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Human Mobility Mining Using Spatio-Temporal Data

Abstract

Geospatial technologies have become an integral part of our lives. With

technological progress and rapid increase of geospatial information and

inexpensive positioning technologies, more space-related data is becoming

available at any time. Data is collected using multiple sources such as GPS

and mobile computer logs, wireless communication devices, location-aware

services and other positioning systems. This gives scientists the opportunity to

create new innovative platforms for spatio-temporal data analysis and improve

methods for mining and visualization for decision support. In order to provide

a good decision support systems, it is vital to understand people’s movement,

mobility behaviour and be able to discover hidden patterns and associations

in their daily activities. The aim of this thesis is to analyze and discuss

spatial data mining techniques by answering questions like what kinds of

patterns can be extracted from spatio-temporal data or which methods are

best for predicting human mobility behavior. In this work, we verify existing

methodologies and theories about spatio-temporal data mining and propose a

sequence of algorithms to achieve good human mobility prediction. We evaluate

the results and propose a methodology for adaptive data mining of human

mobility behavior.

Keywords: Spatio-temporal data mining, GPS data, Location prediction,

Human mobility, Location analytics
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Inimeste aegruumilise käitumise ja mobiilsuse uuring

Resümee

Georuumilised tehnoloogiad on lahutamatu osa meie elust: tehnoloogilise

arengu ja positsioneerimise seadmete levikuga on toimunud kiire kasv

kättesaadavate georuumiliste andmete mahus. Andmed kogutakse erinevate

allikate kaudu nagu GPS ja mobiilseadmete logid, traadita sidevahendid ja

asukohapõhised teenused ning teised positsioneerimise süsteemid. Liikumise

kohta on võimalik infot koguda suures mõõtkavas ja hea täpsusega - see

annab uurijatele võimaluse luua uusi ja innovaatilisi platvorme ja teenuseid

georuumilise info analüüsimiseks ning parandada andmete kaevandamise ja

visualiseerimise tehnikaid. Selleks, et luua hea nõustussüsteem, on väga oluline

saada aru inimeste liikumisharjumustest ja käitumisest ning leida igapäevaste

tegevuste varjatud mustrid.

Magistritöö eesmärgiks on analüüsida andmekaevandamise meetodeid,

uurides, millised mustrid võivad olla liikumise trajektoorides või milliste

algoritmidega saab ennustada inimeste käitumist. Töös kontrollitakse

nii olemasolevaid metoodikad ja teooriad ruumilise andmekaevandamise

valdkonnas kui ka pakutakse arendatud algoritmide jada inimeste liikumise

ennustamiseks. Me hindame ja võrdleme tulemusi omavahel ning töötame välja

metoodika inimeste liikumiskäitumise adaptiivseks andmekaevandamiseks.

Märksõnad: aegruumiline analüüs, GPS andmed, asukoha ennustamine,

inimeste mobiilsus, aegruumilised liikumised

CERCS: P170
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Resümee 3

Acknowledgements 4

Abbreviations and Acronyms 7

1 Introduction 8

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background and Related Work 12

2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 GPS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Semantic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Design and Technology 21

3.1 Used technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Data source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Methodology 25

4.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Location prediction . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Predicting next geo-location on the map . . . . . . . . . 30

4.2.1.1 Average distance between geo-locations . . . . . 30

4.2.1.2 Route similarity index and direction of the

movement . . . . . . . . . . . . . . . . . . . . . 31

4.2.1.3 Similar starting area . . . . . . . . . . . . . . . 33

5



4.2.1.4 Intersection with the ending area . . . . . . . . 33

4.2.2 Predicting the type of the next geo-location . . . . . . . 35

4.2.3 Adding temporal aspect . . . . . . . . . . . . . . . . . . 36

5 Experimental Results and Analyses 38

5.1 Data overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Extracting geo-locations and daily trajectories . . . . . . . . . . 39

5.3 Evaluation criterias . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Predicting next geo-location on the map . . . . . . . . . 43

5.4.2 Similar starting area and intersection with ending area . 46

5.4.3 Predicting the type of the next geo-location . . . . . . . 47

5.4.4 Taking temporal information into account . . . . . . . . 51

6 Discussion and Perspectives 54

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Impact of the dataset size . . . . . . . . . . . . . . . . . . . . . 55

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References 57

6



Abbreviations and Acronyms

This section clarifies some terms used in the paper.

DBSCAN

Density-based spatial clustering of applications with noise

GIS

Geographic Information System

GPS

Global Positioning System

LHS

Left-hand side of an equation

OSM

OpenStreetMap

POI

Point of Interest

RHS

Right-hand side of an equation
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1. Introduction

Geospatial technologies affect almost every aspect of life. A number of

modern geopositioning technologies is progressing rapidly and more geospatial

information is becoming available. New advancements and developments in

the field continue to take place. Nowadays mobility data in the form of

spatially referenced time series is collected on a very large scale and with

a good precision. Data is collected from different sources: positioning systems,

network traffic controllers, geo-tagged photos and geo-referenced datasets,

mobile computer logs, location-aware and wireless communication devices and

much more. The number of such sources and size of their datasets are growing

rapidly [30], therefore, real-time location information are commonly part of

our everyday lives. Widespread availability of low cost GPS devices also did

not play the least role in this expansion.

This contributes scientists, geoinformatic and telecommunication

specialists to create new innovative platforms for spatio-temporal data

research and analysis. Such platforms are designed to improve methods for

mining, visualization of moving objects and discovering of hidden patterns.

Development of this research area depends on different social, commercial

and technological aspects. Spatio-temporal data can be used for many various

purposes and in many different scientific and applied sciences as well as

in designing and management of cities to make them more sustainable.

Associations in spatio-temporal data can greatly help with understanding

and predicting our environment, for example customers mobility, weather

forecasting, mobile marketing and targeted advertising, personalization of

contents and services or even monitoring epidemics and predicting spread of

the disease. Those platforms are aimed primarily for making better and faster

decisions.

In order to make a decision, we must be able to get raw spatio-temporal

data, process this data and extract useful information from it. Due to the fact

8



that the amount of available space-related data is growing blazingly fast, it

becomes challenging to distinguish useful information, because it requires new

and efficient computational analysis methods, which must be able to handle

large amounts of data with ease as well as new representation methods and

ways of storing the data. Such methods must be able to use all available

information gathered over the years as well as personalised information and

data from every single user correspondingly. Therefore, sustainable data mining

techniques must exist in order to provide high quality results.

1.1 Problem statement

If we think about our daily movement, it is obvious that our location

points do not spread uniformly, but they tend to gather in few limited areas,

where we stay for a longer period of time [41]. Those geographic areas carry

some semantic meaning and are called significant places. An example of a

significant place can be a workplace, friend’s house, shopping center, office

building, bar and supermarket, restaurant or any other place that capture

user’s interest. Multiple statistical studies have shown that most people have

regular daily routines of traveling [19] and visiting the same locations. Given

that we have observed people for a long enough time and collected sufficient

amount of observations, mining of those areas can greatly assist in extracting

useful information that can be used for prediction of the next possible location.

This, in turn, provides a new ways to understand human mobility and activity

patterns, opens new chances for location-based services as well as introduce

new issues in performing data mining and analysis in today’s pervasive

computing environments.

Although a lot of research have been done in the field of location prediction,

we found a very few studies on the topic of the combination of different mobility

prediction methods capturing various aspects of human movements, such as

semantic or temporal information.
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Towards this end, thesis focuses on the following research questions:

1. Can combination of different location prediction methods result in

achieving better prediction success rate than utilization of only one

location prediction method?

2. If so, which circumstances contributed to the increase in prediction

success rate?

1.2 Contributions

Methodology of this work is based on two major principles of data

analysis: understanding and predicting. This thesis targets to achieve following

objectives:

∙ Identify the main reasons that drive people to change their location.

∙ Investigate methods and techniques for spatio-temporal data mining.

∙ Analyze people’s movements and detect and classify geographic areas

that carry some semantic meaning and capture their interest.

∙ Derive a framework for predicting people’s next geographic location by

capturing the sequential relations between places visited in a given time

period by all individuals [29]. Based on the derived statistical patterns

we are focusing on predicting future locations to be visited. Specifically,

we propose a hybrid method based on [37,40,41].

1.3 Road map

The rest of the thesis dissertation is organized as follows.

