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Classifier Evaluation With Proper Scoring Rules

Abstract: Classification is a fundamental task in machine learning, which involves
predicting the class of a data instance based on a set of features. Performance of
a classifier can be measured using a loss function, which assigns a loss value for
each classification error.

Classification error happens when the predicted and the actual class differ. In
the simplest case, all combinations resulting in a classification error are consid-
ered equal in terms of cost. However, some problems demand different types of
misclassification to be of different importance, which forms a cost context.

Depending on the properties of the cost contexts, different loss functions can be
applied. For example, if the arithmetic mean of costs for one false positive and one
false negative is fixed and these costs are uniformly distributed, then Brier score is
the suitable loss function. If their harmonic mean is fixed, then log loss should be
used instead. These two functions belong to a larger family of loss functions known
as proper scoring rules. Scoring rules are loss functions which deal specifically with
probabilistic classification, where the classifier is required to predict probability
for each class, indicating prediction confidence.

In this thesis, a new cost context for binary classification is presented, where
both costs have their own uniform distributions. A corresponding new loss function
for this cost context is proposed, named Inverse Score, and is subsequently proven
to be a proper scoring rule.

The experiments confirm that the total cost when using said cost context and
expected loss when using the new loss function are the same.

Keywords: machine learning, classifier evaluation, probabilistic classification,
proper scoring rules, cost-sensitive learning

CERCS: P176 – Artificial intelligence
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Klassifikaatorite hindamine kohaste skoorimisreeglitega

Lühikokkuvõte: Üks põhilisi ülesandeid masinõppes on klassifitseerimine, mis
seisneb andmepunktile kategoorse väärtuse ennustamises teatud tunnuste alusel.
Klassifitseerija sooritusvõimet saab mõõta kaofunktsiooni abil, mis omistab igale
klassitsifeerimisel tehtud veale mingi väärtuse.

Klassifitseerimisveaks nimetatakse olukorda, kus ennustatud kategoorne väär-
tus on erinev sellest, mis peaks olema tegelik väärtus. Kõige lihtsam on käsitleda
kõikvõimalikke klassifitseerimisvigu võrdse kuluga. Siiski, mõndade probleemide
lahendamine nõuab erinevat tüüpi klassifitseerimisvigadele erineva kaalu omista-
mist, ning see moodustab kaokonteksti.

Olenevalt kaokontekstist on võimalik rakendada erinevaid kaofunktsioone.
Näiteks, kui ühe valepositiivse ja ühe valenegatiivse hindade aritmeetiline kesk-
mine on fikseeritud ning mõlemad on ühtlaselt jaotunud, sobib kaofunktsiooniks
Brier’i skoor. Kui nende harmooniline keskmine on fikseeritud, sobib selle asemel
kasutada logaritmilist kaofunktsiooni. Need kaks funktsiooni kuuluvad suuremas-
se kaofunktsioonide perekonda, mida tuntakse kohaste skoorimisreeglite nime all.
Skoorimisreeglid on kaofunktsioonid mis tegelevad spetsiifiliselt tõenäosusliku
klassifitseerimisega, kus klassifitseerijalt on oodatud iga kategooria tõenäosuse
ennustamist, kus tõenäosus omakorda näitab kindlust ennustatud kategoorias.

Antud magistritöös esitletakse uut kaokonteksti binaarsele klassifitseerimisele,
kus kummalgi klassil on sõltumatult ühtlane jaotus. Nimetatud kaokontekstile
pakutakse välja uus kaofunktsioon nimega Pöördskoor ning selle puhul tõestatakse,
et see on kohane skoorimisreegel.

Eksperimendid kinnitavad, et kogukulu vastavas kaokontekstis ning oodatud
kadu kasutades uut kaofunktsiooni on samad.

Võtmesõnad: masinõpe, klassifikaatorite hindamine, tõenäosuslik klassifitseeri-
mine, kohased skoorimisreeglid, hinnatundlik õpe

CERCS: P176 – Tehisintellekt
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1 Introduction
Classification is the task of given an instance of data predicting its class from a
fixed set of options. An instance is defined through its features, denoted by x, an its
corresponding class, denoted by y. For example, one can consider a classification
task of predicting whether a given image is of a chihuahua or of a blueberry muffin.
The set of features are all the pixels in the image. Feature space, denoted by X , is
composed by all the possible images of given image size. Label space, denoted by
Y , consists of two labels: ‘chihuahua’ and ‘muffin’ [Yao, 2017].

Classifier evaluation is a task of measuring how good classifier is at labelling
data. According to the ‘no free lunch’ (NFL) theorem [Wolpert, 1996], there is no
universal learning algorithm that would work best for every problem. Therefore, for
different datasets different algorithms (classifiers) perform with variable success.
This means that for each task and dataset classifiers need to be reviewed and
evaluated separately. That is why classifier evaluation is a crucial task in machine
learning [Tharwat, 2018].

Loss function is a type of classification evaluation measurement. It is a non-
negative function that maps a pair of predicted and actual class to a real number,
where higher values correspond to worse predictions while 0 indicates perfect
classification.

Binary classification is a particular type of classification problems where there
are only 2 classes, which are usually referred to as positive and negative. This
allows for 2 cases of misclassification: false negative (predicting negative when
the actual class is positive) and false positive (predicting positive when the actual
class is negative). Most of the time, these errors are of different importance,
and to highlight these differences parameters called costs are used. For binary
classification, there are only 2 costs: cost of false negative, denoted by c0, and cost
of false positive, denoted by c1 [Elkan, 2001].

Evaluation is complicated by the fact that models learn and work in different
contexts. A context is defined by a set of parameters, such as cost magnitude,
proportion of different costs, proportion of instances of different classes. Such
contexts are called operating condition. Evaluating model in a concrete operat-
ing condition is a trivial task. In case information about operating condition is
unavailable, a model needs to be evaluated over a range of operating conditions
[Hernández-Orallo et al., 2012]. Loss functions applicable to such problems are
called proper scoring rules. The most commonly used examples of proper scoring
rules are Brier score and log-loss [Brier, 1950] [Good, 1952].

An operating condition, where the sum of costs is fixed, one cost, c0, has uniform
distribution and the other one, c1, can be calculated from the sum and c0, is called
additive. It was shown that Brier score produces correct expected loss when
used with additive context [Hernández-Orallo et al., 2011]. A similar operating
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condition where instead the harmonic mean of costs is fixed, one cost, c0, has
uniform distribution and another one, c1, can be calculated from the harmonic
mean and c0, is called harmonic, and it was proven that log-loss is equal to expected
loss under harmonic context [Flach, 2015].

In this thesis, a new context is proposed, where both costs c0 and c1 have
uniform distribution. Since in this case there is no correlation between c0 and
c1, this context will be called independent uniform. A score was found that is
equal to total cost under independent uniform cost context and its correctness and
properness is proven. This score will be called Inverse Score.

In Section 2, types of classification and their evaluation will be introduced, and
cost-sensitive learning will be discussed.

In Section 3, proper scoring rules will be reviewed, some examples of them
are shown and their properness is proven, and Bregman divergences and their
connection to proper scoring rules are introduced with some examples.

In Section 4, independent cost context and its appropriate proper scoring rule
Inverse Score are defined and the theorems about correctness and properness are
proven.

In Section 5, the results of experiments are displayed and analyzed.
In Section 6, the thesis is concluded.
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2 Classifier Evaluation
A classifier, or classification model, is a function that implements classification,
so its input is a list of instance’s features, and its output is predicted class
[Hernández-Orallo et al., 2012].

In this section, different types of classification models will be discussed and
their assessment methods will be introduced.

