
Tartu 2016

UNIVERSITY OF TARTU

Institute of Computer Science

Software engineering

Kristjan Metsalu

Web Application to Calculate Genetic Risk Scores Based on Imputed Data

Master thesis (30 ECTS)

Supervisors: Prof. Jaak Vilo

Reedik Mägi PhD

Tatjana Iljashenko MSc

 	

2

Web Application to Calculate Genetic Risk Scores Based on Imputed Data

Abstract

The falling cost of genotyping has made feasible to include genetic information to national

healthcare system. Estonia is one of the few countries that have great potential of converting

this information into a everyday tool for clinicians, who then would be able to make more

informed decisions related to their patient’s health. Estonian Genome Center, University of

Tartu (EGCUT) is one of the institutions that is working on creating new risk prediction

models based on genetic information. Researchers in EGCUT have created models to evaluate

the risk for polygenic disorders. Current thesis focuses on development of a software that

would enable fast application of these risk prediction models to collected genetic data and

visualization of the results together with clinical data.

CERCS:

B110 - Bioinformatics, medical informatics, biomathematics, biometrics

Keywords:

Scala, Play framework, Akka, MySQL, Apache Spark, Apache Cassandra, compression,

imputed data, polygenic risk prediction models.

3

Veebipõhine lahendus imputeeritud andmete põhjal geneetiliste

riskiskooride arvutamiseks

Lühikokkuvõte

Viimastel aastatel on genotüpiseerimise hinna langus teinud võimalikuks geneetilise

informatsiooni lisamise tervishoiusüsteemi. Eesti on üks vähestest riikidest, kellel on

võimekus muuta see informatsioon arstide jaoks igapäevaseks tööriistaks, kes saaksid seeläbi

teha paremini informeeritud otsuseid oma patsientide kohta. Tartu Ülikooli Eesti

Geenivaramu (EGV) on üks asutustest, kes töötavad geneetilise info põhjal uute haigusriskide

ennustamise mudelite kallal. Teadustöö EGV-s on loonud erinevaid mudeleid polügeensete

haiguste riskide hindamiseks. Selle magistritöö käigus esitame tarkvara, mis võimaldab

ennustusmudelite kiiremat väljatöötamist ja arenduse käigus tehtud katsetusi.

CERCS:

B110 - Bioinformaatika, meditsiiniinformaatika, biomatemaatika, biomeetrika

Võtmesõnad:

Scala, Play framework, Akka, MySQL, Apache Spark, Apache Cassandra, pakkimismeetodid,

imputeeritud andmed, polügeensed riskiskoorid.

 4

Table of Contents	
1	 Introduction ... 6	

1.1	 Motivation ... 6	

1.2	 Layout of the thesis ... 6	

2	 Domain description ... 8	

2.1	 Biological background .. 8	

2.2	 Genomic data .. 8	

2.3	 Genetic disorders .. 10	

2.4	 Genetic risk evaluation for multifactorial disorders ... 11	

2.5	 Double weighted polygenic risk score calculation with Impute2 data 13	

3	 Development of system architecture ... 15	

3.1	 Compression algorithm selection .. 15	

3.2	 Integration of parallelized risk score calculation .. 17	

4	 Description of the created software .. 26	

4.1	 Overview of used software ... 26	

4.2	 Components of the created solution .. 29	

4.3	 Similar works on processing imputed genomic data .. 39	

4.4	 Comparison with similar software .. 39	

Conclusions ... Error! Bookmark not defined.	

Bibliography ... 42	

Appendixes ... 45	

Appendix 1. Apache Spark program for lzo file reading. ... 45	

Appendix 2. Quality control and marker effect calculation .. 47	

Appendix 3. Database model .. 50	

Appendix 4. Spark cluster configuration with hadoop-lzo ... 58	

Appendix 5. MySQL configuration .. 59	

5

Appendix 6. Source code .. 60	

Appendix 7. License .. 61	

6

1 Introduction
The genomics research over the past decades has yielded a growing number of sequence

variants associated with health conditions that may have clinical utility. Despite some

unresolved problems, like the large proportion of “missing heritability”, attention is turning to

strategies that integrate this data into clinical care. Large biobanks with an opportunity to

contact their participants, ongoing access to participants health records and permission to

intervention can be a a good model to study this clinical utility [1]. Estonian Genome Center,

University of Tartu (EGCUT) is a population-based biobank founded in 2001. Since its start

in 2001, EGCUT has collected biological samples and electronical questionnaires for more

than 52 thousand adult volunteers from all 15 counties in Estonia [2] covering 5% of the

entire population in Estonia [3]. Volunteers signed a broad agreement form giving EGCUT

permission to gather additional info from different national health registries and permission to

re-contact them in the future [4]. There is genotyping microarray data available for 20,000

individuals and in 2015 governmental funding enabled sequencing whole genomes of 2 400

samples with high coverage, to support the use of genetic research in attempt to improve

public health.

1.1 Motivation
The population health related research requires not only data availability, but also software,

enabling effective use of this data. The EGCUT data bank contains structured clinical data

together with risk prediction models developed by EGCUT researchers, but is still missing a

software for combining those resources into a one working environment to support

collaboration of different interest groups. The aim of current thesis is to create a software

solution for combining existing data with scientific results into a tool enabling calculation of

disease risk and visualization of results in user-friendly format.

1.2 Layout of the thesis
Thesis is divided into introduction, 3 main chapters followed by summary, bibliography and

appendixes.

Chapter 2 focuses on the theoretical background of calculating risk for genetic disorders. We

introduce different subgroups of genetic disorders, determine the motivations to use imputed

7

genomic data in the context of genetic risk calculation. In the end of the chapter more detailed

description is given for calculating polygenic risk scores based on imputed genomic data.

In the Chapter 3 we describe the development of architecture for current solution, aimed to

improve usability of imputed genomic data for polygenic risk score calculation.

Chapter 4 starts with an overview of frameworks used in the created software then describes

the main components of the solution and finishes with an overview of similar solutions in the

area of improving usage of imputed genomic data and genetic risk evaluation.

Appendixes contain manual to setup Apache Spark with LZO compression support, example

code to use Apache Spark for working with LZO compression, example code how the

calculation of a single marker effect is done, created database model and MySQL

configuration file.

8

2 Domain description
This Chapter aims to give background information to better understand genomic data used in

this thesis and an overview of different types of genetic disorders. Chapter ends with a more

detailed description of implemented genetic risk evaluation model for multifactorial genetic

disorders.

2.1 Biological background
Human genome is the genetic material of an organism, that is coded by four nucleotides:

cytosine (C), guanine (G), adenine (A), or thymine (T). Human genome is divided into

chromosomes that are the double helix molecules, where the chains(strands) of a helix are

held together by weak thermodynamic forces. Those forces always connect the A with T and

G with C, this is known as a principle of complimentary. The chromosomes in human genome

are paired (excluding the X and Y chromosomes), having maternal and paternal copies. The

nucleotides observed in a certain genomic position (i.e. locus) of both chromosome copies

define the alleles in this position. Both alleles (i.e. pair of alleles) define the genotype value in

that position(s).

In this thesis we describe genetic differences between individuals based on single nucleotide

polymorphisms (SNPs). SNP is a genetic variation with a minor allele frequency at least 1%

in population in which a single nucleotide (A, T, C or G) in the genome differs between

members of a biological species or paired chromosomes [5]. Additionally, the current thesis

only uses bi-allelic SNPs, thus each SNP has three possible genotype values. For example, if

we have allele values A and B, the genotype in that position can be AA, AB, and BB. These

genotypes are called as homozygous to allele A, heterozygous and homozygous to allele B.

2.2 Genomic data
Figure 1 gives visual representation of genomic coverage of different genomic data. Reference

genome is a digital nucleic acid sequence database, assembled by scientists as a representative

example of a humans' set of genes [6]. Next generation sequencing technologies often use

reference genome in a process called alignment where during sequencing, DNA is split into

smaller fragments called reads and later these reads are combined into a whole sequence [7].

During comparison of genetic data is important to know which version of reference genome

was used during alignment since any errors in the reference genome affect the quality of

9

aligned data. Whole sequences would be the best representation of human DNA to study

genomic differences between individuals. Whole genome sequences cover approximately 98%

of the genome, that is about 3 Billion different base pairs1 consisting of complimentary

nucleotides A-T or C-G. Rest of the sequence is difficult to align with current technologies.

Unfortunately, costs for generating full sequences is still at least a degree more expensive than

for genotyped data. Software solution created for current thesis is using imputed data, that is

derived analytically based on reference haplotypes and statistical algorithms.

Figure 1 - Types of genetic data.

Genotyped data is a fixed set of positions from the whole genome. These positions are usually

selected from previously identified SNPs. The number of genotyped SNPs on a DNA

microarray can vary from few hundreds to few millions depending on microarray2 selected.

2.2.1 Imputed data

Genotype imputation is now an essential tool in the analysis of genome-wide association

scans. The technique allows geneticists to accurately evaluate the evidence for association at

genetic markers that are not directly genotyped [8]. This can be done due to linkage

disequilibrium (LD) between genetic variants, which are located close to each other in a

chromosome. Using phased genotyped data and sequenced reference haplotypes covering the

same area, we can impute missing positions. As there can be several different reference

haplotypes fitting into our genotype data, imputed positions are described as probabilities of

genotypes: P(AA), P(AB), P(BB).

EGCUT has used Illumina OMNI microarray for genotyping with 770 thousand positions. By

using 1000Genomes3 reference panel, the number of variants increases to 38 million.

1 https://tandem.bu.edu/knex/base.pairs.knex.html
2 http://en.wikipedia.org/wiki/DNA_microarray
3 http://www.1000genomes.org/data

10

2.3 Genetic disorders

2.3.1 Monogenic disorders [9]

There are many studies describing the monogenic disorders and methods used for risk

prediction. Monogenic diseases are divided into subgroups, such as autosomal, X-linked,

mitochondrial inheritance and imprinted genes. Those disorders are resulted by a single

defective gene, where the autosomal diseases occur on autosomal4 chromosomes and X-

linked – on the X chromosome. Mitochondrial diseases, also known as mitochondrial or

maternal inheritance, occur within the genes in mitochondrial5 DNA. Diseases caused by

imprinting of genes differ from previously described by the fact that their effect depends,

which parent this gene is inherited.

There are more than 4000 known diseases caused by single-gene defects [10]. Some

examples of the monogenic diseases would be cystic fibrosis, Huntington’s disease,

hemophilia and red-green color blindness.

Risk evaluation for monogenic diseases involves the detection of know causal mutations in

the DNA followed by the evaluation of the effect of those mutations.

