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Kõrge väärtusega sihtmärkide avastamine

Lühikokkuvõte:

Lõputöö kirjeldab automatiseeritud kõrge väärtusega sihtmärkide tuvastamist,
mille eesmärk on inimoperaatori töökoormuse vähendamine analüüsides etteantud
videot. Selle magistritöö põhieesmärk on uurida üldise närvivõrkude mehhanismi
ning olemasoleva eeltreenitud närvivõrgu tuunimine sobivate andmetega. Eda-
sised närvivõrgu parameetrite korrigeerimised oli vaja teostada, et saavutada pare-
mad tulemused kõrge väärtusega sihtmärkide tuvastamises reaalajas. Seda tüüpi
süsteem on suuteline tuvastama erinevaid sihtmärkide klasse olenevalt sellest, mis
andmetega süsteem oli treenitud. Uurimistöö oli fokuseeritud tuvsatama kind-
laid automarke ja mudeleid, aga tuvastatavaks objektiks saab olla ükskõik mis
asi. Süsteemi võib potentsiaalselt rakendada järelvalves, piiripatrullis, loomade
jälgimises.
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High-value target detection

Abstract:

This work describes an automatic high-value target detection for the purpose of
reducing the human workload in analyzing video feed from the given source. The
aim of this thesis is to investigate the mechanism of neural networks in general
and to fine-tune an existing pre-trained neural network with suitable data. Further
adjustment of the parameters was required to achieve better results in performing
robust target detection in real-time. This kind of a system can recognize differ-
ent classes of targets depending on the data it was trained with. The research
was focused on detecting particular car marks and models, but target could be
defined as any object. The potential application of such system could be found in
surveillance systems, border control, monitoring the animals.
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Chapter 1

Introduction

Video content plays significant role in every person’s life. Every minute 300 hours
of videos are uploaded to YouTube [1], which means more video content is pro-
duced every minute, than a person is able to watch in 2 weeks. YouTube mostly
hosts educational or entertaining content, but what about different kinds of surveil-
lance cameras that film non-stop 24 hours a day every week? It is impossible for a
person or even thousands of people to watch all the surveillance footage, needles to
mention that the attention span of a person is quite short, thus the focus dissolves
after first hours of watching. Thankfully, people do not need to watch all the
surveillance videos, as mostly nothing happens there. The point of surveillance
is to be immediately notified, when a critical issue arises. Taking into account
modern image processing techniques, it is possible to define, what in the video
sequence is considered to be an object of interest. After that computers can an-
alyze by themselves all the videos they produce and notify the human operator
only when needed.

Objects of interest in this thesis are further referred to as high-value targets. If
such a target appears in a video sequence of a surveillance camera, the operator
definitely has to be notified. The beauty of this approach is that anything could
be a target. It is possible to train the model on images of people to make people
into a high-value target in a restricted or secured zone, where people are not
allowed. Model can be trained on planes to notify the operator, if any plane is
in the monitored area of the sky. It is possible to train the model to recognize
military vehicles for automated border patrol.

The solution for detecting different high-value targets is essentially the same -
neural network trained on appropriate data. The algorithm of training is the same,
network architecture stays the same. Depending on the purpose, the network
parameters can be fine-tuned to improve the accuracy, but mostly the detection
depends on the data the network was trained with. As the final output is data
driven, a neural network can cover a wide range of applications, given big enough
(hundreds of thousands of pictures) datasets to train with.
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In this thesis the research had to be limited to one specific focus area, as collecting
huge datasets for neural networks to support particular domains is not a trivial
task and requires a lot of time effort. It was decided to train the neural network
with open-sourced labeled datasets of cars, so the system is able to automatically
classify the cars driving around the city by mark and model. In case a BMW X5
is caught by the video camera, the system should instantly signal to the operator,
that BMW X5 is detected. BMW in this scenario is a high-value target. The
system will not notify the operator, if any other car is detected. Such scenarios
are configurable. For example, it is possible to fire notifications, if BMW or Ford
are detected, not depending on the model at all. Another possibility is to fire the
notification every time a random car is detected and the confidence threshold is
not surpassed. In this case it means that most likely an unknown car was detected.
The operator can then manually add a label to such car and launch the retraining
of the neural network, so next time the car is recognized.
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Chapter 2

Background

This chapter gives an overview of the existing techniques and methods for working
with neural networks on the topic of image classification. Existing datasets that
contain labeled images of cars are also introduced in this chapter. This data
was used to train different architectures of neural networks and obtain the results
discussed in the ”Experimental Results” chapter. The description of the used
neural network architectures is given in here as well.

2.1 Related works

This section describes some state-of-the-art techniques for:

1. building image classification and localization systems,

2. vehicle classification and tracking,

3. multi-label sequential classification,

4. efficient utilization of temporal domain, when processing video sequences.

Each category is described in its own subsection and is represented by one or more
papers on the topic.

2.1.1 Object classification and localization

One of the most popular examples of real-time object detection systems is YOLO
- You Only Look Once - that was proposed in [2]. Further improvements were
made to the system to produce YOLOv2 [3], which is a state-of-the-art system on
such image classification tasks as Pascal VOC [4] or MS COCO [5]. YOLOv2 can
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be configured according to different sizes in order to improve the accuracy (more
parameters, bigger size, takes more time) or the speed (less parameters, smaller
size, less accuracy).

The performance of YOLO is measured with mAP - Mean Average Precision. To
calculate it for Object Detection, it is needed to calculate the average precision for
each class in the data based on the model predictions. Average precision is related
to the area under the precision-recall curve for a class. Then taking the mean of
these average individual-class-precision gives the Mean Average Precision.

YOLOv2 outperforms Faster R-CNN [6], Residual Network (ResNet) [7] and Single
Shot Detector (SSD) [8] models, while still running significantly faster. It achieves
76.8 mAP on VOC 2007 with 67 FPS, 78.6 mAP with 40 FPS.

YOLO9000 is a system that jointly trains object detection and classification [3]. It
is trained on COCO detection and ImageNet classification datasets. Joint training
allows YOLO9000 to predict detections for object classes, that do not have labels.
YOLO9000, having data only for 44 out of 200 classes gets 19.7 mAP on ImageNet
detection validation set.

Improvements made to YOLO to get YOLOv2.

Better in terms of accuracy:

1. batch normalization - adding it to all convolutional layers improves mAP by
2%, also helps to regularize the model and allows to remove dropout without
overfitting.

2. high resolution classifier - YOLO trains the classifier network at 224 224 and
increases the resolution to 448 for detection. YOLOv2 trains the classifica-
tion network at full 448 448 resolution for 10 epochs on ImageNet. Increase
by 4% in mAP.

