
number of actors and objects, which collectively lead to an outcome that is of value
to at least one customer” [1].

To analyze business processes and discover different process execution flows,
organizations use a tool called process mining. Process mining is “a family of
techniques to analyze the performance and conformance of business processes
based on event logs produced during their execution” [1]. Process mining tech-
niques allow organizations to dig deeper and understand the reasons behind certain
bottlenecks. Furthermore, process mining enables organizations to check the appli-
cability of their business rules inside their environment and quantify and visualize
their performance.

The input of process mining techniques is an event log. An event log captures
the execution of a set of process instances (herein called cases). Table 1 shows an
example of an event log from a healthcare system. An event log consists of event
records. Each record contains a reference to a case identifier, a reference to an
activity, and at least one timestamp. Each case ID refers to a person (e.g., a patient
in a hospital). Each event corresponds to an activity performed by a resource for
that person or an interaction with that person. For example, in a healthcare process,
each activity may correspond to a treatment the patient in question underwent, and
a resource may correspond to the doctor performing the activity. The sequence of
activities that have been executed for an individual is known as case variant. For
instance, the case variant of patient 1 is Register, Visit, Blood Test, and Discharge.

Table 1. A fragment of a simplified event log obtained from a hospital: each row corre-
sponds to an event.

ID Activity Timestamp Resource Role Age Sex Zip Disease
1 Register 07.01.2020-08:30 ResA Admin 22 M 13053 Flu
1 Visit 07.01.2020-08:45 ResE Doctor 22 M 13053 Flu
2 Register 07.01.2020-08:46 ResA Admin 30 F 13061 Infection
3 Register 07.01.2020-08:50 ResA Admin 32 F 51009 Infection
1 Blood Test 07.01.2020-08:57 ResB Admin 22 M 13053 Flu
1 Discharge 07.01.2020-08:58 ResC Admin 22 M 13053 Flu
2 Hospitalize 07.01.2020-09:01 ResD Admin 30 F 13061 Infection
3 Hospitalize 07.01.2020-10:00 ResD Admin 32 F 51009 Infection
2 Blood Test 07.01.2020-10:02 ResB Nurse 30 F 13061 Infection
3 Blood Test 07.01.2020-10:15 ResB Nurse 32 F 51009 Infection
2 Blood Test 07.02.2020-08:00 ResB Nurse 30 F 13061 Infection
2 Visit 07.02.2020-09:30 ResE Doctor 30 F 13061 Infection
3 Visit 07.02.2020-13:55 ResE Doctor 32 F 51009 Infection
2 Discharge 07.02.2020-14:00 ResF Admin 30 F 13061 Infection
3 Discharge 07.02.2020-14:15 ResF Admin 32 F 51009 Infection

12

Event logs may contain private information in some use cases, particularly
those involving customer-facing processes. Let us consider the situation where
an analyst happens to know that John underwent a Blood test for a Flu diagnosis.
Given this information and the released Table 1, the analyst can link the first case
to the patient John, and they can disclose the information about John in the log. In
other words, the analyst can single out John.

Data minimization principles embedded in privacy regulations, such as GDPR [2],
require that organizations put in place mechanisms to protect information about in-
dividuals when processing a dataset. The definition of individual data identification
is articulated in Recital 26 of GDPR:

To determine whether a natural person is identifiable, account should
be taken of all the means reasonably likely to be used, such as singling
out, either by the controller or another person, to identify the natural
person directly or indirectly.

The notion of singling out is elaborated in a guide by the Article 29 Data
Protection Working Party [3]. According to this guide, a person can be identified
(singled out) using a dataset if the dataset allows us to distinguish that person from
all other persons represented in the dataset. In other words, a dataset allows a
singling out of an individual (from a group) if a predicate can be evaluated on that
dataset and uniquely distinguishes the individual in question. The legal notion of
singling out has been formalized by Cohen & Nissim [4]. Specifically, Cohen &
Nissim give a mathematical formulation of the concept of Predicate Singling Out
(PSO), capturing the idea that there exists a predicate that uniquely identifies a row
in a dataset.

The applicability of process mining techniques hinges on the availability of
event logs capturing the execution of a business process. To be able to analyze
privacy-sensitive event logs within the framework of GDPR and similar privacy
regulations, organizations need to make use of Privacy-Enhancing Technologies
(PETs) [5].

A PET is a type of technology that allows to either release a dataset or a query
answer, or to perform computations on one or more datasets, while controlling the
ability for an analyst and/or an adversary to view or infer personal information
about individuals represented in the dataset(s).

1.1. Problem Statement

Among existing PETs, Differential Privacy(DP) stands out because it mitigates
PSO attacks [4] and because it provides composable privacy guarantees [6]. In a
nutshell, differential privacy guarantees to each individual that the ability for the
analyst to infer private information about them will likely be the same whether
their record(s) is/are part of the dataset or not. In this way, DP ensures that the
analyst will not be able to single out an individual based on the anonymized data
disclosed to them [4].

13

DP works by injecting noise into the data. This noise is quantified by a privacy
budget parameter called ε . The value of ε captures the extent to which the presence
or absence of the record(s) associated with a person in the original data affect the
disclosed (anonymized) data. The smaller the ε value, the stronger the privacy
guarantee and the larger the injected noise. Thus, by controlling the privacy budget,
we can ensure that the resulting anonymized dataset provides privacy guarantees
while still being useful for analysis. For example, in a healthcare event log, we
can control the ε privacy budget to ensure that we can identify bottlenecks and
improvement opportunities from the anonymized log while providing privacy
guarantees to the patients whose clinical trajectories are represented by the traces
in the log. In other words, the privacy budget can be seen as a privacy risk threshold
that controls the level of provided privacy guarantee.

In this setting, this thesis addresses the following research question:
RQ1 Given an event log L, wherein each trace contains private information about

an individual (e.g., a customer), and given a privacy risk threshold, how
to generate an anonymized event log L′ that provides a differential privacy
guarantee to each individual represented by a trace in the log, w.r.t. the given
threshold?

Sometimes, the ε parameter of differential privacy may not be interpretable to
end users without a deep understanding of differential privacy. A user may find
it hard to determine a suitable value of ε . In this respect, Lee et al. [7] show that
“the proper value of ε varies depending on individual values” and that the presence
of “outliers also changes the appropriate value of ε .” Meanwhile, Dwork et al. [8]
state that “we do not know what parameter ε is right for any given differentially
private analysis and we know that the answer can vary tremendously based on
attributes of the dataset.” Accordingly, some privacy mechanisms determine the ε

value required to anonymize an event log based on a business-level privacy risk
threshold, namely guessing advantage. The guessing advantage is the increase in
the probability that an adversary may guess information about an individual after
the event log’s release. This thesis presents approaches that address RQ1 with
respect to both the privacy risk thresholds: ε and guessing advantage.

With respect to RQ1, we should ensure that the anonymized log is useful for
process mining. In other words, a process mining algorithm should return a similar
result with the anonymized log as it would with the original one. To this end, a
desirable property is that the anonymized log should have the same set of case
variants as the original one. A case variant is a distinct sequence of activities.
This property ensures, for example, that the set of directly-follows relations be-
tween activities is not altered during anonymization. This set of relations, known
as the Directly-Follows Graph (DFG), is used by automated process discovery
techniques [9]. Moreover, the set of case variants is the main input used by confor-
mance checking techniques [10]. In this setting, preserving the set of case variants
during anonymization is critical, as every case variant added to the log directly is

14

a potential false positive (a deviation that does not exist in reality but is reported
as such). In contrast, every removed case variant is a potential false negative (a
deviation occurring in reality but not detected when using the anonymized log).
In such settings, PETs for process mining that address RQ1 should fulfill the
following utility requirement:

UR1a The anonymized event log should have the same set of case variants as the
original log.

When an event log contains a case variant that occurs only once in the log
(unique traces), the above requirement may turn out to be overly strict and may
require the differential privacy mechanism to inject a high level of noise. Indeed,
to hide the presence of an individual represented by a unique trace, the differential
privacy mechanism may need to insert many other synthetic traces. In some
settings, the user may accept suppressing some traces in order to reduce the noise
level required to achieve a given privacy guarantee. In other words, the user may
settle for a relaxed version of requirement UR1a, such that some case variants may
be suppressed, but no new case variants are introduced. This remark leads to the
following alternative utility requirement:

UR1b The anonymized event log must not introduce new case variants to the
original log.

A third desirable property is that the differences between the timestamps of
consecutive events in the anonymized log are as close as possible to those in
the original log, as these time differences are used by performance mining tech-
niques [11]. Therefore, we should address RQ1 while keeping the differences
between the anonymized log and the original log minimal. The difference between
the anonymized and original logs is called utility loss. Accordingly, we introduce
the following additional utility requirement:
UR2 The difference between the real and the anonymized time values is minimal

given a privacy risk metric.
The requirement UR2 can be tackled w.r.t. different attack models. This thesis

considers an attack model wherein the attacker seeks to single out an individual,
represented by a trace in the log, based on a prefix, a suffix, or an event timestamp
of the individual’s trace in the released log.

The anonymization techniques studied in this thesis focus on protecting the
personal information of the subjects (e.g., patients) whose customer journeys are
represented in the event log. In the event log of Table 1, the focus of this thesis is
on anonymizing logs to protect the patients (John, Anna, Lena, etc.). The thesis is
not concerned with the orthogonal problem of protecting the personal information
of the Resources (workers) in the process, i.e., the personal information of the
people references in the third column of the event log in Table 1.

Besides, even if we put aside the above challenges of anonymizing data for
process mining within a single organization. Existing process mining techniques
require access to the entire event log of a business process. Usually, this require-

15

ment can be fulfilled when the event log is collected from one or multiple systems
within the same organization. In practice, though, many business processes involve
multiple independent organizations. We call such processes interorganizational
business processes. This collection step should precede the anonymization step
to make the combination possible. Exchanging execution data may reveal the
personal information of customers, or it may expose business secrets. As a result,
common techniques for process mining cannot be employed for interorganizational
business processes. Yet, analyzing these processes is often crucial for improving
operational performance. Given the above limitation of applying PETs for process
mining, this thesis addresses the following research question:
RQ2 How to enable process mining for interorganizational business processes

without requiring the involved parties to share their private event logs or
trust a third party?

1.2. Previous Work and Research Gaps

The use of privacy-enhancing technologies for process mining has been consid-
ered in a body of studies known as privacy-preserving process mining (PPPM).
The problem stated in RQ1 has been addressed partially using k-anonymization
approaches. These approaches suppress entire cases or individual events (activity
instances). When a technique suppresses an activity instance in a case, it may
introduce behavior (e.g., a directly-follows relation) that does not exist in reality.
However, the k-anonymity is not secure against predicate singling out attacks [4].
Indeed, Cohen et al. [4] proved that under some settings, the above approaches
enable an attacker to perform a predicate single-out attack with a probability of
37%. When this suppression occurs at scale, the anonymized log contains a high
proportion of behavior that does not happen in the original log. In a patient treat-
ment log used in the evaluation reported in this paper, existing k-anonymization
techniques for process mining may lead to the suppression of 87% of the activity
instances [12]. The current k-anonymity approaches does not fulfill UR1a.

Other approaches address RQ1 via differential privacy. These approaches inject
noise into the data, quantified by a privacy budget parameter called ε . Differentially
private approaches for event log anonymization inject noise to anonymize the
frequency distribution of distinct sequences of activities in a log (the trace variants)
and the event timestamps. This noise injection may introduce behavior not observed
in the original log. The extent to which a DP-anonymization technique distorts
the data and increases the utility loss. The holy grail of anonymization techniques
in general, and DP-anonymization techniques in particular, is to achieve a low
level of re-identification risk with low utility loss. The current differential privacy
approaches do not fulfill the utility requirements UR1a, UR1b and UR2.

16

1.3. Research Method

Since our research area is in the field of information systems, to answer the
above research questions, we follow the design science guidelines in information
system research proposed by Hevner et al. [13]. They proposed the continuous
construction and evaluation of design artifacts to address a research question and
improve the performance of artifacts. Therefore, we identified the methodological
limitations of the current privacy-preserving process mining techniques, defined
the research questions (RQ1 and RQ2), and deduced open research gaps in the
current state-of-the-art to answer these questions.

Accordingly, we defined a set of requirements for constructing three artifacts.
The first artifact to address RQ1 and fulfill requirement UR1 via the oversampling
as a method to inject noise into the event log. While constructing the first artifact,
we conducted a benchmark that allowed us to relax the requirement UR1a to UR1b
and adopt the idea of personalized differential privacy and a filtration technique to
reduce the utility loss of the anonymized log.

In the second artifact, we leverage the idea of privacy amplification via subsam-
pling to address RQ1 and achieve a more utility-friendly anonymization approach.
In the third artifact, we addressed RQ2 using the multi-party computation protocol
to build process maps in an interorganizational setting.

Furthermore, Hevner et al. [13] emphasizes the need to validate the proposed
artifacts in real or realistic settings to ensure that they fulfill the stated requirements.
To evaluate the proposed artifacts, we use real-life experiments, with respect to
evaluation questions derived from the statement of the research questions and the
associated requirements.

1.4. Contributions

This thesis provides the below four contributions to the field of privacy-preserving
process mining:

Contribution 1: proposes a differentially-private mechanism to release event
logs while maintaining the same set of trace variant as the original log (Chapter 4).
To this end, we propose a method to generate a differentially private event log
by oversampling the traces of the original log and injecting noise to the event
timestamps. The proposed method is parameterized by a user-defined maximum
risk level, δ . The method ensures that, after the differentially private event log is
released, the probability that an attacker may single out an individual, based on
the prefixes and suffixes of the traces in the log, and based on the event timestamp,
does not increase by more than δ , relative to the baseline scenario where the
differentially private event log is not released.

The proposal relies on a data structure that compactly captures all prefixes and
suffixes of a set of traces, namely a Deterministic Acyclic Finite State Automata
(DAFSA) [14]. A DAFSA is a lossless representation of an event log, wherein

17

every prefix or suffix shared by multiple traces is represented once. By analyzing
the frequency and time differences of each DAFSA transition, we determine the
amount of oversampling and timestamp noise.

Contribution 2 proposes a differentially-private mechanism to release event
logs without introducing new case variants to the anonymized log (Chapter 5) To
this end, we apply both over and undersampling of traces that exist in the event
log. We filter out high-risk cases to lower the utility loss. We used personalized
differential privacy to quantify the required noise amount for each event in the log.
Also, we compare the proposed approach against state-of-the-art and assess utility
loss not only w.r.t. the distance between the anonymized and the original log, but
also w.r.t. the impact of anonymization on the process maps discovered from the
(anonymized) log.

Contribution 3 proposes an approach that enhances the noise injection of
the differentially-private mechanism of event logs using privacy amplification
(Chapter 6). We leverage the idea that the privacy guarantees of a differentially
private mechanism can be amplified by applying it to a small, random subsample
of records. We hypothesize that a DP approach based on subsampling can achieve
lower utility loss for a given level of privacy guarantee relative to existing DP-
anonymization techniques for event logs, which are based purely on noise injection.
We start by filtering out trace variants that, if disclosed, would lead to privacy
breaches. We then extract multiple Poisson subsamples and apply a DP mechanism
to anonymize each subsample. The resulting differentially private subsamples
are then combined to construct an anonymized log. Using the differential privacy
composition theorem and the privacy amplification results associated with Renyi
Differential Privacy (RDP), we estimate the amplified ε

′ privacy guarantee provided
by the resulting anonymized log.

Contribution 4 proposes an approach to enable process mining in an interorga-
nizational setting (Chapter 7). To this end, we propose an architecture for process
mining based on secure multi-party computation. In essence, MPC aims at the
realization of some computation over data from multiple parties while exposing
only the result of the computation but keeping the input data private. We consider
the setting of an MPC platform, where the involved parties upload their event
logs to a network of compute nodes. Before the upload, secret sharing algorithms
locally split each data value into different parts (i.e., shares) that are then stored at
different nodes. Each share does not provide any information about the original
data. The uploaded event log is encrypted and exposed neither to the platform
operator nor to other involved parties. Nonetheless, the MPC platform enables the
computation of the encrypted data through protocols to hand out the result among
the nodes.

18

1.5. Outline

The rest of this thesis is structured as follows. In Chapter 2, we introduce back-
ground notions and concepts of privacy-enhancing technologies. In Chapter 3, we
identify different threats of publishing event logs and present design requirements
from the GDPR for PPPM. Also, we discuss existing techniques and the room for
improvements. Chapter 4 introduces the notion of a differentially-private event log
and proposes oversampling as a way to inject noise. Chapter 5 introduces the notion
of personalized differential privacy and proposes both over-and undersampling
to hide the presence and absence of individuals. Chapter 6 proposes and evalu-
ates a method that reduces the noise injection of differentially-private event logs.
Chapter 7 proposes and evaluates the usage of a secure multi-party computation
protocol to enable PPPM in an interorganizational setting. Chapter 8 concludes this
thesis and discusses future research directions. Table 2 summarizes the research
questions addressed, their associated utility requirement, the contributions that
address each research gap, and the chapter of the thesis where this contribution is
presented.

Table 2. Research questions, requirements, thesis contributions and publications.

Research Questions Requirements Contributions

RQ1: Given an event log, and
given a maximum acceptable
risk threshold, how to gener-
ate an anonymized log such
that the risk of singling out an
individual after releasing the
anonymized log does not ex-
ceed the given threshold, and
the difference between the real
and the anonymized time values
is minimal?

UR1a and UR2.

1. Mine Me but Don’t Single Me Out:
Differentially Private Event Logs for Process
Mining. (See Chapter 4)

Publication:
• (2021) ICPM21 Conference pa-

per [15]

UR1b and UR2

2. Differentially Private Release of Event
Logs for Process Mining. (See Chapter 5)
Publications:

• (2022) ICPM22 Demo paper

UR1b

3. High-Utility Anonymization
of Event Logs for Process Min-
ing: A Subsampling Approach.
(See Chapter 6)

Publication:
• (2022) ICPM22 Con-

ference paper [16]

RQ2: How to enable process
mining for interorganizational
business processes without re-
quiring the involved parties to
share their private event logs or
trust a third party?

-

4. Secure Multi-Party Computation for Inter-
Organizational Process Mining. (See Chap-
ter 7)
Publications:

• (2021) BPMDS20 Conference pa-
per [17]

• (2020) BPM20 Demo paper [18]

19

2. BACKGROUND

The applicability of process mining techniques hinges on the availability of event
logs capturing the execution of a business process. These event logs may contain
private information in some use cases, particularly customer-facing processes.
With automatic process discovery, we can reverse engineer the activities that have
been performed within the organization and the hand-offs between resources that
execute such activities. Hence, it is easy to expose confidential information with
process mining techniques.

Data protection regulations, such as the GDPR, restrict the use of such event
logs for analysis purposes. Hence, privacy is becoming a legal responsibility rather
than a social one. Accordingly, it is necessary to incorporate privacy aspects in
the discovery, analysis, and monitoring phases. One way of circumventing these
restrictions is to use privacy-enhancing technologies to give access to process
mining approaches to private event logs. The main objective of this chapter is
to introduce the concepts and techniques of privacy-enhancing technologies that
could be adapted for process mining.

This chapter is structured as follows. Sect. 2.1 presents the definition of privacy
and confidentiality. Sect. 2.2 introduces process mining and the typical components
of a process mining system. Then, we introduce different privacy techniques as
follows, in Sect. 2.3, we define the group-based privacy techniques, in Sect. 2.4,
we introduce differential privacy guarantees and formalize its definitions, and in
Sect. 2.5, we give an overview of secure multi-party computation protocols.

2.1. Privacy and Confidentiality

Privacy and confidentiality have a lot in common that may lead to confusion;
however, each has a specific meaning.

Privacy. In our current data-driven society, privacy has received much attention
through frequent data breaches and regulations such as Europe’s General Data
Protection Regulation (GDPR) [2]. Generally, privacy is seen as the right of indi-
viduals to control how their personal data is collected, used, and/or disclosed to
other individuals, organizations, or governments [19]. GDPR defines personal data
as “Personal data means any information relating to an identified or identifiable
natural person (‘data subject’); an identifiable natural person can be identified,
directly or indirectly [..]” [2]. Besides GDPR, privacy is subject to other interna-
tional laws such as the UN Declaration of Human Rights [20], and the Asia-Pacific
Economic Cooperation [21]. We follow the definitions of GDPR in this paper.

Confidentiality. Whereas there is some overlap and the concepts are often used
interchangeably, the focus of confidentiality is ensuring that only authorized indi-
viduals have access to the protected data and information. For example, Harman
et al [22] defined as an agreement about maintenance and who has access to clas-
sified/sensitive data. Thus, confidentiality concerns data access, while privacy

20

focuses on individuals and their rights. When the data are personal data, the confi-
dentiality challenges coincide with the privacy challenges. Here, we distinguish
privacy from confidentiality as follows. When the main concern is an individual’s
rights, e.g., process workers, customers, or patients, it is considered a privacy issue.
Otherwise, if the concern is more relevant to general data protection, it is assumed
as a confidentiality issue.

2.2. Process Mining: Preliminaries

We introduce process mining and the typical components of a process mining
system based on an example scenario in a hospital setting. Health care has seen
many process mining applications [23, 24] which makes this a representative ex-
ample. The goal of analyzing processes with process mining in our scenario is to
prevent rework, decrease waiting time for patients, and improve documentation by
discovering cases of non-compliance. The hospital is also interested in benchmark-
ing, i.e., investigating how their processes and their performance differ from other
hospitals.

Concretely, the hospital wants to apply process mining to discover the trajectory
of different patients from the moment they are admitted until their discharge from
the hospital. Each visit of a patient to the hospital forms a process instance or case,
and the individual events of each case are sourced from the Hospital Information
System (HIS). The HIS records information on logistical and treatment activities
conducted for specific patients and who of the hospital staff performed them. In
addition, a part of the process is performed via e-mails, e.g., referrals to other
care institutions and the request of previous medical documentation. Therefore,
certain events are collected from the e-mail server of the hospital. E-mails are
associated with certain process activities using text mining and the metadata
(sender, recipient) is used to identify the staff responsible. Finally, to benchmark,
the hospital wants to share some of this data over organizational boundaries and
perform interorganizational process mining [25, 26].

Based on this scenario, we describe the elements of such a typical process
mining application. We organize the elements into three layers: data, application,
and presentation layer.

Data Layer.. Process mining starts from event data, a collection of events or
event log representing the execution of several instances of a business process.
Table 1 shows an example of such an event log extracted from the HIS and e-mail
system of the hospital. Here, each row represents an event that indicates when an
activity was performed (Timestamp) and by whom it was performed (Resource).
Furthermore, each event is associated with a running process instance or case
(Patient), which in our case is a unique identifier of the patient visit. By grouping
events based on their case and ordering them according to their timestamp, we
obtain sequences of events: one trace for each process instance. In addition event
logs often include additional domain specific attributes, which are not strictly

21

required for the application of basic process mining techniques, but may provide
additional context. In our hospital scenario, these attributes are Age, Sex, Zip and
Disease.
Definition 2.2.1 (Event Log, Event, Trace). An event log L = {e1,e2, ...,en} of a
process is a set of events e = (i,a, ts), each capturing an execution of an activity a
(an activity instance), with a timestamp ts, as part of a case i of the process. The
trace t = ⟨e1,e2, ...,em⟩ of a case i is the sequence of events in L with identifier
i, ordered by timestamp. An event log L may be represented as a set of traces
{t1, t2, ..., tk}.

If we set aside the case ID and the timestamp of a trace and focus on the activity
labels, we can represent a trace as a word over the alphabet of activity labels. Each
particular word extracted from a log in this way is called a case variant of the log.
For example, in Table 1, the case variant for patient 1 is the sequence of activities:
Register, Visit, Blood Test, and Discharge.
Definition 2.2.2 (Case Variant). A trace variant of an event log L is a sequence
of activities ⟨a1,a2, ...,ak ⟩ such that there is a trace ⟨e1,e2, ...,ek ⟩ of L such that
∀ j ∈ [1..k] : e j = a j.

Application Layer. Algorithms that process event logs and compute repre-
sentations are an important part of process mining. Two of the most important
applications of process mining are process discovery [9] and conformance check-
ing [27]. Process discovery receives an event log and returns a process model that
describes the process behavior in an abstract model defining the possible sequences
of activities. An example of such model that could be discovered from the log in
Table 1 would be the BPMN1 model shown in Figure 1. Here, the process discovery
algorithm inferred from the event log that each trace starts with an activity Register.
Then, activity Hospitalize must be performed in parallel with one or multiple
Blood Tests. Finally, each case of our simplified process is concluded by a Visit
in sequence with Discharge. Conformance checking aims to quantify deviations
between the process model and real execution data as observed through the event
log. The output of a conformance checking algorithm is usually information about
how individual traces in the given event log deviate from that reference model. In
Figure 1, a conformance checking technique has identified that the activity Blood
Test, which occurred according to an event in the trace for patient 1, should not
have been performed since the patient was not hospitalized. Many other tasks are
possible such as the mining of resource profiles of the employees [28], the mining
of decision rules [29] based on the characteristics of cases captured in additional
attributes, or the automated prediction of the next step in a running case [30] with
the goal of acting on cases leading to a bad process outcome or performance.

Presentation Layer.. Generated artifacts such as the discovered process models
or the deviations detected by conformance checking, or other analytical outputs

1Business Process Model and Notation (BPMN) standard: https://www.omg.org/spec/

BPMN/.

22

https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/BPMN/

Event Log
Discovery

Register Blood Test Visit Discharge
Trace for

Patient 1

Conformance

Invalid Event

Figure 1. Process discovery and conformance checking shown based on the event log from
Table 1. A process model in BPMN was discovered and used for conformance checking
towards the first trace of the log. One of the events of the trace (Blood Test) should not
have occurred according to the model.

Register

3

Visit

3

Hospitalize
2

Blood Test

4

Discharge

3

1

2 2

1

2

1

1

2

Figure 2. A frequency annotated DFG based on the combined results of process discovery
and conformance checking. When only considering the presentation layer of the process
mining application, the analyst may only see such a visualization of the underlying event
log. Occurrence frequencies of activities (in black) and of the transitions between activities
(in gray) are added as annotation to the model.

need to be presented to the process analyst or business user. Often these outputs
are aggregated representations, e.g., Directly-follows Graph (DFG) (a.k.a. process
map) with projected frequencies as shown in Figure 2. In addition to being a
common approach to visualize the dependencies between activities in a process,
the DFG is used as an intermediate artifact by various algorithms for automated
discovery of process models [9].

A DFG is a directed graph in which each node represents activity in the process,
and each arc represents a directly-follows relation between two activities, meaning
that the activity that is the source of the arc was observed right before the activity

23

that is the target of the arc at least once in the event log. Typically, each arc in the
DFG is annotated with the number of times that the target activity immediately
follows the source activity (arc frequency). However, it may also be annotated with
other metrics, such as the average timestamp difference between the source and
the target activity or the maximum timestamp differences between the source and
the target.
Definition 2.2.3 (Directly-Follows Graph). The directly-follows graph of an event
log L is G(L) = {(D1,R1),(D2,R2),,(Dn,Rn)}, with:

• D = {(x,y)|x ∈ A∧ y ∈ A∧ (x <L y)} is a pair of two activities and,
• R is the set of edges of the graph with weights W = {w|w ∈ R} and,
• x <L y iff ∃t = ⟨e1,e2, ...,em⟩and i ∈ {1, ...,m−1} such that t ∈ Traces(L)

and ti.a = x and ti+1.a = y
The weights W on the edges of the DFG are the result of an aggregate query

function f , that represents the directly-follows relation between the pair of values
D. An aggregation function f can be the count of occurrences as in the frequency
annotated DFG, or an aggregation function over the time differences between the
pair of values, e.g., the max time difference , as in the time annotated DFG.

We consider a scenario where an event log owner wants to enable an analyst
to analyze their process execution without linking the record to the users whose
information is recorded. Given the log in Table 1, we can give the following
classification of privacy-related attributes:

• Case ID: This attribute is directly used to identify a case. It can link the case
to a specific individual. For example, in Table 1, if the analyst knows that
the case ID of John is 1, regardless of the existence of the name, they can
link the first case to John.

• Case attributes: which are the attributes that remain with the same value for
a case instance during the case execution, e.g., name, email, Social Security
Number (SSN).

• Case variant: which is the sequence of activities that have been executed for
the case. For example, in Table 1, given that Anna is the only patient with
the case variant that contains two Blood Tests, the attacker can link case 2 to
Anna.

• Quasi Identifiers: attributes that, if combined, can identify an individual (age,
gender, profession, race, zip code). For example, in Table 1, given that Lena
is the only 32 years old female patient from the zip code 51009, the analyst
can link case number 3 to Lena.

• Sensitive Attributes: personal attributes that should not be revealed (diagno-
sis, sexuality, salary, credits, payment transactions, financial situation). For
example, in Table 1, the Diagnosis column is the sensitive attribute that we
do not want the analyst to guess about the individuals.

At first glance, one can notice that the Case IDs and case attributes can single

24

out individuals in the event log. A naive way of hiding the identity of individuals is
through pseudonymization. Pseudonymisation removes the identifying information
like case ID, name, and email. This removal can also be achieved by hashing the
values of these attributes. However, that would not be enough to hide the identity
of individuals. For instance, if we removed both the case ID and the case attributes,
we still know some details like gender, age, profession, race, and zip code. By any
chance, if that person is the only female PhD student of age 32 from her village,
then we can easily link the case to that person.

Furthermore, if we eliminated all the attributes except for the basic minimum
representation of an event log which contains a pseudonymized case ID, the
timestamp of executing every activity, and the activity label. In that case, an analyst
can use the sequence of activity execution, i.e., trace variant, to link a case to an
individual. For instance, if the analyst knows that the individual of interest has been
through the reception desk at that specific time, or that the individual of interest
is the only patient with breast cancer in this hospital. Then, it would be possible
for the analyst to link the case to a certain individual. In the following sections,
we explain different privacy-enhancing technologies that can be used for process
mining. In section 3.1, we explain in details different threats on confidentiality and
privacy of process mining.

2.3. Group-based privacy Techniques (M1)

Group-based privacy techniques require that an individual cannot be singled out
within a group of similar individuals of a specific size. One approach that provides
privacy guarantees over the identifying attributes is k-anonymity. An event log
satisfies the k-anonymity requirements when an analyst who knows only the quasi-
identifiers of the individual cannot single them out with a probability greater than
1/k. k-anonymity is an easy-to-understand privacy model. However, it does not
provide sufficient privacy guarantees against attribute disclosure [31].

Machanavajjhala et al. [32] introduce a stronger privacy notion called l-diversity.
An event log is said to provide l-diversity guarantees when each sensitive attribute
of each similar group of traces has at least l values. l-diversity privacy guarantee
addresses the attribute disclosure. However, it is pruned against skewness and
similarity attacks [31].

t-closeness is another group-based approach to protect attribute disclosure [31].
An event log is said to provide t-closeness guarantees if, for all groups of traces,
the distance between the distribution of a disclosed attribute in the group and the
distribution of the entire attribute in the event log is at most t.

While the above privacy models are interpretable and easy to understand, they
are not secure against predicate singling out attacks [4]. Indeed, Cohen et al. [4]
proved that under some settings, the above approaches enable an analyst to perform
a predicate single out attack with a probability of 37%.

25

2.4. Differential Privacy (M2)

Differential privacy allows us to protect records collected from individuals in the
context of a study or other data collection exercise. In this context, differential
privacy is a guarantee to the individuals that the impact on them will be the same
whether they were in the study or not. Differential privacy ensures that the same
conclusions from the data will be reached. For example, in a healthcare system, an
analyst can use the data to draw conclusions about the bottlenecks in the business
process without identifying who are the individuals included in the analysis.

Specifically, differential privacy ensures that the revealed study results from the
event log would “essentially” equally occur whether an individual participates in
the study or not. Accordingly, the probabilities are drawn by random choices of
the data owner, and the term essentially is controlled by a parameter called ε .

Differential privacy is a guarantee, not an algorithm. Therefore, for any data
analysis task T, and a given value for ε , there will be many differentially private
algorithms to compute T. The smaller ε gives stronger privacy guarantee, however,
it is challenging to get accurate results when ε is small.

2.4.1. Models of Computation

In this thesis, we consider a setting where a trusted data owner holds an event
log L that contains the personal data of individuals, and they are welling to give
access to an analyst who draws conclusions from L. In that setting, we assume hat
each individual’s participation in L is captured by a single trace, and the privacy
mechanism is to protect each individual’s trace while permitting the data analysis
tasks over L.

Usually, data owners can give access to their event logs in two ways: non-
interactive, and interactive model. In the non-interactive model, data owners
construct a sanitized version of their logs, or build a synthetic event log that
contains summary statistics. After this one-shot release, the data owner has no
control over the released event logs. In the interactive mode, the data analyst
can send queries adaptively to the event log and gets sanitized responses. That
gives flexibility to the data analyst to request new queries based on the observed
responses. In this thesis, we use differential privacy in the context of constructing
a sanitized (or anonymized) version of an event log.