2.3.2 Chromosomal aberrations

The disorders that arise due to the absence of a particular chromosome, presence of an

additional chromosome or due to structural anomalies (deletions, duplication or translocation)

in a chromosome are termed chromosomal disorders [11].

Chromosomal aberrations usually have severe and life-long symptoms. One of the most know

structural chromosomal aberration is Down syndrome, caused by trisomy of all or part of

human chromosome 21 [12]. Williams syndrome for example, is the result of a deletion of the

7q11.23 region of chromosome 7 containing the elastin gene and is believed to be a

contiguous gene syndrome [13].

2.3.3 Multifactorial disorders

Multifactorial disorders, also known as complex or polygenic disorders involve many genetic

variants across the genome and are often coupled with environmental factors. Figure 2 shows

a multifactorial disease model. Since birth, every person has a risk for a disease based on his

4 Autosome is a chromosome that is not a sex chromosome [26].
5 Cell organelle

11

or her genetic variants. During life, environmental factors, will raise or lower the probability

of disease manifestation.

Figure 2 - Polygenic disorder (visualization created by Krista Fischer6). Stage 1 – At birth individual has
some genetic background, which determines part of the disease risk (genetic predisposition). Stages 1-4 –

during life individual is exposed to certain environment and he/she makes different which can increase the
disease risk (environmental factors). State 5 – If certain amount of disease causing factors have

accumulated a disease manifests.

With multifactorial disorders genetic factors cause disease manifestation in one person and

not in another if they both make almost identical lifestyle choices. For this type of diseases

knowledge about genetic disorders can motivate individual to correct their lifestyle and

reduce the risk of illness.

One of the most studied polygenic diseases is Type 2 Diabetes (T2D). It is estimated that in

2015 there was about 39,7 million people with diabetes living in USA, causing 373.7 billion

dollars in medical and indirect societal cost [14]. There are several well-known factors

identified for T2D like age, sex, obesity and central obesity and low physical activity that are

actively used for prediction [15]. Adding genetic risk to existing prediction models can help

with a more targeted prevention and bring down prevention costs [16].

2.4 Genetic risk evaluation for multifactorial disorders
One way to calculate genetic risk for polygenic disorders is using polygenic risk score, where

SNPs are combined into a score	(#$%&). There are two commonly used methods to calculate

polygenic risk score. Unweighted method expressed as a function,

	#$%& =)**+*+_-./)0+1,&

3

145

6 https://www.etis.ee/Portal/Persons/Display/7c9ac8d0-9216-422f-80c1-8a8e2740198b?tabId=CV_ENG

12

and weighted method expressed as a function,

#$%& = 61 ∗)**+*+_-./)0+1,&

3

145

where #$%& is the polygenetic risk score for given individual j, N – the total number of the

markers, i – index of the marker in the model, 68- estimated regression parameter obtained

from GWAS study for marker i. 9**+*+_-./)0+1,& – calculated allele dosage.

For genotyped data we can count the)**+*+_-./)0+1,& for bi-allelic SNPs AA, AB and BB as

0, 1, 2 or 2, 1, 0 depending on whether we want the count for A or B. When imputed data #1,&

is used then)**+*+_-./)0+1,& for B allele is defined as

)**+*+_-./)0+1,& = 	0 ∗ ;(99)1,& + 1 ∗ 	;(9>)1,& + 2 ∗ 	;(>>)1,&

In a pre-published study researchers showed for T2D [16], that weighted #%$& can be further

improved by reducing bias caused by a “winners curse”. A “winners curse” phenomena can

be observed, when one systematically selects SNPs with effect overestimated by chance. In

this case 68 is represented as

68 = 	68,@A8B ∗ 	C.+D1

Where 61,@A1B is the weight estimation from the original GWAS study and C.+D1 probability

that the SNP belongs to the set of E SNPs with strongest effect size (E can be selected

according to some estimate of the number of SNPs with true effect on the phenotype). An

estimate	 F1(E) for this probability is obtained by sampling new estimates for 61 from a

simulated normal distribution G(61 , H/1I) for each J and empirically estimating the proportion

of times each SNP belongs to the “top E” SNPs using a Wald type statistic. In created

software we implemented algorithm to calculate double weighted polygenic risk scores.

Same algorithm can be used to calculate single-weighted method by replacing C.+D1 with 1.0

and when unweighted method is needed 61 with 1.0.

After determining #%$& for every individual, there is a second issue to be solved, estimation

of thresholds that separate individuals into groups with similar susceptibility for the disorder.

In the created software we divide individuals into three groups Low, Medium and High risk,

13

corresponding to scores ranging from lowest to average, average to highest decile and highest

decile. There are also methods where these regions are reported as deciles [17].

2.5 Double weighted polygenic risk score calculation with

Impute2 data
The process of GRS calculation consists of 4 main operations: 1 - combine markers defined in

the model with imputed data, 2- calculate single marker effect for all of the individuals, 3 -

sum calculated effects across different markers for each individual and 4 - store the results.

This process has two inputs, a table for the model with structure shown in Figure 3 and

imputed genotypes in Impute2 format [18]. IMPUTE2 formatted genotype data is stored using

zlib compression algorithm to about 60 gigabytes for 8117 individuals.

Name Effect

allele

Ref

allele

Chromosome Position Beta Coefficient EAF

rs40 A G 1 1000 0.08 1 0.9

rs60 T C 10 12456789 0.1 0.1 0.1

Figure 3 – Table – Markers used in a model. Name – name of the marker. Effect allele – allele causing the
effect. Ref allele – second allele for that marker. Chromosome - chromosome of marker in the initial

GWAS. Position – position of the marker in the initial GWAS. Beta – Beta estimation in the initial GWAS.
Coefficient – probability in double weighted polygenic risk score. EAF – Effect allele frequency in initial

GWAS.

During risk score calculation the effect allele and strand have to be matched between model

markers and imputed data before single marker effect can be calculated.

Figure 4 - Risk calculation pipeline. 1 – Combine together markers from the model and imputed data. 2.1
– verify the quality of this pair [Appendix 2. 23-52]. 2.2 – calculate marker effect for each individual
[Appendix 2. 88-134]. 3 – Sum individual’s marker effects across different markers. 4 – Store results.

In this pipeline we decided to integrate this operation into the calculation pipeline as a quality

control step because we did not want to change any of the inputs for the reason we cannot

14

predict future inputs. Overview of the calculation pipeline is shown in Figure 4. Code

example, given in Appendix 2 contains all the details.

15

3 Development of system architecture
The objectives for this thesis were to find a solution to speed-up polygenic risk calculation

and also provide better access to EGCUT data as well as simple interpretation of results for

the non-expert user. Objective is to free time spent by researchers on calculations that can be

automated and parallelized to interpreting the calculated scores or work on how created

predictions should be presented in a clinical context.

The first problem encountered after providing users the means to store new polygenic risk

models in the created software, was joining markers in the model with their counterparts in

imputed data during calculations. This step requires fast random access to the imputed

markers from all over the genome and the current storage method was not optimized for this

task.

The second issue was how to manage these calculations in an environment where many of

them could be run in parallel. This would cause overuse of system resources and block the

work for everyone working on the system.

In this chapter we show the research we did to improve our system in an effort to find ways to

optimize different parts of the system with a focus on risk score calculation. Exact

implementation of software is detailed in Chapter 4.

3.1 Compression algorithm selection
Filtering imputed markers from a single chromosome file takes about 20min and in total

8hours if done sequentially. The next step would be to parallelize by the number of

chromosome files, but 20min was still a lot of time considering the system may contain

several models each needing different markers. These operations would then have to run one

after another since they otherwise would consume all the system resources since the operation

is CPU bounded. Investigation into compression algorithms revealed that zlib is not optimized

for fast decompression and random access.

Zlib library uses DEFLATE compression [19]. DEFLATE compression is standardized by

RFC1951 and it states that DEFLATE combines LZ77 algorithm and Huffman coding. Each

block consists of two parts: a pair of Huffman code trees that describe the representation of

the compressed data part, and a compressed data part [20]. Usage of Huffman code trees gives

16

it one of the best compression ratios, but also makes it more complex and increases

decompression time.

Snappy7, lzo8 and lz49 use LZ77 algorithm with each having their own implementation of

storing offsets to previously decompressed data. Out of these formats snappy does not have

any command line tools and we decided not to spend any time to investigate it further.

Lzo is an older and more stable implementation compared to the others. Command line tests

show that lzo is remarkably faster than zlib, 12 min on one chromosome in the command-line

and in total 4.6h if done sequentially. Lzo compression ratio is worse than zlib and the size of

genomic data will increase from 60GB to 137GB.

lz4 has some incompatibilities between different programming languages and tools because of

its fast development pace. lz4 is remarkably faster compared to the others with only 8 min

extraction time from one chromosome.

From these results that also supported the results published by Yann Collet a developer of Lz4

(Figure 5) new compression algorithm selection was feasable.

Figure 5 - Compression and decompression speeds overview10. Ratio describes how many times the data is
compressed compared to the original.

7 https://google.github.io/snappy
8 http://www.oberhumer.com/opensource/lzo
9 https://cyan4973.github.io/lz4
10 https://github.com/Cyan4973/lz4

17

3.2 Integration of parallelized risk score calculation
Apache Spark11 is fast and general engine for large-scale data processing. It can run some

programs as much as 100 times faster compared to a similar MapReduce solution Apache

Hadoop. Compared to Hadoop HDD intensive operations, Spark runs most of its operations

in-memory and this allows writing of more diverse programs. Spark also includes components

for stream processing, machine learning and graph processing – all of which are very hard if

not impossible to accomplish with Hadoop.

Spark is built in Scala and it provides API’s for developing in Java, Scala, Python and later

versions R. Since Scala and Python both include REPL, it is possible to experiment on a

large-scale data before starting to work on a fully packaged solution. It also supports many of

the popular compression algorithms.

3.2.1 Apache Spark with zlib

Testing Spark with zlib compression to filter 10K markers resulted an operation time of

40min and the process is CPU bounded. We determined this by comparing the read speed of

GPFS filesystem that is about 600MB/s and for Spark 100-200MB/s.

3.2.2 Apache Spark with lzo

Testing Spark with LZO compression we were able to achieve better filtering time of 18 min

despite the actual files being more than double the size and achieving 500MB/s in filesystem

throughput.

3.2.3 Apache Spark with lz4

We did not pursue any further with Apache Spark and lz4 support since we encountered errors

when trying to use command-line tools together with Apache Spark’s built-in Lz4 support.

Data compressed with lz4 command-line tools was not readable in Spark and other way

around.