3. convolution with anchor boxes - remove the fully connected layers from
YOLO and use anchor boxes to predict bounding boxes for object local-
ization. YOLO only predicts 98 boxes per image, but with anchor boxes the
model predicts more than a thousand. Without anchor boxes the interme-
diate model gets 69.5 mAP with a recall of 81%. With anchor boxes the
model gets 69.2 mAP with a recall of 88%.

4. dimension clusters - k-means clustering on the training set bounding boxes
to automatically find good priors for the network to better adjust box di-
mensions.

5. direct location prediction - Using dimension clusters along with directly pre-
dicting the bounding box center location improves YOLO by almost 5% over
the version with anchor boxes.
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6. fine-grained features - add a pass-through layer that brings features from
an earlier layer at 26 26 resolution. The pass-through layer concatenates
the higher resolution features with the low resolution features by stacking
adjacent features into different channels instead of spatial locations. 1%
performance increase.

7. multi-scale training - change input dimension on the fly every 10 batches.
The model downsamples by a factor of 32, so the dimensions are selected
from the following multiples of 32: 320, 352, ..., 608. This means the same
network can predict detections at different resolutions.

Better in terms of speed:

1. darknet-19 - 19 convolutional layers and 5 maxpooling layers, see full ar-
chitecture on Figure 2.1. Darknet-19 only requires 5.58 billion operations
to process an image yet achieves 72.9% top-1 accuracy and 91.2% top-5
accuracy on ImageNet.

2. training for classification - ImageNet 1000 class classification dataset for
160 epochs using stochastic gradient descent with a starting learning rate
of 0.1, polynomial rate decay with a power of 4, weight decay of 0.0005
and momentum of 0.9 using the Darknet. Additional tricks: random crops,
rotations and hue, saturation and exposure shifts.

3. training for detection - remove the last convolutional layer and instead add
on three 3 3 convolutional layers with 1024 filters, each followed by a final 1
1 convolutional layer with the number of outputs needed for detection. Train
the network for 160 epochs with a starting learning rate of 10e3 , dividing it
by 10 at 60 and 90 epochs. Weight decay of 0.0005 and momentum of 0.9.
Similar data augmentation to YOLO and SSD with random crops, color
shifting, etc.

In [9] an improved vertion of Fast R-CNN is introduced. It is called Faster R-
CNN. It is an object classification system with the following localization similar to
YOLO. A Region Proposal Network (RPN) is introduced for guiding the attention
of a neural network. It shares full-image convolutional features with the detection
network, which enables nearly cost-free region proposals. RPN predicts object
bounds at each position. It is further merged with Fast region-based CNN (R-
CNN) into a single network, where RPN component tells R-CNN, where to look,
and R-CNN then classifies the objects in the proposed attention spans. The model
architecture is shown on Figure 2.2 VGG-16 model runs at 5 frames per second on
a GPU, achieving state-of-the-art accuracy on PASCAL VOC 2007, 2012 and MS
COCO datasets. Compared with YOLO the model persorms significantly slower.

In order to unify RPN with Fast R-CNN object detection networks, a specific
training scheme is proposed. First, fine-tuning of region proposal task is done,
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Figure 2.1: Darknet-19 network architecture [3]

Figure 2.2: Faster R-CNN is a single network for object detection that unifies
Region Proposal Network (RPN) with CNN [9].
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then fine-tuning for object detection is performed, while keeping the proposals
fixed. This scheme converges quickly and produces a network with convolutional
features shared between both tasks. The effective running time for proposals is
just 10 milliseconds.

Comparison of the Fast R-CNN and Faster R-CNN on MS COCO dataset can be
seen on Figure 2.3.

Figure 2.3: Object detection results on MS COCO dataset with base model
VGG-16.

2.1.2 Vehicle re-identification

Vehicle detection and classification tasks are relatively popular and during the
past years significant progress has been made, but vehicle re-ID problem is hugely
neglected. Mostly re-ID is focused on pedestrians [10]. Re-ID aims to identify a
target vehicle in different cameras with disjoint views [11], [12], [13].

From a single vehicle image, given a set of gallery images for each vehicle, a
global feature is generated, which is considered to be a descriptive representation
containing all-view information.

Training pipeline of Adversarial Bi-directional LSTM Network (ABLN) consists
of 3 subtasks [14], [15]:

1. CNN to learn features of vehicles’ model and viewpoint, then LSTM to infer
multi-view features from only 1 input view.

2. adversarial training architecture that treats one LSTM as a feature genera-
tor.

3. another LSTM for differentiating the real multi-view features and the in-
ferred ones. The goal is to converge the inferred feature distribution to the
target real feature distribution.

As a result, global all-view features are produced.

Extensive experiments showed that the ABLN can achieve promising results
and outperform state-of-the-art methods for vehicle re-ID. Following table (Fig-
ure 2.4) shows the comparison with existing state-of-the-art methods for vehicle
re-identification.
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Figure 2.4: Comparison of the proposed ABLN method for vehicle
re-identification with the state-of-the-art methods.

2.1.3 Multi-label classification with CNN-RNN

CNNs are proven to be successful, when classifying images with a single label.
However, in real world a single image often contains multiple objects in it. In [16]
a unified framework for multi-label classification is proposed. A common approach
is to utilize CNNs for multi-label classification by treating the problem as multiple
single-label classifications. This method deals with every label independently,
although multi-label problems exhibit strong label co-occurrence dependencies.
The proposed method is to use recurrent neural networks (RNNs) to model the
label dependencies. The RNN is designed to adapt the image features based on
previous predictions, by encoding the attention models directly in the CNN-RNN
architecture. Such design allows the network to recognize dominant objects and
then shift to smaller ones.

The proposed RNN has several advantages compared to the state-of-the-art multi-
label classification methods:

1. End-to-end model is employed to utilize the semantic redundancy and the
co-occurrence dependency.

2. The model of high-order co-occurrence dependency with recurrent neurons
is more compact and more powerful than other models solving this task.

3. The attention mechanism adapts the image features to better classify smaller
objects that require more context.

RNN with LSTM is an effective model for long-term label dependency.
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The proposed model consists of 2 parts:

1. The CNN part that extracts the semantic representations from images.

2. The RNN part that models image-label relationship and label dependency.

2.1.4 Classification in videos with 3DCNN

3D CNN based phantom object removing from mobile laser scanning data
[17]. Mapping systems that use mobile laser scanning MLS are fast and able to
produce high density point clouds with sufficient accuracy. The problem is that
objects that are moving alongside the MLS are produced as long-drawn distorted
structures in the resulting point cloud. Such an effect is called phantom effect. It
is essential to remove the phantom effect from the data before further processing,
as it creates unwanted noise.

