
UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Software Engineering Curriculum

Stanislav Kutasevitš

Communication-oriented Project Manage-
ment Solution

Master’s Thesis (30 ECTS)

Supervisor: Siim Karus

Tartu 2014

2

Communication-oriented Project Management Solution
Abstract:

Growth of popularity of distributed software development makes development process
more adaptive and flexible in terms of human resources. But in order to sustain the process
there is an additional burden put on the communication between customer, team members
and project managers.

In the contemporary software development practice there exists a number of smart and
handy tools, which help making the communication more fluent and convenient. However
none of those tools tackle a problem of integrating multiple communicational sources into
a single tool.

This paper intends to present a solution to this problem by introducing a collaboration tool
for distributed software development. The collaboration tool will be oriented on integra-
tion of multiple communication sources and provide analytical information on software
development project.

Keywords:
Data integration, analytics, project management, distributed software development

Kommunikatsioonile orienteeritud projektijuhtimise lahendus
Lühikokkuvõte:
Hajusa tarkvaraarenduse populaarsuse kiire kasv muudab tarkvaraloomeprotsessi
kohanemisvõimelisemaks ja paindlikumaks inimressursside osas. Selleks, et hajusat
loomeprotsessi toetada, tekib kliendi, meeskonna liikmete ja projektijuhi vahel lisakoorem
kommunikatsiooni näol.
Kaasaegse tarkvaraarenduse praktikas eksisteerib hulk nutikaid ja mugavaid tööriistu, mis
aitavad muuta kommunikatsiooni mugavamaks ja ladusamaks. Kahjuks need riistad ei
tegele mitme kommunikatsioonivahendi integratsiooniga ühtseks töötavaks süsteemiks.

Töö eesmärgiks on pakkuda kirjeldatud probleemile lahendus. Töös kirjeldatakse loodud
koostöötamise tarkvara, mis on mõeldud toetama hajusat tarkvaraarendust ning mille
eesmärgid on erinevate kommunikatsioonivahendite andmete integratsioon ja
tarkvaraarenduse projektiga seotud analüütilise informatsiooni pakkumine.

Võtmesõnad:
Andmete integratsioon, analüütika, projekti juhtimine, hajus tarkvaraarendus

3

Table	
 of	
 Contents	

Acknowledgements ... 5	

1	
 Introduction ... 6	

1.1	
 Goal .. 6	

1.2	
 Customer .. 6	

1.3	
 Outline .. 6	

2	
 Problem ... 8	

2.1	
 Problem Definition ... 8	

Fragmented Documentation .. 8	

Multiple Communicational Channels ... 8	

Ignoring the Project Workflow Metadata ... 9	

2.2	
 Suggested Solution ... 9	

3	
 Related Work .. 10	

3.1	
 Distributed Software Development .. 10	

3.2	
 Data Integration .. 10	

3.3	
 Existing Solutions .. 12	

4	
 Design ... 14	

4.1	
 Requirements .. 14	

4.2	
 Class Diagram .. 15	

4.3	
 Architecture Decisions ... 15	

4.4	
 Choice of Tools .. 16	

Drupal .. 16	

Drupal Cron ... 17	

Messaging System ... 17	

Other Tools .. 18	

4.5	
 Graphical User Interface (GUI) ... 18	

5	
 Integration ... 21	

5.1	
 Email Integration .. 21	

5.2	
 Skype Integration ... 23	

5.3	
 Canonical Data Model .. 24	

5.4	
 Overall Architecture Overview .. 26	

6	
 Message Processing .. 28	

6.1	
 Classifying Message ... 28	

6.2	
 Business Commands Engine .. 29	

4

Fields Synonyms ... 30	

Business Commands Examples ... 31	

7	
 Analytics ... 32	

7.1	
 Used Tools ... 32	

7.2	
 Charts ... 32	

Activity .. 33	

Daytime Activity ... 34	

Sources .. 34	

User Activity ... 35	

Word Count ... 35	

Word Cloud ... 36	

7.3	
 Caching Mechanism ... 37	

7.4	
 Chart Building Sum-up .. 37	

7.5	
 End-user Value ... 39	

8	
 Testing ... 40	

8.1	
 Testing Environment .. 40	

8.2	
 Email Integration .. 41	

8.3	
 Skype Integration ... 42	

8.4	
 Business Rules Engine ... 43	

8.5	
 Analytics .. 45	

8.6	
 Minimal System Requirements .. 47	

9	
 Conclusions ... 48	

9.1	
 Thesis Contribution .. 48	

9.2	
 Further Work .. 48	

Software Development .. 48	

Business Intelligence ... 49	

9.3	
 Live Demo .. 49	

10	
 References ... 50	

Appendix ... 52	

I.	
 Main Page Screenshot ... 52	

II.	
 Project Page Screenshot .. 53	

III.	
 Test Data .. 54	

IV.	
 Test Environment ... 55	

V.	
 License .. 56

5

Acknowledgements	

I am highly indebted to my supervisor Siim Karus for his guidance, patience, professional-
ism and the valuable advices that helped bringing this Master’s thesis to its current level.
Next I would like to express my deepest regards to Bellcom and its unchallenged leader
Jørn Skifter Andersen for suggesting the initial idea, giving enough freedom for its im-
plementation and their kind co-operation.

Lastly I would like to take this opportunity to express my gratitude to HITSA and IT
Academy (ITA) for the scholarship grant that supported me throughout the entire study
period.

6

1 Introduction	

Software development is a complex process that requires intensive collaboration between
customer and software developers, and among the software developers themselves. It has
been established, that during the development process programmers actually spend about
60% of their time on communication [1, 2]. This time can be spent on discussing new fea-
ture with customer, figuring details of bug report, planning the future work etc.

Taking into account that distributed software development (DSD) is becoming a wide-
spread practice [3], it is not hard to predict that distributed software development (like
distributed agile development [4]) requires even more communication between develop-
ers. It has been discovered that distributed software development generally takes 2.5 times
more time [5].
Since the time spent on communication between regular and DSD has been increased it
can be concluded that most of the discussions that previously took place in the real life
now takes place online. This fact proves the importance of using the right tools for han-
dling the communication.

1.1 Goal	

The intention of this Master’s thesis is to investigate the existing problem of distributed
software development, study why the available collaboration tools are not sufficient at
solving the problem, suggest an alternative solution and develop it.

The result of this Master’s thesis will be a running application, that solves the mentioned
problem, and the thesis report starting from defining the problem, analysing the current
“state of the art”, explaining the design decisions and ending with describing the contribu-
tion of this Master’s thesis.

1.2 Customer	

The customer of this project is a company called Bellcom Open Source ApS1. Bellcom is a
Danish software development company, with headquarters located in Kolding (south of
Denmark). It consists of around 20 employees, most of which are developers. Bellcom is a
modern company, which uses distributed agile methodology to run its development pro-
cess.

1.3 Outline	

The further structure of the thesis is divided into 8 sections. Section 2 gives a basic intro-
duction to the thesis by defining the problem itself and briefly presenting the idea and
some of the key features of the suggested solution. Section 3 covers the related work by
presenting the current state of the art in distributed software development and integration
fields. Additionally the section gives a description and compares other collaboration tools,
which currently exist on the market. Section 4 presents initial steps of the development
process, which are requirements elicitation, design decisions and the choice of tools. Sec-
tion 5 describes the integration implementation between the application and communica-
tional channels – email and Skype, as well as gives an overview of the entire system inte-
gration design. Section 6 continues the previous section by explaining how the information
piece is processed after it is received by the application: how the matching between re-

1 http://bellcom.dk

7

ceived message and the existing content is done and how a message can change the exist-
ing content data. Section 7 looks into the analytical part of the application – how the gen-
erated and received metadata can be used for analytical purposes, which technologies and
techniques were used and what values does this give the end-user. Section 8 covers quality
assurance part by running a set of manual tests. Section 9 concludes the results of the the-
sis, identifies thesis contribution and speculates what future work can be done based on the
thesis.

8

2 Problem	

On one hand using distributed software development can give a company set of strong
benefits, such as reduced cost and staff liquidity. On the other hand, it produces additional
challenges, which can slow down the development process and reduce the quality of the
developed product.