Chapter 2: Presents an overview of related literature and possibilities of

geographical data mining and talks about the constituents used in the

thesis. Chapter introduces basic definitions and their properties. Also,

semantics in geographic data and importance of adding it were discussed.
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Chapter 3: Describes the origin and specification of the data as well as

software technologies used in this thesis.

Chapter 4: First and foremost, data preprocessing techniques were

discussed. Next, we propose a model for analysis and prediction of human

mobility. Each integral component of the model is overviewed and backed

by examples.

Chapter 5: Presents the results achieved when applying proposed model to

real life geographic data. Also, the pros and cons of the model together

with problems encountered during the implementation were covered in

details.

Chapter 6: Concludes the results as well as presents future research

perspectives.
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2. Background and Related Work

Before we proceed with a framework for prediction of human mobility, it

is important to have an understanding of the existing widely used models

and theories. Knowledge of basic conceptions will help towards discovering

additional features of mobility analysis and prediction that may be of relevance.

This chapter provides an overview of the relevant literature, definitions and

their properties used in the paper while developing the framework.

2.1 State of the art

Analysis of spatial data and human mobility have been a hot topic for a

long time and was addressed and studied in many papers. There is no uniform

opinion among scientists about this topic - a certain group of scientist believes

that movements of people follow some random regulation [20,31], whereas the

other ones believe that human trajectories follow common patterns and show

a high degree of temporal regularity [16,24].

There are a huge amount of methods for analyzing human mobility and

location prediction, but in general they can be classified into three major

categories:

1. Data-mining techniques

2. Space-state models

3. Semantic analysis techniques.

First and most widely used method for analyzing human mobility is

by applying data mining techniques for exploration of hidden patterns and

mining of association rules. In a nutshell, this includes analysis of previous

occurrences by clustering, aggregation and extracting patterns from time

series data. This method also heavily uses the notion of spatial analysis and
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heuristic algorithms to make a decision - this means finding longest common

subsequences, analyzing route dynamics and similarity indexes or any other

algorithms for distance analysis. Such approach was used, for instance, in

[1,6,41]. A diverse variety of different models were created, for example authors

of [23] proposed a model called “M-Model” for mining and querying of complex

trajectory data by combining common behavior of groups of objects.

The second type of approaches, which is space-state models, use sequence

models and probabilistic automation for mining location history [19,25,29,36].

One of the most popular and cited representatives of this class is Hidden

Markov Model (HMM). In HMM the system is considered to be a Markov

process with hidden states and the main goal is to analyze the data that

is not immediately observable by training the model: location history in

our case. Algorithm has lots of advantages, like being able to capture

dependencies between measurements and representing variance through

probability distribution, however, as with all machine learning techniques, final

result is not fixed and depends on amount of training and visible states. Thus,

this results in a very different prediction accuracy: [29] report an accuracy of

13.85% when using HMM, while authors of [5] in their work get an accuracy

of 45% with HMM. Other models can also be used for mobility prediction:

conditional random fields, for instance [8].

Third approach is semantic analysis, which deals mainly with template

matching and considers semantics as a main criteria when analyzing movement

history. It analyzes location history and produces a so-called ”semantic space”,

which consists of semantic links, that play a key role in decision making. It

analyzes social aspects of human mobility as well as points of interest (POIs).

For example [38] used this approach to discover regions of different function in

a city. Usually those methods do not include any perception of spatial analysis,

thought, can use temporal data for creating necessary semantic links. However,

complex semantic analysis processes are not yet fully automated and often

need help of people as described in [3]. This happens due to the fact that

often data simply lack necessary semantic links, which cannot be interpreted
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by computers, but can be easily read, understood, and if necessary, restored

by humans.

2.2 GPS data

First step is to record all needed information to get digital track of people’s

movements. The most common way of getting positioning information is using

GPS (Global Positioning System). GPS is space-based radio-navigation system

developed by the US Department of Defense that uses the notion of satellites

to provide location and time information. The idea is based on the fact that

it is possible to determine the location on the Earth by knowing the exact

time, speed and location of the satellite. Nowadays there are 31 satellites used

for positioning services circulating at 14000 km/hr about 20000 km above the

Earth’s surface. Microwave radio signals travelling at the speed of light from at

least three satellites are used by the receiver’s built-in computer to calculate its

position, altitude and velocity. Determination of the exact location is measured

by the reception timings from the navigation satellites to the receiver antennas.

GPS navigation is freely accessible for using with any GPS receiver,

providing GPS data. Stored GPS recordings are also called GPS logs.

Definition 1. GPS log: a collection of GPS points 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}, where

each point 𝑝 ∈ 𝑃 contains latitude (𝑝.𝐿𝑎𝑡), longitude (𝑝.𝐿𝑜𝑛), timestamp (𝑝.𝑇 ),

altitude (𝑝.𝐴), velocity (𝑝.𝑉 ) and other information.

GPS positioning has its own advantages and disadvantages. Probably the

most attractive feature of the GPS is that it covers 100% of the planet and

can operate in almost all weather conditions and on any surface. Also, GPS

greatly facilitates navigation as it can report the direction and the angle of

the movement. GPS receivers costs very low and are easily integratable into

computers and mobile devices when comparing with other navigation systems.

Nevertheless, GPS is not infallible and might be not very accurate in some

cases. The main problem comes from inaccurate time-keeping by the receiver’s

device clock - the time when receiver’s computer got the signal and the time

used by the whole global positioning system for synchronization might be
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slightly different. Those tiny discrepancies may lead to the fact that calculated

distance can drift, which means that accuracy of location positioning will not

be fully accurate. Furthermore, the quality of the GPS signal depends on the

landscape where it is received. Radio signals may easily be distorted as they

are unable to pass through solid structures like tall buildings, underground,

deep forest or underwater.

GPS greatly contributed to the creation of location-based social networks

and services such as FourSquare1, Rally Up2 or Runtastic3. Nowadays they

are being increasingly used as means to track GPS traces, store and share

human location histories. For instance, Flickr4 allows geotagging photos,

Twitter5 maps tweets and interests, while Facebook6 allows sharing and tagging

locations representing particular interest.

When carefully processed, this data can provide important information for

urban planning and management, vehicle tracking, monitoring and other tasks.

Determining trajectories representing people’s location histories and extracting

people’s most frequently visited locations from raw data can provide valuable

information about human mobility patterns.

Next, we clarify the meaning of related terms.

Definition 2. GPS trajectory: On a two dimensional plane, it is

possible to sequentially connect raw GPS points into a curve based on

time serials, and split this curve into GPS trajectories (𝑇𝑟) if the

time interval between consecutive GPS points exceeds a certain threshold

∆𝑇 [40]. Thus, 𝑇𝑟 = 𝑝1 → 𝑝2 → ...→ 𝑝𝑛, where 𝑝𝑖 ∈ 𝑃 , 𝑝𝑖+1.𝑇 > 𝑝𝑖.𝑇 and

𝑝𝑖+1.𝑇 − 𝑝𝑖.𝑇 < ∆𝑇 (1 ≤ 𝑖 < 𝑛) [40].

The notion of trajectories and spatio-temporal data allows to build

elementary human mobility models, for example, to understand classical

work-to-home sequence by checking starting times of the trajectories. When
1https://www.foursquare.com/
2http://www.getupandrally.com/
3https://www.runtastic.com/
4https://www.flickr.com/
5https://www.twitter.com/
6https://www.facebook.com

15

https://www.foursquare.com/
http://www.getupandrally.com/
https://www.runtastic.com/
https://www.flickr.com/
https://www.twitter.com/
https://www.facebook.com


analyzing large amounts of spatial data, it is often essential to preprocess and

classify spatial data into groups, so that points within the same group are more

similar to each other than those in disparate groups.