3.2.4 Apache Spark with lzo indexing

Spark was also tested together with hadoop-lzo12 an open-sourced library from Twitter that

enables indexing of compression blocks within lzo files. This indexing enables highly

parallelized decompression in Hadoop based solutions because decompression can work on

11 https://spark.apache.org
12 https://github.com/twitter/hadoop-lzo

18

different parts of the file simultaneously. Setup of this solution turned out to be difficult

because of the lack of information. A setup manual is now included in Appendix 4.

After cluster setup and indexing of lzo files, filtering task runs in 5 minutes using a relatively

simple Scala13 program shown in Appendix 1. Because of an initial preference to use Python14

language, we also tested the same operation in Python language. Python program turned out

to be 2-3 times slower and took 13 minutes to complete. The cause could be that Spark is

written in Scala and use of Python requires conversions between languages which makes it

slower.

3.2.5 Apache Spark as a web service with cache

After some experimentation with Spark, Scala was selected as our main programming

language for the reasons explained more in [4.1.1]. Apache Spark was integrated directly into

the application code and using Spark cache enabled making risk calculations work in 20

seconds. In regards of achieved speed and programming effort this solution was suitable and

on the server memory requirements were not an issue.

Spark is not meant to run this way and during building a part that keeps the client notified

about ongoing progress, changes in the source required constant solution restarts. Solution

restart would then trigger a read through the imputed data and cost at least 5 minutes.

Figure 6 – Apache Spark with spark-jobserver. All of the computation expencive

13 http://www.scala-lang.org
14 https://www.python.org

19

To separate Spark from the web solution spark-jobserver15 an open-source project seemed a

good solution. Working with spark-jobserver meant that MySQL server and Spark ran on the

server and application development could be done locally. Score calculation code was

packaged into jar format and deployed to job server over HTTP protocol. Managing of

calculations was done over HTTP. This architecture is illustrated in Figure 6. After

completion, development experience became even worse. Each time part of the algorithm

changed in score calculation, recompilation and deployment to spark-jobserver was needed.

In many cases this resulted a restart of spark-jobserver, triggering Spark to read through the

imputed data. In our opinion a type of solution where Spark is included into the application

server or is managed by a spark-jobserver should only be considered on stable processes with

experienced supporting team and not in constantly changing development environment.

Our testing server is also used for other purposes and small file operations only few

megabytes per second with little CPU usage did not work well with Apache Spark. The

throughput of lzo indexed file reads dropped from 600MB/s to 100MB/s and even 24MB/s,

which causes 25-fold increase in reading data into Spark. This can be explained by Spark

using small cache files on the filesystem to save intermediate progress, but attempts to reduce

this effect have not yielded any good results. This caused the need to move away from the file

system and test databases to store imputed genotypes.

3.2.6 Apache Spark + Apache Cassandra16 for storage

Apache Cassandra is a column-family type NoSQL database. It supports automatic lz4

compression, has Spark driver17, can be embedded into JVM applications and provides fast

data access [21]. In the testing environment Cassandra together with Spark was set up as a 3-

node cluster and is not 100% comparable with previous setups. Figure 7 illustrates how the

testing cluster was constructed. Using Cassandra yielded positive results for risk calculation

with 45 seconds to access and calculate scores, using about 128GB of disk space. There was

also the benefit of nearly instant random access to the imputed data. Importing data to

Cassandra took around 3 hours.

15 https://github.com/spark-jobserver/spark-jobserver
16 https://cassandra.apache.org
17 https://github.com/datastax/spark-cassandra-connector

20

Figure 7 - Cassandra cluster setup with three 2x Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, 256GB
2133MHz RAM, 600GB SCSI HDD

This solution showed us that it was the correct path to take Impute2 data from the file system

and move it into a database letting the database engine control filtering and joins. At this point

we had Apache Spark, spark-jobserver together with Apache Cassandra and it was the most

difficult systems to maintain. This setup was troubled by Apache Cassandra stability issues

where nodes from the cluster were shutting down halting the system and issues described in

3.2.5.

3.2.7 MySQL and Akka framework18 for decompression

Akka is a toolkit and runtime for building highly concurrent, distributed and resilient message

driven applications on the JVM. Akka is built on top of Netty19 that enables asynchronous IO

in JVM. Single machine can run millions of Actors (building block in Akka system), that

communicate with tens of millions of messages. From these units you can create actor

systems with complex hierarchies that are able to span across multiple machines to distribute

workload.

Akka is used in Apache Spark and Play framework for internal work distribution and after

inspecting Akka documentation20 we were convicted that this framework could work for our

needs. Integration with Play framework made it much easier to use compared to Spark and we

could configure it to run computationally intensive work separately from the Play framework

threads (that we implemented) or use clustering capabilities. Actor model21 provided by Akka

18 http://akka.io
19 http://netty.io
20 http://doc.akka.io/docs/akka/2.3.15/scala.html
21 http://worrydream.com/refs/Hewitt-ActorModel.pdf

21

in our opinion gives better abstractions over parallelization than using Spark and its

abstractions over collections.

MySQL22 is an open-source relational database management system now owned by the Oracle

Corporation. In EGCUT it is already running to store full sequences for Ensembl23 database.

In Ensembl database genomic data is stored as database BLOB objects and Perl24 pack

method25 is used to handle compression in the application side26. Our idea was to use

something similar, but with a more conventional compression algorithm.

3.2.8 Lz4 HC compression

To test the usability of MySQL for our case, Lz4 HC compression algorithm was selected

because of it being one of the fastest decompression algorithms together with good

compression ratio. We selected implementation by Adrien Grand in his package lz4-java27. To

perform compression Apache Spark is used, since lz4 HC compression is time consuming and

and we already had the cluster setup. In the current solution compression is used on the part of

the line in gen file, that contains marker probabilities and everything else is stored as

structured columns.

Adding data to MySQL takes about 1 hour and the end size for a table with MyISAM engine

is about 75GB and for InnoDB 160GB. In MySQL we created a BTREE index on the table

based on the RS-numbers to enable faster filtering. InnoDB and MyISAM have different

characteristics when access by single marker is needed. In our case InnoDB is faster if access

to a single marker is needed, but using multiple markers like in our case there are no obvious

effects depending on the MySQL storage engine.

End result was 10K markers from the database within 120 seconds when combined with Akka

framework. This method also simplified the whole solution and the end result is shown on

Figure 8.

22 https://www.mysql.com
23 http://www.ensembl.org/index.html
24 https://www.perl.org
25 http://perldoc.perl.org/functions/pack.html
26 http://feb2014.archive.ensembl.org/info/docs/api/variation/variation_schema.html#compressed_genotype_var
27 https://github.com/jpountz/lz4-java

22

Figure 8 - Final architecture. Application code is separated from Spark and can run in development
computer or on production server. Spark is used in a batched mode to insert new impute sets.

3.2.9 MySQL with Lz4 HC and data reduction

Experiments with Spark showed that risk score calculation for 10K markers can be done in

20s and MySQL solution with Lz4 compression took longer. After a data reduction method

illustrated in Figure 9 was applied to the source data, additional throughput was gained.

Figure 9 – Compression and decompression of a single line of Impute2 data. Step 1 - is an array of triplets
from Impute2 file. Step 2 - every third item from each pair is removed. Step 3 - Data is compressed stored

in the database using LARGEBLOB for the binary data. Step 4 – data is decompressed after retrieval
from the database. Step 5 – Triplet is restored using the principle that the sum genotype probabilities is

1.0.

Change illustrated in Figure 9 gave additional 10% reduction in database size. The final table

size was 67 gigabytes for MyISAM engine and 123GB InnoDB. Total time to calculate to

calculate scores dropped to around 40 seconds depending on system usage. The speed gain is

the result of smaller amount of data transferred and decompressed. After some modification in

MySQL configuration the end result was 10 seconds if the web application and database were

23

on the same 40 core server and 40 seconds when transferring data from the server to the

development machine. Final MySQL configuration is given in Appendix 5

The choice of whether to use InnoDB or MyISAM for this type of storage solution depends

on system requirements. MyISAM produces smaller size, but also causes the loss of foreign

keys. InnoDB provides transactional integrity and foreign keys, but costs additional storage

capacity.

Summary of conducted experiments is given in Table 1 and Table 2

24

Table 1 - Processing times28

28 4x Intel(R) Xeon(R) CPU E7- 8850 @ 2.00GHz, 1024GB 1066MHz RAM, 898GB ServeRAID M5014 local HDD and 831TB GPFS HDD

Name Data
size

Single
marker

10K
markers

Complexity
(subjective)

Comments

Starting point gzip 60GB 7h 7h Simplest Nothing needs to be developed

lzo compression 138GB 4.8h 4.8h Simplest Nothing needs to be developed

Apache Spark + gzip 60GB 40min 40min Simple Spark reads gzip files, no additional setup

Apache Spark + lzo 138GB 18min 18min Complex Native libraries needed + native dependencies needed for Spark and
custom code

Apache Spark + lzo
indexing

138GB 5min 4min Complex For the same reasons as 4. Indexing is simple after Spark configuration

Apache Spark cached 138GB - 20s Very Complex It is hard to integrate this into application code and using other m

Apache Spark + Cassandra 128GB Instantly 60s Very Complex Cassandra cluster maintenance requires effort, new modelling
methodology, database drivers are not as stable. Different machines

MySQL with lz4 HC 74GB Instantly 120s Medium Medium, custom code for compression and decompression + MySql
access.

MySQL with lz4 HC and
data reduction

68GB Instantly 40s Medium Medium, custom code for compression and decompression + MySql
access. Pairs usage is simple to implement.

Final solution after MySQL
optimization

68GB Instantly 10s Medium Configuration in given in Appendix 5

25

Table 2 - Resource utilization. Network represents file system usage since we were using networked file system.

Name CPU Memory Network Comments
Starting point gzip 100% 4MB 20MB/s -
lzo compression 100% 6MB 70MB/s -
Apache Spark + gzip 2100% 24GB 200MB/s -
Apache Spark + lzo 2100% 24GB 500MB/s Tested with entire set since 1 file did not give sufficient results
Apache Spark + Hadoop-lzo
indexing

3900% 40GB 24 – 800MB/s Tested with entire set since 1 file did not give sufficient results

Apache Spark cached 3900% 130GB - Data is memory cached
Apache Spark + Cassandra 4800% - - Different machines (Figure 7)
Custom lz4 HC solution
using MySql

3900% 6GB - Memory needed for the web server for calculations.

Custom lz4 HC solution
using MySql + Data
reduction

3900% 6GB - Memory needed for the web server for calculations.