2.1 Problem	
 Definition	

Fragmented	
 Documentation	

Oftentimes the documentation in the agile software development project has the accessory
role and is fragmented into multiple pieces. In general distributed software development
project in agile methodology produces the following communication artefacts:

• initial project description
• a set of task breakdowns (many of which have an extensive dialog with customer

clarifying the requirements)
• a collection of emails between customer and developer/project owner
• a collection of documents (official documents, development related files)
• instant messenger logs (as sometimes it is easier to get a hold of customer in IM

application rather than emailing)

This kind of fragmentation of a DSD project specification often results in a lack of a struc-
ture, which makes it especially challenging to be followed by managers or to be intro-
duced to a new person (e.g. new developer joining the team) [6, 7].
In order to get a complete overview of the project the manager (or other interested person)
would need go though all the tasks (user stories) including the comments and ask the de-
velopers in regards to latest emails/instant messages they received from the customer.

The severity of the problem is growing proportionally to the complexity of the project and
number of people it involves, not to mention the possibility of multiple customers, who in
some cases might provide contradicting requirements.
As a result, there is a fair chance that the DSD project has its specifications in many forms
and places (official documents with signatures, project wiki page, user story log etc.) and
is constantly updating with the new requirements. There is quite some manual work needs
be done in order to just keep everything consistent.

Multiple	
 Communicational	
 Channels	

A continuation of previous problem is the diversity of the communication channels be-
tween customer and the development team. Ideally all the customers would have to use a
single communicational channel, for example, use a common task-tracking tool, which has
all the information about the project. Yet many of the customers tend to do things their
own way, and instead of adding the comment under the specific task they can send an
email, write a comment in version tracking system or send an instant message. Those situ-
ations might happen because of multiple reasons, e.g. customer is not well aware of the
process, customer is trying to save his time, policy in the company forbids usage of exter-
nal task-tracking tools etc.

While for the customer this kind of behaviour does not seem causing many troubles, for
the development team the fact that requirements and changes are coming from multiple

9

sources creates a mess. Firstly, that is obligating the recipient of running the change by the
project manager, secondly, sharing the new information with the rest of the team, and
thirdly, including the updated/new requirements into the project documentation.
All in all this can lead to a troublesome development process and demoralized team.

Ignoring	
 the	
 Project	
 Workflow	
 Metadata	

Every incoming information piece that is related to the project (regardless of its origin) has
some metadata. The example of the metadata can be message author, recipient, date, at-
tached files etc.

Interrelation of the metadata between different messages is a poorly discovered area with a
great potential. The examination of the metadata can give an insight about multiple statis-
tical and analytical grains of the project. It can also give an answer to a number of interest-
ing questions, e.g. “During which phase is the customer participation most active?”,
“Which tasks are the most discussed?” etc.
At the moment there is no available tool that would allow running such kind of analysis on
the project, and doing it manually does not seem to be realistic due to an extra large num-
ber of variables.

2.2 Suggested	
 Solution	

The solution to overcome the problems mentioned above is introducing collaboration tool
with integration functionality. Tool will be oftentimes referred to its working title – Colla-
tool.
The tools should support storing documentation on the project in one single place, in order
to avoid fragmentation of the documentation.
Additionally the tool should serve as some analogue of chronicler that would systematical-
ly store (aggregate) every incoming and outgoing information piece. This “chronicler”
should be able to connect to potentially any source of information (be that email, IM-client
or maybe even SMS) and be able to retrieve the information for future uses.
As the information comes in many forms and shapes, the aggregator should be able to in-
terpret, translate and persist it in a uniform way. Also, as the information comes from dif-
ferent sources/platforms, the aggregator should support different methods of handling the
information (meaning both pull and push mechanisms).
Besides presenting the timeline (the timely ordered combined list of messages received
from different sources), the tool should also have a feature of automatic changing the in-
formation on either a project or task level.

Not to be neglected, the received information contains the metadata, which should be put
in use in the collaboration tool. The tool should provide an analytical insight to the project
flow in order to bring most value for the project managers.
The tool has to present the software project development information in a clean and under-
standable way - so that it is both approachable for user and brings the most value.

10

3 Related	
 Work	

As the suggested solution is tightly related to the concepts of distributed software devel-
opment and data integration, the related works of those fields are going to be used and
considered as the state of the art.

3.1 Distributed	
 Software	
 Development	

Abbattista et al. raise an issue, that combining agility and distribution is not that simple, as
distributed development goes against the very core principle of agile methodology – phys-
ical proximity (e.g. face-to-face communication) with both customer and development
team [8]. Bearing this issue in mind, Abbattista et al. perform an analysis of commonly
used social software types (blogs, wikis, social networking etc.) and the actual implemen-
tations of them, coming to the conclusion that social software is a valuable resource that
can improve the communication in distributed software development, assist knowledge
sharing, help building team and aid the development process in general.
Paasivaara et al. perform a case study, where the different agile practices (such as: daily
scrum meeting, weekly scrum meeting, sprint planning, retrospective meetings etc.) were
successfully used even with large projects with the teams distributed between location,
culture and time zone (Norway/Malaysia) [6]. During the case study the following chal-
lenges were met: technical (internet connection is slow/unreliable), communicational
(misunderstanding the requirements, cultural differences). In the end, however, Paasivaara
concludes that using agile with distributed software development was a positive experi-
ence.

3.2 Data	
 Integration	

Liu talks about the integration of email into a portal using AJAX (for fetching) and SSO
(for authentication) [9]. The portal is connected to the database using Telnet protocol. As a
backbone the application uses JSP (JavaServer Pages) that is connected with the mail
server.
Baccehelli et al. present a tool called Miller [10] that, according to the specification, sup-
ports the following functionality:

• import mailing lists
• manual interaction with emails (e.g. labelling)
• automating search for traceability links between email and code entities
• integrate email in IDE

For the email import (as it is the most related issue) Miler uses web crawler that is extract-
ing the information from MarkMail2 website, which performs a search in about 8800 mail-
ing lists.

Another example of the related work has been found in the publication by Zürich Software
Evolution and Architecture Lab work3. In the paper Fischer et al. raised an issue of miss-

2 http://markmail.org
3 http://www.ifi.uzh.ch/seal.html

11

ing connection between the subversion control system (CVS4 and the bug tracking system
(BugZilla tracking system5) on the example of Mozilla Web Browser6 [11].

In order to extract the information (with a further intention to analyse it) authors have used
the following approach - see Figure 3.2. While the actual results of the paper do not seem
to be directly connected with this project, the approach of retrieving the information from
different sources and storing it (so that it is most convenient to use for the future purposes)
allows to consider this paper as the related work and use as a starting point.

Chung explains the integration style based on passing messages between the integrated
applications [12]. This approach allows using centralized message server, which is respon-
sible for communication. Because of centralized message server the whole flow is flexible,
meaning that it is possible to easily add new applications to the flow as well as remove the
ones not needed.

Brown talks about other advantages that are brought by messaging-passing, those ad-
vantages can be listed as follows: adaptability, scalability, simplicity, efficiency etc. [13].

Banner gives an introduction to the concept called unified messaging [14]. Unified mes-
saging is aiming at removing the borders between different communication protocols (the
paper is mentioning short message service (SMS)7, multimedia message service (MMS)8,
email and instant messaging). Schreiner adds the voice exchange protocol [15] to the con-

4 http://ximbiot.com/cvs/manual
5 http://www.bugzilla.org
6 http://www.mozilla.org
7 http://en.wikipedia.org/wiki/Short_Message_Service
8 http://en.wikipedia.org/wiki/Multimedia_Messaging_Service

Figure 3.2 Approach of extracting the information from the subversion control system

and bug report system [11]

12

cept of unified messaging, which can convert the textual message to the voice format and
vice versa, to the communicational protocols. Using unified messaging approach commu-
nication is becoming homogenous to the end-user disregarding of which application the
recipient is using.

Wams et al. provide a theoretical solution to the unified messaging problem by introduc-
ing a middleware layer [16]. The middleware layer is implementing multiple strategies
(based on a number of connected protocols) to deliver the messages to the right channels.