Definition 3. Geo-location: A geo-location 𝑔 stands for a geographic

region where user stayed over a certain time interval and which carries

some semantic meaning for the user. The extraction of geo-locations

depends on two parameters: distance threshold (𝐷𝑡ℎ𝑟𝑒ℎ) and time threshold

(𝑇𝑡ℎ𝑟𝑒ℎ). A group of consecutive GPS points 𝑃 ∈ {𝑝𝑚, 𝑝𝑚+1, . . . , 𝑝𝑛},

where ∀𝑚 < 𝑖 ≤ 𝑛,𝐷(𝑝𝑚, 𝑝𝑖) ≤ 𝐷𝑡ℎ𝑟𝑒ℎ and |𝑝𝑛.𝑇 − 𝑝𝑚.𝑇 | ≥ 𝑇𝑡ℎ𝑟𝑒ℎ. With

𝑃,𝐷𝑡ℎ𝑟𝑒ℎ, 𝑇𝑡ℎ𝑟𝑒ℎ a geo-location is defined as 𝑔 = (𝐿𝑎𝑡, 𝐿𝑜𝑛, 𝑎𝑟𝑣𝑇, 𝑙𝑒𝑣𝑇 ), where

𝑔.𝐿𝑎𝑡 =
𝑛∑︁

𝑖=𝑚

𝑝𝑖.𝐿𝑎𝑡/|𝑃 |

𝑔.𝐿𝑜𝑛 =
𝑛∑︁

𝑖=𝑚

𝑝𝑖.𝐿𝑜𝑛/|𝑃 |

are average latitude and longitude of the collection P, 𝑔.𝑎𝑟𝑣𝑇 = 𝑝𝑚.𝑇 is user’s

arrival time, 𝑔.𝑙𝑒𝑣𝑇 = 𝑝𝑛.𝑇 is user’s leaving time and D is distance between

GPS points [40].

Figure 1: Example of a geo-location.

Geo-location (Figure 1) is nothing more than a sufficiently large group of

non-randomly distributed GPS points that have accumulated in some place.

We will use clustering techniques to discover those homogeneous groups in

the data. There exist a countless number of different clustering algorithms

and their variations, but in this work we will use density based clustering

methods and their the most famous representative - DBSCAN algorithm [18].

Its applicability and ability to work with GPS data was also reviewed in [33].
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Definition 4. DBSCAN: Density-based spatial clustering of applications

with noise algorithm uses notion of density reachability to discover clusters.

Algorithm identifies all point p neighbours which are within distance 𝜀. If

number of such neighbours is greater than minimum predefined number minPts,

points are considered as a part of a cluster, otherwise p is considered as a

noise [33]. Algorithm terminates when all points have been visited. Average

complexity of the algorithms is 𝒪(𝑛2).

Algorithm usually uses Euclidean distance as metric for calculating distance

between points, however, other distance metrics can also be used. DBSCAN

algorithm does not specify the upper limit of how many objects may form

a cluster and therefore detected clusters have wide variation in local density.

Density based clustering algorithms are perfect for spatial data clustering given

its distinctive features:

1. The ability to detect non-spherical clusters of arbitrary shape. Other

clustering methods like hierarchical clustering or k-means algorithms fail

in this regard.

2. The ability to discover noise and being robust to outliers. Algorithm

required input parameters can be chosen in the way that sparsely

distributed points will not be included in any cluster.

3. Speed and complexity - in worst case DBSCAN algorithm has 𝒪(𝑛2)

time complexity. Furthermore, 𝒪(𝑛 log 𝑛) complexity can be obtained by

using indexed data structure. Numerous other clustering algorithms have

considerably higher complexity.

Although, it should be noted that right now neither trajectories nor

geo-locations carry any semantic value. We will enrich them with semantic

meaning - it will provide us with better insights and open new possibilities for

human mobility analysis.
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2.3 Semantic analysis

After extracting geo-locations we are going to recognize activities associated

with those places and information about the types of businesses close to the

location. Before doing this, we need to find a list of POIs (Points Of Interest)

and public amenities located in study area. Such information can be extracted

from different databases that store semantic category of POIs - we used

OpenStreetMap database7. We will use a buffer around geo-location centroid to

classify geo-location according to amenities falling into the buffer. This means,

that a geo-location will be labeled with a semantic tag and associated with

some activity. However, occasionally it is not possible to determine the type

of the geo-location unambiguously as frequently many amenities are located

next to each other. For example, when multiple restaurants are located inside

a shopping mall or when public transport stops are in close proximity to post

offices. POIs and classified geo-locations are depicted on Figure 2.

Second part of semantic analysis is to determine which locations are

significant for the user. Significance can be indicated by time spent in a

place [4] and our approach relies on measuring the time periods a person

stays at each place and uses time threshold to distinguish significant and

insignificant places. Determination of the correct thresholds is critical as we

should be able to find out significant places, such as commonly frequented

public areas like restaurants, sport centers, cinemas, etc., while ignoring places

without semantic meaning, like waiting for traffic lights or being stuck in a

traffic jam. When using smaller time threshold it becomes possible to extract

more geo-locations representing small pauses, for example, less than 5 minutes,

which are transit-locations between start point and destination [41].

All this implies that there is a relation between a spatial description and

the social context of the human movement. Various pattern mining algorithms

and methods, for instance Apriori algorithm [2] or FP-Growth algorithm [39],

can be applied for exploring the relationship between geographic and semantic

properties and as a result obtaining frequent semantic patterns of behaviours
7http://wiki.openstreetmap.org/wiki/Downloading_data

18

http://wiki.openstreetmap.org/wiki/Downloading_data


(a)

(b)

(c)

Figure 2: POIs and classified geo-locations. (a) - POIs (yellow), all geo-

locations (purple). (b) - POIs (yellow), all geo-locations (purple), classified

geo-locations (green), (c) - POIs (yellow), all geo-locations (purple), classified

geo-locations (green), geo-locations with more than one POI nearby (blue).
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of people. Proposed conception allows to capture sociological aspects of human

movements - it becomes possible to build more complicated models and

comprehend why people have chosen that particular path and decided to make

a stop in that particular place. For example, it becomes possible to mine and

understand the classical landmark-to-bar travel sequence: an individual would

be more likely to go to a bar after visiting a cultural landmark than they would

before [40]. Another example is illustrated on Figure 3.

Figure 3: Path containing 3 classified geo-locations.
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3. Design and Technology

This section describes the data and software technologies used in the thesis.

3.1 Used technologies

Almost all code is written in Groovy8 - a modern dynamic language for the

Java platform. Gradle system9 was used for building and running the code.

Small scripting tasks like data import were done in Python10, statistics and

data analysis were done in R11. PostgreSQL12 - open source database server,

was used to store the data. Also, PostgreSQL was extended with PostGIS13

extension - software that adds support for geographical objects and allows

to perform aggregation functions over them. Visualizations was done using

QGIS14 software - cross-platform and open-source desktop GIS application for

geographical data viewing and analysis.

3.2 Data source

In this paper we will use the data collected by “MobCollector” - mobile

application created by Distributed Systems Group of University of Tartu15.

Main goal of the application is to record GPS and mobile data: basic location

information (user identificator, timestamp, latitude, longitude, speed, quality

of signal, strength of signal) and mobile identificator (mobile country code,

mobile network code, location area code, cell ID, network type). User interface
8http://www.groovy-lang.org/
9http://www.gradle.org/

10https://www.python.org/
11https://www.r-project.org/
12http://www.postgresql.org/
13http://www.postgis.net/
14http://www.qgis.org/en/site/
15http://www.ds.cs.ut.ee/
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Figure 4: User interface of “MobCollector” application

of the application can be viewed on Figure 4. Application was installed

on mobile phones of 13 users and worked in background mode. Data was

collected for a period of 6 months from March to September 2015. During

the data collection period people used different transportation modes, such

as walking on foot, riding a bicycle or driving a car. Collected data was a

high-sampling-rate data, which means that time granularity for every GPS

point is around 3-10 seconds. Temporal spacing of the records is irregular.

Different representations of used GPS data and created trajectories can be

viewed in Figure 6.

We are using real world data to demonstrate effectiveness of our approach.

As observed in [27] real world mobility models are statistically different

from those generated from commonly used synthetic mobility models such

as random waypoint [11] and Brownian motion [12].
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ID User ID Date Time Lat Lon Trajectory ID

1 1 2015-03-21 14:50:54 58.37430482 26.71254817 1

2 1 2015-03-21 14:51:01 58.37385347 26.71122877 1

3 2 2015-06-15 20:17:45 58.3774068 26.6853793 2

4 2 2015-06-15 20:17:48 58.37768334 26.68471776 3

Table 1: Example GPS log

Initial dataset contains 273 625 GPS points (Table 1), which we store

in PostgreSQL relational database. Each GPS point record has variety of

different properties, however, in this work we will concentrate only on GPS

data and on following properties: latitude and longitude coordinates in

EPSG:4326 coordinate system, timestamp and user ID. Database schema

showing fundamental structure is shown in Figure 5. Notwithstanding, we were

using plenty of other tables for holding intermediate results, doing analytics

and prediction.