After MySQL optimization 3900% 6GB +
122GB

- Memory needed for the web server for calculations. 100GB is memory
given to MySQL

26

4 Description of the created software
In this chapter we describe the software, used in current solution as well as provide the

overview of the main components of current version. We also consider the way to perform

observational analysis of calculated risk scores, combine results with individual’s health

information and visualize it in appropriate way. In the end of chapter similar works on

processing imputed genomic data and genetic risk evaluation software are also discussed.

Appendix 3 contains the database model and Appendix 6 the source code for the application.

4.1 Overview of used software

4.1.1 Programming languages

Scala is relatively mature language running on top of Java Virtual Machine (JVM).

Development of Scala started in 2003 by Martin Odersky and his research team in EPFL and

now it has gotten one of the most used languages for building Big Data solutions.

Scala is an open-sourced multi-paradigm and type safe programming language that enables

both functional and object oriented style of programming. Compared to Java, Scala has less

verbose syntax to accomplish the same tasks. Libraries written in Java are also usable in

Scala, vice versa is sometimes not possible due to the complexity of the language. When

considering the performance of the code Scala is in a disadvantage since it internally wraps

some of the Java primitives and this adds some cost. One of Scala’s weaknesses is also

compilation times compared to Java, but this is only an issue when doing a full compilation.

Most Scala are using Simple Build Tool (sbt) that provides incremental compilation to speed

this together with automatic application reloads on source code changes. Sbt also provides

support for Scala REPL where project classpath is automatically imported and can be used to

tryout small changes.

In our solution we decided to use Scala because of its more concise syntax29 compared to Java

and support for functional programming techniques after we tested it for writing some of the

code for Spark. Current solution uses Scala version 2.11.7 and sbt version 0.13.11.

CoffeeScript30 is a language that compiles into JavaScript and has less verbose syntax, which

speeds up writing the code for frontend. During the start of the project in 2014 CoffeeScript

29 http://techblog.realestate.com.au/java-to-scala-cheatsheet

27

contained many developer productivity increasing functionalities, that JavaScript was missing

for example (classes, string interpolation, arrow functions). These features are now making

their way into JavaScript version ECMAScript 6. Decision to use CoffeeScript came from a

previous experience and the fact that it was supported by Play framework and needed no

additional setup.

LESS31 is a language that compiles into Cascaded Style Sheets (CSS) used for webpage

styling. LESS is implemented in a way that all valid CSS code is also valid LESS code. LESS

adds support to variables, functions, inheritance, imports from different files and all these

functionalities improve productivity without requiring immediate learning of the new

language features. Reasons for using LESS were the same as for using CoffeeScript.

4.1.2 Server-side frameworks

Play Framework32 web framework is one of the leading web frameworks in Scala world. Play

is open-sourced, multi-threaded, RESTful full stack web framework. Play uses model–view–

controller (MVC) style of development. Play comes with built-in database migrations, JSON

support, WebSockets and integration with sbt provides a console for trying out code and “hot-

reloading”.

We used several plugins to speed up the development workflow:

• webjars-play33 – Enables the management of client-side libraries from npm34 and

bower35;

• play-auto-refresh36 – A plugin that reloads web page in the browser after changes in

source code have been compiled in the server side;

• sbt-uglify37 – Uses UglifyJS38 optimizations for JavaScript for production

deployment, resulting in smaller JavaScript file for the browser;

30 http://coffeescript.org
31 http://lesscss.org
32 https://www.playframework.com
33 https://github.com/webjars/webjars-play
34 https://www.npmjs.com
35 http://bower.io
36 https://github.com/jamesward/play-auto-refresh
37 https://github.com/sbt/sbt-uglify
38 http://lisperator.net/uglifyjs

28

• sbt-native-packager39 – A plugin that enables to build production package from the

source code. We configured it to build Docker40 image from our project for

production deployment.

Slick41 is a database query and access library for Scala that enables to work with database data

as you would work with Scala’s collection system. It enables to write your database queries in

a type safe manner and if needed an option to write queries in SQL and map the results into

Scala data structures is also supported. Slick is open sourced and currently supports more than

seven database systems [22] and there is a possibility to buy arbitrary drivers for other

databases from Typesafe.

Integration between Slick and Play Framework is done by play-slick42 package. In our

solution we use Play framework 2.3.9 and Slick 2.1.0.

Play was selected as our web development framework because it provided good

documentation, support for push communication from server to the client. Decision to use

Slick came from the fact that the built-in Play persistence layer anorm43 was not type safe and

used a lot of “magic strings”. The fact that it has been replaced with Slick in the future

versions was also a consideration.

4.1.3 Frontend frameworks

AngularJS44 is JavaScript based open-source web application framework maintained by

Google and a community of individual developers. Its goal is to simplify development of such

applications by providing a framework for client-side (MVC) architecture, along with

components commonly used in rich Internet applications.

Restangular45 is an AngularJS service that simplifies common GET, POST, DELETE, and

UPDATE requests with a minimum of client code [23].

Ui-grid46 is a data gird built for AngularJS. It is good in handling large data sets and uses row

virtualization to provide good user experience in the browser.

39 https://github.com/sbt/sbt-native-packager
40 https://www.docker.com
41 http://slick.typesafe.com
42 https://github.com/playframework/play-slick
43 https://github.com/playframework/anorm
44 https://angularjs.org
45 https://github.com/mgonto/restangular

29

D3.js47 is a JavaScript library for manipulating documents based on data. D3 helps you bring

data to life using HTML, SVG, and CSS [24]. Initially we tried other visualization libraries

like angular-chart48 and c3.js49, both of them are actually based on D3.js and added

abstractions did not provide some of the needed functionality (custom tooltips on the chart,

custom lines on the chart and regions on the chart).

4.2 Components of the created solution

4.2.1 Model entry

For the initial solution we wanted to make creation of new models as simple as possible.

Current solution supports parsing CSV format that the user can paste into a specific text field

to import new SNPs for the model and also integrates with Ensembl database to provide

additional annotation for each SNP. After markers are imported user is able to start the

polygenic risk score calculation from the entered data. Software also provides the possibility

to link model with ICD10 or ATC codes by using autocompleted text field. ICD10 or ATC

codes were priority because EGCUT and Estonian health care system both use ICD1050

classification for diagnoses and ATC51 to describe active substances in medications. In the

future we want to increase the number of these structured description parameters to

automatically link calculated genetic risks with stored health information and provide built-in

estimations how calculated genetic risk predicts described medical condition.

4.2.2 Actor system

The core of the application is built on top of Actor model provided by Akka framework. We

found that Actor model provides good abstraction for parallelizing risk score calculations.

Later tests52 have shown that in parallel tasks used in our solution Akka is as fast or faster

than Scala collections.

Created actor system has three permanent actors, DB, CalculationsManager and

IndividualsDataProvider. CalculationsManager coordinates access to active calculations and

to the results of these calculations. It connects CalculationProgressSocketHandler to

46 http://ui-grid.info
47 https://d3js.org
48 https://github.com/GraFiddle/angular-chart
49 http://c3js.org
50 http://www.who.int/classifications/icd/en
51 http://www.whocc.no/atc/structure_and_principles
52 tests are distributed with source code and located in tests/SpeedTests.scala

30

CalculationCoordinator during risk score calculation and CalculationResultSocketHandler to

CalculationDataProvider when results are viewed. Depending on current system state it either

creates new instances or provides access to existing ones. Using CalculationsManager we can

configure how many concurrent CalculationCoordinator or CalculationDataProvider actors

are running and what to do when any of them crashes.

Figure 10 – Actors – Overview of the actor system. Actors with solid lines are permanent and with dashed
lines are temporary and constructed in response of user actions.

Created actor system has three permanent actors, DB, CalculationsManager and

IndividualsDataProvider. CalculationsManager coordinates access to active calculations and

to the results of these calculations. It connects CalculationProgressSocketHandler to

CalculationCoordinator during risk score calculation and CalculationResultSocketHandler to

CalculationDataProvider when results are viewed. Depending on current system state it either

creates new instances or provides access to existing ones. Using CalculationsManager we can

configure how many concurrent CalculationCoordinator or CalculationDataProvider actors

are running and what to do when any of them crashes.

31

DB distributes work between a configurable number of CalculationDbWorker actors. Each

CalculationDbWorker has one connection to MySQL database and depending on received

message can either provide or insert data to database. We use this mechanism to provide

predictable management of database connections that can be scaled when such need arises.

IndividualsDataProvider provides access to cached individuals, their diagnoses and objective

measurements. This information is used by CalculationResultSocketHandler to display

different subgroups shown in Figure 14.

4.2.3 Genetic risk score calculation within the actor system

Risk scores calculation algorithm described in 2.5, was one of the first operations where we

decided to use Akka. With Spark or Scala built-in collections it was very difficult to control

how many active calculations are allowed, which resources are used and what is the progress

of these calculations. By using Actor model and Akka this became much simpler task because

we could connect client WebSocket directly to the actor system to create two-way

communication and from there create connection to any actors needed.

Implemented risk score calculation subsystem is shown in Figure 11. Process begins with a

browser creating a WebSocket connection to the server. Play framework constructs a new

CalculationProgressSocketHandler actor with references to CalculationsManager and

internal WebSocket actor responsible for the connection. After the connection is established

client browser is expected to send CreateCalculation message which is forwarded to the

CalculationsManager actor. CalculationsManager determines by the message if there is a

calculation running and subscribes CalculationProgressSocketHandler to receive

notifications. When no calculation is running, CalculationsManager creates a new

CalculationCoordinator instance with references to the CalculationsManager and DB. Then

CreateCalculation message is passed to CalculationCoordinator and

CalculationProgressSocketHandler is subscribed to receive notifications from

CalculationCoordinator.

On initialization CalculationCoordinator creates an internal CalculationEventBus that is used

to exchange intermediate messages. AdditiveEffectCombinator, InfluencialMarkersSelector,

CalculationSummaryCreator and every MarkerEffectCalculator is initialized with the

reference to the event bus.

32

When CreateCalculation message is received, CalculationCoordinator forwards it to DB.

One CalculationDbWorker picks up the message, deletes previous calculation with same

parameters, creates a new PredictionCalculation and passes it back to the

CalculationCoordinator. After receiving PredictionCalculation, CalculationCoordinator

updates its state and starts the process by sending EstimateMarkersCount to the DB.

CalculationCoordinator receives the response, updates its state and notifies subscribers with

CalculationUpdate message. In case of subscribing CalculationProgressSocketHandler this is

sent through websocket and view shown in clients browser is updated from “Waiting data …”

to show view illustrated in Figure 12.

Figure 11 – Actors - Risk scores calculation.