3.3 Existing	
 Solutions	

While the range and variety of collaboration tools is quite extensive9 10, neither of those
tools seems to decently support information aggregation from multiple sources. The only
communicational channel some of the tools support is email. But even then the integration
is limited to simply receiving the email (and posting it), routing of which is handled via
different email addresses – each task has its own dedicated email, sending a message to
which would publish the content. A short description of the most popular collaboration
tools is provided below.
Assembla11 is a collaboration tool supporting such features as task/issue management,
code repositories, communication (messaging, file sharing, sharing code etc.), managing
team (time tracking, activity statistics etc.) as well as customer (multiple permission sets).
Assembla has an option of posting the message via email.
SourceForge12 is an environment for creating projects supporting issue tracking, team
communication, code repository, documentation and others with a focus on open source
projects. No integration seems to be possible.

Teambox13 is a collaboration tool with project management functionality (tasks assign-
ment, time tracking, etc.). Additionally it supports integration with Google Drive14, Drop-
box15, Box16 and email (posting the message via different emails).
JIRA17 is a collaboration tool with project management, code integration (embedded code
repository supporting commenting, reviews etc.) as well as a number of applications from
original Atlassian Marketplace18, which primary purpose is to extend the JIRA functionali-
ty and improve usability. JIRA also supports communication via emails.
Basecamp19 is a collaboration tool with rich project management functionality, supporting
many add-ons20, has integration with Google Drive.
LiveMinutes21 is a tool, which allow integration with some communicational/collaboration
applications: Evernote22, Skype (is limited to interacting with locally installed Skype pro-
gram by initiating audio calls).

9 http://en.wikipedia.org/wiki/List_of_collaborative_software
10 http://en.wikipedia.org/wiki/List_of_project_management_software
11 https://www.assembla.com
12 http://sourceforge.net
13 https://teambox.com
14 http://drive.google.com
15 https://www.dropbox.com
16 https://www.box.com
17 https://www.atlassian.com/software/jira
18 https://marketplace.atlassian.com
19 https://basecamp.com
20 https://basecamp.com/extras
21 https://www.liveminutes.com

13

FogBugz23 is a bug tracking system, which above else offers couple of interesting features
with a focus on integration:

• Customer email management
This represents storage for all customer emails with shared access, so that everyone
can track the communication with a single customer and communicate with a cus-
tomer from the shared email address.

• Webservice integration
This is an XML API, that allows manipulating system content via webservice re-
quests (e.g. create case, assign the person to a bug report etc.).

• URL triggering
Allows triggering the specified URL(s) on a certain events in the system with a set
of predefined parameters (depending on the event type). That represents another
side of the integration – giving the possibility for any other system implementing
webservice to listen to changes from FogBugz.

While FogBugz offers a few interesting decisions on integration level and is the closest
tool found to what this thesis is trying to achieve, there exists couple of strong arguments,
why FogBugz cannot solve the above-mentioned problems:

• FogBugz is bug tracking oriented, not task oriented, which sets number of limita-
tions in the workflow (e.g. task discussion, appending files etc.)

• FogBugz does have any statistical data on the project, which can later be used for
analytics

• FogBugz is an internal tool, which does not support involving the customer, which
goes against agile development principles and hinders the development process

22 https://evernote.com
23 http://www.fogcreek.com/fogbugz

14

4 Design	

Analysis of the existing solutions helps in seeing what is missing in those solutions and
therefore come up with a proper list of requirements that will both satisfy the customer and
bring the scientific value to the project.

4.1 Requirements	

This is no doubt that the project can be implemented in numerous ways. However there
have been given a couple of obligatory requirements from the customer that must be ful-
filled. Those pre-given requirements are presented below to emphasize on them:

• The solution for this project must be based on the web-interface, more particularly
Drupal content management system24.

• The application must be able to integrate with email communicational channel.
• The application must be able to integrate with Skype.

The rest of the requirements were elicited during multiple discussions with the customer:
1. Application:

a. Application should cover the notation of project, task and task comment.
With a hierarchy of project containing tasks and task containing task com-
ments.

b. Project should have a list of administrators, list of participants and list of
related files.

c. Task should have a status, due date, estimation and an assignee.
d. Comment should have an author and the published date.

2. Integration:
a. Besides the pre-given list of sources (Skype, email) application should be

potentially able to integrate with any information source (both static, for
example, static webpage and dynamic, for example, another IM-
application).

b. Unobtrusive integration with different platforms (loose coupling).
c. Supporting of both pull and push mechanism of retrieving the information.
d. Network failure awareness.

3. Data extraction requirements:
a. Tool should be able to match the extracted data with the existing content.
b. Tool should be able to identify multiple people involved in the communica-

tion (e.g. multiple customers, multiple developers etc.).
c. It should be possible to update the content of the project using the commu-

nicational channel (in an automatic or semi-automatic mode).
4. Analytics

a. Tool should provide statistical information about project flow using chart
notation.

b. Tool should provide statistical information about user activity using chart
notation.

c. Tool should provide statistical information about comment sources using
chart notation.

24 https://drupal.org

15

4.2 Class	
 Diagram	

As the development process was tightly conjugated with the research, the class diagram
was undergone multiple changes. While the final version of the class diagram can be seen
on Figure 4.2, the explanation of some of its non-trivial fields is saved to the dedicated
sections.

4.3 Architecture	
 Decisions	

As the application must to be integrated with multiple communicational sources it is cru-
cial to design a robust and flexible architecture that is capable of that.
There are many ways of how the integration part can be handled (shared databases, remote
procedure invocation, file transfer etc.) [17], however not all of them are possible in this
case mostly because of the inability to alter other application source code (for example,
Skype).
Based on that the messaging integration [17] seemed the most optimal choice. Messaging
integration is a concept of integrating different platforms by exchanging small packages,
called messages. The architecture of typical messaging system is presented on figure
4.3.125.

25 http://www.enterpriseintegrationpatterns.com/Chapter1.html

Figure 4.2 Application class diagram

16

The reasons for choosing messaging integration are the following:

• Platform/language independent
Contemporary messaging systems allow integration with practically any plat-
form/language.

• Asynchronous communication
The sender does not have to wait for the recipient to receive and process the infor-
mation, which increases the speed and removes the dependencies.

• Flexibility of the message size
From very small to large data exchange, which allows sending only the infor-
mation required and therefore reducing the traffic.

• Reliability
Contemporary messaging systems allow ensuring that the message is delivered by
sending the confirmation upon receiving.

• Flexibility
The messaging architecture supports adding more communicational into the flow
of message exchanging with reasonable effort.

• Scalability
Messaging systems are capable of scaling – increasing the number of messages to
be process in a period of time.

The integration with email and Skype using messaging system will be explained in details
in the section 5 Integration.

4.4 Choice	
 of	
 Tools	

Drupal	

As part of the pre-dictated user requirements, the web application has to be developed us-
ing Drupal.
Drupal is an open source content management system (CSM) and is built using PHP. Dru-
pal first release was in January 2001 by its original author Dries Buytaert. At the present
moment Drupal has had 7 versions and serves as a back-end system for more than 1.9% of
all the websites26.
Drupal as one of the leaders in CMS world is famous for its community, which contributes
a lot of efforts into making Drupal more and more efficient to use. These contributions are
eventually formed into so-called modules – ready functionality, that can be used by any-
one. There are a range variety of modules solving most of the generic problems. However,
not all of the modules are properly maintained, and not all of them are mature enough to

26 http://w3techs.com/technologies/overview/content_management/all

 Figure 4.3.1. Typical message system architecture

17

be used in production. So choosing a right modules is always a compromise between how
much can it do, how mature is it and how well it is maintained.

As any mature CMS Drupal provides a set of default functionality that can be used right
out of the box. This functionality is users (including authentication), creating and publish-
ing content and other.

Drupal	
 Cron	

Drupal Cron27 is part of the Drupal CMS, but since it is going to be referenced quite often,
its description seems necessary. In its essence Drupal Cron is a tool that allows scheduling
some processing job with different periodicity. Example of that could be sending email to
every subscribed user every hour.

Messaging	
 System	

There exist a number of messaging systems28, few of the most popular will be briefly ana-
lysed in this section.
RabbitMQ29 is an open-source messaging system implementing AMQP30 protocol. The
key characteristic of RabbitMQ is, as the official website claims, simplicity. That charac-
teristic is gained by the implementation of the broker pattern31, which makes RabbitMQ
easy to deploy and use. Broker pattern assumes queuing all the messages on central server
prior to sending them to the consumers. That gives broker pattern a couple of strong ad-
vantages (e.g. routing, load balancing etc.), but results in reduced scalability and loss in
speed of processing.
ZeroMQ32 is an open-source messaging system positioning itself as a lightweight messag-
ing system. It is designed for using in the situations where the high throughput is crucial,
e.g. like stock exchange applications.