It is quite a challenge, as characteristics of phantoms vary significantly. Even the
static background regions of the MLS point clouds have a considerably inhomoge-
neous point density due to occlusions, different distances of the surface points from
the scanner’s trajectory, varying speed of the scanner platform, and the different
laser adsorption/reflection properties of the different surface materials. Moreover
moving objects may travel at varying speed, accelerating and breaking during the
observation.

Object-based methods that first extract point cloud blobs by a geometric seg-
mentation may produce errors that will affect the classification. Misdetected or
erroneously merged object segments can mislead the subsequent categorization
module.

Voxel-level methods are not very suitable, as with the increase of the number
of voxels, the processing time and storage requirement also increase, making the
method heavy.

Proposed solution is vertical column-based data structure for the CNN framework.
Columns = pillars are defined in 2D. Neighboring pillars may correspond to the
same object or a phantom. The horizontal extension is not restricted. 3D CNN
does not need preliminary object extraction and separation. Training data is easy
to prepare by assigning appropriate labels to the adjacent columns of the input
point cloud.

Assumptions: the phantoms (such as vehicles and pedestrians) can be found on
the ground, and have a maximum height of 3 meters. The point cloud is divided
into pillars of 3m height, and a narrow base (0.2m × 0.2m), which are arranged
into a dense regular 2D grid on the horizontal plane. 4 semantic classes in the
cloud: ground, high objects (such as facades, tree trunks, lamp posts etc.), static
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short objects (parking vehicles, street furniture etc), and phantom regions (effects
of moving vehicles and pedestrians).

GoogLeNet [18] concept for building the CNN classifier. See Figure 2.5 [17], which
illustrates the architecture of the 3D CNN.

Figure 2.5: Proposed in [17] architecture for 3D CNN

Training took 24 hours using only CPU. Python and Theano for training, C++
and OpenGL for labeling tool. Trained the network with 40000 pillar examples.
For each class F-rate above was 89%, while the overall result surpassed 91%.
Tests confirmed our initial hypothesis: phantom detection cannot be handled by
the density based filters which do not take into account any deeper structural in-
formation. On the contrary, the proposed 3D CNN framework can efficiently deal
with the problem in this segment as well (93% F-rate).

The 3D CNN model is able to learn spatiotemporal features from time steps of
occupancy grids and predict human motion intentions with an accuracy of
83% within 60% of the motion performed [19]. It also has real-time performance.
The system is useful for human-robot interaction and human-computer interaction
applications. It is generalised on other humans, who were not part of training set.

Existing methods: human arm was encoded as a multivariate Gaussian distribu-
tion; GMMs to represent classes of human reaching arm motion libraries; Hidden
Markov Model (HMM) was used to model human arm motion (using skeleton joint
information, depth and RGB images as multimodal input observations); Growing
HMMs.

Inputs: markers on human bodies; special gloves or apparels; skeleton models;
depth maps and point clouds; multimodal inputs. Point clouds are preferred in
this paper.

The spatial information is captured from single 3D inputs while the temporal
information from contiguous inputs. Hence, the 3D CNN architecture is able to
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learn spatiotemporal relationship in a stream of point cloud data.

Point clouds from 3D sensor are converted to 3D occupancy grids. For each input
time step, we have a data sample tensor Vt paired with the label Yt , the target
of a motion intention. Two-Stream convolutional networks for action recognition
in videos. For a more recent and extensive introduction to CNNs, see [20]. See
Figure 2.6, which illustrates the structure of the proposed 3D CNN. Excluded
the use of Max pooling layers since we would like to preserve spatial information
between layers.

Figure 2.6: Proposed in [20] architecture for 3D CNN

119,102 dataset was used for training and 14,802 for testing. 3-fold cross-
validation, Adam optimizer [21]. Dropout of 0.4 on all layers. Training with
lookback-window size of 4 time steps takes 26 seconds per epoch on GTX 1080.
Keras and Theano are used.

Lookback-window to tweak, 2 is the best. Bigger value gives more errors. Voxel
size to tweak. A voxel size of 100 mm gave a more satisfactory result with highest
accuracy of 84.37% and low computation time of 0.27 ms. During real-time tests,
the whole prediction process could run at 10 fps.

More work is needed to improve the robustness of the model, to better generalise
to new data sets and to learn more complex human motions with longer timespan
and dynamics.

2.2 Datasets

In total there are 152 912 images in a merged dataset. 4 515 different classes,
if taking every combination of mark-model-year as a separate class. There are
over 125 distinct marks and over 1224 models, but the final version of the dataset
only contains 73 classes and around 1100 models. Before any training has started
the initial clean-up of the dataset was performed leaving only 125 classes of car
marks and not taking models into account for the first experiments. The amount of
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images left in the dataset was split into training and validation data with the ratio
of 80/20. Training set contains 106017 images and validation set contains 26562
images. Cleaning the data was required as the dataset was combined from two
different open-sourced datasets. Some of the labels were written differently, while
representing the same classes. For example, Land-Rover was labeled as ”land-
rover” in one dataset and as ”land rover” in another one. Also a few typos in the
labels were discovered. For example, Lamborghini was separated into two folders:
”lamborghini” and ”lamorghini”. The cleaning of the dataset was performed a
few more times after getting unsatisfied results.

2.2.1 A Large-Scale Car Dataset for Fine-Grained Cate-
gorization and Verification

Figure 2.7: Example images from CompCars dataset [22]

”A Large-Scale Car Dataset for Fine-Grained Categorization and Verification”
[22] paper describes the dataset collected by researchers from Hong Kong and
Shenzhen. The dataset is called ”Comprehensive Cars” or ”CompCars” for short.
It contains 208 826 images of 1 716 car models from two scenarios: web-nature and
surveillance-nature. Additionally coordinates of bounding boxes around the cars
are carefully labeled, so more precise training can be achieved by not considering
the background of a car picture. There are 136 727 images capturing the entire cars
and 27 618 images capturing the car parts. Some example images are displayed
on Figure 2.7.

Viewpoints, such as front, rear, left side, are also documented for most of the
cars. Each car model is labeled with five attributes, including maximum speed,
displacement, number of doors, number of seats, and type of car. Car models are
organized into a large tree structure, consisting of three layers , namely car make,
car model, and year of manufacture. See Figure 2.8.