2.4.2. Formalizing Differential Privacy

Now, we are ready to formally define differential privacy. As explained above, an
event log L is a set of traces {t1, t2, ..., tk}. A trace corresponds to an individual
(e.g., a customer) who requires their privacy to be maintained. A mechanism
M : L→ Range(M) maps an event log L to a particular distribution of values
Range(M) (e.g., to a vector of real numbers). A privacy mechanism M can be
either unbounded or bounded ε-differentially private (ε-DP). An unbounded ε-DP
mechanism makes it hard to distinguish two event logs that differ in the presence

26

of one trace [33]. A bounded ε-DP mechanism makes it hard to distinguish two
event logs that differ in the attribute values of one trace.
Definition 2.4.1 (Unbounded ε-differentially private mechanism [33]). A mech-
anism M is said to be ε-differentially private if, for all the event logs L1 and L2
differing at most on one trace, and all S ⊆ Range(M), we have Pr[M(L1) ∈ S] ≤
exp(ε)×Pr[M(L2) ∈ S].
Definition 2.4.2 (Bounded ε-differentially private mechanism [34]). A mech-
anism M is ε-differentially private if, for all the event logs L1 and L2 differ-
ing at most on the attribute values of one trace, and all S ⊆ Range(M), we have
Pr[M(L1) ∈ S]≤ exp(ε)×Pr[M(L2) ∈ S].

In some cases, it is desired to apply DP to only values of a particular attribute
A, e.g., the attribute timestamp in Table 1. We apply DP to L1 and L2 w.r.t the
attribute A, i.e., L1 and L2 differ only on A’s value in a single trace. Moreover, we
want to take into account the particular amount of change in attribute A.
Definition 2.4.3 (Bounded ε-differentially private mechanism w.r.t attribute). A
mechanism M is ε-differentially private w.r.t attribute A iff for every pair of
event logs L1 and L2 differing along attribute A in at most one trace, and for all
S⊆ Range(M), we have Pr[M(L1) ∈ S]≤ exp(ε · |L1.A−L2.A|)×Pr[M(L2) ∈ S].

The ε-differential privacy restricts the ability to single out an individual (Def. 2.4.1
and 2.4.2) or disclose an individual’s private attribute (Def. 2.4.3). In an interactive
mechanism [35], a user submits a query function f to an event log and receives a
noisified result. Formally, there is a mechanism M f that computes f and injects
noise into the result. The amount of noise depends on the sensitivity of f , which
quantifies how much change in the input of f affects change in its output.
Definition 2.4.4 (Global Sensitivity). Let f : L→ Rd .

• Global sensitivity w.r.t. presence of a trace is ∆ f = max
L1,L2
| f (L1)− f (L2)|;

• Global sensitivity w.r.t. attribute A is ∆
A f = max

L1,L2

| f (L1)− f (L2)|
|L1.A−L2.A|

;

where max is computed over all event logs L1,L2 differing in one trace at most.
Given the event log L and the query function f , a randomized mechanism M f

returns a noisified output f (L)+Y , where Y is a noise value drawn randomly from
a particular distribution. E.g., we can draw values from a Laplace distribution

Lap(λ ,µ), which has a probability density function
1

2λ
exp(−|x−µ|

λ
), where λ

is a scale factor, and µ is the mean. It is known [6] that, for real-valued f , if

we set µ = 0, for λ =
∆ f
ε

we obtain an ε-DP mechanism w.r.t. a trace presence

(Def. 2.4.1), and for λ =
∆A f

ε
, we obtain an ε-DP mechanism w.r.t. attribute A

(Def. 2.4.3).

27

2.4.3. Qualitative Properties of Differential Privacy

Having presented the formal definition of differential privacy, below we discuss its
qualities over other PETs [6]. Differential privacy stands out among other PETs
because it protects against arbitrary attacks and moves beyond re-identification
attacks protection. In this respect, the released event log would be almost the
same, whether or not a given trace is included, and there is an obstacle for an
attacker to detect the presence or absence of an individual, or to point out the
activity instance(s) corresponding to an individual. Furthermore, differential pri-
vacy mitigates linkage attacks, where an attacker uses their background on the
individual or the process to single out individuals. That applies to past, present,
and future releases of event logs and additional sources of information that may
help the attacker to perform a linkage attack.

Moreover, differential privacy provides quantification for privacy loss. This
permits comparing different differentially private algorithms: given a fixed privacy
bound, which algorithm ensures tighter privacy? Also, differential privacy enables
quantification of privacy loss over repetitive access of the event log, which is called
composition. That gives a flexibility to design complex approaches. For example,
as we mentioned earlier in this thesis, an event log may contain many sensitive
attributes and quasi-identifiers. Building a differentially private mechanism that
protects all these attributes at the same time would be very complicated. The
beauty of differential privacy is that it enables us to use a simpler differentially
private mechanism for each attribute, and then, we can combine these mechanisms
as building blocks of a bigger mechanism that still holds the differential privacy
guarantees.

Besides, differential privacy is secure against any post-processing that can be
performed by an attacker after releasing the anonymized data. In other words, the
attacker cannot compute a function of the differentially private output that makes it
less differentially private. Also, no matter any additional auxiliary information is
available, the attacker cannot make the released event log less differentially private.

2.5. Secure Multi-party Computation (M3)

In some settings, organizations need ways of performing the computation in a
private way and without sharing their private event logs. This can be achieved
using secure computation protocols. Secure computation can be performed using
outsourced computation and multi-party computation.

In the outsourced computation model, the event log owners outsource the
computation process to a third party. The event log owner transforms their logs
to an encrypted form that enables certain computations. The encrypted log is
then shared to the third party to perform the computation. The third party can
only perform computations without learning anything about the input log. At
the end, the third party returns the output of the computations to the event log

28

owner, who can decrypt the results and get their private values. One protocol that
enable such a computation is the homomorphic encryption [36, 37]. Homomorphic
encryption (HE) can be used to perform computations (mostly linear) on event logs
without seeing it [38].Any computations on encrypted event logs are enabled by
fully homomorphic encryption (FHE) schemes [39]. While FHE-based approaches
minimize the communication between parties, they are very computation-intensive.

Secure Multi-party Computation(MPC) [40] is a cryptographic functionality
that allows n parties to cooperatively evaluate (y1, . . . ,yn) = f (x1, . . . ,xn) for some
function f , with the i-th party contributing the input xi and learning the output yi,
and no party or an allowed coalition of parties learning nothing besides their own
inputs and outputs. There exist a few approaches for constructing MPC protocols.
Using the inherently 2-party garbled circuits (GC) approach [41, 42], one of the
parties encrypts each gate of the Boolean circuit representing f , and sends it to
the other party, together with the keys corresponding to both parties’ inputs. The
second party decrypts a part of the representation of each gate, and learns the output
of f in the end. Garbled circuit based protocols have small round complexity, but
tend to require more bandwidth than the approaches discussed below.

Homomorphic secret sharing [43] is a common basis for MPC protocols. In
such protocols, the arithmetic or Boolean circuit representing f is evaluated gate-
by-gate, constructing secret-shared outputs of gates from their secret-shared inputs.
Each evaluation requires some communication between parties (except for ad-
dition gates), hence the depth of the circuit determines the round complexity of
the protocol. On the other hand, there exist protocols with low communication
complexity [44], allowing the secure computation of quite complex functions f , as
long as the circuit implementing it has a low multiplicative depth.

In the secure multi-party computation (MPC) model, independent organizations
can jointly perform computations on their input event logs without trusting a third
party or sharing their logs. One difference between MPC and HE is that in MPC,
all the input parties participate in executing the protocol.

The complexity of MPC protocols is dependent on the number of parties
jointly performing the computations. Hence, the typical deployment of MPC has
a small number of compute nodes, also known as computation parties, which
execute the protocols for evaluating gates, while an unbounded number of parties
may contribute the inputs and/or receive the outputs of the computation. Several
frameworks support such deployments of MPC and provide APIs to simplify the
development of privacy-preserving applications [45]. One of such frameworks is
Sharemind [46], whose main protocol set is based on secret-sharing among three
computing parties. In Chapter 7, we build on top of Sharemind, but our techniques
are also applicable to other secret sharing-based MPC systems.

In Sharemind, a party can play different roles: an input party, a computation
party, and/or an output party. In the case where only two parties are involved in an
interorganizational process, these two parties play the role of input parties and also
that of computing parties. To fulfill the requirements of Sharemind, they need to

29

enroll a third computing node, which merely performs computations using secret
shares from which it can infer no information.2

The Sharemind framework provides its own programming language, namely the
SecreC language [47], for programming privacy-preserving applications. SecreC
allows us to abstract away certain details of the SMC cryptographic protocols
used in Sharemind. In Chapter 7, we leverage SecreC to implement a technique
for secure multi-party computation over event logs distributed across multiple
organizations.

2When three or more parties are involved in a process, no external party is required.

30

3. PRIVACY-PRESERVING PROCESS MINING:
REVIEW AND CONCEPTUAL FRAMEWORK

In this Chapter, we review the current state-of-the-art of prior research on privacy-
preserving process mining. Also, we identify main threats, concepts, and methods
in this field. This state-of-the-art review is not based on a systematic literature
review, but rather on a compilation of related work in the field of privacy-preserving
process mining gathered by a group of specialized researchers (the authors of
reference [48]). We also develop a conceptual model that structures the discussion
that existing techniques leave room for improvement. Specifically, this state-of-
the-art review aims to answer the following questions:

Q1 What are the different threats for privacy and confidentiality in process
mining?

Q2 What are the different requirements to achieve privacy-preserving process
mining?

Q3 What approaches of privacy-enhancing technologies have been applied for
process mining?

Q4 How could these approaches be classified?
Q1 aims to find the possible privacy threats and attacks on the published data in

process mining. Q2 aims to find different requirements based on data regulations
(GDPR [2] in our case) that should be fulfilled to achieve privacy in process mining.
Q3 aims to identify the existing approaches of privacy-preserving process mining.
Q4 aims to define a taxonomy to classify the approaches based on the attacks they
are able to mitigate, the requirements of the GDPR [2] that they fulfill, and the
privacy models that they adopt. This Chapter is derived from [48] and contains
sentences or fragments of sentences from this prior publication.

The remaining of the Chapter is structured as follows. Sect. 3.1 presents existing
privacy threats in process mining and Sect. 3.2 presents different requirements
to address these threats. Sect. 3.3 describes the existing approaches for privacy-
preserving process mining. Sect. 3.4 summarizes the relevant studies.

3.1. Threats for Privacy and Confidentiality in Process Mining

This section presents threats to confidentiality and privacy in process mining. We
collected the threats based on, first, developing a list of concrete attacks among the
authors (this is a collaboration work presented in [48]) and, then, cross-referencing
this list with generic attacks from the literature.

In this thesis, we do not focus on attacks with malicious adversaries that control
the information flow. We assume an honest-but-curious attacker who follows the
protocol to access the data for process mining and has legitimate access to the data.
An attacker might be the process analysts or business user who obtains sensitive

31

information from supposedly anonymized event data provided to her. Inside or
outside attacks to bypass access control are outside our scope.

Overall, the identified privacy threats can be categorized into four categories:
re-identification, reconstruction, membership disclosure, cryptanalysis; each of
which is described in more detail based on the literature and is instantiated in the
context of the above hospital scenario.

3.1.1. Re-identification Threats (T1)

Re-identification or deanonymization threats are those where the identity of an
information (data) subject is at risk to be disclosed by singling-out individuals
from the supposedly anonymized event logs [49]. This threat of re-identification
is currently most dominant at the data layer. Here an information subject may be
directly linked to the process case, e.g., the patient in Table 1, or linked to a certain
activity, e.g., a resource (employee) of the hospital. There are several possible
attack methods described in the literature that constitute re-identification threats.

In a linkage attack, an attacker uses background or context knowledge on
the process or on the individuals and combines it with the released artifact. A
pseudonimized event log in the data layer of the process mining application may
be such an artifact to which an analyst, or the general public in case of research
data, has access. At first glance, Table 1 does not allow to re-identify patients
or employees, all direct identifiers have been replaced. However, based on equal
unique attributes, events can be linked to a case and thus to an identity. For instance,
assume an attacker knows that Lena is 32 years old and has visited the hospital
in a certain timeframe. By linking this very basic information with Table 1 only
patient 3 is 32 years old, an attacker can infer the corresponding events of this
patient and the sensitive disease. Such linkage attack can also be based on unique
combinations of activities that are performed in a sequence for a certain process
case. For example, the process case for the patient with identifier 2 is the only one
containing two occurrences of the activity Blood Test. Thus, the uniqueness of
cases in an event log can indicate the risk of re-identification. It was shown in [50]
that there is serious potential for privacy leaks in published event log data, as the
vast majority of public research event logs contain many unique cases.

When several organizations independently release generalized event logs about
overlapping populations, re-identification is possible by an intersection attack. This
may happen in the interorganizational process mining setting as illustrated with the
benchmarking use case in our hospital example or, e.g., when several government
agencies release event log data, which is likely to be containing information about
the same population of citizens. If we assume that an adversary knows that a target
is contained in several event logs, the identity may be disclosed by taking the
intersection. Assume two hospitals independently publish event logs of patient
trajectories in which age is generalized to prevent a linkage attack, i.e., Table 1
would only contain age groups 0–20, 21–40, and so on. Patient Lena would not be

32

easily re-identifiable anymore. However, let us assume that an adversary knows
that she was transferred from hospital A to hospital B. Even though the age group
is generalized, there may only be one process case in that age group in each of
the hospital event logs such that it is consistent with the transfer scenario. So, the
intersection set is a single record, and we have re-identified Lena. Of course, such
an attack may also be performed on other event log attributes and not only be based
on the time relation between process cases.

3.1.2. Reconstruction Threats (T2)

The threat of reconstruction is the risk of recreating the (partial) original event log
from a released process model or aggregated statistics [51]. Reconstruction is a
threat to privacy when attributes from individuals are reconstructed, and a threat to
confidentiality when reconstructing non-personal data. This threat is closely linked
to the presentation layer of the process mining application. The individuals in the
event log are seemingly protected by only releasing aggregate statistics.

If an individual cannot be linked directly, attributes can be reconstructed, for
example, from aggregated statistics by a difference attack. In this attack, an
adversary isolates a single value by combining multiple aggregated statistics about
an event log. Assume the process analyst can only pose queries to obtain aggregate
statistics, e.g., by obtaining process model visualizations such as the one in Figure 2.
The analyst could obtain the frequency visualization grouped per disease and,
therefore, know the number of patients (unique cases) for each disease. In a second
query, the analyst could exclude 32-year-old patients in the query and obtain the
same statistics. From the difference, an adversary can infer that Lena, the only
32-year-old patient, has an infection.

Adversaries may also attempt to reconstruct training or source data from a
published model, which is called model-inversion [52]. The training data is es-
timated by observing the input and output of a model. This attack only creates
a probabilistic version of the training data. The models used for predictive and
prescriptive process monitoring [53, 54] use machine learning models that could
be directly vulnerable to this attack. In our application scenario, however, even a
probabilistic version of the original event log can reveal private information such
as the diagnosis of a specific patient or the responsible resources treating a patient.
From the process model in Figure 2, we can infer that the underlying training event
log consists of a single trace in which the patient left without being hospitalized
and also that there is a single patient that had two blood tests taken.

3.1.3. Membership Disclosure Threats (T3)

Membership disclosure threats entail uncovering the knowledge of whether a
specific individual was included in the source data for a particular model or analysis.
So, differently to a re-identification attack, only the fact that an individual was part
of the event log is disclosed.

33

In a membership inference attack, an adversary aims to determine whether an
individual was included in the source data. An adversary who only has access to
the released model can train shadow models to predict membership [55]. These
models capture the misclassification difference between samples that are likely
to be in or outside the training data. By checking if a process model allows the
behavior of a certain trace, an adversary can try to predict, if the trace was included
in the data underlying the process discovery. In our hospital example, depending on
the scope of a process mining analysis, such knowledge could reveal that a specific
individual visited the hospital for a specific treatment. For instance, assume an
attacker knows that a target patient Anna has made a blood test twice and has access
to the process model (cf. Figure 2). It is very likely that Anna is included, since he
made a blood test twice. However, in this case, an adversary cannot identify that
Anna is patient 2, i.e., the exact process case identifier remains protected. Still, this
knowledge may leak sensitive information, e.g., if the event log was extracted for a
set of patients with a specific disease membership disclosure would also disclose
the disease information.

3.1.4. Cryptanalysis Threats (T4)

Often, data is pseudonymized, as in our example, or even encrypted to provide
confidentiality. However, pseudonymized or even fully encrypted event logs are
vulnerable to attacks based on the analysis of the frequency.

A frequency analysis takes advantage of the characteristics of the encrypted
data. Such analysis could rely on background knowledge of the process, e.g. the
frequency of certain activities within one trace and their position in the trace. For
example, when considering our hospital process example, certain diagnostic steps,
such as blood test, might appear more than once in a trace, while the registration
and release of a patient usually happen at the beginning and end of each trace. In
other words, even if the activity in Table 1 had been encrypted, an attacker might
decode the start and end activity. In this case, an attacker has both the plaintext and
its encrypted version, which can be used to reveal the total cipher. It is not difficult
to gain this knowledge, especially in public places like a hospital.

We identified four main threats and sketched the related attack methods in a
process mining scenario. In the remainder of this Chapter, we review and discuss
possible solutions and identify the open challenges.

3.2. Conceptual Model and Requirements of PPPM

In this section, we discuss requirements that address the threats to confidentiality
and privacy in process mining, discussed in Section 3.1. The requirements are taken
from a systematic synthesis of the current privacy and confidentiality landscape
conducted by Gharib et al. [56], who themselves based their work on a previous
literature review [57]. The mentioned requirements are legislature agnostic but

34

nonetheless present the opportunity to incorporate demands and elements of multi-
ple common protection models such as the European (GDPR), Australian (Privacy
Act 1988), Canadian (PIPEDA), and US legislation. We will particularly focus on
GDPR as an example to explain the origin of the requirements.

Figure 3 shows a UML class diagram of how the concepts of privacy and
confidentiality relate, both to the discussed threats and to the requirements taken
from [56]. In Section 2.1, we note that confidentiality has direct overlap with
privacy. Therefore, confidentiality could, as in Gharib et al. [56], solely be seen
as a requirement of privacy. However, following our definition in Section 2.1, we
raise confidentiality beyond just its overlap with privacy and make it a separate
concept, therefore slightly adjusting the model in Gharib et al. [56]. The purpose
of our privacy and confidentiality requirements is to address potential threats and
mitigate potential vulnerabilities. In the following, we explain the requirements.

• R1 - Anonymity deals with personal information, and it ensures that per-
sonal data can only be used without disclosing identities of information
subjects [58, 59]. This is a privacy requirement since it concerns personal
information. According to Recital 26 of GDPR, the principles of data pro-
tection should not apply to anonymous information where the information
subject is not identifiable. Therefore, anonymity is a big step towards privacy
regulations compliance.

• R2 - Unlinkability describes that it should not be possible to link per-
sonal information to their corresponding owners [59]. This requirement
complements R1 in the sense that preventing identity disclosure cannot be
guaranteed by only making identifiers unreadable. Furthermore, all identi-
fiers for linkage also need to be removed. Unlinkability includes that data
cannot be re-identified by linkage attacks.

• R3 - Unobservability means that it should not be possible to observe the
identities of information subjects that perform any action [59]. It should be
noted that unlike anonymity and unlinkability, which keep the identity of the
actor hidden, the goal here is to ensure that the actions themselves are hidden.
Thus, we categorize this requirement as a confidentiality requirement. This
requirement mostly concerns continuous monitoring and processing of the
data generated by running systems. It is intended to protect personal data
against unauthorized processing, as described in Article 5 of GDPR.

• R4 - Notice means that information subjects should be notified when their
information is gathered [58]. A notice should include the detailed infor-
mation which is to be gathered, disclosure risks and data quality concerns.
The notice requirement can be categorized as both privacy and confiden-
tiality requirement depending on the information owner, which could be
both an individual or a company. This requirement relates to the concept of
consent in GDPR. The data processing often needs to be based on consent.
As mentioned in Article 7 of GDPR, the data controller/processor should

35

Sensitive

information

Non-sensitive

information

Information

Sensitivityhas

Personal Non-personal

is subject to

Vulnarablity

Threat

Attack

method

exploits

generatesPrivacy

requirement

concerning

Confidentiality

requirement

concerning

Notice

Anonymity

Unlinkability

Unobservability

Transparency

Accountability

Privacy policy

realised by

Confidentiality

policy

realised by

mitigates mitigates

Situation

determines

Information

subject (owner)
belongs to

is used by

Process mining

techniques

Process mining

requirements
need to meet

(Event) Data Application Presentation

Figure 3. A UML class diagram linking threats and requirements to the remaining concepts
used.

36

demonstrate that the information subject has consented to processing of
his/her data. Note that the consent needs to be kept updated based on the
purpose of data processing.

• R5 - Transparency means information owners should be able to know who
uses their information, how, and for what purposes [58]. This requirement
can also be categorized as both privacy and confidentiality requirement,
depending on the nature of the information owner. The principle of trans-
parency is described in Recital 58 of GDPR.

• R6 - Accountability describes that information subjects should be able to
hold information users accountable for their activities and the consequences
of misusing their data [58]. This requirement concerns both personal and
non-personal information. It is mentioned in Article 5 GDPR as one of
the principles of processing personal data, where it is described that the
personal data should be protected against unlawful processing, accidental
loss, destruction, or damage.

When information is exploited by process mining techniques, protecting privacy
and confidentiality should not compromise the requirements of process mining
techniques. There are three types of additional requirements:

• R7 - Data requirements are that process mining techniques should support
different data storage formats, e.g., centralized in a single organization and
distributed among different parties. On top of that, processing different types
of data should not lead to any privacy leakage.

• R8 - Application requirements mean that the algorithms which are applied
should be computationally acceptable, and fulfilling privacy and confiden-
tiality requirements should not impose an unreasonable load on the time or
resource consumption of the algorithms.

• R9 - Presentation requirements are that the reported results should be
interpretable by users. This includes fulfilling privacy and confidential-
ity requirements without leading to a utility loss of the anonymized data,
and having the ability to repeat different types of queries without privacy
disclosure.

3.3. Existing Approaches for Privacy-Preserving Process
Mining

Previous studies on privacy-preserving and confidential process mining addressed
RQ1 in the light of the requirement UR2 and attempts to mitigate the above threats.
In order to achieve the privacy in process mining, an approach needs to achieve
privacy from the following perspectives [60]:

• Control flow perspective, which represents the traces of individuals under
study. E.g., in a health care system, we need to anonymize the traces of
patients and their activities.

37

• Organizational perspective, which focuses on the individuals who execute
the activities within the organization, i.e., resources. For example, in a health
case environment, doctors and nurses execute the activities.

• Case perspective, which focuses on the case attributes that can link a case to
its individual.

• Time perspective, which is represented as the timestamp at which an activity
has been executed.

Below, we list different approaches that implement PETs for process mining.

3.3.1. Group-based Approaches

Group-based models (M1) have been addressed in several studies [12, 60–63].
Rafiei et al. [12] address RQ1 and propose a privacy model called TLKC for
publishing event logs, which provides group-based anonymization (M1) based on
k-anonymity, and quantifies the risk based on the attacker’s background knowl-
edge. This work anonymizes the event log from the control flow, time, and case
perspectives. Their model fulfills privacy requirements R1 - Anonymity and R2 -
Unlinkability. The k-anonymity model is secure against the reconstruction threat
(T2). However, k-anonymity partially mitigates the re-identification threats (T1)
and the membership disclosure threat (T3) [4]. The adoption of k-anonymity
makes the model interpretable (R9 - Presentation). Although, TLKC results in
suppressing cases or events within cases. In one example in [12], TLKC suppressed
87% of the activities in the output. Accordingly, this study does not fulfill utility
requirement UR1a (as explained earlier in Sect. 1.1) because the case variants in
the anonymized log are different from the original log due to the suppression of
cases or events within cases. Also, it does not fulfill UR1b because the suppression
of events within cases results in traces that do not exist in real-life.

Rafiei et al. [60] extended the above work to provide log anonymization ap-
proach from the organizational perspective. The approach in [60] identifies traces
that have higher risk than the others. Later on, the approach uses the quantified risk
and a threshold k to suppress the violating traces and map them to non-violating
traces. This approach addresses RQ1 under the utility requirement UR1b because
it does not introduce new case variants to the anonymized event log.

Also, the authors in [61, 62] use the k-anonymity privacy model (M1) for
publishing event logs and add the use of t-closeness to protect attribute values.
They provide privacy from the organizational perspective, and hence, they do not
address RQ1. Similar to TLKC, R1 - Anonymity, R2 - Unlinkability requirements
are fulfilled. Again, the privacy model is interpretable (R9 - Presentation). The
authors suppress events or cases that would result in privacy leakage. However,
data suppression is correlated with utility loss and no explicit utility measure is
considered. PRETSA prunes entire traces and identifies the traces that are most
similar to the pruned once to replace them. Because of that, PRETSA does not
fulfill UR1a, but it fulfills UR1b.

38

Batista and Solanas [63] present an approach that anonymize the event log
from the organizational perspective. The approach adopts a group-based privacy
model that groups individuals based on activity distribution and transfers resource
information within the group to uniform the resource distribution. The transfer
of activities within the groups of individuals does not fulfill the utility require-
ments UR1a and UR1b. Also, this approach does not address RQ1. Similar to
the above approaches, this approach fulfills R1 - Anonymity, R2 - Unlinkability
requirements, and R9 - Presentation. In addition, this approach is secure against
the reconstruction threat (T2), but it only partially mitigates the re-identification
threats (T1) and the membership disclosure threat (T3) [4].

3.3.2. Differential Privacy Approaches

The differential-privacy model (M2) is adopted, e.g., by Mannhardt et al. [64]
for controlling disclosure of two types of queries: the frequencies of directly-
follows relations and the case variant frequencies. Therefore, this approach does
not address RQ1. Mannhardt et al. [64] anonymizes the data from the control
flow perspective. Re-identification threats T1, reconstruction threats T2, and
membership disclosure threats T3 are mitigated and requirements R1 and R2 are
fulfilled. Neither transparency nor accountability is considered, and no guarantees
are given for the utility (R9 - Presentation) of the obtained DFG. This work does
not fulfill the utility requirements UR1a and UR1b because it suppresses activities
within traces which introduces case variants that do not exist in real life and
suppresses case variants that exist in the original data. Also, this approach does
not consider logs with timestamps.

PRIPEL [65] uses timestamp shifts to anonymize the timestamp attribute of
the log. It ensures privacy guarantees based on individual cases. Also, PRIPEL
uses sequence enrichment to anonymize other attributes of the log. PRIPEL
takes three input parameters, namely ε , k, and N. ε is the DP parameter, k is
the cut-out frequency (i.e., PRIPEL cuts out all variants that appear less than k),
and N is the maximal prefix length. The use of differential privacy fulfills the
requirements R1 - Anonymity and R2 - Unlinkability to mitigate threats T1, T2,
and T3. However, PRIPEL does not optimize the disclosure for a certain level of
utility (R9 - Presentation). The output of the above approaches [64,65] may contain
variants that were never observed in the event log. Besides, some newly injected
variants are impossible to occur for the anonymized process [66]. Hence, this work
does not fulfill the utility requirements UR1a and UR1b. Furthermore, the injected
noise over the timestamp column is not minimal, so it partially addresses RQ1.

SaCoFa [66] is another differentially private mechanism that achieves lower
utility loss than the above approaches by means of semantic constraints. This
approach adopts differential privacy to replace prefixes that are common in multiple
cases with perturbed ones, given that the distance between the perturbed prefixes
and the original one does not exceed a certain distance. SaCoFa achieves the

39

privacy from only the control flow perspective and partially addresses RQ1. This
approach fulfills the requirements R1 - Anonymity and R2 - Unlinkability to
mitigate threats T1, T2, and T3. Like the above two approaches, this approach
suffers from the existence of false negatives (traces that do not happen in the
event log) and false positives (traces that happened in the original log but do not
appear in the anonymized log). And hence, this work does not fulfill the utility
requirements UR1a and UR1b.

3.3.3. Cryptographic privacy models

Cryptographic privacy models (M3) have been considered for both centralized
and distributed event logs settings. Rafiei et al. [67, 68] introduced an encryption
framework for ensuring confidentiality in process mining to secure against the threat
T4. The framework is divided into three processing environments and provides
user access control, thereby addressing R6 - Accountability. The framework gives
a data analyst access to the internal partially secure event logs, which makes the
framework vulnerable against T1, T2, and T3. Only centralized event logs are
considered failing to provide support for distributed event logs (R7 - Data). This
approach does not address RQ2.

Tillem et al. [69] propose a secure processing protocol to execute the Alpha
algorithm over distributed event logs (R7 - Data) in a cross-organizational setting.
This approach targets solely the creation of a process model. Also, Tillem et al. [69]
requires a trusted third-party between the collaborating organizations, which makes
their approach does not fully address RQ2. However, their protocol does not
mitigate attacks on confidentiality described in T4.

3.3.4. Other studies on Privacy-Preserving Process Mining

Other studies on privacy-preserving process mining neither address RQ1 and
RQ2 nor fulfill any of the above requirements, as they do not provide a concrete
mechanism of disclosure control. Rafiei et al. [70, 71] provide privacy metadata by
extending the XES standard. Pika et al. [72] studied the impact of anonymization
on process mining in healthcare without providing a concrete mechanism. In this
line, Rafiei et al. [73] provide privacy quantification for both the disclosure risk
and the utility loss and Nuñez von Voigt et al. [50] quantify the re-identification
risk resulted from the disclosure of event logs based on individual uniqueness.
Both do not provide a solution. Maatouk et al. [74] provides a quantification of the
re-identification risk in published process models.

Kabierski et al. [75] provide a framework for anonymizing process performance
indicators. Rösel et al. [76] present a distance measure based on feature learning to
merge traces during event log anonymization. Other studies addressed the privacy-
preserving continuous event data publishing [77]. Zaman et al. [78] studied the
GDPR compliance in business processes through data-driven solutions. An intra-
process data degradation in business processes has been proposed in [79]. Finally,

40

other works offer only one specific task, for example, Rafiei et al. [80] provide
privacy-preserving role mining adopting a substitution method that secures the
activities with sensitive frequencies.

3.4. Summary

We summarize the most relevant studies in Table 3 and observe that some of the
group-based approaches address RQ1 under the utility requirement UR2, but they
do not mitigate PSO attacks. Further, the above differentially-private mechanisms
do not address RQ1 under UR1 nor UR2. Also, none of the above approaches
address RQ2.The studies in Sect. 3.3.4 are not included as they do not address any
of the research questions.

Most of the previous studies fulfill the requirements: R1, R2, and R3. However,
some of the requirements have not been addressed in the literature, e.g., R4, R5, R8,
and R9. Furthermore, the literature either mitigates threats on privacy or threats on
confidentiality, but it does not mitigate both types of the attacks together.

41

Ta
bl

e
3.

Su
m

m
ar

y
of

pr
iv

ac
y-

pr
es

er
vi

ng
pr

oc
es

s
m

in
in

g
ap

pr
oa

ch
es

w
.r.

t.
th

e
re

qu
ir

em
en

ts
,t

he
pr

ot
ec

tio
n

m
od

el
s,

an
d

th
e

th
re

at
s

(t
he

sy
m

bo
l

✓
m

ea
ns

fu
lfi

llm
en

t,
∗

m
ea

ns
pa

rt
ia

lf
ul

fil
lm

en
t,

-m
ea

ns
do

es
no

tf
ul

fil
l,

an
d

N
A

st
an

ds
fo

rn
ot

ap
pl

ic
ab

le
)

Pa
pe

r
R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
M

1
M

2
M

3
T

1
T

2
T

3
T

4
R

Q
1

R
Q

2
U

R
1a

U
R

1b
U

R
2

T
L

K
C

[1
2]

✓
✓

-
-

-
-

-
-

✓
✓

-
-

∗
✓

∗
-

∗
-

-
-

-
T

L
K

C
ex

te
ns

io
n

[6
0]

✓
✓

-
-

-
-

-
-

✓
✓

-
-

∗
✓

∗
-

∗
-

-
✓

-
PR

E
T

SA
[6

1]
✓

✓
-

-
-

-
-

-
✓

✓
-

-
∗

✓
∗

-
-

-
-

✓
-

B
at

is
ta

an
d

So
la

na
s

[6
3]

✓
✓

-
-

-
-

-
-

✓
✓

-
-

∗
✓

∗
-

-
-

-
-

-

M
an

nh
ar

dt
et

al
.[

64
]

✓
✓

-
-

-
-

-
-

-
-

✓
-

✓
✓

✓
-

-
-

-
-

-
PR

IP
E

L
[6

5]
✓

✓
-

-
-

-
-

-
-

-
✓

-
✓

✓
✓

-
∗

-
-

-
-

Sa
C

oF
a

[6
6]

✓
✓

-
-

-
-

-
-

-
-

✓
-

✓
✓

✓
-

∗
-

-
-

-
R

afi
ei

et
al

.[
67

,6
8]

-
-

✓
-

-
✓

-
-

-
-

-
✓

-
-

-
✓

-
-

N
A

N
A

N
A

Ti
lle

m
et

al
.[

69
]

-
-

-
-

-
-

✓
-

-
-

-
✓

-
-

-
-

-
∗

N
A

N
A

N
A

42

4. DIFFERENTIALLY PRIVATE EVENT LOGS: AN
OVERSAMPLING APPROACH

In this chapter, we address RQ1 with the guessing advantage as our privacy risk
threshold. In other words, in this chapter, we address the question Given an event
log L, and given a maximum level of acceptable guessing advantage δ , how to
generate an anonymized event log L′ such that the success probability of singling
out an individual after publishing L′ does not increase by more than δ .