ZeroMQ possesses a high flexibility, but is notorious for steep learning curve. Additional
drawback – is lack in build-in advanced messaging patterns33. However implementing
them manually using system’s high flexibility can solve that issue.

Apache ActiveMQ34 is an open-source messaging system implementing numerous ad-
vanced messaging design patterns. The main advantages of ActiveMQ are high perfor-
mance. It can be used in both server-client and peer-to-peer communication.
All of the mentioned messaging systems have clients with most common programming
languages, support cross-platform message exchange, have extensive documentation and
are actively maintained.

As there were no major functionality differences, which were crucial for bringing the pro-
ject to life, the one that offered the most simplicity - RabbitMQ has been chosen. Rab-
bitMQ offers neatly documented tutorials (available for multiple platforms), which al-
lowed using it almost right “out of the box”. Besides that there happens to exist a well-

27 https://drupal.org/cron
28 http://en.wikipedia.org/wiki/Category:Message-oriented_middleware
29 http://www.rabbitmq.com
30 http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
31 http://en.wikipedia.org/wiki/Broker_Pattern
32 http://zeromq.org
33 http://www.enterpriseintegrationpatterns.com/toc.html
34 http://activemq.apache.org

18

maintained module35 for Drupal, which support integration with messaging systems im-
plementing AMQP standard.

Other	
 Tools	

During the development process, it has been discovered that there is a need for more tools
for achieving one or another goal. To keep the report consistent, it has been decided to
introduce those secondary tools when they are first required.

4.5 Graphical	
 User	
 Interface	
 (GUI)	

As the graphical design is not a primary focus of the project and therefore allocated little
time for, it has been decided to reuse the existing GUI solutions as much as possible. Dru-
pal framework allows changing the design of the application by using a concept of
theme36. Among the range variety of available Drupal themes37, the one called Bootstrap38
has been chosen. Bootstrap theme is an adaptation of Bootstrap framework39, both of
which have the following features:

• Mobile first responsive design – takes no or little effort to make application re-
sponsive to different design layouts

• Rich collection of styles and elements40

The main goal is to make the GUI clean and simple, yet with awareness that none of that
should affect the usability. While developing the design the Eight Golden Rules of Shnei-
derman [21, 22] were used as the guidelines, while some of the rules were followed by
Drupal itself, following the others was a manual process:

• Strive for consistency
Every element on the page was created with the same set of styles and colours.
See Appendix I, Appendix II.

• Enable frequent users to use shortcuts
Every user can add unlimited number of shortcuts using Drupal build-in shortcuts
functionality. Figure 4.5.1 shows the shortcut functionality layout.

35 https://drupal.org/project/message_broker
36 https://drupal.org/documentation/theme
37 https://drupal.org/search/site/?f[0]=ss_meta_type%3Atheme
38 https://drupal.org/project/bootstrap
39 http://getbootstrap.com
40 http://getbootstrap.com/components

Figure 4.5.1 Shortcuts functionality

19

 Offer informative feedback
Every action in Drupal is followed by an information message, presented on the
top of the screen, as figure 4.5.2 shows.

• Design dialog to yield closure
Not applicable, as application does not have any multi-stepped user actions.

• Offer simple error handling
Drupal offers the internal field validation, on error an informative message is given
to a user, as figures 4.5.3a and 4.5.3b show.

• Permit easy reversal of actions
While adding content or posting the comment user has two ways of revising his or
her actions: proactive or reactive. Following proactive way user can preview the
content before publishing it, as figure 4.5.4a shows.
Reactive way allows user to edit the content after it has been published, as figure
4.5.4b shows.

Figure 4.5.2 Information message after creating a task

Figure 4.5.3a Validation error message on task creation page

Figure 4.5.3b Validation error field on task creation page

20

• Support internal locus of control
Every important (e.g. content deletion) asks for user confirmation, so user is never
loses control of what the application is doing, as figure 4.5.5 presents.

• Reduce short-term memory load
Not applicable, as application does not have any multi-stepped user actions.

Figure 4.5.4a Preview the content before publishing

Figure 4.5.4b Editing the published content

Figure 4.5.5 User confirmation prompt

21

5 Integration	

While some of the requirements provided by the customer are rather common and do not
involve any research, the description of their implementation is omitted from the thesis.
Integration part of the application, being the core functionality, involves both the research
and a number of important design decisions, and is explained in details.

5.1 Email	
 Integration	

Email is the first communication channel, which application has to integrate to.
Integration with email is possible in two ways:

• Push mechanism
This integration expects user to set up his/her email application to forward the
emails to a specific email address. The contemporary emailing systems (such as
Gmail41, Windows Live Hotmail42 etc.) allow users configuring advanced forward-
ing rules by creating custom filters43.
The benefit of this integration is that user has a full control over what is going out
from his/her mailbox. This can be seen useful when user is using his personal
email for communication, or when policy of the company forbids forwarding some
of the emails.

• Pull mechanism
This integration expects user to provide his credentials so that application itself can
access user’s email and fetch the latest email messages.
The benefit of this integration is a simple set-up for a user – there is nothing need-
ed to be done from the user side besides providing the credentials. This can be used
if user does not have much technical knowledge, and all of the communication is
allowed for reading by an automatic tool.

As both of the methods have some advantages and disadvantages, it has been decided to
let the user choose by implementing both of those methods.

The design of the email integration is presented on figure 5.1.

41 http://gmail.com
42 http://hotmail.com
43 https://support.google.com/mail/answer/6579

22

The descriptions of the email integration diagram are the following:

1. Cron job (scheduled to be triggered with some periodicity) is fetching the list of
user email credentials, which are:

a. Simple Mail Transfer Protocol44 (SMTP) server host and port
b. user email login
c. user email password
d. encryption method (if any)
e. timestamp of last check of that particular email address

2. Using the received credentials cron job is making an Internet Message Access Pro-
tocol45 (IMAP) request to each SMTP server for getting new emails. In order to get
only those email that are dated after the last check timestamp, IMAP request is
supplemented with the last check date. Unfortunately, the filtering in IMAP can be
done only with a precision of a day (it does not support hours, minutes and se-
conds), so if last timestamp was, for example, 27.02.2014 16:37, with IMAP re-
quest all the email dated after 27.02.2014 00:00 will be received.
The rest of the filtering – emails discarding is done using application logic.

3. Those user emails, which were set up by users, are forwarding messages to a
common email address of the collaboration tool at their own pace.

4. Based on the same mechanism as was described in 2, cron job is checking the
common email of collaboration tool.

5. All the messaged receiving from common of users’ own emails are delivered to
RabbitMQ server endpoint as an AMQP message.

44 http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
45 http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol

 Figure 5.1. Email integration diagram

23

5.2 Skype	
 Integration	

Skype is the second communicational channel, which application has to integrate to.
In contrast to the email integration, Skype has a peculiar feature that fundamentally reduc-
es the integration options: Skype does not store messages online. All messages of Skype
are kept locally in a small file – SQLite database46. More over there is absolutely no API
provided by Skype to ease a retrieval of the messages for the developers.

These limitations of Skype did not allow using pull mechanism for fetching the messages,
which only left an option of using the push mechanism.

The pushing of the messaging happens transparently for the end user after he installs a
developed plugin. As Skype is widely used application on many platforms47, it has been
decided to use cross-platform programming language that is supported on every popular
desktop operating system (Windows48, Linux49, OS X50) - Java51.

The intention of the plugin is to read the incoming/outgoing messages and send them to
the application backend. The plugin could have been made as a service to be running in
the background, but since it can be potentially classified as a spying program, it has been
decided to make its running state completely obvious for the user. It has also been as-
sumed that Skype account can only be used as a corporate account, which completely
eliminates any personal communication. However by clicking “Start” and “Stop” button
user can control when plugin is logging the user communication.
The application user interface is presented in figure 5.2.1.

The architecture of the Skype message listener plugin is presented in the figure 5.2.2.

