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Web Application to Calculate Genetic Risk Scores Based on Imputed Data 

Abstract 

The falling cost of genotyping has made feasible to include genetic information to national 

healthcare system. Estonia is one of the few countries that have great potential of converting 

this information into a everyday tool for clinicians, who then would be able to make more 

informed decisions related to their patient’s health. Estonian Genome Center, University of 

Tartu (EGCUT) is one of the institutions that is working on creating new risk prediction 

models based on genetic information. Researchers in EGCUT have created models to evaluate 

the risk for polygenic disorders. Current thesis focuses on development of a software that 

would enable fast application of these risk prediction models to collected genetic data and 

visualization of the results together with clinical data. 

CERCS:  

B110 - Bioinformatics, medical informatics, biomathematics, biometrics 

Keywords: 

Scala, Play framework, Akka, MySQL, Apache Spark, Apache Cassandra, compression, 

imputed data, polygenic risk prediction models. 
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Veebipõhine lahendus imputeeritud andmete põhjal geneetiliste 

riskiskooride arvutamiseks 

Lühikokkuvõte 

Viimastel aastatel on genotüpiseerimise hinna langus teinud võimalikuks geneetilise 

informatsiooni lisamise tervishoiusüsteemi. Eesti on üks vähestest riikidest, kellel on 

võimekus muuta see informatsioon arstide jaoks igapäevaseks tööriistaks, kes saaksid seeläbi 

teha paremini informeeritud otsuseid oma patsientide kohta. Tartu Ülikooli Eesti 

Geenivaramu (EGV) on üks asutustest, kes töötavad geneetilise info põhjal uute haigusriskide 

ennustamise mudelite kallal. Teadustöö EGV-s on loonud erinevaid mudeleid polügeensete 

haiguste riskide hindamiseks. Selle magistritöö käigus esitame tarkvara, mis võimaldab 

ennustusmudelite kiiremat väljatöötamist ja arenduse käigus tehtud katsetusi. 

CERCS: 

B110 - Bioinformaatika, meditsiiniinformaatika, biomatemaatika, biomeetrika 

Võtmesõnad: 

Scala, Play framework, Akka, MySQL, Apache Spark, Apache Cassandra, pakkimismeetodid, 

imputeeritud andmed, polügeensed riskiskoorid.
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1 Introduction 
The genomics research over the past decades has yielded a growing number of sequence 

variants associated with health conditions that may have clinical utility. Despite some 

unresolved problems, like the large proportion of “missing heritability”, attention is turning to 

strategies that integrate this data into clinical care. Large biobanks with an opportunity to 

contact their participants, ongoing access to participants health records and permission to 

intervention can be a a good model to study this clinical utility [1]. Estonian Genome Center, 

University of Tartu (EGCUT) is a population-based biobank founded in 2001. Since its start 

in 2001, EGCUT has collected biological samples and electronical questionnaires for more 

than 52 thousand adult volunteers from all 15 counties in Estonia [2] covering 5% of the 

entire population in Estonia [3]. Volunteers signed a broad agreement form giving EGCUT 

permission to gather additional info from different national health registries and permission to 

re-contact them in the future [4]. There is genotyping microarray data available for 20,000 

individuals and in 2015 governmental funding enabled sequencing whole genomes of 2 400 

samples with high coverage, to support the use of genetic research in attempt to improve 

public health. 

1.1 Motivation 
The population health related research requires not only data availability, but also software, 

enabling effective use of this data. The EGCUT data bank contains structured clinical data 

together with risk prediction models developed by EGCUT researchers, but is still missing a 

software for combining those resources into a one working environment to support 

collaboration of different interest groups. The aim of current thesis is to create a software 

solution for combining existing data with scientific results into a tool enabling calculation of 

disease risk and visualization of results in user-friendly format. 

1.2 Layout of the thesis 
Thesis is divided into introduction, 3 main chapters followed by summary, bibliography and 

appendixes. 

Chapter 2 focuses on the theoretical background of calculating risk for genetic disorders. We 

introduce different subgroups of genetic disorders, determine the motivations to use imputed 
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genomic data in the context of genetic risk calculation. In the end of the chapter more detailed 

description is given for calculating polygenic risk scores based on imputed genomic data. 

In the Chapter 3 we describe the development of architecture for current solution, aimed to 

improve usability of imputed genomic data for polygenic risk score calculation. 

Chapter 4 starts with an overview of frameworks used in the created software then describes 

the main components of the solution and finishes with an overview of similar solutions in the 

area of improving usage of imputed genomic data and genetic risk evaluation. 

Appendixes contain manual to setup Apache Spark with LZO compression support, example 

code to use Apache Spark for working with LZO compression, example code how the 

calculation of a single marker effect is done, created database model and MySQL 

configuration file.  
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2 Domain description 
This Chapter aims to give background information to better understand genomic data used in 

this thesis and an overview of different types of genetic disorders. Chapter ends with a more 

detailed description of implemented genetic risk evaluation model for multifactorial genetic 

disorders. 

2.1 Biological background 
Human genome is the genetic material of an organism, that is coded by four nucleotides: 

cytosine (C), guanine (G), adenine (A), or thymine (T). Human genome is divided into 

chromosomes that are the double helix molecules, where the chains(strands) of a helix are 

held together by weak thermodynamic forces. Those forces always connect the A with T and 

G with C, this is known as a principle of complimentary. The chromosomes in human genome 

are paired (excluding the X and Y chromosomes), having maternal and paternal copies. The 

nucleotides observed in a certain genomic position (i.e. locus) of both chromosome copies 

define the alleles in this position. Both alleles (i.e. pair of alleles) define the genotype value in 

that position(s).  

In this thesis we describe genetic differences between individuals based on single nucleotide 

polymorphisms (SNPs). SNP is a genetic variation with a minor allele frequency at least 1% 

in population in which a single nucleotide (A, T, C or G) in the genome differs between 

members of a biological species or paired chromosomes [5]. Additionally, the current thesis 

only uses bi-allelic SNPs, thus each SNP has three possible genotype values. For example, if 

we have allele values A and B, the genotype in that position can be AA, AB, and BB. These 

genotypes are called as homozygous to allele A, heterozygous and homozygous to allele B. 

2.2 Genomic data 
Figure 1 gives visual representation of genomic coverage of different genomic data. Reference 

genome is a digital nucleic acid sequence database, assembled by scientists as a representative 

example of a humans' set of genes [6]. Next generation sequencing technologies often use 

reference genome in a process called alignment where during sequencing, DNA is split into 

smaller fragments called reads and later these reads are combined into a whole sequence [7]. 

During comparison of genetic data is important to know which version of reference genome 

was used during alignment since any errors in the reference genome affect the quality of 
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aligned data. Whole sequences would be the best representation of human DNA to study 

genomic differences between individuals. Whole genome sequences cover approximately 98% 

of the genome, that is about 3 Billion different base pairs1 consisting of complimentary 

nucleotides A-T or C-G. Rest of the sequence is difficult to align with current technologies. 

Unfortunately, costs for generating full sequences is still at least a degree more expensive than 

for genotyped data. Software solution created for current thesis is using imputed data, that is 

derived analytically based on reference haplotypes and statistical algorithms. 

 

Figure 1 - Types of genetic data. 

Genotyped data is a fixed set of positions from the whole genome. These positions are usually 

selected from previously identified SNPs. The number of genotyped SNPs on a DNA 

microarray can vary from few hundreds to few millions depending on microarray2 selected.  

2.2.1 Imputed data 

Genotype imputation is now an essential tool in the analysis of genome-wide association 

scans. The technique allows geneticists to accurately evaluate the evidence for association at 

genetic markers that are not directly genotyped [8]. This can be done due to linkage 

disequilibrium (LD) between genetic variants, which are located close to each other in a 

chromosome. Using phased genotyped data and sequenced reference haplotypes covering the 

same area, we can impute missing positions. As there can be several different reference 

haplotypes fitting into our genotype data, imputed positions are described as probabilities of 

genotypes: P(AA), P(AB), P(BB). 

EGCUT has used Illumina OMNI microarray for genotyping with 770 thousand positions. By 

using 1000Genomes3 reference panel, the number of variants increases to 38 million.  

                                                
1 https://tandem.bu.edu/knex/base.pairs.knex.html  
2 http://en.wikipedia.org/wiki/DNA_microarray  
3 http://www.1000genomes.org/data  



 

 

10 

2.3 Genetic disorders 

2.3.1 Monogenic disorders [9]  

There are many studies describing the monogenic disorders and methods used for risk 

prediction. Monogenic diseases are divided into subgroups, such as autosomal, X-linked, 

mitochondrial inheritance and imprinted genes. Those disorders are resulted by a single 

defective gene, where the autosomal diseases occur on autosomal4 chromosomes and X-

linked – on the X chromosome. Mitochondrial diseases, also known as mitochondrial or 

maternal inheritance, occur within the genes in mitochondrial5 DNA. Diseases caused by 

imprinting of genes differ from previously described by the fact that their effect depends, 

which parent this gene is inherited.  

There are more than 4000 known diseases caused by single-gene defects [10].  Some 

examples of the monogenic diseases would be cystic fibrosis, Huntington’s disease, 

hemophilia and red-green color blindness. 

Risk evaluation for monogenic diseases involves the detection of know causal mutations in 

the DNA followed by the evaluation of the effect of those mutations. 

2.3.2 Chromosomal aberrations 

The disorders that arise due to the absence of a particular chromosome, presence of an 

additional chromosome or due to structural anomalies (deletions, duplication or translocation) 

in a chromosome are termed chromosomal disorders [11]. 

Chromosomal aberrations usually have severe and life-long symptoms. One of the most know 

structural chromosomal aberration is Down syndrome, caused by trisomy of all or part of 

human chromosome 21 [12]. Williams syndrome for example, is the result of a deletion of the 

7q11.23 region of chromosome 7 containing the elastin gene and is believed to be a 

contiguous gene syndrome [13]. 