Figure 5: Internal data model

Most parts of the data were collected predominantly in Tartu, Estonia.

Figure 6 depicts the distribution of the GPS data used in the experiment.

Considering the privacy issues, we use all the data anonymously.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Representation of used GPS data and computed trajectories.

(a) - All GPS points, small scale. (b) - All computed trajectories, small scale.

(c) - Computed trajectories in Tartu city, large scale. (d), (e), (f) - Heatmap

of all GPS points in Tartu city, small scale.
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4. Methodology

This chapter describes a framework for analysis and prediction of human

mobility. The workflow is shown on Figure 7 and is as follows: first, we extract

trajectories from raw GPS logs of all users, then extract geo-locations from

trajectories and enrich them with semantic and temporal tags. As a final step

before starting with prediction, we unite geo-locations into daily trajectories.

Figure 7: Prediction workflow

4.1 Data preprocessing

Foremost, initial raw GPS dataset was preprocessed and cleaned. Cleaning

data is a process used to determine and improve inaccurate, incomplete and

unreasonable raw data [14]. There are some degree of errors and omissions in

any GPS data, because there are many factors that contribute to the accuracy
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of GPS recordings. It is necessary to understand causes of the errors in data

to successfully clean and improve raw GPS point locations [14].

One of the most common GPS measurement errors is related to the GPS

jumping around and thus showing incorrect location. We encountered lots of

errors preventing us from plotting the data and performing proper analysis.

The issue was fixed in two steps:

1. Finding and deleting users duplicate GPS points - we compared longitude

and latitude of the GPS points and removed duplicates from the dataset.

2. Adding constraints to raw GPS data when extracting trajectories

- two consecutive points belong to the same trajectory if only

the distance and time between them is respectively less than 200

meters and 1 minute. The distance between points from their

longitudes and latitudes was calculated using Haversine formula.

Definition 5. Haversine distance:

𝑑 = 2𝑟 sin−1(

√︂
sin2(

𝜙2 − 𝜙1

2
) + cos(𝜙1) · cos(𝜙2) · sin2(

𝜓2 − 𝜓1

2
)),

where r is sphere radius (6371 km), 𝜑 is latitude and 𝜆 is longitude.

After that we delete all GPS points that belong to trajectories containing

less that 5 GPS points as we consider them uninformative and not

providing any value for location prediction - on average their duration is

≈20 seconds, distance less than 100 meters and they do not present any

meaningful movement activity.

First, we preprocessed raw GPS logs and extracted 273 625 GPS points

belonging to 13 unique users. Next, we applied above mentioned data cleaning

techniques: 14 153 GPS points were deleted and in total there left 259 472

GPS points, which formed 2548 trajectories, on average 102 GPS points in

the trajectory. After the whole dataset was processed we did not add any

additional links, fields or relations between GPS points. Furthermore, we did

not apply any map matching algorithms as we concentrated on places where

people spend significant amount of time and those places might not always be
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located near roads or other mapped paths that can be found in free and open

datasets.

4.2 Location prediction

To start with, we describe what is location prediction. It can be defined

as an approach for identification of the next location user is most likely to

visit. In a nutshell, the process is very similar to the process of recommending

next location using some kind of recommender system [22], such as Teleport16,

for instance. However, there exist one important difference between those

approaches: recommender methods do not take current location of the user

and movement dynamics into account, when mobility prediction method do.

Human mobility prediction is very interesting topic as the criterias people

use to choose next location are very different - rational and irrational,

subjective and objective. Decision can be influenced by many factors, since

every individual has different cost functions [41]. This implies, that usually

there exist a reason, other than interestingness, why individual decides to visit

some particular location. These reasons can be very different, starting from

sport activities and ending with social intentions, but according to [37] all

they can be categorized into three classes:

1. Geographic-triggered intentions

2. Semantic-triggered intentions

3. Temporal-triggered intentions

This means that movement of the individual can be considered as a

behaviour driven by at least one of the enumerated intentions. However, in

practice, several intentions act as a trigger to change a location. That is why

we decided to predict mobility behavior by taking all geographic, semantic and

temporal properties into account. We believe that simultaneous consideration

of all three properties will result in efficient model as all they have a direct

impact on the prediction task and cannot be omitted.
16https://www.teleport.org/

27

https://www.teleport.org/


Definition 6. Location prediction: Given a set of users U and a set

of locations L, the problem of location prediction can be formulated as an

estimation of the probability of a given user visiting a given location based

on one’s current movement [37].

𝑓(𝑙|𝑢, 𝑡) → [0, 1],

where 𝑢 ∈ 𝑈 , 𝑙 ∈ 𝐿 and 𝑡 is 𝑢’s current movement.

There are a variety of ways and algorithms for that, each with its own

advantages and drawbacks. Some example algorithms and approaches can be

found in [7,13,17,25]. However, very often they are either bounded to a specific

case or to a specific dataset, like in [1], for instance.

One of the patterns that we observed during analysis of the dataset, is

that people did not track GPS permanently and turned tracking device on

only while some activity, for instance, when walking from or to somewhere.

Therefore, ordinary trajectory usually consists of one or two geo-locations,

which in turn does not provide a full picture of user’s movement when analyzing

it in isolation. Taking into account the fact that user trajectories are often

linked to each other, for example path from home to work in the morning and

visiting grocery store when going back home from the work in the evening, we

decided not to analyze user’s trajectories separately, but combine them into

one day time intervals. Such separation provides more natural overview of the

movement as well as a full picture of daily activities.

Definition 7. Daily trajectory:

𝐷𝑡𝑟 = 𝑔1 → 𝑔2 → · · · → 𝑔𝑛, where 𝑔𝑖 ∈ 𝐺, 𝑔𝑖+1.𝑇 > 𝑔𝑖.𝑇 (1 ≤ i <n),

where G is a set of geo-locations, T is one day period from 0:00 to 23:59 and

g.T is user’s geo-location arrival time.

We strongly believe that combining different location prediction algorithms

covering various aspects of human mobility can be more efficient, which will

result in less error prone and more unified prediction model. We will split the

prediction into two parts and then combine the results.
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Following techniques will be applied:

1. Predicting position of the next geo-location location on the map.

∙ We find the approximate distance to the next geo-location by

calculation intra-distances between geo-locations of the daily

trajectory.

∙ We find approximate direction of the movement by calculating route

similarity index between daily trajectories and choosing the most

similar ones.

Also, we will check if following techniques increase prediction

probability:

– We choose only those daily trajectories that have the similar

starting area as in examined daily trajectory.

– We choose only those daily trajectories that intersect with the

ending area of the examined daily trajectory.

2. Predicting the type of the next geo-location by analyzing semantic

patterns. We will apply first and second order Bayesian inference and

analyze which one gives higher prediction probability.

3. We examine how temporal aspect affects prediction accuracy. We will

add temporal information about geo-locations to our prediction model

to determine the mathematical relationship between the variables. For

instance, authors of [36] managed to improve the prediction by 9% by

considering temporal-social ties in their model.

During the prediction phase, we will also investigate how short transitions

between geo-locations affect prediction success rate. Usually, those transitions

are related to GPS measurement errors and denote that person stays on the

same place.

Definition 8. Short (insignificant) transition: A transition between two

geo-locations 𝑔1 and 𝑔2 of a daily trajectory 𝐷𝑡𝑟, where 𝑑(𝑔1, 𝑔2) < 50 meters.
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Definition 9. Long (significant) transition: A transition between two

geo-locations 𝑔1 and 𝑔2 of a daily trajectory 𝐷𝑡𝑟, where 𝑑(𝑔1, 𝑔2) >= 50 meters.

4.2.1 Predicting next geo-location on the map

This section focuses on mobility prediction techniques driven by

geographically-triggered intentions, which study the sequences of visited

geographic areas. Public transport is a great example - it follows particular

predefined routes and given stops A and B, we can predict B as a next location

for the user who is currently at A.

4.2.1.1 Average distance between geo-locations

The first component that we will analyze is the distance between

geo-locations as authors of [41] found, that the choice of the next geo-location

is greatly influenced by distances between previous geo-location transitions.