46 http://www.sqlite.org
47 http://www.telecompaper.com/news/skype-grows-fy-revenues-20-reaches-663-mln-users--790254
48 http://windows.microsoft.com
49 http://www.linux.org
50 https://www.apple.com/osx
51 http://www.java.com

Figure 5.2.1 Skype message listener user interface

24

The descriptions of the Skype integration diagram are the following:

1. With the scheduled periodicity (set by user in “Run every” field, see Figure 5.2.2)
plugin connects to collaboration tool SQLite database.
After that plugin receives a timestamp, which represents either the moment when
user started the plugin (by clicking “Start” button) or timestamp of the latest mes-
sage fetched from the Skype database – in case plugin is running second or subse-
quent iteration.

2. After that plugin connects to SQLite Skype database. It fetches the last 500 mes-
sages starting for the received timestamp. It has been assumed that the amount of
messages per scheduled time does not increase amount of 500.

3. It has been noticed that if Skype application is running in parallel with the plugin,
plugin cannot connect to Skype database because Skype puts an exclusive lock on
it, which prevent from reading and writing the database.
To solve this issue and avoid waiting Skype to release the lock (which happens on-
ly after Skype application is closed), the temporary copy of the database is created
and plugin connects to it instead. The temporal copy has all the latest messages of
the original database (by the state of when the copy has been created), is lock-free
and exists only while reading is in progress. Moreover creation of it happens in-
stantaneously due to very small size of the original database (couple of mega-
bytes).
Fetching of the messages is done as describe in step 2.
After fetching is done, database copy is deleted.

4. Skype application is reading and writing to its original database without any
awareness of the running plugin.

5. The fetched messages delivered to RabbitMQ server endpoint as an AMQP mes-
sage.

5.3 Canonical	
 Data	
 Model	

As application is receiving the messages from multiple channels (currently: Email and
Skype), there is very little chance that the structure and the formatting of the received
message will be the same. It means that every communication channel would require cus-
tom piece of code for message processing. As the message processing does not seem to be
a trivial task (see 6 Message processing), the code for that is likely to be quite extensive
and complex. Having the similar code existing in multiple variations (for each message

Figure 5.2.2. Skype integration diagram

25

format) not only creates the code duplication, but also makes it much harder to do the
changes and/or corrections.

In order to avoid such issue it has been decided to use a concept of canonical format [17].
The idea behind it is to convert each message into a common (canonical) format and then
treat each message homogeneously, disregarding of its origin.
Figure 5.3.152 demonstrates the approach of canonical format.

This approach does not allow complete avoiding of writing the custom code, but amount
of custom code is shortened to minimum – its solely purpose is converting the custom
format into a canonical format. Therefore the advantages of the canonical data model can
be listed as follows:

• custom code is simple and short (in comparison with fully functional code for each
format)

• no need for the code change (all functional code changes take place on the higher
level)

The canonical format chosen for the message is presented in table 5.3.2.

52 http://www.enterpriseintegrationpatterns.com/Normalizer.html

Figure 5.3.1 Canonical data format approach

Table 5.3.2 Message canonical format

Field Description

external_id external id of the message, if any

sender email address or Skype identifier of the sender

receiver email address or Skype identifier of the recipient

date Date in the following format: dd.mm.yyyy HH:mm:ii, e.g.
24.03.2014 15:36:55

body Content of the message

source_type Skype, Email etc.)

meta meta information used for search purposes

26

While purpose of the other fields is obvious, the purpose of meta field has to be empha-
sized explicitly: the purpose of the meta field is to provide some data in free form that can
aid during search of the corresponding content (see 6.1 Classifying Message):

• For email message the meta data is extracted from previous messages, which come
as a quotation below the real message. Those previous messages have no value for
the application (assuming that content of those messages is already in the system),
but are a great aid for finding the corresponding content types, as they could poten-
tially contain many keywords.

• For IM messages there has not been found any meta data that can ease the search
of the content types.
However, in the future implementation some amount of previous IM messages can
be used to compose a metadata for a single message.

5.4 Overall	
 Architecture	
 Overview	

The overview of the entire integration architecture (including the AMQP design princi-
ples) is presented in figure 5.4.

The descriptions of the full integration diagram are the following:

Figure 5.4. Full integration diagram

27

1. When sending the AMQP messages, each of them is supplied with a special tag –
routing key, which lately allows distinguishing what is the message origin.

2. Based on the routing key, messages are forwarded to different queues.
3. Translator is fetching the message from the queue based in FIFO (first-in-first-out

principle), and changes the message to respect the canonical format, presented in
the paragraph 5.3 Canonical data model.

4. After translation all the messages are delivered to collaboration tool.
Besides robustness, the flexibility of the current architecture has to be mentioned. In order
to add another communicational source the only change that has to be done on the applica-
tion side is creating new queue and adding a custom translator.

28

6 Message	
 Processing	

Message processing is a continuation of integration part and is intended to explain how the
received by the application piece of information (a message) is matched against the exist-
ing content.

6.1 Classifying	
 Message	

In order to know how to process the message, every message received by the application
has to be matched with the corresponding content: either project or task. For doing this a
concept of full text search53 is used. The process of matching is presented in figure 6.1.

The description of the matching content diagram is the following:
1. On demand or with the scheduled periodicity full text search engine is indexing the

database of the application, making it possible to be later on searched using a text.
The engine used for indexing is Apache Solr54, along with Apache Solr Search55
for Drupal.
There are created search indexes for project and tasks (task’s comments are in-
dexed as part of the task). Indexing process consists of splitting text into separate
words, applying lowercase, removing plural form, omitting the stemming words
etc.
Apache Solr is indexing each field of the content with a possibility to set custom
weight (from 0.0 to 21.0) on each field. The custom weights are set on both project
and task fields:

• Title (21.0)
• Body (13.0)

Rest of the fields is left with default (1.0) weight.
2. The message is received by the application in a regular way (through messaging

endpoint).

53 http://en.wikipedia.org/wiki/Full_text_search
54 https://lucene.apache.org/solr
55 https://drupal.org/project/apachesolr

Figure 6.1 Matching content diagram

29

3. The query based on the received message is sent to full text search engine. The
search query consists of a concatenated message body and message meta fields
(see 5.3 Canonical data format). Upon search query it is possible to specify which
content types is expected as the result.

4. Search query, same as the indexing process, is put under number of transfor-
mations (lowering case, removing plural form etc.) and is compared against the in-
dexed content. Most relevant results (1 project and 1 task) are returned by the que-
ry, which are then considered to be the found entities.

Comparing found project and task can lead to the following scenarios:

• Perfect match: found task is part of the found project
• Partial match: found task is not part of the found project, or project is not found
• No match: task is not found

In case of the perfect match message is added as a comment to the corresponding task.
Partial match and no match ignore the received message.

Later on the concept of the partial match can be used to temporarily add the message to
multiple places, so that application moderator can decide which place is correct. Upon
confirming the right place for the particular comment – it will be deleted from the rest of
the places.

6.2 Business	
 Commands	
 Engine	

Part of the requirements was to be able to update the content via received messages in an
automatic or semi-automatic mode. In order to achieve that it has been decided to use the
concept of business rules engine [18] and natural language processing [19].
Business commands extraction process is shown on figure 6.2.0.1.

The diagram descriptions are the following:
1. The message is received by the application in a regular way (through messaging

endpoint).
2. Received message is sent to business command extractor.
3. Business command extractor processes the message by comparing it against the

number of regular expressions. The found commands are returned to the applica-
tion.

Figure 6.2.0.1 Business command extraction process

30

4. If the commands are found, business command extractor cuts them from the mes-
sage body (it can be useful for the full text search query for increasing the rele-
vance precision, see 6.1 Classifying message).

Currently application supports two types of commands: create and update. In order to im-
prove the user experience, and ease the control of the system the commands recognized by
the application are written in simple English. The following formats currently supported
presented in table 6.2.0.2.

Written in bold are the mandatory parts of the format (used for identifying and parsing the
command) and written in italic are the variables:

• context – is either task or project, it defines the level, which the command should
affect.

• field_name – is the name of the field, which should get updated.
• new_value – is the value, which the selected field should be set to. The value sup-

ports strings, number and dates.
Date parsing has been also made in intelligent way – there is no dependency on the
date format, the natural values such as today, tomorrow etc. are also supported.