We do that under the utility requirement UR1a: The anonymized event log must
have the same set of case variants as the original log and the utility requirement
UR2: The difference between the real and the anonymized time values is minimal
given a privacy risk metric.

In response, this chapter presents a differentially private mechanism that
anonymizes event logs while keeping the case variants in the anonymized log
the same as the original one. The mechanism determines the needed ε value to
disclose an event log in terms of a business-related metric, namely guessing advan-
tage, which captures the increase in the probability that an adversary may guess
information about an individual after the disclosure. The probability of leakage is
a widely used measure of risk which can be interpreted on its own.

Usually, an adversary has prior knowledge about the individuals in the log
before its release. Therefore, the adversary gains additional information that allows
them to guess personal information following the disclosure successfully. The
goal of anonymization is to limit this risk. To this end, we define the maximum
acceptable risk threshold as the maximum guessing advantage level δ , which is the
difference in the probability that an adversary singles out an individual before and
after releasing the anonymized event log.

Given a maximum allowed guessing advantage, δ , a differentially private event
log is obtained by oversampling the traces in the log and injecting noise to the
event timestamps. This ensures that the probability that an attacker may single out
any individual, based on the prefixes/suffixes of the individual’s trace or based on
the event timestamps, is not more than δ .

The proposal relies on a data structure that compactly captures all prefixes and
suffixes of a set of traces, namely a Deterministic Acyclic Finite State Automata
(DAFSA) [14]. A DAFSA is a lossless representation of an event log, wherein
every prefix or suffix shared by multiple traces is represented once. By analyzing
the frequency and time differences of each DAFSA transition, we determine
the amount of oversampling and timestamp noise. The estimated noise limits
the guessing advantage of an attacker by inspecting the traces that traverse this
transition in the anonymized log.

This chapter is structured as follows. Sect 4.2 presents the notion of the differ-
entially private event log, the attack model, and the risk quantification approach.
Sect. 4.3 translates the risk quantification into an algorithm that anonymizes a

43

log. Sect. 4.4 concludes the contribution. The evaluation of this contribution is
presented in Sect.5.3.

This chapter is derived from [15] and contains sentences or fragments of sen-
tences from this prior publication.

4.1. Attack Model

We consider a scenario where an organization shares its event log with an analyst,
who should not be able to infer an individual’s information. We assume that the
activity labels and the smallest and largest timestamp in the event log are public
information. We assume that each trace in the log pertains to an individual whose
privacy we wish to safeguard. We view the analyst as a potential attacker who may
seek to infer information about an individual based on the released log. We seek to
protect the release under a worst-case scenario where the analyst has background
knowledge about all individuals in the log except for the individual of their interest.
Specifically, we seek to protect the release of log L to prevent the attacker from
fulfilling one or both of the following attack goals

• h1: Distinguishing whether an individual has participated in the log or not
through their execution control flow.

• h2: Determining the execution timestamp of an activity.
Note that we do not seek to prevent the attacker from guessing the activity

labels, i.e., we do not view the activity labels as private information. Also, we
assume that cases are independent, meaning that the sequence of activities that
a case follows does not depend on the activity sequences of other cases. This
assumption usually holds in a business process, e.g., the patient’s pathway in a
treatment process does not depend on that of other patients.

The above assumption might not hold for some business processes where an
individual participates in more than one case in the event log. To estimate the
differential privacy guarantees in such a setting, the privacy parameter ε shall be
multiplied by the largest number of cases an individual can participate in.

To prevent an attacker from achieving goals h1 and h2, we introduce a notion of
a differentially private event log.
Definition 4.1.1 (Differentially Private Event Log). Let L be an event log as defined
in Def. 2.2.1. We say that a log M(L) is ε-differentially private if: (1) it ensures
ε-differential privacy from the control-flow perspective; and (2) it is ε-differentially
private w.r.t. timestamp.

4.2. Differential Privacy Mechanism

In this section, we introduce the concepts of DAFSA. We explain how to provide
differential privacy guarantee to an event log notion, and risk quantification.

44

4.2.1. Event Log Representation

Table 4. Example of an event log

Case ID Activity Timestamp Other Attributes

1
A 8/8/2020 10:20
B 8/8/2020 10:50
C 8/8/2020 16:15

2

D 8/8/2020 12:37
A 8/8/2020 14:37
E 8/8/2020 15:07
C 8/8/2020 20:31

3
A 8/9/2020 13:30
B 8/9/2020 13:55
C 8/9/2020 20:55

4

D 8/9/2020 15:00
A 8/9/2020 17:00
B 8/9/2020 17:40
C 8/9/2020 23:05

5
A 8/9/2020 17:25
E 8/9/2020 17:55
C 8/10/2020 23:55

6
A 8/11/2020 17:00
B 8/11/2020 17:27
C 8/11/2020 23:45

We assume that each trace in a log corresponds to the execution of the process
pertaining to an individual whose privacy we wish to safeguard. Specifically, our
goal is to mitigate singling out of an individual based on any prefix or suffix of
their trace. To achieve this, we group the prefixes and suffixes in the log, and we
inject independent differentially private noise to each such group. For this, we
need a representation of the log that partitions the prefixes and suffixes of the log
traces into groups. In other words, this representation should assign each prefix
(suffix) in the log to one group such that the union of the groups is equal to the
entire set of prefixes (suffixes). In addition, we also require that this representation
preserves the set of case variants of the log (cf. UR1a). As a running example, we
use the event log presented in Table 4.

The DAFSA provides such a partitioning. Given a set of words, each state in
the DAFSA represents a group of prefixes that share the same set of suffixes, and
suffixes that share the same set of prefixes [14].

An advantage of the DAFSA (specifically the minimal DAFSA) over similar
representations, such as prefix trees, is that a (minimal) DAFSA contains a minimal
number of groups (states) [14]. By minimizing the number of groups, we obtain
larger groups. The larger the group, the smaller the needed noise injection to

45

achieve ε-DP.
Definition 4.2.1 (Minimal DAFSA of a set of words [14]). Let V be a finite set of
labels. A DAFSA is an acyclic-directed graph D = (S,s0,A,S f), where S is a finite
set of states, s0 ∈ S is the initial state, A⊂ S×V ×S is a set of labeled transitions,
and S f is a set of final states. A DAFSA of a set of words W is a DAFSA such that
every word in W is a path from an initial to a final state, and, conversely, every
path from an initial state to a final state is a word in W . A minimal DAFSA of a set
of words W is a DAFSA of W with a minimal number of states.

Given a DAFSA constructed from a set of words, every word is a path from an
initial state to a final state. Conversely, every path from an initial state to a final
state corresponds to a word in the given set of words [14]. Reissner et al. [81] reuse
the algorithm in [14] to represent a log as a DAFSA. Every trace is seen as a word
(its corresponding case variant). For example, the DAFSA of the log in Table 5 is
shown in Fig. 4.
Definition 4.2.2 (DAFSA [14]). Let V be a finite non-empty set of (activity) labels.
A DAFSA is an acyclic and deterministic directed graph D = (S,s0,A,S f), where
S is a finite set of states, s0 ∈ S is the initial state, with a set of arcs A⊂ S×V ×S,
and a set of final states S f .

Given a path from the initial state S0 to a state s ∈ S, the set of labels associated
with the arcs in the path is referred to as the prefix of s. Similarly, given a path from
s to the final state s f , the set of labels associated with such path are referred to as
the suffix of s. In other words, the set of prefixes of a state s can be represented as:

pre f (s) =
⋃

(ss,a,st)∈▶s

{x⊕a|x ∈ pre f (ss)}, (4.1)

where ⊕ represents concatenation, and ▶ s is the set of incoming arcs of s.
pre f (S0) = {⟨⟩}. Similarly, the set of suffixes of a state s can be represented as

su f f (s) =
⋃

(ss,a,st)∈s▶

{x⊕a|x ∈ su f f (st)}, (4.2)

where s ▶ is the set of outgoing arcs of s. pre f (S f) = {⟨⟩}. Prefixes and
suffixes are called common iff they are shared by more than one trace.
Definition 4.2.3 (Common prefixes and suffixes [81]). Let D = (S,s0,A,S f) be
a DAFSA. The set of common prefixes of D is P= {pre f (s)|s ∈ S∧ |s ▶ |> 1}.
The set of common suffixes of D is S= {su f f (s)|s ∈ S∧|▶ s|> 1}.

The common prefixes of the DAFSA in Fig. 4 are {⟨A,B⟩⟨D,A⟩⟨A⟩}, and the
common suffixes are {⟨B,C⟩⟨E,C⟩}. Cases corresponding to case variants that
traverse a given DAFSA state s share the same set of prefixes and suffixes. In this
chapter, we employ DAFSA states and transitions to group common prefixes and
suffixes within cases of the log. We annotate the log with the DAFSA transitions
and states to relate such grouping to the event log cases.

46

S0 S5 S2

S4

S3
A

D A

B

E

C

Figure 4. DAFSA of the event log in Table 5

Definition 4.2.4 (State Annotated Event Log). A state annotated event log Ls =
{r1,r2, ...,rn} is a set of entries r = (i,a, ts,si,se), each links an event e= (i,a, ts)∈
L, where L is the event log, to the DAFSA transition t = (si,a,se) that represents
the occurrence of that event, where t starts from si, ends at se, and labeled with the
same activity a.

The state-annotated event log links every event in the event log, based on its
prefix, suffix, and activity label, to the DAFSA transition. Every event is labeled by
the source state and target state of the DAFSA transition. Table 5 (columns source
state and target state) shows the state annotated event log.

4.2.2. Privacy Mechanism

Given Definitions 4.2.2, and 4.2.4, all cases that share a common prefix will
traverse a given state s in the DAFSA corresponding to this prefix. The same holds
for cases that share a common suffix. We quantify the privacy parameter ε using
the state annotated event log to mitigate singling out an individual by their prefixes
(or suffixes). To study the histogram (count) distribution of the common prefixes
and suffixes between traces of an event log, we construct the DAFSA transition
contingency table. A contingency table is a histogram of group occurrences.
Definition 4.2.5 (DAFSA Transitions Contingency Table). The DAFSA transition
contingency table C is the histogram of counts for each transition t = (si,a,se) of
the DAFSA D, where si is the source state, a is the activity label, and se is the
target state of t.

Table 6 shows the DAFSA transitions contingency table. These counts are
usually called marginals. The marginals contain the correlations counts of the
common sets of prefixes and suffixes of the DAFSA. We anonymize these marginals
to prevent singling out that an individual has been through an activity, using the
prefix and the suffix set of activities. The anonymization of the marginals can be
directly mapped to the privacy-preserving Online Analytical Processing [82].
Definition 4.2.6 (Differentially Private DAFSA Transitions Contingency Table).
Let f be a query function that computes a DAFSA transitions contingency table
that has a set of transitions t = (si,a,se) and a count cell ci for each transition.
Let M f be an unbounded ε-differentially private mechanism (by Def. 2.4.1) that

47

Table 5. DAFSA State-Annotated Event log

Case Activity Timestamp Source State Target State

1
A 8/8/2020 10:20 s0 s5
B 8/8/2020 10:50 s5 s2
C 8/8/2020 16:15 s2 s3

2

D 8/8/2020 12:37 s0 s4
A 8/8/2020 14:37 s4 s5
E 8/8/2020 15:07 s5 s2
C 8/8/2020 20:31 s2 s3

3
A 8/9/2020 13:30 s0 s5
B 8/9/2020 13:55 s5 s2
C 8/9/2020 20:55 s2 s3

4

D 8/9/2020 15:00 s0 s4
A 8/9/2020 17:00 s4 s5
B 8/9/2020 17:40 s5 s2
C 8/9/2020 23:05 s2 s3

5
A 8/9/2020 17:25 s0 s5
E 8/9/2020 17:55 s5 s2
C 8/10/2020 23:55 s2 s3

6
A 8/11/2020 17:00 s0 s5
B 8/11/2020 17:27 s5 s2
C 8/11/2020 23:45 s2 s3

Table 6. DAFSA Transitions Contingency Table

Source
State Activity

Target
State Count

s0 A s5 3
s5 B s2 3
s2 C s3 5
s0 D s4 2
s4 A s5 2
s5 E s2 2

48

injects noise into the result of f . The differentially private DAFSA transitions
contingency table is: M(C) := {(t1,M f (c1)),(t2,M f (c2))...,(tn,M f (cn))}, where
n is the number of DAFSA transitions.

Our goal is not to anonymize a DAFSA, but an event log. We assume that case
IDs have been pseudonymized, the activity labels are public, and the individual
cases are independent. We propose a mechanism M that anonymizes two properties
of an event log: the activity timestamp and the set of prefixes and suffixes of
activity. We can release the time for the activity timestamp attribute by applying
a bounded ε-DP mechanism w.r.t. timestamp attribute (Def. 2.4.3). We need a
mechanism that makes the contingency table ε-DP (Def. 4.2.6) for the second
property.

The mechanism M f of Def. 4.2.6 operates on counts and cannot be applied to a
log directly. We need to translate the noise injection of the contingency table to
the log. Kifer et al. [83] present the notion of a move as a way of anonymizing the
marginals of contingency tables. A move is a process that adds or deletes a tuple
from the contingency table. In order to fulfill the requirement UR1a, we define
oversampling as increasing a count (positive move) in the contingency table by
replicating a random tuple in the log.
Definition 4.2.7 (DAFSA Transition Oversample). Given a DAFSA transition
contingency table Ci, an oversample O is a transformation that adds a DAFSA tran-
sition instance to Ci, producing a contingency table C j = O(Ci), with an increase
of only one count cell by 1.

We define a mechanism M that oversamples tuples of a log L so that, if we
computed the contingency table of M(L), it would be ε-DP. We must be careful
that M(L) does not leak anything that the contingency table would not leak. For
example, if we keep timestamps unchanged, it suffices to remove the tuples with
repeating timestamps to eliminate duplicates, so we need to make the times ε-DP
as well. Since duplicated timestamps are correlated, we have to divide the ε values
of the time queries of the replicated cases by their oversampling ratio. To keep
the counts in the DAFSA transitions consistent, we oversample the prefix and the
suffix of the oversampled transition, i.e. we always oversample entire cases.
Definition 4.2.8 (Case Oversample). Given an event log L, a case oversample Oc

is a transformation that duplicates a case ci of log L, in such a way that c j, the
duplicated case in log Oc(L), and ci have the same sequence of activities.

4.2.3. Risk Quantification

We use an ε-differential privacy mechanism to mitigate the attacker’s goals h1
and h2. To determine the privacy parameter ε , we adopt the guessing advantage
framework [84], which quantifies the risk of publishing a dataset as the difference
between two probabilities: the prior and the posterior guessing probability. Even
without publishing the event log, attackers can use their knowledge to guess
information about a specific individual. The guess is considered successful if it

49

falls within a range of values Hp, which is the actual value, ± a precision.
Definition 4.2.9 (Prior Guessing Probability). An attacker’s prior guessing proba-
bility is defined as P := Pr[h(L) ∈ Hp]

A guessing precision p is a percentage value representing the range of a success-
ful guess Hp. For example, if the time between two executive events of the same
trace in a log is 0.5 hour, and p = 0.2 (12 minutes), the guessed value is considered
successful if it falls in range Hp = [0.3..0.7] hour, i.e., [18 .. 42] minutes. Our
method pre-processes the log to normalize the values (relative timestamps) to be
between 0 and 1. The precision is interpreted within this [0,1] range.

The guessing advantage is defined as the difference between the posterior
probability (after publishing M(L)) and the prior probability (before publishing
M(L)) of an attacker making a successful guess in Hp. Let δ be the maximum
allowed guessing advantage, stated by the event log publisher.
Definition 4.2.10 (Guessing Advantage). Attacker’s advantage in achieving the
goal h with precision p is at most δ if, for any published event log L′,

Pr[h(L′) ∈ Hp |M(L) = L′]−Pr[h(L) ∈ Hp]≤ δ .

Laud et al. [84, 85] proposed estimation of the posterior guessing probability.
Proposition 4.2.1 (Posterior Guessing Probability [84,85]). The posterior guessing
probability of an attribute ranging between 0 and r for a single individual after the
release of the timestamp attribute of an event log is bounded by

P′ ≤ 1
1+ exp(−ε · r)1−P

P

.

Proof. (Taken from [84, 85]) An attacker has a prior knowledge k(l) of part of
the event log l. Using the equality Pr[X = x] = ∑

y∈Y
Pr[X = x,Y = y] and Bayesian

formula Pr[A,B] = Pr[A|B] ·Pr[B], we can rewrite

P′ := Pr[h(L) ∈ Hp |M f (L) = M f (l),k(L) = k(l)]

=
Pr[h(L) ∈ Hp,M f (L) = M f (l),k(L) = k(l)]

Pr[M f (L) = M f (l),k(L) = k(l)]

=
∑l′:h(l′)∈Hp,k(l)=k(l′) Pr[M f (l′) = M f (l)] ·Pr[L = l′]

∑l′:k(l)=k(l′) Pr[M f (l′) = M f (l)] ·Pr[L = l′]

=
1

1+ ∑l′: h(l′)/∈h(l),k(l′)=k(l) Pr[M f (l′)=M f (l)]·Pr[L=l′]
∑l′′: h(l′′)∈h(l),k(l′′)=k(l) Pr[M f (l′′)=M f (l)]·Pr[L=l′′]

,

For an ε-DP mechanism M f , since l′ and l′′ differ in one item due to the condition

k(l′) = k(l) = k(l′′), we have
Pr[M f (l′) = M f (l)]
Pr[M f (l′′) = M f (g)]

≥ exp(−ε · r), where r is the

largest possible difference between two values of an attribute that the attacker is

50

guessing. This gives us

P′ ≤ 1

1+ exp(−ε · r) ∑l′: h(l′)/∈h(l),k(l′)=k(l) Pr[L=l′]
∑l′′: h(l′′)∈h(l),k(l′′)=k(l) Pr[L=l′]

=
1

1+ exp(−ε · r)Pr[h(L)/∈Hp,k(L)=k(l)]
Pr[h(L)∈Hp,k(L)=k(l)]

=
1

1+ exp(−ε · r)Pr[h(L)/∈Hp | k(L)=k(l)]
Pr[h(L)∈Hp | k(L)=k(l)]

Substituting P from Def 4.1.1, we get

P′ ≤ 1
1+ exp(−ε · r)1−P

P

. (4.3)

■

Laud et al. [84] quantify the maximum value of ε , that achieves the upper bound
δ .
Proposition 4.2.2. The maximum possible ε (i.e., the minimum noise) that achieves
the upper bound δ , w.r.t. the above attack model, and minimizes the difference
between the original and anonymized timestamp (c.f. UR2) is

εk =− ln
(

Pk

1−Pk
(

1
δ +Pk

−1)
)
· 1

r
, (4.4)

where r is the maximum value in the range of values (r = 1 after the normalization
of values), and Pk is the prior guessing probability for an instance k.

Proof. Given Def 4.2.9, δ is the maximum guessing advantage probability after
disclosing the attribute. Therefore,

P′−P≤ δ . (4.5)

Substituting Eq (4.3) into Eq (4.5), we can estimate the largest possible ε (the
minimum amount of noise) that achieves the upper bound δ as

ε =
− ln

(P
1−P ·

(1
δ+P −1

))
r

. (4.6)

From Eq (4.6), the ε represents the maximum possible value for ε achieving the
bound δ . Hence, we use Eq (4.6) to get the minimum possible noise that minimizes
the difference between the original and anonymized timestamp. ■

51

Given Prop. 4.2.2, if there is enough data, we can estimate Pk based on the data
distribution as:

Pk =CDF(tk + p · r)−CDF(tk− p · r) , (4.7)

where tk is the value of an instance, and p is the precision. Suppose we
cannot estimate the probability distribution of input values (e.g., the likelihood of
participating in a subtrace). In that case, we can compute the worst-case scenario
Pk as [84]:

Pk = (1−δ)/2 for all k . (4.8)

4.3. Computing Differentially Private Event Logs

Given the above definitions, this section translates the guessing advantage parame-
ter δ , into an algorithm that anonymizes the event log. Fig. 5 outlines the proposed
approach. First, we construct the DAFSA state annotated event log as mentioned
in Sect. 4.2.1. We use the algorithm proposed by Reissner et al. [81] to build the
DAFSA. Second, we calculate the ε values needed by the approach. Finally, we use
the calculated ε values to perform oversampling of cases and time noise injection
into the event log. Below, we describe the steps in detail.

Annotate Event Log
with DAFSA states

ε for trace
frequency

 ε for activity
relative time

ε estimation Weighted
Oversampling of

cases

Noise Injection

Event Log

Anonymized
Event Log

Figure 5. Approach

4.3.1. ε Estimation

Given the DAFSA annotated event log, we group the common prefixes and suffixes
in traces by the DAFSA transitions. This grouping has two outputs: a distribution of
execution time of activity instances that goes through the same DAFSA transitions
and the DAFSA transitions contingency table. A case’s time attribute comprises
two components: the start time of the case and the relative execution time of every
activity in the case (a time difference between its execution timestamp and the start
timestamp of the case) in a time unit.

To calculate ε for the distribution of execution time instances, grouped by a
DAFSA, we use Eq (4.7) and (4.4), i.e., we use different ε values for every event
in the event log. We normalize the input values to become in the range [0,1] as
mentioned in the above section. Eq (4.4) provides the maximum ε to address UR2
(the difference between the real and the anonymized time values is minimal).

52

On the other hand, the DAFSA transition contingency table contains a count
histogram of the common prefixes and suffixes. To calculate the ε value for the
marginals, we use Eq (4.8) and (4.4). The ε of all the DAFSA transitions of the
contingency table is the same, but the noise is drawn for every transition indepen-
dently. The propositions and the privacy proofs of ε estimation are presented in
the supplementary material [86].

4.3.2. Weighted Oversampling of Cases

Given the above-calculated ε for trace frequency, we draw a random noise value
from the Laplace distribution Lap(∆ f/ε), for each DAFSA transition. Adding
or removing a prefix/suffix of a trace to the log affects a single frequency count
by 1, so ∆ f = 1. We take the absolute value of the noise (additive noise) to
fulfill UR1a The noise (quantified by δ) is added as increments to the frequencies
of the contingency table. Using an absolute value (additive noise only), we alter
the privacy guarantees of the differentially private mechanism, as the attacker
can break Def. 2.4.1 if the sampled noise falls within [0,∆ f]. This happens with
probability 1− exp(−ε/∆ f). This additional risk is factored into δ .

Next, we increment the counts of the contingency table by means of oversam-
pling of DAFSA transitions as defined in Def. 4.2.7. Finally, to maintain the
consistency of the DAFSA transitions, we oversample the traces in the log using
Def. 4.2.7, as presented in Algorithm 1. This algorithm does not suppress nor
add case variants to fulfill UR1a . Sect 4.3.4 provides the correctness proofs of
Algorithm 1.

Algorithm 1: Case Oversampling Algorithm
1. Input: Event Log, ε , DAFSA
2. Output: Differentially Private Event Log
3. DafsaLookup = Build DAFSA transitions to case variant lookup ;
4. DafsaLookup[i].neededNoise= |zi|, where zi is sampled from Lap(∆ f/ε) independently for

every transition ti;
5. cnt = count(DafsaLookup .addedNoise < DafsaLookup.neededNoise) ;
6. while cnt > 0 do
7. selectedTransition = pick a random transition such that DafsaLookup.addedNoise <

DafsaLookup.neededNoise;
8. pickedTraces = pick x random traces that traverse selectedTransition, where x =

selectedTransition.neededNoise;
9. foreach t ∈ pickedTraces do

10. DafsaLookup[t].addedNoise ++ ;
11. replicate a random case with a case variant = t ;
12. end
13. cnt = count(DafsaLookup.addedNoise < DafsaLookup.neededNoise);
14. end
15. generate new CaseID for every case;
16. shuffle cases ;

Algorithm 1 starts by constructing a correspondence (lookup) table between the
DAFSA transitions and the case variants (line 3). This table maps every DAFSA

53

transition to the case variants that traverse it. We use this lookup table to track
the updates over transitions. Second, we draw a random noise from the Laplace
distribution Lap(∆ f/ε) (line 4) independently for every transition. Next, we count
the DAFSA transitions that need noise injection and their needed noise (lines 5
and 6). Next, we pick a random transition that needs noise (with sampling weights
of their occurrence frequency) (line 7). Then, we randomly choose a case variant
that goes through the chosen transition (with sampling weights of their number
of instances) (line 8). We replicate the chosen case variant by a number of times
equals the needed noise (lines 9-11). For every replication, we choose a random
case variant instance from the log to replicate. Next, we update the DAFSA lookup
with the injected noise (line 10). We repeat this process until all the transitions
have the minimum required noise. We keep ε values of the time attribute the same
as the original cases to draw noise, as in Sect. 4.3.3. Then, we generate new case
IDs for the cases (line 15), and we change their order (line 16).

4.3.3. Noise Injection

At this step, we have the DAFSA annotated event log, with the oversampled case
instances and an ε value of each event. First, we divide the ε value of the replicated
cases by the number of replications, as oversampling is considered repeating the
same query more than once [6]. Then, we draw a random noise from the Laplace
distribution Lap(∆ f/ε) to anonymize the relative time for every activity instance.
Next, we transform the amount of noise from the normalized range ([0,1]) to the
original range. Finally, we add the time noise to the original execution relative time.
After the noise injection, we transform the relative execution time of activities
to timestamps. By the end of this step, the event log is anonymized by ε values
calculated for the input maximum guessing advantage δ .

4.3.4. Correctness proofs of Algorithm 1

In Def 4.2.5, we defined the DAFSA transition Contingency table as a histogram
of counts of DAFSA transitions. First, we estimate the privacy leakage through the
contingency table.
Proposition 4.3.1. Let MCT be a mechanism that, for each count cell, samples
(independently) noise from the Laplace distribution Lap(1/ε) and adds it to the
count. Then, the level of DP w.r.t. change in a prefix/suffix of some trace of the
underlying event log is:

1. ε for a single count cell of the noisified CT;
2. k ·ε for the entire noisified CT, where k is the longest case length in the event

log.

Proof. Suppose that we update a prefix/suffix of a trace in the event log. Each
single count cell in the contingency table may change by at most ±1 for each
update step. Hence, the global sensitivity of a single count cell w.r.t. changing

54

some prefix/suffix is 1. We can sample additive noise from distribution Lap(1/ε)
and add it to a count cell to achieve ε-DP w.r.t. that count cell.

For the entire contingency table, a change in the frequency of a single case
variant can affect at most k count cells (i.e., the count over the DAFSA transitions
that represent that case variant), where k is the maximum case variant length in the
event log. Hence, the global sensitivity is k, and we need to sample noise from
Lap(k/ε) to achieve ε-DP. ■

Given the desired guessing advantage threshold δ , we need to prevent an
attacker from achieving the attack h1.
Proposition 4.3.2. Let MCT be a mechanism that, for each count cell, draws
(independently) noise from the Laplace distribution Lap(1/ε), adds or subtracts
the noise from the count, and rounds negative results to 0. Let δ be the desired
upper bound probability that the attacker achieves attack h1. Then, it suffices to
take

ε =− ln
(

P
1−P

·
(

1
δ +P

−1
))

,

where P =
1−δ

2
.

Proof. Let P be the prior probability of guessing (i.e., without observing the
output). We adopt the mechanism proposed by Laud et al. [84, 85] to estimate
the guessing advantage, which is the upper bound of the difference between the
posterior and the prior probability of guessing an attribute ranging between 0 and
1 (r=1) by

δ =
1

1+ exp(−ε)1−P
P

−P ,

which can be reversed to

ε =− ln
(

P
1−P

·
(

1
δ +P

−1
))

.

Laud et al. [84,85] estimate the prior knowledge P from the distribution of input
values. However, the contingency table contains counts, which means the lack of
distribution. Laud et al. [84, 85] elaborate that, in case of the lack of distribution,
we can estimate the value of P that minimizes the ε . We take the derivative of ε

w.r.t. P, which yields P =
1−δ

2
as the prior knowledge for the contingency table

counts.
We need to sample noise to achieve ε-DP. First of all, rounding negative noisified

counts up to 0 can be considered as post-processing that does not depend on private
data. Hence, we focus on adding the Laplace noise. While noise sampled from
Lap(1/ε) would be enough for a single count cell, for an entire table, we would
need Lap(k/ε) where k is the longest case length in the event log, as shown in
Prop 4.3.1.

55

All correlated cells may provide additional information about the target cell.
For example, activity B may always follow activity A. This additional knowledge
may increase P. However, we have already chosen the worst-case P (in terms
of guessing advantage) for estimating the noise, which does not depend on any
background knowledge that the attacker may get, including the related outputs.
We note that if we used another prior knowledge estimation and/or estimated the
attacker’s success directly instead of estimating the advantage, then we would
indeed require sampling noise from Lap(k/ε). ■

Correctness of Oversampling. In this chapter, we address RQ1 under the re-
quirement that “the anonymized log must have the same set of case variants as the
original log.” We use oversampling to keep all the initial entries in the event log.
Proposition 4.3.3. Let the event log L have a fixed timestamp value for all the
entries. Let CT be the contingency table that corresponds to the event log L. Let
MOV be a mechanism that, for each count cell of the CT , samples (independently)
noise z from Laplace distribution Lap(1/ε) and:

• Inserts into L |z| additional copies of any cases that have been included in
that count cell;

• Shuffles all resulting cases and updates all case IDs before publishing the
resulting event log.

Let δ be the desired upper bound of the attacker succeeding in the goal h1. Then,
• it suffices to take

ε =−2ln(b/c2− (δ −1)/(c ·b)) ,

where c = 3
√

6 and

b =
3
√√

3 ·
√

2 ·δ 3 +21 ·δ 2−48 ·δ +25−9 ·δ +9.
• a mechanism that adds noise |z|, where z← Lap(1/ε), fulfills the require-

ment that “the anonymized log must have the same set of case variants as
the original log.”

Proof. Oversampling the cases using Def 4.2.7 keeps the same case variants as the
input log L. We show that a mechanism M that adds noise |z| for z← Lap(1/ε) to
the counts of CT constructed from L ensures the differential privacy guarantees.
Let L1 and L2 be two neighboring event logs that differ in the presence of one trace.
Without loss of generality, let L1 have a smaller count than L2 for the observed
count cell. Suppose that the added noise instance is |z| ≥ 1. In that case, the
noisified output y can be obtained from both L1 and L2. In particular, we have

Pr[M(L1) = y]
Pr[M(L2) = y]

=
exp(ε · (y−M(L1)))

exp(ε · (y−M(L2)))

= exp(ε · (y−M(L1)+ y−M(L2)))

≤ exp(ε) .

56

So the guessing advantage δ for |z| ≥ 1 can be computed as in Prop 4.3.2.
However, for |z|< 1, the noisified value y produced by M(L1) will be between the
true counts of L1 and L2, and y could never be an output of M(L2), since we only
add positive noise. The probability of getting |z| ≥ 1 for Laplace noise is

CDFLAP(1)−CDFLAP(−1) = (1− 1
2

exp(−ε))− 1
2

exp(−ε) = 1− exp(−ε).

Let ε be computed to achieve guessing advantage δ
′ with standard Laplace

distribution, as in Prop 4.3.2. The actual guessing advantage with one-sided
Laplace distribution will be

δ = exp(−ε) ·δ ′+(1− exp(−ε)) . (4.9)

From Prop 4.2.2, the maximum ε that achieves the upper bound δ is

ε =− ln
(

P
1−P

·
(

1
δ ′+P

−1
))

,

for P =
1−δ ′

2
. Substituting from (4.6) into (4.9) and using a numerical solver

(e.g., Wolfram Alpha) to express ε through δ .

ε =−2ln(b/c2− (δ −1)/(c ·b)) ,

where c = 3
√

6 and

b =
3
√√

3 ·
√

2 ·δ 3 +21 ·δ 2−48 ·δ +25−9 ·δ +9.
■

Timestamp Anonymization. In this appendix, we consider timestamp anonymiza-
tion. We need to add enough noise to the timestamps to prevent attacker success in
h2, and h1, since timestamps may potentially leak which traces are real and which
are not (new injected cases by sampling). We note that correlations between times-
tamps are difficult to handle in terms of guessing advantage. The main problem is
that the effect of correlated times would greatly depend on how they are correlated,
and in some cases, even a little leakage of t2 may leak everything about t1. For
example, let t1 ∈ {0,1} and t2 ∈ {0, ...,1023} be distributed uniformly. We have
the prior knowledge P1 = 1/2, and P2 = 1/1024. Suppose that, after seeing the
noisified output, the attacker constrained his view of t2 to {0, ...,511}. There are
now 512 possible choices for t2, so δ = 1/512−1/1024 = 1/1024, which is very
small. However, when t1 is the highest bit of t2, the value of t1 would be leaked.
This particular correlation of times is unlikely in practice, but it demonstrates the
problem in general.