2.1 Types of Classifiers
Labelling Classifier Labelling classifier model is a function that produces a
predicted class, given an instance with set of values called features. For a concrete
instance, its features are denoted by x and its label as y. Then, feature space
is set of possible features, denoted by X , and label space is set of all possible
labels to chose from, denoted by Y . In this thesis, classification with 2 labels will
be discussed unless stated otherwise. Such classification is called binary. For
binary classification, class 0 will represent positive class and class 1 will represent
negative one. Following [Hernández-Orallo et al., 2012] and [Hand, 2009], it has
notational advantages. Then Y = {0,1}.

Probabilistic Classifier A probabilistic classifier is a mapping p̂ : X → [0,1],
where p̂ is a vector of probabilities of getting each class, p̂= (p̂1, ..., p̂k). Probabil-
ities of all classed add up to one,

∑k
i=1 p̂i = 1. In binary classification, a score p̂

specifies how likely instance x is of class 1, with higher value of p̂ meaning more
likely, p̂ ≈ P(Y = 1|X = x). And 1− p̂ specifies how likely instance x is of class 0,
1− p̂ ≈ P(Y = 0|X = x).

Probabilistic classifier gains labels from scores using a decision rule. The most
common decision rule uses a threshold t, so instances with scores p̂ > t would be
predicted as of class 1, and as of class 0 otherwise [Hernández-Orallo et al., 2011].
To discuss what value threshold should have, we need to review calibration first.

For example, for a fixed instance model produces probability p̂ = 0.9 of being
of negative class. A model is called well-calibrated, if for all such instances with
probability p̂ = 0.9= 90% approximately 90% of them are actually of negative class.
It is very unlikely for the proportion of negative instances to be exactly 0.9, but the
closer proportion of negative instances is to probability, the better calibrated it is.

So, probability estimator is calibrated if among all instances where the model
predicts (p̂1, ..., p̂k) the actual class distribution is also (p̂1, ..., p̂k).

If model is calibrated, then a threshold should be such value that means that
class that has a bigger probability should be predicted. To predict negative class
that has probability p̂, the following inequality needs to be satisfied:
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p̂ > 1− p̂
2p̂ > 1
p̂ > 0.5

Thus, model will predict class 1 if probability p̂ is more than 0.5, which means
that decision threshold t is t = 0.5. So, model will predict class 1 if p̂ > t and class 0
otherwise.

We will call probabilistic classifier calibrated because it produces a value that
is always in range [0;1]. A score s does not have such restrictions; it can have any
range, where higher value will mean more likely of negative class 1 and lower value
will mean more likely of positive class 0. Such score will be termed uncalibrated.
We will discuss uncalibrated scores, their calibration to probabilistic scores and
decision rules in Section 2.2.

2.2 Basic Evaluation Measurements
Accuracy and Error Rate Accuracy is primary tool used for classification eval-
uation and is equal to proportion of correctly predicted instances. It is obvious that
accuracy has values in range [0;1], and higher accuracy (closer to 1) means good
classification and lower accuracy (closer 0) means worse.

Error rate is another measurement and it is equal to proportion of incorrectly
predicted instances. It is a complement of accuracy, err = 1−acc, and lower error
rate means better than higher error rate.

Accuracy and error rate are not the best tool, because they do not evaluate
classes separately. In real world, classes are sometimes highly imbalanced. It
is common that negative class represents ordinary instances, and positive class
means in some way ‘outstanding’ and therefore interesting instance. In such cases
negative instances outweigh positive instances, and developer is interested in
predicting positive instances correctly.

Consider online advertisement as an example, where a developer needs to
predict which users will click on the ad. Then, negative instance means that user
did not click on ad and positive click means user did. Most people do not click
on the ads, so a good click-through rate (proportion of positive class) is only 2%,
which means that classes are highly imbalanced [Volovich, 2019]. It is obvious that
a developer is more interested to find users who would click rather than not, so
positive class is more important and prediction for positive class needs to be more
precise.

And accuracy fails this task: if classes are imbalanced enough, positive predic-
tion can be neglected altogether without losing high accuracy. Similarly, error rate
can ignore a rare class as well.
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Figure 1. Confusion matrix for binary classification. Each entry in a cell is a count
of instances with such prediction.

Figure 2. Cost matrix for binary classification. Each entry in a cell is a cost of
prediction of certain instance.
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Metrics for Imbalanced Classes In Figure 1, there is a confusion matrix,
which is used to calculate most of common evaluation metrics. There are 4 possible
cases for a single instance. If instance is predicted positive and is actually of
positive class, then it is true positive (TP). If instance is predicted negative and is
actually positive, then it is false negative (FN). Similarly, if instance is actually
negative and is predicted positive or negative, it is false positive (FP) or true
negative (TN), respectively.

In such cases, precision and recall are pretty useful, since they focus on predict-
ing positive class (the rare one) correctly. Precision, also called positive predicted
value, is equal to TP

TP+FP , and recall, in also called true positive rate, is equal to
TP

TP+FN [Tharwat, 2018] [Fawcett, 2005] .
There are many more classification evaluation measurements, like, for example,

F1 score, which is harmonic mean between precision and recall, or Informedness,
that takes into account true positive and true negative rates. Every one of them
is useful and could be an ultimate way to measure adequacy of some models if
classification is not complicated further [Fawcett, 2015] [Powers, 2011].

Loss Functions The previous paragraphs gave a lot of examples of evaluations
where higher result (closer to 1) is better and lower result (closer to 0) is worse.
However, that is not always the case, and there are a lot of measures for which 0 is
the perfect result and more is bad result. Such measures are called loss measures,
or, more commonly, loss functions.

A loss function (or cost function) for probabilistic classifiers is a non-negative
function that takes as an input model’s score of an instance and instance’s actual
label, and outputs a real number. Low value of loss function indicates better result,
with 0 indicating perfect match between a prediction and instance’s label. The goal
for optimization is to minimize the loss function.

Error rate was already introduced earlier and it is one of the easiest loss
functions, and is equal to the proportion of incorrectly predicted instances. Most
of loss functions are more complex than that as they are based on probabilistic
classifiers rather than labelling ones.

Bayes-Optimal Model The best possible model is called Bayes-optimal model,
denoted by p∗(x), p∗(x) = (

p∗
1(x), ..., p∗

k(x)
)
, where p∗

i (x) = P(Y = i|X = x). That is,
for each instance, it produces probabilities of getting every label, given instance’s
features. This model is theoretical and cannot be learned.

For binary classification, we will have classes 0 and 1, and only one probability
p will be used: p = p∗

1(x) will mean probability of class 1 and 1− p = p∗
0(x) will

mean probability of class 0. Bayes-optimal is perfectly calibrated, which means it
has threshold t = 0.5:
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p∗
1(x)> p∗

0(x)
p > 1− p
2p > 1
p > 0.5

2.3 Cost-Sensitive Classification
As it was already discussed in Section 2.2, false negatives and false positive errors
need to be taken into account separately. Moreover, it is common that one kind of
error (usually false negative) is worse than another. For example, a bank needs to
find from client’s transactions unusual (possibly fraud) transactions. Let the usual
transactions be of negative class and unusual ones be of positive class. Then, it is a
much bigger problem of classifying fraud as usual payment (and missing theft) than
it is to classify casualty as fraud (a client would simply confirm their transaction
and payment will go through) [Sun et al., 2011]. To indicate such differences in
importance, there is set of parameters called costs, which is a measure of how bad
consequences of a certain prediction is.