16



Figure 2.8: The schematic tree structure of the CompCars dataset

2.2.2 3D Object Representations for Fine-Grained Cate-
gorization

Figure 2.9: Example images from Stanford’s Cars Dataset [23]

Stanford’s fine-grained dataset [23]. It consists of BMW-10, a small, ultra-fine-
grained set of 10 BMW sedans (512 images) hand-collected by the authors, plus
car-197, a large set of 197 car models (16,185 images) covering sedans, SUVs,
coupes, convertibles, pickups, hatchbacks, and station wagons. All types of cars
made since 1990. When collecting the pictures from the Internet, it was ensured
that dataset represents 197 visually distinct classes that were determined by a
hashing algorithm, while scanning huge dataset of unlabelled cars from car selling
platform. Some example images can be seen on Figure 2.9.
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2.3 Neural Network Architectures

During the work on the car classificator multiple neural network architectures were
tested. The list includes architectures, such as VGG16, VGG19 [24], Inception-v3
[25], Xception [26], DenseNet [27], ResNet50 [7]. ResNet has too many parameters
- training and using this network requires lots of resources. Previously seen mod-
els with utilizing ResNet architecture could not achieve real-time performance.
VGGs are too simple and produce less accurate results. They are used in the
initial experiments to prove they are not suitable for the task of car classification.
Inception is similar to Xception, but in this thesis it was decided to monitor both
of them to ensure in the similarity. DenseNet and NASNet [28] are the two new
architectures that were published in 2017 and added to Keras framework this year.
There are 2 NASNets - large and mobile. Both NASNet Large and DenseNet pro-
duced similar results, so it was decided to use both NASNet architectures and not
to use DenseNet.

Inception architecture is illustrated by the Figure 2.10. In Inception, the slight
separation of image region and its channels can be seen. 1x1 convolutions are used
to project the original input into several separate input spaces. From each of those
input spaces a different type of filter is used to transform those smaller 3D blocks
of data. Xception takes this one step further. Instead of partitioning input data
into several compressed chunks, it maps the spatial correlations for each output
channel separately, and then performs a 1x1 depth-wise convolution to capture
cross-channel correlation.

Figure 2.10: Inception architecture (with dimension reductions).

The architecture of Xception blocks is shown on Figure 2.11. The whole architec-
ture based entirely on depth-wise separable convolution layers.
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Figure 2.11: Xceptionn architecture

NASNet architecture is visually explained by the Figure 2.12.

Figure 2.12: Architecture of the best convolutional cells (NASNet-A) with B = 5
blocks identified with CIFAR-10 . The input (white) is the hidden state from

previous activations (or input image). The output (pink) is the result of a
concatenation operation across all resulting branches. Each convolutional cell is
the result of B blocks. A single block is corresponds to two primitive operations

(yellow) and a combination operation (green).
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Chapter 3

Technologies

This chapter describes the technological choices made to fulfill the car classification
task. There are many of machine learning frameworks to choose from nowadays,
but learning and trying all of them is not in the scope for this particular thesis.
Keras [29] framework was chosen, as it simplifies the code writing, supports python
and has lots of built-in network architectures, optimizers and image pre-processing
tools. TensorFlow [30] was chosen as a back-end for Keras, as TensorFlow is the
most popular [31] deep learning framework with lots of documentation and support
articles. In order to speed up the training process, GPU power has to be utilized.
Nvidia CUDA toolkit [32] helps with GPU usage and training parallelisation.
TensorFlow is adjusted for GPU usage with CUDA toolkit.

To simplify the code writing even more, the Jupyter Notebook [33] was used. It
allows to host the notebook on a server with a powerful GPU and then access
and run the codebase straight from the browser. Additionally, it is possible to
produce visual outputs, such as graphs, image previews, logs, that will be saved
in the same file alongside the code.

3.1 Hardware

Multiple GPU resources were involved into training the neural networks described
in this thesis. At first MSI Trident 3 PC with Nvidia GeForce GTX 1060 (3
GB, 8GB RAM) was used for training on smaller portion of the dataset to test
different architectures and parameters. In order to launch the code for long (eg.
50 epochs), the codebase has to be tested and the bugs should be fixed. After the
pre-processing of images, building up the models for fine-tuning and the training
on a portion of data for 5-10 epochs works well, the training on the whole dataset
can be launched. Training the networks on the whole dataset with only MSI
Trident is quite slow. For example, training both large and mobile NASNets for
50 epochs each took more than 7 days to finish just to find out the code had some
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bugs and the networks did not train properly.

The Rocket cluster of the University of Tartu [34] was considered as a more
powerful option to train neural networks. It has 2 Nvidia Tesla P100 GPUs with
total of 10 nodes (each with 12-15 GB VRAM). Rocket cluster uses SLURM
system for submitting jobs. After submitting a job it might take up to 2.5 days
to execute it. It complicates the debugging and bugfixing, so only tested code can
be submitted for a job. However, tested code is adjusted for particular GPU, for
example batch size for Nvidia GTX 1060 and Nvidia Tesla P100 is not the same.
Also finding the right dependencies is not a trivial task. For example Keras is
installed only for Python 3.6.0. Though Keras could be installed by a user via pip
tool, some dependencies, such as CUDA, cannot be installed or updates without
administrative rights. After lots of failed jobs and the time spent for setting up
the work with Rocket, it was decided to try something different and less time-
consuming. The latest errors were saying that the job is terminated because of
memory exhaustion, although the batch size was set to smaller than is used on
MSI Trident and the rest of the code was the same.

Paperspace [35] is a Cloud-based infrastructure for machine learning and data
science. It is easy to set up and use, as it provides a snapshot of a cloud instance
with all the necessary tools pre-installed (same Ubuntu 16.04 with TensorFlow,
Keras, CUDA, Jupyter). An instance with Nvidia P4000 (8GB, 30GB RAM) is
rented to train NASNet models. It takes about 40-50 minutes for 1 epoch to
complete using NASNet Large architecture and the dataset of 106017 training
and 26562 validation samples. It was preferred over AWS instace, as it is easier
to set up. The template for the instance contained all the necessary tools, so no
additional installation were required. Google Cloud was also tried before using
Paperspace, but requesting a GPU instance was not successful in any region, as
all the GPUs are booked.

21



Chapter 4

Methodology

In this chapter all the key decisions taken during the work on the thesis are
described. Where to get enough training data? Is the data good enough? How
to train? What neural network architecture to choose as a base model? What
parameters to change? How to improve the accuracy? How to avoid overfitting?
All these questions will be answered in the next few sections.