To this end, we convert a timestamp tk to a time difference dtk := tk− tk−1 of
sequential events, which is the duration of time that an individual has spent in a

57

transition from one event to the next one. The timestamp at time t0 is the starting
time st, which needs to be published as well to make it possible to reconstruct
the actual timestamps. st can be converted to the time difference between the
start time of a case and the start time of the log. We obtain the result for linearly
correlated time differences (e.g., increasing the duration of the first event by a
minute increases every other event at most by one minute). To this end, we scale
εk by the length of the trace. Prop 4.3.4 proposes a mechanism that anonymizes
the time differences.
Proposition 4.3.4. Let MT be a mechanism that, for each timestamp tk, samples
(independently) noise from the Laplace distribution Lap(1/ε) and adds the noise
to tk. Let rk the maximum possible value of tk. Let δ be the desired upper bound of
the attacker succeeding in the attack h2 with precision p. Then, it suffices to take

εk =−
ln
(

Pk
1−Pk
·
(

1
δ+Pk
−1

))
m · rk

,

where Pk = CDF(tk + p · rk)−CDF(tk− p · rk), CDF is the probability density
function of the distribution of times, and m is the length of the longest trace in L.

Proof. We can estimate an upper bound on the difference between the posterior
and the prior probability of guessing an attribute ranging between 0 and 1 by,

δ =
1

1+ exp(−εk · rk)
1−Pk

Pk

−Pk ,

which can be reversed to

εk =−
ln
(

Pk
1−Pk
·
(

1
δ+Pk
−1

))
rk

.

The quantity Pk is defined as the probability of a value being in the interval
[tk− p · rk, tk + p · rk]. From Prop 4.2.2, the above value of ε is the maximum within
the upper bound δ . If CDF of time distributions is unknown, it is safe to take
Pk that minimizes the εk (and hence maximizes the amount of noise), which is

Pk =
1−δ

2
for all k.

That was about leakage for a single published timestamp. We could keep εk the
same for an entire L if different times are not correlated. If the times are linearly
correlated, then, by the sequential composition of DP, we need to divide εk by the
length of the longest trace m. ■

Event Log Anonymization. We now provide a proof of correctness of Alg 1.
Lemma 4.3.5. Let L and δ be an event log and a maximum guessing advantage
threshold. Log L′ = Alg1(L,δ) fulfills the two properties in Def 4.1.1 (i.e., L′

is ε-differentially private), and L′ fulfills requirement UR1a, and the difference
between the real and the anonymized time values is minimal (c.f. UR2).

58

Proof. We first show that L′ fulfills the two properties in Def 4.1.1
(1) In Prop. 4.3.3, we proved that it suffices to take

εd =− ln
(

P
1−P

·
(

1
δ +P

−1
))

to anonymize the case variants of an event log in order to provide differen-
tial privacy guarantees for the desired guessing advantage upper bound δ .
Algorithm 1 annotates the event log using DAFSA transitions (line 3), and
computes the contingency table CT of the log. After that, the algorithm uses
the above εd to oversample cases (replication cases) (lines 9 and 11). Given
that Prop. 4.3.2 and Prop. 4.3.3 prove that replicating cases with a random
sample size z from Laplace distribution Lap(1/ε) provides differential pri-
vacy guarantees. Algorithm 1 provides differential privacy guarantees for
the case variants anonymization;

(2) In Prop. 4.3.4, we proved that it suffices to take

εk =−
ln
(

Pk
1−Pk
·
(

1
δ+Pk
−1

))
rk

to provide differential privacy guarantees w.r.t timestamp for the desired
guessing advantage upper bound δ . Given that Algorithm 1 adopts the
above ε to anonymize timestamp each event (line 27). Hence, Algorithm 1
provides differential privacy guarantees for the event log anonymization w.r.t.
timestamp.

We now show that L′ fulfills the requirement UR1a with minimal noise injection
for timestamp(cf. UR2).

1. Algorithm 1 does not create new case variants. It only replicates existing
variants (cf. lines 9 and 11). Hence, it fulfills requirement UR1a;

2. In Prop. 4.2.2, we proved that the εk as defined in Eq (4.6) is the maximum
within the upper bound δ , so Algorithm 1 injects minimal noise injection
for timestamp.

■

4.4. Summary

This chapter proposed a concept of differentially private event log and a mechanism
to compute such logs. A differentially private event log limits the increase in the
probability that an attacker may learn a suffix of an individual’s trace given a
prefix (or vice-versa), or the timestamp of an activity in an individual’s trace. To
this end, we inject differentially private noise by oversampling the traces in the
log. This approach neither suppresses nor adds case variants (cf. Sect. 5.1.5) and
hence fulfills UR1a. To address UR2 (the difference between the real and the

59

anonymized time values is minimal), we quantify ε based on a technique that finds
the maximum ε (minimum noise) that keeps the guessing advantage below δ (cf.
Sect.4.2.1 and Prop. 4.2.2).

The proposed method introduces high levels of noise in the presence of unique
traces or temporal outliers. To address this limitation, we plan to investigate an
approach where high-risk traces are suppressed so that the amount of injected
noise into the remaining traces is lower. Although suppression can significantly
reduce the required noise level and strengthen the privacy guarantees, it breaks the
property that the differentially private log has the same case variants as the original
one. To mitigate this drawback, Chapter 5 seeks to define an approach to minimize
the number of case variants that need to be suppressed, given the desired level of
guessing advantage.

60

5. DIFFERENTIALLY PRIVATE RELEASE OF EVENT
LOGS: AN UNDER- AND OVERSAMPLING

APPROACH

The differentially-private approach presented in Chapter 4 injects high level of
noise in event logs with unique traces or temporal outliers. We observe that
suppressing the high-risk traces reduces the amount of required noise to be injected.
This chapter addresses RQ1 under the utility requirement UR1b: The anonymized
event log must not introduce new case variants to the original log. and the utility
requirement UR2: The difference between the real and the anonymized time values
is minimal given a privacy risk metric.

This chapter extends the work in Chapter 4 under UR1b. We propose a revised
anonymization method, which achieves lower utility loss for a given guessing
advantage δ by: (i) applying both over- and undersampling, as opposed to only
oversampling; and (ii) filtering out high-risk cases. This chapter also presents an
experimental setup to assess utility loss not only w.r.t. the distance between the
anonymized and the original log, but also w.r.t. the impact of anonymization on the
process maps discovered from the (anonymized) log.

The chapter is structured as follows. Sect. 5.1 presents the proposed approach
to anonymize event logs. Sect. 5.2 presents an open source tool for event log
anonymization. Sect. 5.3 presents an empirical evaluation. Finally, Sect. 5.4
concludes the work. This chapter is derived from [87] and contains sentences or
fragments of sentences from this prior publication.

5.1. Approach

We seek to anonymize an event log in such a way that an attacker cannot single out
an individual based on a prefix or suffix of the individual’s trace or based on the
event timestamps. Accordingly, the proposed approach relies on a data structure
that captures all prefixes and suffixes of a set of traces, namely a Deterministic
Acyclic Finite State Automata (DAFSA) [81]. By analyzing the frequency and time
differences of each DAFSA transition, we estimate the amount of noise required to
achieve the required guessing advantage.

Concretely, given a log and a guessing advantage threshold δ , our approach
produces a differentially private event log in 7 steps as outlined in Fig. 6.

Event Log
Annotation

Event
Log

Prior
Knowledge
Estimation

Case
 Filtering

ε
Estimation

Case
Sampling

Timestamp
Anonymization

Time
Compression

Differentially
Private Event

Log

Figure 6. Approach

The first step constructs a lossless intermediate representation of a log (DAFSA).
The DAFSA groups the traces that share the same prefixes or suffixes. An attacker
may have prior knowledge about the events recorded in the log before releasing

61

the log, e.g., in the hospital log in Table 1, the attacker has a prior knowledge
that probability that a blood test activity has been executed for Lena is 20%. To
address this issue, we estimate the prior knowledge of every event that belongs
to a prefix/suffix group. Some events may correlate with high prior-knowledge
values, leading to more noise injected in the log to achieve the given δ threshold.
Accordingly, we provide a case filtering mechanism that filters out entire cases
based on the estimated prior knowledge of their events. The fourth step estimates
an ε value for every prefix/suffix group for the input δ threshold. The fifth step uses
the estimated ε value to apply sampling to the cases based on their prefixes/suffixes
and case variants. The sixth step applies timestamp anonymization based on the
estimated ε values for every group of prefixes/suffixes. Lastly, we post-process
the differentially private log to compress the timestamp values so that the overall
timeframe of the resulting log matches closely with the original log. We generate
new case IDs, so an attacker cannot use the case ID (on its own) to identify an
individual.

This chapter adopts the attack model presented in Sect 4.1. The rest of this
section discusses each step of the proposed approach in turn.

5.1.1. Event Log State-Annotation

Our goal is to prevent an attacker from singling out individuals based on any prefix
or suffix of their trace (cf. attack goal h1). To this end, we group the prefixes and
suffixes in the log and inject independent differentially private noise to each group.
Consequently, we use the DAFSA event log representation presented in Sect. 4.2.1.

The DAFSA-annotated event log links every event in the log, based on its prefix,
suffix, and activity label, to a DAFSA transition. Every event is labeled by the
source state and target state of the DAFSA transition. Table 7 (columns “Src. state”
and “Tgt. state”) shows the DAFSA-annotated log.1

Timestamps represent the time at which every event happened. However, it is
more beneficial to compare the duration of activities in every group of suffixes and
prefixes to prevent singling out an individual based on the duration of their activity
and its timestamp. We calculate the relative time to compare the time within a
group of traces that share the same suffix/prefix and activity label. The relative
time of an event is the time difference between an event and its successor. Table 7
(column Rel. Time) shows the relative time estimated for the given events. For the
start event of every case, the relative time is the difference between the case start
event and the first event in the event log.

5.1.2. Prior Knowledge Estimation

Without publishing the log, attackers can use their knowledge to guess information
about a specific individual. We estimate the prior knowledge of an attacker using
the framework proposed in [84]. An attacker’s guess h(L) is considered successful

1Columns “Norm. Rel. Time”, “Prec.” and “PK” are explained later.

62

Table 7. DAFSA State-Annotated Event log

Case
ID

Act.
Label Timestamp

Src.
State

Tgt
State

Rel.
Time

Nrm.
Rel.
Time Prec. PK

1
A 8/8/2020 10:20 s0 s5 0 0 1 0.33
B 8/8/2020 10:50 s5 s2 30 0.33 0.67 0.75
C 8/8/2020 16:15 s2 s3 325 0.0 0.01 0.33

2

D 8/8/2020 12:37 s0 s4 0 0 1 0.33
A 8/8/2020 14:37 s4 s5 120 1 0 0.35
E 8/8/2020 15:07 s5 s2 30 1 0 0.35
C 8/8/2020 20:31 s2 s3 324 0 0.01 0.33

3
A 8/9/2020 13:30 s0 s5 0.99 0.33 1 0.5
B 8/9/2020 13:55 s5 s2 25 0 0.67 0.5
C 8/9/2020 20:55 s2 s3 420 0.07 0.01 0.167

4

D 8/9/2020 15:00 s0 s4 0.99 1 1 0.5
A 8/9/2020 17:00 s4 s5 120 1 0 0.35
B 8/9/2020 17:40 s5 s2 40 1 0.67 0.25
C 8/9/2020 23:05 s2 s3 325 0.0 0.01 0.33

5
A 8/9/2020 17:25 s0 s5 0.99 0.33 1 0.5
E 8/9/2020 17:55 s5 s2 30 1 0 0.35
C 8/10/2020 23:55 s2 s3 1800 1 0.01 0.17

6
A 8/11/2020 17:00 s0 s5 3 1 1 0.17
B 8/11/2020 17:27 s5 s2 27 0.13 0.67 0.5
C 8/11/2020 23:45 s2 s3 378 0.04 0.01 0.17

63

if it falls within a range of values Hp, which is the actual value ± precision (c.f.
Def 4.2.9).

A guessing precision p is a percentage value representing the range of a suc-
cessful guess Hp. For example, if the time between two executive events of the
same trace in a log is 0.5 hour, and p = 0.2 (12 minutes), the guessed value is
considered successful if it falls in range Hp = [0.3..0.7] hour, i.e., [18 .. 42] min-
utes. To interpret the precision in the range of values [0,1] (a percentage value),
we pre-process the log to normalize the range of values (relative timestamps) to be
in the range [0,1]. We assume that the precision for the start timestamp is one day
and the precision for the relative time is 10 seconds. Table 7 (columns Nrm. Rel.
Time and Prec.) shows the normalized relative time (the normalization is based on
the event’s DAFSA transition group) and the estimated precision.

To apply the prior knowledge to the DAFSA-annotated log, we group the events
based on their DAFSA transition (source state, activity, and target state). For each
group of values, we estimate the prior knowledge using Eq. 4.7. Table 7 (column
PK) shows the estimated prior knowledge for every instance with δ = 0.3.

5.1.3. Case Filtering

In some cases, the prior knowledge Pk is very high such that more noise is needed
to keep the guessing advantage below the threshold δ after publishing the event
log. We filter out the instances that violate Pk +δ ≥ 1 to reduce the injected noise
in such a case. To fulfill UR1b, we filter out the entire case.
Definition 5.1.1 (Case Filtering). A case filter F is a function that filters out cases
with at least one DAFSA transition that violates the condition Pk +δ ≥ 1.

In Table 7, activity B of the first case has a prior knowledge value Pk = 0.75 and
δ = 0.3. Our approach filters out the entire first case because at least one DAFSA
transition violates the condition Pk + δ ≥ 1. Table 8 shows the filtered DAFSA-
annotated event log.2 After case filtering, we re-estimate the prior knowledge
for each event. Table 8 (column New PK) presents the newly estimated prior
knowledge values. Case filtering does not have an impact on privacy because it
does not depend on private data.

5.1.4. ε Estimation

Given the filtered DAFSA-annotated event log, we need to estimate the amount
of noise in order to anonymize the event log. We use DP, which quantifies the
noise using ε . One naive approach is using the same ε both for control-flow and
timestamp anonymization. The two types of queries are different, and the quantity
of noise has a different impact on each. Given the attack model in Sect. 4.1,
for attack h1, we use the lossless log representation (DAFSA) to apply an ε-DP
mechanism to the prefixes and suffixes of the traces in the log. For attack h2,

2The column “εt” is explained later.

64

Table 8. Filtered DAFSA State-Annotated Event log

Case
ID

Act.
Label Timestamp

Src
State

Tgt
State

Rel.
Time

New
PK εt

2

D 8/8/2020 12:37 s0 s4 0 0.2 1.39
A 8/8/2020 14:37 s4 s5 120 0.35 1.24
E 8/8/2020 15:07 s5 s2 30 0.35 1.24
C 8/8/2020 20:31 s2 s3 324 0.2 1.39

3
A 8/9/2020 13:30 s0 s5 0.99 0.6 1.8
B 8/9/2020 13:55 s5 s2 25 0.33 1.24
C 8/9/2020 20:55 s2 s3 420 0.2 1.39

4

D 8/9/2020 15:00 s0 s4 0.99 0.6 1.79
A 8/9/2020 17:00 s4 s5 120 0.35 1.24
B 8/9/2020 17:40 s5 s2 40 0.33 1.24
C 8/9/2020 23:05 s2 s3 325 0.2 1.39

5
A 8/9/2020 17:25 s0 s5 0.99 0.6 1.79
E 8/9/2020 17:55 s5 s2 30 0.35 1.24
C 8/10/2020 23:55 s2 s3 1800 0.2 1.39

6
A 8/11/2020 17:00 s0 s5 3 0.2 1.39
B 8/11/2020 17:27 s5 s2 27 0.33 1.24
C 8/11/2020 23:45 s2 s3 378 0.2 1.39

we apply a bounded ε-DP mechanism w.r.t. the timestamp attribute (Def. 2.4.3).
Consequently, we seek to quantify two ε values: the εd is required to anonymize
the DAFSA, and the εt is required to anonymize the timestamp attribute.

Both εd and εt should guarantee that the attacker cannot single out an individual
based on any prefix or suffix of their trace. Accordingly, we group the prefixes and
suffixes in the log and estimate εd and εt for each group.

Estimating εt . To protect against attack goal h2, we need to inject noise suffi-
cient to achieve a given εt , determined by the guessing advantage threshold. Two
approaches are possible. The first one is to calculate a single εt for every event in
the log. The second approach is to estimate an epsilon that minimizes the noise
injected into each event individually. We use the second one.

We estimate εt for an event based on the group of prefix that ends with the event
and the suffixes that start with the event. Consequently, we adopt a personalized
differential privacy mechanism that uses a different εt value for every event. Per-
sonalized DP assumes that every individual has independent privacy specification
Φ [88]. In other words, Φ = (u1,ε1),(u1,ε1),,(um,εm)), where an individual
u ∈U , and the event log has m users.
Definition 5.1.2 (Personalized Differential Privacy [88]). Given a universe of cases
U , a mechanism M is said to be Φ-personalized differentially private if all the event
logs L1 and L2 differing at most on one value of a tuple t, and all S⊆ Range(M).

Pr[M(L1) ∈ S]≤ exp(Φu)×Pr[M(L2) ∈ S]

65

where u ∈U is the case that corresponds to tuple t, and Φ
u denote u’s privacy

quantification.
We assume that the log publisher provides the maximum acceptable increase

in the successful guessing probability after publishing the anonymized event log,
called Guessing Advantage δ . Laud et al. [84] provide a framework that quantifies
the ε value from a given guessing advantage δ . A formal definition of the guessing
advantage is presented in Def. 4.2.10. Furthermore, Laud et al. [84] quantify the
maximum ε value that achieves the upper bound δ for every data instance (c.f.
Prop. 4.2.2).

To quantify ε using Eq (4.4), we need to study the distribution of values among
every group of prefixes/suffixes. We quantify εt using the DAFSA-annotated event
log to mitigate singling out an individual by their prefixes (or suffixes). Given
Definitions 4.2.1, and 4.2.4, all cases that share a common prefix will traverse a
given state s in the DAFSA corresponding to this prefix. The same holds for cases
that share a common suffix.

To anonymize the timestamps, we anonymize two components: (1) the start
time of the case, which we define as the time difference between the start time of
the case and the first start time in the event log); and (2) the execution time of each
activity in the case, defined as the difference between its execution timestamp and
the timestamp of the successor activity in the same case.

To anonymize the start time of each case, we group all the start times of the
cases in the log to anonymize the fact that a given case happened on a specific
day. Accordingly, we group events that have source state s0 as a single group. To
anonymize the execution time of activities, we group the events that have the same
source state, activity label, and target state in the DAFSA. For each group of the
above, we use Eq (4.7) and (4.4) to estimate a different εt value for every event.
Eq (4.4) provides the maximum εt to minimize the difference between the original
and anonymized timestamp (c.f. UR2). The εt estimated for each event are shown
in Table 8 (column εt).

Estimating εd . Parameter εd determines the noise to be applied to the occurrence
count of each case variant in the log to prevent attack h1. To estimate εd for a given
group of prefixes or suffixes, we consider each group’s size (count). This count is
given by the following SQL query:
CT = SELECT SourceState, ActivityLabel, TargetState, COUNT(*)

FROM StateAnnotatedEventLog

GROUP BY SourceState, ActivityLabel, TargetState

The output of the above query is the DAFSA transition contingency table (CT)
(c.f. Def. 4.2.5). We use the CT to estimate εd by using Eq (4.8) and (4.4). The
εd of all the DAFSA transitions of the CT is the same, but the noise is drawn for
every transition independently.

Table 9 shows the DAFSA transitions CT. These counts are called marginals.
The marginals contain the correlations counts of the common sets of prefixes and

66

suffixes of the DAFSA. We anonymize the marginals to prevent singling out that
an individual has been through an activity, using the prefix and the suffix set of
activities. Barak et al. [82] use an unbounded ε-DP mechanism (cf. Definition 2.4.1)
for marginal anonymization. Likewise, we use unbounded ε-DP to anonymize the
DAFSA transitions CT.

5.1.5. Case Sampling

Given the mechanism M f of Def. 4.2.6, we need to translate the noise estimated by
the CT to the log. Kifer et al. [83] study the anonymization of CTs. They present
the notion of a move to define the anonymization of the marginals of CTs. A move
is a process that adds or deletes a tuple from the CT. We calculate the number of
moves by drawing a random noise using εd . Then, we translate the moves to a
sampling of the cases that go through the same DAFSA transitions. Sampling may
require zero or more moves.

Table 9. DAFSA Transitions Contingency Table, and the generated Random Noise every
DAFSA Transition for δ=0.3 and estimated εd=1.238

Source
State Activity

Target
State Count Noise

s0 A s5 3 0
s5 B s2 3 2
s2 C s3 5 1
s0 D s4 2 -3
s4 A s5 2 0
s5 E s2 2 0

Chapter 4 has a stricter utility requirement (c.f. UR1a). It fulfills the requirement
that “the anonymized log must have the same set of case variants as the original
log.” We defined oversampling as increasing a count (positive move) in the CT by
replicating a random tuple in the log to fulfill such a requirement (c.f. Def. 4.2.7).

This chapter considers a relaxation of the above requirement (cf. UR1b). We
extend our approach to use sampling instead of oversampling, i.e., our approach
performs both replication and deletion of cases from the log. We define sampling
as an increase or a decrease of a count in the CT.

The randomly generated sample size (based on εd) can have a positive or
a negative size. We draw a random noise value from the Laplace distribution
Lap(∆ f/εd), for each DAFSA transition. Table 9 shows the random noise for every
DAFSA transition with the estimated εd= 1.238. The positive size is translated to
replicating a random tuple in the log. The negative size is translated to deleting a
random tuple in the log. Adding or removing a prefix/suffix of a trace to the log
affects a single frequency count by 1, so ∆ f = 1.
Definition 5.1.3 (DAFSA Transition Sampling). Given a DAFSA transition contin-
gency table Ci, a sample Sample is a transformation that adds or deletes a DAFSA

67

transition instance from Ci, producing a contingency table C j = Sample(Ci), with
an increase or a decrease of only one count cell by 1.

To avoid inserting new trace variants in the event log (cf. UR1b), we sample
the prefix and the suffix of the sampled transition, i.e., we sample an entire case
that goes through the sampled transition.
Definition 5.1.4 (Case Sample). Given an event log L, a case sample Sampleci is a
transformation that either duplicates or deletes a case ci of log L, that goes through
a sampled DAFSA transition t, in such a way that it duplicates or deletes all the
activities of ci.
Timestamp Noise Injection At this step, we have the DAFSA annotated log, with
the sampled case instances and an εt value of each event. First, if some cases have
been replicated, we divide the εt value of the replicated cases by the number of
replications, as it is considered repeating the same query more than once [6]. Then,
we draw a random noise from the Laplace distribution Lap(∆ f/εt) to anonymize
the relative time for every activity instance and the start time of each case. Finally,
we transform the relative execution time of activities to timestamps.

Algorithm 2 presents the steps we perform in order to calculate the differentially
private event log. This algorithm does not introduce new case variants so as to
fulfill UR1b.

Algorithm 2 starts by performing event log state-annotation as described in
Sect. 5.1.1. Then, we estimate the prior knowledge as described in Sect. 5.1.2. After
that, we perform case filtering as presented in Sect. 5.1.3. Then, we estimate εt , and
εd as described in Sect. 5.1.4. Then, we construct a correspondence (lookup) table
between the DAFSA annotated event log and the case variants (line 7). This table
maps every DAFSA transition to the case variants that traverse it. Also, we use
this lookup table to track the updates over transitions. Second, we independently
draw a random noise from the Laplace distribution Lap(∆ f/εd) (line 8) for every
transition. We initialize added noise counter to be zero (line 9). Next, we count the
DAFSA transitions that need noise injection and their needed noise (lines 10). Next,
we choose a random transition that needs noise (with their occurrence frequency
as sampling weights) (line 12). Then, we randomly choose a case variant that goes
through the chosen transition (with sampling weights of their number of instances)
(line 13). Next, based on the needed noise (line 15), we either replicate (lines
16-17) or delete (lines 20-21) the chosen case variant by a number of times equals
the needed noise. For every replication/deletion, we choose a random case variant
instance from the event log to be replicated. We repeat this process until all the
transitions have the minimum required noise. Finally, we divide εt of the replicated
cases by the number of replications (line 26). By the end of this step, the event log
is anonymized by ε values calculated from the input maximum guessing advantage
δ .

Next, we show that the output of Algorithm 2 indeed ensures the ε-differential
privacy guarantees.

68

Algorithm 2: Event Log Anonymization Algorithm

1. Input: L: Event Log, δ : Guessing Advantage Threshold
2. Output: L′: ε-Differentially Private Event Log
3. L= eventLogStateAnnotation(L);
4. pk=priorKnowledgeEstimation(L,δ);
5. L f = caseFiltering(L, pk);
6. εd , εt= εEstimation(L f ,pk, δ);
7. DafsaLookup = Build DAFSA annotated event log to case variant

lookup(L f) ;
8. DafsaLookup[i].neededNoise= zi, where zi is sampled from Lap(∆ f/εd)

independently for every transition ti;
9. DafsaLookup .addedNoise=0;

10. cnt = count(|DafsaLookup .addedNoise| < |DafsaLookup.neededNoise|) ;
11. L′ = L f ;
12. while cnt > 0 do
13. selectedTransition = pick a random transition such that

|DafsaLookup.addedNoise| < |DafsaLookup.neededNoise|;
14. pickedTraces = pick x random traces that traverse selectedTransition,

where x = selectedTransition.neededNoise;
15. foreach t ∈ pickedTraces do
16. if DafsaLookup[t].neededNoise > 0 then
17. DafsaLookup[t].addedNoise ++ ;
18. add to L′ a replica of a random case with a case variant = t ;
19. else
20. DafsaLookup[t].addedNoise −− ;
21. delete from L′ a random case with a case variant = t ;
22. end
23. end
24. cnt = count(|DafsaLookup .addedNoise| <

|DafsaLookup.neededNoise|) ;
25. end
26. DafsaLookup[i].εti=DafsaLookup[i].εti /DafsaLookup[i].NumOfReplicas,

where i is the replicated cases;
27. L′.timestamp= L′.timestamp + zi, where zi is sampled from

Lap(∆ f/DafsaLookup[i].εti)
28. return L′

69

5.1.6. Privacy Proof of Algorithm 2

Correctness of Sampling. In this chapter, we adopt differential privacy, which
injects noise into the data before its publication. In order to translate the calculated
noise for every DAFSA transition group (in CT) into case variants anonymization,
we perform case sampling, as defined in Def 5.1.3 and Def 5.1.4. Following, we
provide the correctness of sampling. We assume that the event log contains the
three columns: Case ID, Activity label, and Timestamps, and the activity labels
are public information. First, we discuss privacy leakage of the case variants
distribution (without taking into account timestamps).
Proposition 5.1.1. Let the event log L have a fixed, constant timestamp value for
all the entries. Let CT be the contingency table that corresponds to the event log L.
Let MOV be a mechanism that, for each count cell of the CT , draws (independently)
noise z from Laplace distribution Lap(1/ε) and:

• Replicates the random cases that go through the DAFSA transition, which
corresponds to the count cell (prefix/suffix group), if z > 0. The number of
replications is z;

• Drops random cases from the event log that go through a DAFSA transition
which corresponds to the count cell, if z < 0. The number of deletions is z;

• Shuffles all cases and updates all case IDs before publishing the resulting
event log.

Let δ be the desired upper bound of the attacker succeeding in the goal h1. Then,
it suffices to take

ε =− ln
(

P
1−P

·
(

1
δ +P

−1
))

,

where P =
1−δ

2
.

Proof. We show that sampling the cases has the same privacy guarantees as adding
Laplace noise to the counts. Insertion and deletion of z cases work similarly to
adding Laplace noise, with rounding negative results after noise injection up to 0.
However, L contains strictly more information than the information represented
by CT, e.g., the timestamp and the case IDs. An attacker can single out the
individual using their timestamps (attack h2). At this step, we assume having a
fixed timestamp while anonymizing the case variants distribution, and we discuss
the timestamp anonymization later in Sect. 5.1.6. Also, the attacker can guess the
new injected cases through their case IDs. For example, if the actual case IDs range
from 0 to 10, and we start the injected new cases from case ID= 11, the attacker
will clearly see which cases are duplicates. In this chapter, we shuffle the cases and
generate new case IDs for all the cases in the event log. More formally, the final
result is a multiset of cases, equivalent to the counts of a corresponding CT. ■

Timestamp Anonymization. In this section, we consider timestamp anonymiza-
tion. We need to add enough noise to the timestamps to prevent attacker success in

70

h2, and h1, since timestamps may potentially leak which traces are real and which
are not (new injected cases by sampling). We note that correlations between times-
tamps are difficult to handle in terms of guessing advantage. The main problem is
that the effect of correlated times would greatly depend on how they are correlated,
and in some cases, even a little leakage of t2 may leak everything about t1. For
example, let t1 ∈ {0,1} and t2 ∈ {0, ...,1023} be distributed uniformly. We have
the prior knowledge P1 = 1/2, and P2 = 1/1024. Suppose that, after seeing the
noisified output, the attacker constrained his view of t2 to {0, ...,511}. There are
now 512 possible choices for t2, so δ = 1/512−1/1024 = 1/1024, which is very
small. However, when t1 is the highest bit of t2, the value of t1 would be leaked.
This particular correlation of times is unlikely in practice, but it demonstrates the
problem in general.

To this end, we convert a timestamp tk to a time difference dtk := tk− tk−1 of
sequential events, which is the duration of time that an individual has spent in a
transition from one event to the next one. The timestamp at time t0 is the starting
time st, which needs to be published as well to make it possible to reconstruct
the actual timestamps. st can be converted to the time difference between the
start time of a case and the start time of the log. We obtain the result for linearly
correlated time differences (e.g., increasing the duration of the first event by a
minute increases every other event at most by one minute). To this end, we scale
εk by the length of the trace. Prop 4.3.4 proposes a mechanism that anonymizes
the time differences.

Event Log Anonymization. We now provide a proof of correctness of Alg. 2.
Lemma 5.1.2. Let L and δ be an event log and a maximum guessing advantage
threshold. Log L′ = Alg.2(L,δ) fulfills the two properties in Def 4.1.1 (i.e., L′

is ε-differentially private), and L′ fulfills requirement UR1b and the difference
between the real and the anonymized time values is minimal (c.f. UR2).

Proof. We first show that L′ fulfills the two properties in Def 4.1.1.
(1) In Prop. 5.1.1, we proved that it suffices to take

εd =− ln
(

P
1−P

·
(

1
δ +P

−1
))

to anonymize the case variants of an event log in order to provide differ-
ential privacy guarantees for the desired guessing advantage upper bound
δ . Algorithm 2 annotates the event log using DAFSA transitions (line 3),
and computes the contingency table CT of the log. After that, the algorithm
uses the above εd to sample cases (replication and deletion of cases) (lines
18 and 21). Given that Prop. 4.3.2 and Prop. 5.1.1 prove that replicating
and deleting cases with a random sample size z from Laplace distribution
Lap(1/ε) provides differential privacy guarantees. Algorithm 2 provides
differential privacy guarantees for the case variants anonymization;

71

(2) In Prop. 4.3.4, we proved that it suffices to take

εk =−
ln
(

Pk
1−Pk
·
(

1
δ+Pk
−1

))
rk

to provide differential privacy guarantees w.r.t timestamp for the desired
guessing advantage upper bound δ . Given that Algorithm 2 adopts the
above ε to anonymize timestamp each event (line 27). Hence, Algorithm 2
provides differential privacy guarantees for the event log anonymization w.r.t.
timestamp.

We now show that L′ fulfills the two requirement UR1b and the difference
between the real and the anonymized time values is minimal.

1. Algorithm 2 does not create new case variants. It only replicates or deletes
existing variants (cf. lines 18 and 21). Hence, it fulfills requirement UR1b;

2. In Prop. 4.2.2, we proved that the εk as defined in Eq (4.6) is the maximum
within the upper bound δ , so Algorithm 2 assures that the difference between
the real and the anonymized time values is minimal.

■

5.1.7. Timestamp Compression

This chapter assumes that the start timestamps of the first and the last case in the
original log are public. However, the timestamp anonymization introduces time
shifts, making some cases happen before the original first timestamp or after the
last timestamp of the log. To reduce the impact of time shifts over the log, we
perform timestamp compression as post-processing of the anonymized log.
Proposition 5.1.3 (Differential Privacy under Post-processing [6]). A post-processing
algorithm P of an event log L gives ε-differential private event log, if and only
if it has been applied to the output of an algorithm A that gives an ε-differential
private event log.

Proof. The proof of Prop. 5.1.3 is in [6] (cf. Proposition 2.1) ■

Given the ε-DP log, the post-processing of M(L) output is differentially private.
In this chapter, we use the public information, the start timestamp of the first and
the last cases in the event log, to post-process the anonymized event log. We
perform timestamp compression to make the cases’ timestamp fall between the
original start timestamp of the first and the last cases in the event log. We multiply
the relative time values with a compression factor. We define the compression
factor as:

Compression Factor =
Original Range

Anonymized Range+Orignal Range
∗ 1

2
, (5.1)

72

where the original range is the difference in days between the start timestamp of
the first and the last cases in the original event log, and the anonymized range is
the difference in days between the start timestamp of the first and the last cases in
the anonymized event log. Table 10 shows the anonymized version of the input
event log in Table 4 with a guessing advantage threshold δ=0.3.

Lastly, we generate new Case IDs for the anonymized log cases that do not link
to the original log. Also, we reorder the events in the event log based on their new
timestamps.