The general assumption about cost-sensitive classification is that the cost does
not depend on the instance itself but rather on its class. Therefore, costs are
usually represented as cost matrices for simplicity, and an example of cost matrix
for binary case is visualized in Figure 2.

Cost C(i, j) stands for cost of predicting class i when the actual class is j. It
is common for right predictions to not be penalized at all; therefore it will be
assumed that C(0,0) = 0 and C(1,1) = 0. Negative values of costs will not be
explored in this work. Conceptually, cost of misclassification should always be
greater than predicting correctly. Mathematically, C(0,1) > C(1,1) ⇒ C(0,1) > 0
and C(1,0)> C(0,0)⇒ C(1,1)> 0. These conditions are called the reasonableness
conditions [Elkan, 2001].

For simpler representation, C(0,1) (false positive) will be further denoted as c1
and C(1,0) (false negative) will be denoted as c0, where indexes of c0, c1 denote
the actual class.

Values (or distributions) of all costs are called cost context.

Cost-Sensitive Bayes-Optimal Model Bayes-Optimal model was already briefly
discussed in Section 2.2. It was claimed that most of the times it uses threshold
t = 0.5. However, for cost-sensitive learning there will be different threshold.

Probability of getting class 1 is p1 = p and probability of getting class 0 is
p0 = 1− p. Then, classifier will predict class 1 if its probability is bigger when
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probabilities are multiplied by respective costs, p1c1 > p0c0:

p1c1 > p0c0

pc1 > (1− p)c0

pc1 > c0 − pc0

pc1 + pc0 > c0

p > c0

c0 + c1

Thus, classifier will predict class 1 if probability p is bigger than c0
c0+c1

. That means
that cost-sensitive threshold is t = c0

c0+c1 .

Probability Density Function, Cumulative Distribution Function Accord-
ing to the notation in Section 2.1, positive class is denoted by 0 and negative class
is denoted by 1.

Probability density function (p.d.f.) for probabilistic scores s of class 0 is denoted
by f0(s), and cumulative distribution function (c.d.f.) is denoted by F0(s).

Defined integral of p.d.f under limits [a;b],
∫ b

a f0(s)ds means probability of
getting score s in range [a;b], a < s < b.

And c.d.f at value t, F0(t)= ∫ t
−∞ f0(s)ds, means probability of getting s in range

[−∞; t], or simply less than t, s < t.
If t is a threshold, then F0(t) describes all the positive instances which scores

are less than the threshold. Positive instances below the threshold will be classified
as positive; that means that F0(t) is probability of positive instances to be predicted
as positive, which is true positive rate, F0(t) = TP/Pos, where TP is expected
number of true positive instances and Pos is actual number of all positive instances.
Following that, true negative rate is a complement of true positive rate, which
means true negative rate is equal to (1−F0(t)).

Similarly, F1(t) describes all the negative instances which scores are less than
the threshold t. Negative instances below the threshold will be classified as
positive, which makes F1(t) false positive rate, F1(t)= FP/Neg, where FP stands
for expected number of false positives and Neg is actual number of all negative
instances.

Lower scores are more likely to be of positive class 0, and greater scores are
more likely to be of class 1. Let this relationship be described by two normal
distributions, as shown in Figure 3. For positive class, f0 ∼ N(−1,1) and for
negative class f1 ∼ N(1,1). The same distributions for scores of positive and
negative classes will also be used in experiments in Section 5.

Two cases will be reviewed: in Figure 3 costs are of the same value, c0 = c1,

12



Figure 3. Probability density functions of scoress for positive and negative class f0
and f1, respectively. Threshold is t = 0 because classes are calibrated and have the
same cost.

Figure 4. Probability density functions of scoress for positive and negative class
f0 and f1, respectively. Threshold is t = (ln9)/2 ≈ 1.1 because class errors are of
different cost, c0 = 9c1.
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Figure 5. Probability density functions of probabilistic p for positive and negative
classes. Threshold is t = 0.5 because classes are calibrated and have the same cost.

Figure 6. Probability density functions of probabilistic scores p for positive and
negative classes. Threshold is t = c0

c0+c1
= 0.9 because class errors are of different

cost, c0 = 9c1.
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and in Figure 3 costs for false positives are nine times bigger than costs of false
negatives, c0 = 9c1.

Threshold t can be calculated two ways, and the first is to scale scores s into
probabilistic scores p in range [0;1], using perfect calibration map:

p = 1
1+ e−2s

Such threshold will be denoted by tp. For first case where costs are of the same
value, threshold for probabilistic scores s will be tp = 0.5 because data is calibrated,
as shown in Figure 5.

To avoid confusion, for uncalibrated scores s, threshold will be denoted by
ts. Threshold ts would be such value that satisfies equality f0(ts) = f1(ts). This
threshold is ts = 0, as shown in plot in Figure 3.

Now let us take a look at case where costs are different, c0 = 9c1. For proba-
bilistic scores a threshold can be calculated using the following formula:

tp = c0

c0 + c1
= 9c1

9c1 + c1
= 0.9

And this result is shown in Figure 6. And for original scores s with distributions f0
and f1 it is such ts that satisfies the equation:

f0(ts)
f0(ts)+ f1(ts)

= c0

c0 + c1

In this particular case with cost context c0 = 9c1 and densities f0 ∼ N(−1,1) for
positive class and f1 ∼ N(1,1) for negative class, threshold is equal to ts = ln9

2 .
To justify the need change of a threshold with change of cost proportion, it will

be proven with the experiments.
Let c0 = 9 and c1 = 1. When threshold was ts = 0 (or tp = 0.5 for probabilistic

scores) cost is ∼ 0.78265. But with threshold ts = 1.1 (or tp = 0.9 for probabilistic
scores) cost is reduced to ∼ 0.34942, and it is a minimal cost in this cost context.
The distributions and this threshold are shown in Figure 4.

In the experiments in Section 5, uncalibrated scores s will also be used. How-
ever, they will first be calibrated to probabilistic scores p and then a decision rule
would be used. Further on threshold would be denoted simply as t because it would
be calculated only for probabilistic scores.

To conclude, F0(t) = ∫ t
−∞ f0(s)ds = P(s ≤ t|Y = 0) and it is true positive rate at

threshold t. As false negative rate is complement of true positive rate, than false
negative rate is equal to 1−F0(t). Correspondingly, F1(t) = ∫ t

−∞ f1(s)ds = P(s ≤
t|Y = 1), which is equal to false positive rate at threshold t [Flach, 2015].
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Because 1 represents negative class and 0 represents positive, true positive
and false positive rates (F0(t) and F1(t), respectively) are non-decreasing functions
with increase of p(x).

Operating Condition There is an alternative parametrization of costs that will
also be used here further. Cost magnitude b is equal to sum of costs b = c0 + c1,
and cost proportion c is proportion of c0 to sum of costs, c = c0/b.

Moreover, πi is proportion of number of instances of class i to the number of
all instances [Hernández-Orallo et al., 2012]. So, π0 = Pos/Total and π1 = 1−π0 =
Neg/Total, where Neg = TN+FP is number of all actual negatives, and, similarly,
Pos = TP+FN is number of all actual positives. Then Total = Pos+Neg is number
of all instances together.

Then, operating condition can be defined as tuple
〈
b, c,π0

〉
, and set of all

possible operating conditions is defined as Θ.
As it was mentioned earlier, (1−F0(t)) stands for false negative rate, which is

proportion of false negatives to all positives. To calculate cost of all false negatives,
one needs to multiply cost of one false negative by proportion of false negatives to
all instances. Cost of one false negative is c0, and proportion of false negatives at
threshold t to all instances is π0(1−F0(t)), because:

π0 = Pos
Total

1−F0(t)= FN
Pos

π0(̇1−F0(t))= Pos
Total

· FN
Pos

= FN
Total

Likewise, proportion of false positives to all instances is π1F1(t), and to find out
cost of all false positives, one needs to multiply proportion by c1.