4.1 Data

With the popularity of machine learning and neural networks in particular the
amount of available datasets significantly increased. From one side more people
are interested in using and analysing different sources of data. From the other
side the modern technology allows to collect and store huge amounts of data.
The problems start to rise, when a labeled dataset for a specific task is required.
There are MS COCO, PASCAL VOC, ImageNet, CIFAR datasets that contain
huge amounts of labeled data for general-purpose object detection. However, the
problem this thesis is focusing on is classifying cars. There are not so many
datasets that contain labeled cars.

Two such datasets were found to satisfy the requirement of car classification: Stan-
ford Cars dataset and Comprehensive Cars. Both contain labels for car mark,
model and year. The Stanford dataset was collected and labeled by Stanford’s
university researchers, so it is populated by the cars used in USA. Some of them
are specific for USA market, such as Acura or Plymouth. Another dataset - Com-
prehensive Cars (CompCars) - is collected by researchers from Chinese Academy
of Sciences, Shenzhen, China. There are plenty of cars that are China specific and
cannot be seen in European countries, such as Shouwang, Yingzhi or HongQi.

As the datasets were collected and labeled by different people, the structure is
different. In order to utilize the two datasets as a whole, when training a car
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classifier, it is required to merge both datasets into one that can be simply loaded
into Keras. Stanford Cars dataset has all the images in one folder, each image
with its own ID. The images are mapped with labels in a separate annotation file.
Comprehensive Cars dataset is much bigger. It keeps the data in separated into
folders. First level is folders of car marks, each car mark contains folders of models
inside. Every model has year folders inside it, only then the actual images of cars
can be found. See the example on Figure 4.1.

Figure 4.1: Tree structure of directories and images inside the CompCars
dataset. This is just a sample, there are more images in each folder.

In order to map the car labels with IDs and merge two datasets into one,
Python scripts were written. At first it was decided to try the classification
for marks only, without any models or years. The scripts ran through all the
files in both datasets and changed the path of images according to this pattern:
”data/car mark/img.jpg”. This way a ”data” folder was obtained. It contains
folders of car marks inside. Each car mark folder already contains corresponding
images of cars. Figure 4.2 illustrates the new structure and Figure 4.3 shows some
image examples from the merged dataset.
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Figure 4.2: Tree structure of directories and images inside the merged dataset.
This is just a sample, there are more images in each folder.

After running the Python scripts for merging the datasets, manual re-labeling
still had to be done. As the datasets were collected by different people, there exist
differences in labeling the same car. For example, in one dataset the label for
Land-Rover is ”land-rover”, but in the other - ”land rover”. Due to this minor
difference the images of Land-Rover were distributed between two folders instead
of being merged into one. One more example is ”chevy” vs ”chevrolet”. Another
issue that was discovered is human error. Some typos were found in car labels.
For example, in CompCars there is a folder named ”bwm” that contains images of
BMWs. One more example is ”lamorghini” vs ”lamborghini”. These typos were
discovered after multiple training and data cleaning operations.

Before actual data processing all the data should be reviewed and cleaned. The
dataset contains too many car marks. There are exotic Lamborghinis and Bugat-
tis, rare and custom built Spykers, non-existent in Europe Shouwangs and Acuras.
These sorts of classes were recognized as unnecessary and removed from the dataset
for the purpose of better training. In China some car manufacturers produce
copies of European cars that look almost exactly the same, but are actually dif-
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Figure 4.3: Example images from the merged dataset. Images are pre-processed
and re-scaled according to the input requirements of a particular network

architecture.

ferent marks. The images that look very similar, but should be recognized as
different car marks, were also removed from the dataset, as it is highly unlikely
the model would have learned the difference. Another criteria for removing images
from the dataset was that the amount of images to represent a particular class
was insufficient. Car marks containing less than 100 images were removed. Not
all the criteria were defined right away. Some were added because of unsuccessful
model training.

After all the manipulations with reformatting and cleaning the data are finished,
the dataset can be divided into train and validation parts and then loaded into
Keras. Another Python script is written to split the data into train and validation
sets. 20% of the dataset is the validation part and the rest is for training. Since
the data is already formatted, as shown on Figure 4.2, the path to the ”data”
folder can be directly given to the Keras’ ImageDataGenerator.
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4.2 Selecting Neural Network architecture

Keras framework provides multiple neural network architectures already built-in.
The pre-trained on ImageNet weights for every architecture are also available.
Initial experiments were done to compare simpler architectures and their perfor-
mance. Next architectures were tested: VGG16, VGG19, Inception-v3, Xception.
ResNet50 architecture has more complex architecture with more parameters and
requires more time for training each epoch. This architecture should clearly out-
perform VGG, Inception and Xception networks, but it has to be confirmed ex-
perimentally. The initial tests were launched on the portion of data - only images
from Stanford dataset. Moreover, only car marks are considered as classes, no
model, year or any other information is given. There are 49 classes in the dataset.
12929 images are in the training set and 3256 images are in validation dataset.
The experiment was launched 3 times with epoch numbers of 5, 10 and 30 epochs.
All the architectures have the same top layer containing one fully-connected layer
and the Softmax activation. The loss is set to Categorical Crossentropy and the
optimizer is Adam [21] with learning rate of 0.0001. The initial results are docu-
mented in the Table 4.1 below.

Network Epochs Validation accuracy Validation loss

VGG16 5 10.93% 3.4696
VGG19 5 10.90% 3.4735

Inception 5 11.36% 3.3881
Xception 5 11.85% 3.3795
ResNet50 5 14.97% 3.2165

VGG16 10 11.36% 3.4083
VGG19 10 11.11% 3.4330

Inception 10 13.30% 3.2457
Xception 10 15.03% 3.2508
ResNet50 10 19.66% 2.9797

VGG16 30 12.47% 3.3491
VGG19 30 11.60% 3.3486

Inception 30 19.32% 2.9516
Xception 30 22.90% 2.9139
ResNet50 30 33.55% 2.4502

Table 4.1: Comparison between different architectures on Stanford dataset in
order to select few architectures to proceed with.

As it can be seen from the Table 4.1, the ResNet50 does, indeed, outperform the
rest of the networks, giving the best accuracy score on validation data. VGG
network does not seem to improve significantly, but maybe more epochs can im-
prove the situation. Both Inception and Xception networks work relatively good,
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but also require more training to learn the car marks. So the same experiment
was launched again with 50 epochs for each architecture. Additionally, 2 more
network architectures are added to the experiment: DenseNet-121 and NASNet
Mobile. These are the networks that were recently added to Keras, as the papers
describing them were published in 2017. DenseNet-121 is the simplest DenseNet
architecture and NASNet Mobile is the simplified version of NASNet Large archi-
tecture. The results for 50 epochs are given in the Table 4.2.