Table 10. Differentially Private Event Log with δ=0.3

Case ID Activity Timestamp
66d19fc868978d2fc1e D 2020-08-08 04:26:24
66d19fc868978d2fc1e A 2020-08-08 07:03:57
66d19fc868978d2fc1e E 2020-08-08 07:43:20
66c81c1d1a9773464aa D 2020-08-09 12:16:42
66d19fc868978d2fc1e C 2020-08-09 13:33:07
66c81c1d1a9773464aa A 2020-08-09 14:54:15
66c81c1d1a9773464aa B 2020-08-09 15:53:27
c4247e4c1e9292166cd A 2020-08-09 18:44:10
c4247e4c1e9292166cd E 2020-08-09 19:23:33
efd62407e7f2b016e33 A 2020-08-09 19:34:35
efd62407e7f2b016e33 B 2020-08-09 20:00:23
efd62407e7f2b016e33 C 2020-08-10 00:49:12
66c81c1d1a9773464aa C 2020-08-10 04:41:39
64b00e4dfc2b2145e17 D 2020-08-10 05:17:48
64b00e4dfc2b2145e17 A 2020-08-10 07:55:20
64b00e4dfc2b2145e17 B 2020-08-10 08:44:53
64b00e4dfc2b2145e17 C 2020-08-11 00:59:32
c4247e4c1e9292166cd C 2020-08-11 06:16:25
cde714d92c42217500a A 2020-08-11 07:02:37
cde714d92c42217500a B 2020-08-11 07:33:55
cde714d92c42217500a C 2020-08-11 15:26:28

5.2. Software Implementation

In this section, we present Amun, a tool for event log anonymization. Amun allows
event log publishers to control the level of privacy in the anonymized event log. In
other words, a user needs to upload an event log and specify the maximum level
of acceptable guessing advantage. Amun applies differential privacy to prevent
singling out an individual using a subtrace of their process execution. It does so
by grouping individual traces based on their prefixes and suffixes. This grouping
enables Amun to perform in a parallel manner. Following, we give an overview of

73

Preprocessing

Anonymization
Approaches

Noise
Quantification

Risk
Quantification

Event
Log

Anonymized
Event Log

Amun

Uploading
event log

Sampling

Filtering with
Sampling

Oversampling

Output

Figure 7. Overview of Amun

Figure 8. Upload an event log and anonymize it using a selected approach

the Architecture and implementation of Amun.

5.2.1. Functionality

Figure 7 gives an overview of Amun’s components. Below, we summarize the
functionality of each component of Amun. Amun’s detailed explanation and
evaluation are presented in Sect. 4.3 and Sect. 5.1.

Input. Figure 8 presents the upload page of the web application. The event log
publisher uploads their event log to Amun as either an XES (eXtensible Event
Stream) or CSV (Comma Separated Value) file. Amun requires the event log
to have at least a column representing the case ID, a column representing the
activity instance, and a column that records the timestamp executing each activity.
Then, the user sets the maximum acceptable risk probability (δ) using the slider,
selects the anonymization method (sampling, oversampling, or filtering), and clicks
Anonymize.

Preprocessing and risk quantification. Once the user clicks Anonymize, Amun
starts processing the file. The first step is to establish a representation that helps
to quantify the re-identification risk attached to releasing each event in the log.
To this end, Amun represents the input event log as a lossless representation,
namely a Deterministic Acyclic Finite State Automata (DAFSA) [14]. Next, Amun
annotates each event log with its DAFSA transition, as explained in Sect. 5.1.

74

Then, for each event, Amun estimates the prior knowledge Pk, which represents
the re-identification risk before publishing the log, and the posterior knowledge
P′k, which means the re-identification risk after publishing the log. A detailed
explanation of this risk quantification is presented in Sect. 5.1.

Anonymization Methods. Amun offers the user three different anonymization
approaches. All the approaches guarantee that the customers in the anonymized
log will not be singled out using a subset of their trace variants or the timestamp of
executing their activities. All the approaches provide differential privacy guaran-
tees [6] by injecting noise, quantified by the differential privacy parameter ε , from
the control flow perspective, representing user traces in the log and the timestamp
perspective. The first approach is oversampling Sect. 4.3 and Sect. 5.1. Oversam-
pling requires that the set of trace variants in the input log and the anonymized log
are the same. To this aim, Amun applies the approach presented in Sect. 4.3 and
Sect. 5.1. The second approach is Sampling. The sampling approach anonymizes
the event log so that the anonymization does not add new trace variants in the log,
and the difference between the real and the anonymized timestamp is minimal.
Amun applies the sampling approach presented in Sect. 5.1. Some event logs
may contain very unique user traces, resulting in large noise injection to achieve
differential privacy guarantees. Therefore, Amun applies the filtering approach
presented in Sect. 5.1.

Noise Quantification and Injection. Given the estimated re-identification risk
per event, Amun estimates the suitable ε value. We draw noise from Laplacian
distribution and inject noise for both the control flow and time perspectives. This
step is performed for each event independently.

Output. Once the event log anonymization is finished, the anonymized event log
will be available for download. Amun downloads the anonymized log in the same
format as the original log. Amun offers to download the risk quantification of each
activity instance in the log as a CSV file. The risk quantification per each activity
instance is a column called original risk, which represents the re-identification
risk of releasing the event log before the anonymization. Amun anonymizes only
the three columns: case ID, activity label, and timestamp. Amun drops the other
attributes from the anonymized log.

5.2.2. Maturity and Availability

Amun is developed as a React web application and an API for ease of use. To
enable quick trials by the users, Amun is available as a cloud service that can be
found at http://amun.cloud.ut.ee. The current server deployment accepts event logs
with sizes up to 5 MB. Amun is available as a docker image. The image and its
installation steps can be found at https://github.com/Elkoumy/amun/tree/amun-
flask-app. Also, Amun is available as a python package and can be integrated
into other process mining tools. The source code and the installation steps can be
found at https://github.com/Elkoumy/amun. A screencast that describes the tool is

75

http://amun.cloud.ut.ee
https://github.com/Elkoumy/amun/tree/amun-flask-app
https://github.com/Elkoumy/amun/tree/amun-flask-app
https://github.com/Elkoumy/amun

available on YouTube at https://youtu.be/1dxaCNE9WHk.

5.3. Evaluation

To address the RQ1 under requirements UR1b and UR2 , the proposed method
injects differentially private noise in two ways: (i) by sampling and filtering some of
the traces in the log; and (ii) by altering the event timestamps. The noise injection
and case filtering affect the utility of the anonymized logs. We measure the effect
of anonymization on the utility by comparing the anonymized logs against the
original ones. We compare the performance of different design choices (the design
choices presented in this chapter and in Chapter 4). Also, we compare the proposed
approach against the state-of-the-art.

Accordingly, we define the following questions:
Q1. Does loosening the requirement from UR1a to UR1b preserve a higher utility

of the anonymized event log?
Q2. Does the proposed approach outperform the state-of-the-art baselines in

terms of the output utility?
Q3. What is the difference between different design choices and the state-of-the-

art in terms of computational efficiency?

5.3.1. Evaluation Measures

To measure the quality of the anonymized case variants, we use Jaccard Distance
(JD) [89]. It is efficient for sparse vectors and has been adopted in existing
work [90]. JD is a metric that measures the similarity and diversity of two sets. It
is calculated by dividing the size of the intersection by the size of the union of the

two sets. JD(X ,Y) = 1− |X ∩Y |
|X ∪Y |

. This chapter compares the set of case variants

in the anonymized log against the original log.
Given a log, a typical output of process mining tools is the DFG. To measure the

utility loss of the anonymization on the DFG, we compare the DFG resulting from
the anonymized log against the original one. To measure the difference between
two DFGs, we use the Earth Movers’ Distance (EMD) [91]. The EMD between
two distributions u and v is the minimum cost of transforming u into v. The cost is
the distribution weight that needs to be moved, multiplied by the distance it needs
to move. Formally:

EMD(u,v) = inf
π∈Γ(u,v)

∫
R×R
|x− y|dπ(x,y), (5.2)

where Γ(u,v) is the set of distributions on R×R whose marginals are u and v.
Optimal anonymization is an NP-hard problem [92]. Hence, increasing the log

size makes it unpractical to perform anonymization within sufficient execution
time [48]. Consequently, we conduct a wall-to-wall run time experiment to assess

76

https://youtu.be/1dxaCNE9WHk

the efficiency of the method. We measure the time between reading the input XES
file and the generation of its anonymized version.

5.3.2. Event Logs

To answer our research questions, we rely on the real-life event logs publicly
available at 4TU Centre for Research Data3 as of February 2021. We considered
the logs mentioned in Table 11. The selected logs contain the process execution
of different domains, e.g., government and healthcare. From the set of available
logs, we excluded the event logs that are not business processes (e.g., “Apache
Commons”, “BPIC 16” logs, “Junit 4.12”). Also, we exclude the set of event logs
“coSeLog” as they are a pre-processed version of BPI challenge 15. Finally, we
select a single log for each set of logs in BPI challenges 13, 14, 15, 17, 20.

5.3.3. Experiment Setup

We implement the proposed model as part of a prototype, namely Amun4. We run
the experiment on a single machine with AMD Opteron(TM) Processor 6276 and
32 GB memory. We time out any experiment at 24 hours. Also, in our experiment,
we consider only the end timestamp to calculate the relative time of an event for
simplicity, and the same approach is still valid to apply DP. Further, we keep only
the three attributes in every event log: case ID, Activity, and timestamp.

We evaluate and compare the different design choices of our approach. We
evaluate the oversampling presented in the conference version of this chapter (
Sect. 4.3), the proposed approach using all the proposed steps in Sect. 5.1 (filtering
risky cases then sampling), and the proposed approach without the third step
(sampling without filtering). We use the JD and EMD to compare the anonymized
event log against the original for all the design choices.

We compare the proposed approach against the state-of-the-art. The studies that
consider PPPM from the case perspective are [12,60,64–66]. In our comparison, we
do not include the work in [12, 60] because the parameters’ interpretation of the k-
anonymity privacy model is different from the DP model. The studies [64–66] adopt
DP. Mannhardt et al. [64] anonymize two types of queries: the query “frequencies
of directly-follows relations” and “frequencies of trace variants”. The output of
the anonymization of [64] is not an event log. PRIPEL [65] anonymizes the event
log while adopting the trace variant queries anonymization that has been proposed
in [64]. We compare the proposed approach against [65]. SaCoFa [66] anonymizes
the case variant queries. The output is an event log without the time attribute. We
include SaCoFa [66] only in the case variant experiments. PRIPEL and SaCoFa
take three input parameters, namely ε , k, and N. To select the parameters’ values,
we run several experiments for different values of the pruning parameter k (0.5%,

3https://data.4tu.nl/
4https://github.com/Elkoumy/amun

77

https://data.4tu.nl/
https://github.com/Elkoumy/amun

Ta
bl

e
11

.D
es

cr
ip

tiv
e

St
at

is
tic

s
of

E
ve

nt
L

og
s

ev
en

tl
og

#
Tr

ac
es

#
Ta

sk
s

#
E

ve
nt

s
#

D
F

R
el

.
C

as
e

V
ar

ia
nt

Tr
ac

e
L

en
gt

h
C

as
e

D
ur

at
io

n
M

in
M

ax
M

in
M

ax
A

vg
B

P
I1

2
[9

3]
13

08
7

23
26

22
00

11
6

43
66

3
17

5
1.

85
s

4.
51

m
1.

23
w

B
P

I1
3 i

[9
4]

75
54

4
65

53
3

16
15

11
1

12
3

in
st

.
2.

11
y

1.
73

w
B

P
I1

4 i
[9

5]
46

61
6

39
46

67
37

49
7

22
63

2
1

17
8

14
s

1.
07

y
5.

07
d

B
P

I1
5 1

[9
6]

11
99

39
8

52
21

7
49

5
11

70
2

10
1

8.
56

h
4.

07
y

3.
15

m
B

P
I1

7
[9

7]
31

50
9

24
12

02
26

7
18

1
39

42
10

18
0

3.
35

m
9.

4
m

3.
13

w
B

P
I1

8
[9

8]
43

80
9

14
25

14
26

6
49

9
28

45
7

24
29

73
3.

74
m

2.
77

y
11

.0
3

m
B

P
IC

19
[9

9]
25

17
34

42
15

95
92

3
49

8
11

97
3

1
99

0
2

m
s

70
.3

3
y

2.
35

m
B

P
I2

0 r
[1

00
]

70
65

51
86

58
1

50
0

14
78

3
90

12
.6

1
h

3.
26

y
2.

87
m

C
C

C
19

[1
01

]
20

29
13

94
14

9
20

52
11

8
11

m
1.

01
d

1.
73

h
C

re
dR

eq
[1

02
]

10
03

5
8

15
05

25
9

1
15

15
3.

5
h

5
d

22
h

H
os

pi
ta

l[
10

3]
11

43
62

4
15

02
91

90
3

98
1

1
18

14
in

st
.

3.
17

y
1.

06
y

Se
ps

is
[1

04
]

10
50

16
15

21
4

11
5

84
6

3
18

5
2.

03
m

1
y

4
w

T
ra

ff
ic

[1
05

]
15

03
70

11
56

14
70

77
23

1
2

20
3

d
12

y
11

m
U

nr
in

e.
[1

06
]

16
50

10
69

73
25

50
2

35
10

.1
m

2.
32

y
3.

7
w

78

1%, and 5% of the cases), and we select the best results. For the maximum trace
length, we set N to the average trace length of the log.

PRIPEL accepts a single ε value for both the trace variant anonymization and
the timestamp attribute anonymization, and SaCoFa adapts a single ε value for
all the events. On the contrary, our proposed approach uses different ε values.
Consequently, we use the average value of the estimated ε values in our approach
as input to PRIPEL and SaCoFa. We do that in two different settings. We run
an experiment using the ε values estimated for the trace variant anonymization
(i.e., εd , as explained in Sect. 5.1.4), and we evaluate the output using the JD.
Also, we run another experiment using the ε values estimated for the timestamp
anonymization (i.e., εt , as explained in Sect. 5.1.4), and we evaluate the output
using the EMD. We use SaCoFa with only the first setting because it anonymizes
the case variant query only.

5.3.4. Results

Table 12 shows the experimental results measured by JD. The minimum JD for
each event log, given an input δ , is highlighted in bold. A “-” indicates that the
approach runs out of memory (32 GB) or times out (24 hours). εd refers to the ε

estimated from the guessing advantage to anonymize the sequence of events. We
exclude the oversampling setting (c.f. Chapter 4) from this comparison, as it does
not change the input case variants. The proposed approach using sampling without
filtering (labeled Amuns) has the minimum JD. The second-smallest distance is the
proposed approach with the setting of both filtering and sampling (labeled Amun f)
because filtering removes more cases, which is penalized by the JD. The JD of
PRIPEL and SaCoFa are significant because they generate new case variants and
delete case variants. For some logs, both PRIPEL and SaCoFa runs out of memory.

The utility loss differs across logs. We see a decrease in the utility loss for
structured logs such as Credit Requirement, Unrineweginfectie, and Traffic Fines.
For example, the output of Amuns for Unrineweginfectie has a maximum JD of
0.07, and for the same log, Amun f has a maximum distance of 0.09. This difference
is because Amun f filters out cases to reduce the timestamp noise injection. PRIPEL
has a JD of 0.9, and SaCoFa has a JD= 0.89. That happens due to infrequent case
variants trimming.

With anonymizing unstructured event logs, which is more challenging due
to the uniqueness of cases, we see an increase in utility loss. For instance, the
output of Amuns for Sepsis cases log has a maximum JD of 0.144, and for the
same log, Amun f has a maximum distance of 0.88. The increase of the utility loss
is significant with Amun f because it filtered out 580 case variants, in contrast to
Amuns, which filtered out only 87 case variants. For the same log, PRIPEL has
a maximum JD of 0.9969. That happens because PRIPEL filtered out 839 case
variants. SaCoFa has a maximum JD = 0.9598 because it filtered out 787 case
variants and added new 19 case variants (false positives).

79

Table 12. Jaccard Distance for the output of different anonymization approaches. A “-”
means that the approach ran out of memory or timed out.

Log Name δ εd Amuns Amun f PRIPEL SaCoFa

BPIC12
0.2 0.8100 0.1618 0.8681 0.9995 0.9931
0.3 1.2380 0.1140 0.9005 0.9995 0.9926
0.4 1.7000 0.0612 0.9187 0.9995 0.9928

BPIC13
0.2 0.8100 0.12 0.12 0.9966 0.9760
0.3 1.2380 0.05 0.17 0.9966 0.9757
0.4 1.7000 0.02 0.53 0.9964 0.9770

BPIC14
0.2 0.8100 0.1470 0.1581 - 0.9997
0.3 1.2380 0.0950 0.1051 0.9999 0.9997
0.4 1.7000 0.0500 0.0949 0.9999 0.9998

BPIC15
0.2 0.8100 0.2685 0.3053 - -
0.3 1.2380 0.1750 0.4455 0.9999 -
0.4 1.7000 0.0996 0.5396 0.9997 -

BPIC17
0.2 0.8100 0.0618 0.6956 0.9997 0.9915
0.3 1.2380 0.0276 0.9214 - 0.9916
0.4 1.7000 0.0130 0.9216 0.9997 0.9933

BPIC18
0.2 0.8100 0.2024 0.6546 0.9999 0.9984
0.3 1.2380 0.1283 0.6913 - 0.9989
0.4 1.7000 0.0689 0.8055 - -

BPIC19
0.2 0.8100 0.1903 0.2385 - 0.9957
0.3 1.2380 0.1385 0.1977 - 0.9960
0.4 1.7000 0.0852 0.2239 - 0.9962

BPIC20
0.2 0.8100 0.1129 0.1319 0.9948 0.9572
0.3 1.2380 0.0343 0.0864 0.9948 0.9592
0.4 1.7000 0.0222 0.1432 0.9948 0.9835

CCC19
0.2 0.8100 0.1564 0.9498 - -
0.3 1.2380 0.2798 0.7403 - -
0.4 1.7000 0.0 0.8838 - -

CredReq
0.2 0.8100 0.0 0.0 0.0 0.0
0.3 1.2380 0.0 0.0 0.0 0.0
0.4 1.7000 0.0 0.0 0.0 0.0

Hospital
0.2 0.8100 0.2849 0.3269 0.9999 -
0.3 1.2380 0.2177 0.2203 0.9998 -
0.4 1.7000 0.1295 0.1579 0.9998 -

Sepsis
0.2 0.8100 0.1437 0.4060 0.9962 0.9485
0.3 1.2380 0.1226 0.7185 0.9964 0.9556
0.4 1.7000 0.0340 0.8820 0.9969 0.9598

Traffic
0.2 0.8100 0.0185 0.0275 - 0.9757
0.3 1.2380 0.0042 0.0270 - 0.9773
0.4 1.7000 0.0 0.1830 - 0.9762

Unrine.
0.2 0.8100 0.0728 0.0852 0.9875 0.8923
0.3 1.2380 0.0 0.1123 0.9938 0.9006

0.0 0.9875 0.90290.4 1.7000 0.0728

Table 13. Earth Movers’ Distance for the output of different anonymization approaches. A
“-” means that the approach ran out of memory or timed out.

Log δ εt
EMD Freq EMD Time

Amuns Amun f Amuno PRIPEL Amuns Amun f Amuno PRIPEL

BPIC12
0.2 1.48 331.02 653.36 2301.62 946.9 40.30 8.08 192.13 25.75
0.3 2.00 212.64 742.39 1597.79 966.99 20.32 13.54 107.96 26.7
0.4 2.47 142.37 785.87 1275.43 966.88 12.68 16.74 72.56 26.7

BPIC13
0.2 1.49 1131.91 1053.45 7613.27 3771.09 778.18 811.51 3343.92 197.41
0.3 1.99 840.55 258.45 5417.64 3792.55 592.36 307.26 2055.23 197.38
0.4 2.44 558.45 2450.45 4296.73 3775.82 486.86 75.13 1751.96 197.19

BPIC14
0.2 1.25 429.60 395.24 1905.69 531.42 132.53 130.00 577.32 10
0.3 1.74 298.86 281.43 1333.95 - 82.02 76.37 321.72 -
0.4 2.27 208.55 179.94 1012.62 - 47.12 50.61 178.08 -

BPIC15
0.2 0.42 20.71 18.74 80.61 - 5.68 4.18 22.47 -
0.3 0.69 14.82 7.93 52.42 10.71 3.15 2.28 11.17 0.8
0.4 0.99 12.60 2.79 39.09 - 2.46 1.05 8.87 -

BPIC17
0.2 1.81 141.37 1925.92 1159.08 2454.47 117.56 75.98 268.08 109.10
0.3 2.21 78.60 2667.91 938.79 - 95.07 131.76 206.76 -
0.4 2.66 49.93 2674.76 938.79 - 79.33 133.77 206.76 -

BPIC18
0.2 0.91 3775.468 659.01 17668.46 - 2176.17 179.39 3206.75 -
0.3 1.31 2922.80 1752.72 12063.81 - 1319.69 325.14 2201.39 -
0.4 1.72 2372.08 2812.65 9055.04 - 885.81 517.59 1647.15 -

BPIC19
0.2 2.96 946.99 811.80 4509.08 - 524.18 608.02 1513.92 -
0.3 3.51 743.96 572.71 3094.05 - 491.84 498.59 1054.23 -
0.4 4.00 612.48 399.36 2376.21 - 500.57 360.54 751.67 -

BPIC20
0.2 2.73 18.97 18.69 138.05 98.10 65.23 69.04 180.50 23.94
0.3 3.27 14.88 10.42 99.76 - 44.46 40.01 109.90 -
0.4 3.75 10.55 2.24 76.61 - 41.70 35.78 82.67 -

CCC19
0.2 0.23 12.78 3.70 30.81 - 0.00 0.00 0.00 -
0.3 0.54 4.55 2.23 25.77 - 0.00 0.00 0.00 -
0.4 0.85 5.54 3.21 16.64 - 0.00 0.00 0.00 -

CredReq
0.2 1.39 0.00 2.00 4.00 0.00 233.08 238.79 186.94 0.00
0.3 1.80 0.00 0.00 3.00 0.00 203.94 182.39 220.17 0.00
0.4 2.03 0.00 2.00 2.00 0.00 201.81 231.37 180.77 0.00

Hospital
0.2 0.21 81.40 75.74 406.45 - 10.30 11.33 55.44 -
0.3 0.41 57.91 61.96 264.09 - 7.86 7.42 31.71 -
0.4 0.60 58.68 63.93 210.40 - 6.07 6.01 20.70 -

Sepsis
0.2 1.31 56.84 32.20 427.64 118.02 8.97 4.37 61.50 8.68
0.3 1.83 28.46 67.97 286.23 118.63 6.35 3.60 32.93 8.64
0.4 2.37 43.38 101.64 232.50 118.71 4.26 6.48 26.61 8.64

Traffic
0.2 4.50 1.64 0.90 33.50 - 8250.42 7253.29 8627.86 -
0.3 5.26 0.61 8.01 25.51 - 7767.32 6720.80 7081.06 -
0.4 5.28 0.00 2951.50 21.00 - 7182.96 12788.57 7419.02 -

Unrine.
0.2 2.87 6.53 5.53 66.00 290 44.96 39.34 184.68 94.74
0.3 3.41 0.00 2.87 53.67 290.47 28.12 33.27 103.67 94.73
0.4 3.84 1.47 2.53 47.00 290.47 21.89 26.35 90.93 94.73

81

The second setting of our experiment is to measure the utility loss over the
DFG. Table 15 shows the results for both the frequency and time annotated DFG.
We use the total relative time between two activities to annotate the DFG. The time
EMD distance is measured in terms of months. εt refers to the average εt value
estimated by the proposed approach for timestamp anonymization. The best result
for every input δ is in bold. Amun f outperforms other settings in the time EMD in
most of the logs because case filtering decreases the needed noise to anonymize
the timestamp, and hence Amun f has a lower utility loss.

Conversely, the Amun f has a lower frequency EMD than Amuns, due to the
decrease in the frequencies by case filtering. The oversampling setting (Chapter 4),
labeled Amuno, has the largest frequency and time EMD due to duplicating cases
and dividing εt by the number of duplications. PRIPEL has a time EMD that is
close to the filtering settings. However, the used εt with PRIPEL is the average
estimated ε . Thus, the proposed approach can provide similar or better time EMD
with stronger privacy metrics. The effect of using the same ε in PRIPEL for both
the case variant and timestamp anonymization appears in the frequency EMD. The
proposed approach has a lower frequency EMD than PRIPEL in all the logs.

We compare the variant analysis of different design choices for structured
and unstructured event logs for further analysis. Fig. 9 shows a variant analysis
between Unrineweginfectie and Sepsis logs and their anonymized versions by
different design choices and PRIPEL. All the design choices have their best utility
for the Unrineweginfectie log, which has 1650 cases and only 50 case variants.
Fig. 9(a) shows that Amuns, Amun f , and PRIPEL result in logs with close active
cases over time to the original log. The false negatives in the anonymized logs are
1, 2 and 34 for Amuns, Amun f and PRIPEL, respectively. However, Amuno adds
more noise than other approaches, though it keeps the false negatives to zero due
to oversampling.

Fig. 9(b) shows the active cases over time for the sepsis cases event log, with
1050 cases and 846 case variants. For both Amuns and Amun f the anonymized
version of Sepsis cases has a closer behavior to the original log. Amuno generates
more noise with unstructured event logs than structured logs. The anonymized
log by PRIPEL has fewer case variants than the original log. The false negatives
in the anonymized logs are 37, 317, and 839 for Amuns, Amun f , and PRIPEL,
respectively.

We conduct a wall-to-wall run time experiment to assess the efficiency of
the method. We measure the time between reading the input XES file and the
generation of its anonymized version. The results are reported in Table 16, and
the values are in minutes. The run time increases with case variants (as it contains
more DAFSA transition groups). The execution times for logs with numerous
events and with low δ values are in the order of hours, e.g., 2.13 hours for BPIC18
(2.5 million events) with δ=0.2 because the noise injection algorithm iterates
multiple times over each transition (lines 15-23 in Algorithm 2), and the number
of DAFSA states for this log is high (638,242 states). This shortcoming can

82

Ti
me

sta
mp

Cases

Ac
tiv

e c
as

es
 ov

er
tim

e

O
ve
rs
am

pl
in
g

PR
IP
EL

Fi
lte
rin
g

Sa
m
pl
in
g

O
rig
in
al

Jan
 '1

8
Jan

 '1
9

Jan
 '2

0
Jan

 '2
1

Ma
y '

17
Se

p '
17

Ma
y '

18
Se

p '
18

Ma
y '

19
Se

p '
19

Ma
y '

20
Se

p '
20

Ma
y '

21
0

10
0

20
0

30
0

(a
)

U
nr

in
ew

eg
in

fe
ct

ie
A

ct
iv

e
ca

se
s

ov
er

tim
e

Ti
me

sta
mp

Cases

Ac
tiv

e c
as

es
 ov

er
tim

e

O
rig
in
al

Fi
lte
rin
g

Sa
m
pl
in
g

O
ve
rs
am

pl
in
g

PR
IP
EL

Jan
 '1

4
Jan

 '1
5

Jan
 '1

6
Oc

t '
13

Ap
r '

14
Jul

 '1
4

Oc
t '

14
Ap

r '
15

Jul
 '1

5
Oc

t '
15

Ap
r '

16
0

25
0

50
0

75
0

10
00

(b
)

Se
ps

is
A

ct
iv

e
C

as
es

ov
er

Ti
m

e

Fi
gu

re
9.

V
ar

ia
nt

A
na

ly
si

s
co

m
pa

ri
so

n
be

tw
ee

n
U

nr
in

e.
an

d
Se

ps
is

ev
en

tl
og

s
an

d
th

ei
ra

no
ny

m
iz

ed
ve

rs
io

ns
,w

ith
δ
=

0.
2,

av
er

ag
e

ε
=

1.
31

fo
r

Se
ps

is
,a

nd
av

er
ag

e
ε
=

2.
87

fo
rU

nr
in

e.
T

he
fig

ur
es

ar
e

zo
om

ed
by

70
%

.

83

Table 14. Execution time experiment. The time is measured in minutes for an input
δ = 0.2. A “-” means that the approach ran out of memory or timed out.

event log Amun f Amuns Amuno PRIPEL
BPIC12 4.44 7.38 12.50 24.35
BPIC13 1.11 1.09 3.90 4.20
BPIC14 44.57 43.83 101.40 -
BPIC15 4.38 4.45 8.40 -
BPIC17 6.88 10.80 17.40 1.46
BPIC18 128.32 321.59 542.50 226
BPIC19 96.89 52.73 87.50 -
BPIC20 2.64 2.52 4.10 3.18
CCC19 0.04 0.09 0.10 -

CreditReq 1.21 1.35 1.20 14.50
Hospital 11.27 10.65 34.10 -
Sepsis 0.87 1.00 1.90 0.05
Traffic 9.71 11.35 8.20 -
Unrine. 0.14 0.16 0.20 0.02

be tackled via parallelization, as the privacy quantification over each DAFSA
transition is independent of others. Specifically, the step at line 4 of Algorithm 2
can be parallelized since the prior knowledge estimation is calculated per the
DAFSA transition. Also, line 6, the εt estimation is estimated for each event
separately; therefore, it can be computed in parallel. PRIPEL does not scale and
runs out of memory for event logs that have numerous cases and events. The above
experiments were all done using one single thread to avoid bringing additional
variables (number of computing nodes and cores) into the experiments.

We acknowledge that the above observations are based on a limited population
of logs (14). However, these logs were selected from a broader population of close
to 50 real-life logs.

5.3.5. Evaluation Conclusion

The above experiments show that loosening the requirement from UR1a to UR1b
preserve a higher utility of the anonymized event log. Specifically, the results
in Table 12 put into evidence the consistently low utility loss of using sampling
of events across the lossless representation of log to apply DP. Furthermore, the
results in Table 15 and Fig. 9 show that using different ε values for case variant
and timestamp anonymization leads to lower utility loss. Moreover, the use of
personalized DP to estimate different ε per event leads to a stronger privacy
guarantee with lower utility loss. The experiments also show that the proposed
approach outperforms the state-of-the-art baselines in terms of output utility and
computational efficiency.

84

5.4. Summary

This chapter proposed a concept of the differentially private event log and a
mechanism to compute such logs. A differentially private event log limits the
increase in the probability that an attacker may learn a suffix of an individual’s
trace given a prefix (or vice-versa) or the timestamp of activity in an individual’s
trace. To this end, we inject differentially private noise by sampling the traces
in the log. This approach does not add case variants (cf. Sect. 5.1) and hence
fulfills UR1b. To inject minimal noise to the timestamps of the event log, we
quantify ε based on a technique that finds the maximum ε (minimum noise) that
keeps the guessing advantage below δ .

The empirical findings show that the proposed approach is a step toward
anonymizing event logs while preserving the utility of the process mining analysis.
The proposed approach outperforms the baselines in terms of Jaccard distance
and earth movers’ distance, and generalization to all fourteen real-life event logs
selected in the evaluation. Furthermore, the approach can process large size event
logs in practical memory size (32 GB).

A limitation of the proposed method is that it anonymizes the timestamp without
performing calendar anonymization, violating organizational rules (e.g., single
activity at each timestamp). A possible avenue for future work is to model and
include organizational rules while anonymizing logs.

85

6. DIFFERENTIALLY PRIVATE RELEASE OF EVENT
LOGS: A SUBSAMPLING APPROACH

In this chapter, we address the research question RQ1 under the utility requirement
UR1b: The anonymized event log must not introduce new case variants to the orig-
inal log.. As we presented above in Chapter 2, differentially private mechanisms
work by injecting noise to achieve DP-guarantees. The holy grail of anonymization
techniques in general, and DP-anonymization techniques in particular, is to achieve
a low level of re-identification risk with low utility loss. Recent work in the field of
DP has shown that the privacy guarantees of a differentially private mechanism can
be amplified by applying it to a small random subsample of records [107]. This
property is known as privacy amplification. The underpinning idea is that, since
we inject less noise to the subsampled records, there is less utility loss overall.
In this chapter, we hypothesize that a DP approach based on subsampling can
achieve lower utility loss, for a given level of privacy guarantee, relative to existing
DP-anonymization techniques for event logs, which are based purely on noise
injection.

The contribution of this chapter is a DP-anonymization approach for event
logs, namely Libra. Libra starts by filtering out case variants that, if disclosed,
would lead to privacy breaches. It then extracts multiple Poisson subsamples and
applies a DP mechanism to anonymize each subsample. The resulting differentially
private subsamples are then combined to construct an anonymized log. Using
the differential privacy composition theorem [108] and the privacy amplification
results associated to Renyi Differential Privacy (RDP) [109], we then estimate the
amplified ε

′ privacy guarantee provided by the resulting anonymized log.
This chapter is structured as follows. Sect. 6.1 presents the anonymization

approach. Sect. 6.2 presents an empirical evaluation. Finally, Sect. 6.3 concludes
and discusses future work. This chapter is derived from [16] and contains sentences
or fragments of sentences from this prior publication.

6.1. Approach

We seek to anonymize an event log in such a way an attacker cannot single out an
individual (e.g. a patient) in the anonymized event log. Accordingly, Libra applies
differential privacy to the event log. To provide a better usage of a given privacy
budget ε , Libra relies on privacy amplification by subsampling [107, 109].