CalculationCoordinator then sends SendCalculationMarkers message to the DB with a

reference to the MarkerEffectCalculators router. CalculationMarkers are distributed by the

33

router between MarkerEffectCalculators. Each MarkerEffectCalculator passes received

CalculationMarker through quality control [Appendix 2. 22-52] and calculates the

IntermediateResult – effect of given marker for each individual in the ImputeSet [Appendix 2.

88-146]. Result, either IntermediateResult or IntermediateDiscarded message containing error

details, is passed to the CalculationEventBus, where subscribers can access it.

Figure 12 – View – CalculationProgressPage. This view is shown to the user during calculation. View result
becomes visible after calculation has completed. 1 – we show current progress vs total progress. 2 – Some

key facts about operations performed. 3 – We show more detailed statistics of operations performed.
Direction – whether the effect allele same or did we need to change it. Complimentary - did we need to use
complimentary to correct nucleotides in imputed data. Marker type shows if the marker was palindromic

or regular SNP.

While IntermediateResults are produced CalculationCoordinator periodically sends

SendProgress messages to CalculationEventBus. Each subscriber decides how it responds to

this message. To keep track of total progress CalculationCoordinator listens for

CalculationMarkersSent message with info how many CalculationMarkers were produced

and IntermediateDiscarded messages about any failures in processing. When

34

CalculationEventBus subscriber processes all of the expected IntermediateResults,

CalculationCoordinator asks its final result. Final results from AdditiveEffectCombinator and

InfluencialMarkersSelector are currently required to finish calculation. After one of these

results is saved to the database. DB sends back a confirmation and CalculationCoordinator

updates its state and verifies that all known subscribers have their final result persisted. At

some point all required AdditiveEffectCombinator and InfluencialMarkersSelector both have

persisted their final results and CalculationCoordinator notifies its subscribers together with

CalculationsManager about process completion. CalculationsManager stops

CalculationCoordinator and releases all the resources used.

AdditiveEffectCombinator uses IntermediateResult messages to sum different marker effects

for each individual and after processing ends sends the result to be stored in the database.

InfluencialMarkersSelector uses IntermediateResult to select a configurable number of

markers with the largest absolute β value and after the processing is complete sends them to

be stored in database. CalculationSummaryProvider uses IntermediateResult to extract what

operations were performed on each marker and IndermediateDiscarded messages to collect

processing errors, when SendProgress message arrives, CalculationSummary is sent to the

sender containing the summary of operations currently performed Figure 12 parts 2 and 3

illustrate how it is shown in the client side.

4.2.4 Overview of risk scores visualization

Current system provides means to filter individuals based on age, body mass index and

diagnoses. Different subgroups are visualized using D3.js and interfaced with AngularJS

through the use of custom directives. There is also a possibility to download calculated scores

to provide support for other means of analysis. Most complex part is visualization of different

subgroups within the calculated set because there is too much data for the browser to handle -

in a category of 1 million diagnoses for 8117 individuals. Risk scores visualization is then

implemented in a way that filtering is done on the server side and only small part of

information that is needed to draw the charts is transferred to the browser.

Communication runs on WebSocket and is implemented asynchronously. When client

browser moves to a result viewing page it first creates a WebSocket connection to the

application server. Play creates internal WebSocket actor to handle message passing between

server and the client and creates new CalculationResultSocketHandler with references to

CalculationsManager, IndividualsDataProvider and WebSocket actor.

35

After the connection between the client and application server is established, the client is

expected to send a Result message that is forwarded to the CalculationsManager.

CalculationsManager determines if some CalculationDataProvider for this message is

running and selects it. When there is no CalculationDataProvider then it is created and

CalculationsManager passes a reference of CalculationDbWorkers router (DB) to the

CalculationDataProvider. After CalculationDataProvider is selected CalculationsManager

and subscribes CalculationResultSocketHandler to the CalculationDataProvider and

messages CalculationDataProvider to provide data for CalculationResultSocketHandler.

Figure 13 – Actors – Risk scores visualization.

After the connection between the client and application server is established, the client is

expected to send a Result message that is forwarded to the CalculationsManager.

CalculationsManager determines if some CalculationDataProvider for this message is

running and selects it. When there is no CalculationDataProvider then it is created and

CalculationsManager passes a reference of CalculationDbWorkers router (DB) to the

CalculationDataProvider. After CalculationDataProvider is selected CalculationsManager

and subscribes CalculationResultSocketHandler to the CalculationDataProvider and

messages CalculationDataProvider to provide data for CalculationResultSocketHandler.

When CalculationDataProvider is created it is in a “startup” state and asks data from DB.

First available CalculationDbWorker runs the needed queries on MySQL database and passes

36

results back to the CalculationDataProvider. If data arrives from DB,

CalculationDataProvider forwards it to subscribers and updates internal state. If

CalculationDataProvider has received all the data, it changes its state to “loaded” in which

case it starts to provide cached data to any actor that sends ProvideStoredData message. If all

CalculationResultSocketHanders are disconnected, CalculationDataProvider starts a timer

and shuts itself down.

Figure 14 – View - CalculationResultDetailsPage. 1 – Histogram showing the distribution of calculated
scores based on counts. 2 – Histogram showing calculated scores but normalized to enable comparison of

different subgroups. 3 – Risk thresholds selector. 4 – Filters and summary statistics for the entire
population. 5 – Filters and summary statistics for defining subgroups within the population. 6 –

Calculated scores for all of the individuals within the population by selecting a line it is possible to see the
position on the graphics.

During initialization CalculationResultSocketHander created CalculationDataUpdater actor

that has the capability to update the thresholds for risk groups. When thresholds are changed

in the browser a Thresholds message is sent to CalculationResultSocketHander, forwarded to

CalculationDataUpdater that updates database and notifies the entire system by publishing

updated thresholds to the system-wide event bus. All created CalculationDataProviders listen

for this messages and if the update is related to the CalculationDataProvider subscribers are

37

notified with new data and user interface for every client is updated. This functionality was

implemented as a proof of concept to provide simultaneous updates to user views.

When receiving data messages from the CalculationDataProvider,

CalculationResultSocketHander converts them to JSON and forwards them to the outgoing

stream. After receiving IndividualScores message it is also forwarded to the

ScoresSocketStatisticsProvider actor, created during initialization. The purpose of

ScoresSocketStatisticsProvider actor is to calculate Histogram2 from the scores. Histogram2

is the data transfer object that includes some summary statistics about the IndividualScores

data and is used in the client browser to render different subgroups.

This is done on the server side to reduce the load on client browser. IndividualScores is also

mapped into array of individual id’s, that are sent to the IndividualsDataProvider using

IndividualsDataFor message to load phenotype data for filtering operations, when needed.

IndividualDataProvider loads individual’s diagnoses and objective measurements and caches

them into memory. Since it is used by all the CalculationResultSocketHandlers we reduce the

overhead of loading multiple sets of data for one individual. Once the data is loaded

CalculationResultSocketHandler is notified and it forwards this information to the client

browser. Client browser then enables the subgroups visualization functionality as seen on

Figure 14. To create new subgroups or modify existing we pass LineFilters messages from the

browser to the application server as detailed on Figure 15.

Figure 15 – Actors – Calculation result subgroup filtering.

38

4.2.5 Individual data overview

One of the requirements for the system was the ability to show genetic risks together with

other health information available in EGCUT. EGCUT is setting up a new information system

and does not yet provide online access to stored health records. Data is imported into system

from CSV format. View given in Figure 16 shows how this data is used. Created timeline is

based on visjs53 JavaScript library. Database model used to store this information is detailed in

Appendix 3.

Figure 16 – View - IndividualDetailsPage. 1 – Individual code and sample codes. 2 – Is individual included
in some impute set. 3 – Individual’s timeline containing diagnoses (B27 x1) and medications (B27:

H02AB06 x1) it is possible to zoom in and out to more precise information by default diseases are grouped
1 in a year. 4 – it is possible to select which measurements, diagnoses and medications are shown in the
timeline. 4.1 – for genetic risks we show individuals risk relative to the other groups in the used model.

There was also the problem of how to present genetic risk size to the user and a custom chart

was created shown in Figure 16 part 4.1.

53 http://visjs.org

39

4.3 Similar works on processing imputed genomic data
A big part of this thesis was to improve the usability of imputed genomic data. We found that

there is not much work done in this area. One format we discovered was BGEN that has

gained popularity in recent years. Unfortunately, we were unable to find this format when the

initial work begun.

4.3.1 BGEN format54

BGEN is a binary format used to store imputed genotypes. This format also compresses each

marker probabilities with zlib. Compared by the final implementation used in our solution it

has the benefit of being supported by many popular tools (QCTOOL55, PLINK56,

SNPTEST57) so it is more general purpose. This format uses a clever technique for storing

imputed probabilities file size reduction. Imputed probabilities are stored as 2-byte integers

and during usage converted to floating point numbers by dividing them with 32,768. This

enables accuracy of 4 places after comma which is enough for this type of data. In our

solution we generally use much more than 2 bytes to store each probability as a string and by

incorporating this technique additional size reduction can be achieved.

Compared to our solution it uses slower compression algorithm, database gives us better

querying mechanism and options to generate indexes to speed up random access. We believe

that using a database and Lz4 compression actually makes our solution more portable than

BGEN. BGEN homepage does not describe any implementation in any other programming

languages than C++. MySQL and Lz4 compression in the other hand have wide platform

support.

4.4 Comparison with similar software

4.4.1 Promethease

Promethease is closed source software to create personalized DNA report based on the

genome and data found in SNPedia database58. At the time of the initial testing (2014 Dec)

Promethease had a free desktop application that would generate DNA report and was fixed to

run at least 4 hours and a paid solution, that would do it faster. Now (2016 May) Promethease

54 http://www.well.ox.ac.uk/~gav/bgen_format/bgen_format.html
55 http://www.well.ox.ac.uk/~gav/qctool/#overview
56 https://www.cog-genomics.org/plink2
57 https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
58 http://www.snpedia.com/index.php/SNPedia

40

is a fully paid web application. Reports generated by Promethease bring out dangerous SNPs

in individual’s genotype based on the data in SNPedia database59.

Compared to the created solution Promethease has access to more curated genotype-

phenotype through the use of SNPedia collaborative wiki database. This results with data that

is difficult to verify and makes Promethease not suitable for clinical use. By current

understanding Promethease does not use polygenic risk scores to calculate genetic risks, but

there is no way to verify this since it is closed-source.

4.4.2 PRSice: Polygenic Risk Score software

PRSice is a software package written in R, including wrappers for bash data management

scripts and PLINK2 to minimize computational time; thus much of its functionality relies

entirely on computations written originally by Shaun Purcell in PLINK. PRSice runs as a

command-line program with a variety of user-options and is freely available for download

below, compatible for Unix/Linux/Mac OS and in dockerized form also Windows.

