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Communication-oriented Project Management Solution 
Abstract: 

Growth of popularity of distributed software development makes development process 
more adaptive and flexible in terms of human resources. But in order to sustain the process 
there is an additional burden put on the communication between customer, team members 
and project managers.  

In the contemporary software development practice there exists a number of smart and 
handy tools, which help making the communication more fluent and convenient. However 
none of those tools tackle a problem of integrating multiple communicational sources into 
a single tool. 

This paper intends to present a solution to this problem by introducing a collaboration tool 
for distributed software development. The collaboration tool will be oriented on integra-
tion of multiple communication sources and provide analytical information on software 
development project. 

Keywords: 
Data integration, analytics, project management, distributed software development 

Kommunikatsioonile orienteeritud projektijuhtimise lahendus 
Lühikokkuvõte: 
Hajusa tarkvaraarenduse populaarsuse kiire kasv muudab tarkvaraloomeprotsessi 
kohanemisvõimelisemaks ja paindlikumaks inimressursside osas. Selleks, et hajusat 
loomeprotsessi toetada, tekib kliendi, meeskonna liikmete ja projektijuhi vahel lisakoorem 
kommunikatsiooni näol. 
Kaasaegse tarkvaraarenduse praktikas eksisteerib hulk nutikaid ja mugavaid tööriistu, mis 
aitavad muuta kommunikatsiooni mugavamaks ja ladusamaks. Kahjuks need riistad ei 
tegele mitme kommunikatsioonivahendi integratsiooniga ühtseks töötavaks süsteemiks. 

Töö eesmärgiks on pakkuda kirjeldatud probleemile lahendus. Töös kirjeldatakse loodud 
koostöötamise tarkvara, mis on mõeldud toetama hajusat tarkvaraarendust ning mille 
eesmärgid on erinevate kommunikatsioonivahendite andmete integratsioon ja 
tarkvaraarenduse projektiga seotud analüütilise informatsiooni pakkumine. 

Võtmesõnad: 
Andmete integratsioon, analüütika, projekti juhtimine, hajus tarkvaraarendus 
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1 Introduction	
  
Software development is a complex process that requires intensive collaboration between 
customer and software developers, and among the software developers themselves. It has 
been established, that during the development process programmers actually spend about 
60% of their time on communication [1, 2]. This time can be spent on discussing new fea-
ture with customer, figuring details of bug report, planning the future work etc.  

Taking into account that distributed software development (DSD) is becoming a wide-
spread practice [3], it is not hard to predict that distributed software development (like 
distributed agile development [4]) requires even more communication between develop-
ers. It has been discovered that distributed software development generally takes 2.5 times 
more time [5].  
Since the time spent on communication between regular and DSD has been increased it 
can be concluded that most of the discussions that previously took place in the real life 
now takes place online. This fact proves the importance of using the right tools for han-
dling the communication. 

1.1 Goal	
  
The intention of this Master’s thesis is to investigate the existing problem of distributed 
software development, study why the available collaboration tools are not sufficient at 
solving the problem, suggest an alternative solution and develop it. 

The result of this Master’s thesis will be a running application, that solves the mentioned 
problem, and the thesis report starting from defining the problem, analysing the current 
“state of the art”, explaining the design decisions and ending with describing the contribu-
tion of this Master’s thesis. 

1.2 Customer	
  
The customer of this project is a company called Bellcom Open Source ApS1. Bellcom is a 
Danish software development company, with headquarters located in Kolding (south of 
Denmark). It consists of around 20 employees, most of which are developers. Bellcom is a 
modern company, which uses distributed agile methodology to run its development pro-
cess.  

1.3 Outline	
  
The further structure of the thesis is divided into 8 sections. Section 2 gives a basic intro-
duction to the thesis by defining the problem itself and briefly presenting the idea and 
some of the key features of the suggested solution. Section 3 covers the related work by 
presenting the current state of the art in distributed software development and integration 
fields. Additionally the section gives a description and compares other collaboration tools, 
which currently exist on the market. Section 4 presents initial steps of the development 
process, which are requirements elicitation, design decisions and the choice of tools. Sec-
tion 5 describes the integration implementation between the application and communica-
tional channels – email and Skype, as well as gives an overview of the entire system inte-
gration design. Section 6 continues the previous section by explaining how the information 
piece is processed after it is received by the application: how the matching between re-

                                                
1 http://bellcom.dk 
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ceived message and the existing content is done and how a message can change the exist-
ing content data. Section 7 looks into the analytical part of the application – how the gen-
erated and received metadata can be used for analytical purposes, which technologies and 
techniques were used and what values does this give the end-user. Section 8 covers quality 
assurance part by running a set of manual tests. Section 9 concludes the results of the the-
sis, identifies thesis contribution and speculates what future work can be done based on the 
thesis. 



8 
 

2 Problem	
  
On one hand using distributed software development can give a company set of strong 
benefits, such as reduced cost and staff liquidity. On the other hand, it produces additional 
challenges, which can slow down the development process and reduce the quality of the 
developed product.  

2.1 Problem	
  Definition	
  

Fragmented	
  Documentation	
  
Oftentimes the documentation in the agile software development project has the accessory 
role and is fragmented into multiple pieces. In general distributed software development 
project in agile methodology produces the following communication artefacts: 

• initial project description 
• a set of task breakdowns (many of which have an extensive dialog with customer 

clarifying the requirements) 
• a collection of emails between customer and developer/project owner 
• a collection of documents (official documents, development related files) 
• instant messenger logs (as sometimes it is easier to get a hold of customer in IM 

application rather than emailing) 

This kind of fragmentation of a DSD project specification often results in a lack of a struc-
ture, which makes it especially challenging to be followed by managers or to be intro-
duced to a new person (e.g. new developer joining the team) [6, 7]. 
In order to get a complete overview of the project the manager (or other interested person) 
would need go though all the tasks (user stories) including the comments and ask the de-
velopers in regards to latest emails/instant messages they received from the customer. 

The severity of the problem is growing proportionally to the complexity of the project and 
number of people it involves, not to mention the possibility of multiple customers, who in 
some cases might provide contradicting requirements. 
As a result, there is a fair chance that the DSD project has its specifications in many forms 
and places (official documents with signatures, project wiki page, user story log etc.) and 
is constantly updating with the new requirements. There is quite some manual work needs 
be done in order to just keep everything consistent. 

Multiple	
  Communicational	
  Channels	
  
A continuation of previous problem is the diversity of the communication channels be-
tween customer and the development team. Ideally all the customers would have to use a 
single communicational channel, for example, use a common task-tracking tool, which has 
all the information about the project. Yet many of the customers tend to do things their 
own way, and instead of adding the comment under the specific task they can send an 
email, write a comment in version tracking system or send an instant message. Those situ-
ations might happen because of multiple reasons, e.g. customer is not well aware of the 
process, customer is trying to save his time, policy in the company forbids usage of exter-
nal task-tracking tools etc. 

While for the customer this kind of behaviour does not seem causing many troubles, for 
the development team the fact that requirements and changes are coming from multiple 
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sources creates a mess. Firstly, that is obligating the recipient of running the change by the 
project manager, secondly, sharing the new information with the rest of the team, and 
thirdly, including the updated/new requirements into the project documentation. 
All in all this can lead to a troublesome development process and demoralized team. 

Ignoring	
  the	
  Project	
  Workflow	
  Metadata	
  
Every incoming information piece that is related to the project (regardless of its origin) has 
some metadata. The example of the metadata can be message author, recipient, date, at-
tached files etc. 