2.3.3 Multifactorial disorders 

Multifactorial disorders, also known as complex or polygenic disorders involve many genetic 

variants across the genome and are often coupled with environmental factors. Figure 2 shows 

a multifactorial disease model. Since birth, every person has a risk for a disease based on his 

                                                
4 Autosome is a chromosome that is not a sex chromosome [26]. 
5 Cell organelle 
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or her genetic variants. During life, environmental factors, will raise or lower the probability 

of disease manifestation. 

 

Figure 2 - Polygenic disorder (visualization created by Krista Fischer6). Stage 1 – At birth individual has 
some genetic background, which determines part of the disease risk (genetic predisposition). Stages 1-4 – 

during life individual is exposed to certain environment and he/she makes different which can increase the 
disease risk (environmental factors). State 5 – If certain amount of disease causing factors have 

accumulated a disease manifests.  

With multifactorial disorders genetic factors cause disease manifestation in one person and 

not in another if they both make almost identical lifestyle choices. For this type of diseases 

knowledge about genetic disorders can motivate individual to correct their lifestyle and 

reduce the risk of illness. 

One of the most studied polygenic diseases is Type 2 Diabetes (T2D). It is estimated that in 

2015 there was about 39,7 million people with diabetes living in USA, causing 373.7 billion 

dollars in medical and indirect societal cost [14]. There are several well-known factors 

identified for T2D like age, sex, obesity and central obesity and low physical activity that are 

actively used for prediction [15]. Adding genetic risk to existing prediction models can help 

with a more targeted prevention and bring down prevention costs [16].  

2.4 Genetic risk evaluation for multifactorial disorders 
One way to calculate genetic risk for polygenic disorders is using polygenic risk score, where 

SNPs are combined into a score	(#$%&). There are two commonly used methods to calculate 

polygenic risk score. Unweighted method expressed as a function, 

	#$%& = 	 )**+*+_-./)0+1,&

3

145

 

                                                
6 https://www.etis.ee/Portal/Persons/Display/7c9ac8d0-9216-422f-80c1-8a8e2740198b?tabId=CV_ENG  
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and weighted method expressed as a function, 

#$%& = 61 ∗ )**+*+_-./)0+1,&

3

145

 

where #$%& is the polygenetic risk score for given individual j, N – the total number of the 

markers, i – index of the marker in the model, 68- estimated regression parameter obtained 

from GWAS study for marker i. 9**+*+_-./)0+1,& – calculated allele dosage.  

For genotyped data we can count the )**+*+_-./)0+1,& for bi-allelic SNPs AA, AB and BB as 

0, 1, 2 or 2, 1, 0 depending on whether we want the count for A or B. When imputed data #1,& 

is used then )**+*+_-./)0+1,&  for B allele is defined as 

)**+*+_-./)0+1,& = 	0 ∗ ;(99)1,& + 1 ∗ 	;(9>)1,& + 2 ∗ 	;(>>)1,& 

In a pre-published study researchers showed for T2D [16], that weighted #%$& can be further 

improved by reducing bias caused by a “winners curse”. A “winners curse” phenomena can 

be observed, when one systematically selects SNPs with effect overestimated by chance. In 

this case 68 is represented as 

68 = 	68,@A8B ∗ 	C.+D1 

Where 61,@A1B is the weight estimation from the original GWAS study and C.+D1 probability 

that the SNP belongs to the set of E SNPs with strongest effect size (E can be selected 

according to some estimate of the number of SNPs with true effect on the phenotype). An 

estimate	 F1(E) for this probability is obtained by sampling new estimates for 61 from a 

simulated normal distribution G(61 , H/1I) for each J and empirically estimating the proportion 

of times each SNP belongs to the “top E” SNPs using a Wald type statistic. In created 

software we implemented algorithm to calculate double weighted polygenic risk scores.  

Same algorithm can be used to calculate single-weighted method by replacing C.+D1 with 1.0 

and when unweighted method is needed 61 with 1.0.  

After determining #%$& for every individual, there is a second issue to be solved, estimation 

of thresholds that separate individuals into groups with similar susceptibility for the disorder. 

In the created software we divide individuals into three groups Low, Medium and High risk, 
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corresponding to scores ranging from lowest to average, average to highest decile and highest 

decile. There are also methods where these regions are reported as deciles [17]. 

2.5 Double weighted polygenic risk score calculation with 

Impute2 data 
The process of GRS calculation consists of 4 main operations: 1 - combine markers defined in 

the model with imputed data, 2- calculate single marker effect for all of the individuals, 3 -  

sum calculated effects across different markers for each individual and 4 - store the results.  

This process has two inputs, a table for the model with structure shown in Figure 3 and 

imputed genotypes in Impute2 format [18]. IMPUTE2 formatted genotype data is stored using 

zlib compression algorithm to about 60 gigabytes for 8117 individuals. 

Name Effect 

allele 

Ref 

allele 

Chromosome Position Beta Coefficient EAF 

rs40 A G 1 1000 0.08 1 0.9 

rs60 T C 10 12456789 0.1 0.1 0.1 

Figure 3 – Table – Markers used in a model. Name – name of the marker. Effect allele – allele causing the 
effect. Ref allele – second allele for that marker. Chromosome - chromosome of marker in the initial 

GWAS. Position – position of the marker in the initial GWAS. Beta – Beta estimation in the initial GWAS. 
Coefficient – probability in double weighted polygenic risk score. EAF – Effect allele frequency in initial 

GWAS. 

During risk score calculation the effect allele and strand have to be matched between model 

markers and imputed data before single marker effect can be calculated.   

 

Figure 4 - Risk calculation pipeline. 1 – Combine together markers from the model and imputed data. 2.1 
– verify the quality of this pair [Appendix 2. 23-52]. 2.2 – calculate marker effect for each individual 
[Appendix 2. 88-134]. 3 – Sum individual’s marker effects across different markers. 4 – Store results. 

In this pipeline we decided to integrate this operation into the calculation pipeline as a quality 

control step because we did not want to change any of the inputs for the reason we cannot 
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predict future inputs. Overview of the calculation pipeline is shown in Figure 4. Code 

example, given in Appendix 2 contains all the details.  
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3 Development of system architecture 
The objectives for this thesis were to find a solution to speed-up polygenic risk calculation 

and also provide better access to EGCUT data as well as simple interpretation of results for 

the non-expert user. Objective is to free time spent by researchers on calculations that can be 

automated and parallelized to interpreting the calculated scores or work on how created 

predictions should be presented in a clinical context. 

The first problem encountered after providing users the means to store new polygenic risk 

models in the created software, was joining markers in the model with their counterparts in 

imputed data during calculations. This step requires fast random access to the imputed 

markers from all over the genome and the current storage method was not optimized for this 

task. 

The second issue was how to manage these calculations in an environment where many of 

them could be run in parallel. This would cause overuse of system resources and block the 

work for everyone working on the system. 

In this chapter we show the research we did to improve our system in an effort to find ways to 

optimize different parts of the system with a focus on risk score calculation. Exact 

implementation of software is detailed in Chapter 4. 

3.1 Compression algorithm selection 
Filtering imputed markers from a single chromosome file takes about 20min and in total 

8hours if done sequentially. The next step would be to parallelize by the number of 

chromosome files, but 20min was still a lot of time considering the system may contain 

several models each needing different markers. These operations would then have to run one 

after another since they otherwise would consume all the system resources since the operation 

is CPU bounded. Investigation into compression algorithms revealed that zlib is not optimized 

for fast decompression and random access.  

Zlib library uses DEFLATE compression [19]. DEFLATE compression is standardized by 

RFC1951 and it states that DEFLATE combines LZ77 algorithm and Huffman coding. Each 

block consists of two parts: a pair of Huffman code trees that describe the representation of 

the compressed data part, and a compressed data part [20]. Usage of Huffman code trees gives 
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it one of the best compression ratios, but also makes it more complex and increases 

decompression time.  

Snappy7, lzo8 and lz49 use LZ77 algorithm with each having their own implementation of 

storing offsets to previously decompressed data. Out of these formats snappy does not have 

any command line tools and we decided not to spend any time to investigate it further. 

Lzo is an older and more stable implementation compared to the others. Command line tests 

show that lzo is remarkably faster than zlib, 12 min on one chromosome in the command-line 

and in total 4.6h if done sequentially. Lzo compression ratio is worse than zlib and the size of 

genomic data will increase from 60GB to 137GB. 

lz4 has some incompatibilities between different programming languages and tools because of 

its fast development pace. lz4 is remarkably faster compared to the others with only 8 min 

extraction time from one chromosome.  

From these results that also supported the results published by Yann Collet a developer of Lz4 

(Figure 5) new compression algorithm selection was feasable. 

 

Figure 5 - Compression and decompression speeds overview10. Ratio describes how many times the data is 
compressed compared to the original. 

                                                
7 https://google.github.io/snappy  
8 http://www.oberhumer.com/opensource/lzo  
9 https://cyan4973.github.io/lz4  
10 https://github.com/Cyan4973/lz4  
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3.2 Integration of parallelized risk score calculation 
Apache Spark11 is fast and general engine for large-scale data processing. It can run some 

programs as much as 100 times faster compared to a similar MapReduce solution Apache 

Hadoop. Compared to Hadoop HDD intensive operations, Spark runs most of its operations 

in-memory and this allows writing of more diverse programs. Spark also includes components 

for stream processing, machine learning and graph processing – all of which are very hard if 

not impossible to accomplish with Hadoop. 

Spark is built in Scala and it provides API’s for developing in Java, Scala, Python and later 

versions R. Since Scala and Python both include REPL, it is possible to experiment on a 

large-scale data before starting to work on a fully packaged solution. It also supports many of 

the popular compression algorithms.  

3.2.1 Apache Spark with zlib 

Testing Spark with zlib compression to filter 10K markers resulted an operation time of 

40min and the process is CPU bounded. We determined this by comparing the read speed of 

GPFS filesystem that is about 600MB/s and for Spark 100-200MB/s. 

3.2.2 Apache Spark with lzo 

Testing Spark with LZO compression we were able to achieve better filtering time of 18 min 

despite the actual files being more than double the size and achieving 500MB/s in filesystem 

throughput. 