Note that proportion of actual classes, π0 and π0 are known values, and FN,
FP, TN, TP are expected quantities.

Hence, total cost given threshold t and operating condition θ is:

Q(t;θ)=Q(t;
〈
b, c,π0

〉
)= c0π0(1−F0(t))+ c1π1F1(t) (1)

Since c = c0/b, one can represent c0 and c1 through cost magnitude and cost
proportion. Then, c0 = bc, and c1 = b− c0 = b− bc = b(1− c). Then, repeating b
can be put outside of the brackets (1) [Santos-Rodríguez et al., 2009]. With new
notation, total cost Q will be calculated as:
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Q(t;θ)= b
[
cπ0(1−F0(t))+ (1− c)π1F1(t)

]
(2)

It is sometimes necessary to evaluate classifier performance over an interval
of operating conditions, rather than at a point estimate. If precise operating
conditions are not known, a distribution of operating conditions can be defined as
multivariate probability density function (p.d.f.) w(θ) over each component of θ,
and loss will be integrated over components of θ. Therefore, loss over all operating
conditions in Θ is integral of Q over θ:

L =
∫
Θ

Q(T(θ);θ)w(θ)dθ (3)

Let us look at more precise example on the basis of Eq.(1) and (3). Usually, b is a
constant and equal to 2, because then loss has the advantage of being equal to error
rate, that assumes c0 = c1 = 1 [Hernández-Orallo et al., 2011]. Moreover, it will be
assumed that data is balanced, π0 =π1 = 0.5. In that case, the only integrable part
of the operating condition θ = 〈

b, c,π0
〉

is c, and c is also a threshold. Space of all
possible c is [0;+∞] because costs are always non-negative. Then, the integral
would be equal to:

L =
∫ ∞

0
b
[
cπ0(1−F0(c))+ (1− c)π1F1(c)

]
w(c)dc

=
∫ ∞

0
2
[
c0.5(1−F0(c))+ (1− c)0.5F1(c)

]
w(c)dc∫ ∞

0

[
c(1−F0(c))+ (1− c)F1(c)

]
w(c)dc

(4)
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3 Proper Scoring Rules
Proper scoring rules are loss functions which give the lowest losses to the ideal
model outputting the actual class posterior probabilities P(Y = i|X = x). The most
widely known proper scoring rules are log-loss (also known as ignorance score) and
Brier score (also known as squared loss).

Estimated probability vector p, was introduced earlier in Section 2.2 as proba-
bilistic scores vector; p is a vector of estimated probabilities of getting each class,
p = (p1, ..., pk). Probabilities of all classed add up to one,

∑k
i=1 pi = 1.

Actual class will be represented by vector y= (y1, ..., yk), where yj = 1 if j is an
actual class of the instance and yj = 0 otherwise.

A scoring rule φ(p, y) is a loss function that determines the goodness of a match
between p and y, with 0 being a perfect match [Winkler and Murphy, 1968].

Scoring rules are meant to reward the probabilistic classifier for making careful
assessments and for being honest (not being overconfident, etc.). They are also
meant to measure the quality of the probabilistic predictions (goodness of a match
with actual class) [Garthwaite et al., 2005] [Gneiting and Raftery, 2007].

Logarithmic Loss (or log-loss or ignorance score), denoted by φLL(p, y), is one
of the simplest proper scoring rules [Good, 1952].

φLL(p, y) :=− log py

Here, py means such p j for which yj = 1 [Kull and Flach, 2015].
As it could be seen from plot of log-loss on Figure 7, this scoring rule highly

penalizes overconfident wrong predictions. For example, yellow line stands for
negative (1) class. As scores approach 1, loss decreases to 0: since the actual
class is 1, it is a good thing that scores are close to 1. But if for class 1 scores are
close to 0, it means that prediction will be incorrect and loss function penalized
it. For log-loss, loss of confident false positive (when score s = 0 while class is 1) is
+∞. Likewise, loss of confident false negative is also +∞. Therefore it is advised
not to use this scoring rule for models that can output all-or-nothing predictions
[Brownlee, 2018].

Brier Score (or squared loss or quadratic score), denoted by φBS(p, y), is the
most well-known proper scoring rule [Brier, 1950].

φBS(p, y) :=
k∑

i=1
(pi − yi)2

Brier score plot could be seen in Figure 8. Brier score is less harsh in penalizing
wrongly confident instances, as its loss for any instance has maximum of 2.

Both log-loss and Brier score are proper, in a sense that is defined further.
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Figure 7. Plot of log-loss score for binary case. Blue line shows how log-loss
changes over estimated probability when actual class is positive (0) and yellow line
highlights log-loss over estimated probability when actual class is negative (1).

Figure 8. Plot of Brier score for binary case. Blue line shows how Brier changes over
estimated probability when actual class is positive (0) and yellow line highlights
Brier over estimated probability when actual class is negative (1).
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3.1 Properness
Consider any instance x and suppose its probabilistic predictions for k classes is
p= (p1, ..., pk). Actual probability to belong to classes 1..k is q= (q1, ..., qk), where
qi = P(Y = i|X = x).

Assessment is a priori task, which means that assessment happens without
knowledge of actual class. That is why actual scores (based on ‘similarity’ of
prediction with actual prediction) are of secondary interest, and expected scores
are widely used [Murphy and Winkler, 1970]. Then, expected score, also termed as
expected loss, s(p,q) can be calculated as follows:

s(p,q) :=
k∑

j=1
φ(p,ej)q j

where ej is vector of size k with 1 in j-th place and 0s everywhere else. Intuitively,
expected score is weighted average of scoring rules with all the possible actual
class vectors. For each j, ej is a case when j is actual class, and q j is probability of
j being the actual class. Then, scoring rule φ of ej and probability of p is calculated
and is multiplied by q j.

Scoring rule is called proper if for any q, s(p,q)≥ s(q,q), which means that q
minimizes expected score s(p,q) [Buja et al., 2005]:

q : argmin
q

s(p,q)=q

Scoring rule is called strictly proper when s(p,q)= s(q,q) if and only if p=q.
Expected score that takes as both arguments the same vector is called entropy

e, e(q) = s(q,q). For log-loss entropy is called information entropy, or Shannon
entropy:

eLL(q)=−
k∑

i=1
qi log qi

And for Brier score, entropy is called Gini index:

eBS(q)=
k∑

i=1
qi(1− qi)

Divergence There is a parameter that directly corresponds to properness, which
is divergence. Divergence, or contrast function, is a function that establishes
‘distance’ between one probability distribution (p) and another (q), and can be
calculated from expected score:

d(p,q) := s(p,q)− s(q,q)
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Divergence function is less strict than distance function; unlike distance, it
does not need to be symmetric nor does it need to satisfy triangle inequality.

Properness A scoring rule φ is called proper if its divergence is always non-
negative, and strictly proper if d(p,q)= 0 only in the case of p=q.

Lemma 1. If vector of actual probabilities q is equal to actual class vector y,
divergence d is equal to the proper scoring rule φ itself:

d(p,y)=φ(p,y)

Proof.
d(p,y)= s(p,y)− s(y,y) (5)

Let j be the actual class. Then, yj = 1 and all other yi, i = 1..k, i 6= j are equal to
0:

s(p,y)=
k∑

i=1
φ(p,ei)yi =φ(p,ej)yj =φ(p,ej) (6)

Similarly, for the second part:

s(y,y)=
k∑

i=1
φ(y,ei)yi =φ(y,ej)yj =φ(y,ej) (7)

Vectors ej and y are the same and have 1 in j-th place and 0s everywhere else;
therefore, φ(y,ej) = 0 because y= ej according to the definition of proper scoring
rules.