More concretely, given an event log and a privacy budget ε , Libra produces a
differentially-private event log in 5 steps as outlined in Fig.14. Some case variants
may be very rare, and keeping them can lead to singling out individuals. Accord-
ingly, the first step clips case variants below a clipping threshold C, estimated by
the given privacy budget ε . The second step constructs a Poisson subsample of the
event log. The third step is to anonymize subsamples. Some of the anonymized

86

cases may affect the utility. Therefore, Libra performs statistical post-processing
of the anonymized subsamples to select the relevant traces. Libra repeats the above
process to generate multiple subsamples while tracking the privacy budget by noise
screening, and it composes the privacy budgets of the subsamples using Renyi
Differential Privacy (RDP). Lastly, Libra combines the generated subsamples to
construct the anonymized event log. This chapter adopts the same attack model
presented in Sect. 4.1. In the following, we explain each step of Libra in turn.
Furthermore, an algorithm is presented to formalize Libra’s steps.

Poisson
SubsamplingClipping Subsample

Anonymization

Statistical
Post-

processing

Combine
Subsamples

Anonymized
Event LogEvent Log Multiple

Subsamples

Figure 10. Approach

6.1.1. Clipping rare Cases

It is possible to single out individuals using their case variants, even if the variant
is not unique, but exists a few times in the log. We call such a case variant a
rare case variant [110]. Observing a rare case variant is problematic because it is
executed for a group of few individuals, and observing such a trace may increase
the attacker’s confidence about this group of individuals. Chaudhuri et al. [110]
define rare values (rare case variants) in a data sample w.r.t (ε,δ)-DP guarantee.
Lemma 6.1.1 (Rare case variants [110]). A sample that provides (ε,δ)-differential
privacy guarantee should not contain rare case variants that happen less than

1/ε log(
2k
δ
), where k is the number of case variants in the log.

Since Libra provides privacy amplification via subsampling, any log sample
that provides (ε,δ)-DP guarantee should not contain rare case variants [110]. If
a rare case variant exists in the released log, it may lead to a privacy breach of

O(
iε

log(2k/δ)
), where i is the number of rare cases in the log [110]. Libra clips

case variants that happen less than C = 1/ε log(
2k
δ
). It does so by filtering out all

the trace instances of the case variants that happen <C.
Libra does not apply in the case that the log is a collection of unique traces (i.e.,

each case is of a unique case variant). The reason is that if every trace in the log is
unique, then a sample of any size, even one, violates the privacy guarantees.

6.1.2. Event Log Subsampling

Our goal is to prevent an attacker from determining the existence of an individual
in the anonymized log. To this end, we bring privacy amplification by subsam-
pling [107, 109] into action.

87

Definition 6.1.1 (Subsampling). Given an event log L of z traces, a subsample
procedure selects a random set of traces from the uniform distribution of traces of
L of size m. The ratio γ :=

m
z

is the sampling ratio of the subsample procedure.

Given Def. 2.4.1, DP works by adding or removing an item. Among other
things, Poisson sampling works naturally with that property [109].
Definition 6.1.2 (Poisson Sample [109]). Given an event log L, a PoissonSample
procedure returns a subset of traces of the event log {ti|σi = 1, i ∈ [1..z]} by
sampling σi ∼ Ber(γ) independently for i = 1,2, ...,z.

The above procedure is equivalent to performing subsampling without replace-
ment with sampling rate∼ Binomial(γ,z). A binomial distribution converges to a
Poisson distribution with parameter λ at the limit of k→ ∞,γ → 0 while γz→ λ .

Libra applies Poisson Subsampling to the input event log and generates multiple
subsamples. Each subsample contains entire traces rather than subtraces. That
prevents the subsampling step from introducing case variants that do not exist in
log. The next step explains the anonymization of each subsample.
Lemma 6.1.2 (Privacy Amplification [107, 109]). If a mechanism M is (ε,δ)-DP,
then a subsampled mechanism M ◦ PoissonSubsample provides (ε ′,δ ′)-DP with
ε
′ = log(1+ γ(eε −1)) and δ

′ = γδ .

6.1.3. Subsamples Anonymization

At this step, Libra provides ε-DP guarantee for each subsample. Privacy ampli-
fication is achieved by applying a DP mechanism to a subsample of the event
log [107, 111].
Lemma 6.1.3 (Privacy Amplification [107, 109]). If a mechanism M is (ε,δ)-DP,
then a subsampled mechanism M ◦ PoissonSubsample provides (ε ′,δ ′)-DP with
ε
′ = log(1+ γ(eε −1)) and δ

′ = γδ .
Following, we introduce the concept of differentially-private subsamples (M ◦

PoissonSubsample) that prevents attacks h1 and h2.
Definition 6.1.3 (Differentially-Private Subsample). Given a PoissonSample S
as defined in Def. 6.1.2, the output of a mechanism S′ = M(S) is said to be ε-
differentially private if: (1)it provides ε-differential privacy over the set of case
variants; (2)the timestamp is ε-differentially private.

In order to anonymize the subsample, we could use any of the DP mechanisms
in the literature [15, 64–66]. We use the mechanism presented in Chapter 4. It
employs guessing advantage to estimate the differential privacy parameter ε . Then,
it injects the noise over an event log representation called DAFSA. The noise
injection for case variants is done by oversampling traces. In this chapter, we adopt
the approach in Chapter 4 to sample traces (adding or deleting traces) instead of
oversampling. Furthermore, we provide it with an ε value rather than a guessing
advantage threshold. In the evaluation section, we measure the impact of the privacy

88

amplification on the utility loss, and we compare both the proposed approach and
the one in Chapter 4.

To protect against linking a case to its individual via the cycle time of an activity
(h2), we inject noise drawn from a Laplace distribution quantified by a given
privacy budget ε . Therefore, we anonymize two components of the timestamps:
(1) case start time, which is the timestamp of the first event of the case; (2) the
execution timestamp of every other event after that. In order to inject the noise
to the start time, we introduce the relative start time of the case, which is the
difference between the case start time and the first start time in the log. We inject
random noise quantified by ε to the relative start time. Both the relative start time
and the generated noise are measured in days.

On the other hand, we aim to protect the cycle time of each event, which is
the difference between its execution timestamp and the execution timestamp of its
successor event. We inject randomly generated noise quantified by ε to the cycle
time. Both the cycle time and the generated noise are measured in minutes. After
injecting noise as mentioned above, we transform the anonymized relative start
time and cycle time to timestamps again via addition. At the end of this step, we
have a differentially private subsample of the log (M ◦ PoissonSample).

6.1.4. Statistical Post-processing of SubSamples

Anonymization perturbs the utility of event logs. Libra selects statistically signifi-
cant traces out of the anonymized log to provide higher utility of the differentially
private event log. This selection process is a post-processing step to the anonymized
subsamples. The result of a post-processing step of a differentially-private subsam-
ples of a log provides the same differential privacy guarantees [6].

Given the differentially private Poisson subsample of the log, the post-processing
of the selected subsample provides (ε,δ)-DP guarantees (c.f. Prop. 5.1.3. We use
a statistical post-processing of the subsamples to pick the most relevant traces and
reduce the utility loss. These relevant traces are assessed by a trace abstraction
function ψ : 2ω → χ , where χ is the domain of information extracted from a
trace [112]. This information can be related to the sequence of activities in a trace
and the frequencies of activities. Bauer et al. [112] provide a log sampling mech-
anism that adopts a series of binomial experiments and picks traces that provide
new information while being discovery sufficient with probability ρ . We adopt the
work in [112] to pick the relevant traces out of the differentially private subsamples.
A trace τ provides new information if its abstraction is far from the union of the
abstraction, jointly derived from the subsamples. That should happen within a
distance ω of the union abstraction. Thus, we consider the predicate [112]:

π
ω(S′e,τ)↔ d

(
ψ(τ),

⋃
τ ′∈S′e

ψ(τ ′)
)
> ω , (6.1)

where π is the picked sample, S′e is the differentially private subsample, and ψ

89

is the used abstraction. A subsample is discovery sufficient w.r.t. an abstraction ψ ,
a distance parameter ω , and probability ρ as follows:
Definition 6.1.4 (Discovery Sufficiency [112]). A DP-subsample S′e⊂ S′ is (ρ,ω,ψ)-
discovery sufficient, if there is a newly picked trace τ : τ ∈ (S′\S′e) that: pπ(S′e,τ)=
P(π(S′e,τ) = 1 < ω , where p is a probability measure.

At the end of this step, we have an (ε,δ)-differentially private subsample of the
log that has statistically relevant traces.

6.1.5. Combining Subsamples
In order to construct an (ε,δ)-differentially private event log with number of traces
as close as possible to the number of traces in the original log, z, we repeat the
differentially private subsampling operation for a number of times equals η = γz.
The repetitive access of the log via DP-subsampling requires the composition
of the multiple differentially-private mechanisms (one mechanism for each DP
subsample).
Theorem 6.1.4 (Differential Privacy Composition [6]). Let M1 and M2 be ε1,ε2-
differentially-private mechanisms. Then, the combination of the mechanisms
M1,2(L) = (M1(L),M2(L)) is ε1 + ε2-differentially private.

Proof. The proof of Theorem 6.1.4 is in [6] (c.f. Theorem 3.14). ■

Indeed, the privacy parameters ε,δ degrade due to the composition. One way
to compose DP mechanisms easily and with tighter guarantees is using Renyi
Differential Privacy (RDP) [113].
Definition 6.1.5 (Renyi Differential Privacy [113]). A mechanism M is said to
be (α,ε)-RDP with order α ∈ (1,∞) if for every neighboring event logs L, L′:

Dα(M(L)||M(L′)) =
1

α−1
log

(
Eθ M(L′)[(

PM(L)(θ)

PM(L′)(θ)
)α]

)
≤ ε.

Lemma 6.1.5 (From RDP to DP [113]). A mechanism M that provides (α,δ)-RDP,

also provides (ε +
log1/δ

α−1
,δ)-DP for δ ∈ (0,1).

RDP converges to (ε ,0)-DP at α → ∞ [111]. Mironov [113] provides an
estimation of the equivalent ε of the RDP as a function of α . The estimated ε for
the Laplace distribution equals:

εLaplace(α) =
1

α−1
log

(
α

2α−1
e

α−1
b +

α−1
2α−1

e
−α

b

)
(6.2)

The privacy amplification via subsampling for RDP has been studied in [109,
111]. Zhu et al. [109] estimate the resulted ε

′ after Poisson subsampling and
composition using RDP as:

90

ε
′
M◦PoissonSubsample(α)≤ 1

α−1
log

(
(1− γ)α−1(αγ−α +1)(

α

2

)
γ

2(1− γ)α−2eε(2)

+3
α

∑
j=3

(
α

j

)
(1− γ)α− j

γ
je(j−1)ε(j)

)
(6.3)

6.1.6. Event Log Anonymization Algorithm
We exploit the above observation as formalized in Alg. 3. The event log anonymiza-
tion mechanism takes as input an event log L, an order of RDP α , a differential
privacy parameter δ , and a sampling ratio γ . The algorithm estimates the ε used to
draw noise from the Laplace distribution using Eq. 6.2. Then, it sets k to equal the
count of case variants in L. The algorithm estimates the clipping threshold C as
explained in Lemma 6.1.1. The algorithm uses the estimated C to filter out case
variants that occur less than C from the log L. We set z to equal the number of cases
in the filtered log L̂. Then, the algorithm estimates η , the number of subsamples
needed to construct an event log with as many cases as the filtered log L̂. After that,
the algorithm performs Poisson sampling over L̂. Given the Poisson subsample
S, the algorithm generates an anonymized sample S′ as explained in Sec. 6.1.3.
Then, it picks the statistically relevant traces from the anonymized sample S′ as
explained in Sec. 6.1.4. The algorithm generates η subsamples and combines them
to generate L′. Also, the algorithm reports the amplified ε

′ after the composition of
privacy budgets of subsamples using Eq. 6.3.

Alg. 3 employs a differentially private mechanism to anonymize every Poisson
subsample and performs post-processing of subsamples to pick the relevant traces.
Since the post-processing depends only on the anonymized samples, the output of
the post-processing is differentially private, c.f., Prop. 5.1.3. Then, the algorithm
uses differentially private composition of the anonymized subsamples to construct
the anonymized event log. Thus, the algorithm’s output is differentially private.

6.2. Evaluation

To address RQ1, the proposed approach injects noise to provide (ε,δ)-DP guar-
antees in two ways: (1) by filtering out rare case variants and sampling traces in
the log; (2) by introducing time shifts to the event timestamps. Filtering and noise
injection affect the utility of the anonymized logs. To measure this utility loss,
we compare the anonymized event logs against the original logs using a distance
measure. Also, we compare the performance (execution time) of the proposed
approach against state-of-the-art baselines.

The evaluation reported below is driven by the following questions:

91

Algorithm 3: Event Log Anonymization Algorithm

1. Input: L: Event Log,
2. α: order of Renyi Differential Privacy,
3. δ : Differential Privacy parameter,
4. γ: Sampling Ratio.
5. Output: L′: ε

′-Differentially Private Event Log,
6. ε

′: the amplified differential privacy guarantee.
7. ε ← EstimateEpsilon(α); ▷ Estimate εLaplace using Eq. 6.2.
8. k← CountVariants(L); ▷ Set k to the count of case variants in L.
9. C← (1/ε) log(2k/δ); ▷ Estimate clipping threshold based on

Lemma 6.1.1.
10. L̂← Filter(L, C); ▷ Filter out case variants with frequency below C.
11. z← CountCases(L̂); ▷ Set z to the count of cases in L̂.
12. η ← γz; ▷ Calculate the count of subsamples.
13. L′← 0;
14. while i < η do
15. S= PoissonSample(L̂,γ); ▷ Perform Poisson subsample as defined in

Def. 6.1.2.
16. S′← Anonymize(S,ε); ▷ Anonymize the subsample as explained in

Sec. 6.1.3.
17. S′e←; StatisticalPost-processing(S′); ▷ Perform statistical

post-processing to select relevant cases as explained in Sec. 6.1.4.
18. L′← L′∪S′e;
19. i++ ;
20. end
21. ε

′← EstimateComposition(α,ε,γ); ▷ Estimate ε
′ using Eq. 6.3.

22. return L′,ε ′

92

Q1. Does the proposed approach outperform the state-of-the-art baselines in
terms of the output utility?

Q2. What is the difference between the proposed approach and the state-of-the-art
in terms of computational efficiency?

6.2.1. Evaluation Measures

In our experiment, we use the evaluation measures presented in Sect. 5.3.1, i.e.,
the earth movers’ distance and the wall-to-wall execution time. We exclude the
usage of Jaccard distance because in the below experiments, we do not measure
the fulfillment of the utility requirement UR1a.

6.2.2. Event Logs

In our evaluation, we rely on the same event logs presented in Sect. 5.3.2. However,
we exclude the event logs that always return empty anonymized results, e.g.,
CCC19, as explained in Sect. 6.1.1. Also, we exclude the event logs that timed out
for all the approaches under comparison, e.g., BPIC18 and BPIC19.

6.2.3. Experiment Setup

We implement the proposed model as part of Libra1 prototype. We run the experi-
ment on a single machine with AMD Opteron(TM) Proc 6276 and 32 GB RAM.
We time out any experiment at 24 hours. Also, in our experiment, we consider
only the end timestamp to calculate the relative time of an event for simplicity. The
approach still holds DP guarantees for logs with start and end timestamps. We
fix the parameters b=2, γ=0.05, and δ = 10−4, and we evaluate the approach for
different values of α . For an empirical evaluation of the relation between γ , α , and
ε under Poisson subsampling, we refer to [109].

We compare our approach against the state-of-the-art. The studies that address
the same problem are [12, 15, 60, 65, 66]. We exclude the work in [12, 60] from
our experiment because the interpretation of the k-anonymity parameters and DP
are different. The studies in [15, 64–66] provide DP guarantees. The work in [64]
anonymizes two types of queries, but the output is not an event log. PRIPEL [65]
adopts [64] for case variant anonymization. We compare the proposed approach
against [65]. SaCoFa [66] provides case variant anonymization, but does not
consider timestamp anonymization. Therefore, we consider [66] only in EMD
of frequency annotated DFG experiments. Both PRIPEL and SaCoFa take three
input parameters namely, ε , k, and N. For the pruning parameter k, we run several
experiments with different values of k(0.5%, 1%,5% of the cases), and we select
the best result. For the maximum trace length N, we set N to the average trace
length of the log. Amun (c.f. Chapter 4 and Chapter 5) anonymizes both the case
variants and the timestamps. It accepts the guessing advantage probability δ , rather

1https://github.com/Elkoumy/Libra

93

https://github.com/Elkoumy/Libra

than ε . Also, Amun uses personalized differential privacy which means different ε

values for different activity instances. Therefore, we exclude Amun from the below
comparison. We use the EMD to compare the anonymized log against the original
one for the selected approaches. We compare the proposed approach against both
PRIPEL and SaCoFa.

6.2.4. Results

Table 15. Earth Movers’ Distance for the output of different anonymization approaches.
A “-” means that the approach ran out of memory or timed out, and A “N/A” means the
engine returns an empty log.

Log α ε
′ EMD Freq EMD Time

Libra PRIPEL SaCoFa Libra PRIPEL

BPIC12
2 0.04 1036 - 1007 19315 -
10 0.37 997 - 1007 19228 -
100 4.7 1005 1230 1007 19224 19224

BPIC13
2 0.04 3847 4954 4947 145272 197564
10 0.37 3586 4952 4948 132827 197564
100 4.7 3492 4952 4952 127752 197564

BPIC14
2 0.04 494 - 544 7088 -
10 0.37 466 - 544 6970 -
100 4.7 464 - 507 6944 -

BPIC17
2 0.04 1563 - 2785 48254 -
10 0.37 1349 - 2789 41190 -
100 4.7 1333 - 2790 40864 -

BPIC20
2 0.04 91 128 125 15602 24422
10 0.37 82 128 127 13920 24422
100 4.7 79 128 127 13504 24430

Hospital
2 0.04 N/A - 35 N/A -
10 0.37 35 - 35 2507 -
100 4.7 35 35 35 2507 2469

Sepsis
2 0.04 N/A 75 117 N/A 4644
10 0.37 123 120 121 6218 6218
100 4.7 123 120 120 6218 6218

Unrine.
2 0.04 120 298 42 58576 68245
10 0.37 95 292 56 49005 68234
100 4.7 81 292 64 37381 68234

We measure the EMD between the DFG of the anonymized log and the DFG
of the original log. We report the differences in terms of the frequency and time
(measured in hours). Table 15 shows the experimental results using the EMD
distance. α refers to the RDP parameter, and ε

′ refers to the equivalent DP
parameter after the amplification and composition. The best result for every input
α is in bold. Libra outperforms the state-of-the-art baselines in most of the logs,
because the privacy amplification reduces the amount of injected noise, and hence
achieves a lower utility loss.

Conversely, Libra outperforms both PRIPEL and SaCoFa over the frequency
EMD because for a given ε

′-DP guarantee, Libra needs an ε > ε
′ due to privacy

amplification. On the other hand, in event logs with many rare cases (Lemma 6.1.1)
such as Sepsis and Urineweginfectie logs. Libra does not outperform the state-of-
the-art because it adopts clipping to get rid of rare case variants. Due to clipping,

94

Table 16. Execution time experiment. The time is measured in seconds for an ε
′ = 0.37.

A “-” means that the approach ran out of memory or timed out.

event log Libra PRIPEL
BPIC12 90 -
BPIC13 49 306
BPIC14 323 -
BPIC17 212 -
BPIC20 70 330
Hospital 90 -
Sepsis 10 24
Unrine. 9 2

Libra sometimes return an empty log, e.g., for Sepsis log with α = 2 and Hospital
log with α = 2. Also, Libra has a lower utility loss over the anonymized timestamps
(measured by EMD time), which happens due to privacy amplification.

We evaluate the processing efficiency of the proposed approach via a wall-to-
wall run time experiment. Table 16 presents the experiments for α = 10 (ε ′= 0.37).
The time is measured in seconds. We exclude SaCoFa from this experiment as it
provides only case variant anonymization. The run time increases with the increase
of the log size. The above experiments have been performed using a single thread
to avoid adding other variables to the experiments.

We acknowledge that the proposed approach is not suitable for event logs with
many rare case variants (unstructured event logs). In such a case, the approach
filters out most of the cases, and sometimes it returns an empty event log. Also,
the above observations are based on a limited population (8 event logs). However,
we selected the logs from a broader real-life event log population.

6.3. Summary

This chapter proposed a differentially private mechanism to anonymize event logs
for process mining. While previous proposals in this field rely purely on noise
injection, the approach proposed in this chapter additionally employs subsampling
to achieve stronger privacy guarantees with the same level of utility loss, or con-
versely, less utility loss for the same privacy guarantee (privacy amplification). The
empirical evaluation shows that the privacy amplification effect leads to significant
reductions of utility loss, particularly when it comes to anonymizing the frequency
of distribution of case variants in a log (i.e. control-flow anonymization) and to a
lesser extent when it comes to anonymization of event timestamps.

95

7. SECURE MULTI-PARTY COMPUTATION FOR
INTER-ORGANIZATIONAL PROCESS MINING

In this chapter, we address RQ2: How to enable process mining for interorgani-
zational business processes without requiring the involved parties to share their
private event logs or trust a third party?

In response, we propose an architecture for process mining based on secure
multi-party computation (MPC) [41]. In essence, MPC aims at the realization of
some computation over data from multiple parties, while exposing only the result
of the computation, but keeping the input data private. We consider the setting of
an MPC platform, where the involved parties upload their event logs to a network
of compute nodes. Before the upload, secret sharing algorithms locally split each
single data value into different parts (i.e., shares) that are then stored at different
nodes. Since each share does not provide any information about the original data,
the uploaded event log is encrypted and exposed neither to the platform operator
nor other involved parties. Nonetheless, the MPC platform enables the computation
over the encrypted data through protocols for result sharing among the nodes.

We realize the above architecture to answer analysis queries that are common
in process mining. Specifically, we show how to construct a frequency and time-
annotated Directly-Follows Graph (DFG), which is a starting point for process
discovery algorithms and performance analysis. While keeping the computed
DFG private, we are revealing only the output of performance analysis queries
such as finding the top-k bottlenecks (i.e. activities with longer cycle time) or the
top-k most frequent hand-offs. We implement our proposed architecture using
the Sharemind platform [46]. In order to tackle scalability issues that would be
imposed by a naive implementation, we employ vectorization of event logs and
propose a divide-and-conquer scheme for parallel processing of sub-logs. We test
the effectiveness of these optimizations in experiments with real-world event logs.

This chapter is structured as follows. Sect. 7.1 presents the attack model.
Sect. 7.2 introduces our architecture for privacy-preserving interorganizational
process mining, along with the optimizations needed for efficient implementation.
Sect. 7.3 presents an open source tool to enable privacy-preserving interorganiza-
tional process mining. An experimental evaluation is presented in Sect. 7.4, before
Sect. 7.5 concludes the chapter. This chapter is derived from [17] and [18] and
contains sentences or fragments of sentences from these prior publications.

7.1. Attack Model

In this chapter, we use three-party multi-party computation protocol. This protocol
is secured against honest-but-curios adversaries. Therefore, as long as the parties
are following the protocol honestly and do not collude, none of them will learn
more than the size of the data. We assume that input parties are sharing with each

96

Message based Aircraft Ground Handling

Ai
rl

in
e

Airline

Preparing
Aircraft

Welcome
Passengers

Calculate fuel
demand Close Doors

Aircraft at
Parking Spot Aircraft ready

for Take-off

Ai
rp

or
t

Airport

Check-In
starts

Check-In of
Passengers

Security
Check

Processing
Luggage

Loading
Luggage

Aircraft prepared
for Take-off

Fueling the
aircraft

Cleaning necessary?

Cleaning of
Aircraft Boarding

Yes

No

Figure 11. Aircraft ground handling process.

other the number of activities and the maximum trace length in their event logs.
Even with encrypted data, contextual knowledge might lead to leakage of some
data [68]. Specifically:

• An adversarial party might learn the shortest or the longest trace and with
the domain experience, they can reveal the actual activities.

• A leakage might happen due to frequent pattern mining or any access pattern
attacks [68].

7.2. Approach

This section introduces our techniques for process mining based on secure multi-
party computation. We first clarify our model for interorganizational process
mining, including the required input data and the obtained analysis results. We then
introduce our architecture for realizing the respective analysis using secure multi-
party computation. Furthermore, we elaborate on vectorization and parallelization
to improve the efficiency of our approach.

7.2.1. Model for Inter-organizational Process Mining

For an interorganizational business process, an event log that records the process
execution from start to end is commonly not available. Rather, different parties
record sub-logs, built of events that denote activity executions at the respective
party. To keep the notation concise, we consider a setting in which two parties, Ia

and Ib, execute an interorganizational process. An example of such process is the
process for ground handling of an aircraft, as illustrated in Figure Figure 11. This
process involves two parties: the airline and the ground handler (called “airport”
in the model). Then, each of the two parties records an event log, denoted by La

and Lb. Each of these logs is the projection of L on the events that denote activity
executions at the respective parties Ia and Ib. We assume that each activity can only
be executed by one of the parties, so that this projection is defined unambiguously.

For the above setting, we consider the scenario that the parties Ia and Ib want
to answer some analysis queries Q over the interorganizational event log L, yet
without sharing their logs La and Lb with each other. More specifically, we focus on

97

analysis queries that can be answered on a frequency or time-annotated DFG of the
interorganizational process. The basic DFG captures the frequencies with which
the executions of two activities have been observed to directly follow each other
in a trace. Moreover, we consider temporal annotations of the directly-follows
dependencies in terms of time between the respective activity executions. Queries
over the frequency and time-annotated DFGs allow us to analyze the main paths of
the process, the rarely executed paths, as well as the activities that most contribute
to delays in a process. This chapter provides two approaches for two different use
cases, the first one assumes that only query answers are to be revealed, whereas the
actual DFG shall be kept private. This setting allows the organizations to locate
some of the bottlenecks without a deep analysis of the entire DFG. The second
approach releases a differentially-private version of the DFG. This setting allows
the process analysts to access the DFG while mitigating re-identification attacks
and without guessing the actual values in the original log.

Formally, the time-annotated DFG is captured by an |A|× |A| matrix, where A
is the set of all possible activities of the process. Each cell contains a tuple (c,∆).
The counter c represents the frequency with which a directly-follows dependency
has been observed in L, i.e., for the cell (a1,a2) it is the number of times that two
events e1 = (i1,a1, ts1) and e2 = (i2,a2, ts2) follow each other directly in some
trace (i.e., i1 = i2) of L. Also, ∆ is the total sum of the time passed by between all
occurrences of the respective events, i.e., ts2− ts1 for the above events.

In interorganizational process mining, the above time-annotated DFG cannot
be computed directly, as this would require the parties to share their sub-logs.

7.2.2. MPC Architecture for Process Mining

To enable interorganizational process mining without requiring parties to share their
event logs with each other, we propose an architecture based on secure multi-party
computation (MPC). As outlined in Figure Figure 12, we rely on a platform for
MPC (in our case Sharemind [46]) that takes the event logs of the participating
parties, i.e., La and Lb, as secret-shared input. Inside the MPC platform, the
respective data is processed in a privacy-preserving way in order to answer analysis
queries over the time-annotated DFG computed from that data. In Figure Figure 13,
we present a running example of the processing steps of the system.

Below, we summarize the functionality embodied in the proposed MPC platform
for interorganizational process mining.

Preprocessing. Each party performs the preparation of its log at its own site.
The parties share the number of unique activities and the maximum number of
events per trace. In Figure 13(a), we show an example with two traces. In the
preprocessing step, all traces are padded to the same length, as illustrated with the
blue event in Figure 13(a). The activities are transformed into a one-hot encoding
that is used for masking at the DFG calculation step, as will be explained later. The
logs are sorted by traces.

98

Secure Processing
Using Secret Shares

Party
A

Party
B

Import
CSV

Top K most frequent.
Average Waiting Time
between the handover
events in the two parties.
Top K handovers between
parties.

Parallel Sort

DFG Matrix
Calculation

Query Engine

Combine

Revealing
Query Results

Import
CSV

Cooperating Parties

Figure 12. Overview of the proposed approach

Combination. The parties upload their event logs La and Lb to the MPC platform
in a secret-shared manner. That is, the values (i,a, ts) of each event (encoded as
integers) are split into shares, which do not provide any information on the original
values and are stored at different nodes of the platform. This way, each party can
only see the total number of records uploaded by each party, but not the particular
data. Subsequently, the logs are unified, creating a single log of events L. The
combination is performed in a manner to divide the logs into processing chunks.
As long as we are making the number of events per trace is fixed (using padding
as explained in the previous step), that is possible by dividing the index by the
number of traces for each event and assigning data from the same trace to the same
chunk. In Figure 13(a), the system processes one trace with its own chunk.

Sorting. To calculate the annotated DFG, we have to determine which events
follow each other in a trace by grouping the events by their trace identifier and
ordering them by their timestamp. Since the trace identifier is secret-shared, we
cannot group events directly. Instead, we use a privacy-preserving quick sort
algorithm [114] as implemented in Sharemind to sort the events by their trace
identifier. Applying the same algorithm also to the secret-shared timestamps
ensures that the events of the same trace follow each other in the order of their
timestamps, which is illustrated as the last step in Figure 13(a).

DFG matrix calculation. Next, we construct the DFG matrix inside the MPC
platform, keeping it secret. Since the information on the activity of an event is
secret-shared, we cannot simply process the events of traces sequentially, as the
matrix cell to update would not be known. Hence, we adopt a one-hot encoding
for activities, so that each possible activity is represented by a binary vector of
length |A|. To mask the actual number of possible activities, the set over which
the vector is defined may further include some padding, i.e., the vector length can
be chosen to be larger than |A|. Now, if we compute the outer product of such
vectors for activities a1 and a2, we get a mask matrix M such that M[a1,a2] = 1,
while all other entries are 0. An example of such masks is given in Figure 13(b).
The first mask represents the directly-follows dependency from activity A to B of
our running example. The second mask encodes the directly-follows dependency

99

T1, A, 1
T1, D, 4
T2, A, 3
T2, E, 6

La

T1, B, 2
T1, C, 3
T2, B, 5

Lb

T1, 00001, 1
T1, 01000, 4
T2, 00001, 3
T2, 10000, 6

La

T1, 00010, 2
T1, 00100, 3
T2, 00010, 5
T2, 00000, 0

Lb T2, 00001, 3
T2, 10000, 6
T2, 00010, 5
T2, 00000, 0

T1, 00001, 1
T1, 01000, 4
T1, 00010, 2
T1, 00100, 3

T2, 00000, 0
T2, 00001, 3
T2, 00010, 5
T2, 10000, 6

T1, 00001, 1
T1, 00010, 2
T1, 00100, 3
T1, 01000, 4

L[0,:,:]

L[1,:,:]

Preprocessing Combine

One Each Party side Secure Processing inside the System

Parallel
Sort

L[0,:,:]

L[1,:,:]

(a) Illustration of the preprocessing, combine and parallel sort steps

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 0 0 0 0 1
 0
 0
 0
 1
 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 0 0 0 0 1
 0
 0
 1
 0
 0

Mask#1 Mask#2

(b) Example of two masks

T1, 00001, 1
T1, 00010, 2
T1, 00100, 3
T1, 01000, 4
T2, 00000, 0
T2, 00001, 3
T2, 00010, 5
T2, 10000, 6

T1, 00010, 2
T1, 00100, 3
T1, 01000, 4
T2, 00000, 0
T2, 00001, 3
T2, 00010, 5
T2, 10000, 6

1
1
1
0
1
1
1

Data Shifted Data Same
Trace Flag

(c) DFG Calculation using shift and a
flag

A B C D E

A 0 0 0 0 0

B 2 0 0 0 0

C 0 1 0 0 0

D 0 0 1 0 0

E 0 1 0 0 0

(d) The DFG matrix
with counts

Figure 13. Example of two event logs and their processing steps inside the system

from activity A to C. For all sequential pairs of events in the sorted log, we sum
up these matrices to get the frequency count c of the directly-follows dependency
for (a1,a2). Multiplying M by the duration between two events further enables
us to derive the total sum duration passed, i.e., ∆, of the directly-follows-relation.
The duration operation is performed between every two consecutive events of the
same trace. We can perform the duration calculation by using an element-wise
vector subtraction by duplicating the event log and then shifting its events by one
as in Figure 13(c) . Technically, the outer product is a function that is realized as a
protocol over secret-shared data in Sharemind, and its runtime complexity is linear
in |A| [115].

However, the above approach could mix up events of different traces. We
therefore also compute a flag b that is 1, if the trace identifiers of two events are
equivalent, and 0 otherwise, which is illustrated as the “Same Trace Flag” column
in Figure 13(c). Then, we multiply the mask matrix M by b, so that the values of
M are ignored, if b = 0. Again, the functionality for comparison and multiplication
can be traced back to predefined protocols in Sharemind. We show the DFG matrix
with counts of our running example in Figure 13(d).

Algorithm algorithm 4 summarizes the computation of the annotated DFG from
the sorted, combined log L, where [[·]] denotes a secret-shared data value. First, the
approach computes the flags that determines whether each to consecutive activities
belong to the same case or not. Then, the approach performs the outer product to
calculate the frequency of each directly-follows relation (each mask). After that,

100

the approach adds the masks together to construct the frequency-annotated DFG.
Lastly, the approach performs the outer product to calculate the waiting time, and
sums the total waiting time per directly-follows relation. At the end, the approach
returns both the frequency and time-annotated DFGs.