3.2.3 Apache Spark with lz4 

We did not pursue any further with Apache Spark and lz4 support since we encountered errors 

when trying to use command-line tools together with Apache Spark’s built-in Lz4 support. 

Data compressed with lz4 command-line tools was not readable in Spark and other way 

around.  

3.2.4 Apache Spark with lzo indexing 

Spark was also tested together with hadoop-lzo12 an open-sourced library from Twitter that  

enables indexing of compression blocks within lzo files. This indexing enables highly 

parallelized decompression in Hadoop based solutions because decompression can work on 

                                                
11 https://spark.apache.org  
12 https://github.com/twitter/hadoop-lzo  
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different parts of the file simultaneously. Setup of this solution turned out to be difficult 

because of the lack of information. A setup manual is now included in Appendix 4.  

After cluster setup and indexing of lzo files, filtering task runs in 5 minutes using a relatively 

simple Scala13 program shown in Appendix 1. Because of an initial preference to use Python14 

language, we also tested the same operation in Python language. Python program turned out 

to be 2-3 times slower and took 13 minutes to complete. The cause could be that Spark is 

written in Scala and use of Python requires conversions between languages which makes it 

slower. 

3.2.5 Apache Spark as a web service with cache 

After some experimentation with Spark, Scala was selected as our main programming 

language for the reasons explained more in [4.1.1]. Apache Spark was integrated directly into 

the application code and using Spark cache enabled making risk calculations work in 20 

seconds. In regards of achieved speed and programming effort this solution was suitable and 

on the server memory requirements were not an issue.  

Spark is not meant to run this way and during building a part that keeps the client notified 

about ongoing progress, changes in the source required constant solution restarts. Solution 

restart would then trigger a read through the imputed data and cost at least 5 minutes.  

 

Figure 6 – Apache Spark with spark-jobserver. All of the computation expencive  

                                                
13 http://www.scala-lang.org   
14 https://www.python.org  
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To separate Spark from the web solution spark-jobserver15 an open-source project seemed a 

good solution. Working with spark-jobserver meant that MySQL server and Spark ran on the 

server and application development could be done locally. Score calculation code was 

packaged into jar format and deployed to job server over HTTP protocol. Managing of 

calculations was done over HTTP. This architecture is illustrated in Figure 6. After 

completion, development experience became even worse. Each time part of the algorithm 

changed in score calculation, recompilation and deployment to spark-jobserver was needed. 

In many cases this resulted a restart of spark-jobserver, triggering Spark to read through the 

imputed data. In our opinion a type of solution where Spark is included into the application 

server or is managed by a spark-jobserver should only be considered on stable processes with 

experienced supporting team and not in constantly changing development environment. 

Our testing server is also used for other purposes and small file operations only few 

megabytes per second with little CPU usage did not work well with Apache Spark. The 

throughput of lzo indexed file reads dropped from 600MB/s to 100MB/s and even 24MB/s, 

which causes 25-fold increase in reading data into Spark. This can be explained by Spark 

using small cache files on the filesystem to save intermediate progress, but attempts to reduce 

this effect have not yielded any good results. This caused the need to move away from the file 

system and test databases to store imputed genotypes. 

3.2.6 Apache Spark + Apache Cassandra16 for storage 

Apache Cassandra is a column-family type NoSQL database. It supports automatic lz4 

compression, has Spark driver17, can be embedded into JVM applications and provides fast 

data access [21]. In the testing environment Cassandra together with Spark was set up as a 3-

node cluster and is not 100% comparable with previous setups. Figure 7 illustrates how the 

testing cluster was constructed. Using Cassandra yielded positive results for risk calculation 

with 45 seconds to access and calculate scores, using about 128GB of disk space. There was 

also the benefit of nearly instant random access to the imputed data. Importing data to 

Cassandra took around 3 hours. 

                                                
15 https://github.com/spark-jobserver/spark-jobserver  
16 https://cassandra.apache.org  
17 https://github.com/datastax/spark-cassandra-connector  
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Figure 7 - Cassandra cluster setup with three 2x Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, 256GB 
2133MHz RAM, 600GB SCSI HDD 

This solution showed us that it was the correct path to take Impute2 data from the file system 

and move it into a database letting the database engine control filtering and joins. At this point 

we had Apache Spark, spark-jobserver together with Apache Cassandra and it was the most 

difficult systems to maintain. This setup was troubled by Apache Cassandra stability issues 

where nodes from the cluster were shutting down halting the system and issues described in 

3.2.5. 

3.2.7 MySQL and Akka framework18 for decompression 

Akka is a toolkit and runtime for building highly concurrent, distributed and resilient message 

driven applications on the JVM. Akka is built on top of Netty19 that enables asynchronous IO 

in JVM. Single machine can run millions of Actors (building block in Akka system), that 

communicate with tens of millions of messages. From these units you can create actor 

systems with complex hierarchies that are able to span across multiple machines to distribute 

workload. 

Akka is used in Apache Spark and Play framework for internal work distribution and after 

inspecting Akka documentation20 we were convicted that this framework could work for our 

needs. Integration with Play framework made it much easier to use compared to Spark and we 

could configure it to run computationally intensive work separately from the Play framework 

threads (that we implemented) or use clustering capabilities. Actor model21 provided by Akka 

                                                
18 http://akka.io  
19 http://netty.io  
20 http://doc.akka.io/docs/akka/2.3.15/scala.html  
21 http://worrydream.com/refs/Hewitt-ActorModel.pdf  
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in our opinion gives better abstractions over parallelization than using Spark and its 

abstractions over collections. 

MySQL22 is an open-source relational database management system now owned by the Oracle 

Corporation. In EGCUT it is already running to store full sequences for Ensembl23 database.  

In Ensembl database genomic data is stored as database BLOB objects and Perl24 pack 

method25  is used to handle compression in the application side26. Our idea was to use 

something similar, but with a more conventional compression algorithm. 

3.2.8 Lz4 HC compression 

To test the usability of MySQL for our case, Lz4 HC compression algorithm was selected 

because of it being one of the fastest decompression algorithms together with good 

compression ratio. We selected implementation by Adrien Grand in his package lz4-java27. To 

perform compression Apache Spark is used, since lz4 HC compression is time consuming and 

and we already had the cluster setup. In the current solution compression is used on the part of 

the line in gen file, that contains marker probabilities and everything else is stored as 

structured columns.  

Adding data to MySQL takes about 1 hour and the end size for a table with MyISAM engine 

is about 75GB and for InnoDB 160GB. In MySQL we created a BTREE index on the table 

based on the RS-numbers to enable faster filtering. InnoDB and MyISAM have different 

characteristics when access by single marker is needed. In our case InnoDB is faster if access 

to a single marker is needed, but using multiple markers like in our case there are no obvious 

effects depending on the MySQL storage engine. 

End result was 10K markers from the database within 120 seconds when combined with Akka 

framework. This method also simplified the whole solution and the end result is shown on 

Figure 8. 

                                                
22 https://www.mysql.com  
23 http://www.ensembl.org/index.html  
24 https://www.perl.org  
25 http://perldoc.perl.org/functions/pack.html  
26 http://feb2014.archive.ensembl.org/info/docs/api/variation/variation_schema.html#compressed_genotype_var  
27 https://github.com/jpountz/lz4-java  
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Figure 8 - Final architecture. Application code is separated from Spark and can run in development 
computer or on production server. Spark is used in a batched mode to insert new impute sets. 

3.2.9 MySQL with Lz4 HC and data reduction 

Experiments with Spark showed that risk score calculation for 10K markers can be done in 

20s and MySQL solution with Lz4 compression took longer. After a data reduction method 

illustrated in Figure 9 was applied to the source data, additional throughput was gained. 

 

Figure 9 – Compression and decompression of a single line of Impute2 data. Step 1 - is an array of triplets 
from Impute2 file. Step 2 - every third item from each pair is removed. Step 3 - Data is compressed stored 

in the database using LARGEBLOB for the binary data. Step 4 – data is decompressed after retrieval 
from the database. Step 5 – Triplet is restored using the principle that the sum genotype probabilities is 

1.0. 

Change illustrated in Figure 9 gave additional 10% reduction in database size. The final table 

size was 67 gigabytes for MyISAM engine and 123GB InnoDB. Total time to calculate to 

calculate scores dropped to around 40 seconds depending on system usage. The speed gain is 

the result of smaller amount of data transferred and decompressed. After some modification in 

MySQL configuration the end result was 10 seconds if the web application and database were 
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on the same 40 core server and 40 seconds when transferring data from the server to the 

development machine. Final MySQL configuration is given in Appendix 5 

The choice of whether to use InnoDB or MyISAM for this type of storage solution depends 

on system requirements. MyISAM produces smaller size, but also causes the loss of foreign 

keys. InnoDB provides transactional integrity and foreign keys, but costs additional storage 

capacity.  

Summary of conducted experiments is given in Table 1 and   Table 2
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Table 1 - Processing times28 

 

  

                                                
28 4x Intel(R) Xeon(R) CPU E7- 8850 @ 2.00GHz, 1024GB 1066MHz RAM, 898GB ServeRAID M5014 local HDD and 831TB GPFS HDD 

Name Data 
size 

Single 
marker 

10K 
markers 

Complexity 
(subjective) 

Comments 

Starting point gzip 60GB 7h 7h Simplest Nothing needs to be developed 

lzo compression 138GB 4.8h 4.8h Simplest Nothing needs to be developed 

Apache Spark + gzip 60GB 40min 40min Simple Spark reads gzip files, no additional setup 

Apache Spark + lzo 138GB 18min 18min Complex Native libraries needed + native dependencies needed for Spark and 
custom code  

Apache Spark + lzo 
indexing 

138GB 5min 4min Complex For the same reasons as 4. Indexing is simple after Spark configuration 

Apache Spark cached 138GB - 20s Very Complex It is hard to integrate this into application code and using other m 

Apache Spark + Cassandra 128GB Instantly 60s Very Complex Cassandra cluster maintenance requires effort, new modelling 
methodology, database drivers are not as stable. Different machines  

MySQL with  lz4 HC 74GB Instantly 120s Medium Medium, custom code for compression and decompression + MySql 
access. 