Interrelation of the metadata between different messages is a poorly discovered area with a 
great potential. The examination of the metadata can give an insight about multiple statis-
tical and analytical grains of the project. It can also give an answer to a number of interest-
ing questions, e.g. “During which phase is the customer participation most active?”, 
“Which tasks are the most discussed?” etc. 
At the moment there is no available tool that would allow running such kind of analysis on 
the project, and doing it manually does not seem to be realistic due to an extra large num-
ber of variables. 

2.2 Suggested	
  Solution	
  
The solution to overcome the problems mentioned above is introducing collaboration tool 
with integration functionality. Tool will be oftentimes referred to its working title – Colla-
tool. 
The tools should support storing documentation on the project in one single place, in order 
to avoid fragmentation of the documentation. 
Additionally the tool should serve as some analogue of chronicler that would systematical-
ly store (aggregate) every incoming and outgoing information piece. This “chronicler” 
should be able to connect to potentially any source of information (be that email, IM-client 
or maybe even SMS) and be able to retrieve the information for future uses.  
As the information comes in many forms and shapes, the aggregator should be able to in-
terpret, translate and persist it in a uniform way. Also, as the information comes from dif-
ferent sources/platforms, the aggregator should support different methods of handling the 
information (meaning both pull and push mechanisms). 
Besides presenting the timeline (the timely ordered combined list of messages received 
from different sources), the tool should also have a feature of automatic changing the in-
formation on either a project or task level.  

Not to be neglected, the received information contains the metadata, which should be put 
in use in the collaboration tool. The tool should provide an analytical insight to the project 
flow in order to bring most value for the project managers. 
The tool has to present the software project development information in a clean and under-
standable way - so that it is both approachable for user and brings the most value. 



10 
 

3 Related	
  Work	
  
As the suggested solution is tightly related to the concepts of distributed software devel-
opment and data integration, the related works of those fields are going to be used and 
considered as the state of the art. 

3.1 Distributed	
  Software	
  Development	
  
Abbattista et al. raise an issue, that combining agility and distribution is not that simple, as 
distributed development goes against the very core principle of agile methodology – phys-
ical proximity (e.g. face-to-face communication) with both customer and development 
team [8]. Bearing this issue in mind, Abbattista et al. perform an analysis of commonly 
used social software types (blogs, wikis, social networking etc.) and the actual implemen-
tations of them, coming to the conclusion that social software is a valuable resource that 
can improve the communication in distributed software development, assist knowledge 
sharing, help building team and aid the development process in general. 
Paasivaara et al. perform a case study, where the different agile practices (such as: daily 
scrum meeting, weekly scrum meeting, sprint planning, retrospective meetings etc.) were 
successfully used even with large projects with the teams distributed between location, 
culture and time zone (Norway/Malaysia) [6]. During the case study the following chal-
lenges were met: technical (internet connection is slow/unreliable), communicational 
(misunderstanding the requirements, cultural differences). In the end, however, Paasivaara 
concludes that using agile with distributed software development was a positive experi-
ence. 

3.2 Data	
  Integration	
  
Liu talks about the integration of email into a portal using AJAX (for fetching) and SSO 
(for authentication) [9]. The portal is connected to the database using Telnet protocol. As a 
backbone the application uses JSP (JavaServer Pages) that is connected with the mail 
server. 
Baccehelli et al. present a tool called Miller [10] that, according to the specification, sup-
ports the following functionality:  

• import mailing lists 
• manual interaction with emails (e.g. labelling) 
• automating search for traceability links between email and code entities 
• integrate email in IDE 

For the email import (as it is the most related issue) Miler uses web crawler that is extract-
ing the information from MarkMail2 website, which performs a search in about 8800 mail-
ing lists. 

Another example of the related work has been found in the publication by Zürich Software 
Evolution and Architecture Lab work3. In the paper Fischer et al. raised an issue of miss-

                                                
2 http://markmail.org 
3 http://www.ifi.uzh.ch/seal.html 
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ing connection between the subversion control system (CVS4 and the bug tracking system 
(BugZilla tracking system5) on the example of Mozilla Web Browser6 [11]. 

In order to extract the information (with a further intention to analyse it) authors have used 
the following approach - see Figure 3.2. While the actual results of the paper do not seem 
to be directly connected with this project, the approach of retrieving the information from 
different sources and storing it (so that it is most convenient to use for the future purposes) 
allows to consider this paper as the related work and use as a starting point. 

Chung explains the integration style based on passing messages between the integrated 
applications [12]. This approach allows using centralized message server, which is respon-
sible for communication. Because of centralized message server the whole flow is flexible, 
meaning that it is possible to easily add new applications to the flow as well as remove the 
ones not needed. 

Brown talks about other advantages that are brought by messaging-passing, those ad-
vantages can be listed as follows: adaptability, scalability, simplicity, efficiency etc. [13]. 

Banner gives an introduction to the concept called unified messaging [14]. Unified mes-
saging is aiming at removing the borders between different communication protocols (the 
paper is mentioning short message service (SMS)7, multimedia message service (MMS)8, 
email and instant messaging). Schreiner adds the voice exchange protocol [15] to the con-

                                                
4 http://ximbiot.com/cvs/manual 
5 http://www.bugzilla.org 
6 http://www.mozilla.org 
7 http://en.wikipedia.org/wiki/Short_Message_Service 
8 http://en.wikipedia.org/wiki/Multimedia_Messaging_Service 

 
Figure 3.2 Approach of extracting the information from the subversion control system 

and bug report system [11] 
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cept of unified messaging, which can convert the textual message to the voice format and 
vice versa, to the communicational protocols. Using unified messaging approach commu-
nication is becoming homogenous to the end-user disregarding of which application the 
recipient is using. 

Wams et al. provide a theoretical solution to the unified messaging problem by introduc-
ing a middleware layer [16]. The middleware layer is implementing multiple strategies 
(based on a number of connected protocols) to deliver the messages to the right channels. 

3.3 Existing	
  Solutions	
  
While the range and variety of collaboration tools is quite extensive9 10, neither of those 
tools seems to decently support information aggregation from multiple sources. The only 
communicational channel some of the tools support is email. But even then the integration 
is limited to simply receiving the email (and posting it), routing of which is handled via 
different email addresses – each task has its own dedicated email, sending a message to 
which would publish the content. A short description of the most popular collaboration 
tools is provided below. 
Assembla11 is a collaboration tool supporting such features as task/issue management, 
code repositories, communication (messaging, file sharing, sharing code etc.), managing 
team (time tracking, activity statistics etc.) as well as customer (multiple permission sets). 
Assembla has an option of posting the message via email. 
SourceForge12 is an environment for creating projects supporting issue tracking, team 
communication, code repository, documentation and others with a focus on open source 
projects. No integration seems to be possible. 

Teambox13 is a collaboration tool with project management functionality (tasks assign-
ment, time tracking, etc.). Additionally it supports integration with Google Drive14, Drop-
box15, Box16 and email (posting the message via different emails). 
JIRA17 is a collaboration tool with project management, code integration (embedded code 
repository supporting commenting, reviews etc.) as well as a number of applications from 
original Atlassian Marketplace18, which primary purpose is to extend the JIRA functionali-
ty and improve usability. JIRA also supports communication via emails. 
Basecamp19 is a collaboration tool with rich project management functionality, supporting 
many add-ons20, has integration with Google Drive. 
LiveMinutes21 is a tool, which allow integration with some communicational/collaboration 
applications: Evernote22, Skype (is limited to interacting with locally installed Skype pro-
gram by initiating audio calls). 