The variables are extracted from the command with the various substring methods, which
are dependent on the string indexes of the mandatory parts.
“Create” command deliberately supports task context only, as it has been decided that pro-
ject creation requires manual actions. Additionally, create commands support unlimited
number of fields to be set, which are separated using the following separator “, with”.

Fields	
 Synonyms	
 	

Any language has multiple ways to express the same things, for example, the title of the
task can be called – name, subject, headline etc. Having that thought in mind, in order to
lessen the strictness of the requirements and give end-users more flexibility in writing the
commands it has been decided to use a list of aliases for each field name. That reduces the
number of mistakes and increases the overall application intelligence. The synonyms defi-
nition is presented in figure 6.2.1.
The mapping is done in an .ini file, which makes it very easy for the application adminis-
trators to extend. Each field is places under the group:

• simple
• text
• date

Table 6.2.0.2 Commands supported formats

Format Matching regular expression

set context field_name as new_value. \s?set (task|project) \w*(\w*)? as \w*(\w*)*\.

create task with field_name as
new_value, with field_name as
new_value.

\s?create task ((\,)?with \w*(\w*)? as \w*(
\w*)*)+\.

31

That decides how the field assigning should be handled by Drupal. Field can have unlim-
ited number of aliases consisting of one or several words.

Business	
 Commands	
 Examples	

This section gives the examples of the messages with business commands inline, syntax of
the business commands is highlighted:

“Hi, few clarifications about the conferences project. The hotel rooms list task is
going to take a bit longer. Set task estimate as 5 hours. Set task deadline as tomor-
row.”

This message updates the corresponding task estimation to 5 hours, and sets the deadline
to tomorrow.

“Regarding the booking process in the conferences project. I think we are going to
use another framework for that. Set task name as Use Angularjs for the booking.”

This message updates the corresponding task title to “Use Angularjs for the booking”.
“Note of the conferences project. Create task with title as Modify the reservation
process, with description as The modified process should now use AJAX to in-
crease the load time.”

This message creates a new task with title “Modify the reservation process” and descrip-
tion “The modified process should not use AJAX to increase the load time”.

Figure 6.2.1 Fields aliases
[text]

;Mapping for estimation

estimation = field_task_estimation

estimate = field_task_estimation

hours = field_task_estimation

;Mapping for body field

body = body

description = body

desc = body

[date]

;Mapping for due date

due date = field_task_due_date

due to = field_task_due_date

duedate = field_task_due_date

date = field_task_due_date

deadline = field_task_due_date

32

7 Analytics	

As the best way for presenting the information is by making a visual presentation of it
[20], it has been decided to create a chart representation of the application statistical data.
The solution does not operate too much of the numerical information, which can be used
for analytic purposes. Despite that, there is still some numerical data that can be used to
build non-trivial charts, for example:

• Received message date
• Number of messages (per user)
• Number of messages (per information source)

7.1 Used	
 Tools	

There exist quite a number56 of tools capable of drawing the informative charts. Here is
the list of most possible choices:

• D3.js57
• Highcharts58
• Chart.js59
• JSCharts60

As feature-wise the tools are rather similar, the choice has been mostly done on the degree
of integration with Drupal platform and the product license. Among everything Highcharts
has been chosen for a number of reasons:

• Good selection of chart types61
• Issued under Creative Commons Attribution-NonCommercial 3.0 License62
• Has a Drupal integration63
• Is based on JavaScript64, which allows it to be platform and device independent

Unfortunately, despite the good selection of charts Highcharts did not have a chart of type
word cloud. For that chart a free library JQCloud65 has been used.

7.2 Charts	

Using the application statistical information six chart types (presented in the following
sections) have been created, each of which is available for three levels of abstraction:

• Task – takes into account information regarding one particular task only.
• Project – takes into account information regarding all task of particular project.
• Global – takes into account information of all tasks of all projects.

56 http://en.wikipedia.org/wiki/Comparison_of_JavaScript_charting_frameworks
57 http://d3js.org
58 http://www.highcharts.com
59 http://www.chartjs.org
60 http://www.jscharts.com
61 http://www.highcharts.com/demo
62 http://creativecommons.org/licenses/by-nc/3.0
63 https://drupal.org/project/highcharts
64 http://en.wikipedia.org/wiki/JavaScript
65 https://github.com/lucaong/jQCloud

33

As there is the hierarchical structure in the solution, as shown on Figure 7.2.0.1

it possible to use the same approach for calculating the statistical information. The ap-
proach consists of creating only one piece of functional code per chart type – for task lev-
el. It involves looping though all the comments of the task and doing the required calcula-
tion.
In this case, another level of abstraction (global or project) simply means merging the cal-
culated result from multiple tasks. The approach can be formulated as presented on Figure
7.2.0.2.

Activity	

Activity chart presents the total number of comments received, disregarding of the origin,
grouped by date.

Example of the chart can be seen on Figure 7.2.1.

Figure 7.2.0.1 Solution hierarchical structure

Figure 7.2.0.2 Calculation approach

34

Daytime	
 Activity	

Daytime activity chart presents the total number of comments received in each day (disre-
garding of comments origin) grouped by day of the week and hours of the day. Inspiration
to this chart has been found on GitHub66.

Example of the chart can be seen on Figure 7.2.2.

Sources	

Sources chart presents the total number of comments grouped by their origin/source.

66 https://help.github.com/articles/using-graphs#punchcard

Figure 7.2.1 Activity chart, project level

Figure 7.2.2 Daytime activity chart, global level

35

Example of the chart can be seen on Figure 7.2.3.

User	
 Activity	

User activity chart presents the total number of comments grouped by the user.
The example of the chart can be seen on Figure 7.2.4.

Word	
 Count	

Word count chart presents the statistic on the used words – how many times each word has
been used in the text of the comments. In order to improve the output of the result the text
of the comments is put under few modifications:

1. Remove links using the regular expression filter.

Figure 7.2.3 Source chart, global level

Figure 7.2.4 User activity chart, task level

36

2. Remove any non-text characters using the regular expression filter (e.g. dots, co-
mas, slashes etc.).

Example of the chart can be seen on Figure 7.2.5.

Word	
 Cloud	

Word cloud chart is an extension of the Word count chart presented in paragraph 7.2.5. It
uses the same information – amount of each word, but presents it as a cloud of words with
different sizes, where size represents the weight/frequency of each word.

Example of the chart can be seen on Figure 7.2.6.

Figure 7.2.5 Word count, global level

Figure 7.2.6 Word cloud, global level

37

7.3 Caching	
 Mechanism	

Calculating any statistical information is an expensive task (in terms of the resources), and
doing this on visitor request means poor response time. Moreover, doing the very same
procedure for many users within the same timeframe is clearly a waste of resources. In
order to tackle these two problems a caching mechanism has been developed. Caching
mechanism allows to:

• Calculate the statistical information prior to user request and therefore drastically
reduce the page load time.

• Schedule the statistical information calculation and therefore manipulate caching
expiration.

• Serve the same statistical information to all users, as the information is independ-
ent on the logged in user.

For storing the cached data, a database table has been created with the structure described
in Table 7.3.

7.4 Chart	
 Building	
 Sum-­‐up	

In order to sum up sections 7.2 Charts and 7.3 Caching Mechanism and give reader a clear
understanding of how the chart building in combination with caching works, the workflow
is presented on Figure 7.4.

Table 7.3 Caching mechanism database table

Name Description

nid Stands for node ID – the internal ID of the context/abstraction –
task or project.

In case of global level 0 is set.

cached_data String representation of the cached data. Clarified in the next
section.

cached_data_type activity | daytime_activity | sources | user_activity | word_count

last_update Timestamp of the when the data has been gathered

38

The descriptions to the diagram are the following:
1. With the scheduled periodicity cron job starts calculate function (different for each

type of chart):
• Task level - For each single task
• Project level - For all tasks of each single project
• Global level - For all tasks of all projects

It has to be noted specifically, that the higher levels of abstraction do not depend
on the lower level, for example, when doing the calculation for project level, pre-
viously calculated task level statistical information is not reused and therefore the
calculation is repeated. Justification of that approach is the following:

• Calculation order is independent, which means that one can be run asyn-
chronously from another.

• Cron job runs seldom enough to neglect the extra resources load (it does
not make sense to recalculate the statistical information more often than
once an hour).