MySQL with lz4 HC and 
data reduction 

68GB Instantly 40s Medium Medium, custom code for compression and decompression + MySql 
access. Pairs usage is simple to implement. 

Final solution after MySQL 
optimization 

68GB Instantly 10s Medium Configuration in given in Appendix 5 
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Table 2 - Resource utilization. Network represents file system usage since we were using networked file system. 

 

 

Name CPU Memory Network Comments 
Starting point gzip 100% 4MB 20MB/s - 
lzo compression 100% 6MB 70MB/s - 
Apache Spark + gzip 2100% 24GB 200MB/s - 
Apache Spark + lzo 2100% 24GB 500MB/s Tested with entire set since 1 file did not give sufficient results 
Apache Spark + Hadoop-lzo 
indexing 

3900% 40GB 24 – 800MB/s Tested with entire set since 1 file did not give sufficient results 

Apache Spark cached 3900% 130GB - Data is memory cached 
Apache Spark + Cassandra 4800% - - Different machines (Figure 7) 
Custom lz4 HC solution 
using MySql 

3900% 6GB - Memory needed for the web server for calculations. 

Custom lz4 HC solution 
using MySql + Data 
reduction 

3900% 6GB - Memory needed for the web server for calculations. 

After MySQL optimization 3900% 6GB + 
122GB 

- Memory needed for the web server for calculations. 100GB is memory 
given to MySQL 
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4 Description of the created software 
In this chapter we describe the software, used in current solution as well as provide the 

overview of the main components of current version. We also consider the way to perform 

observational analysis of calculated risk scores, combine results with individual’s health 

information and visualize it in appropriate way. In the end of chapter similar works on 

processing imputed genomic data and genetic risk evaluation software are also discussed. 

Appendix 3 contains the database model and Appendix 6 the source code for the application. 

4.1 Overview of used software 

4.1.1 Programming languages 

Scala is relatively mature language running on top of Java Virtual Machine (JVM). 

Development of Scala started in 2003 by Martin Odersky and his research team in EPFL and 

now it has gotten one of the most used languages for building Big Data solutions. 

Scala is an open-sourced multi-paradigm and type safe programming language that enables 

both functional and object oriented style of programming. Compared to Java, Scala has less 

verbose syntax to accomplish the same tasks. Libraries written in Java are also usable in 

Scala, vice versa is sometimes not possible due to the complexity of the language. When 

considering the performance of the code Scala is in a disadvantage since it internally wraps 

some of the Java primitives and this adds some cost. One of Scala’s weaknesses is also 

compilation times compared to Java, but this is only an issue when doing a full compilation. 

Most Scala are using Simple Build Tool (sbt) that provides incremental compilation to speed 

this together with automatic application reloads on source code changes. Sbt also provides 

support for Scala REPL where project classpath is automatically imported and can be used to 

tryout small changes. 

In our solution we decided to use Scala because of its more concise syntax29 compared to Java 

and support for functional programming techniques after we tested it for writing some of the 

code for Spark. Current solution uses Scala version 2.11.7 and sbt version 0.13.11. 

CoffeeScript30 is a language that compiles into JavaScript and has less verbose syntax, which 

speeds up writing the code for frontend. During the start of the project in 2014 CoffeeScript 
                                                
29 http://techblog.realestate.com.au/java-to-scala-cheatsheet  
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contained many developer productivity increasing functionalities, that JavaScript was missing 

for example (classes, string interpolation, arrow functions). These features are now making 

their way into JavaScript version ECMAScript 6. Decision to use CoffeeScript came from a 

previous experience and the fact that it was supported by Play framework and needed no 

additional setup. 

LESS31 is a language that compiles into Cascaded Style Sheets (CSS) used for webpage 

styling. LESS is implemented in a way that all valid CSS code is also valid LESS code. LESS 

adds support to variables, functions, inheritance, imports from different files and all these 

functionalities improve productivity without requiring immediate learning of the new 

language features. Reasons for using LESS were the same as for using CoffeeScript. 

4.1.2 Server-side frameworks 

Play Framework32 web framework is one of the leading web frameworks in Scala world. Play 

is open-sourced, multi-threaded, RESTful full stack web framework. Play uses model–view–

controller (MVC) style of development. Play comes with built-in database migrations, JSON 

support, WebSockets and integration with sbt provides a console for trying out code and “hot-

reloading”.  

We used several plugins to speed up the development workflow: 

• webjars-play33 – Enables the management of client-side libraries from npm34 and 

bower35; 

• play-auto-refresh36 – A plugin that reloads web page in the browser after changes in 

source code have been compiled in the server side; 

• sbt-uglify37 – Uses UglifyJS38 optimizations for JavaScript for production 

deployment, resulting in smaller JavaScript file for the browser; 

                                                                                                                                                   
30 http://coffeescript.org  
31 http://lesscss.org   
32 https://www.playframework.com  
33 https://github.com/webjars/webjars-play  
34 https://www.npmjs.com  
35 http://bower.io  
36 https://github.com/jamesward/play-auto-refresh  
37 https://github.com/sbt/sbt-uglify  
38 http://lisperator.net/uglifyjs  
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• sbt-native-packager39 – A plugin that enables to build production package from the 

source code. We configured it to build Docker40 image from our project for 

production deployment. 

Slick41 is a database query and access library for Scala that enables to work with database data 

as you would work with Scala’s collection system. It enables to write your database queries in 

a type safe manner and if needed an option to write queries in SQL and map the results into 

Scala data structures is also supported. Slick is open sourced and currently supports more than 

seven database systems [22] and there is a possibility to buy arbitrary drivers for other 

databases from Typesafe.  

Integration between Slick and Play Framework is done by play-slick42 package. In our 

solution we use Play framework 2.3.9 and Slick 2.1.0. 

Play was selected as our web development framework because it provided good 

documentation, support for push communication from server to the client. Decision to use 

Slick came from the fact that the built-in Play persistence layer anorm43 was not type safe and 

used a lot of “magic strings”. The fact that it has been replaced with Slick in the future 

versions was also a consideration. 

4.1.3 Frontend frameworks 

AngularJS44 is JavaScript based open-source web application framework maintained by 

Google and a community of individual developers. Its goal is to simplify development of such 

applications by providing a framework for client-side (MVC) architecture, along with 

components commonly used in rich Internet applications. 

Restangular45 is an AngularJS service that simplifies common GET, POST, DELETE, and 

UPDATE requests with a minimum of client code [23]. 

Ui-grid46 is a data gird built for AngularJS. It is good in handling large data sets and uses row 

virtualization to provide good user experience in the browser. 

                                                
39 https://github.com/sbt/sbt-native-packager  
40 https://www.docker.com  
41 http://slick.typesafe.com  
42 https://github.com/playframework/play-slick  
43 https://github.com/playframework/anorm  
44 https://angularjs.org  
45 https://github.com/mgonto/restangular  



 

 

29 

D3.js47 is a JavaScript library for manipulating documents based on data. D3 helps you bring 

data to life using HTML, SVG, and CSS [24]. Initially we tried other visualization libraries 

like angular-chart48 and c3.js49, both of them are actually based on D3.js and added 

abstractions  did not provide some of the needed functionality (custom tooltips on the chart, 

custom lines on the chart and regions on the chart). 

4.2 Components of the created solution 

4.2.1 Model entry 

For the initial solution we wanted to make creation of new models as simple as possible. 

Current solution supports parsing CSV format that the user can paste into a specific text field 

to import new SNPs for the model and also integrates with Ensembl database to provide 

additional annotation for each SNP. After markers are imported user is able to start the 

polygenic risk score calculation from the entered data. Software also provides the possibility 

to link model with ICD10 or ATC codes by using autocompleted text field. ICD10 or ATC 

codes were priority because EGCUT and Estonian health care system both use ICD1050 

classification for diagnoses and ATC51 to describe active substances in medications. In the 

future we want to increase the number of these structured description parameters to 

automatically link calculated genetic risks with stored health information and provide built-in 

estimations how calculated genetic risk predicts described medical condition. 

4.2.2 Actor system 

The core of the application is built on top of Actor model provided by Akka framework. We 

found that Actor model provides good abstraction for parallelizing risk score calculations. 

Later tests52 have shown that in parallel tasks used in our solution Akka is as fast or faster 

than Scala collections.  

Created actor system has three permanent actors, DB, CalculationsManager and 

IndividualsDataProvider. CalculationsManager coordinates access to active calculations and 

to the results of these calculations. It connects CalculationProgressSocketHandler to 

                                                                                                                                                   
46 http://ui-grid.info  
47 https://d3js.org  
48 https://github.com/GraFiddle/angular-chart  
49 http://c3js.org  
50 http://www.who.int/classifications/icd/en  
51 http://www.whocc.no/atc/structure_and_principles  
52 tests are distributed with source code and located in tests/SpeedTests.scala 
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CalculationCoordinator during risk score calculation and CalculationResultSocketHandler to 

CalculationDataProvider when results are viewed. Depending on current system state it either 

creates new instances or provides access to existing ones. Using CalculationsManager we can 

configure how many concurrent CalculationCoordinator or CalculationDataProvider actors 

are running and what to do when any of them crashes. 

 

Figure 10 – Actors – Overview of the actor system. Actors with solid lines are permanent and with dashed 
lines are temporary and constructed in response of user actions. 

Created actor system has three permanent actors, DB, CalculationsManager and 

IndividualsDataProvider. CalculationsManager coordinates access to active calculations and 

to the results of these calculations. It connects CalculationProgressSocketHandler to 

CalculationCoordinator during risk score calculation and CalculationResultSocketHandler to 

CalculationDataProvider when results are viewed. Depending on current system state it either 

creates new instances or provides access to existing ones. Using CalculationsManager we can 

configure how many concurrent CalculationCoordinator or CalculationDataProvider actors 

are running and what to do when any of them crashes. 
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DB distributes work between a configurable number of CalculationDbWorker actors. Each 

CalculationDbWorker has one connection to MySQL database and depending on received 

message can either provide or insert data to database. We use this mechanism to provide 

predictable management of database connections that can be scaled when such need arises.  