Network Epochs Validation accuracy Validation loss

VGG16 50 14.07% 3.2863
VGG19 50 12.84% 3.3278

Inception 50 17.75% 3.5635
Xception 50 18.92% 3.3939
ResNet50 50 1.82% 4.1341

DenseNet121 50 21.54% 3.1317
NASNetMobile 50 13.15% 3.2809

Table 4.2: Comparison between different architectures with 50 epochs each on
Stanford dataset in order to select few architectures to proceed with.

The results show that VGG networks still did not improve significantly. Xception
and Inception networks gave slightly worse results with additional 20 epochs of
training, which means something is wrong with the training process and possibly
with data itself. ResNet50 seems to have overfitted, which is expected given the
complexity of architecture and the amount of data it is trained with. NASNet
and DenseNet both have shown good results. Inception, Xception, DenseNet and
NASNet architectures are selected for further experiments.

Since Large version of NASNet architecture was not tested yet, it is now time
to compare its performance with Mobile version and DenseNet, which is the best
performing model so far. Next table shows the results of that comparison.

Network Epochs Validation accuracy Validation loss

DenseNet121 50 21.54% 3.1317
NASNetLarge 50 22.31% 2.7120
NASNetMobile 50 13.15% 3.2809

Table 4.3: Comparison between DenseNet and NASNet architectures with 50
epochs each on Stanford dataset.

As NASNetLarge and DenseNet are both complex architectures, it is decided to
proceed with only one of them and NASNet seemed to produce better results. Now
the architectures for further training on the whole dataset and different optimiza-
tion techniques are selected: Inception, Xception, NASNet Mobile and NASNet
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Large. The last one is used just to see, what results are possible, both the rest
presumably can be used in real-time video processing.

After the neural network architectures are selected for further experiments it is
time to launch the training not only on Stranford’s dataset, but on the whole
merged dataset. Top layer is still the same with one fully-connected layer and
Softmax activation, optimizer is Adam and loss is Categorical Crossentropy. No
parameter adjustment is done yet, using the default parameters. Both NASNet
architectures and Xception were trained for 50 epochs. Inception is left out of
this experiment, as its results are comparable to Xception, and as training at this
point is done on MSI Trident’s GPU, it allows to save some computational time.
In the Table 4.4 the results are provided.

Network Epochs Accuracy Loss Validation accuracy Validation loss

Xception 50 22.46% 3.1852 10.92% 4.3662
NASNetLarge 50 24.92% 2.9847 11.84% 3.6592
NASNetMobile 50 17.14% 3.3620 7.36% 4.1037

Table 4.4: Comparison between Xception and NASNet architectures with 50
epochs each on merged dataset.

The results are not good. Expected validation accuracy is around 60%-70%. At
this point, as multiple different architectures are used, it is necessary to adjust
the parameters for each architecture. Also at this point the merged dataset was
reviewed the second time and all the Chinese brands were removed in order to
decrease the number of classes.

4.3 Adjusting parameters

Since the results obtained in the initial experiment both on Stanford’s and merged
datasets were not satisfying, the ways of improving the results have to be tested.
One approach is to look in more details, how the training of each epoch is happen-
ing. How does training accuracy converge or not converge to validation accuracy
after multiple epochs. The desired graph should look like on Figure 4.4.

However, the results of training the car classificator look like on Figure 4.5. The
model simply does not learn. Current learning rate parameter is 0.0001. Perhaps,
this value of learning rate is too small. To ensure the problem is caused by too
low learning rate, next training experiments were launched with learning rate of
0.1 and 0.001. First value is too big, so the overfitting should be visible during
the first 3-4 epochs. The next value - 0.001 - is actually the default learning rate
for all the optimizers in Keras.

Here is an example (Figure 4.6) of training with learning rate of 0.1. This value
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Figure 4.4: An example graph representing good training. After 4 epochs the
loss on both training and validation data converges to 1 and the accuracy

reaches 63%.

Figure 4.5: Actual results of training the neural network for 10 epochs without
significant improvements in accuracy or loss.

is too big to use even on Standford’s dataset, as the model tries to learn too fast,
resulting in overfitting and sudden jumps in loss and accuracy back and forth. It
was assumed that learning rate of 0.1 is too big before, so the training was only
done for 4 epochs.

With learning rate of 0.001 it was possible to see the accuracy on training set
growing significantly faster than with learning rate of 0.0001, but not too fast
(jumping to 55% accuracy, while validation accuracy does not grow), as it was
with learning rate of 0.1. The learning rate of 0.01 was also tested for a small
number of epochs and it produced overfitting as well.

The best learning rate for Stanford’s dataset appears to be 0.001. Following table
(Table 4.5) illustrates the results for 10 epochs for selected architectures, where
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Figure 4.6: Example of training, when learning rate is too big - 0.1.

learning rate equals 0.001. The tests were done on Stanford’s dataset to get the
results faster and proceed with adjusted parameters on the merged dataset.

Network Epochs Accuracy Loss Validation accuracy Validation loss

Inception 10 34.30% 2.3613 10.86% 3.6041
Xception 10 31.72% 2.5583 8.33% 3.7386

NASNetLarge 10 40.43% 2.0882 23.18% 2.6770
NASNetMobile 10 32.37% 2.4072 14.97% 3.3357

Table 4.5: Comparison between DenseNet and NASNet architectures with 50
epochs each on Stanford dataset.

After choosing bigger learning rate of 0.001, compared to previously used 0.0001,
the results obtained with only 10 epochs of training are outperforming the results
from training for 50 epochs on the same Stanford’s dataset. NASNet Large pre-
viously had 22.31% accuracy on the validation data after 50 epochs, now after 10
epochs the result is already 23.18%. However, some overfitting seems to still be
present, when looking at Inception and Xception results. For now it is not a prob-
lem, as the final model will be trained on merged dataset, which has significantly
more data to train with.

Batch size was also configured at this point. The initial batch size was set
to 16, however the GPUs used for training are powerful enough to process bigger
batches at the same time, thus speeding up the process of training. The maximum
batch size for Xception, Inception and NASNet Mobile on MSI Trident’s GPU
that did not cause memory exceptions is 48. For NASNet Large it is slightly
smaller - 32 - as this architecture has bigger size of input images - 331 by 331
pixels. The batch size was also configured for Rocket Cluster’s GPU, although even
with batch size of 32 for Xception and Inception architectures it threw memory
exceptions. Paperspace’s GPU was able to process Inception, Xception and Mobile
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architectures with the batch size of 64 and NASNet Large with the batch size of
48.