Definition 10. Geo-location inter-distance: Geo-location inter-distance d

is defined as the the length of shortest path between two sequential geo-location

centroids 𝑐1 and 𝑐2.

We will calculate the distance using Haversine formula, see Definition 5.

According to [41] inter-distance distribution follows an upper-truncated Pareto

distribution, which implies that humans generally prefer short paths between

geo-locations and take long jumps less frequently.

We will try out different approaches and see which one gives better results:

1. Calculate the average distance between all transitions.

2. Calculate the average distance between all significant transitions.

3. Calculate the average distance between all transitions that fit into the

interval between first and third quartiles.

4. Calculate the average distance between significant transitions that fit

into the interval between first and third quartiles.
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5. Calculate the distance of the last significant transition.

4.2.1.2 Route similarity index and direction of the movement

Among measuring geo-location intra-distances, we have chosen route

similarity index as a second component in location prediction. We analyze

and predict the behaviour of a user in accordance with the akin behaviour of

other users, meaning that they tend to follow the same paths and do stops

in the same places. Similar trajectories coincide in space, have similar shape

and dynamic behaviour. However, they do not necessarily coincide in time -

for example, moms on maternity leave often visit playgrounds and children’s

stores in different time.

There are many different algorithms for finding how similar trajectories

are, most popular ones are described in [26, 35] and use different variations

of spatio-temporal filtering and spatio-temporal distance. We decided to use

Hausdorff distance algorithm to measure how far trajectories X and Y are from

each other.

Definition 11. Hausdorff distance: Hausdorff distance 𝑑𝐻(𝑋, 𝑌 ) is defined

by

𝑑𝐻(𝑋, 𝑌 ) = 𝑚𝑎𝑥{sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑑(𝑥, 𝑦), sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)},

where X and Y are two non-empty subsets of a metric space (M,d).

Informally speaking, [9] defines Hausdorff distance as a longest distance

you can be forced to travel by an adversary who chooses a point in one of

the two sets from where you then must travel to the other set. In our case it

is the greatest of all the distances from a point in the daily trajectory 𝐷𝑡𝑟1

to the closest point in the daily trajectory 𝐷𝑡𝑟2. This means that every point

of either trajectory is close to some other point in the other trajectory. We

applied PostGIS implementation of Hausdorff distance, where result units are

in the units of spatial reference system of the trajectory geometries.

Next step is to calculate the movement direction of the examined daily

trajectory 𝐷𝑡𝑟𝑒 based on the direction of the most similar daily trajectory

𝐷𝑡𝑟𝑠. In order to find a 𝐷𝑡𝑟𝑠, we calculate Hausdorff distance between 𝐷𝑡𝑟𝑒
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and all other trajectories and pick one with the lowest metric. It should be also

noted that Hausdorff distance is the same when moving from A → B and from

B → A, thus we additionally compared distances between first and last points

of 𝐷𝑡𝑟𝑒 with first and last points of 𝐷𝑡𝑟𝑠. This allowed us to get a movement

direction. Thereafter, we calculated the bearing17(Figure 8).

Definition 12. Bearing: An angle between the north-south line of Earth or

meridian and the line connecting the target and the reference point. Formula:

𝜃 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛∆𝜆 · 𝑐𝑜𝑠𝜑2, 𝑐𝑜𝑠𝜑1 · 𝑠𝑖𝑛𝜑2 − 𝑠𝑖𝑛𝜑1 · 𝑐𝑜𝑠𝜑2 · 𝑐𝑜𝑠∆𝜆),

where 𝜑1𝜆1 is the start point, 𝜑2𝜆2 the end point, ∆𝜆 is the difference in

latitude.

Figure 8: Example of different bearings18

We will try different approaches for calculation of bearing and see which

one gives better results:

1. Calculate the average bearing between all geo-location transitions of𝐷𝑡𝑟𝑠

2. Calculate the bearing between penultimate and the last geo-location

transition of 𝐷𝑡𝑟𝑠.

3. Calculate the bearing of last significant transition of 𝐷𝑡𝑟𝑠.
17http://www.movable-type.co.uk/scripts/latlong.html
18http://www.cimt.plymouth.ac.uk/projects/mepres/book8/bk8i11/bk8_11i3.htm
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4.2.1.3 Similar starting area

In this subsection we analyze the third component that we will consider

when predicting human movements - sharing the similar starting area.

According to [3] spatially close trajectories have similar start and end areas,

very often they are even identical to each other, see Figure 9 for example.

A good example might be paths starting from work or home such as visits

to the gym or to the restaurant. In order to calculate the starting area, we

cannot just simply take the first point of the examined trajectory as due to

the GPS measurement errors trajectories rarely will have exactly the same

starting point. Instead, we apply a buffer around the starting area and find all

trajectories whose starting point is in the buffer.

Figure 9: Similar daily trajectories with the similar starting area.

4.2.1.4 Intersection with the ending area

Fourth component, that we will concern as influencing factor, is the

intersection with the ending area of the examined trajectory. In other words,

we will find all trajectories that go through ending area of the trajectory.

It may appear that it is completely useless factor that does not add any

value to the prediction of the next location, but we believe that it is not

- tourism area is a vivid confirmation of this. Tourist routes that go through

city culturally important places or commonly frequented public areas have very
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similar dynamics, for example, well known “Trafalgar Square-to-Big Ben-to-

Westminster Abbey” sightseeing route. Countless number of people follow this

route and given a tourist who started his path in the hotel, visited Trafalgar

Square and reached Big Ben, with a high probability we can expect that user’s

next geo-location will be a Westminster Abbey. Figure 10 illustrates similar

example.

Figure 10: Similar daily trajectories with intersecting ending areas.
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4.2.2 Predicting the type of the next geo-location

Next component of the proposed model is semantic analysis and its role

in mobility prediction. Semantic-triggered intentions reflect and reveal the

reasons why people visit some specific locations preceded by some other

locations. For example, going from home to work is very common sequence

while dining out twice in a row is rare [28]. As another example, we can consider

people working in the office and leaving for a lunch - we can predict that ensuing

geographical region will contain many shops, eateries or restaurants. We are

analyzing movements of real people, thus, capturing sociological aspects can

provide very good insights and be very promising for predictions.

In our work we pay attention to static phases of movement as they

characterize some interest to the particular place and can be used to form

a sociological portrait of the person. Such approach allows us to create a map

of points of interest, that includes significant places, such as home, workplace,

shopping centers, meeting places as well as important routes used to get from

one place to another [28]. Such map can be either personal and applied for

recognition of individual’s behavior and location prediction or aggregated for

all users. In our work we will use the latter approach and create a map that

will contain semantic information of all users.

For predicting the type of the next geo-location we will use first and second

order Bayesian inference. When applying second order Bayesian inference, the

probability of the next geo-location 𝑔𝑛+1 type depends on both current 𝑔𝑛 and

previous 𝑔𝑛−1 geo-location types. In case of the first order Bayesian inference,

only current geo-location 𝑔𝑛 is taken into account.

Definition 13. First order Bayesian probability:

𝑃 (𝑔𝑛+1|𝑔𝑛) =
𝑃 (𝑔𝑛|𝑔𝑛+1) · 𝑃 (𝑔𝑛+1)

𝑃 (𝑔𝑛)
,

where 𝑃 (𝑔𝑛+1) and 𝑃 (𝑔𝑛) is a relative number of occurrences of 𝑔𝑛+1 and 𝑔𝑛

geo-location types in the past and 𝑃 (𝑔𝑛|𝑔𝑛+1) is a relative number of transitions

from 𝑔𝑛+1 to 𝑔𝑛.
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Definition 14. Second order Bayesian probability:

𝑃 (𝑔𝑛+1|𝑔𝑛−1, 𝑔𝑛) =
𝑃 (𝑔𝑛−1, 𝑔𝑛|𝑔𝑛+1) · 𝑃 (𝑔𝑛+1)

𝑃 (𝑔𝑛|𝑔𝑛−1) · 𝑃 (𝑔𝑛−1)
,

where 𝑃 (𝑔𝑛−1, 𝑔𝑛|𝑔𝑛+1) is a relative number of transitions from 𝑔𝑛 to 𝑔𝑛+1

knowing that the user was in 𝑔𝑛−1 before in the past, 𝑃 (𝑔𝑛+1) is the relative

number of occurrences of 𝑔𝑛+1 geo-location types in the past and 𝑃 (𝑔𝑛|𝑔𝑛−1) is

a relative number of transitions from 𝑔𝑛−1 to 𝑔𝑛.