IndividualsDataProvider provides access to cached individuals, their diagnoses and objective 

measurements. This information is used by CalculationResultSocketHandler to display 

different subgroups shown in Figure 14. 

4.2.3 Genetic risk score calculation within the actor system 

Risk scores calculation algorithm described in 2.5, was one of the first operations where we 

decided to use Akka. With Spark or Scala built-in collections it was very difficult to control 

how many active calculations are allowed, which resources are used and what is the progress 

of these calculations. By using Actor model and Akka this became much simpler task because 

we could connect client WebSocket directly to the actor system to create two-way 

communication and from there create connection to any actors needed.  

Implemented risk score calculation subsystem is shown in Figure 11. Process begins with a 

browser creating a WebSocket connection to the server. Play framework constructs a new 

CalculationProgressSocketHandler actor with references to CalculationsManager and 

internal WebSocket actor responsible for the connection. After the connection is established 

client browser is expected to send CreateCalculation message which is forwarded to the 

CalculationsManager actor. CalculationsManager determines by the message if there is a 

calculation running and subscribes CalculationProgressSocketHandler to receive 

notifications. When no calculation is running, CalculationsManager creates a new 

CalculationCoordinator instance with references to the CalculationsManager and DB. Then 

CreateCalculation message is passed to CalculationCoordinator and 

CalculationProgressSocketHandler is subscribed to receive notifications from 

CalculationCoordinator.  

On initialization CalculationCoordinator creates an internal CalculationEventBus that is used 

to exchange intermediate messages. AdditiveEffectCombinator, InfluencialMarkersSelector, 

CalculationSummaryCreator and every MarkerEffectCalculator is initialized with the 

reference to the event bus.   
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When CreateCalculation message is received, CalculationCoordinator forwards it to DB. 

One CalculationDbWorker picks up the message, deletes previous calculation with same 

parameters, creates a new PredictionCalculation and passes it back to the 

CalculationCoordinator. After receiving PredictionCalculation, CalculationCoordinator 

updates its state and starts the process by sending EstimateMarkersCount to the DB. 

CalculationCoordinator receives the response, updates its state and notifies subscribers with 

CalculationUpdate message. In case of subscribing CalculationProgressSocketHandler this is 

sent through websocket and view shown in clients browser is updated from “Waiting data …” 

to show view illustrated in Figure 12.  

 

Figure 11 – Actors - Risk scores calculation.  

CalculationCoordinator then sends SendCalculationMarkers message to the DB with a 

reference to the MarkerEffectCalculators router. CalculationMarkers are distributed by the 
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router between MarkerEffectCalculators. Each MarkerEffectCalculator passes received 

CalculationMarker through quality control [Appendix 2. 22-52] and calculates the 

IntermediateResult – effect of given marker for each individual in the ImputeSet [Appendix 2. 

88-146]. Result, either IntermediateResult or IntermediateDiscarded message containing error 

details, is passed to the CalculationEventBus, where subscribers can access it. 

 

Figure 12 – View – CalculationProgressPage. This view is shown to the user during calculation. View result 
becomes visible after calculation has completed. 1 – we show current progress vs total progress. 2 – Some 

key facts about operations performed. 3 – We show more detailed statistics of operations performed. 
Direction – whether the effect allele same or did we need to change it. Complimentary -  did we need to use 
complimentary to correct nucleotides in imputed data. Marker type shows if the marker was palindromic 

or regular SNP. 

While IntermediateResults are produced CalculationCoordinator periodically sends 

SendProgress messages to CalculationEventBus. Each subscriber decides how it responds to 

this message. To keep track of total progress CalculationCoordinator listens for 

CalculationMarkersSent message with info how many CalculationMarkers were produced 

and IntermediateDiscarded messages about any failures in processing. When 
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CalculationEventBus subscriber processes all of the expected IntermediateResults, 

CalculationCoordinator asks its final result. Final results from AdditiveEffectCombinator and 

InfluencialMarkersSelector are currently required to finish calculation. After one of these 

results is saved to the database. DB sends back a confirmation and CalculationCoordinator 

updates its state and verifies that all known subscribers have their final result persisted. At 

some point all required AdditiveEffectCombinator and InfluencialMarkersSelector both have 

persisted their final results and CalculationCoordinator notifies its subscribers together with 

CalculationsManager about process completion. CalculationsManager stops 

CalculationCoordinator and releases all the resources used. 

AdditiveEffectCombinator uses IntermediateResult messages to sum different marker effects 

for each individual and after processing ends sends the result to be stored in the database. 

InfluencialMarkersSelector uses IntermediateResult to select a configurable number of 

markers with the largest absolute β value and after the processing is complete sends them to 

be stored in database. CalculationSummaryProvider uses IntermediateResult to extract what 

operations were performed on each marker and IndermediateDiscarded messages to collect 

processing errors, when SendProgress message arrives, CalculationSummary is sent to the 

sender containing the summary of operations currently performed Figure 12 parts 2 and 3 

illustrate how it is shown in the client side. 

4.2.4 Overview of risk scores visualization 

Current system provides means to filter individuals based on age, body mass index and 

diagnoses. Different subgroups are visualized using D3.js and interfaced with AngularJS 

through the use of custom directives. There is also a possibility to download calculated scores 

to provide support for other means of analysis. Most complex part is visualization of different 

subgroups within the calculated set because there is too much data for the browser to handle -  

in a category of 1 million diagnoses for 8117 individuals. Risk scores visualization is then 

implemented in a way that filtering is done on the server side and only small part of 

information that is needed to draw the charts is transferred to the browser.  

Communication runs on WebSocket and is implemented asynchronously. When client 

browser moves to a result viewing page it first creates a WebSocket connection to the 

application server. Play creates internal WebSocket actor to handle message passing between 

server and the client and creates new CalculationResultSocketHandler with references to 

CalculationsManager, IndividualsDataProvider and WebSocket actor. 
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After the connection between the client and application server is established, the client is 

expected to send a Result message that is forwarded to the CalculationsManager. 

CalculationsManager determines if some CalculationDataProvider for this message is 

running and selects it. When there is no CalculationDataProvider then it is created and 

CalculationsManager passes a reference of CalculationDbWorkers router (DB) to the 

CalculationDataProvider. After CalculationDataProvider is selected CalculationsManager 

and subscribes CalculationResultSocketHandler to the CalculationDataProvider and 

messages CalculationDataProvider to provide data for CalculationResultSocketHandler.  

 

Figure 13 – Actors – Risk scores visualization. 

After the connection between the client and application server is established, the client is 

expected to send a Result message that is forwarded to the CalculationsManager. 

CalculationsManager determines if some CalculationDataProvider for this message is 

running and selects it. When there is no CalculationDataProvider then it is created and 

CalculationsManager passes a reference of CalculationDbWorkers router (DB) to the 

CalculationDataProvider. After CalculationDataProvider is selected CalculationsManager 

and subscribes CalculationResultSocketHandler to the CalculationDataProvider and 

messages CalculationDataProvider to provide data for CalculationResultSocketHandler.  

When CalculationDataProvider is created it is in a “startup” state and asks data from DB. 

First available CalculationDbWorker runs the needed queries on MySQL database and passes 
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results back to the CalculationDataProvider. If data arrives from DB, 

CalculationDataProvider forwards it to subscribers and updates internal state. If 

CalculationDataProvider has received all the data, it changes its state to “loaded” in which 

case it starts to provide cached data to any actor that sends ProvideStoredData message. If all 

CalculationResultSocketHanders are disconnected, CalculationDataProvider starts a timer 

and shuts itself down. 

 

Figure 14 – View - CalculationResultDetailsPage. 1 – Histogram showing the distribution of calculated 
scores based on counts. 2 – Histogram showing calculated scores but normalized to enable comparison of 

different subgroups. 3 – Risk thresholds selector. 4 – Filters and summary statistics for the entire 
population. 5 – Filters and summary statistics for defining subgroups within the population. 6 – 

Calculated scores for all of the individuals within the population by selecting a line it is possible to see the 
position on the graphics. 

During initialization CalculationResultSocketHander created CalculationDataUpdater actor 

that has the capability to update the thresholds for risk groups. When thresholds are changed 

in the browser a Thresholds message is sent to CalculationResultSocketHander, forwarded to 

CalculationDataUpdater that updates database and notifies the entire system by publishing 

updated thresholds to the system-wide event bus. All created CalculationDataProviders listen 

for this messages and if the update is related to the CalculationDataProvider subscribers are 
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notified with new data and user interface for every client is updated. This functionality was 

implemented as a proof of concept to provide simultaneous updates to user views. 

When receiving data messages from the CalculationDataProvider, 

CalculationResultSocketHander converts them to JSON and forwards them to the outgoing 

stream. After receiving IndividualScores message it is also forwarded to the 

ScoresSocketStatisticsProvider actor, created during initialization. The purpose of 

ScoresSocketStatisticsProvider actor is to calculate Histogram2 from the scores. Histogram2 

is the data transfer object that includes some summary statistics about the IndividualScores 

data and is used in the client browser to render different subgroups.  

This is done on the server side to reduce the load on client browser. IndividualScores is also 

mapped into array of individual id’s, that are sent to the IndividualsDataProvider using 

IndividualsDataFor message to load phenotype data for filtering operations, when needed.  

IndividualDataProvider loads individual’s diagnoses and objective measurements and caches 

them into memory. Since it is used by all the CalculationResultSocketHandlers we reduce the 

overhead of loading multiple sets of data for one individual. Once the data is loaded 

CalculationResultSocketHandler is notified and it forwards this information to the client 

browser. Client browser then enables the subgroups visualization functionality as seen on 

Figure 14. To create new subgroups or modify existing we pass LineFilters messages from the 

browser to the application server as detailed on Figure 15. 