Compared to the created solution PRSice does not aim to provide environment to store

GWAS results or store the results. It focuses more on expert user who works on the command

line than to create collaborative environment that is intent for the given software.

59 http://www.snpedia.com/index.php/SNPedia

41

Summary
In the scope of this thesis, software to support polygenic risk model development is built.

Created solution focuses on combining collected data with scientific results, speeding-up of

GRS calculation as well as provides options for descriptional analysis and visualization of

obtained results in user-friendly way. Scala with Play Framework and Akka framework was

selected as backend development environment. Frontend development is done with AngularJS

framework. For user feedback, there is WebSockets based solution between Akka cluster and

AngularJS.

Processing imputed data during calculations, was the bottleneck of the system and several

architectures were tested to solve this issue.

Three different storage systems GPFS, MySQL and Apache Cassandra were evaluated for

imputed data storage. In the end, MySQL storage engine was used, because of stable drivers,

existing setup and familiar data-modelling techniques. For data compression, Lz4 HC with

custom algorithm for reducing imputed marker’s probability counts was implemented.

Selected solution stores imputed data for 8117 individuals in 69GB table, which is the same as

storing it in the file system using gzip. Access to specific markers throughout the genome is

better and extraction of 10,000 markers covering the entire genome takes on average 30s.

For parallelization, Apache Spark and custom Akka based solution was implemented. Apache

Spark had a lot of promise in running batched jobs, but using it as constantly running

environment proved hard to maintain. It had many dependencies including compilation of

native code, which made development difficult. Actor model based Akka solution was easier

to develop and as performant, it processed data on the fly, without first loading full set into

memory.

Future plans include building command line tool to enable usage of created storage solution in

other pipelines within EGCUT. Improving model description and model risk score analysis

options.

42

Bibliography
	

[1] O. Gottesman, S. A. Scott, S. B. Ellis and J. Hall, "The CLIPMERGE PGx Program:
Clinical Implementation of Personalized Medicine Through Electronic Health Records
and Genomics–Pharmacogenomics," 03 04 2013. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1038/clpt.2013.72/full. [Accessed 01 05 2016].

[2] L. Leitsalu, T. Haller, T. Esko, M.-L. Tammesoo, H. Alavere, H. Snieder, M. Perola, P.
C. Ng, R. Mägi, L. Milani, K. Fischer and a. A. Metspalu, "Cohort Profile: Estonian
Biobank of the Estonian Genome Center, University of Tartu," no. 44, 2015.

[3] "Population pyramid of Estonia," 2011. [Online]. Available:
http://www.stat.ee/public/rahvastikupyramiid/. [Accessed 01 05 2015].

[4] "EGCUT agreement form - EST," [Online]. Available:
http://www.geenivaramu.ee/et/doonorile/geenidoonoriks-saamise-nousoleku-vorm-
naidis. [Accessed 01 05 2016].

[5] "SNP," [Online]. Available: http://en.wikipedia.org/wiki/Single-
nucleotide_polymorphism. [Accessed 20 05 2015].

[6] "Reference genome," [Online]. Available:
http://en.wikipedia.org/wiki/Reference_genome. [Accessed 19 05 2015].

[7] N. G. Sequencing. [Online]. Available:
https://en.wikibooks.org/wiki/Next_Generation_Sequencing_%28NGS%29/Alignment.
[Accessed 01 05 2016].

[8] C. W. Yun Li, "Genotype Imputation," 23 08 2010. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925172/. [Accessed 01 05 2016].

[9] University of Leicester, "Monogenic Disorders," [Online]. Available:
http://www2.le.ac.uk/departments/genetics/vgec/healthprof/topics/patterns-of-
inheritance/patterns-of-inheritance-conditions.

[10] "Genetic disorder," [Online]. Available: http://en.wikipedia.org/wiki/Genetic_disorder.
[Accessed 19 05 2015].

[11] J. Pakhare, 17 05 2013. [Online]. Available: http://www.buzzle.com/articles/genetic-
diseases-list-disorders.html. [Accessed 01 05 2015].

[12] P. D, "Molecular genetic analysis of Down syndrome.," 09 06 2009. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/19526251. [Accessed 02 05 2016].

[13] Williams-syndrome association, 2014. [Online]. Available: https://williams-
syndrome.org/content/diagnosing-williams-syndrome-0. [Accessed 01 05 2016].

[14] "Diabetes Costs and Prevalence Forecasts," Novo Nordisk, 02 05 2016. [Online].
Available: http://www.novonordisk-us.com/whoweare/changing-diabetes-
barometer/research-and-data/diabetes-costs-prevalence-forecasts.html. [Accessed 02 05

43

2016].

[15] P. L1, W. M, L. J, d. B. AT, B. E, E. JG, F. E, I.-P. P, K.-K. SM, W. M, M. JC, U. M and
T. J., "Importance of weight loss maintenance and risk prediction in the prevention of
type 2 diabetes: analysis of European Diabetes Prevention Study RCT," 25 02 2013.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/23451166. [Accessed 02 05
2016].

[16] K. Lall, R. Magi, A. Morris, A. Metspalu and K. Fischer, "Personalized Risk Prediction
for Type 2 Diabetes: the Potential of Genetic Risk Scores," 2016. [Online]. Available:
http://dx.doi.org/10.1101/041731. [Accessed 01 05 2016].

[17] S. W. Kong, I.-H. Lee and I. S. Kohane, "Summarizing polygenic risks for complex
diseases in a clinical whole genome report," 24 07 2015. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547452/. [Accessed 01 05 2016].

[18] "Imputed file format," [Online]. Available:
http://www.stats.ox.ac.uk/~marchini/software/gwas/file_format.html. [Accessed 25 02
2015].

[19] 05 1996. [Online]. Available: https://tools.ietf.org/html/rfc1950. [Accessed 05 2016].

[20] "DEFLATE Compressed Data Format Specification version 1.3," 05 1996. [Online].
Available: https://tools.ietf.org/html/rfc1951. [Accessed 01 05 2016].

[21] "NoSQL performance benchmarks," [Online]. Available:
http://planetcassandra.org/nosql-performance-benchmarks/. [Accessed 25 04 2015].

[22] Typesafe, "Slick - Supported database systems," Typesafe, [Online]. Available:
http://slick.typesafe.com/doc/2.1.0/introduction.html#supported-database-systems.
[Accessed 25 04 2015].

[23] "Restangular - github.com," [Online]. Available: https://github.com/mgonto/restangular.

[24] "D3.js Website," [Online]. Available: https://d3js.org. [Accessed 01 05 2016].

[25] "Autosome definition," [Online]. Available: http://en.wikipedia.org/wiki/Autosome.

[26] S. A. S. S. B. E. J. H. O Gottesman, "The CLIPMERGE PGx Program: Clinical
Implementation of Personalized Medicine Through Electronic Health Records and
Genomics–Pharmacogenomics," 03 04 2013. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1038/clpt.2013.72/full. [Accessed 01 05 2016].

[27] T. H. T. E. M.-L. T. H. A. H. S. M. P. P. C. N. R. M. L. M. K. F. a. A. M. Liis Leitsalu,
"Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu,"
no. 44, 2015.

[28] [Online]. Available:
http://www.blc.arizona.edu/molecular_graphics/dna_structure/dna_tutorial.html.

[29] [Online]. Available:
https://en.wikibooks.org/wiki/Next_Generation_Sequencing_%28NGS%29/Alignment.
[Accessed 01 05 2016].

44

[30] [Online]. Available: http://en.wikipedia.org/wiki/Genetic_disorder. [Accessed 19 05
2015].

[31] W.-s. association, 2014. [Online]. Available: https://williams-
syndrome.org/content/diagnosing-williams-syndrome-0. [Accessed 01 05 2016].

[32] W. M. L. J. d. B. A. B. E. E. J. F. E. I.-P. P. K.-K. S. W. M. M. J. U. M. T. J. Penn L1,
"Importance of weight loss maintenance and risk prediction in the prevention of type 2
diabetes: analysis of European Diabetes Prevention Study RCT," 25 02 2013. [Online].
Available: https://www.ncbi.nlm.nih.gov/pubmed/23451166. [Accessed 02 05 2016].

[33] R. M. A. M. A. M. K. F. Kristi Lall, "Personalized Risk Prediction for Type 2 Diabetes:
the Potential of Genetic Risk Scores," 2016. [Online]. Available:
http://dx.doi.org/10.1101/041731. [Accessed 01 05 2016].

[34] I.-H. L. I. S. K. Sek Won Kong, "Summarizing polygenic risks for complex diseases in a
clinical whole genome report," 24 07 2015. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547452/. [Accessed 01 05 2016].

45

Appendixes
Appendix 1. Apache Spark program for lzo file reading.
001 import java.io.File
002 import java.text.SimpleDateFormat
003 import java.util.Date
004
005 import com.hadoop.compression.lzo.LzoIndexer
006 import org.apache.hadoop.conf.Configuration
007 import org.apache.hadoop.io.Text
008 import org.apache.log4j.Logger
009 import org.apache.spark.{SparkConf, SparkContext}
010 import scala.reflect.io.Path
011
012 object ImputeFilter {
013
014 class ReaderConfig () {
015 var files: List[String] = List[String]()
016 var positions: String = ""
017 var output: String = ""
018 }
019
020 def parseOptions(args: List[String],options: ReaderConfig): ReaderConfig = {
021 args match{
022 case Nil =>
023 options
024 case "-f"::tail =>
025 val (nextOptions,values) = parseOptionValues(tail)
026 options.files=values
027 parseOptions(nextOptions,options)
028 case "-p"::positions::tail =>
029 options.positions = positions
030 parseOptions(tail,options)
031 case "-o"::output::tail =>
032 options.output = output
033 parseOptions(tail,options)
034 case other::tail =>
035 println("Known options: " + options.files)
036 println("Unknown options: " + other::tail)
037 sys.exit(0)
038 }
039 }
040
041 def parseOptionValues(args: List[String],values:

List[String]=Nil):(List[String],List[String]) = {
042 args match{
043 case Nil =>
044 (Nil,values)
045 case option::tail if option.startsWith("-") =>
046 (option::tail,values)
047 case value::tail =>
048 parseOptionValues(tail,value::values)
049 }
050 }
051
052 def main(args: Array[String]) {
053 val options = parseOptions(args.toList, new ReaderConfig())
054 val indexer = new LzoIndexer(conf)
055 for (file<-options.files){
056 if (!new File(file+".index").exists()){
057 indexer.index(new org.apache.hadoop.fs.Path(file))
058 logger.info("Indexing file: " + file)
059 }
060 else{
061 logger.info("File " + file + " has index")
062 }
063 }
064
065 logger.info("Adding files to context")