Finally, after substitution of Eq. (6) and Eq. (7) in Eq. (5):

d(p,y)=φ(p,ej)−φ(y,ej)=φ(y,ej)−0=φ(p,ej)=φ(p,y) (8)

■

Brier Score and Properness Below are the formulas of entropy for Brier score
(also called Gini index) and divergence for Brier score (also called mean squared
difference):

eBS(q)=
k∑

i=1
qi(1− qi)

dBS(p,q)=
k∑

i=1
(pi − qi)2

Brier Score’s divergence is a sum of squares; since squares are always non-
negative, their sum is non-negative as well. Therefore, Brier Score is proper.
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Log-Loss and Properness Below are the formulas of entropy for log-loss (also
called information entropy) and divergence for log-loss (also called Kullback–Leibler
(KL) divergence):

eLL(q)=−
k∑

i=1
qi log qi

dLL(p,q)=
k∑

i=1
qi log

qi

pi

Lemma 2. Log-loss is proper.

Proof. To prove that log-loss is proper, we need to prove that its divergence
dLL(p,q) is non-negative for all p,q.

loga ≤ a−1 (9)

for any a > 0 (obvious from logarithmic plot). Then,

−dLL(p,q)=−
k∑

i=1
qi log

qi

pi
=

k∑
i=1

qi log
pi

qi
(10)

Following logarithmic inequality in Eq. (9):

k∑
i=1

qi log
pi

qi
≤

k∑
i=1

qi

( pi

qi
−1

)
(11)

k∑
i=1

qi

( pi

qi
−1

)
=

k∑
i=1

(pi − qi)=
k∑

i=1
pi −

k∑
i=1

qi = 1−1= 0 (12)

It was proven −dLL(p,q) ≤ 0, then dLL(p,q) ≥ 0, i.e. log-loss’s divergence is
always non-negative.

Therefore, log-loss is proper. ■

3.2 Numerical Example
For example, consider a classification task with 4 classes, k = 4. For a fixed
instance, let actual class be 2, then vector y has 1 in 2nd place and 0 everywhere
else, y= (0,1,0,0).

Suppose a probabilistic classifier produces vector p that highlights probabilities
of getting each class, let p= (0,0.4,0.3,0.3). It can be noted that classifier works
quite well; even though probability p2 of getting actual class is not high, it is the
biggest probability among other classes.
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Brier score is equal to:

φBS(p,y)=
k∑

i=1
(pi − yi)2 = (0−0)2 + (0.4−1)2 + (0.3−0)2 + (0.3−0)2 = 0.54

While p is an estimated probability of getting each class, there is an actual
distribution over classes q. Suppose q= (0.1,0.1,0.3,0.5) and e corresponds to all
possible vectors y, e= ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)).

Expected score s(p,q):

s(p,q)=
k∑

j=1
φ(p,ej)q j =

= [
(0−1)2 + (0.4−0)2 + (0.3−0)2 + (0.3−0)2]∗0.1

+ [
(0−0)2 + (0.4−1)2 + (0.3−0)2 + (0.3−0)2]∗0.1

+ [
(0−0)2 + (0.4−0)2 + (0.3−1)2 + (0.3−0)2]∗0.3

+ [
(0−0)2 + (0.4−0)2 + (0.3−0)2 + (0.3−1)2]∗0.5

= 0.78

,
Entropy e(q):

e(q)= s(q,q)=
k∑

j=1
φ(q,ej)q j =

= [
(0.1−1)2 + (0.1−0)2 + (0.3−0)2 + (0.5−0)2]∗0.1

+ [
(0.1−0)2 + (0.1−1)2 + (0.3−0)2 + (0.5−0)2]∗0.1

+ [
(0.1−0)2 + (0.1−0)2 + (0.3−1)2 + (0.5−0)2]∗0.3

+ [
(0.1−0)2 + (0.1−0)2 + (0.3−0)2 + (0.5−1)2]∗0.5

= 0.64

,
Divergence d(p,q) calculated from expected score:

d(p,q)= s(p,q)− s(q,q)= 0.78−0.64= 0.14

Divergence for Brier score d(p,q):

dBS(p,q)=
k∑

j=1
(pi − qi)2 = (0−0.1)2 + (0.4−0.1)2 + (0.3−0.3)2 + (0.3−0.5)2 = 0.14
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As expected, divergences are equal when calculated in different ways, and
d(p,q) ≥ 0 for all cases and in this case d(p,q) > 0 strictly since p and q are not
equal.

3.3 Bregman Divergences
Convexity A set S is convex if for any a,b ∈ S and any θ ∈ [0;1],

θa+ (1−θ)b ∈ S

Geometrically, it means that a set S is convex if the line segment between any two
points in S lies in S.

A function f is convex if domain of f is a convex set and if for all a,b in domain
of f and any θ ∈ [0;1],

f (θa+ (1−θ)b)≤ θ f (a)+ (1−θ) f (b)

Geometrically, this inequality means that the line segment between (a, f (a)) and
(b, f (b)) lies above the plot of f , as shown in Figure 9 [Boyd and Vandenberghe, 2004].

Bregman divergences Divergences of proper scoring rules form family of Breg-
man divergences, which have geometrical representation. If it might be hard to
grasp the idea of scoring rules and their properness using divergence, Bregman
divergences are much more intuitive because of their visualization.

Let φ : S 7→R be a strictly convex function defined on a convex set S ⊆Rk such
that φ is differentiable on the relative interior of S, ri(S). The Bregman divergence,
or Bregman loss functions (BLFs), dφ : ri(S)×S 7→ [0,∞) is defined as

dφ(a,b)=φ(b)−φ(a)−〈
b−a,∇φ(a)

〉
(13)

where ∇φ(a) is a gradiant of φ in point a and angle brackets 〈〉 is notation for dot
product [Bregman, 1967] [Banerjee et al., 2005]. In Figure 10, there is graphical
representation of Bregman divergence.

Log Loss as Divergence It is called Kullback-Leiber (KL) divergence when
used as a divergence measure, and logarithmic loss (log loss) when used as a loss
measure [Kullback and Leibler, 1951]:

dLL(a,b)=
d∑

i=1
bi log

bi

ai

Graphical representation of KL-divergence is in Figure 11.
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Brier Score as Divergence It is called squared Euclidean distance when used
as a divergence measure, and mean squared error or Brier score when used as a
loss measure.

dBS(a,b)= ||a−b||2 =
d∑

i=1
(ai −bi)2

Graphical representation of Euclidean distance is in Figure 12.
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Figure 9. Convex function.

Figure 10. Visual representation of Bregman divergence. Divergence dφ(a,b) is
the difference between ∇φ(a) in point b and φ(b).
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Figure 11. Log-loss as Bregman divergence, with b = 0.2.

Figure 12. Brier score as Bregman divergence, with b = 0.2.
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4 Derivation of Proper Scoring Rules

4.1 Brier Score
In this section, we will find and prove the relation between Brier score and additive
cost context. This section mostly follows [Hernández-Orallo et al., 2012].

As it was discussed earlier, c0 stands for cost of false negative and c1 is cost of
false positive. Further, cost magnitude b is equal to b = c0+c1. Cost magnitude will
be scaled to 2 to ensure commensurability with error rate, b = 2. Let us suppose
that c0 has uniform distribution in [0;2], then c1 = 2−c0. To make notation simpler,
a new variable s will be introduced that has uniform distribution over [0,1]. Then,
c0 = 2s and c1 = 2− c0 = 2−2s = 2(1− s). This cost context will be called additive.