The ability to use the 𝑛-th order Bayesian inference raises the question

of what order model will result in an increase of a predictive power [21].

However, in practice with higher order models the quantity of the data is

a limiting factor - transitions required for higher order Bayesian inference

may not exist in the training database and their probability will be zero.

Furthermore, computational cost of building the model increases as it requires

more time and resources to train and store the prediction model. For this

reason, we decided to limit ourselves with a second order model.

4.2.3 Adding temporal aspect

As final component of our model we will consider the relationship between

locations, activities and temporal information. As observed in [15], human

movement exhibits strong temporal cyclic patterns in terms of the hour of the

day and the day of the week [36]. These kinds of intentions reflect the reasons

why users visit and leave locations at a certain time [37]. It was shown in [15],

that temporal-triggered intentions and periodic behavior explains about 50%

to 70% of all human movements. For instance, it is very common that person

leaves home in the morning time, works whole day in the office and comes back

home in the evening. Moreover, people are used to lead a quiet life during

the weekdays and do social and family activities during the weekend. Such

temporal information can help us to identify more common mobility patterns

and establish links between them. To the purpose of better understanding

and improving movement prediction, we calculate the probability of the next

location considering both spatial and semantic information combined with

daily timestamp.
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Next, we enriched geo-locations with temporal information. We split a day

into 3 periods:

1. Night (00:00-08:00)

2. Daytime (08:00-17:00)

3. Evening (17:00-00:00)

Afterwards, we classified geo-location arrival time according to those

periods. Example of classified subset of geo-location of 3 users can be viewed

on Figure 11.

Figure 11: Subset of geo-locations of 3 users classified by time. Colors: red

- night activity (00:00-08:00), blue - daytime activity (08:00-17:00), green -

evening activity (17:00-00:00).
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5. Experimental Results and Analyses

The intent of this chapter is to present the experiments and the results

obtained by analyzing and predicting human mobility patterns. We reveal the

implementation details and carry out the case study to answer the questions

and problems declared in Chapter 1.

5.1 Data overview

Before doing human mobility prediction, lets look at the data we have. High

quality data is a key to success, thus, first of all, we preprocessed and cleaned

the data (see Chapter 4.1). During that process we removed about 5.1% of all

GPS points. More detailed statistics about cleaned GPS data and constructed

trajectories can be found in Table 2 and Figure 12.

The total distance of all GPS trajectories exceed 4729.3 kilometers. The

longest trajectory is a nearly complete Tallinn - Tartu car trip (138 km), the

most durable trajectory (21.86 hours) represents human movements inside an

apartment during a weekend. Human transportation mode is also detectable

from Figure 12. There are two large and dense accumulations of points, which

correspond to two different travel modes: by car (lower one) and on foot (in

the middle).

Metric Value

Average number of points in trajectory 112

Mean distance of trajectory 1622 meters

Max distance of trajectory 138 700 meters

Mean time of trajectory 22.9 minutes

Max time of trajectory 21.86 hours

Table 2: Detailed statistics about GPS trajectories.
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Figure 12: Ratio of distance and time of GPS trajectory. Both axes are

logarithmic. Red line indicates 10 minutes threshold used for geo-location

extraction.

5.2 Extracting geo-locations and daily

trajectories

Next task is to find and extract geo-locations. Foremost, we find spatially

close geographical areas by clustering GPS points and detect geo-locations from

those areas. In this experiment we are using DBSCAN clustering algorithm and

set minPts to 10 points and 𝜀 to 30 meters. This means, that the cluster will

be created, if there will be at least 10 consecutive GPS points at a distance of

30 meters from each other. Also, we set Dthreh to 300 meters and Tthreh to 10

minutes. In other words, cluster is a geo-location if an individual stays over 10

minutes within a distance of 300 meters. These two parameters enable us to find

significant places, such as restaurants and shopping malls, etc., while ignoring

the geo-regions without semantic meaning, like the places where people wait

for traffic lights or meet congestion [40].

In total 786 unique geo-locations were extracted from the dataset, which

means that on average single trajectory contains 0.3 geo-locations. On the other
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side, 182 036 or 70.1% of all GPS points fall into geo-locations. This leads us

to the conclusion that the data was collected by the people not inclined to

the active movement and leading a quiet life. On average each geo-location

contains 232 GPS points. Movement activity of three users was very low and

thus we did not manage to extract any geo-locations from their movements.

An example of a GPS trajectory containing three geo-locations can be viewed

on Figure 3.

Next step is to classify extracted geo-locations and recognize activities

associated with those places. First of all, we parsed OpenStreetMap database

and extracted 683 unique POIs located in Tartu city. Then we classified them

into seven different categories:

1. Public buildings: police, post office, hotel, etc.

2. Food: cafe, restaurant, etc

3. Transportation: gas station, parking lot, bicycle parking, etc.

4. Entertainment: museum, nightclub, gallery ,etc.

5. Education: library, university, school, etc.

6. Shopping: shop, shoemaker, tailor, etc.

7. Residential buildings

Type Amount

public buildings 213

food 104

transportation 79

entertainment 55

education 44

shopping 96

residential building 516

Table 3: Number of geo-locations in classified POI groups.
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The main reason we did not use a native classification of OpenStreetMap

POI system is that it consists of 71 different categories19, most of which in our

case will not contain any POIs. We used a 75 meters buffer around geo-location

centroid and checked the intersection of the buffer with a POI. Geo-location can

belong to multiple POI classes as there might be multiple POIs inside a buffer.

If no POIs were located inside a geo-location buffer, we classified geo-location

as residential building. The division of all geo-locations into groups is presented

in Table 3.

Figure 13: Example of a daily trajectory.

19http://wiki.openstreetmap.org/wiki/Map_Feature
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As a final step we extracted daily trajectories: in total we got 136 unique

daily trajectories containing at least two geo-locations. An example of daily

trajectory is illustrated on Figure 13. On average, each daily trajectory

consists of 6 geo-locations, what means approximately of 1138 GPS points.

On maximum, there were 17 geo-locations and on minimum two geo-locations

in a daily trajectory.

5.3 Evaluation criterias

Before discussing the results we present evaluation criterias which we use

to explore the effectiveness and performance of our prediction model. We will

use following metrics:

1. Percentage of correct predictions:

% of correct predictions =
number of correct predictions
total number of predictions

· 100

2. Percentage of wrong predictions:

% of wrong predictions =
number of wrong predictions
total number of predictions

· 100

3. Percentage of failures to make a prediction:

% of failures =
number of failures

total number of predictions
· 100

To verify the location we apply 200 meters buffer around the probationary

geo-location and check if predicted geo-location is inside the buffer. We are

checking against the buffer due to the fact that each GPS point of the geo-

location may have its own measurement error, hence, geo-location position

cannot be accurate enough. For this reason we decided to define the position of

the geo-location by the position of its centroid. Taking that into consideration

as well as the size of the Tartu city, we decided that 200 meters is appropriate

buffer size for our test.

We will use 80/20 principle for training and testing the model. Due to the

fact that we are operating with a relatively small dataset, data cross-validation
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will be applied: we partitioned data to training subset (80%) and validated our

tests on testing/validation set (20%). To reduce variability we perform such

analysis 20 times for each test and use averaged results.

We are considering our model to be able to predict next geo-location of the

user when one appeared for the first time in the system.

5.4 Results

This chapter presents the results achieved after applying proposed model

to our dataset. We discuss the advantages and disadvantages of the model as

well as reveal the problems encountered during the implementation.

Our workflow is as follows: first of all we try to predict the next location by

concentrating only on geographic-triggered intentions - this means we will take

only geographic properties into account. As a next step, we will analyze the

prediction potential of semantically-triggered intentions and add them to our

model. As a final step, temporal aspects will be considered when predicting a

location.

5.4.1 Predicting next geo-location on the map

Given a geo-location 𝑔1, prediction of the next geo-location 𝑔2 consists

of two core components: (i) distance and (ii) bearing. If at least one of the

components is predicted incorrectly, the whole prediction is also incorrect.