 

Figure 15 – Actors – Calculation result subgroup filtering.  
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4.2.5 Individual data overview 

One of the requirements for the system was the ability to show genetic risks together with 

other health information available in EGCUT. EGCUT is setting up a new information system 

and does not yet provide online access to stored health records. Data is imported into system 

from CSV format. View given in Figure 16 shows how this data is used. Created timeline is 

based on visjs53 JavaScript library. Database model used to store this information is detailed in 

Appendix 3. 

 

Figure 16 – View - IndividualDetailsPage. 1 – Individual code and sample codes. 2 – Is individual included 
in some impute set. 3 – Individual’s timeline containing diagnoses (B27 x1) and medications (B27: 

H02AB06 x1) it is possible to zoom in and out to more precise information by default diseases are grouped 
1 in a year. 4 – it is possible to select which measurements, diagnoses and medications are shown in the 
timeline. 4.1 – for genetic risks we show individuals risk relative to the other groups in the used model. 

There was also the problem of how to present genetic risk size to the user and a custom chart 

was created shown in Figure 16 part 4.1. 

  

                                                
53 http://visjs.org  
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4.3 Similar works on processing imputed genomic data 
A big part of this thesis was to improve the usability of imputed genomic data. We found that 

there is not much work done in this area. One format we discovered was BGEN that has 

gained popularity in recent years. Unfortunately, we were unable to find this format when the 

initial work begun. 

4.3.1 BGEN format54 

BGEN is a binary format used to store imputed genotypes. This format also compresses each 

marker probabilities with zlib. Compared by the final implementation used in our solution it 

has the benefit of being supported by many popular tools (QCTOOL55, PLINK56, 

SNPTEST57) so it is more general purpose. This format uses a clever technique for storing 

imputed probabilities file size reduction. Imputed probabilities are stored as 2-byte integers 

and during usage converted to floating point numbers by dividing them with 32,768. This 

enables accuracy of 4 places after comma which is enough for this type of data. In our 

solution we generally use much more than 2 bytes to store each probability as a string and by 

incorporating this technique additional size reduction can be achieved.  

Compared to our solution it uses slower compression algorithm, database gives us better 

querying mechanism and options to generate indexes to speed up random access. We believe 

that using a database and Lz4 compression actually makes our solution more portable than 

BGEN. BGEN homepage does not describe any implementation in any other programming 

languages than C++. MySQL and Lz4 compression in the other hand have wide platform 

support. 

4.4 Comparison with similar software 

4.4.1 Promethease 

Promethease is closed source software to create personalized DNA report based on the 

genome and data found in SNPedia  database58. At the time of the initial testing (2014 Dec) 

Promethease had a free desktop application that would generate DNA report and was fixed to 

run at least 4 hours and a paid solution, that would do it faster. Now (2016 May) Promethease 

                                                
54 http://www.well.ox.ac.uk/~gav/bgen_format/bgen_format.html  
55 http://www.well.ox.ac.uk/~gav/qctool/#overview  
56 https://www.cog-genomics.org/plink2  
57 https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html  
58 http://www.snpedia.com/index.php/SNPedia  
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is a fully paid web application. Reports generated by Promethease bring out dangerous SNPs 

in individual’s genotype based on the data in SNPedia database59.  

Compared to the created solution Promethease has access to more curated genotype-

phenotype through the use of SNPedia collaborative wiki database. This results with data that 

is difficult to verify and makes Promethease not suitable for clinical use. By current 

understanding Promethease does not use polygenic risk scores to calculate genetic risks, but 

there is no way to verify this since it is closed-source.  

4.4.2 PRSice: Polygenic Risk Score software 

PRSice is a software package written in R, including wrappers for bash data management 

scripts and PLINK2 to minimize computational time; thus much of its functionality relies 

entirely on computations written originally by Shaun Purcell in PLINK. PRSice runs as a 

command-line program with a variety of user-options and is freely available for download 

below, compatible for Unix/Linux/Mac OS and in dockerized form also Windows.  

Compared to the created solution PRSice does not aim to provide environment to store 

GWAS results or store the results. It focuses more on expert user who works on the command 

line than to create collaborative environment that is intent for the given software.   

                                                
59 http://www.snpedia.com/index.php/SNPedia  
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Summary 
In the scope of this thesis, software to support polygenic risk model development is built. 

Created solution focuses  on combining collected data with scientific results, speeding-up of 

GRS calculation as well as provides options for descriptional analysis and visualization of 

obtained results in user-friendly way. Scala with Play Framework and Akka framework was 

selected as backend development environment. Frontend development is done with AngularJS 

framework. For user feedback, there is WebSockets based solution between Akka cluster and 

AngularJS. 

Processing imputed data during calculations, was the bottleneck of the system and several 

architectures were tested to solve this issue. 

Three different storage systems GPFS, MySQL and Apache Cassandra were evaluated for 

imputed data storage. In the end, MySQL storage engine was used, because of stable drivers, 

existing setup and familiar data-modelling techniques. For data compression, Lz4 HC with 

custom algorithm for reducing imputed marker’s probability counts was implemented. 

Selected solution stores imputed data for 8117 individuals in 69GB table, which is the same as 

storing it in the file system using gzip. Access to specific markers throughout the genome is 

better and extraction of 10,000 markers covering the entire genome takes on average 30s. 

For parallelization, Apache Spark and custom Akka based solution was implemented. Apache 

Spark had a lot of promise in running batched jobs, but using it as constantly running 

environment proved hard to maintain. It had many dependencies including compilation of 

native code, which made development difficult. Actor model based Akka solution was easier 

to develop and as performant, it processed data on the fly, without first loading full set into 

memory. 

Future plans include building command line tool to enable usage of created storage solution in 

other pipelines within EGCUT. Improving model description and model risk score analysis 

options. 
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Appendixes 
Appendix 1. Apache Spark program for lzo file reading. 
001 import java.io.File 
002 import java.text.SimpleDateFormat 
003 import java.util.Date 
004  
005 import com.hadoop.compression.lzo.LzoIndexer 
006 import org.apache.hadoop.conf.Configuration 
007 import org.apache.hadoop.io.Text 
008 import org.apache.log4j.Logger 
009 import org.apache.spark.{SparkConf, SparkContext} 
010 import scala.reflect.io.Path 
011  
012 object ImputeFilter { 
013  
014   class ReaderConfig () { 
015     var files: List[String] = List[String]() 
016     var positions: String = "" 
017     var output: String = "" 
018   } 
019  
020   def parseOptions(args: List[String],options: ReaderConfig ): ReaderConfig = { 
021     args match{ 
022       case Nil => 
023         options 
024       case "-f"::tail => 
025         val (nextOptions,values) = parseOptionValues(tail) 
026         options.files=values 
027         parseOptions(nextOptions,options) 
028       case "-p"::positions::tail => 
029         options.positions = positions 
030         parseOptions(tail,options) 
031       case "-o"::output::tail => 
032         options.output = output 
033         parseOptions(tail,options) 
034       case other::tail => 
035         println("Known options: " + options.files) 
036         println("Unknown options: " + other::tail) 
037         sys.exit(0) 
038     } 
039   } 
040  
041 def parseOptionValues(args: List[String],values: 

List[String]=Nil):(List[String],List[String]) = { 
042     args match{ 
043       case Nil => 
044         (Nil,values) 
045       case option::tail if option.startsWith("-") => 
046         (option::tail,values) 
047       case value::tail => 
048         parseOptionValues(tail,value::values) 
049     } 
050   } 
051  
052   def main(args: Array[String]) { 
053     val options = parseOptions(args.toList, new ReaderConfig()) 
054     val indexer = new LzoIndexer(conf) 
055     for (file<-options.files){ 
056       if (!new File(file+".index").exists()){ 
057         indexer.index(new org.apache.hadoop.fs.Path(file)) 
058         logger.info("Indexing file: " + file) 
059       } 
060       else{ 
061         logger.info("File " + file + " has index") 
062       } 
063     } 
064  
065     logger.info("Adding files to context") 
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066     val files = sparkContext.union( 
067       options.files.map( 
068         f=>sparkContext.newAPIHadoopFile(f, 
069           classOf[com.hadoop.mapreduce.LzoTextInputFormat], 
070           classOf[org.apache.hadoop.io.LongWritable], 
071           classOf[org.apache.hadoop.io.Text]))) 
072  
073     // Read in needed markers 
074     val source = scala.io.Source.fromFile(options.positions) 
075     val broadcast = sparkContext.broadcast(source.getLines().toIndexedSeq) 
076  
077     // Filter the results 
078     val results = files.filter( line => byRsNumber(broadcast.value, 
079       line._2)).repartition(20).map(line=>line._2) 
080  
081     results.saveAsTextFile(Path(options.output).toAbsolute + "/" +  
082       new SimpleDateFormat("yyyyMMdd-HHmmss").format(new Date())) 
083   } 
084    
085   def byRsNumber(list: IndexedSeq[String],line: Text): Boolean ={ 
086     val beginning = Text.decode(line.getBytes,0,100) 
087     val rs = beginning.split(" ")(1).split(":")(0) 
088     list.contains(rs) 
089   } 
090 } 
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Appendix 2. Quality control and marker effect calculation 
001 // Either type .left is usually error and .right the result 
002 import scalaz.\/ 
003 

 004 val complimentaryMap = Map( 
005   "A" -> "T", "C" -> "G", "G" -> "C", "T" -> "A", 
006   "a" -> "t", "c" -> "g", "g" -> "c", "t" -> "a" 
007 ) 
008 

 009 val logAdditiveModel = new Model { 
010   // Max value for allele dosage 
011   val alleleDosageMax = 2.0 
012   // each B allele adds to the final effect from [AA, AB, BB] 
013   def alleleDosageFn(triplets: Seq[Double]) = triplets(1) + 2.0 * triplets(2) 
014   // Allele dosage needs no correction 
015   def same(alleleDosage: Double) = alleleDosage 
016   // Allele calculated allele dosage is for wrong allele 
017   def reverse(alleleDosage: Double) = alleleDosageMax - alleleDosage 
018 } 
019 

 020 // Used to correct palindromic marker estimated effect 
021 val similarityThreshold = 0.2 
022 