According to the definitions in Section 2, expected proportion of false positives
at threshold s is π0(1−F0(s)), and expected proportion of false negative at threshold
s is π1F1(s).

To calculate cost of false negatives, one would multiply cost of one false negative
(2s) by number of false negatives π0(1−F0(s)). Similarly, cost of false positives is
multiplication of 2(1− s) and π1F1(s). Clearly, the total cost at threshold s denoted
by L is sum of false negative and false positive costs.

By default, integral has limits [0;+∞] and range of s is shown by p.d.f is shown
by p.d.f. w(s). Function w(s) is equal to 1 only if 0 ≤ s ≤ 1. Then total cost L at
threshold s is:

L =
∫ ∞

0

[
2sπ0(1−F0(s))+2(1− s)π1F1(s)

]
w(s)ds

Since w(s) is equal to 1 only if 0≤ s ≤ 1, integral’s limits will be changed to [0;1],
w(s) will cancel out because it is always 1 in new limits.

L =
∫ 1

0

[
2sπ0(1−F0(s))+2(1− s)π1F1(s)

]
ds (14)

Theorem 1. Let us assume additive cost context, c0 + c1 = 2, and probabilistic
scores and a decision threshold of probabilistic scores equal to s. Then expected loss
L under a uniform distribution of s is equal to expected Brier Score.

Proof. Expected Brier score for actual class 1 will be denoted as BS1. Assuming
s is the predicted probability of getting class 1, loss of for class 1 will be equal to
squared difference between probability s and actual class 1. Since value of s is not
known, loss will be integrated over s in range [0;1], as it is range for all possible
values of s. Then, expected Brier score when actual class is 1:

BS1 =
∫ 1

0
(1− s)2 f1(s)ds
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Analogically, Brier score if actual class is 0 will be denoted as BS0 and loss of
class 0 will be equal to squared difference between s and 0 and it will be integrated
over s in range [0;1]. Expected Brier score when actual class is 0:

BS0 =
∫ 1

0
(0− s)2 f0(s)ds =

∫ 1

0
s2 f0(s)ds

Expected loss for both classes will be weighted average of Brier scores for each
classes, weighted by proportion of those classes π0 and π1:

BS =π0

∫ 1

0
s2 f0(s)ds+π1

∫ 1

0
(1− s)2 f1(s)ds (15)

Next step we will take expected loss for additive context from Eq.(14) and break
it into 2 separate integrals:

L =
∫ 1

0

[
2sπ0(1−F0(s))+2(1− s)π1F1(s)

]
ds

=π0

∫ 1

0
2s(1−F0(s))ds+π1

∫ 1

0
2(1− s)F1(s)ds

(16)

Clearly, first integral is expected loss when actual class is 0 and second integral
is expected loss when actual class is 1.

L =π0L0 +π1L1

L0 =
∫ 1

0
2s(1−F0(s))ds

L1 =
∫ 1

0
2(1− s)F1(s)ds

(17)

Now let us integrate the expected losses using integration by parts, where
u = (1−F0(s)) and dv = 2sds, then du =− f0(s)ds and v = s2:

L0 =
∫ 1

0
2s

(
1−F0(s)

)
ds = s2

(
1−F0(s)

)∣∣∣1
s=0

+
∫ 1

0
s2 f0(s)ds (18)

Since F0(0)= 0 and F0(1)= 1 :

s2
(
1−F0(s)

)∣∣∣1
s=0

= 12
(
1−F0(1)

)
−02

(
1−F0(0)

)
= 1(1−1)−0= 0

Then expected loss for class 0:

L0 = s2
(
1−F0(s)

)∣∣∣1
s=0

+
∫ 1

0
s2 f0(s)ds =

∫ 1

0
s2 f0(s)ds (19)
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Expected loss for class 1, using integration by parts, where u = F1(s) and dv =
2(1− s)ds, then du = f1(s)ds and v =−(1− s)2:

L1 =
∫ 1

0
2(1− s)F1(s)ds =−(1− s)2F1(s)

∣∣∣1
s=0

+
∫ 1

0
(1− s)2 f1(s)ds (20)

Since F1(0)= 0:

(1− s)2F1(s)
∣∣∣1
s=0

= (1−1)2F1(1)− (1−0)2F1(0)= 02 ·1−12 ·0= 0

Then expected loss for class 1:

L1 = (1− s)2F1(s)
∣∣∣1
s=0

+
∫ 1

0
(1− s)2 f1(s)ds =

∫ 1

0
(1− s)2 f1(s)ds (21)

Expected loss for both classes, following Eq. (17):

L =π0

∫ 1

0
s2 f0(s)ds+π1

∫ 1

0
(1− s)2 f1(s)ds

Which is equal to Brier score in Eq. (15). Thus, it is proven that Brier score is equal
to expected loss under additive cost context, probabilistic scores and a decision
threshold equal to s.

■
Brier score is proper for any number of classes; below is the proof of Brier

score’s properness for binary classification.

Theorem 2. Assuming binary classification, Brier score is proper.

Proof. In binary classification, y has two possible values, Y = {0,1}. If y = 1,
expected Brier score is:

BS1 = (y− s)2 = (1− s)2

And if y= 0, expected Brier score is:

BS0 = (y− s)2 = (0− s)2 = s2

Brier score is proper if for any q it is minimized at s = q. One can take derivative
of Brier Score show that derivative is equal to 0 if and only if s = q. Then:

q
(
(1− s)2

)′
+ (1− q)

(
(s2)

)′
= 0

−2q(1− s)+ (1− q)2s = 0
− q+ qs+ s− qs = 0

q = s

(22)

When score is minimal, q = s. Thus, Brier score is proper. ■
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Figure 13. Restrictions to c0 and c1 for Inverse score.

Figure 14. Restrictions to c0 and c1 for possible generalization of Inverse score.
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4.2 Inverse Score
In the previous section, costs c0, c1 both had uniform distribution but were perfectly
anti-correlated. Let us now introduce a new cost context, where both c0, c1 will have
independent uniform distributions. This cost context will be called independent
uniform. A new score will be introduced, based on independent uniform cost
context.

At first, a special case will be introduced, where distributions of c0, c1 will be
over [0;1]. These distributions are displayed in Figure 13.

Assuming calibrated threshold, t = c0
c0+c1

. At threshold t proportions of false
positives and false negatives are denoted by 1−F0(t) and F1(t), respectively.

Then expected loss is equal to:

L =
∫ ∞

0

∫ ∞

0

[
c0π0

(
1−F0

( c0

c0 + c1

)
+ c1π1F1

( c0

c0 + c1

)]
w(c0, c1)dc0dc1 (23)

where p.d.f. w(c0, c1) in special case is equal to 1 when c0 and c1 fall into their
defined distributions, that is 0 ≤ c0 ≤ 1 and 0 ≤ c1 ≤ 1, and w(c0, c1) is equal to 0
otherwise.

Expected Inverse Score can be calculated as:

IS0 =
{ 2p−1

6(p−1)2 + 1
6 if p ∈ [0; 1

2 ]

− 1
3p + 5

6 if p ∈ (1
2 ;1]

IS1 =
{ 1

3(p−1) + 5
6 if p ∈ [0; 1

2 ]
1−2p
6p2 + 1

6 if p ∈ (1
2 ;1]

(24)

where p is estimated probability of predicting class 1.