                                                
9 http://en.wikipedia.org/wiki/List_of_collaborative_software 
10 http://en.wikipedia.org/wiki/List_of_project_management_software 
11 https://www.assembla.com 
12 http://sourceforge.net 
13 https://teambox.com 
14 http://drive.google.com 
15 https://www.dropbox.com 
16 https://www.box.com 
17 https://www.atlassian.com/software/jira 
18 https://marketplace.atlassian.com 
19 https://basecamp.com 
20 https://basecamp.com/extras 
21 https://www.liveminutes.com 
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FogBugz23 is a bug tracking system, which above else offers couple of interesting features 
with a focus on integration:  

• Customer email management 
This represents storage for all customer emails with shared access, so that everyone 
can track the communication with a single customer and communicate with a cus-
tomer from the shared email address. 

• Webservice integration 
This is an XML API, that allows manipulating system content via webservice re-
quests (e.g. create case, assign the person to a bug report etc.).  

• URL triggering  
Allows triggering the specified URL(s) on a certain events in the system with a set 
of predefined parameters (depending on the event type). That represents another 
side of the integration – giving the possibility for any other system implementing 
webservice to listen to changes from FogBugz. 

While FogBugz offers a few interesting decisions on integration level and is the closest 
tool found to what this thesis is trying to achieve, there exists couple of strong arguments, 
why FogBugz cannot solve the above-mentioned problems: 

• FogBugz is bug tracking oriented, not task oriented, which sets number of limita-
tions in the workflow (e.g. task discussion, appending files etc.) 

• FogBugz does have any statistical data on the project, which can later be used for 
analytics 

• FogBugz is an internal tool, which does not support involving the customer, which 
goes against agile development principles and hinders the development process 

                                                                                                                                              
22 https://evernote.com 
23 http://www.fogcreek.com/fogbugz 
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4 Design	
  
Analysis of the existing solutions helps in seeing what is missing in those solutions and 
therefore come up with a proper list of requirements that will both satisfy the customer and 
bring the scientific value to the project. 

4.1 Requirements	
  
This is no doubt that the project can be implemented in numerous ways. However there 
have been given a couple of obligatory requirements from the customer that must be ful-
filled. Those pre-given requirements are presented below to emphasize on them: 

• The solution for this project must be based on the web-interface, more particularly 
Drupal content management system24. 

• The application must be able to integrate with email communicational channel. 
• The application must be able to integrate with Skype. 

The rest of the requirements were elicited during multiple discussions with the customer: 
1. Application: 

a. Application should cover the notation of project, task and task comment. 
With a hierarchy of project containing tasks and task containing task com-
ments. 

b. Project should have a list of administrators, list of participants and list of 
related files. 

c. Task should have a status, due date, estimation and an assignee. 
d. Comment should have an author and the published date. 

2. Integration: 
a. Besides the pre-given list of sources (Skype, email) application should be 

potentially able to integrate with any information source (both static, for 
example, static webpage and dynamic, for example, another IM-
application). 

b. Unobtrusive integration with different platforms (loose coupling). 
c. Supporting of both pull and push mechanism of retrieving the information. 
d. Network failure awareness. 

3. Data extraction requirements: 
a. Tool should be able to match the extracted data with the existing content. 
b. Tool should be able to identify multiple people involved in the communica-

tion (e.g. multiple customers, multiple developers etc.). 
c. It should be possible to update the content of the project using the commu-

nicational channel (in an automatic or semi-automatic mode). 
4. Analytics 

a. Tool should provide statistical information about project flow using chart 
notation. 

b. Tool should provide statistical information about user activity using chart 
notation. 

c. Tool should provide statistical information about comment sources using 
chart notation. 
 

                                                
24 https://drupal.org 
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4.2 Class	
  Diagram	
  
As the development process was tightly conjugated with the research, the class diagram 
was undergone multiple changes. While the final version of the class diagram can be seen 
on Figure 4.2, the explanation of some of its non-trivial fields is saved to the dedicated 
sections.  

4.3 Architecture	
  Decisions	
  
As the application must to be integrated with multiple communicational sources it is cru-
cial to design a robust and flexible architecture that is capable of that. 
There are many ways of how the integration part can be handled (shared databases, remote 
procedure invocation, file transfer etc.) [17], however not all of them are possible in this 
case mostly because of the inability to alter other application source code (for example, 
Skype).  
Based on that the messaging integration [17] seemed the most optimal choice. Messaging 
integration is a concept of integrating different platforms by exchanging small packages, 
called messages. The architecture of typical messaging system is presented on figure 
4.3.125. 

                                                
25 http://www.enterpriseintegrationpatterns.com/Chapter1.html 

 
Figure 4.2 Application class diagram 
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The reasons for choosing messaging integration are the following:  

• Platform/language independent 
Contemporary messaging systems allow integration with practically any plat-
form/language. 

• Asynchronous communication 
The sender does not have to wait for the recipient to receive and process the infor-
mation, which increases the speed and removes the dependencies. 

• Flexibility of the message size 
From very small to large data exchange, which allows sending only the infor-
mation required and therefore reducing the traffic.  

• Reliability 
Contemporary messaging systems allow ensuring that the message is delivered by 
sending the confirmation upon receiving. 

• Flexibility 
The messaging architecture supports adding more communicational into the flow 
of message exchanging with reasonable effort. 

• Scalability 
Messaging systems are capable of scaling – increasing the number of messages to 
be process in a period of time. 

The integration with email and Skype using messaging system will be explained in details 
in the section 5 Integration. 

4.4 Choice	
  of	
  Tools	
  

Drupal	
  
As part of the pre-dictated user requirements, the web application has to be developed us-
ing Drupal. 
Drupal is an open source content management system (CSM) and is built using PHP. Dru-
pal first release was in January 2001 by its original author Dries Buytaert. At the present 
moment Drupal has had 7 versions and serves as a back-end system for more than 1.9% of 
all the websites26. 
Drupal as one of the leaders in CMS world is famous for its community, which contributes 
a lot of efforts into making Drupal more and more efficient to use. These contributions are 
eventually formed into so-called modules – ready functionality, that can be used by any-
one. There are a range variety of modules solving most of the generic problems. However, 
not all of the modules are properly maintained, and not all of them are mature enough to 

                                                
26 http://w3techs.com/technologies/overview/content_management/all 

 Figure 4.3.1. Typical message system architecture 
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be used in production. So choosing a right modules is always a compromise between how 
much can it do, how mature is it and how well it is maintained. 

As any mature CMS Drupal provides a set of default functionality that can be used right 
out of the box. This functionality is users (including authentication), creating and publish-
ing content and other. 

Drupal	
  Cron	
  
Drupal Cron27 is part of the Drupal CMS, but since it is going to be referenced quite often, 
its description seems necessary. In its essence Drupal Cron is a tool that allows scheduling 
some processing job with different periodicity. Example of that could be sending email to 
every subscribed user every hour. 

Messaging	
  System	
  
There exist a number of messaging systems28, few of the most popular will be briefly ana-
lysed in this section. 
RabbitMQ29 is an open-source messaging system implementing AMQP30 protocol. The 
key characteristic of RabbitMQ is, as the official website claims, simplicity. That charac-
teristic is gained by the implementation of the broker pattern31, which makes RabbitMQ 
easy to deploy and use. Broker pattern assumes queuing all the messages on central server 
prior to sending them to the consumers. That gives broker pattern a couple of strong ad-
vantages (e.g. routing, load balancing etc.), but results in reduced scalability and loss in 
speed of processing. 
ZeroMQ32 is an open-source messaging system positioning itself as a lightweight messag-
ing system. It is designed for using in the situations where the high throughput is crucial, 
e.g. like stock exchange applications. 

ZeroMQ possesses a high flexibility, but is notorious for steep learning curve. Additional 
drawback – is lack in build-in advanced messaging patterns33. However implementing 
them manually using system’s high flexibility can solve that issue. 