Query answering.. A query Q defines a subset S of the annotated DFG, which is
generated by the MPC platform and revealed to the participating parties. Through
sharing the S solely, but not the complete annotated DFG, we are able to limit the
amount of information each party can learn about the process. As an example
query, consider the query to derive the average waiting time between the handover
events between the two parties. Based on the secret-shared DFG, the respective
activities may be identified through grouping and sorting the events, similar to the
procedure outlined above, which is again based on the predefined protocols of an
MPC platform such as Sharemind.

Algorithm 4: Calculating the combined, annotated DFG([[L]])

1. Input: [[L]]: The sorted, combined event log of length n.
2. Output: Annotated DFG comprising a count matrix [[G]]
3. Initialize [[G]] = 0, [[W]] = 0
4. for j ∈ { 1, . . . ,n−1 } do
5. [[b]]← ([[L[j−1].i]] = [[L[j].i]]); ▷ compute the flag for traces.
6. [[M]]← [[b]] · ([[L[j−1].a]]⊗ [[L[j].a]]); ▷ compute the outer product.
7. [[G]]← [[G]]+ [[M]]; ▷ incorporate the current dependency.
8. [[W]]← [[W]]+ [[M]] · ([[L[j].ts]]− [[L[j−1].ts]]); ▷ Incorporate the time

lag.
9. end

10. return [[G]], [[W]]

7.2.3. Performance Optimizations

Interorganizational process mining using the above general architecture might
suffer from scalability issues. The reason is that privacy-preserving computation
through protocols over secret-shared data is inevitably less efficient than plain com-
putation. Hence, even for functions that have a generally low runtime complexity
(O(n) for the combination, O(n log(n)) for the sorting, O(nm2) for the calculation
of the annotated DFG, where n is the log length and m is the number of activi-
ties), there is a non-negligible overhead induced by MPC. For instance, a naive
realization of the quick sort algorithm to sort events would require O(n log(n))
rounds of communication between the nodes and O(n log(n)) value comparisons
per round [114]. We therefore consider two angles to improve the efficiency of the
analysis, namely vectorization and parallelization.

Vectorization. A computation that adopts a single-instruction multiple-data
(SIMD) approach is highly recommended in MPC applications. Since MPC as-
sumes continuous interaction between distributed nodes, the number of communi-

101

cation rounds shall be reduced as much as possible. For instance, while computing
n multiplications sequentially would result in n rounds of communication, one may
alternatively multiply element-wise two vectors of length n, for which one round
of network communication is sufficient. Sharemind offers efficient protocols for
such vector-based functions [115].

Parallelization. Further runtime improvements are obtained by parallelizing
the algorithm itself. Again, our goal is to reduce the number of rounds of com-
munication among the nodes of the MPC platform. We, therefore, split the input
data into chunks, such that all chunks can be processed independently of each
other. In our scenario, this is done by grouping the party logs by trace, or by a
group of traces, generating an annotated DFG per group, and finally integrating the
different DFGs. Since events of the same trace will never occur in different chunks,
instead of sorting one log of length n, we will need to sort c chunks of length n/c
each. Since the communication complexity of a privacy-preserving quick sort is
O(n · logn) [114], this improves efficiency.

The above approach raises the question of determining the size of the chunks.
Separating each trace reveals the total number of events of that trace provided by
a party, which may be critical from a privacy perspective. On the other hand, a
small chunk size reduces the overhead of sorting. This leads to a trade-off between
runtime performance and privacy considerations.

However, in our current implementation, all chunks must have the same length,
as Sharemind allows parallel sorting only for equal-length vectors. Therefore, we
apply padding to the traces in the log, adding dummy events (for which an empty
vector in the one-hot encoding represents the activity so that the events are ignored
for the DFG calculation) until the number of events of the longest trace is reached.
Such padding may be employed locally, by each party, and also has the benefit that
the length of individual traces is not revealed.

7.3. Software Implementation

In this section, we present Shareprom 1, a tool that we developed to provide users
access to the approach proposed in this chapter. Shareprom allows independent
cooperating organizations to control what is disclosed from their event logs. We
assume that the parties have agreed to release their process map. In other words, the
analyst of the released process map will not learn anything about the independent
organizations other than the release output. Shareprom applies differential privacy
to the resulting DFG to provide an extra layer of privacy. The analyst will neither
have access to specific traces nor to any information associated with these traces.
And naturally, the data providers will not able to learn anything about each other’s
private data.

1Corresponding to [18].

102

7.3.1. Overview of Shareprom

Shareprom uses the three-party MPC protocol set of Sharemind, which is secure
against honest-but-curious adversaries. This means that as long as the parties are
following the protocols honestly and do not collude, none of them will learn more
than the size of the data. Parties in a typical secure MPC deployment can be:
input parties, computation parties, or output parties [116]. The sets of input and
computing parties may intersect. In this paper, we assume a simplified scenario,
where the three computing parties themselves provide the inputs and receive the
outputs. Two of the parties contribute the input data, and the third party is the
analysis firm that receives the final output.

We assume that input parties share with each other the number of activities
and the maximum trace length in their event logs. Also, we assume that the
case identifiers are the same across the input parties. This is needed to conduct
preprocessing that reduces the amount of information that might be learned from
the size of data. Even with encrypted data, contextual knowledge might lead to
leakage of some information. An adversarial party might learn the shortest or
the longest trace, and using the domain knowledge, they could reveal the actual
activities. For such a case, we apply padding to the logs on the client side of each
input party, so the resulting log has all the traces with the same length, which is set
to the maximum trace length. Parties can hide the maximum trace length by adding
extra padding. The logs are uploaded to computation servers in a secret-shared
manner, and the MPC protocol performs computation without any intermediate
declassification. As such, during the computation, the parties do not learn anything
in addition to the sizes of padded logs. This also excludes any attacks related to
access patterns, like frequent pattern mining, which would be possible, if the events
that are equal to each other, are leaked.

Figure Figure 14 gives an overview of the system components. Below, we
summarize the functionality of each component of Shareprom. More information
about the system components can be found in Sec. 7.2.

Preprocessing. Each party of the cooperating organization uses Shareprom
clients to import the XES file of their event log. Shareprom then performs prepro-
cessing of the event log at its organization site. The parties exchange the maximum
trace length and the number of unique activities of their entire log. All the traces
need to be padded to have the same length as the longest trace. The activities are
mapped to a one-hot encoding format, independently, on each input party. Also, a
sort step of the logs by traces is performed. The two latter steps are needed as a
preparation for the subsequent secure MPC protocol, which requires the data to be
available in a specific format.

Mapping Event Log to Secret-shares. Each party uses their Shareprom client to
map their event logs into secret-shares. Each client pushes its secret-shares to the
Sharemind servers. Secret-shares do not reveal any information about the event
log. Until this point, the analysis firm, as one of the computation parties, has only

103

Secure Processing
Using Secret Shares

Party
A

Party
B

Import
XES

Parallel Sort

DFG Matrix
Calculation

Differential
Privacy

Combine

Analyzing the
model

Import
XES

Cooperating Parties

Mapping Event
Log to Secret

Shares

Mapping Event
Log to Secret

Shares
Preprocessing

Preprocessing

Figure 14. Overview of Shareprom

received a single share of each input, which alone looks like a random value.
DFG Matrix Calculation. Shareprom runs the Sharemind MPC protocol to

construct the DFG matrix from uploaded secret-shared data. An algorithm based
on a one-hot encoding technique allows us to ensure that the computation does not
reveal any information to the parties, including the access pattern (e.g. which log
entries follow each other). The details of this algorithm are presented in Sec. 7.2.
The resulting DFG takes the form of a matrix with secret-shared entries, where each
entry corresponds to a transition between two activities, containing the frequency
count and the total execution time for that transition.

Differential Privacy. The DFG itself may reveal some information about the
parties’ inputs. We consider the frequency and time difference between each pair
of activities in the DFG as a separate query. Hence, before disclosing the final
result to the analyst party, we enhance it with differential privacy by injecting
Laplacian noise to the frequency and time difference of each pair of activities. The
added noise conceals the order of activities and their execution times. We consider
understanding the trade-offs between the amount of added noise and the utility of
the output as a direction for future work.

7.3.2. Tool Packaging and Maturity

Shareprom is developed in Python 3.7 and SecreC – a dialect of the C language
supported by the Sharemind platform [47]. For ease of use, Shareprom comes with
a desktop client application. The desktop client allows a user to import an event log
(in XES format). The desktop client connects with its respective Shareprom server.
In a typical configuration, three Sharemind servers are interconnected, e.g. two in-
put providers and a computation node – the latter representing for example an analy-
sis firm. The analysis firm can view the output (with differential privacy noise). An
analyst at this firm can then analyze the output and share the findings (or the whole
output) with the input providers, depending on the intended use case. The source
code, installation steps, dependencies, screencast and example event logs could be
found at https://github.com/Elkoumy/shareprom/releases/tag/v0.2.

104

https://github.com/Elkoumy/shareprom/releases/tag/v0.2

7.4. Evaluation

We implemented the proposed approach on top of the Sharemind multi-party
computation platform.2 The source code of our implementation is available at
https://github.com/Elkoumy/shareprom. The implementation is written
using the SecreC programming language supported by Sharemind.

Using this implementation, we conducted feasibility and scalability experiments,
specifically to address the following questions:
Q1: How do the characteristics of the input event logs influence the performance

of the secure multi-party computation of the DFG?
Q2: What is the effect of increasing the number of parallel chunks on the perfor-

mance of the multi-party computation of the DFG?

7.4.1. Event Logs

The proposed approach is designed to compute the DFG of an interorganizational
process where the event log is distributed across multiple parties, and each party is
responsible for executing a subset of the activities (i.e. event types) of the process.
We are not aware of publicly available real-life event logs with this property.
We identified a collection of synthetic interorganizational business process event
logs [117]. However, these logs are too small to allow us to conduct performance
experiments (a few dozen traces per log). On the other hand, there is a collection
of real-life event logs of intra-organizational processes comprising logs of varying
sizes and characteristics 3. From this collection, we selected three logs with
different size and complexity (cf. Table 17):
BPIC 2013 This event log captures incident and problem management process at

an IT department of a car production company.
Credit Requirement This event log comes from a process for background check-

ing for the purpose of granting credit at a Dutch bank. It has a simple
control-flow structure: All traces follow the same sequence of activities.

Traffic Fines This event log comes from a process to collect payment of fines
from traffic law violations at a local police office in Italy.

Table 17. Event Logs for Evaluation

Event Log # Events # Cases # Activities # Events in Case

Avg Max Min

BPIC 2013 6,660 1,432 6 4.478 35 1
Credit Requirement 50,525 10,034 8 15 15 15
Traffic Fines 561,470 150,370 11 3.73 20 2

2https://sharemind-sdk.github.io
3https://data.4tu.nl/repository/collection:event_logs_real

105

https://github.com/Elkoumy/shareprom
https://sharemind-sdk.github.io
https://data.4tu.nl/repository/collection:event_logs_real

To simulate an interorganizational setting, we use a round-robin approach to
assign each event type (activity) in the log to one of two parties. Hence, each party
executes half of the event types.

7.4.2. Experimental Setup

To answer the above questions, we use the following performance measures:
• Runtime. We define runtime as the amount of time needed to transform the

event logs of the two parties securely into an annotated DFG. We also report
the throughput, the number of events processed by the system per second, to
provide a complementary perspective.

• Communication Overhead. We define the communication overhead as
the amount of data transferred between the computing parties during the
multi-party computation. We measure this overhead as the volume of the
data sent and received. The communication overhead gives insights into how
much the performance of the multi-party computation would degrade if the
computing nodes of the parties were distributed across a wide-area network.

We performed five runs per event log per experiment. We report the aver-
age maximum values for latency and the average value for both throughput and
communication overhead, across the five runs. We used Nethogs4 to measure the
communication overhead, and we report the average value per compute node. The
experiments were run in an environment with three physical servers as compute
nodes with Sharemind installed on them. Each server has an AMD Processor 6276
and 192 GB RAM. The servers are connected using a 1 GB Ethernet switch.

The experiments focus on the time needed to construct the annotated DFG, since
it is the most sophisticated and time-consuming portion of the proposed analysis
pipeline, due to the communication required between the compute nodes. Once
the annotated DFG is available, stored in a secret-shared manner, the calculation of
the actual queries has a lower complexity.

7.4.3. Results

Runtime Experiment.. In Figure 15(a), we illustrate the observed execution time
when varying the number of chunks used in the parallelization. We plot a bar for
each chunk size. Each bar represents the runtime of the parallel sort in blue and
the run time of the DFG calculation in orange. From Figure 15(a), we conclude
that the runtime decreases with an increasing number of chunks, due to the parallel
sorting of chunks. We also note that the runtime for the DFG calculation stays
constant. In Figure 15(b), we report the number of processed events per second
when varying the number of chunks. We find a consistent improvement for the
throughput across all event logs.

Regarding Q1, we summarize that the proportion of runtime between sorting and
DFG calculation differs based on the event log characteristics. For the log with the

4https://github.com/raboof/nethogs

106

https://github.com/raboof/nethogs

BPIC 2013 Credit Requirement Traffic Fines

1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000

1

10

100

1000

10000

No. of Chunks

T
im

e
(

Lo
g

m
in

ut
es

)

DFG calculation

Parallel Sort

(a) Runtime Experiment: Execution Time (Log) vs no. of Chunks.

5

10

15

20

25

1 10 100 1000 10000 70000
No. of Chunks

E
ve

nt
s

P
er

 S
ec

on
d

dataset

Credit Requirement

Traffic Fines

BPIC 2013

(b) Throughput Experiment: Events per Second vs no. of Chunks.

BPIC 2013 Credit Requirement Traffic Fines

1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000

1e+01

1e+03

1e+05

1e+07

No. of ChunksD
at

a
Tr

an
sf

er
ed

 O
ve

r
th

e
ne

tw
or

k
(

lo
g

M
B

)

server

server1

server2

server3

(c) Communication Overhead Experiment: Data Transferred (Log) vs no. of Chunks.

Figure 15. Example of two event logs and their processing steps inside the system

107

largest number of event types, the DFG calculation makes up the most substantial
proportion of the total runtime. In contrast, the proportion is significantly lower
for the logs with a smaller number of event types. A possible explanation for this
finding is the increasing size of the vectors required to represent each activity due
to our bit-vector representation. Such increase results in more computational heavy
calculations. Regarding Q2, we conclude that the runtime decreases for event logs
with an increasing number of chunks.

Communication Overhead.. In Figure 15(c), we present the amount of data
transferred to each server, again also varying the number of chunks. We observe
that the communication overhead decreases with an increase in the number of
chunks. These findings confirm our earlier findings regarding Q2. In summary, a
higher number of chunks leads to improved performance across all three measures.

Threats to validity.. The evaluation reported above has two limitations. First,
the event logs used in the evaluation, while coming from real-life systems, are
intra-organizational event logs, which we have split into separate logs to simulate
an interorganizational setting. It is possible that these logs do not capture the com-
munication patterns found in interorganizational processes. Second, the number
of event logs is reduced, which limits the generalizability of the conclusions. The
results suggest that the proposed technique can handle small-to-medium-sized logs,
with relatively short traces, but there may be other characteristics of event logs that
affect the performance of the proposed approach.

7.5. Summary

This chapter introduced a framework for interorganizational process mining based
on secure multi-party computation. The framework enables two or more parties to
perform basic process mining operations over the partial logs of an interorganiza-
tional process held by each party, without any information being shared besides:
(i) the output of the queries that the parties opt to disclose; and (ii) three high-level
log statistics: the number of traces per log, the number of event types, and the
maximum trace length. The chapter specifically focuses on the computation of the
DFG, annotated with frequency and temporal information. This is a basic structure
used by process mining tools to perform various operations, including automated
process discovery and various performance analysis queries (e.g. top-k bottlenecks
and least-frequent and most-frequent flow dependencies).

To mitigate the high-performance overhead commonly observed for secure
multi-party computation, we introduced two optimizations over the basic DFG
computation algorithm: one based on vectorization of the event log and the other
based on a divide-and-conquer strategy, where the log is processed in chunks.

An evaluation using real world event logs shows that with these optimizations,
it is possible to compute the DFG of real-life logs with execution times that make
this technique usable in practice. The divide-and-conquer approach provides
opportunities to scale up the proposed technique by using a map-reduce execution-

108

style, however not to a sufficient level to enable interactive process mining (which
requires execution times in the order of seconds). Also, the approach is not able to
handle logs with thousands of traces.

109

8. CONCLUSION

8.1. Summary of Contributions

This thesis addressed the question of how to anonymize event logs and perform
process mining while preventing or controlling the release of personal information
of the individuals for whom the process is being executed. Specifically, the thesis
addressed two overarching questions:
RQ1 Given an event log L, wherein each trace contains private information about

an individual (e.g., a customer), and given a privacy risk threshold, how
to generate an anonymized event log L′ that provides a differential privacy
guarantee to each individual represented by a trace in the log, w.r.t. the given
threshold?

RQ2 How to enable process mining for interorganizational business processes
without requiring the involved parties to share their private event logs or to
trust a third party?

Any anonymization technique needs to strike a balance between controlling pri-
vacy risks and allowing the user (in our case, an analyst) to draw useful conclusions
from the anonymized event logs. In the context of process mining, it is important
to ensure that the anonymized event log still represents the same sequences of ac-
tivities (with more or less the same frequencies) and that the timestamps associated
to the events in the traces of a log resemble those in the original log. Concurrently,
the anonymization mechanism should mitigate the situation where there exists a
predicate that uniquely identifies a case in the log (PSO-secure). This remark leads
us to associate the following Utility Requirements to research question RQ1:

• UR1a: The anonymized event log must have the same set of case variants as
the original log.

• UR1b: The anonymized event log must not introduce new case variants to
the original log.

• UR2: The difference between the real and the anonymized time values is
minimal given a privacy risk metric.

To address RQ1 under UR1a and UR2, we proposed a concept of differentially
private event log and a mechanism to compute such logs (cf. Contribution 1).
A differentially private event log limits the increase in the probability that an
attacker may learn a suffix of an individual’s trace given a prefix (or vice-versa),
or the timestamp of an activity in an individual’s trace. To this end, we inject
differentially private noise by oversampling the traces in the log. This approach
neither suppresses nor adds case variants, and hence fulfills UR1a. To minimize the
difference between the real and the anonymized time values (UR2), we quantify ε

based on a technique that finds the maximum ε (minimum noise) that keeps the
guessing advantage below δ .

The proposed approach is implemented as an open source tool. Also, the

110

approach has been evaluated using 14 real-life event logs that are publicly available.
This approach fits the anonymization of structured event log. A limitation of this
proposed method is that it anonymizes the relative time of each event with respect
to the start of the case, but it does not anonymize the start times of the cases. A
second limitation is that the input log is assumed to have only three columns: case
ID, activity label, and timestamp. Real-world event logs usually contain other
columns, e.g., resources.

The approach presented in Contribution 1 introduces high levels of noise in the
presence of unique traces or temporal outliers. To address this limitation, in Contri-
bution 2, we relaxed the utility requirement to make sure that the anonymized event
log must not introduce new case variants (UR1b) to the original log. Contribution
2 presented an approach that applies both over- and undersampling, as opposed
to only oversampling; and filtering out high-risk cases. In that way, the proposed
approach does not introduce high levels of noise with unstructured event logs. The
approach presented in Contribution 2 fits the anonymization of unstructured event
log.

The proposed approach has been empirically evaluated and a comparison with
the state-of-the-art has been conducted. The empirical findings show that the
proposed approach is a step toward anonymizing event logs while preserving the
utility of the process mining analysis. The proposed approach outperforms the
state-of-the-art in terms of Jaccard distance and earth movers’ distance, and gener-
alization to all fourteen real-life event logs selected in the evaluation. Furthermore,
the approach can process large-sized event logs in practical memory size (32 GB).
A limitation of the proposed approach is that it do not handle resource and other
columns’ anonymization.

Contribution 3 proposed a method that enhances the noise injection of the
differentially-private mechanism of event logs using privacy amplification. While
previous proposals rely purely on noise injection, the approach proposed in Contri-
bution 3 additionally employs subsampling to achieve stronger privacy guarantees
with the same level of utility loss, or conversely, less utility loss for the same
privacy guarantee (privacy amplification). The approach presented in Contribution
3 fits the anonymization of structured event log when the number of rare case
variants is small.

The proposed approach is implemented as an open source tool called Libra.
Libra has been evaluated using 8 real-life event logs against the state-of-the-art. The
empirical evaluation shows that the privacy amplification effect leads to significant
reductions of utility loss, particularly when it comes to anonymizing the frequency
of distribution of case variants in a log (i.e. control-flow anonymization) and to a
lesser extent when it comes to anonymization of event timestamps.

A limitation of Libra is that it is not suitable for event logs with a high proportion
of infrequent trace variants. That is because Libra depends on subsampling. If we
have many unique trace variants, no matter the size of the subsample, the unique
traces will appear in the subsampled log. In such use cases, Libra simply filters out

111

most of the traces and may lead to empty outputs. Also, Libra returns empty event
logs when all the traces in the event log are unique traces.

To address RQ2, Contribution 4 introduced a framework for interorganizational
process mining based on secure multi-party computation. The framework enables
two or more parties to perform basic process mining operations over the partial
logs of an interorganizational process held by each party, without any information
being shared besides: (i) the output of the queries that the parties opt to disclose;
and (ii) three high-level log statistics: the number of traces per log, the number of
event types, and the maximum trace length. Contribution 4 specifically focused on
the computation of the DFG, annotated with frequency and temporal information.
This is a basic structure used by process mining tools to perform various operations,
including automated process discovery and various performance analysis queries
(e.g. top-k bottlenecks and least-frequent and most-frequent flow dependencies).

The proposed approach is implemented as an open-source tool called Share-
prom. Shareprom mitigates the high-performance overhead commonly observed
for secure multi-party computation, we introduced two optimizations over the basic
DFG computation algorithm: one based on vectorization of the event log and the
other based on a divide-and-conquer strategy, where the log is processed in chunks.
An evaluation using real world event logs shows that with these optimizations, it
is possible to compute the DFG of real-life logs with execution times that make
this technique usable in practice. A limitation of Shareprom is that it is not able to
handle logs with thousands of traces. Another limitation of Shareprom is that it
focuses on computing DFGs, and does not support other process mining operations
such as conformance checking, variant analysis, etc.

8.2. Future work

The contributions presented in this thesis open up future research directions, as
described in the following.

Anonymizing Resources and Other Attributes. As explained above, Contribu-
tions 1, 2, and 3 share the limitation that they all only work from the workflow
perspective. Real-world event logs contain other columns, e.g., resources. To
address this limitation, we need to extend the log representation, e.g., via multidi-
mensional data structures instead of DAFSAs. Also, we aim to build a differentially
private mechanism with different, smaller building blocks. Each building block
achieves differential privacy guarantees for each perspective separately. Combining
these building blocks is possible using the composition theorem.

Anonymizing Event Logs with Large Proportion of Unique Case Variants. As
we elaborated above, a limitation of Libra is that it is not suitable for event logs
with a high proportion of infrequent trace variants. In such use cases, Libra simply
filters out most of the traces and may lead to empty outputs. A possible solution
to this limitation is using methods to preserve the unique trace variants in the log
and minimize the utility loss. This can be achieved by clustering multiple similar

112

case variants into a single cluster and then replacing the case variants with the
centroid of the cluster, which would then have a frequency equal to the sum of the
frequencies of the trace variants in the cluster. One way to find the centroid of the
clusters is using summarization techniques. Investigating these two methods is a
possible future research avenue.

Usability Evaluation of Event Log Anonymization Techniques. In privacy-
preserving process mining techniques, particularly anonymization techniques,
it is assumed that the event log owner clearly understands the provided privacy
guarantees and parameters. In this thesis, we postulated that by introducing the
guessing advantage parameter. However, this postulate has not been tested in prac-
tice. A possible future research avenue is to conduct an evaluation with users and a
controlled environment to study the ability of users to understand the privacy/utility
metrics that these techniques provide (interpretability of metrics). Furthermore,
the study should cover the usefulness (utility) of the anonymized logs to perform
the analysis by process analysts.

Scalable and High-Performance Distributed Privacy. As we explained above,
one limitation of Shareprom, is that it is not suitable for large scale event logs (cf.
Chapter 7). The main reason for that is that the secure multi-party computation
protocols require a high communication overhead between the nodes. This prevents
the protocols to scale with large-scale event logs. A possible solution to this
problem is to use low latency but more specific protocols, e.g., set intersection
protocols.

113

BIBLIOGRAPHY

[1] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals of
Business Process Management. Springer, 2013.

[2] E. G. D. P. Regulation, “Regulation (eu) 2016/679 of the european par-
liament and of the council of 27 april 2016 on the protection of natural
persons with regard to the processing of personal data and on the free move-
ment of such data, and repealing directive 95/46/ec (general data protection
regulation) 2016,” OJ L, vol. 119, no. 1, 2016.

[3] “Article 29 data protection working party, opinion 05/2014 on anonymisation
techniques.” Accessed: 19 Nov 2020.

[4] A. Cohen and K. Nissim, “Towards formalizing the gdpr’s notion of singling
out,” Proc. Natl. Acad. Sci. USA, vol. 117, no. 15, pp. 8344–8352, 2020.

[5] I. Wagner and D. Eckhoff, “Technical privacy metrics: A systematic survey,”
ACM Comput. Surv., vol. 51, no. 3, pp. 57:1–57:38, 2018.

[6] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential
privacy.,” Found. Trends Theor. Comput. Sci., vol. 9, pp. 211–407, 2014.

[7] J. Lee and C. Clifton, “How much is enough? choosing ε for differential
privacy,” in Proc. ISC., pp. 325–340, Springer, 2011.

[8] C. Dwork, N. Kohli, and D. Mulligan, “Differential privacy in practice:
Expose your epsilons!,” J. Priv. Confidentiality, vol. 9, no. 2, 2019.

[9] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi, A. Marrella,
M. Mecella, and A. Soo, “Automated discovery of process models from
event logs: Review and benchmark,” IEEE Trans. Knowl. Data Eng., vol. 31,
no. 4, pp. 686–705, 2019.

[10] H. van der Aa, H. Leopold, and H. A. Reijers, “Efficient process confor-
mance checking on the basis of uncertain event-to-activity mappings,” IEEE
Trans. Knowl. Data Eng., vol. 32, no. 5, pp. 927–940, 2020.

[11] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals of
Business Process Management, Second Edition. Springer, 2018.

[12] M. Rafiei, M. Wagner, and W. M. P. van der Aalst, “Tlkc-privacy model
for process mining,” in Research Challenges in Information Science - 14th
International Conference, RCIS 2020, Limassol, Cyprus, September 23-25,
2020, Proceedings (F. Dalpiaz, J. Zdravkovic, and P. Loucopoulos, eds.),
vol. 385 of Lecture Notes in Business Information Processing, pp. 398–416,
Springer, 2020.

[13] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in informa-
tion systems research,” MIS Q., vol. 28, no. 1, pp. 75–105, 2004.

[14] J. Daciuk, S. Mihov, B. W. Watson, and R. Watson, “Incremental construc-
tion of minimal acyclic finite state automata,” Comput. Linguistics, vol. 26,
no. 1, pp. 3–16, 2000.

114

[15] G. Elkoumy, A. Pankova, and M. Dumas, “Mine me but don’t single me out:
Differentially private event logs for process mining,” in 3rd International
Conference on Process Mining, ICPM 2021, Eindhoven, The Netherlands,
October 31 - Nov. 4, 2021 (C. D. Ciccio, C. D. Francescomarino, and
P. Soffer, eds.), pp. 80–87, IEEE, 2021.

[16] G. Elkoumy and M. Dumas, “Libra: High-utility anonymization of event
logs for process mining via subsampling,” 2022.

[17] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. Dumas, P. Laud, A. Pankova,
and M. Weidlich, “Secure multi-party computation for inter-organizational
process mining,” in Enterprise, Business-Process and Information Systems
Modeling - 21st International Conference, BPMDS 2020, 25th International
Conference, EMMSAD 2020, Held at CAiSE 2020, Grenoble, France, June
8-9, 2020, Proceedings (S. Nurcan, I. Reinhartz-Berger, P. Soffer, and
J. Zdravkovic, eds.), vol. 387 of Lecture Notes in Business Information
Processing, pp. 166–181, Springer, 2020.

[18] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. Dumas, P. Laud, A. Pankova,
and M. Weidlich, “Shareprom: A tool for privacy-preserving inter-
organizational process mining,” in BPM Demos, pp. 72–76, 2020.

[19] A. F. Westin, “Privacy and freedom,” Washington and Lee Law Review,
vol. 25, no. 1, p. 166, 1968.

[20] D. A. Catania, “The universal declaration of human rights and sodomy laws:
A federal common law right to privacy for homosexuals based on customary
international law,” Am. Crim. L. Rev., vol. 31, p. 289, 1993.

[21] G. Greenleaf, “Five years of the APEC privacy framework: Failure or
promise?,” Comput. Law Secur. Rev., vol. 25, no. 1, pp. 28–43, 2009.

[22] L. B. Harman, C. A. Flite, and K. Bond, “Electronic health records: privacy,
confidentiality, and security,” AMA Journal of Ethics, vol. 14, no. 9, pp. 712–
719, 2012.

[23] A. Partington, M. T. Wynn, S. Suriadi, C. Ouyang, and J. Karnon, “Process
mining for clinical processes: A comparative analysis of four australian
hospitals,” ACM Trans. Manag. Inf. Syst., vol. 5, no. 4, pp. 19:1–19:18,
2015.

[24] E. Rojas, J. Munoz-Gama, M. Sepúlveda, and D. Capurro, “Process mining
in healthcare: A literature review,” Journal of Biomedical Informatics,
vol. 61, pp. 224–236, 2016.

[25] K. A. Schulz and M. E. Orlowska, “Facilitating cross-organisational work-
flows with a workflow view approach,” Data & Knowledge Engineering,
vol. 51, no. 1, pp. 109 – 147, 2004.

[26] Q. Zeng, S. X. Sun, H. Duan, C. Liu, and H. Wang, “Cross-organizational
collaborative workflow mining from a multi-source log,” Decision Support
Systems, vol. 54, no. 3, pp. 1280–1301, 2013.

115

[27] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking - Relating Processes and Models. Springer, 2018.

[28] A. Pika, M. Leyer, M. T. Wynn, C. J. Fidge, A. H. M. ter Hofstede, and
W. M. P. van der Aalst, “Mining resource profiles from event logs,” ACM
Trans. Manag. Inf. Syst., vol. 8, no. 1, pp. 1:1–1:30, 2017.

[29] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[30] I. Teinemaa, M. Dumas, M. L. Rosa, and F. M. Maggi, “Outcome-oriented
predictive process monitoring: Review and benchmark,” ACM Trans. Knowl.
Discov. Data, vol. 13, Mar. 2019.

[31] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond
k-anonymity and l-diversity,” in 2007 IEEE 23rd International Conference
on Data Engineering, pp. 106–115, IEEE, 2007.

[32] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-
diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, pp. 3–es, 2007.

[33] C. Dwork, “Differential privacy: A survey of results,” in International
conference on theory and applications of models of computation, pp. 1–19,
Springer, 2008.

[34] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of Cryptography, Third
Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings (S. Halevi and T. Rabin, eds.), vol. 3876 of Lecture
Notes in Computer Science, pp. 265–284, Springer, 2006.

[35] T. Zhu, G. Li, W. Zhou, and P. S. Yu, “Differentially private data publishing
and analysis: A survey,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 8,
pp. 1619–1638, 2017.

[36] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE transactions on information theory, vol. 31, no. 4,
pp. 469–472, 1985.

[37] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 223–238, Springer, 1999.

[38] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty computation from
threshold homomorphic encryption,” in Advances in Cryptology - EURO-
CRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding,
pp. 280–299, 2001.

[39] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pp. 169–178, 2009.

116

[40] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,” in
Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA (A. V. Aho, ed.), pp. 218–229, ACM, 1987.

[41] A. C. Yao, “Protocols for secure computations,” in 23rd annual symposium
on foundations of computer science (sfcs 1982), pp. 160–164, IEEE, 1982.

[42] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pp. 162–167,
IEEE, 1986.

[43] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[44] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-throughput
semi-honest secure three-party computation with an honest majority,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016, pp. 805–817,
2016.

[45] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter,
N. P. Smart, and R. N. Wright, “From keys to databases—real-world appli-
cations of secure multi-party computation,” The Computer Journal, vol. 61,
no. 12, pp. 1749–1771, 2018.

[46] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast
privacy-preserving computations,” in European Symposium on Research in
Computer Security, pp. 192–206, Springer, 2008.

[47] D. Bogdanov, P. Laud, and J. Randmets, “Domain-polymorphic program-
ming of privacy-preserving applications,” in Proceedings of the Ninth Work-
shop on Programming Languages and Analysis for Security, p. 53, ACM,
2014.

[48] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. F. Sani, A. Koschmider,
F. Mannhardt, S. N. von Voigt, M. Rafiei, and L. von Waldthausen, “Privacy
and confidentiality in process mining: Threats and research challenges,”
ACM Trans. Manag. Inf. Syst., vol. 13, no. 1, pp. 11:1–11:17, 2022.

[49] C. Dwork, A. Smith, T. Steinke, and J. Ullman, “Exposed! a survey of
attacks on private data,” Annual Review of Statistics and Its Application,
vol. 4, no. 1, pp. 61–84, 2017.