 023 def qualityControl(calculationMarker: CalculationMarker): 
024 CalculationMarkerError \/ CalculationMarker = 
025   calculationMarker match { 
026     // Extract properties from object for simpler access 
027     case CalculationMarker(_, (predictionMarker, imputeMarker)) => 
028       // Alleles can only contain [A, T, C, G] 
029       if (!complimentaryMap.contains(imputeMarker.alleleA) || 
030         !complimentaryMap.contains(imputeMarker.alleleB)) { 
031         return UnknownAlleles(calculationMarker).left 
032       } 
033       // Alleles should not be the same 
034       if (imputeMarker.alleleA == imputeMarker.alleleB) { 
035         return ImputationMistake(calculationMarker).left 
036       } 
037       // Check if effect allele exists on one of the markers 
038       if (predictionMarker.effectAllele != imputeMarker.alleleA && 
039         predictionMarker.effectAllele != imputeMarker.alleleB) { 
040 

 041         val complimentary = imputeMarker.complimentary 
042         // Check again if effect allele exists in case of complimentary 
043         if (predictionMarker.effectAllele != complimentary.alleleA && 
044           predictionMarker.effectAllele != complimentary.alleleB) { 
045           return MarkersUncomparable(calculationMarker, complimentary).left 
046         } 
047 

 048         return CalculationMarker(calculationMarker.calcId, (predictionMarker, 
complimentary)).right 

049       } 
050 

 051       return calculationMarker.right 
052   } 
053 

 054 def processImputeMarker(imputeMarker: ImputeMarker, model: Model): 
055 (Vector[Double], GenotypeFrequencies, Double) = { 
056   // Vector append is eC 
057   // @specialized tells the computer to optimize this vector 
058   @specialized var alleleDosages: Vector[Double] = Vector() 
059   var count = 0.0 // Total individuals count 
060   var AASum = 0.0 // AA genotype sum 
061   var ABSum = 0.0 // AB genotype sum 
062   var BBSum = 0.0 // BB genotype sum 
063   var BSum = 0.0 // Used for eaf calculation 
064 

 065   for (triplet <- imputeMarker.triplets) { 
066     // Append dosage 
067     alleleDosages = alleleDosages :+ model.alleleDosageFn(triplet) 
068     AASum += triplet.head 
069     ABSum += triplet(1) 
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070     BBSum += triplet(2) 
071     // Current position max B frequency from AB, BB 
072     BSum += triplet(1) + 2.0 * triplet(2) 
073     count += 1 
074   } 
075 

 076   val imputeMarkerEAF = BSum / (2.0 * count) 
077 

 078   val genotypeFreq = GenotypeFrequencies( 
079     imputeMarker.alleleA 
080     , imputeMarker.alleleB 
081     , AA = AASum / count 
082     , AB = ABSum / count 
083     , BB = BBSum / count) 
084 

 085   return (alleleDosages, genotypeFreq, imputeMarkerEAF) 
086 } 
087 

 088 def calculateIntermediate(calculationMarker: CalculationMarker, model: Model): 
089 CalculationMarkerError \/ IntermediateResult = calculationMarker match { 
090   case CalculationMarker(calculationId, (predictionMarker, imputeMarker)) => { 
091 

 092     val (alleleDosages, genotypeFrequencies, imputeMarkerEAF) = 
093       processImputeMarker(imputeMarker, model) 
094 

 095     val (markerType, effectDirection, correctionFn) = if (imputeMarker.isPalindromic) { 
096 

 097       // Markers are same within similarityThreshold precision 
098       // |________|      |<  im.eaf|____|________________________________| 
099       // |            |< pm.EAF         |                                | 
100       if (math.abs(predictionMarker.eaf - imputeMarkerEAF) <= similarityThreshold) 
101         (Palindromic, Same, model.same _) 
102 

 103       // Markers are Different within similarityThreshold precision 
104       // |______________________________|_________|      |< -im.eaf|_____| 
105       // |                              |            |< pm.EAF           | 
106       else if (math.abs(predictionMarker.eaf - (1 - imputeMarkerEAF)) <= 

similarityThreshold) 
107         (Palindromic, Different, model.reverse _) 
108 

 109       // Others that we cannot use 
110       // |______________________________|_________|      |<  im.eaf|_____| 
111       // | |< pm.EAF                    |                                | 
112       // 
113       // |________|      |<  im.eaf|____|________________________________| 
114       // |                              | |< pm.EAF                      | 
115       else 
116         return UndetectablePalindromicMarker(calculationMarker, imputeMarkerEAF).left 
117     } else { 
118 

 119       // Alleles match both in model and imputed data 
120       if (predictionMarker.effectAllele == imputeMarker.alleleB) 
121         (Regular, Same, model.same _) 
122 

 123       // Alleles differ in model and imputed data 
124       else 
125         (Regular, Different, model.reverse _) 
126     } 
127 

 128     // Combined Beta estimation 
129     val multiplier = predictionMarker.beta * predictionMarker.coefficient 
130 

 131     // Marker effect for all individuals 
132     val markerEffects = alleleDosages.map((i) => correctionFn(i) * multiplier) 
133 

 134     return IntermediateResult(calculationId 
135       , markerName = predictionMarker.markerName 
136       , predictionMarkerId = predictionMarker.id 
137       , imputeMarkerId = imputeMarker.id 
138       , genotypeFrequencies = genotypeFrequencies 
139       , imputeMarkerEAF = imputeMarkerEAF 
140       , markerType = markerType 
141       , effectDirection = effectDirection 
142       , complimentaryUsage = imputeMarker.complimentaryUsage 
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143       , multiplier = multiplier 
144       , markerEffects = markerEffects 
145     ).right 
146   } 
147 } 
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Appendix 3. Database model 
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play_evolutions 

Stores database migration scripts. 

Name Database type Comments 
id INT(11)  Primary key 
hash VARCHAR(255)  
applied_at TIMESTAMP  
apply_script TEXT SQL to apply this database migration 
revert_script TEXT SQL to revert this database migration 
state VARCHAR(255) State of current migration 
last_problem TEXT Description of last problem with this migration 
 

prediction_models 

Stores metadata for prediction models. 

Name Database type Comments 
prediction_model_id INT(11)  Primary key 
name VARCHAR(254) Human readable name for the model 
modified TIMESTAMP Last modification timestamp 
age_group_start DOUBLE Age group start – NOT ACTIVE 
age_group_end DOUBLE Age group end – NOT ACTIVE 
age_group_unit VARCHAR(254) Age group units – NOT ACTIVE 
genders VARCHAR(254) Genders, which the model applies. Possible values 

“Men”, “Women”, “Both” – NOT ACTIVE 
allele_dosage_fn VARCHAR(254) Identifier for a function to calculate allele dosages. 

Currently possible value “0 1 2” – NOT ACTIVE 
marker_effect_combination_fn VARCHAR(254) Identifier for a function to combine allele dosages. 

Currently possible values “Sum” – NOT ACTIVE 
reference_genome_id INT(11) Nullable. Foreign key to referece_genomes – NOT 

ACTIVE 
status SMALLINT(6) “Deleted”, “Unknown”, “Usable” - NOT ACTIVE 
created_on TIMESTAMP Timestamp of model creation 
created_by VARCHAR(254) Creator identificator. Currently USER or 

ENSEMBL 
comments TEXT User entered comments. 

 

prediction_markers 

Prediction markers for one prediction model. 

Name Database type Comments 
prediction_marker_id INT(11)  Primary key 
marker_name VARCHAR(254) Human readable name for the marker 
chr VARCHAR(254) Chromosome 
chr_position INT(11) Position in chromosome 



 

 

52 

effect_allele VARCHAR(254) Effect allele 
ref_allele VARCHAR(254) Other allele 
eaf DOUBLE Effect allele frequency in source study 
beta DOUBLE Beta of effect_allele in source study 
coefficient DOUBLE Additional coefficient for double weighted 
p_value DOUBLE p-value in source study 
prediction_model_id INT(11) Foreign key to prediction_models 
Converted TINYINT(1) 0 – Original beta, 1- Beta converted to positive  

 

prediction_model_diagnoses 

Link prediction model to diagnoses 

Name Database type Comments 
prediction_model_diagnose_id INT(11)  Primary key 
prediction_model_id INT(11) Foreign key to prediction_models 
diagnose_id INT(11) Foreign key to diagnoses 
 

prediction_model_medications 

Link prediction model to medications. 

Name Database type Comments 
prediction_model_medication_id INT(11)  Primary key 
prediction_model_id INT(11) Foreign key to prediction_models 
medications_id INT(11) Foreign key to diagnoses 
 

prediction_calculations 

Store meta info about prediction calculation 

Name Database type Comments 
prediction_calculation_id INT(11)  Primary key 
prediction_model_id INT(11) Foreign key to prediction_models 
impute_set_id INT(11) Foreign key to impute_sets 
duration_ms BIGINT(20) Duration of calculation in milliseconds 
created_on TIMESTAMP Creation timestamp of calculation 
status CHAR(45) Status of calculation. Possible values are “Running, 

Completed” 
min_score DOUBLE Minimum calculated score 
max_score DOUBLE Maximum calculated score 
calculation_start TIMESTAMP Calculation start time – NOT ACTIVE 
calculation_end TIMESTAMP Calculation end time – NOT ACTIVE 
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prediction_results 

Stores risk score for each position in impute_positions 

Name Database type Comments 
prediction_result_id INT(11)  Primary key 
prediction_calculation_id INT(11) Foreign key to prediction_calculations 
sample_code VARCHAR(255) Code for sample in the impute_set_positions 
score DOUBLE Calculated total score for given sample 
sample_position INT(11) Sample position in impute_marker genotype for this 

calculation – NOT ACTIVE replaced by 
sample_code 
 

prediction_reporting_thresholds 

Stores information for each risk group for the calculation.  