46

066 val files = sparkContext.union(
067 options.files.map(
068 f=>sparkContext.newAPIHadoopFile(f,
069 classOf[com.hadoop.mapreduce.LzoTextInputFormat],
070 classOf[org.apache.hadoop.io.LongWritable],
071 classOf[org.apache.hadoop.io.Text])))
072
073 // Read in needed markers
074 val source = scala.io.Source.fromFile(options.positions)
075 val broadcast = sparkContext.broadcast(source.getLines().toIndexedSeq)
076
077 // Filter the results
078 val results = files.filter(line => byRsNumber(broadcast.value,
079 line._2)).repartition(20).map(line=>line._2)
080
081 results.saveAsTextFile(Path(options.output).toAbsolute + "/" +
082 new SimpleDateFormat("yyyyMMdd-HHmmss").format(new Date()))
083 }
084
085 def byRsNumber(list: IndexedSeq[String],line: Text): Boolean ={
086 val beginning = Text.decode(line.getBytes,0,100)
087 val rs = beginning.split(" ")(1).split(":")(0)
088 list.contains(rs)
089 }
090 }

47

Appendix 2. Quality control and marker effect calculation
001 // Either type .left is usually error and .right the result
002 import scalaz.\/
003

 004 val complimentaryMap = Map(
005 "A" -> "T", "C" -> "G", "G" -> "C", "T" -> "A",
006 "a" -> "t", "c" -> "g", "g" -> "c", "t" -> "a"
007)
008

 009 val logAdditiveModel = new Model {
010 // Max value for allele dosage
011 val alleleDosageMax = 2.0
012 // each B allele adds to the final effect from [AA, AB, BB]
013 def alleleDosageFn(triplets: Seq[Double]) = triplets(1) + 2.0 * triplets(2)
014 // Allele dosage needs no correction
015 def same(alleleDosage: Double) = alleleDosage
016 // Allele calculated allele dosage is for wrong allele
017 def reverse(alleleDosage: Double) = alleleDosageMax - alleleDosage
018 }
019

 020 // Used to correct palindromic marker estimated effect
021 val similarityThreshold = 0.2
022

 023 def qualityControl(calculationMarker: CalculationMarker):
024 CalculationMarkerError \/ CalculationMarker =
025 calculationMarker match {
026 // Extract properties from object for simpler access
027 case CalculationMarker(_, (predictionMarker, imputeMarker)) =>
028 // Alleles can only contain [A, T, C, G]
029 if (!complimentaryMap.contains(imputeMarker.alleleA) ||
030 !complimentaryMap.contains(imputeMarker.alleleB)) {
031 return UnknownAlleles(calculationMarker).left
032 }
033 // Alleles should not be the same
034 if (imputeMarker.alleleA == imputeMarker.alleleB) {
035 return ImputationMistake(calculationMarker).left
036 }
037 // Check if effect allele exists on one of the markers
038 if (predictionMarker.effectAllele != imputeMarker.alleleA &&
039 predictionMarker.effectAllele != imputeMarker.alleleB) {
040

 041 val complimentary = imputeMarker.complimentary
042 // Check again if effect allele exists in case of complimentary
043 if (predictionMarker.effectAllele != complimentary.alleleA &&
044 predictionMarker.effectAllele != complimentary.alleleB) {
045 return MarkersUncomparable(calculationMarker, complimentary).left
046 }
047

 048 return CalculationMarker(calculationMarker.calcId, (predictionMarker,
complimentary)).right

049 }
050

 051 return calculationMarker.right
052 }
053

 054 def processImputeMarker(imputeMarker: ImputeMarker, model: Model):
055 (Vector[Double], GenotypeFrequencies, Double) = {
056 // Vector append is eC
057 // @specialized tells the computer to optimize this vector
058 @specialized var alleleDosages: Vector[Double] = Vector()
059 var count = 0.0 // Total individuals count
060 var AASum = 0.0 // AA genotype sum
061 var ABSum = 0.0 // AB genotype sum
062 var BBSum = 0.0 // BB genotype sum
063 var BSum = 0.0 // Used for eaf calculation
064

 065 for (triplet <- imputeMarker.triplets) {
066 // Append dosage
067 alleleDosages = alleleDosages :+ model.alleleDosageFn(triplet)
068 AASum += triplet.head
069 ABSum += triplet(1)

48

070 BBSum += triplet(2)
071 // Current position max B frequency from AB, BB
072 BSum += triplet(1) + 2.0 * triplet(2)
073 count += 1
074 }
075

 076 val imputeMarkerEAF = BSum / (2.0 * count)
077

 078 val genotypeFreq = GenotypeFrequencies(
079 imputeMarker.alleleA
080 , imputeMarker.alleleB
081 , AA = AASum / count
082 , AB = ABSum / count
083 , BB = BBSum / count)
084

 085 return (alleleDosages, genotypeFreq, imputeMarkerEAF)
086 }
087

 088 def calculateIntermediate(calculationMarker: CalculationMarker, model: Model):
089 CalculationMarkerError \/ IntermediateResult = calculationMarker match {
090 case CalculationMarker(calculationId, (predictionMarker, imputeMarker)) => {
091

 092 val (alleleDosages, genotypeFrequencies, imputeMarkerEAF) =
093 processImputeMarker(imputeMarker, model)
094

 095 val (markerType, effectDirection, correctionFn) = if (imputeMarker.isPalindromic) {
096

 097 // Markers are same within similarityThreshold precision
098 // |________| |< im.eaf|____|________________________________|
099 // | |< pm.EAF | |
100 if (math.abs(predictionMarker.eaf - imputeMarkerEAF) <= similarityThreshold)
101 (Palindromic, Same, model.same _)
102

 103 // Markers are Different within similarityThreshold precision
104 // |______________________________|_________| |< -im.eaf|_____|
105 // | | |< pm.EAF |
106 else if (math.abs(predictionMarker.eaf - (1 - imputeMarkerEAF)) <=

similarityThreshold)
107 (Palindromic, Different, model.reverse _)
108

 109 // Others that we cannot use
110 // |______________________________|_________| |< im.eaf|_____|
111 // | |< pm.EAF | |
112 //
113 // |________| |< im.eaf|____|________________________________|
114 // | | |< pm.EAF |
115 else
116 return UndetectablePalindromicMarker(calculationMarker, imputeMarkerEAF).left
117 } else {
118

 119 // Alleles match both in model and imputed data
120 if (predictionMarker.effectAllele == imputeMarker.alleleB)
121 (Regular, Same, model.same _)
122

 123 // Alleles differ in model and imputed data
124 else
125 (Regular, Different, model.reverse _)
126 }
127

 128 // Combined Beta estimation
129 val multiplier = predictionMarker.beta * predictionMarker.coefficient
130

 131 // Marker effect for all individuals
132 val markerEffects = alleleDosages.map((i) => correctionFn(i) * multiplier)
133

 134 return IntermediateResult(calculationId
135 , markerName = predictionMarker.markerName
136 , predictionMarkerId = predictionMarker.id
137 , imputeMarkerId = imputeMarker.id
138 , genotypeFrequencies = genotypeFrequencies
139 , imputeMarkerEAF = imputeMarkerEAF
140 , markerType = markerType
141 , effectDirection = effectDirection
142 , complimentaryUsage = imputeMarker.complimentaryUsage

49

143 , multiplier = multiplier
144 , markerEffects = markerEffects
145).right
146 }
147 }

50

Appendix 3. Database model

51

play_evolutions

Stores database migration scripts.

Name Database type Comments
id INT(11) Primary key
hash VARCHAR(255)
applied_at TIMESTAMP
apply_script TEXT SQL to apply this database migration
revert_script TEXT SQL to revert this database migration
state VARCHAR(255) State of current migration
last_problem TEXT Description of last problem with this migration

prediction_models

Stores metadata for prediction models.

Name Database type Comments
prediction_model_id INT(11) Primary key
name VARCHAR(254) Human readable name for the model
modified TIMESTAMP Last modification timestamp
age_group_start DOUBLE Age group start – NOT ACTIVE
age_group_end DOUBLE Age group end – NOT ACTIVE
age_group_unit VARCHAR(254) Age group units – NOT ACTIVE
genders VARCHAR(254) Genders, which the model applies. Possible values

“Men”, “Women”, “Both” – NOT ACTIVE
allele_dosage_fn VARCHAR(254) Identifier for a function to calculate allele dosages.

Currently possible value “0 1 2” – NOT ACTIVE
marker_effect_combination_fn VARCHAR(254) Identifier for a function to combine allele dosages.

Currently possible values “Sum” – NOT ACTIVE
reference_genome_id INT(11) Nullable. Foreign key to referece_genomes – NOT

ACTIVE
status SMALLINT(6) “Deleted”, “Unknown”, “Usable” - NOT ACTIVE
created_on TIMESTAMP Timestamp of model creation
created_by VARCHAR(254) Creator identificator. Currently USER or

ENSEMBL
comments TEXT User entered comments.

prediction_markers

Prediction markers for one prediction model.

Name Database type Comments
prediction_marker_id INT(11) Primary key
marker_name VARCHAR(254) Human readable name for the marker
chr VARCHAR(254) Chromosome
chr_position INT(11) Position in chromosome

52

effect_allele VARCHAR(254) Effect allele
ref_allele VARCHAR(254) Other allele
eaf DOUBLE Effect allele frequency in source study
beta DOUBLE Beta of effect_allele in source study
coefficient DOUBLE Additional coefficient for double weighted
p_value DOUBLE p-value in source study
prediction_model_id INT(11) Foreign key to prediction_models
Converted TINYINT(1) 0 – Original beta, 1- Beta converted to positive

prediction_model_diagnoses

Link prediction model to diagnoses

Name Database type Comments
prediction_model_diagnose_id INT(11) Primary key
prediction_model_id INT(11) Foreign key to prediction_models
diagnose_id INT(11) Foreign key to diagnoses

prediction_model_medications

Link prediction model to medications.