Apache ActiveMQ34 is an open-source messaging system implementing numerous ad-
vanced messaging design patterns. The main advantages of ActiveMQ are high perfor-
mance. It can be used in both server-client and peer-to-peer communication. 
All of the mentioned messaging systems have clients with most common programming 
languages, support cross-platform message exchange, have extensive documentation and 
are actively maintained.  

As there were no major functionality differences, which were crucial for bringing the pro-
ject to life, the one that offered the most simplicity - RabbitMQ has been chosen. Rab-
bitMQ offers neatly documented tutorials (available for multiple platforms), which al-
lowed using it almost right “out of the box”. Besides that there happens to exist a well-

                                                
27 https://drupal.org/cron 
28 http://en.wikipedia.org/wiki/Category:Message-oriented_middleware 
29 http://www.rabbitmq.com 
30 http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol 
31 http://en.wikipedia.org/wiki/Broker_Pattern 
32 http://zeromq.org 
33 http://www.enterpriseintegrationpatterns.com/toc.html 
34 http://activemq.apache.org 
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maintained module35 for Drupal, which support integration with messaging systems im-
plementing AMQP standard. 

Other	
  Tools	
  
During the development process, it has been discovered that there is a need for more tools 
for achieving one or another goal. To keep the report consistent, it has been decided to 
introduce those secondary tools when they are first required. 

4.5 Graphical	
  User	
  Interface	
  (GUI)	
  
As the graphical design is not a primary focus of the project and therefore allocated little 
time for, it has been decided to reuse the existing GUI solutions as much as possible. Dru-
pal framework allows changing the design of the application by using a concept of 
theme36. Among the range variety of available Drupal themes37, the one called Bootstrap38 
has been chosen. Bootstrap theme is an adaptation of Bootstrap framework39, both of 
which have the following features: 

• Mobile first responsive design – takes no or little effort to make application re-
sponsive to different design layouts 

• Rich collection of styles and elements40 

The main goal is to make the GUI clean and simple, yet with awareness that none of that 
should affect the usability. While developing the design the Eight Golden Rules of Shnei-
derman [21, 22] were used as the guidelines, while some of the rules were followed by 
Drupal itself, following the others was a manual process:  

• Strive for consistency 
Every element on the page was created with the same set of styles and colours.   
See Appendix I, Appendix II. 

• Enable frequent users to use shortcuts 
Every user can add unlimited number of shortcuts using Drupal build-in shortcuts 
functionality. Figure 4.5.1 shows the shortcut functionality layout. 

                                                
35 https://drupal.org/project/message_broker 
36 https://drupal.org/documentation/theme 
37 https://drupal.org/search/site/?f[0]=ss_meta_type%3Atheme 
38 https://drupal.org/project/bootstrap 
39 http://getbootstrap.com 
40 http://getbootstrap.com/components 

 
Figure 4.5.1 Shortcuts functionality 
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 Offer informative feedback 
Every action in Drupal is followed by an information message, presented on the 
top of the screen, as figure 4.5.2 shows. 

 

• Design dialog to yield closure 
Not applicable, as application does not have any multi-stepped user actions. 

• Offer simple error handling 
Drupal offers the internal field validation, on error an informative message is given 
to a user, as figures 4.5.3a and 4.5.3b show. 

• Permit easy reversal of actions 
While adding content or posting the comment user has two ways of revising his or 
her actions: proactive or reactive. Following proactive way user can preview the 
content before publishing it, as figure 4.5.4a shows. 
Reactive way allows user to edit the content after it has been published, as figure 
4.5.4b shows. 

 
Figure 4.5.2 Information message after creating a task 

 

 
Figure 4.5.3a Validation error message on task creation page 

 

 
Figure 4.5.3b Validation error field on task creation page 
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• Support internal locus of control 
Every important (e.g. content deletion) asks for user confirmation, so user is never 
loses control of what the application is doing, as figure 4.5.5 presents. 

• Reduce short-term memory load 
Not applicable, as application does not have any multi-stepped user actions. 

 
Figure 4.5.4a Preview the content before publishing 

 
Figure 4.5.4b Editing the published content 

 

 
Figure 4.5.5 User confirmation prompt 



21 
 

5 Integration	
  
While some of the requirements provided by the customer are rather common and do not 
involve any research, the description of their implementation is omitted from the thesis. 
Integration part of the application, being the core functionality, involves both the research 
and a number of important design decisions, and is explained in details. 

5.1 Email	
  Integration	
  
Email is the first communication channel, which application has to integrate to. 
Integration with email is possible in two ways: 

• Push mechanism 
This integration expects user to set up his/her email application to forward the 
emails to a specific email address. The contemporary emailing systems (such as 
Gmail41, Windows Live Hotmail42 etc.) allow users configuring advanced forward-
ing rules by creating custom filters43.  
The benefit of this integration is that user has a full control over what is going out 
from his/her mailbox. This can be seen useful when user is using his personal 
email for communication, or when policy of the company forbids forwarding some 
of the emails. 

• Pull mechanism 
This integration expects user to provide his credentials so that application itself can 
access user’s email and fetch the latest email messages.  
The benefit of this integration is a simple set-up for a user – there is nothing need-
ed to be done from the user side besides providing the credentials. This can be used 
if user does not have much technical knowledge, and all of the communication is 
allowed for reading by an automatic tool. 

As both of the methods have some advantages and disadvantages, it has been decided to 
let the user choose by implementing both of those methods. 

The design of the email integration is presented on figure 5.1. 

                                                
41 http://gmail.com 
42 http://hotmail.com 
43 https://support.google.com/mail/answer/6579 
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The descriptions of the email integration diagram are the following: 

1. Cron job (scheduled to be triggered with some periodicity) is fetching the list of 
user email credentials, which are:  

a. Simple Mail Transfer Protocol44 (SMTP) server host and port 
b. user email login 
c. user email password 
d. encryption method (if any) 
e. timestamp of last check of that particular email address 

2. Using the received credentials cron job is making an Internet Message Access Pro-
tocol45 (IMAP) request to each SMTP server for getting new emails. In order to get 
only those email that are dated after the last check timestamp, IMAP request is 
supplemented with the last check date. Unfortunately, the filtering in IMAP can be 
done only with a precision of a day (it does not support hours, minutes and se-
conds), so if last timestamp was, for example, 27.02.2014 16:37, with IMAP re-
quest all the email dated after 27.02.2014 00:00 will be received. 
The rest of the filtering – emails discarding is done using application logic. 

3. Those user emails, which were set up by users, are forwarding messages to a 
common email address of the collaboration tool at their own pace. 

4. Based on the same mechanism as was described in 2, cron job is checking the 
common email of collaboration tool. 

5. All the messaged receiving from common of users’ own emails are delivered to 
RabbitMQ server endpoint as an AMQP message. 

                                                
44 http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol 
45 http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol 

 Figure 5.1. Email integration diagram 



23 
 

5.2 Skype	
  Integration	
  
Skype is the second communicational channel, which application has to integrate to.  
In contrast to the email integration, Skype has a peculiar feature that fundamentally reduc-
es the integration options: Skype does not store messages online. All messages of Skype 
are kept locally in a small file – SQLite database46. More over there is absolutely no API 
provided by Skype to ease a retrieval of the messages for the developers. 

These limitations of Skype did not allow using pull mechanism for fetching the messages, 
which only left an option of using the push mechanism.  

The pushing of the messaging happens transparently for the end user after he installs a 
developed plugin. As Skype is widely used application on many platforms47, it has been 
decided to use cross-platform programming language that is supported on every popular 
desktop operating system (Windows48, Linux49, OS X50) - Java51.  