With adjusted learning rate and batch size parameters training for selected archi-
tectures, starting with NASNet Mobile was launched again on the whole merged
dataset for 50 epochs. However, after training 50-th epoch has finished and the re-
sults were reviewed, the training process for other models was interrupted. When
training on merged dataset of 106017 images in the training set and 26562 im-
ages in the validation set (with 125 distinct classes), the NASNet Mobile model
achieved validation accuracy of 6.66%. Before that training the same model only
on Stanford’s dataset gave the validation accuracy of almost 15%. It was expected
that given more data, the accuracy will increase, not decrease.

4.4 Input pre-processing

As the models are not training correctly, deep code debugging was performed. Ex-
isting open-sourced solutions were investigated and compared to the own solution.
It was discovered that the image pre-processing function, which is used on all the
images to format them before feeding into neural networks as an input, re-scales
the images on its own. However, in the code the separate re-scaling was also
performed using ImageDataGenerator, when reading the images from the folders,
resulting in double re-scaling. The input to the neural networks was not correct,
hence the problems with the training. Moreover, it was discovered that Inception
and Xception, having similar architectures, expect the images re-scaled to -1.0 -
1.0 range, instead of 0-255 range. NASNet architecture expects images re-scaled
to 0.0 - 1.0 range. The models were built and trained with such input formats in
mind, so during model fine-tuning it has to be taken into account. After correcting
the inputs to the networks, NASNet models were trained on Stanford’s dataset
for 5 epochs each to see, if there are any improvements. NASNet Large achieved
42.82% accuracy on training set and 22.95% accuracy on validation. The losses
are respectively 1.9081 and 2.7672. NASNet Mobile achieved 29.78% accuracy
on trainng set and 15.16% accuracy on validation set. The respective losses are
2.4745 and 3.2770. The results for only 5 epochs with correct inputs are already
comparable with the results of training for 50 epochs in Table 4.3.

4.5 Solving overfitting problem

When training a neural network it is very important to avoid overfitting as well as
underfitting. The overfitting problem was already mentioned in previous sections.
It means that the neural network, especially when trained on a small dataset,
learns very specific fearures and basically memorizes the training dataset achieving
very good accuracy. When later tested with new images, the neural network in
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this case cannot predict the correct class, as the generalization of the class was
not created correctly.

The simplest way to fix the overfitting problem is by adding more data to the
training. Since the overfitting was achieved on Stanford’s dataset, which is only
small part of the whole merged dataset, adding more data should not be a problem.
However, with adding more images of cars to the existing classes, more car mark
classes are also added, so the amount of classes grows from 49 to 125 car marks.
The data should be balanced properly, otherwise it might cause problems for neural
network in learning correct classes.

In order to fix the overfitting issue on Stanford’s dataset, different techniques
were applied. First thing is to have more data, so the data augmentation was
applied. It means that every picture in the training dataset is slightly modified
on each epoch by shifting the image by a certain coefficient, rotating it, flipping
horizontally. The objects on the pictures stay the same, but the position and
view angle slightly changes. It allows neural network to extract slightly different
features, while still classifying the image to the same class.

Another thing that could help with overfitting is adding Dropout layers. Dropout
with 0.25 parameter was tested on Stanford’s dataset. It means the quarter of the
features are dropped, when getting to the Dropout layer, so only 75% of features
are passed forward. Together with data augmentation the Dropout helped to de-
crease the the between the accuracy on training set and accuracy on validation set.
Previously the worst results on Stanford’s dataset were with over 70% accuracy
on training, while having less than 20% accuracy on validation. Now the gap is
a lot smaller: the accuracy on training set is around 35%, while the accuracy on
validation set is over 20%. These experiments were done with Stanford’s dataset.
Both data augmentation and Dropout were added to the training, when using
merge dataset. Dropout was changed to 0.1 not to cause underfitting.

4.6 Further improvements

While investigating and debugging the code, interesting techniques were discovered
for fine-tuning the neural networks. The discovered modifications was decided to
apply in terms of car classificator as well.

From the logs of training on the merged dataset it was seen before that at some
point neural network, for example NASNet Large, achieves 20%-25% validation
accuracy, but it does not go further. Previously described modification to prevent
overfitting do not allow the accuracy on training set to grow too much, when val-
idation accuracy does not grow, so the training just caps with training accuracy
of around 35%-40% and the validation accuracy of 20%-25% depending on the
architecture. To solve the issue, more trainable parameters are introduces into
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the top level of the model architecture. On top of every architecture additional
fully-connected layer of size 128 with ReLU activation followed by Batch Normal-
ization and Dropout are added before the final fully-connected layer with Softmax
activation.

Different optimizers for different models are used in order to improve the training
performance. Xception and Inception experimentally proved to produce slightly
better results, when using Adam optimizer, compared to Stochastic Gradient De-
scent (SGD) or RMSprop [36]. NASNet architecture, however, uses RMSprop
optimizer, as proposed in the original paper.

Moreover, the learning rate is not changed from constant to changing value. For
Inception and Xception architectures the learning rate for the first 5 epochs was
set to 0.01, then changed to 0.001 and the model was trained for 20 epochs and the
last 10 epochs were trained with learning rate of 0.0001. For NASNet architectures
the learning rate decay was given to the RMSprop optimizer as a parameter and
not changed manually after said amount of epochs. Last few epochs were trained
with unfreezing all the layers in the given architectures (only for Inception and
Xception) and training all the layers of the network.

The number of epochs was changing from model to model, as the training was
performed interactively. The weights after each epoch were compared to the pre-
vious weights and the best weights were saved. After training for a certain amount
of epochs was finished, the best weights were loaded and the further training for
certain amount of epochs was launched. With such approach it was easier to
see, if the model is still training, starts to overfit/underfit, if the code contains
some errors, if the results make sense. Next chapter gives an overview of the final
experiment setup as well as the results achieved by the time of submitting the
thesis.
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Chapter 5

Experimental Results

The final setup of the experiment includes lost of improvements compared to the
initial experiments with the purpose of increasing the validation accuracy. The
selected 4 neural network architectures are still the same: Inception-V3, Xception,
NASNet Mobile and NASNet Large. Each of the models has following layers on top
of the original model: fully-connected layer of size 128 and with ReLU activation,
Batch Normalization layer after that, Dropout layer with the dropout amount of
0.2, final fully-connected layer with the Softmax activation.