Thus, we try to find methods with the highest prediction success rate separately

for each component. For predicting the next geo-location we took the most

successful methods and combined them together.

To start with, we concentrated on prediction of distance and bearing to the

next geo-location. We tried out different approaches - their detailed description

can be found in Chapter 4.2.1.1 and Chapter 4.2.1.2. As we wanted to get the

highest success rate for each component separately, in our tests we assumed

that in the prediction equation other needed component is known except for

searched one: we used correct bearing for distance prediction and correct

distance for bearing prediction. To validate the correctness of the prediction,
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Method Correct Wrong

Average distance between all transitions 24% 76%

Average distance between significant transitions 29% 71%

Average distance between all transitions that fit

into the interval between first and third quartiles
45% 55%

Average distance between significant transitions that fit

into the interval between first and third quartiles
48% 52%

Length of last transition 24% 76%

Length of last significant transition 57% 43%

Table 4: Comparison of methods for predicting distance to the next geo-

location.

we used a 200 meters buffer around a geo-location. Results are presented in

Table 4 and Table 5.

The most successful result is achieved by taking the length of the last

significant transition - we are able to predict the distance in more than half

of the cases. As we can see, the results achieved by calculating averages show

the lowest success rate - 24% in both cases. This is primarily conditioned by

the fact that common daily trajectory consists of numerous significant and

insignificant transitions and thus their average might not be always rational

measure. Presence of many insignificant transitions in dataset is also the reason

why taking the distance of last transition results in such a low percent of

correct predictions. We thought, that success rate could be improved by not

considering outliers and thus took the average distance between transitions

that fit into the interval between first and third quartiles. We also found

the average separately for significant and insignificant transitions. Achieved

results are much better, however, still accordingly 9% and 12% worser that

the best result. Taking into account that distance prediction is only one step

of a prediction, result of more than 50% correct answers is promising.

As for the second component, Table 5 shows, that the best result is obtained

by taking the bearing of the last significant transition. This is driven by the fact

that in the majority of cases the last significant transition is a good metric for
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Method Correct Wrong

Bearing of the last transition 69% 31%

Bearing of the last significant transition 72% 28%

Average bearing of all transitions 65% 35%

Table 5: Comparison of methods for prediction of bearing to the next geo-

location

showing the overall movement direction. Results achieved by taking the bearing

of all last transitions and only significant ones do not differs significantly

(3% difference), but as our observations show, it is more sustainable to take

only significant transitions into account. Such minor difference is due to the

fact, that all significant and insignificant trajectories have their headings and

directions with accordance of the main intended course to the destination. As

with distance computations, finding the average bearing did not give good

outcome - it is 7% worser than the best result.

As a final step, we combined two best approaches and started predicting

the next location. For the calculation of next distance and bearing we used

methods with the highest prediction success rate (see Table 4 and Table 5) -

distance and bearing of the last significant transition. Results can be viewed

in Table 6.

Method Correct Wrong

Bearing and length of last significant transition 46% 54%

Table 6: Aggregated result for prediction of location of the next geo-location.

We can observe that next location can be predicted with the probability

of 46%. Combining both methods gives smaller success rate than each method

separately, because now both parameters must be correct. Thus we can

conclude that consideration of only geographic-triggered intentions is not

enough for a successful prediction.
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5.4.2 Similar starting area and intersection with ending

area

This chapter presents the results of the techniques that potentially can

improve location prediction success rate by selecting only those trajectories

that share similar starting area or intersect with the ending area of the

examined trajectory. Reasons why we believe that this approach might improve

prediction success rate are described in Chapter 4.2.1.3 and Chapter 4.2.1.4.

We followed the same approach regarding prediction validation and used a 200

meters buffer around a geo-location. Results of the experiment are presented

in Table 7.

Method Correct Wrong

Common approach 46% 54%

Similar starting area 25% 75%

Intersection with ending area 37% 63%

Table 7: Comparison of different location prediction approaches.

Common prediction method does not intentionally take similar starting

area or intersection with ending area into account, however, the possibility that

the most similar daily trajectory will have those properties exist. Unfortunately

we can observe a decrease of a predictive power for both experiments - achieved

results are accordingly 21% and 9% worser. We believe that there are two main

reasons why considered approaches did not improve prediction success rate:

1. Size of the dataset - there were too few daily trajectories that fall under

above mentioned conditions. On average in the tests there were only 18

daily trajectories with similar starting area and 20 daily trajectories that

intersect with ending area of examined daily trajectory.

2. Temporal aspect - the fact that we are concentrating on daily trajectories

and analyzing human activity throughout the day. Having visited the

same locations in the morning does not imply that further actions and
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visited locations will also coincide. Especially this concern our first test

where we compared similar starting areas.

Also, it should be noted that there exist one more important aspect that

affects the results of our tests - direction of the movement. This means that we

are not considering trajectories with the perpendicular movement direction,

even if they coincide in space. Considering the fact, that geographically such

trajectories have different common attributes (either different starting areas

or their ending areas do not intersect), we do not add those trajectories to the

list from where the most similar trajectory is picked from. All this leads to the

decrease of the training dataset size and loss of valuable historic, but suitable

for analysis, data.

5.4.3 Predicting the type of the next geo-location

As a first step, we figured out which Bayesian order works better with

our dataset. We calculated transition probabilities between geo-location types

across all daily trajectories and started predicting only the type of the next

geo-location. When predicting using Bayesian first order inference we took

only current geo-location type into account, while with Bayesian second order

inference we used both current and penultimate geo-location types. However,

as we mentioned in Chapter 2.3, it is not always possible to determine the

type of the geo-location ubiquitously as it might be located in the immediate

vicinity of several POIs. In such cases there may be three options and we

proceeded as follows:

1. Correct geo-location is associated with multiple types - if predicted

type match at least one of the correct geo-location types, we mark the

prediction as correct.

2. One or more geo-location used for prediction are associated with multiple

types - we separately calculate probabilities for all types, find an average

and pick the result with the highest probability. If predicted type match

the type of the geo-location, we mark the prediction as correct.
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3. One or more geo-location used for prediction are associated with

multiple types and correct geo-location is associated with multiple types.

Prediction phase is the same as in 2: if predicted type match at least one

of the correct geo-location types, then we mark the prediction as correct.

After all transition probabilities between geo-location types have been

computed, we pick one with the highest probability. Prediction is marked as

failed when there is no transitions required for the prediction in the training

database. Prediction results can be viewed in Table 8.

Method Correct Wrong Fail

Bayesian first order 86% 14% 0%

Bayesian second order 71% 29% 0%

Table 8: Comparison of first and second order Bayesian inferences for

predicting the type of the next geo-location.

As we can see, first order Bayesian inference gives us better results and is

15% better than Bayesian second order inference. This was a comparatively

unexpected result, because theoretically higher order models give better

probability values, for instance [21] observes a 20% increase of a predictive

power when using 𝑛 >= 2. However, in our case the size of the dataset was a key

limiting factor as not all sequence groups of three transitions were presented

in sufficient quantity. An example is illustrated below:

P(residential building, shopping | public building) = 0

P(residential building, shopping | food) = 0.4375

P(residential building, shopping | transportation) = 0

P(residential building, shopping | entertainment) = 0

P(residential building, shopping | education) = 0

P(residential building, shopping | shopping) = 0.5625

P(residential building, shopping | residential building) = 0
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We can see that only two groups of three transitions were presented in the

training database, hence only those will be taken into account when doing a

prediction. However, all groups of two transitions were present in the training

dataset.

P(shopping | food) = 0.1053

P(shopping | entertainment) = 0.0263

P(shopping | shopping) = 0.1053

P(shopping | public building) = 0.1842

P(shopping | transportation) = 0.0789

P(shopping | education) = 0.0526

P(shopping | residential building) = 0.4474

This means the second order model overfits the data in this particular

case, hence result is poorer comparing with 1st order model. Fail rate for both

methods is 0%, which means that at least one transition type combination was

present in the training database for each transition group.

As a result, we decided to use first order Bayesian inference for predicting

the type of the next geo-location. Whole algorithm of next location prediction

is as follows:

1. We predict the possible region of the next geo-location. The process of

prediction and results are described in Chapter 4.2.1 and Chapter 5.4.1.

As a result, we get a region with a diameter of 200 meters.