The intention of the plugin is to read the incoming/outgoing messages and send them to 
the application backend. The plugin could have been made as a service to be running in 
the background, but since it can be potentially classified as a spying program, it has been 
decided to make its running state completely obvious for the user. It has also been as-
sumed that Skype account can only be used as a corporate account, which completely 
eliminates any personal communication. However by clicking “Start” and “Stop” button 
user can control when plugin is logging the user communication. 
The application user interface is presented in figure 5.2.1. 

The architecture of the Skype message listener plugin is presented in the figure 5.2.2. 

                                                
46 http://www.sqlite.org 
47 http://www.telecompaper.com/news/skype-grows-fy-revenues-20-reaches-663-mln-users--790254 
48 http://windows.microsoft.com 
49 http://www.linux.org  
50 https://www.apple.com/osx 
51 http://www.java.com 

 
Figure 5.2.1 Skype message listener user interface 
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The descriptions of the Skype integration diagram are the following: 

1. With the scheduled periodicity (set by user in “Run every” field, see Figure 5.2.2) 
plugin connects to collaboration tool SQLite database. 
After that plugin receives a timestamp, which represents either the moment when 
user started the plugin (by clicking “Start” button) or timestamp of the latest mes-
sage fetched from the Skype database – in case plugin is running second or subse-
quent iteration. 

2. After that plugin connects to SQLite Skype database. It fetches the last 500 mes-
sages starting for the received timestamp. It has been assumed that the amount of 
messages per scheduled time does not increase amount of 500. 

3. It has been noticed that if Skype application is running in parallel with the plugin, 
plugin cannot connect to Skype database because Skype puts an exclusive lock on 
it, which prevent from reading and writing the database. 
To solve this issue and avoid waiting Skype to release the lock (which happens on-
ly after Skype application is closed), the temporary copy of the database is created 
and plugin connects to it instead. The temporal copy has all the latest messages of 
the original database (by the state of when the copy has been created), is lock-free 
and exists only while reading is in progress. Moreover creation of it happens in-
stantaneously due to very small size of the original database (couple of mega-
bytes). 
Fetching of the messages is done as describe in step 2. 
After fetching is done, database copy is deleted. 

4. Skype application is reading and writing to its original database without any 
awareness of the running plugin. 

5. The fetched messages delivered to RabbitMQ server endpoint as an AMQP mes-
sage. 

5.3 Canonical	
  Data	
  Model	
  
As application is receiving the messages from multiple channels (currently: Email and 
Skype), there is very little chance that the structure and the formatting of the received 
message will be the same. It means that every communication channel would require cus-
tom piece of code for message processing. As the message processing does not seem to be 
a trivial task (see 6 Message processing), the code for that is likely to be quite extensive 
and complex. Having the similar code existing in multiple variations (for each message 

 
Figure 5.2.2. Skype integration diagram 
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format) not only creates the code duplication, but also makes it much harder to do the 
changes and/or corrections. 

In order to avoid such issue it has been decided to use a concept of canonical format [17]. 
The idea behind it is to convert each message into a common (canonical) format and then 
treat each message homogeneously, disregarding of its origin. 
Figure 5.3.152 demonstrates the approach of canonical format. 

This approach does not allow complete avoiding of writing the custom code, but amount 
of custom code is shortened to minimum – its solely purpose is converting the custom 
format into a canonical format. Therefore the advantages of the canonical data model can 
be listed as follows: 

• custom code is simple and short (in comparison with fully functional code for each 
format) 

• no need for the code change (all  functional code changes take place on the higher 
level)  

The canonical format chosen for the message is presented in table 5.3.2. 

                                                
52 http://www.enterpriseintegrationpatterns.com/Normalizer.html 

 
Figure 5.3.1 Canonical data format approach 

Table 5.3.2 Message canonical format 

Field Description 

external_id external id of the message, if any 

sender email address or Skype identifier of the sender 

receiver email address or Skype identifier of the recipient 

date Date in the following format: dd.mm.yyyy HH:mm:ii, e.g. 
24.03.2014 15:36:55 

body Content of the message 

source_type Skype, Email etc.) 

meta meta information used for search purposes 
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While purpose of the other fields is obvious, the purpose of meta field has to be empha-
sized explicitly: the purpose of the meta field is to provide some data in free form that can 
aid during search of the corresponding content (see 6.1 Classifying Message):  

• For email message the meta data is extracted from previous messages, which come 
as a quotation below the real message. Those previous messages have no value for 
the application (assuming that content of those messages is already in the system), 
but are a great aid for finding the corresponding content types, as they could poten-
tially contain many keywords. 

• For IM messages there has not been found any meta data that can ease the search 
of the content types.  
However, in the future implementation some amount of previous IM messages can 
be used to compose a metadata for a single message. 

5.4 Overall	
  Architecture	
  Overview	
  
The overview of the entire integration architecture (including the AMQP design princi-
ples) is presented in figure 5.4. 

The descriptions of the full integration diagram are the following: 

Figure 5.4. Full integration diagram 
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1. When sending the AMQP messages, each of them is supplied with a special tag – 
routing key, which lately allows distinguishing what is the message origin.  

2. Based on the routing key, messages are forwarded to different queues. 
3. Translator is fetching the message from the queue based in FIFO (first-in-first-out 

principle), and changes the message to respect the canonical format, presented in 
the paragraph 5.3 Canonical data model. 

4. After translation all the messages are delivered to collaboration tool. 
Besides robustness, the flexibility of the current architecture has to be mentioned. In order 
to add another communicational source the only change that has to be done on the applica-
tion side is creating new queue and adding a custom translator. 
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6 Message	
  Processing	
  
Message processing is a continuation of integration part and is intended to explain how the 
received by the application piece of information (a message) is matched against the exist-
ing content. 

6.1 Classifying	
  Message	
  
In order to know how to process the message, every message received by the application 
has to be matched with the corresponding content: either project or task. For doing this a 
concept of full text search53 is used. The process of matching is presented in figure 6.1. 

The description of the matching content diagram is the following: 
1. On demand or with the scheduled periodicity full text search engine is indexing the 

database of the application, making it possible to be later on searched using a text. 
The engine used for indexing is Apache Solr54, along with Apache Solr Search55 
for Drupal. 
There are created search indexes for project and tasks (task’s comments are in-
dexed as part of the task). Indexing process consists of splitting text into separate 
words, applying lowercase, removing plural form, omitting the stemming words 
etc.  
Apache Solr is indexing each field of the content with a possibility to set custom 
weight (from 0.0 to 21.0) on each field. The custom weights are set on both project 
and task fields: 

• Title (21.0) 
• Body (13.0) 

Rest of the fields is left with default (1.0) weight. 
2. The message is received by the application in a regular way (through messaging 

endpoint). 

                                                
53 http://en.wikipedia.org/wiki/Full_text_search 
54 https://lucene.apache.org/solr 
55 https://drupal.org/project/apachesolr 

 
Figure 6.1 Matching content diagram 
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3. The query based on the received message is sent to full text search engine. The 
search query consists of a concatenated message body and message meta fields 
(see 5.3 Canonical data format). Upon search query it is possible to specify which 
content types is expected as the result.  

4. Search query, same as the indexing process, is put under number of transfor-
mations (lowering case, removing plural form etc.) and is compared against the in-
dexed content. Most relevant results (1 project and 1 task) are returned by the que-
ry, which are then considered to be the found entities. 

Comparing found project and task can lead to the following scenarios: 

• Perfect match: found task is part of the found project 
• Partial match: found task is not part of the found project, or project is not found 
• No match: task is not found 

In case of the perfect match message is added as a comment to the corresponding task. 
Partial match and no match ignore the received message.  

Later on the concept of the partial match can be used to temporarily add the message to 
multiple places, so that application moderator can decide which place is correct. Upon 
confirming the right place for the particular comment – it will be deleted from the rest of 
the places. 