Learning rate parameter is changing during the training. For Xception and Incep-
tion the strategy of changing the learning rate is based on manual overview of the
training process. The learning rate of 0.01 is applied for the first 5 epochs only,
as then it starts to cause overfitting. Then the main training is done for 20 more
epochs with learning rate of 0.001. If the accuracy still grows, then additional
10 epochs are trained with the same learning rate. If the accuracy seems to have
reached the plato, then the learning rate is changed to 0.0001 and trained for fur-
ther 10 epochs. A few times the training was interrupted due to some technical
problems, so the weights of the last successful training were loaded and the train-
ing process was relaunched. The exact amount of the epochs trained is hard to
say because of that reason. Inception and Xception networks finished the training
with 3 epochs with all the layers unfreezed.

Learning rate for both NASNet architectures was set up to be changing over time
another way. Default parameters of the RMSprop optimizer were changed in order
to account for the desired technique. Starting learning rate for the NASNet was
also set to 0.01. Learning decay was set to 0.00004, which is applied after each
epoch. Rho and Epsilon parameters of the optimizer are both set to 0.9. NASNet
architecture is too ambiguous to re-train the weights of all the layers.

The dataset for training and validation is the merged dataset that contains data
from both Stanford and CompCars datasets. Cleaning of the dataset was already
performed a few times in order to reduce the amount of classes and to fix the
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issues with incorrect or inconsistent labels. The merged dataset only contains
car marks as classes, the information about models and years is not processed
at this point of research. Moreover, the information about car models requires
heavy modifications, as there are lots of model names that contain mark name
and include some metadata, such as car type (eg. hatchback or sedan) or car
submodel (eg. standard, performance, hybrid). For processing the models as well
it is needed to modify most of the labels. The merged dataset is containing 125
car mark classes and has 106017 images in the training set and 26562 images in
the validation set. The split ratio between training and validation set is 80/20.

The best results achieved with every architecture after training for 40-50 epochs
are described in the Table 5.1. It can be seen from the table that the accuracy of
Inception and Xception networks is very similar, as it was expected from the be-
ginning. Although, it was expected for Inception to slightly outperform Inception,
but it happened vice versa. NASNet was expected to show a lot better results.
Due to the amount of layers in NASNet architecture it was not possible to save
weights of the model after each epoch as checkpoints the same way it was done
with Inception and Xception. The weights have to be saved manually, thus some
of the weights were lost, if some kind of error appeared before the saving method
was called.

Network Loss Top 1 Accuracy Top 5 Accuracy

Inception 3.5352 17.97% 46.35%
Xception 3.5351 17.16% 44.59%

NASNetLarge 3.9664 9.68% 35.60%
NASNetMobile 4.7133 1.33% 12.16%

Table 5.1: Final results of Inception, Xception, NASNet Large and NASNet
Mobile network architectures after improved training on the whole merged

dataset.

The results for Xception and Inception architectures have definitely improved from
the initial experiment (Table 4.4). The Xception model’s accuracy on validation
set was 10.92%, now it increased to 17.16% with top 5 accuracy of 44.59%. The
results of NASNet architectures became significantly worse, but most likely it is
because of the code error or missing weights. The model was not re-trained due
to the lack of time.

However, the accuracy of 60%-70% was still not achieved. There are 2 possible
explanations: the data is not suitable or the car classification based on marks
cannot be learned that easily, as a single car mark contains too many different car
models and types inside - really hard to find general unique features to distinguish
marks.

After the final results were obtained, the data was reviewed again. The number of
classes was reduced from 125 to 73, as all the Chinese cars were removed, as most

35



of them are just copies of European cars that look almost the same, but have to be
labeled differently. Cars with less than 100 images were also removed. A few more
labels were merged together into one label, as there was a typo or the car makers
were labeled differently in 2 datasets (eg. Chevy vs. Chevrolet). From the classes
some models were removed, as they were very rare or unique cars, sometimes only
concepts that were never produced (eg. Audi Urban). New dataset contains 91692
images in training set and 22960 in test set. The training after final cleaning of
the dataset was not performed due to the lack of time. With further training it
will be possible to say, if the messy data was affecting the training results that
much.

Another problem is more interesting. Perhaps, it is not a trivial task for a neural
network to learn the features of particular car marks. The variety of cars inside one
mark is huge. There are different models and submodels, depending on the year
of manufacturing cars look different. There are sedans, hatchbacks, convertibles,
SUVs, pickups - all of which can belong to a single car mark. The assumption
to start with car marks first might be wrong. It may be possible that a neural
network can learn different car models much faster and from that predict the car
marks. Every car model has more distinguishable features than every mark.
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Chapter 6

Conclusion

The thesis was focused on the high-value target detection, where high-value tar-
gets were defined as different cars. For example, it was one of the goals to rec-
ognize BMW car mark and its model X5 from a real-life video footage to signal
an alarm to the human operator. The classification algorithm implementation
includes training a neural network. Unfortunately, the results of training were not
good to be actually applicable to the task described. Further work on modeling
the classificator is required.

Despite the poor classification accuracy, a lot of work was done. Multiple network
architectures were tested, the parameters and techniques for fine-tuning a neural
network were researched and experimentally tested. The working methods are
preserved and documented, the methods that produced worse results are ruled
out. Questions such as ”what network to use as a basis?”, ”what pre-processing
methods to use?”, ”how to better clean up the data to achieve meaningful results?”
have their detailed answers. Some of the modifications, such as cleaning up the
dataset, are also fulfilled already. The lack of powerful enough GPU resources
throughout the testing period has significantly slowed down the training, hence
the mismatch between expected and actual results was discovered too late to
conduct more training experiments.

A special comment deserves the data the neural networks were trained with. The
dataset was not good, required multiple clean up procedures to finally get some-
thing working and may still not satisfy the requirements for good training. Now
it is clear that there is no better dataset, than the one prepared by own hands
and tailored for specific needs. Open-sourced datasets are not big enough, require
filtering, restructuring and cleaning. It is a good idea to make an automated sys-
tem for collecting more data in a desired format, so the balanced dataset with all
the classes labeled properly and consistently is available.

Next steps would be to:
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1. Train the data with the last version of merged dataset (79 car mark classes).

2. Train the networks using car models as classes - requires a lot of re-labeling
in the current dataset or collecting a new dataset.

3. Investigate, if the model trained to distinguish models can also classify car
marks.

4. Try CNN-RNN architecture or hierarchical softmax function to combine clas-
sification of car marks and models into a single network architecture.
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