Name Database type Comments 
prediction_reporting_threshold_id INT(11)  Primary key 
prediction_calculation_id INT(11) Foreign key to prediction_calculations 
name VARCHAR(255) Name of threshold currently “Low, Medium, 

High” 
min_score DOUBLE Minimum in threshold range 
max_score DOUBLE Maximum in threshold range 

 

influencial_markers 

Stores marker effects for selected markers for each calculation. 

Name Database type Comments 
id INT(11)  Primary key 
prediction_calculation_id INT(11) Foreign key to prediction_calculations 
impute_marker_id BIGINT(20) Foreign key to impute_markers 
prediction_marker_id BIGINT(20) Foreign key to prediction_markers 
marker_type INT(11) 0 – Complimentary, 1-Palindromic, 2-Regular 
effect_direction INT(11) 1 – Same, -1- Different 
complimentary_usage INT(11) 1 – Used, -1 – Unused 
uncompressed_me_length INT(11) Array[Byte] length of marker effects before 

compression 
compressed_me_length INT(11) Array[Byte] length of marker effects after 

compression 
compressed_me_data BLOB Array[Byte] of Lz4 compressed marker effects 

separated by “|” 
 

impute_sets 
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Group of one impute2 dataset. 

Name Database type Comments 
impute_set_id INT(11)  Primary key 
name VARCHAR(254) Human readable name for the impute set 
created_on TIMESTAMP Creation date 
reference_genome_id INT(11) Nullable. Links impute dataset to specific reference 

genome  
 

impute_markers 

All the marker information in the impute2 dataset.  

Name Database type Comments 
impute_marker_id BIGINT(20) Primary key 
impute_set_id INT(11)  Foreign key to impute_sets 
marker_name VARCHAR(254) Human readable name for the marker 
allele_a VARCHAR(254) First allele for the marker 
allele_b VARCHAR(254) Second allele for the marker 
chr VARCHAR(254) Chromosome 
chr_position  INT(11) Position in the chromosome 
uncompressed_length INT(11) Array[Byte] length of reduced Impute2 genotypes 

before compression 
compressed_length INT(11) Array[Byte] length of reduced Impute2 genotypes 

after compression 
compressed_data BLOB Array[Byte] of reduced Impute2 genotypes in Lz4 

compression 
 

impute_positions 

Matches sample file in impute2 dataset 

Name Database type Comments 
impute_position_id INT(11) Primary key 
impute_set_id INT(11)  Foreign key to impute_sets 
id_1 VARCHAR(254) Saved to preserve sample file structure 
id_2 VARCHAR(254) Used to match code in individual_samples to 

determine individual 
missing VARCHAR(254) Saved to preserve sample file structure 
father SMALLINT(6) Saved to preserve sample file structure 
mother SMALLINT(6) Saved to preserve sample file structure 
sex SMALLINT(6) Saved to preserve sample file structure 
plink_pheno SMALLINT(6) Saved to preserve sample file structure 
position INT(11) Position of current sample in the impute_markers 

compressed_data 
 



 

 

55 

reference_genomes 

Table to keep track over used reference genomes. 

Name Database type Comments 
reference_genome_id INT(11)  Primary key 
name VARCHAR(254) Human readable name for reference genome 
created_on TIMESTAMP Creation date 
 

individuals 

Table to identify individual. 

Name Database type Comments 
individual_id INT(11)  Primary key 
individual_code VARCHAR(254) Code to identify individual 
birth_year SMALLINT(6) Individual birth year 
birth_month TINYINT(4) Individual birth month 
gender VARCHAR(45) Gender: “Unknown”, “M”, “F” 
 

individual_samples 

Table to store individual’s samples. Used to link with imputed data or prediction results. 

Name Database type Comments 
individual_id INT(11)  Foreign key to individuals 
individual_sample_id INT(11) Primary key 
code VARCHAR(254) Code to identify sample 
 

individual_diagnoses 

Table to link individual with their diagnoses. 

Name Database type Comments 
individual_id INT(11)  Foreign key to individuals 
individual_diagnose_id INT(11) Primary key 
diagnose_id INT(11) Foreign key to diagnoses 
year INT(11) Year of diagnose 
month INT(11) Month of diagnose 
day INT(11) Day of diagnose 
reliability INT(11) Reliability of diagnose. Possible values () 
hasNow TINYINT(1) Weather the individual had the diagnose when 

joining 
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source VARCHAR(45) Source of individuals diagnose: “EGCUT”, “EHK”, 
“PERH”, “TYK”, “SPR” 

  

individual_medications 

Diagnoses for individual 

Name Database type Comments 
id INT(11) Primary key 
status_code VARCHAR(50) Status code for the diagnose given by Estonian 

Health Foundation (EHF) 
individual_id INT(11) Foreign key to individuals 
status_name VARCHAR(50) Status name given by EHF 
icd10_code VARCHAR(50) ICD10 code related to the medication 
prescribed_date TIMESTAMP Time medication was prescribed 
prescribed_atc_code VARCHAR(50) ATC code for the medication 
prescription_code VARCHAR(254) EHF code for prescription 
prescription_kk_code VARCHAR(254) EHF old code for prescription 
prescription_erp_code VARCHAR(254) EHF middle generation code for prescription 
prescription_name VARCHAR(512) EHF prescription name 
pickup_date TIMESTAP Time the prescription was puchased 
pickup_atc_code VARCHAR(50) ATC code for the pickup prescription 
source  VARCHAR(45) Source of the medication info EHF by default 
 

individual_objective_measurements 

Different hip, waist, weight and height measurements. 

Name Database type Comments 
id INT(11) Primary key 
year SMALLINT(11) Year of measurement 
month TINYINT(11) Month of measurement 
day TINYINT(11) Day of measurement 
hip DOUBLE Hip measurement 
waist DOUBLE Waist measurement 
height DOUBLE Height measurement 
weight DOUBLE Weight measurement 
individual_id INT(11) Foreign key to individuals 
 

diagnoses 

Stores diagnoses found in ICD-10 classification. 

Name Database type Comments 
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diagnose_id INT(11) Primary key 
icd_10_code VARCHAR(254) ICD-10 code 
icd_10_name VARCHAR(1024) ICD-10 name in Estonian 
icd_10_level INT(11) ICD-10 is hierarchical. Levels start from 0 and 

increases for each group of children 
icd_10_parent INT(11) diagnose_id of parent element or NULL if there is 

none. 
 

medications 

Stores medications found in ATC-10 classification. 

Name Database type Comments 
medication_id INT(11) Primary key 
atc_10_code VARCHAR(254) ATC-10 code 
atc_10_name VARCHAR(1024) ATC-10 name in Estonian 
atc_10_level INT(11) ATC-10 is hierarchical. Levels start from 0 and 

increases for each group of children 
atc_10_parent INT(11) diagnose_id of parent element or NULL if there is 

none. 
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Appendix 4. Spark cluster configuration with hadoop-lzo 

On OSX, installation of Homebrew with lzop and lzo packages is required. In Linux 

distributions lzo development libraries. 

# Navigate to user folder  
cd /home/user 
 
# Clone git repo with some premade configurations 
git clone git@github.com:kmetsalu/spark-with-lzo.git spark-with-lzo 
cd /home/user/spark-with-lzo 
 
# Export BASE_DIR variable for easier use. 
export $BASE_DIR=`pwd` 
 
# Download Spark 1.2.0 
wget http://www.apache.org/dyn/closer.cgi/spark/spark-1.2.0/spark-1.2.0-bin-hadoop2.4.tgz 
tar -xzvf spark-1.2.0-bin-hadoop2.4.tgz 
mv spark-1.2.0-bin-hadoop2.4 spark 
 
# Download hadoop-lzo 
git clone https://github.com/twitter/hadoop-lzo.git hadoop-lzo 
cd $BASE_DIR/hadoop-lzo 
git checkout release-0.4.19 
 
# Build native libraries according to hadoop-lzo instructions 
# After build there should be target directory in hadoop-lzo folder 
# Make new directory to store current compilation 
mkdir $BASE_DIR/hadoop-lzo/current 
 
# Copy required native libraries to created directory for Linux  
# folder name within native directory differs, but everything else 
# is the same 
cp -R $BASE_DIR/hadoop-lzo/target/native/Mac_OS_X-x86_64-64/lib/ $BASE_DIR/hadoop-
lzo/current/native 
 
# Copy created jar 
cp $BASE_DIR/hadoop-lzo/target/hadoop-lzo-0.4.19.jar $BASE_DIR/hadoop-lzo/current 
 
# Copy configuration files to spark 
cp $BASE_DIR/spark-conf/conf/* $BASE_DIR/spark/conf/ 
mv $BASE_DIR/spark/sbin/spark-config.sh{,.backup} 
cp $BASE_DIR/spark-cond/sbin/* $BASE_DIR/spark/sbin/ 
 
# Spark now runs with lzo support and on Linux with Lz4 and Snappy support 
$BASE_DIR/spark/bin/spark-shell --master local[*]  
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Appendix 5. MySQL configuration 
[mysqld] 
datadir=/local/mysql 
socket=/var/lib/mysql/mysql.sock 
user=mysql 
key_buffer_size = 10000M 
max_allowed_packet = 256M 
table_cache = 512 
sort_buffer_size = 64M 
read_buffer_size = 256M 
read_rnd_buffer_size = 128M 
myisam_sort_buffer_size = 256M 
thread_cache_size = 128 
query_cache_size= 64M 
thread_concurrency = 8 
innodb_buffer_pool_size = 100000M 
 
# Disabling symbolic-links is recommended to prevent assorted security risks 
symbolic-links=0 
bulk_insert_buffer_size = 128M 
delayed_insert_limit = 2000 
innodb_log_file_size = 512M 
innodb_flush_method = O_DIRECT 
innodb_thread_concurrency = 16 
innodb_log_buffer_size = 32M 
innodb_file_per_table=1 
 
[mysqld_safe] 
log-error=/var/log/mysqld.log 
pid-file=/var/run/mysqld/mysqld.pid 
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Appendix 6. Source code 

Source code for this application is available at: 

https://cloud.biobank.ee/index.php/s/YCwiYYkYJi5B4HW 

There is a README.md file included with the source code with further instructions. 
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