[50] S. N. von Voigt, S. A. Fahrenkrog-Petersen, D. Janssen, A. Koschmider,
F. Tschorsch, F. Mannhardt, O. Landsiedel, and M. Weidlich, “Quantify-
ing the re-identification risk of event logs for process mining - empiricial
evaluation paper,” in Advanced Information Systems Engineering - 32nd
International Conference, CAiSE 2020, Grenoble, France, June 8-12, 2020,
Proceedings (S. Dustdar, E. Yu, C. Salinesi, D. Rieu, and V. Pant, eds.),
vol. 12127 of Lecture Notes in Computer Science, pp. 252–267, Springer,
2020.

117

[51] I. Dinur and K. Nissim, “Revealing information while preserving privacy,”
in Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 9-12, 2003, San Diego,
CA, USA, pp. 202–210, ACM, 2003.

[52] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pp. 1322–1333, ACM,
2015.

[53] S. A. Fahrenkrog-Petersen, N. Tax, I. Teinemaa, M. Dumas, M. de Leoni,
F. M. Maggi, and M. Weidlich, “Fire now, fire later: Alarm-based systems for
prescriptive process monitoring,” arXiv preprint arXiv:1905.09568, 2019.

[54] F. M. Maggi, C. Di Francescomarino, M. Dumas, and C. Ghidini, “Predictive
monitoring of business processes,” in International conference on advanced
information systems engineering, pp. 457–472, Springer, 2014.

[55] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference
attacks against machine learning models,” in 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pp. 3–18, IEEE Computer Society, 2017.

[56] M. Gharib, J. Mylopoulos, and P. Giorgini, “Copri - a core ontology for
privacy requirements engineering,” in Research Challenges in Information
Science (F. Dalpiaz, J. Zdravkovic, and P. Loucopoulos, eds.), (Cham),
pp. 472–489, Springer International Publishing, 2020.

[57] M. Gharib, P. Giorgini, and J. Mylopoulos, “Towards an ontology for privacy
requirements via a systematic literature review,” in Conceptual Modeling
(H. C. Mayr, G. Guizzardi, H. Ma, and O. Pastor, eds.), (Cham), pp. 193–208,
Springer International Publishing, 2017.

[58] S. Dritsas, L. Gymnopoulos, M. Karyda, T. Balopoulos, S. Kokolakis,
C. Lambrinoudakis, and S. Katsikas, “A knowledge-based approach to
security requirements for e-health applications,” Electronic Journal for
E-Commerce Tools and Applications, pp. 1–24, 2006.

[59] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and
pseudonymity - A proposal for terminology,” in Designing Privacy Enhanc-
ing Technologies, International Workshop on Design Issues in Anonymity
and Unobservability, Berkeley, CA, USA, July 25-26, 2000, Proceedings
(H. Federrath, ed.), vol. 2009 of Lecture Notes in Computer Science, pp. 1–9,
Springer, 2000.

[60] M. Rafiei and W. M. P. van der Aalst, “Group-based privacy preservation
techniques for process mining,” Data Knowl. Eng., vol. 134, p. 101908,
2021.

[61] S. A. Fahrenkrog-Petersen, H. van der Aa, and M. Weidlich, “PRETSA:
event log sanitization for privacy-aware process discovery,” in International

118

Conference on Process Mining, ICPM 2019, Aachen, Germany, June 24-26,
2019, pp. 1–8, IEEE, 2019.

[62] M. Bauer, S. A. Fahrenkrog-Petersen, A. Koschmider, F. Mannhardt,
H. van der Aa, and M. Weidlich, “ELPaaS: event log privacy as a ser-
vice,” in Proceedings of the Dissertation Award, Doctoral Consortium, and
Demonstration Track at BPM 2019 co-located with 17th International Con-
ference on Business Process Management, BPM 2019, Vienna, Austria,
September 1-6, 2019 (B. Depaire, J. D. Smedt, M. Dumas, D. Fahland,
A. Kumar, H. Leopold, M. Reichert, S. Rinderle-Ma, S. Schulte, S. Seidel,
and W. M. P. van der Aalst, eds.), vol. 2420 of CEUR Workshop Proceedings,
pp. 159–163, CEUR-WS.org, 2019.

[63] E. Batista and A. Solanas, “A uniformization-based approach to preserve
individuals’ privacy during process mining analyses,” Peer Peer Netw. Appl.,
vol. 14, no. 3, pp. 1500–1519, 2021.

[64] F. Mannhardt, A. Koschmider, N. Baracaldo, M. Weidlich, and J. Michael,
“Privacy-preserving process mining - differential privacy for event logs,” Bus.
Inf. Syst. Eng., vol. 61, no. 5, pp. 595–614, 2019.

[65] S. A. Fahrenkrog-Petersen, H. van der Aa, and M. Weidlich, “PRIPEL:
privacy-preserving event log publishing including contextual information,”
in Business Process Management - 18th International Conference, BPM
2020, Seville, Spain, September 13-18, 2020, Proceedings (D. Fahland,
C. Ghidini, J. Becker, and M. Dumas, eds.), vol. 12168 of Lecture Notes in
Computer Science, pp. 111–128, Springer, 2020.

[66] S. A. Fahrenkrog-Petersen, M. Kabierski, F. Rösel, H. van der Aa, and
M. Weidlich, “SaCoFa: semantics-aware control-flow anonymization for
process mining,” in 3rd International Conference on Process Mining, ICPM
2021, Eindhoven, The Netherlands, October 31 - Nov. 4, 2021 (C. D. Ciccio,
C. D. Francescomarino, and P. Soffer, eds.), pp. 72–79, IEEE, 2021.

[67] M. Rafiei, L. von Waldthausen, and W. M. P. van der Aalst, “Supporting
condentiality in process mining using abstraction and encryption,” in Data-
Driven Process Discovery and Analysis - 8th IFIP WG 2.6 International
Symposium, SIMPDA 2018, and 9th International Symposium, SIMPDA
2019, Revised Selected Papers, 2019.

[68] M. Rafiei, L. von Waldthausen, and W. M. van der Aalst, “Ensuring confi-
dentiality in process mining.,” SIMPDA, vol. 18, pp. 3–17, 2018.

[69] G. Tillem, Z. Erkin, and R. L. Lagendijk, “Mining encrypted software
logs using alpha algorithm,” in Proceedings of the 14th International Joint
Conference on e-Business and Telecommunications (ICETE 2017) - Volume
4: SECRYPT, Madrid, Spain, July 24-26, 2017 (P. Samarati, M. S. Obaidat,
and E. Cabello, eds.), pp. 267–274, SciTePress, 2017.

119

[70] M. Rafiei and W. M. van der Aalst, “Privacy-preserving data publishing in
process mining,” in International Conference on Business Process Manage-
ment, pp. 122–138, Springer, 2020.

[71] M. Rafiei and W. M. P. van der Aalst, “Practical aspect of privacy-preserving
data publishing in process mining,” in Proceedings of the Best Dissertation
Award, Doctoral Consortium, and Demonstration & Resources Track at
BPM 2020 co-located with the 18th International Conference on Business
Process Management (BPM 2020), CEUR-WS.org, 2020.

[72] A. Pika, M. T. Wynn, S. Budiono, A. H. Ter Hofstede, W. M. van der
Aalst, and H. A. Reijers, “Privacy-preserving process mining in healthcare,”
International journal of environmental research and public health, vol. 17,
no. 5, p. 1612, 2020.

[73] M. Rafiei and W. M. P. van der Aalst, “Towards quantifying privacy in
process mining,” in Process Mining Workshops - ICPM 2020 International
Workshops, Padua, Italy, October 5-8, 2020, Revised Selected Papers (S. J. J.
Leemans and H. Leopold, eds.), vol. 406 of Lecture Notes in Business
Information Processing, pp. 385–397, Springer, 2020.

[74] K. Maatouk and F. Mannhardt, “Quantifying the re-identification risk in
published process models,” in International Conference on Process Mining,
pp. 382–394, Springer, 2022.

[75] M. Kabierski, S. A. Fahrenkrog-Petersen, and M. Weidlich, “Privacy-aware
process performance indicators: Framework and release mechanisms,” in
Advanced Information Systems Engineering - 33rd International Conference,
CAiSE 2021, Melbourne, VIC, Australia, June 28 - July 2, 2021, Proceedings
(M. L. Rosa, S. W. Sadiq, and E. Teniente, eds.), vol. 12751 of Lecture Notes
in Computer Science, pp. 19–36, Springer, 2021.

[76] F. Rösel, S. A. Fahrenkrog-Petersen, H. van der Aa, and M. Weidlich, “A
distance measure for privacy-preserving process mining based on feature
learning,” in Business Process Management Workshops - BPM 2021 Inter-
national Workshops, Rome, Italy, September 6-10, 2021, Revised Selected
Papers (A. Marrella and B. Weber, eds.), vol. 436 of Lecture Notes in
Business Information Processing, pp. 73–85, Springer, 2021.

[77] M. Rafiei and W. M. P. van der Aalst, “Privacy-preserving continuous event
data publishing,” in Business Process Management Forum - BPM Forum
2021, Rome, Italy, September 06-10, 2021, Proceedings (A. Polyvyanyy,
M. T. Wynn, A. V. Looy, and M. Reichert, eds.), vol. 427 of Lecture Notes
in Business Information Processing, pp. 178–194, Springer, 2021.

[78] R. Zaman and M. Hassani, “On enabling GDPR compliance in business
processes through data-driven solutions,” SN Comput. Sci., vol. 1, no. 4,
p. 210, 2020.

[79] R. Zaman, M. Hassani, and B. F. van Dongen, “Data minimisation as
privacy and trust instrument in business processes,” in Business Process

120

Management Workshops - BPM 2020 International Workshops, Seville,
Spain, September 13-18, 2020, Revised Selected Papers (A. del-Rı́o-Ortega,
H. Leopold, and F. M. Santoro, eds.), vol. 397 of Lecture Notes in Business
Information Processing, pp. 17–29, Springer, 2020.

[80] M. Rafiei and W. M. P. van der Aalst, “Mining roles from event logs while
preserving privacy,” in Business Process Management Workshops - BPM
2019 International Workshops, Vienna, Austria, September 1-6, 2019, Re-
vised Selected Papers, pp. 676–689, Springer, 2019.

[81] D. Reißner, R. Conforti, M. Dumas, M. L. Rosa, and A. Armas-Cervantes,
“Scalable conformance checking of business processes,” in On the Move
to Meaningful Internet Systems. OTM 2017 Conferences - Confederated
International Conferences: CoopIS, C&TC, and ODBASE 2017, Rhodes,
Greece, October 23-27, 2017, Proceedings, Part I (H. Panetto, C. Debruyne,
W. Gaaloul, M. P. Papazoglou, A. Paschke, C. A. Ardagna, and R. Meersman,
eds.), vol. 10573 of Lecture Notes in Computer Science, pp. 607–627,
Springer, 2017.

[82] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar,
“Privacy, accuracy, and consistency too: a holistic solution to contingency
table release,” in Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 11-13, 2007,
Beijing, China (L. Libkin, ed.), pp. 273–282, ACM, 2007.

[83] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in Proc.
of ACM SIGMOD, pp. 193–204, 2011.

[84] P. Laud, A. Pankova, and M. Pettai, “A framework of metrics for differential
privacy from local sensitivity,” Proc. Priv. Enhancing Technol., vol. 2020,
no. 2, pp. 175–208, 2020.

[85] A. Pankova and P. Laud, “Interpreting epsilon of differential privacy in terms
of advantage in guessing or approximating sensitive attributes,” in 2022
IEEE 35th Computer Security Foundations Symposium (CSF), pp. 96–111,
IEEE Computer Society, 2022.

[86] G. Elkoumy, A. Pankova, and M. Dumas, “Mine Me but Don’t Single Me
Out: Supplementary Material,” Mar. 2021.

[87] G. Elkoumy, A. Pankova, and M. Dumas, “Differentially private release of
event logs for process mining,” CoRR, vol. abs/2201.03010, 2022.

[88] Z. Jorgensen, T. Yu, and G. Cormode, “Conservative or liberal? personal-
ized differential privacy,” in 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015 (J. Gehrke,
W. Lehner, K. Shim, S. K. Cha, and G. M. Lohman, eds.), pp. 1023–1034,
IEEE Computer Society, 2015.

[89] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining. Pearson
Education India, 2016.

121

[90] V. Leno, A. Augusto, M. Dumas, M. La Rosa, F. M. Maggi, and
A. Polyvyanyy, “Discovering executable routine specifications from user
interaction logs,” CoRR, vol. abs/2106.13446, 2021.

[91] A. Ramdas, N. G. Trillos, and M. Cuturi, “On wasserstein two-sample
testing and related families of nonparametric tests,” Entropy, vol. 19, no. 2,
p. 47, 2017.

[92] A. Meyerson and R. Williams, “On the complexity of optimal k-anonymity,”
in Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, pp. 223–228, ACM, 2004.

[93] B. van Dongen, “BPI Challenge 2012,” 2012.
[94] W. Steemanvan, “BPI challenge 2013,” 2014.
[95] B. B. van Dongen, “BPI challenge 2014,” 2014.
[96] B. B. van Dongen, “BPI challenge 2015,” 2015.
[97] B. van Dongen, “BPI Challenge 2017,” 2017.
[98] B. van Dongen and F. F. Borchert, “BPI Challenge 2018,” 2018.
[99] B. van Dongen, “BPI Challenge 2019,” 2019.

[100] B. B. van Dongen, “BPI challenge 2020,” 2020.
[101] J. Munoz-Gama, R. R. de la Fuente, M. M. Sepúlveda, and R. R. Fuentes,

“Conformance Checking Challenge 2019 (CCC19),” 2019.
[102] A. Djedović, “Credit Requirement Event Logs,” 2017.
[103] F. Mannhardt, “Hospital Billing - Event Log,” 2017.
[104] F. Mannhardt, “Sepsis cases-event log,” Eindhoven University of Technology.

Dataset, pp. 227–228, 2016.
[105] M. M. de Leoni and F. Mannhardt, “Road Traffic Fine Management Process,”

2015.
[106] P. Gunst, “Urineweginfectie (UWI-casus) logboek,” 2020.
[107] B. Balle, G. Barthe, and M. Gaboardi, “Privacy amplification by subsam-

pling: Tight analyses via couplings and divergences,” in Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada (S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds.), pp. 6280–6290, 2018.

[108] C. Dwork, G. N. Rothblum, and S. P. Vadhan, “Boosting and differential
privacy,” in 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pp. 51–
60, IEEE Computer Society, 2010.

[109] Y. Zhu and Y. Wang, “Poission subsampled rényi differential privacy,” in
ICML, vol. 97 of Proceedings of Machine Learning Research, pp. 7634–
7642, PMLR, 2019.

122

[110] K. Chaudhuri and N. Mishra, “When random sampling preserves privacy,”
in Advances in Cryptology - CRYPTO 2006, 26th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24,
2006, Proceedings (C. Dwork, ed.), vol. 4117 of Lecture Notes in Computer
Science, pp. 198–213, Springer, 2006.

[111] Y. Wang, B. Balle, and S. P. Kasiviswanathan, “Subsampled renyi differ-
ential privacy and analytical moments accountant,” in AISTATS, vol. 89 of
Proceedings of Machine Learning Research, pp. 1226–1235, PMLR, 2019.

[112] M. Bauer, A. Senderovich, A. Gal, L. Grunske, and M. Weidlich, “How
much event data is enough? A statistical framework for process discov-
ery,” in Advanced Information Systems Engineering - 30th International
Conference, CAiSE 2018, Tallinn, Estonia, June 11-15, 2018, Proceed-
ings (J. Krogstie and H. A. Reijers, eds.), vol. 10816 of Lecture Notes in
Computer Science, pp. 239–256, Springer, 2018.

[113] I. Mironov, “Rényi differential privacy,” in 30th IEEE Computer Security
Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25,
2017, pp. 263–275, IEEE Computer Society, 2017.

[114] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi, “Prac-
tically efficient multi-party sorting protocols from comparison sort algo-
rithms,” in Information Security and Cryptology - ICISC 2012 - 15th Inter-
national Conference, Seoul, Korea, November 28-30, 2012, Revised Selected
Papers, pp. 202–216, 2012.

[115] P. Laud and A. Pankova, “Privacy-preserving frequent itemset mining for
sparse and dense data,” in Nordic Conference on Secure IT Systems, pp. 139–
155, Springer, 2017.

[116] L. Kamm, Privacy-preserving statistical analysis using secure multi-party
computation. PhD thesis, University of Tartu, 2015.

[117] M. Borkowski, W. Fdhila, M. Nardelli, S. Rinderle-Ma, and S. Schulte,
“Event-based failure prediction in distributed business processes,” Informa-
tion Systems, 2017.

123

ACKNOWLEDGEMENT

I would like to thank my supervisor Marlon Dumas for all the time he assigned to
me and for guiding me during my PhD journey. Also, I would like to thank Alisa
Pankova for her constant support and feedback.

I also would like to thank my parents, Nafisa Marie and Mahmoud Elkoumy,
for all of their continuous unconditional support, especially for all the prayers I got
from my mother.

I would like to acknowledge the European Research Council (PIX project) and
the ERDF via the Estonian Centre of Excellence in Computer Science (EXCITE)
for funding my studies. All the experiments presented in this thesis have been
executed at the High-Performance Computing Center at the University of Tartu.
Also, I would like to thank the city of Tartu for being such a wonderful place that
boosts my productivity.

124

SISUKOKKUVÕTE

Privaatsuskaitse tehnoloogiaid äriprotsesside kaeveks

Protsessikaeve tehnikad võimaldavad organisatsioonidel analüüsida äriprotsesside
täitmise logijälgi eesmärgiga tuvastada võimalusi oma operatiivse jõudluse paren-
damiseks. Protsessikaeve tehnikate rakendatavus sõltub äriprotsesside täitmise and-
meid sisaldavate sündmuslogide kättesaadavusest. Mõningatel juhtudel, eriti klien-
tidele suunatud protsesside puhul, võivad need sündmuslogid sisaldada privaatset
informatsiooni ja sellest tulenevalt kohalduvad analüüsile andmekaitsemäärustest
tulenevad piirangud. Sellistel juhtudel peavad organisatsioonid rakendama pri-
vaatsuskaitse tehnoloogiaid (PET), et leida tasakaal sündmuslogi analüüsimisest
saadava kasu ja andmekaitsemäärustest tulenevate nõuete vahel. Eelkõige tuleb
minimiseerida isikute desanonüümimise riski andmete protsessianalüütikule teata-
vaks tegemisel. PET annab siinkohal organisatsioonidele võimaluse sündmuslogide
analüüsiks, ilma et analüütik saaks sündmuslogist üksikisikuid eraldi tuvastada.
Näiteks võimaldab PET tervishoiu sündmuslogi põhjal leida protsessi kitsaskoh-
ti ja parendusvõimalusi, samas tuvastamata konkreetseid patsiente, kelle jaoks
protsessi täidetakse. Antud kontekstis vastab käesolev lõputöö küsimusele kuidas
anonüümida sündmuslogi ja teostada protsessikaevet selliselt, et üksikisikud, kelle
jaoks protsessi täidetakse, ei oleks tuvastatavad. Olemasolevas teaduskirjanduses
on erinevaid privaatsust säilitavaid protsessikaeve lahendusi välja pakutud. Üheks
levinumaks on k-anonüümsusele tuginevad tehnikad. Need tehnikad eemaldavad
andmestikust terveid juhtumeid või üksikuid sündmusi (tegevuste instantsid) ja
sellest tulenevalt kahjustavad tulemuseks saadud anonüümitud sündmuslogi kasu-
tatavust. Lisaks ei ole k-anonüümsusele tuginevad tehnikad turvalised predikaatide
põhjal üksikisikute eraldi tuvastamise rünnete vastu. Siinkohal oluline PET on dife-
rentsiaalprivaatsus, mis võimaldab ennetada üksikisikute eraldi tuvastamise ründeid
ning pakub koosluskindlaid privaatsusgarantiisid. Diferentsiaalprivaatsus töötab
lisades andmetesse müra, mille ulatus määratakse privaatsuse eelarve parameetriga
ε . Hetkel parimad diferentsiaalprivaatsusele tuginevad sündmuslogi anonüümimise
lähenemised kahjustavad sündmuslogi kasutatavust lisades sündmuslogisse lo-
gijälgi, mida reaalsuses ei esine. Lisaks ei paku need lähenemised juhiseid sobiva
ε väärtuse hindamiseks. Käesolev lõputöö lahendab antud uurimustühimiku pak-
kudes välja lähenemise, mis garanteerib et üksikisiku ründaja poolt tuvastamise
tõenäosus anonüümitud sündmuslogi väljastamisel ei ületa ettenähtud läviväärtust,
ning et erinevus tegeliku ja anonüümitud sündmuslogi ajaliste näitajate vahel on mi-
nimaalne. Pakutud ja olemasolevate parimate lähenemiste empiiriline võrdlus, ka-
sutades 14 reaalseid andmeid sisaldavat sündmuslogi, näitab et pakutud lähenemine
annab paremaid tulemusi nii andmete kasutatavuse kui ka arvutusliku efektiivsuse
seisukohast. Tavaliselt kasutatavate diferentsiaalprivaatsuse lähenemiste hindamine
näitab, et esialgsele (kõrge kasutatavusega) sündmuslogile võimalikult sarnase
ja samas privaatsusgarantiisid säilitava anonüümitud sündmuslogi loomiseks on

125

vajalik seadistada privaatsuse eelarve parameetri ε . Hiljutised diferentsiaalprivaat-
suse teemalised teadustööd on näidanud, et paremat privaatsuse ja kasutatavu-
se tasakaalu on võimalik saavutada rakendades osavalimite võtmist enne müra
sündmuslogisse lisamist. Ehk lihtsustatult, osavalimite abil on võimalik privaat-
sust suurendada. Käesolev lõputöö pakub sündmuslogi anonüümimise lähenemise,
mis tugineb sellele tähelepanekule. Pakutud lähenemine võtab sündmuslogis si-
salduvatest logijälgedest mitu valimit, lisab igasse valimisse eraldiseisvalt müra
(samas säilitades valimis statistiliselt olulised logijäljed) ning seejärel komponee-
rib antud valimid diferentsiaalprivaatseks sündmuslogiks. Antud lõputöö sisaldab
lisaks ka empiirilist kvaliteedi hindamist, mis näitab et pakutud lähenemine viib
oluliselt kõrgema kasutatavuseni samade privaatsusgarantiide juures, võrreldes
olemasolevate lähenemistega. Peavoolu protsessikaeve tööriistad on disainitud or-
ganisatsioonisiseste olude jaoks, lähtudes eeldusest et sündmuslogi on töötlemiseks
tervikuna kättesaadav. Selliste tööriistade kasutamine organisatsioonide vahelis-
tes oludes on raskendatud kuna organisatsioonide vahelised protsessid hõlmavad
iseseisvaid osapooli kes ei soovi (või kellel ei ole juriidiliselt lubatud) detail-
seid sündmuslogisid üksteisega jagada. Sellest tulenevalt pakub käesolev lõputöö
lähenemise ühise protsessikaeve artefakti loomiseks ja pärimiseks. Täpsemalt on
tegemist sageduse ja ajalise infoga annoteeritud otsejärgnevuste graafiga, mis on
loodud erinevatele osapooltele kuuluvate sündmuslogide põhjal selliselt, et osa-
pooled ei jaga sündmuslogisid üksteisega. Pakutud lähenemine kasutab turvalise
ühisarvutuse tehnoloogiat.

126

CURRICULUM VITAE

Personal data

Name: Gamal Elkoumy
Date of Birth: 01.01.1991
Citizenship: Egyptian
Language: Arabic, and English

Education

2018–2022 Doctor of philosophy program in Computer Science – Uni-
versity of Tartu

2015–2018 Master’s degree in Computer Engineering – Tanta Univer-
sity

2018–2012 Bachelor’s degree in Computer Engineering – Tanta Univer-
sity

Employment

2018– Junior Research Fellow – University of Tartu
2017–2018 Research Assistant – Wireless Research Center, Alexandria

University
2016 –2017 Senior Research and Development Engineer, InnoTech Co.,

Egypt.
2012 – 2015 Junior Data Warehouse Specialist, Data Gear Co, Egypt.

Scientific work

Main fields of interest:
- Privacy-Preserving Process Mining
- Process Mining

127

ELULOOKIRJELDUS

Isikuandmed

Nimi: Gamal Elkoumy
Sünniaeg: 01.01.1991
Kodakondsus: Egiptlane
Keelteoskus: Araabia, Inglise

Haridus

2018–2022 Tartu Ülikooli ühine doktoriõpe informaatika erialal
2015–2018 Tanta Ülikooli, tarkvaratehnika magistriõpe
2008–2012 Tanta Ülikooli, informaatika bakalaureuseõpe

Teenistuskäik

2018– Tartu Ülikooli, Nooremteadur
2017–2018 Alexandria Ülikooli, Research Assistant
2016 –2017 InnoTech, Teadus- ja arendusinsener.
2012 – 2015 Data Gear, Andmelao spetsialist.

Teadustegevus

Peamised uurimisvaldkonnad:
- Privaatsuse säilitamine protsessi kaevandamine
- protsessi kaevandamine

128

LIST OF ORIGINAL PUBLICATIONS

Publications in the scope of the thesis

1. Elkoumy, G., Fahrenkrog-Petersen, S. A., Dumas, M., Laud, P., Pankova, A.,
Weidlich, M. (2020). Secure multi-party computation for inter-organizational
process mining. In Enterprise, Business-Process and Information Systems
Modeling (pp. 166-181). Springer, Cham.
Lead author. The author performed the implementation and the analysis of
the experiments and contributed substantially to the ideas and the writing.

2. Elkoumy, G., Fahrenkrog-Petersen, S. A., Dumas, M., Laud, P., Pankova,
A., Weidlich, M. (2020). Shareprom: A Tool for Privacy-Preserving Inter-
Organizational Process Mining. In International Conference on Business
Process Management (BPM) 2020 (PhD/Demos), 2673, 72-76.
Lead author. The author performed the implementation and the analysis of
the experiments and contributed substantially to the ideas and the writing.

3. Elkoumy, G., Pankova, A., Dumas, M. (2021, March). Mine me but don’t
single me out: Differentially private event logs for process mining. In 3rd
International Conference on Process Mining (ICPM) 2021 (pp. 80-87).
IEEE.
Lead author. The author performed the implementation and the analysis of
the experiments and contributed substantially to the ideas and the writing.

4. Elkoumy, G., Dumas, M. (2022). Libra: High-Utility Anonymization
of Event Logs for Process Mining via Subsampling. In 4th International
Conference on Process Mining (ICPM) 2022. IEEE. (In press).
Lead author. The author performed the implementation and the analysis of
the experiments and contributed substantially to the ideas and the writing.

5. Elkoumy, G., Pankova, A., Dumas, M. (2022). Amun: A tool for Differ-
entially Private Release of Event Logs for Process Mining In International
Conference on Process Mining (ICPM) 2022 (Demos) (In press).
Lead author. The author performed the implementation and the analysis of
the experiments and contributed substantially to the ideas and the writing.

6. Elkoumy, G., Fahrenkrog-Petersen, S. A., Sani, M. F., Koschmider, A.,
Mannhardt, F., Von Voigt, S. N., Waldthausen, L. V. (2021). Privacy and
confidentiality in process mining: threats and research challenges. In ACM
Transactions on Management Information System (TMIS), 13(1), 1-17.
All the authors contributed equally to this research.

Publications out of the scope of the thesis

1. Rafiei, M., Elkoumy, G., van der Aalst, W. M. (2022). Quantifying Temporal
Privacy Leakage in Continuous Event Data Publishing. In International

129

Conference on Cooperative Information Systems (pp. 75-94). Springer,
Cham. The author contributed substantially to the ideas and the writing.

130

131

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

132

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

133

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

8. Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

9. Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

10. Elena Sügis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

11. Tõnis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

12. Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

13. Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in
Requirements Engineering. Tartu 2019, 129 p.

14. Faiz Ali Shah. Extracting Information from App Reviews to Facilitate
Software Development Activities. Tartu 2020, 149 p.

15. Adriano Augusto. Accurate and Efficient Discovery of Process Models
from Event Logs. Tartu 2020, 194 p.

16. Karim Baghery. Reducing Trust and Improving Security in zk-SNARKs
and Commitments. Tartu 2020, 245 p.

17. Behzad Abdolmaleki. On Succinct Non-Interactive Zero-Knowledge Pro-
tocols Under Weaker Trust Assumptions. Tartu 2020, 209 p.

18. Janno Siim. Non-Interactive Shuffle Arguments. Tartu 2020, 154 p.
19. Ilya Kuzovkin. Understanding Information Processing in Human Brain by

Interpreting Machine Learning Models. Tartu 2020, 149 p.
20. Orlenys López Pintado. Collaborative Business Process Execution on the

Blockchain: The Caterpillar System. Tartu 2020, 170 p.
21. Ardi Tampuu. Neural Networks for Analyzing Biological Data. Tartu

2020, 152 p.

134

22. Madis Vasser. Testing a Computational Theory of Brain Functioning with
Virtual Reality. Tartu 2020, 106 p.

23. Ljubov Jaanuska. Haar Wavelet Method for Vibration Analysis of Beams
and Parameter Quantification. Tartu 2021, 192 p.

24. Arnis Parsovs. Estonian Electronic Identity Card and its Security Challen-
ges. Tartu 2021, 214 p.

25. Kaido Lepik. Inferring causality between transcriptome and complex
traits. Tartu 2021, 224 p.

26. Tauno Palts. A Model for Assessing Computational Thinking Skills. Tartu
2021, 134 p.

27. Liis Kolberg. Developing and applying bioinformatics tools for gene
expression data interpretation. Tartu 2021, 195 p.

28. Dmytro Fishman. Developing a data analysis pipeline for automated pro-
tein profiling in immunology. Tartu 2021, 155 p.

29. Ivo Kubjas. Algebraic Approaches to Problems Arising in Decentralized
Systems. Tartu 2021, 120 p.

30. Hina Anwar. Towards Greener Software Engineering Using Software
Analytics. Tartu 2021, 186 p.

31. Veronika Plotnikova. FIN-DM: A Data Mining Process for the Financial
Services. Tartu 2021, 197 p.

32. Manuel Camargo. Automated Discovery of Business Process Simulation
Models From Event Logs: A Hybrid Process Mining and Deep Learning
Approach. Tartu 2021, 130 p.

33. Volodymyr Leno. Robotic Process Mining: Accelerating the Adoption of
Robotic Process Automation. Tartu 2021, 119 p.

34. Kristjan Krips. Privacy and Coercion-Resistance in Voting. Tartu 2022,
173 p.

35. Elizaveta Yankovskaya. Quality Estimation through Attention. Tartu
2022, 115 p.

36. Mubashar Iqbal. Reference Framework for Managing Security Risks
Using Blockchain. Tartu 2022, 203 p.

37. Jakob Mass. Process Management for Internet of Mobile Things. Tartu
2022, 151 p.

	Introduction
	Problem Statement
	Previous Work and Research Gaps
	Research Method
	Contributions
	Outline

	Background
	Privacy and Confidentiality
	Process Mining: Preliminaries
	Group-based privacy Techniques (M1)
	Differential Privacy (M2)
	Models of Computation
	Formalizing Differential Privacy
	Qualitative Properties of Differential Privacy

	Secure Multi-party Computation (M3)

	Privacy-Preserving Process Mining: Review and Conceptual Framework
	Threats for Privacy and Confidentiality in Process Mining
	Re-identification Threats (T1)
	Reconstruction Threats (T2)
	Membership Disclosure Threats (T3)
	Cryptanalysis Threats (T4)

	Conceptual Model and Requirements of PPPM
	Existing Approaches for Privacy-Preserving Process Mining
	Group-based Approaches
	Differential Privacy Approaches
	Cryptographic privacy models
	Other studies on Privacy-Preserving Process Mining

	Summary

	Differentially Private Event Logs: An Oversampling Approach
	Attack Model
	Differential Privacy Mechanism
	Event Log Representation
	Privacy Mechanism
	Risk Quantification

	Computing Differentially Private Event Logs
	 Lg Estimation
	 Weighted Oversampling of Cases
	Noise Injection
	Correctness proofs of Algorithm 1

	Summary

	Differentially Private Release of Event Logs: An Under- and Oversampling Approach
	Approach
	Event Log State-Annotation
	Prior Knowledge Estimation
	Case Filtering
	 Lg Estimation
	 Case Sampling
	Privacy Proof of Algorithm 2
	Timestamp Compression

	Software Implementation
	Functionality
	Maturity and Availability

	Evaluation
	Evaluation Measures
	Event Logs
	Experiment Setup
	Results
	Evaluation Conclusion

	Summary

	Differentially Private Release of Event Logs: A Subsampling Approach
	Approach
	Clipping rare Cases
	Event Log Subsampling
	Subsamples Anonymization
	Statistical Post-processing of SubSamples
	Combining Subsamples
	Event Log Anonymization Algorithm

	Evaluation
	Evaluation Measures
	Event Logs
	Experiment Setup
	Results

	Summary

	Secure Multi-Party Computation for Inter-Organizational Process Mining
	Attack Model
	Approach
	Model for Inter-organizational Process Mining
	MPC Architecture for Process Mining
	Performance Optimizations

	Software Implementation
	Overview of Shareprom
	Tool Packaging and Maturity

	Evaluation
	Event Logs
	Experimental Setup
	Results

	Summary

	Conclusion
	Summary of Contributions
	Future work

	Bibliography
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications
	Publications in the scope of the thesis
	Publications out of the scope of the thesis