6.2 Business	
  Commands	
  Engine	
  
Part of the requirements was to be able to update the content via received messages in an 
automatic or semi-automatic mode. In order to achieve that it has been decided to use the 
concept of business rules engine [18] and natural language processing [19]. 
Business commands extraction process is shown on figure 6.2.0.1. 

The diagram descriptions are the following: 
1. The message is received by the application in a regular way (through messaging 

endpoint). 
2. Received message is sent to business command extractor. 
3. Business command extractor processes the message by comparing it against the 

number of regular expressions. The found commands are returned to the applica-
tion. 

 
Figure 6.2.0.1 Business command extraction process 
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4. If the commands are found, business command extractor cuts them from the mes-
sage body (it can be useful for the full text search query for increasing the rele-
vance precision, see 6.1 Classifying message). 

Currently application supports two types of commands: create and update. In order to im-
prove the user experience, and ease the control of the system the commands recognized by 
the application are written in simple English. The following formats currently supported 
presented in table 6.2.0.2. 

Written in bold are the mandatory parts of the format (used for identifying and parsing the 
command) and written in italic are the variables: 

• context – is either task or project, it defines the level, which the command should 
affect. 

• field_name – is the name of the field, which should get updated.  
• new_value – is the value, which the selected field should be set to. The value sup-

ports strings, number and dates.  
Date parsing has been also made in intelligent way – there is no dependency on the 
date format, the natural values such as today, tomorrow etc. are also supported. 

The variables are extracted from the command with the various substring methods, which 
are dependent on the string indexes of the mandatory parts. 
“Create” command deliberately supports task context only, as it has been decided that pro-
ject creation requires manual actions. Additionally, create commands support unlimited 
number of fields to be set, which are separated using the following separator “, with”. 

Fields	
  Synonyms	
  	
  
Any language has multiple ways to express the same things, for example, the title of the 
task can be called – name, subject, headline etc. Having that thought in mind, in order to 
lessen the strictness of the requirements and give end-users more flexibility in writing the 
commands it has been decided to use a list of aliases for each field name. That reduces the 
number of mistakes and increases the overall application intelligence. The synonyms defi-
nition is presented in figure 6.2.1. 
The mapping is done in an .ini file, which makes it very easy for the application adminis-
trators to extend. Each field is places under the group: 

• simple 
• text 
• date 

Table 6.2.0.2 Commands supported formats 

Format Matching regular expression 

set context field_name as new_value. \s?set (task|project) \w*( \w*)? as \w*( \w*)*\. 

create task with field_name as 
new_value, with field_name as 
new_value. 

\s?create task ((\, )?with \w*( \w*)? as \w*( 
\w*)*)+\. 
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That decides how the field assigning should be handled by Drupal. Field can have unlim-
ited number of aliases consisting of one or several words. 

Business	
  Commands	
  Examples	
  
This section gives the examples of the messages with business commands inline, syntax of 
the business commands is highlighted: 

“Hi, few clarifications about the conferences project. The hotel rooms list task is 
going to take a bit longer. Set task estimate as 5 hours. Set task deadline as tomor-
row.” 

This message updates the corresponding task estimation to 5 hours, and sets the deadline 
to tomorrow. 

“Regarding the booking process in the conferences project. I think we are going to 
use another framework for that. Set task name as Use Angularjs for the booking.” 

This message updates the corresponding task title to “Use Angularjs for the booking”. 
“Note of the conferences project. Create task with title as Modify the reservation 
process, with description as The modified process should now use AJAX to in-
crease the load time.” 

This message creates a new task with title “Modify the reservation process” and descrip-
tion “The modified process should not use AJAX to increase the load time”. 

Figure 6.2.1 Fields aliases 
[text] 

;Mapping for estimation 

estimation = field_task_estimation 

estimate = field_task_estimation 

hours = field_task_estimation 

;Mapping for body field 

body = body 

description = body 

desc = body 

 

[date] 

;Mapping for due date 

due date = field_task_due_date 

due to = field_task_due_date 

duedate = field_task_due_date 

date = field_task_due_date 

deadline = field_task_due_date 
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7 Analytics	
  
As the best way for presenting the information is by making a visual presentation of it 
[20], it has been decided to create a chart representation of the application statistical data. 
The solution does not operate too much of the numerical information, which can be used 
for analytic purposes. Despite that, there is still some numerical data that can be used to 
build non-trivial charts, for example: 

• Received message date 
• Number of messages (per user) 
• Number of messages (per information source) 

7.1 Used	
  Tools	
  
There exist quite a number56 of tools capable of drawing the informative charts. Here is 
the list of most possible choices: 

• D3.js57 
• Highcharts58 
• Chart.js59 
• JSCharts60 

As feature-wise the tools are rather similar, the choice has been mostly done on the degree 
of integration with Drupal platform and the product license. Among everything Highcharts 
has been chosen for a number of reasons: 

• Good selection of chart types61 
• Issued under Creative Commons Attribution-NonCommercial 3.0 License62 
• Has a Drupal integration63 
• Is based on JavaScript64, which allows it to be platform and device independent 

Unfortunately, despite the good selection of charts Highcharts did not have a chart of type 
word cloud. For that chart a free library JQCloud65 has been used. 

7.2 Charts	
  
Using the application statistical information six chart types (presented in the following 
sections) have been created, each of which is available for three levels of abstraction: 

• Task – takes into account information regarding one particular task only. 
• Project – takes into account information regarding all task of particular project. 
• Global – takes into account information of all tasks of all projects. 

                                                
56 http://en.wikipedia.org/wiki/Comparison_of_JavaScript_charting_frameworks 
57 http://d3js.org 
58 http://www.highcharts.com 
59 http://www.chartjs.org 
60 http://www.jscharts.com 
61 http://www.highcharts.com/demo 
62 http://creativecommons.org/licenses/by-nc/3.0 
63 https://drupal.org/project/highcharts 
64 http://en.wikipedia.org/wiki/JavaScript 
65 https://github.com/lucaong/jQCloud 
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As there is the hierarchical structure in the solution, as shown on Figure 7.2.0.1 

it possible to use the same approach for calculating the statistical information. The ap-
proach consists of creating only one piece of functional code per chart type – for task lev-
el. It involves looping though all the comments of the task and doing the required calcula-
tion.  
In this case, another level of abstraction (global or project) simply means merging the cal-
culated result from multiple tasks. The approach can be formulated as presented on Figure 
7.2.0.2. 

Activity	
  
Activity chart presents the total number of comments received, disregarding of the origin, 
grouped by date. 

Example of the chart can be seen on Figure 7.2.1. 

 
Figure 7.2.0.1 Solution hierarchical structure 

 

 
Figure 7.2.0.2 Calculation approach 
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Daytime	
  Activity	
  
Daytime activity chart presents the total number of comments received in each day (disre-
garding of comments origin) grouped by day of the week and hours of the day. Inspiration 
to this chart has been found on GitHub66.  

Example of the chart can be seen on Figure 7.2.2. 

Sources	
  
Sources chart presents the total number of comments grouped by their origin/source.  

                                                
66 https://help.github.com/articles/using-graphs#punchcard 

 
Figure 7.2.1 Activity chart, project level 

 
Figure 7.2.2 Daytime activity chart, global level 
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Example of the chart can be seen on Figure 7.2.3. 

User	
  Activity	
  
User activity chart presents the total number of comments grouped by the user. 
The example of the chart can be seen on Figure 7.2.4. 