Alternative approach could be caching the statistical information for task level on-
ly, and later - on page request merge the results of different tasks (e.g. for project
level – all tasks from a particular project). Advantages of this approach are:

• Normalized structure
• Reduced time of cron job (due to lower number of calculation)

Whereas the disadvantages are:
• Increased time for each analytical page load (each request requires addi-

tional data manipulation and database read operations).
• Complex code for post-merging the result from multiple tasks

Figure 7.4 Chart building sum-up

39

The disadvantages outweigh the advantages of this approach mainly because re-
ducing time on each page request is much more important that saving time on oc-
casional cron job run, therefore this approach has not been chosen.

2. The received result (array) is converted into the string representation using
json_encode function67.

3. On page request the required cached data is extracted from the database as a string.
4. String is converted back to array using json_decode function68.

It has been assumed that everyone involved in the project has the permissions to see the
statistical project information.

7.5 End-­‐user	
 Value	

Capturing the information and visually presenting it to the end-customer using the men-
tioned charts allows answering the following set of questions:

1. Which of the project/task has been more discussed and when?
a. Can the discussion peaks and notches be justified by the requirements

changes, customer involving etc.?
2. When does the team spend most of their time discussing the projects?

a. Does the weakly SCRUM on Wednesday helps unload the online commu-
nication or on the contrary makes team spend more time on online commu-
nication?

3. What is the most preferred channel of communicating among the team members?
a. Does it make sense to invest in the new channel, or no one cares about it?

4. Who is the most active user and where?
a. Which ones are the most “chatty”: old gurus or newbies of the projects?

5. Which words are the most used among the discussion?
a. Is the overall mood of the team positive or negative – which words prevail?
b. How often does cursing happen in the project?

Generally speaking the analytical information provides a deep insight of the project and
people involved. Taking into account that the number and the variety of charts are practi-
cally unlimited, the analytical part of the application has a great potential to grow, evolve
and provide even more valuable information, which can be used by managers to improve
the personal/professional skills of their team members and the general workflow.

67 http://www.php.net/manual/en/function.json-encode.php
68 http://www.php.net/manual/en/function.json-decode.php

40

8 Testing	

It has to be mentioned that some parts of the application (for example, user registration,
content creation etc.) are provided by Drupal CMS and therefore testing them is out of the
scope of this thesis. Testing the rest of the application feature, those that are directly relat-
ed to the thesis goals, is going to be performed using an approach called exploratory test-
ing [23] suggested by Whittaker [24].

Exploratory testing is a type of manual testing where testers interact with the application
in any desired way with a purpose of discovering bugs. Compared to the traditional test-
ing, exploratory testing, allows tester to get an understanding of the application flow.
That is the reason this kind of testing has been chosen – make reader more familiar with
application workflow and summarize the main features.
In order to do that Whittaker’s approach called The Landmark tour [24] is going to be
used. Landmark tour implies selecting one landmark, reaching it and after that selecting a
new one, until all of the desired landmarks are visited. The metaphor of landmark will be
presented by an application feature, and metaphor of reaching a landmark – using applica-
tion to execute the feature’s functionality. Table 8.0.1 gives an overview of the features to
be tested and the criteria of successful tests.

8.1 Testing	
 Environment	

The testing is going to be held on a clean installation prefilled with the data as shown in
Appendix III and the testing environment as presented in Appendix IV.

Table 8.0.1 Application landmarks and testing success criteria.

Landmark Action Success criteria

Email inte-
gration

Adding a comment
using Email channel.

Comment is added to the task. Task is identified
correctly using comments context. Comment is
marked to be from source “Email”.

Skype inte-
gration

Adding comment
using Skype channel.

Comment is added to the task. Task is identified
correctly using comments context. Comment is
marked to be from source “Skype”.

Business
rules engine

Creating task using
Skype channel.

Task is created. Project is identified correctly
using comment’s context.

Updating task in-
formation using
Skype channel.

Task information is updated. Task is identified
correctly using comment’s context.

Analytics Checking the
Sources chart before
and after adding the
comment.

Statistical information of Sources chart is up-
dated after analytics information is expired.

41

8.2 Email	
 Integration	

Email to be tested upon consists of the following information, as shown in table 8.2.1. The
message, as it can been seen from the context, is expected to be added to Collatool project
-> Remove stopwords from analytics words chart, presented on figure 8.2.2a

Message is sent at 17:21, and the cron processed it at 18:00 (cron is set to be run every
hour).
After processing the message, message is successfully added to the task, as presented on
the figure 8.2.2b.

Table 8.2.1 Email integration test message

Field Value

To collatool@blueflex.eu

From stanislav.kutasevits@gmail.com

Subject Collatool stopwords

Body The list of the stopwords to be removed is the following:
"an, a, as, the, is, are, on ,in, into"
the list is not complete, more words will come in the future

Figure 8.2.2a Task before adding the email message

42

8.3 Skype	
 Integration	

Skype message to be tested upon consists of the following information, as presented in
table 8.3.1. Message is expected to be added to Collatool project -> Remove stopwords
from analytics words chart.

Message is sent at 18:53, and hence the is almost no delays in Skype message listener (de-
fault value to check for the messages is every 5 seconds), the message is added to the task,
as shown on figure 8.3.2.

Figure 8.2.2b Task after adding the email message

Table 8.3.1 Skype integration test message

Field Value

Message here are a few additional stopwords that should be removed from collatool
analytics words chart: "within, without, upon"

43

8.4 Business	
 Rules	
 Engine	

For testing the business rules engine Skype messages with the content as presented in table
8.4.1 are going to be sent.

Figure 8.3.2 Task after adding the Skype message

Table 8.4.1 Business rules engine test messages.

Field Value

Message i suppose we should duplicate the task in collatool about removing
stopwords from analytics word chart to word cloud chart as well.
Create task with title as Remove stopwords from analytics cloud
chart, with description as Check that the stopwords are removed
from the analytics cloud chart, with estimate as 4 hours.

Message I also suggest to immediately update the status of the collatool task
about removing stopwords from analytics cloud chart. set task sta-
tus as active.

44

First message added a new task to the project as shown on figure 8.4.2.

Second message changes the status of the task to active, as shown on figure 8.4.3.

Figure 8.4.2 Collatool project after adding a task

Figure 8.4.3 Task after adding a message

45

8.5 Analytics	

Having the above-mentioned comments/messaged added through multiple channels the
sources chart presents the following, as shown on figure 8.5.1.

For testing purposes a sample message is going to be added via Drupal comment form, as
shown on figure 8.5.2.

Figure 8.5.1 Sources chart, global level

Figure 8.5.2 Sample message adding via Drupal comment form

46

After message is added and statistical information is recalculated via cron, the sources
chart looks as presented on figure 8.5.3.

 	

Figure 8.5.3 Sources chart after message adding, global level

47

8.6 Minimal	
 System	
 Requirements	

The minimal system requirements are presented in the table 8.6 and are based on Drupal
minimum system requirements69, RabbitMQ system requirements70 and Apache Solr sys-
tem requirements71.

69 https://drupal.org/requirements
70 https://www.rabbitmq.com/configure.html
71 http://wiki.apache.org/solr/FAQ#What_are_the_Requirements_for_running_a_Solr_server.3F

Table 8.6 Minimal system requirements

Variable Value

Disk space 500 MB

RAM 2 GB

Processor 1 GHz

PHP PHP 5.2.5 or higher (5.3 recom-
mended)

Database MySQL 5.0.15 or higher with PDO,
PostgreSQL 8.3 or higher with PDO,
SQLite 3.3.7 or higher

Web server Apache 2.0

Java 1.5

48

9 Conclusions	

The main goal of the thesis was to examine distributed agile development, identify the
core problems and suggest a solution to those problems. The problems of the distributed
software development were defined as following: fragmented project documentation, mul-
tiple communication channels and limited analytics functionality. To solve this problem a
new collaboration tool, Collatool, has been developed.

Developed tool tackles all of those three problems by keeping the project documentation
(including the attached files) in a single place; allowing collecting the information from
multiple communicational channels (Email and Skype) and thus keeping project documen-
tation organised; providing non-trivial analytical data using the descriptive graphs.