2. We predict the type t of the next geo-location.

3. We check if any of the POIs of type t are located in predicted region. If

so, we finish the prediction. Otherwise, we start looking for POIs of type

t located close to the predicted region.

We try out different approaches for adjusting predicted region (Table 9):
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1. Adjustment of distance and/or bearing - we start with correcting distance

and bearing and search for such area, which would intersect with

established buffer size around the amenity of needed type. We adjust

distance and bearing values in both directions and select the least

possible deviation values that satisfy the above mentioned condition.

Distance was adjusted for up to 500 meters and bearing for up to 30

degrees. In case of t = residential building we were looking for a region,

where POIs area and region area ratio is less than 30%. The example of

bearing adjustment can be viewed on Figure 14.

2. We adjust the region in such a way that the nearest POI of type t falls into

the region. We choose the region to be our prediction area, in this case

adjusting both distance and heading. In case of t = residential building

we look for a region where POIs area and region area ratio is less than

30%.

Figure 14: Bearing adjustment.
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Method Correct Wrong

Distance adjustment 48% 52%

Bearing adjustment 50% 50%

Nearest POI 53% 47%

Table 9: Comparison of location adjustment methods.

As results indicate, all three methods improve overall prediction success

rate. Bearing and distance adjustment results do not differ significantly from

each other, however, the fact that bearing adjustment is better, is indeed

interesting, especially taking into account the fact that it was observed in

Chapter 5.4.1 that bearing prediction failure rate is lower. Nevertheless, looking

for a nearest POI of predicted type overperforms both above mentioned

methods and in total allows to make a correct prediction in more than half

of the cases. Thus, we decided to use this method in our prediction model.

Results can be observed in Table 10.

Method Correct Wrong

Prediction without taking geo-location type into account 46% 54%

Prediction with taking geo-location type into account 53% 47%

Table 10: Comparison of the impact of semantic-triggered intentions.

According to the results, we can conclude that prediction success rate

can be improved up to 7% by considering semantic-triggered intentions when

building a prediction model.

5.4.4 Taking temporal information into account

As a next step, we started taking temporal information into account when

doing a prediction. Foremost, we examined the effect of temporal aspect when

predicting the type of the next geo-location. As we figured out in Chapter 4.2.2,

first order Bayesian inference gives better results with our dataset, thus we

concentrated only on it. Results are presented in Table 11.
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Method Correct Wrong

Geo-location type prediction without temporal aspect 86% 14%

Geo-location type prediction with temporal aspect 87% 13%

Table 11: Impact of temporal aspect when predicting type of the next geo-

location.

The correctness of geo-location type prediction almost did not change, we

see a minor improvement of 1%. Our dataset contained very clear and obvious

geo-location type patterns (for example, staying at home at night and going

to work in the morning) and there were so many of those, that temporal

aspect almost did not add any value to the prediction. And if the pattern

was out of general track, then in the vast majority of cases it was a unique

and no repetitive behaviour. Since the results differ very insignificantly and

incorporation of temporal aspect brings additional level of complexity to the

prediction algorithm, we decided not to use temporal aspect when predicting

the type of the geo-location.

As a next step, we mined association rules from our database. We wanted

to discover the relations and regularities between the temporal aspect and geo-

location type. For this purpose we used Apriori algorithm with support=0.02,

confidence=0.5 parameters. Detailed results can be observed in Table 12.

#
Rule LHS

(current location)

Rule LHS

(time period)

Rule RHS

(next location)
Support Confidence Lift

1 public building daytime food 0.02 0.82 1.64

2 education daytime residential building 0.02 0.78 1.56

3 food daytime residential building 0.03 0.76 1.52

4 residential building evening residential building 0.08 0.81 1.38

5 residential building night residential building 0.19 0.80 1.38

6 shopping daytime residential building 0.02 0.60 1.19

7 residential building daytime public building 0.03 0.53 1.07

Table 12: Association rules sorted by lift.

As results indicate, majority of presented association rules are related to

residential buildings. For example, rule 2 indicates that during a daytime
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person goes home from studies and rule 1 shows that person does a lunch

during a working day. Confidence of rules 4 and 5 is very high, which means

that rules are correct for 81% of transactions in the evening and night periods,

when person is going from residential building to residential building. Taking

into account the fact, that usually person is associated only with one residential

building, with very high probability we can conclude that person stays on the

same place. Moreover, it is logical, that residential areas are more populated

at nights and city centre at the daytime.

All rules have lift > 1, which shows that RHS and LHS occurrences are

dependent on each other, which makes rules potentially useful for predicting

next location. We added the support for those rules to our model and rerun

the experiment. Results can be viewed in Table 13.

Method Correct Wrong

Location prediction without semantic and temporal aspect 46% 54%

Location prediction with semantic and without temporal aspect 53% 47%

Location prediction with semantic and temporal aspect 65% 35%

Table 13: Comparison of the impact of temporal-triggered intentions.

We can see that results improved by 12% when comparing with the

prediction without taking temporal patterns into account. Such an increase

happened mainly due to the fact that temporal aspect helped identifying the

problem of a person staying on the same place.
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6. Discussion and Perspectives

This chapter presents our conclusions and discussions about the topic as

well as perspectives for future work, analysis and research opportunities in

order to expand the boundaries of the framework to different fields.

6.1 Conclusion

This thesis investigates human mobility behaviour and prediction of the

next location. We concentrated on predicting user’s daily movements and next

significant locations, hence grouped spatio-temporal data into one day time

intervals as such separation provides more natural overview of the movement

as well as gives a full picture of daily activities. In this work we analyzed real-

world GPS data, extracted user trajectories, detected significant geo-locations

as well as recognized user activities associated with those geo-locations. We

identified three main components that drive people to change their location

and proposed a human mobility prediction model that considers them all. The

model establishes the relations between geographic, semantic and temporal

information captured from human movements.

A systematic evaluation of the model was carried out and, according to

the results, model was able to predict a correct location in 65% of cases.

Results showed that geographic-triggered intentions cannot solely explain the

movement behaviour and be sufficient for a successful location prediction -

additional variables such as semantic and temporal aspects should be taken

into account. Consideration of semantic links helped to reduce the size of the

prediction area, while identification of temporal associations between locations

contributed to solving the problem of a person staying in the same region.
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6.2 Impact of the dataset size

Our research was conducted on a relatively small dataset collected for the

purpose of validation of detection of mobility episodes [10] done by Distributed

Systems Group of University of Tartu. Used data can be described as a

moderately uniform data not representing high diversity or having many

unpredictable cases.

Proposed prediction model is likely to be used on large real-world datasets,

which grow at a rapid rate nowadays. Such a great difference between training

set sizes can lead to model learning performance being fundamentally different

from what we achieved in the research. Furthermore, quality and diversity of

examples in training sample also have a direct impact on the performance and

efficiency of the model. Our prediction model uses machine learning techniques,

however, working with machine learning models that have learning and training

phase requires size of training set to be larger. Optimal size of dataset depends

on many factors including the complexity of used prediction model, noise ratio

as well as quality of the original data. For a better validation of our research,

proposed model should be applied to a bigger dataset.

On the whole we consider our dataset to be limiting factor in the research.

6.3 Future work

Developing this subject in the future, the main emphasis should be placed

on improving prediction accuracy. There are several directions to be carried

out:

∙ More attention could be paid to the various transportation modes

(walking, car, bus, bicycle, etc). Analyzing movement and finding

geo-locations, which are specific only to some certain transportation

mode can help with further understanding of human mobility patterns.

∙ The process of finding geo-locations may be improved as well. We were

using density-based clustering algorithms to extract significant places,

but it is acknowledged, that considered class of algorithms do not perform
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well when data is not not sampled continuously. This is a very important

aspect as GPS signals may be corrupted or be completely missing for

a certain period of time and, as a result, extracted geo-locations will

get a completely different semantic meaning. Authors of [32] show that

interpolation techniques will help to solve the problem and fill in the

data gaps.

∙ Temporal cycles can be analyzed more thoroughly, especially in the

applications where movements are linked to daily, weekly or seasonal

cycles.

∙ More emphasis should be put on sociological aspects when doing semantic

tagging of geo-locations. The assumption that geo-location can be

classified as residential building in case of absence of POIs in close

proximity may not hold with non-urban data.

∙ In order to provide an enhanced positioning output, map matching

algorithms can be applied to align inaccurate locational data with road

network.
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