Word	
  Count	
  
Word count chart presents the statistic on the used words – how many times each word has 
been used in the text of the comments. In order to improve the output of the result the text 
of the comments is put under few modifications: 

1. Remove links using the regular expression filter. 

 
Figure 7.2.3 Source chart, global level 

 
Figure 7.2.4 User activity chart, task level 
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2. Remove any non-text characters using the regular expression filter (e.g. dots, co-
mas, slashes etc.). 

Example of the chart can be seen on Figure 7.2.5. 

Word	
  Cloud	
  
Word cloud chart is an extension of the Word count chart presented in paragraph 7.2.5. It 
uses the same information – amount of each word, but presents it as a cloud of words with 
different sizes, where size represents the weight/frequency of each word.  

Example of the chart can be seen on Figure 7.2.6. 

 
Figure 7.2.5 Word count, global level 

 
Figure 7.2.6 Word cloud, global level 
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7.3 Caching	
  Mechanism	
  
Calculating any statistical information is an expensive task (in terms of the resources), and 
doing this on visitor request means poor response time. Moreover, doing the very same 
procedure for many users within the same timeframe is clearly a waste of resources. In 
order to tackle these two problems a caching mechanism has been developed. Caching 
mechanism allows to: 

• Calculate the statistical information prior to user request and therefore drastically 
reduce the page load time. 

• Schedule the statistical information calculation and therefore manipulate caching 
expiration. 

• Serve the same statistical information to all users, as the information is independ-
ent on the logged in user. 

For storing the cached data, a database table has been created with the structure described 
in Table 7.3. 

7.4 Chart	
  Building	
  Sum-­‐up	
  
In order to sum up sections 7.2 Charts and 7.3 Caching Mechanism and give reader a clear 
understanding of how the chart building in combination with caching works, the workflow 
is presented on Figure 7.4. 

Table 7.3 Caching mechanism database table 

Name Description 

nid Stands for node ID – the internal ID of the context/abstraction – 
task or project. 

In case of global level 0 is set. 

cached_data String representation of the cached data. Clarified in the next 
section. 

cached_data_type activity | daytime_activity | sources | user_activity | word_count  

last_update Timestamp of the when the data has been gathered 
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The descriptions to the diagram are the following: 
1. With the scheduled periodicity cron job starts calculate function (different for each 

type of chart): 
• Task level - For each single task 
• Project level - For all tasks of each single project 
• Global level - For all tasks of all projects 

It has to be noted specifically, that the higher levels of abstraction do not depend 
on the lower level, for example, when doing the calculation for project level, pre-
viously calculated task level statistical information is not reused and therefore the 
calculation is repeated. Justification of that approach is the following: 

• Calculation order is independent, which means that one can be run asyn-
chronously from another. 

• Cron job runs seldom enough to neglect the extra resources load (it does 
not make sense to recalculate the statistical information more often than 
once an hour).  

Alternative approach could be caching the statistical information for task level on-
ly, and later - on page request merge the results of different tasks (e.g. for project 
level – all tasks from a particular project). Advantages of this approach are: 

• Normalized structure 
• Reduced time of cron job (due to lower number of calculation) 

Whereas the disadvantages are: 
• Increased time for each analytical page load (each request requires addi-

tional data manipulation and database read operations). 
• Complex code for post-merging the result from multiple tasks 

 
Figure 7.4 Chart building sum-up 
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The disadvantages outweigh the advantages of this approach mainly because re-
ducing time on each page request is much more important that saving time on oc-
casional cron job run, therefore this approach has not been chosen. 

2. The received result (array) is converted into the string representation using 
json_encode function67. 

3. On page request the required cached data is extracted from the database as a string. 
4. String is converted back to array using json_decode function68. 

It has been assumed that everyone involved in the project has the permissions to see the 
statistical project information. 

7.5 End-­‐user	
  Value	
  
Capturing the information and visually presenting it to the end-customer using the men-
tioned charts allows answering the following set of questions: 

1. Which of the project/task has been more discussed and when? 
a. Can the discussion peaks and notches be justified by the requirements 

changes, customer involving etc.? 
2. When does the team spend most of their time discussing the projects? 

a. Does the weakly SCRUM on Wednesday helps unload the online commu-
nication or on the contrary makes team spend more time on online commu-
nication? 

3. What is the most preferred channel of communicating among the team members? 
a. Does it make sense to invest in the new channel, or no one cares about it? 

4. Who is the most active user and where? 
a. Which ones are the most “chatty”: old gurus or newbies of the projects? 

5. Which words are the most used among the discussion? 
a. Is the overall mood of the team positive or negative – which words prevail? 
b. How often does cursing happen in the project? 

Generally speaking the analytical information provides a deep insight of the project and 
people involved. Taking into account that the number and the variety of charts are practi-
cally unlimited, the analytical part of the application has a great potential to grow, evolve 
and provide even more valuable information, which can be used by managers to improve 
the personal/professional skills of their team members and the general workflow. 

                                                
67 http://www.php.net/manual/en/function.json-encode.php 
68 http://www.php.net/manual/en/function.json-decode.php 
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8 Testing	
  
It has to be mentioned that some parts of the application (for example, user registration, 
content creation etc.) are provided by Drupal CMS and therefore testing them is out of the 
scope of this thesis. Testing the rest of the application feature, those that are directly relat-
ed to the thesis goals, is going to be performed using an approach called exploratory test-
ing [23] suggested by Whittaker [24]. 

Exploratory testing is a type of manual testing where testers interact with the application 
in any desired way with a purpose of discovering bugs. Compared to the traditional test-
ing, exploratory testing, allows tester to get an understanding of the application flow.  
That is the reason this kind of testing has been chosen – make reader more familiar with 
application workflow and summarize the main features.  
In order to do that Whittaker’s approach called The Landmark tour [24] is going to be 
used. Landmark tour implies selecting one landmark, reaching it and after that selecting a 
new one, until all of the desired landmarks are visited. The metaphor of landmark will be 
presented by an application feature, and metaphor of reaching a landmark – using applica-
tion to execute the feature’s functionality. Table 8.0.1 gives an overview of the features to 
be tested and the criteria of successful tests. 

8.1 Testing	
  Environment	
  
The testing is going to be held on a clean installation prefilled with the data as shown in 
Appendix III and the testing environment as presented in Appendix IV. 

Table 8.0.1 Application landmarks and testing success criteria. 

Landmark Action Success criteria 

Email inte-
gration 

Adding a comment 
using Email channel. 

Comment is added to the task. Task is identified 
correctly using comments context. Comment is 
marked to be from source “Email”. 

Skype inte-
gration 

Adding comment 
using Skype channel. 

Comment is added to the task. Task is identified 
correctly using comments context. Comment is 
marked to be from source “Skype”. 

Business 
rules engine  

Creating task using 
Skype channel. 

Task is created. Project is identified correctly 
using comment’s context. 

Updating task in-
formation using 
Skype channel. 

Task information is updated. Task is identified 
correctly using comment’s context. 

Analytics Checking the 
Sources chart before 
and after adding the 
comment. 

Statistical information of Sources chart is up-
dated after analytics information is expired. 
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8.2 Email	
  Integration	
  
Email to be tested upon consists of the following information, as shown in table 8.2.1. The 
message, as it can been seen from the context, is expected to be added to Collatool project 
-> Remove stopwords from analytics words chart, presented on figure 8.2.2a 

Message is sent at 17:21, and the cron processed it at 18:00 (cron is set to be run every 
hour). 
After processing the message, message is successfully added to the task, as presented on 
the figure 8.2.2b. 