Theorem 3. Let us assume independent uniform cost context, c0, c1 have uniform
distributions in [0;1], and probabilistic scores and a decision threshold equal to
s = c0

c0+c1
. Then expected loss L under a uniform distribution of c0 and c1 is equal to

expected Inverse score.

Proof. Inverse score:

IS = 1
3

[∫ 1
2

0

( 2s−1
2(s−1)2 + 1

2

)
f0(s)ds+

∫ 1

1
2

(
− 1

s
+ 5

2

)
f0(s)ds

+
∫ 1

2

0

( 1
s−1

+ 5
2

)
f1(s)ds+

∫ 1

1
2

(1−2s
2s2 + 1

2

)
f1(s)ds

]
In expected loss from Eq. (23), substitution s = c0

c0+c1
can be made. Then, c0 = sc1

1−s

and dc0 =
(

sc1
(1−s)

)′
ds = c1

(1−s)2 ds. Following that integral limits for c0 were c0 ∈
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[0;+∞], s is in range
[

0
0+c1

; +∞
+∞+c1

]
, which is equal to s ∈ [0;1]. New integration is

now over s in range [0;1] and over c1 in range [0;+∞]:

L =
∫ ∞

0

∫ 1

0

[
sc1

1− s

(
1−F0(s)

)
+ c1F1(s)

]
w

( sc1

1− s
, c1

) c1

(1− s)2 dsdc1 (25)

Then, w
( sc1

1−s , c1
)

will be equal to 1 in two cases:

1. s ∈ (
0; 1

2

)
, c1 ∈

(
0;1

)
, because sc1

1−s < 1⇒ sc1 < 1− s ⇒ s < 1
c1+1

2. s ∈ (1
2 ;1

)
, c1 ∈

(
0; 1−s

s
)
, because sc1

1−s < 1⇒ s
1−s c1 < 1⇒ c1 < 1−s

s

With new restrictions to s and c1, Eq. (25) could be represented as the sum of
four following integrals:

L =
∫ 1

2

0

∫ 1

0

sc1

1− s
c1

(1− s)2

(
1−F0(s)

)
dc1ds

+
∫ 1

1
2

∫ (1−s)/s

0

sc1

1− s
c1

(1− s)2

(
1−F0(s)

)
dc1ds

+
∫ 1

2

0

∫ 1

0

c2
1

(1− s)2 F1(s)dc1ds

+
∫ 1

1
2

∫ (1−s)/s

0

c2
1

(1− s)2 F1(s)dc1ds

(26)

Let us solve these 4 integrals separately.

Integration of 1st integral Integration over c1:∫ 1

0

sc1

1− s
c1

(1− s)2

(
1−F0(s)

)
dc1 =

(
1−F0(s)

) s
(1− s)3

∫ 1

0
c2

1dc1 =
(
1−F0(s)

) s
(1− s)3

1
3

Integration by parts over s, where u = 1− F0(s) and dv = s
(1−s)3 ds, then du =

− f0(s)ds and v = 2s−1
2(s−1)2 :

1
3

∫ 1
2

0

s
(1− s)3

(
1−F0(s)

)
ds = 1

3

[
1
2
− 1

2
F0(0)+

∫ 1
2

0

2s−1
2(s−1)2 f0(s)ds

]
(27)

Integration of 2nd integral Integration over c1:∫ (1−s)/s

0

sc1

1− s
c1

(1− s)2

(
1−F0(s)

)
dc1 =

(
1−F0(s)

) s
(1− s)3

∫ (1−s)/s

0
c2

1dc1 =
(
1−F0(s)

) 1
3s2
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Integration by parts over s, where u = 1−F0(s) and dv = 1
s2 ds, then du =− f0(s)ds

and v =−1
s :

1
3

∫ 1

1
2

1
s2

(
1−F0(s)

)
ds = 1

3

[
2−2F0(

1
2

)−1+F0(1)
∫ 1

1
2

(
− 1

s

)
f0(s)ds

]
(28)

Integration of 3rd integral Integration over c1:∫ 1

0

c1

(1− s)2 c1F1(s)dc1 = F1(s)
1

(1− s)2

∫ 1

0
c2

1dc1 = F1(s)
1

(1− s)2
1
3

Integration by parts over s, where u = F1(s) and dv = 1
(1−s)2 ds, then du = f1(s)ds

and v = 1
1−s :

1
3

∫ 1
2

0

1
(1− s)2 F1(s)ds = 1

3

[
2F1

(1
2

)
−F1(0)+

∫ 1
2

0

1
s−1

f1(s)ds
]

(29)

Integration of 4th integral Integration over c1:∫ (1−s)/s

0

c1

(1− s)2 c1F1(s)dc1 = F1(s)
1

(1− s)2

∫ (1−s)/s

0
c2

1dc1 = F1(s)
1− s
3s3

Integration by parts over s, where u = F1(s) and dv = 1−s
s3 ds, then du = f1(s)ds and

v = 2s−1
2s2 :

1
3

∫ 1

1
2

1− s
s3 F1(s)ds = 1

3

[
1
2

F1(1)+
∫ 1

1
2

1−2s
2s2 f1(s)ds

]
(30)

Sum of results of integrals in Eq. (27 – 30) is equal to:

L = 1
3

[
1
2
− 1

2
F0

(
0
)
−1+F0

(
1
)
+2−2F0

(1
2

)
+2F1

(1
2

)
−F1

(
0
)
+ 1

2
F1

(
1
)

+
∫ 1

2

0
f0(s)

( 2s−1
2(s−1)2

)
ds+

∫ 1

1
2

f0(s)
(
− 1

s

)
ds

+
∫ 1

2

0
f1(s)

( 1
s−1

)
ds+

∫ 1

1
2

f1(s)
(1−2s

2s2

)
ds

]
(31)

Some transformations need to be done, for i = 0,1:

Fi
(
0
)= 0, Fi

(
1
)= 1
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Expected loss after transformations:

L = 1
3

[
1
2
−0−1+1+2−2F0

(1
2

)
+2F1

(1
2

)
−0+ 1

2

+
∫ 1

2

0
f0(s)

( 2s−1
2(s−1)2

)
ds+

∫ 1

1
2

f0(s)
(
− 1

s

)
ds+

∫ 1
2

0
f1(s)

( 1
s−1

)
ds+

∫ 1

1
2

f1(s)
(1−2s

2s2

)
ds

]
= 1

3

[
3−2F0

(1
2

)
+2F1

(1
2

)
−

+
∫ 1

2

0
f0(s)

( 2s−1
2(s−1)2

)
ds+

∫ 1

1
2

f0(s)
(
− 1

s

)
ds+

∫ 1
2

0
f1(s)

( 1
s−1

)
ds+

∫ 1

1
2

f1(s)
(1−2s

2s2

)
ds

]

Transformations for 2F0

(
1
2

)
and 2F1

(
1
2

)
:

2F1

(1
2

)
= 2

∫ 1
2

0
f1(s)ds =

∫ 1
2

0
f1(s)ds+1−

∫ 1

1
2

f1(s)ds

−2F0

(1
2

)
=−2

∫ 1
2

0
f0(s)ds =−

∫ 1
2

0
f0(s)ds−1+

∫ 1

1
2

f0(s)ds

Which means that −1 will be added to coefficients of
∫ 1

2
0 f0(s)ds and

∫ 1
1
2

f1(s)ds, and
1 will be added to the other two coefficients. Expected loss after transformations:

L = 1
3

[
3+

∫ 1
2

0
f0(s)

( 2s−1
2(s−1)2 −1

)
ds+

∫ 1

1
2

f0(s)
(
− 1

s
+1

)
ds

+
∫ 1

2

0
f1(s)