As the application was developed as a prototype and by an effort of one-person team, it is
not so much shaped to be used in the real life and might miss some functionality. There-
fore it cannot compete with real-life collaboration tools, many of which were closely ex-
amined in section 3.3 Existing Solutions. Yet despite of the lack of functionality, the de-
veloped tool has a number of unique features, which make it standing out.
That, combined with the tackled and solved problems of the distributed agile development,
allows considering the thesis together with the developed tool a success.

9.1 Thesis	
 Contribution	

Thesis makes a contribution to the field of system integration by presenting a real-life ex-
ample of using messaging system to integrate multiple systems/platforms (Email, Skype).
Besides that thesis justifies using the messaging system integration by giving and explana-
tion of how other systems/platforms can be easily integration into such kind of architec-
ture.

Additionally thesis makes a contribution to the field of business intelligence by showing
how some trivial development process data can be used to answer some non-trivial ques-
tions, which give the project managers much more insight about the project flow, team
coherence and mood.

Last but not the least thesis makes a general contribution to the software development field
by demonstrating software development flow from the very beginning – business problem
till the end – working software prototype, which solved that problem.

9.2 Further	
 Work	

Thesis touches several large scientific areas and there is a great potential for further work
in each of them.

Software	
 Development	

Further work in software development field might involve enhancing the integration part
by introducing more communication sources. That can be, for instance, issue register
(GitHub issue reports), static web pages (project wiki pages), short message systems mes-
sages (SMS) etc.

In addition, the business rules engine might be made more intelligent by enhancing its
flexibility (supporting more languages, less strictness of the command formatting etc.) and
extending the variety of commands.

49

Analytics part can benefit by removing the stop words (“the”, “a”, “as”, etc.) from word
count and word cloud features.

Business	
 Intelligence	

Further work in business intelligence might include gathering more data about the devel-
opment team (e.g. developers age, gender, nationality etc.), project (complexity, duration,
estimations etc.) and the rest, which would allow using more complex and sophisticated
analytical algorithms to reveal the hidden information.
That information might potentially lead to a number of the significant conclusions, which
not only make the developments process more efficient from business point of view but
also consider the human factor to make the work as stress-free and comfortable for the
people as possible.

9.3 Live	
 Demo	

A live demo of the application can be accessed by the following URL:

• http://193.84.27.159/collatool/public_html
using the following credentials:

• login: user
• password: collatool1234

The application supports the feature of integration to application general email (check is
scheduled to run every hour):

• collatool.demo@gmail.com
Additionally application is listening to the incoming messages, which can be added using
the enclosed CollatoolSkypeMessageListener application using the following information:

• Server: 193.84.27.159
• Port: 5672

50

10 References	

[1] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “People, organizations, and
process improvement,” Software, IEEE, vol. 11, no. 4. pp. 36–45, 1994.

[2] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “Understanding and improving
time usage in software development,” Trends Softw. Softw. Process, vol. 5, pp. 1–
25, 1995.

[3] D. Herbsleb, J.D. and Moitra, “Global Software Development,” Software, IEEE,
vol. 18, pp. 16–20, 2001.

[4] M. Korkala and P. Abrahamsson, “Communication in Distributed Agile
Development: A Case Study,” in Software Engineering and Advanced Applications,
2007. 33rd EUROMICRO Conference on, 2007, pp. 203–210.

[5] J. D. Herbsleb and A. Mockus, “An empirical study of speed and communication in
globally distributed software development,” IEEE Trans. Softw. Eng., vol. 29, 2003.

[6] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Distributed Agile Development:
Using Scrum in a Large Project,” 2008 IEEE Int. Conf. Glob. Softw. Eng., 2008.

[7] H. Holmstrom, E. O. Conchuir, P. J. Agerfalk, and B. Fitzgerald, “Global Software
Development Challenges: A Case Study on Temporal, Geographical and Socio-
Cultural Distance,” in Global Software Engineering, 2006. ICGSE ’06.
International Conference on, 2006, pp. 3–11.

[8] F. Abbattista, F. Calefato, D. Gendarmi, and F. Lanubile, “Incorporating social
software into distributed agile development environments,” 2008 23rd IEEE/ACM
Int. Conf. Autom. Softw. Eng. - Work., 2008.

[9] X. L. X. Liu, L. L. L. Liao, Y. D. Y. Duan, and B. Y. Bin Yang, “Email information
integration with SSO in portal service based on AJAX,” Comput. Appl. Syst. Model.
(ICCASM), 2010 Int. Conf., vol. 12, 2010.

[10] A. Bacchelli, M. Lanza, and M. D’Ambros, “Miler: a toolset for exploring email
data,” 2011 33rd Int. Conf. Softw. Eng., pp. 1025–1027, 2011.

[11] M. Fischer, M. Pinzger, and H. Gall, “Populating a Release History Database from
version control and bug tracking systems,” Int. Conf. Softw. Maintenance, 2003.
ICSM 2003. Proceedings., 2003.

[12] C.-M. C. C.-M. Chung, Y.-H. W. Y.-H. Wang, G.-C. H. G.-C. Hsieh, W.-C. L. W.-
C. Lin, and Y.-F. K. Y.-F. Kuo, “Tools cooperation in an integration environment
by message-passing mechanism,” Proc. Eighteenth Annu. Int. Comput. Softw. Appl.
Conf. (COMPSAC 94), 1994.

51

[13] A. W. Brown, “Control integration through message-passing in a software
development environment,” Software Engineering Journal, vol. 8, no. 3. pp. 121–
131, 1993.

[14] C. M. Banner, “Understanding Unified Messaging,” IT Prof., vol. 12, 2010.

[15] K. Schreiner, “Unified Messaging: Will It Finally Meet Its Promise?,” IT Prof., vol.
9, 2007.

[16] J.-M. S. Wams and M. van Steen, “Unifying user-to-user messaging systems,”
IEEE Internet Comput., vol. 8, 2004.

[17] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. 2003, p. 736.

[18] F. Rosenberg and S. Dustdar, “Design and implementation of a service-oriented
business rules broker,” Seventh IEEE Int. Conf. E-Commerce Technol. Work., 2005.

[19] T. Patten and P. Jacobs, “Natural-language processing,” IEEE Expert, vol. 9, 1994.

[20] L. M. Fadel and M. C. Dyson, “Comparing a text- and visual-based interface
presenting social information in an online environment,” Vis. Lang. Human-Centric
Comput., 2006.

[21] B. Shneiderman, Designing the User Interface: Strategies for Effective Human-
Computer Interaction, vol. 9. 1998, p. 639.

[22] B. Shneiderman, “Designing for Fun: How Can We Design User Interfaces to Be
More Fun?,” Interactions, vol. 11, pp. 48–50, 2004.

[23] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer Software Second Edition.
Dreamtech Press, 2000.

[24] J. A. Whittaker, Exploratory Software Testing: Tips, Tricks, Tours, and Techniques
to Guide Test Design. Pearson Education, 2009.

52

Appendix	

I. Main	
 Page	
 Screenshot	

53

II. Project	
 Page	
 Screenshot	

54

III. Test	
 Data	

Field Value

Project title Collatool

Project description This project is about a collaboration tool – collatool. Which
supports integration with email, Skype and other communica-
tional channels.

Task title Remove stopwords from analytics words chart

Task description This task assumes that the stopwords will be removed from the
statistical function used in analytics words and analytics cloud
charts.

Task Estimation 3h

Due date 30.06.2014

Status On hold

Project title CRM system

Project description This system manages the relations with the customers allowing
to quickly add, edit or change the information about the cus-
tomer.

Task title Add relation between customers

Task description This task assumes creating the relation between customers, so
that it can be seen which customers are related to one another.

Task Estimation 4h

Due date 29.06.2014

Status Active

55

IV. Test	
 Environment	
 	

Variable Value

Operating system OS X 10.9.3
2.7 GHz Intel Core i7

16 GB

PHP 5.2.24

Java 1.7.0.25

Apache 2.2.26

MySQL 5.6.13

Drupal 7.26

Apache Solr 3.6.2

RabbitMQ 3.1.5.

56

V. License	

Non-exclusive licence to reproduce thesis and make thesis public

I, Stanislav Kutasevitš (date of birth: 14.07.1989),
(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:
1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of
the copyright,

of my thesis

Communication-oriented Project Management Solution,
(title of thesis)

supervised by Siim Karus,
(supervisor’s name)

2. I am aware of the fact that the author retains these rights.
3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 26.05.2014