Table 8.2.1 Email integration test message 

Field Value 

To collatool@blueflex.eu 

From stanislav.kutasevits@gmail.com 

Subject Collatool stopwords 

Body The list of the stopwords to be removed is the following: 
"an, a, as, the, is, are, on ,in, into" 
the list is not complete, more words will come in the future 

 

 

 
Figure 8.2.2a Task before adding the email message 
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8.3 Skype	
  Integration	
  
Skype message to be tested upon consists of the following information, as presented in 
table 8.3.1. Message is expected to be added to Collatool project -> Remove stopwords 
from analytics words chart. 

Message is sent at 18:53, and hence the is almost no delays in Skype message listener (de-
fault value to check for the messages is every 5 seconds), the message is added to the task, 
as shown on figure 8.3.2. 

Figure 8.2.2b Task after adding the email message 

 

Table 8.3.1 Skype integration test message 

Field Value 

Message here are a few additional stopwords that should be removed from collatool 
analytics words chart: "within, without, upon" 

 



43 
 

8.4 Business	
  Rules	
  Engine	
  
For testing the business rules engine Skype messages with the content as presented in table 
8.4.1 are going to be sent. 

 
Figure 8.3.2 Task after adding the Skype message 

 

Table 8.4.1 Business rules engine test messages. 

Field Value 

Message i suppose we should duplicate the task in collatool about removing 
stopwords from analytics word chart to word cloud chart as well. 
Create task with title as Remove stopwords from analytics cloud 
chart, with description as Check that the stopwords are removed 
from the analytics cloud chart, with estimate as 4 hours. 

Message I also suggest to immediately update the status of the collatool task 
about removing stopwords from analytics cloud chart. set task sta-
tus as active. 
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First message added a new task to the project as shown on figure 8.4.2. 

Second message changes the status of the task to active, as shown on figure 8.4.3. 

Figure 8.4.2 Collatool project after adding a task 

 
Figure 8.4.3 Task after adding a message 
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8.5 Analytics	
  
Having the above-mentioned comments/messaged added through multiple channels the 
sources chart presents the following, as shown on figure 8.5.1. 

For testing purposes a sample message is going to be added via Drupal comment form, as 
shown on figure 8.5.2. 

 
Figure 8.5.1 Sources chart, global level 

 

 
Figure 8.5.2 Sample message adding via Drupal comment form 
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After message is added and statistical information is recalculated via cron, the sources 
chart looks as presented on figure 8.5.3. 

 	
  

 
Figure 8.5.3 Sources chart after message adding, global level 
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8.6 Minimal	
  System	
  Requirements	
  
The minimal system requirements are presented in the table 8.6 and are based on Drupal 
minimum system requirements69, RabbitMQ system requirements70 and Apache Solr sys-
tem requirements71. 

                                                
69 https://drupal.org/requirements 
70 https://www.rabbitmq.com/configure.html 
71 http://wiki.apache.org/solr/FAQ#What_are_the_Requirements_for_running_a_Solr_server.3F 

Table 8.6 Minimal system requirements 

Variable Value 

Disk space 500 MB 

RAM 2 GB 

Processor 1 GHz 

PHP PHP 5.2.5 or higher (5.3 recom-
mended) 

Database MySQL 5.0.15 or higher with PDO, 
PostgreSQL 8.3 or higher with PDO, 
SQLite 3.3.7 or higher 

Web server Apache 2.0 

Java 1.5 
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9 Conclusions	
  
The main goal of the thesis was to examine distributed agile development, identify the 
core problems and suggest a solution to those problems. The problems of the distributed 
software development were defined as following: fragmented project documentation, mul-
tiple communication channels and limited analytics functionality. To solve this problem a 
new collaboration tool, Collatool, has been developed. 

Developed tool tackles all of those three problems by keeping the project documentation 
(including the attached files) in a single place; allowing collecting the information from 
multiple communicational channels (Email and Skype) and thus keeping project documen-
tation organised; providing non-trivial analytical data using the descriptive graphs. 

As the application was developed as a prototype and by an effort of one-person team, it is 
not so much shaped to be used in the real life and might miss some functionality. There-
fore it cannot compete with real-life collaboration tools, many of which were closely ex-
amined in section 3.3 Existing Solutions. Yet despite of the lack of functionality, the de-
veloped tool has a number of unique features, which make it standing out. 
That, combined with the tackled and solved problems of the distributed agile development, 
allows considering the thesis together with the developed tool a success. 

9.1 Thesis	
  Contribution	
  
Thesis makes a contribution to the field of system integration by presenting a real-life ex-
ample of using messaging system to integrate multiple systems/platforms (Email, Skype). 
Besides that thesis justifies using the messaging system integration by giving and explana-
tion of how other systems/platforms can be easily integration into such kind of architec-
ture. 

Additionally thesis makes a contribution to the field of business intelligence by showing 
how some trivial development process data can be used to answer some non-trivial ques-
tions, which give the project managers much more insight about the project flow, team 
coherence and mood. 

Last but not the least thesis makes a general contribution to the software development field 
by demonstrating software development flow from the very beginning – business problem 
till the end – working software prototype, which solved that problem. 

9.2 Further	
  Work	
  
Thesis touches several large scientific areas and there is a great potential for further work 
in each of them. 

Software	
  Development	
  
Further work in software development field might involve enhancing the integration part 
by introducing more communication sources. That can be, for instance, issue register 
(GitHub issue reports), static web pages (project wiki pages), short message systems mes-
sages (SMS) etc.  

In addition, the business rules engine might be made more intelligent by enhancing its 
flexibility (supporting more languages, less strictness of the command formatting etc.) and 
extending the variety of commands. 
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Analytics part can benefit by removing the stop words (“the”, “a”, “as”, etc.) from word 
count and word cloud features. 

Business	
  Intelligence	
  
Further work in business intelligence might include gathering more data about the devel-
opment team (e.g. developers age, gender, nationality etc.), project (complexity, duration, 
estimations etc.) and the rest, which would allow using more complex and sophisticated 
analytical algorithms to reveal the hidden information.  
That information might potentially lead to a number of the significant conclusions, which 
not only make the developments process more efficient from business point of view but 
also consider the human factor to make the work as stress-free and comfortable for the 
people as possible. 

9.3 Live	
  Demo	
  
A live demo of the application can be accessed by the following URL: 

• http://193.84.27.159/collatool/public_html 
using the following credentials: 

• login: user 
• password: collatool1234 

The application supports the feature of integration to application general email (check is 
scheduled to run every hour): 

• collatool.demo@gmail.com 
Additionally application is listening to the incoming messages, which can be added using 
the enclosed CollatoolSkypeMessageListener application using the following information: 

• Server: 193.84.27.159 
• Port: 5672 
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Appendix	
  

I. Main	
  Page	
  Screenshot	
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II. Project	
  Page	
  Screenshot	
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III. Test	
  Data	
  

Field Value 

Project title Collatool 

Project description This project is about a collaboration tool – collatool. Which 
supports integration with email, Skype and other communica-
tional channels. 

  

Task title Remove stopwords from analytics words chart 

Task description This task assumes that the stopwords will be removed from the 
statistical function used in analytics words and analytics cloud 
charts. 

Task Estimation 3h 

Due date 30.06.2014 

Status On hold 

  

Project title CRM system 

Project description This system manages the relations with the customers allowing 
to quickly add, edit or change the information about the cus-
tomer. 

  

Task title Add relation between customers 

Task description This task assumes creating the relation between customers, so 
that it can be seen which customers are related to one another. 

Task Estimation 4h 

Due date 29.06.2014 

Status Active 
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IV. Test	
  Environment	
  	
  

Variable Value 

Operating system OS X 10.9.3  
2.7 GHz Intel Core i7 

16 GB 

PHP 5.2.24 

Java 1.7.0.25 

Apache 2.2.26 

MySQL 5.6.13 

Drupal 7.26 

Apache Solr 3.6.2 

RabbitMQ 3.1.5. 
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