( 1
s−1

+1
)
ds+

∫ 1

1
2

f1(s)
(1−2s

2s2 −1
)
ds

]

Transformations for 3:

3= 3
2
+ 3

2
= 3

2

[∫ 1
2

0
f0(s)ds+

∫ 1

1
2

f0(s)ds
]
+ 3

2

[∫ 1
2

0
f1(s)ds+

∫ 1

1
2

f1(s)ds
]

= 3
2

[∫ 1
2

0
f0(s)ds+

∫ 1

1
2

f0(s)ds+
∫ 1

2

0
f1(s)ds+

∫ 1

1
2

f1(s)ds
]

Which means that to all coefficients under integral 3
2 will be added. Final form

after transformations:
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L = 1
3

[∫ 1
2

0
f0(s)

( 2s−1
2(s−1)2 + 1

2

)
ds+

∫ 1

1
2

f0(s)
(
− 1

s
+ 5

2

)
ds

+
∫ 1

2

0
f1(s)

( 1
s−1

+ 5
2

)
ds+

∫ 1

1
2

f1(s)
(1−2s

2s2 + 1
2

)
ds

] (32)

■
If we take coefficients of f0(s) from Eq. (32), we get loss function L0 for actual

positive label (0) that depends on probabilistic scores, and coefficients of f1(s)
makes loss function L1 for actual negative label (1) in the same way. Eq. (33)
highlights final loss, functions in Figures 15 and 16 display their plots.

L0 =
{

2s−1
6(s−1)2 + 1

6 if s ∈ [0; 1
2 ]

− 1
3s + 5

6 if s ∈ (1
2 ;1]

L1 =
{

1
3(s−1) + 5

6 if s ∈ [0; 1
2 ]

1−2s
6s2 + 1

6 if s ∈ (1
2 ;1]

(33)

Theorem 4. Inverse Score is proper.

Proof. Similarly to Theorem (2) about Brier score’s properness, Inverse Score is
proper if for any q, it is minimized at s = q. One can take derivative of Inverse
Score show that derivative is equal to 0 if and only if s = q. Then:

If s ∈ [0; 1
2 ]:

q
( 1
s−1

)′
+ (1− q)

( 2s−1
2(s−1)2

)′
= 0

q
(
− 1

(1− s)2

)
+ (1− q)

( s
(1− s)3

)
= 0

− q(1− s)+ (1− q)s = 0
s = q

(34)

If s ∈ (1
2 ;1]:

q
(1−2s

2s2

)′
+ (1− q)

(
− 1

s

)′
= 0

q
( s−1

s3

)
+ (1− q)

( 1
s2

)
= 0

q(s−1)+ (1− q)s = 0
s = q

(35)
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Figure 15. Plot of L0, loss when actual class is positive, with respect to probabilistic
score

Figure 16. Plot of L1, loss when actual class is negative, with respect to probabilistic
score
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When score is minimal, q = s. Thus, Inverse Score is proper. ■

4.3 Possible Generalization of Inverse Score
In general case, c0 has uniform distribution in [c0min, c0max] and c1 has uniform
distribution in (c1min, c1max]. These distributions are displayed in Figure 14.

Let a = c0min, b = c0max, d = c0min, e = c1max for the easiness to comprehend.
Then, following the formula in Eq. (25) on page 33, w

( sc1
1−s , c1

)
will be equal to 1 in

two cases:

1. s ∈ ( e
a+e ; b

b+e
)
, c1 ∈

(
d; e

)
2. s ∈ ( b

b+e ; b
b+d

)
, c1 ∈

(
d;b 1−s

s
)

Then the integral from Eq. (25) can be broken down to the sum of 4 integrals:

L =
∫ b/(b+e)

a/(a+e)

∫ e

d

sc1

1− s
c1

(1− s)2

(
1−F0(s)

)
dc1ds

+
∫ b/(d+b)

b/(b+e)

∫ b(1−s)/s

d

sc1

1− s
c1

(1− s)2

(
1−F0(s)

)
dc1ds

+
∫ b/(b+e)

a/(a+e)

∫ e

d

c1

(1− s)2 F1(s)dc1ds

+
∫ b/(d+b)

b/(b+e)

∫ b(1−s)/s

d

c1

(1− s)2 F1(s)dc1ds

(36)

Solving this integral would result in a family of proper scoring rules. This part
remains to be done in the future work.
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5 Experiments
In Section 4 Theorem 3 was proven, which states that for probabilistic scores,
independent cost contexts and a threshold equal to s = c0

c0+c1
, expected loss under a

uniform distribution of c0 and c1 is equal to Inverse Score.
In this section, it will be shown on the experiments.

5.1 Setup
The experiments began by creating toy dataset with 5,000 instances. Binary
classification was used and dataset was balanced, labels {0,1}were assigned to
instances randomly with probability 0.5. Scores of instances with label 1 had
distribution N(−µ,1) and scores of instances with label 0 had distribution N(µ,1).
From scores, probabilistic scores were calculated using formula p = 1

1+e−2s .

Cost Calculations To calculate total cost, independent cost context was used,
which was introduced in Section 4.2. It means that false negative cost c0 and false
positive cost c1 both have uniform distributions and do not depend on the values of
each other. Threshold s for classification is s = c0

c0+c1
. So, instance will be predicted

negative if its probabilistic score p > s and positive otherwise.
In this case, distributions will be the same and equal to [0;1]. 5,000 iterations

were made; in each iteration, number of false positives FP and proportion of false
negatives FN were calculated. Total is the number of all instances.For each
iteration, cost was equal to:

C = FP · c0 +FN · c1

Total
To estimate expected total cost, costs C from all iterations were averaged.

Loss Calculations To calculate loss, loss function in Eq. (33) from page 36 was
used:

If instance is actually of positive class:

L0 =
{ 2p−1

6(p−1)2 + 1
6 if p ∈ [0; 1

2 ]

− 1
3p + 5

6 if p ∈ (1
2 ;1]

If instance is actually of negative class:

L1 =
{ 1

3(p−1) + 5
6 if p ∈ [0; 1

2 ]
1−2p
6p2 + 1

6 if p ∈ (1
2 ;1]

Expected loss is average of losses for all 5,000 instances.
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5.2 Results
In Figure 17, total cost and expected loss are compared using different µ. As
expected, expected loss generalized total cost very well with little to no bias, where
pink line describes expected loss calculated from the experiments, and green line
represents total cost. Loss and cost both decrease with growth of µ, because
instances of different classes are separated further and it is harder to predict
them incorrectly. It is possible to reduce bias further by increasing the number of
iterations when calculating total cost.

Figure 17. Comparison of loss and cost.
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6 Conclusion
Classification is a fundamental task in supervised machine learning with an
extremely wide range of applications. In case of cost-sensitive learning, evaluation
of classifier performance becomes non-trivial due to operating conditions and cost
contexts, which span ranges of cost values.

It has been previously shown that classifier evaluation under well-known
operating conditions are handled with appropriate proper scoring rules.

In this thesis, a new operating condition for binary classification with uniformly
distributed costs c0 and c1 was introduced, along with a corresponding new proper
scoring rule. Its applicability and properness was proven theoretically and con-
firmed experimentally. The proof was performed for a special case of cost context
with fixed distributions, where both costs had distributions [0;1].

Following the proof, new proper scoring rule can be used when cost context
involves independent uniform distributions for both costs.

The future work may involve complete the proof for general case of distributions,
which would result in a family of proper scoring rules.
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Appendix

I. Code
Source code for this thesis is located in the following GitHub repository:

https://github.com/sherlie/inverse-score
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