Name Database type Comments
prediction_model_medication_id INT(11) Primary key
prediction_model_id INT(11) Foreign key to prediction_models
medications_id INT(11) Foreign key to diagnoses

prediction_calculations

Store meta info about prediction calculation

Name Database type Comments
prediction_calculation_id INT(11) Primary key
prediction_model_id INT(11) Foreign key to prediction_models
impute_set_id INT(11) Foreign key to impute_sets
duration_ms BIGINT(20) Duration of calculation in milliseconds
created_on TIMESTAMP Creation timestamp of calculation
status CHAR(45) Status of calculation. Possible values are “Running,

Completed”
min_score DOUBLE Minimum calculated score
max_score DOUBLE Maximum calculated score
calculation_start TIMESTAMP Calculation start time – NOT ACTIVE
calculation_end TIMESTAMP Calculation end time – NOT ACTIVE

53

prediction_results

Stores risk score for each position in impute_positions

Name Database type Comments
prediction_result_id INT(11) Primary key
prediction_calculation_id INT(11) Foreign key to prediction_calculations
sample_code VARCHAR(255) Code for sample in the impute_set_positions
score DOUBLE Calculated total score for given sample
sample_position INT(11) Sample position in impute_marker genotype for this

calculation – NOT ACTIVE replaced by
sample_code

prediction_reporting_thresholds

Stores information for each risk group for the calculation.

Name Database type Comments
prediction_reporting_threshold_id INT(11) Primary key
prediction_calculation_id INT(11) Foreign key to prediction_calculations
name VARCHAR(255) Name of threshold currently “Low, Medium,

High”
min_score DOUBLE Minimum in threshold range
max_score DOUBLE Maximum in threshold range

influencial_markers

Stores marker effects for selected markers for each calculation.

Name Database type Comments
id INT(11) Primary key
prediction_calculation_id INT(11) Foreign key to prediction_calculations
impute_marker_id BIGINT(20) Foreign key to impute_markers
prediction_marker_id BIGINT(20) Foreign key to prediction_markers
marker_type INT(11) 0 – Complimentary, 1-Palindromic, 2-Regular
effect_direction INT(11) 1 – Same, -1- Different
complimentary_usage INT(11) 1 – Used, -1 – Unused
uncompressed_me_length INT(11) Array[Byte] length of marker effects before

compression
compressed_me_length INT(11) Array[Byte] length of marker effects after

compression
compressed_me_data BLOB Array[Byte] of Lz4 compressed marker effects

separated by “|”

impute_sets

54

Group of one impute2 dataset.

Name Database type Comments
impute_set_id INT(11) Primary key
name VARCHAR(254) Human readable name for the impute set
created_on TIMESTAMP Creation date
reference_genome_id INT(11) Nullable. Links impute dataset to specific reference

genome

impute_markers

All the marker information in the impute2 dataset.

Name Database type Comments
impute_marker_id BIGINT(20) Primary key
impute_set_id INT(11) Foreign key to impute_sets
marker_name VARCHAR(254) Human readable name for the marker
allele_a VARCHAR(254) First allele for the marker
allele_b VARCHAR(254) Second allele for the marker
chr VARCHAR(254) Chromosome
chr_position INT(11) Position in the chromosome
uncompressed_length INT(11) Array[Byte] length of reduced Impute2 genotypes

before compression
compressed_length INT(11) Array[Byte] length of reduced Impute2 genotypes

after compression
compressed_data BLOB Array[Byte] of reduced Impute2 genotypes in Lz4

compression

impute_positions

Matches sample file in impute2 dataset

Name Database type Comments
impute_position_id INT(11) Primary key
impute_set_id INT(11) Foreign key to impute_sets
id_1 VARCHAR(254) Saved to preserve sample file structure
id_2 VARCHAR(254) Used to match code in individual_samples to

determine individual
missing VARCHAR(254) Saved to preserve sample file structure
father SMALLINT(6) Saved to preserve sample file structure
mother SMALLINT(6) Saved to preserve sample file structure
sex SMALLINT(6) Saved to preserve sample file structure
plink_pheno SMALLINT(6) Saved to preserve sample file structure
position INT(11) Position of current sample in the impute_markers

compressed_data

55

reference_genomes

Table to keep track over used reference genomes.

Name Database type Comments
reference_genome_id INT(11) Primary key
name VARCHAR(254) Human readable name for reference genome
created_on TIMESTAMP Creation date

individuals

Table to identify individual.

Name Database type Comments
individual_id INT(11) Primary key
individual_code VARCHAR(254) Code to identify individual
birth_year SMALLINT(6) Individual birth year
birth_month TINYINT(4) Individual birth month
gender VARCHAR(45) Gender: “Unknown”, “M”, “F”

individual_samples

Table to store individual’s samples. Used to link with imputed data or prediction results.

Name Database type Comments
individual_id INT(11) Foreign key to individuals
individual_sample_id INT(11) Primary key
code VARCHAR(254) Code to identify sample

individual_diagnoses

Table to link individual with their diagnoses.

Name Database type Comments
individual_id INT(11) Foreign key to individuals
individual_diagnose_id INT(11) Primary key
diagnose_id INT(11) Foreign key to diagnoses
year INT(11) Year of diagnose
month INT(11) Month of diagnose
day INT(11) Day of diagnose
reliability INT(11) Reliability of diagnose. Possible values ()
hasNow TINYINT(1) Weather the individual had the diagnose when

joining

56

source VARCHAR(45) Source of individuals diagnose: “EGCUT”, “EHK”,
“PERH”, “TYK”, “SPR”

individual_medications

Diagnoses for individual

Name Database type Comments
id INT(11) Primary key
status_code VARCHAR(50) Status code for the diagnose given by Estonian

Health Foundation (EHF)
individual_id INT(11) Foreign key to individuals
status_name VARCHAR(50) Status name given by EHF
icd10_code VARCHAR(50) ICD10 code related to the medication
prescribed_date TIMESTAMP Time medication was prescribed
prescribed_atc_code VARCHAR(50) ATC code for the medication
prescription_code VARCHAR(254) EHF code for prescription
prescription_kk_code VARCHAR(254) EHF old code for prescription
prescription_erp_code VARCHAR(254) EHF middle generation code for prescription
prescription_name VARCHAR(512) EHF prescription name
pickup_date TIMESTAP Time the prescription was puchased
pickup_atc_code VARCHAR(50) ATC code for the pickup prescription
source VARCHAR(45) Source of the medication info EHF by default

individual_objective_measurements

Different hip, waist, weight and height measurements.

Name Database type Comments
id INT(11) Primary key
year SMALLINT(11) Year of measurement
month TINYINT(11) Month of measurement
day TINYINT(11) Day of measurement
hip DOUBLE Hip measurement
waist DOUBLE Waist measurement
height DOUBLE Height measurement
weight DOUBLE Weight measurement
individual_id INT(11) Foreign key to individuals

diagnoses

Stores diagnoses found in ICD-10 classification.

Name Database type Comments

57

diagnose_id INT(11) Primary key
icd_10_code VARCHAR(254) ICD-10 code
icd_10_name VARCHAR(1024) ICD-10 name in Estonian
icd_10_level INT(11) ICD-10 is hierarchical. Levels start from 0 and

increases for each group of children
icd_10_parent INT(11) diagnose_id of parent element or NULL if there is

none.

medications

Stores medications found in ATC-10 classification.

Name Database type Comments
medication_id INT(11) Primary key
atc_10_code VARCHAR(254) ATC-10 code
atc_10_name VARCHAR(1024) ATC-10 name in Estonian
atc_10_level INT(11) ATC-10 is hierarchical. Levels start from 0 and

increases for each group of children
atc_10_parent INT(11) diagnose_id of parent element or NULL if there is

none.

58

Appendix 4. Spark cluster configuration with hadoop-lzo

On OSX, installation of Homebrew with lzop and lzo packages is required. In Linux

distributions lzo development libraries.

Navigate to user folder
cd /home/user

Clone git repo with some premade configurations
git clone git@github.com:kmetsalu/spark-with-lzo.git spark-with-lzo
cd /home/user/spark-with-lzo

Export BASE_DIR variable for easier use.
export $BASE_DIR=`pwd`

Download Spark 1.2.0
wget http://www.apache.org/dyn/closer.cgi/spark/spark-1.2.0/spark-1.2.0-bin-hadoop2.4.tgz
tar -xzvf spark-1.2.0-bin-hadoop2.4.tgz
mv spark-1.2.0-bin-hadoop2.4 spark

Download hadoop-lzo
git clone https://github.com/twitter/hadoop-lzo.git hadoop-lzo
cd $BASE_DIR/hadoop-lzo
git checkout release-0.4.19

Build native libraries according to hadoop-lzo instructions
After build there should be target directory in hadoop-lzo folder
Make new directory to store current compilation
mkdir $BASE_DIR/hadoop-lzo/current

Copy required native libraries to created directory for Linux
folder name within native directory differs, but everything else
is the same
cp -R $BASE_DIR/hadoop-lzo/target/native/Mac_OS_X-x86_64-64/lib/ $BASE_DIR/hadoop-
lzo/current/native

Copy created jar
cp $BASE_DIR/hadoop-lzo/target/hadoop-lzo-0.4.19.jar $BASE_DIR/hadoop-lzo/current

Copy configuration files to spark
cp $BASE_DIR/spark-conf/conf/* $BASE_DIR/spark/conf/
mv $BASE_DIR/spark/sbin/spark-config.sh{,.backup}
cp $BASE_DIR/spark-cond/sbin/* $BASE_DIR/spark/sbin/

Spark now runs with lzo support and on Linux with Lz4 and Snappy support
$BASE_DIR/spark/bin/spark-shell --master local[*]

59

Appendix 5. MySQL configuration
[mysqld]
datadir=/local/mysql
socket=/var/lib/mysql/mysql.sock
user=mysql
key_buffer_size = 10000M
max_allowed_packet = 256M
table_cache = 512
sort_buffer_size = 64M
read_buffer_size = 256M
read_rnd_buffer_size = 128M
myisam_sort_buffer_size = 256M
thread_cache_size = 128
query_cache_size= 64M
thread_concurrency = 8
innodb_buffer_pool_size = 100000M

Disabling symbolic-links is recommended to prevent assorted security risks
symbolic-links=0
bulk_insert_buffer_size = 128M
delayed_insert_limit = 2000
innodb_log_file_size = 512M
innodb_flush_method = O_DIRECT
innodb_thread_concurrency = 16
innodb_log_buffer_size = 32M
innodb_file_per_table=1

[mysqld_safe]
log-error=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid

60

Appendix 6. Source code

Source code for this application is available at:

https://cloud.biobank.ee/index.php/s/YCwiYYkYJi5B4HW

There is a README.md file included with the source code with further instructions.

61

Appendix 7. License

Non-exclusive license to reproduce thesis and make thesis public

I, Kristjan Metsalu (date of birth: 19.12.1986),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including

for addition to the DSpace digital archives until expiry of the term of validity of the copyright,

and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the copyright,

of my thesis

Web application to calculate genetic risk scores based on imputed data.

supervised by Prof. Jaak Vilo, Reedik Mägi PhD and Tatjana Iljashenko MSc

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2015

