THESIS ON INFORMATICS AND SYSTEM ENGINEERING

Tallinn University of Technology

Faculty of Information Technology
Department of Computer Engineering

Master Thesis

Memory Consistency and Cache Coherency
in Network-on-Chip Based Multi-Core

Systems
Author . Radomir Sebek
Advisors : Dr. Gert Jervan
Prof. Dr. Thomas Hollstein
Start : 01. November 2011

End . 28. May 2012

Herewith I declare, that I have made the presented thesis myself and solely with the
aid of the means permitted by the examination regulations of the Tallinn University
of Technology. The literature used is indicated in the bibliography.

I hereby declare that this master’s thesis, my original investigation and achieve-
ment, submitted for the master’s degree at Tallinn University of Technology, has not
been submitted for any degree or examination.

Tallinn, June 2012

Radomir Sebek

This thesis was created as a final step in the international master’s program
in Software Engineering - specialization track of Embedded Real-Time Software
Engineering jointly delivered by the two largest public universities in Estonia -
University of Tartu and Tallinn University of Technology (TUT).

I would like to show my great appreciation and gratefulness towards effort,
guidence and constructive advices given to me by thesis supervisors, Dr. Gert Jervan
and Prof. Dr. Thomas Hollstein, from Department of Computer Engineering at
TUT. Also, big thank you to Dr. Mohsin Amin and Dr. Mihkel Tagel, research
scientists at same department, for persistence in long discussions, creative ideas and
programming tips.

Last, but not the least, I would like to acknowledge and express gratefulness towards
support my family back in homeland provided me during entire master program.

Abstract

The complexity of modern Systems-on-Chips (SoC) is increasing with technology
innovations. Designers of such systems are devoting significant attention not only to
computation attributes, but increasingly more and more on communications charac-
teristics. Having in mind scalability challenges, Networks-on-Chip (NoC) are already
de facto standard for the communication backbone of SoC systems. As such, those
systems are targeting more and more parallel execution of user defined, real-time
applications, but the computer engineering society aims at hiding underlying plat-
form specific characteristics and providing user with platform-independent services.
Shared memory services are quite often a needed crucial property of such systems,
therefore providing a coherent view, ensuring memory consistency, and still achieving
the desired performance system characteristics is a huge challenge for scientists nowa-
days. With the invention of 3D integration, and opportunities of stacking memory
modules on top of it, the concept of scalable shared memory will be one of the main
memory access concepts besides message passing.

In this thesis, the concept of a scalable coherency protocol which dynamically
adopts to inputs of system and shared resources, is presented. Protocol ingredients,
structure and internal modules interaction are described in detail. The conceptual
idea of this protocol, influenced by widely accepted best practices in bus based sys-
tems as well of other NoC systems, is implemented for one particular type of NoC
platform - XhiNoC (extendable Hierarchical Network-on Chip). The feasibility of the
presented concept for distributed shared memory (DSM) coherency within NoC-based
SoC architectures is confirmed by simulation-based experimental results.

v

Abstrakt

Kaasaegsete kiipsiisteemide (System-on-Chip - SoC) keerulisus suureneb koos
tehnoloogia innovatsiooniga. Taoliste siisteemide disainerid peavad pdodrama tidhelepanu
mitte ainult arvutuslikele omadustele vaid iiha rohkem ja rohkem ka kiibisisestele iihen-
dustele. Et edukalt toime tulla skaleeritavuse probleemidega on kiipvorgust (Network-
on-Chip - NoC) saanud "de facto" standard kiipsiisteemide sisemiseks kommunikatsiooni-
lahenduseks. Uhelt poolt on selliste siisteemide eesmiirgiks teostada iiha rohkem kasu-
taja poolt médratud reaalaja rakenduste paralleeltootlust, samal ajal on aga disainerite
eesmargiks peita platvormi karakteristikuid ning pakkuda kasutajatele platvormist sdltuma-
tuid teenuseid. Jaotatud milu on sageli selliste siisteemide vajalik ja oluline omadus.
Seetottu on vajadus pakkuda koherentset vaadet, tagada maélu terviklikkust ning samal
ajal saavutada vajalikud joudluskarakteristikud koik suured teaduslikud viljakutsed. 3-
D integratsiooni- ning mélu virnastamistehnoloogiate arenguga seoses hakkab skaleeri-
tava jaosmélu kontseptsioon koos sdnumiedastusega olema iiks pohilistest mélu ligipaédsu
kontseptsioonidest.

Kéesolevas magistritods on esitatud skaleeritava ja diinaamilise koherentsusprotokolli
kontseptsioon. Detailselt on esitatud protokolli komponendid, struktuur ja sisemiste
moodulite omavaheline suhtlemine. Protokolli kontseptuaalne idee, mis on mdjutanud si-
inipohiste siisteemide ja kiipvorkude kontseptsioonidest, on realiseeritud iihe konkreetse
NoC platformi - XhiNoC (extendable Hierarchical Network on Chip) - nditel. Esitatud
kontseptsiooni teostatavus jaotatud hajussmélu koherentsuse tagamiseks NoCi-pohistes
SoC arhitektuurides on tdestatud simulatsioonidel pohinevate eksperimentidega.

Used Abbreviations

API Application Programming Interface
CE Computer Engineering

CPU Central Processing Unit

DRAM Dynamic Random Access Memory
DSM Distributed Shared Memory

DSP Digital Signal Processors

ICT Information and Communication Technology
GPU Graphical Processing Unit

LD Local Directory

LRU Least Recently Used

MC Memory Controller

MESI Modified Exclusive Shared Invalid

MOSFET Metal Oxide Semiconductor Field Effect Transistor
MPSoC Multi Processor System on Chip

MSI Modified Shared Invalid
NI Network Interface

NoC Network on Chip

PE Processing Element
SoC System on Chip

TSV Through Silicon Vias

Contents

Used Abbreviations v
1 Motivation 1
1.1 Multi core to Many core era transition 1

1.2 Communication and power issues 2
1.3 Network-on-chip paradigm 3
1.4 Research in the Field of High-Performance Computing 4

2 Introduction and background 7
2.1 Memory Hierarchy, 7
2.1.1 Memory organization in NoC based 2D MPSoCs 7

2.1.2 Memory organization in NoC based 3D MPSoCs 8

2.2 Coherency 10
2.2.1 Cache coherency in bus based architectures. 10

2.2.2 Coherency in NoC based systems 11

2.2.3 MESI protocol - general idea 12

2.3 Memory consistency Lo 14

3 Concept of assuring memory and data consistency 16
3.1 Visiono 16
3.1.1 Architecture and Example of assumed application data mapping 17

3.1.2 Logic 21

3.2 Scenario 1. READ operation, two sharers 24
3.3 Scenario 2. READ operation, four sharers 26
3.4 Scenario 3. WRITE operation, four sharers 28
3.5 Scenario 4. WRITE operation, n sharers, Invalid state 30
3.5.1 Introducing node’s priority levels 31

3.6 Concept Summary 32

4 Protocol initialization phase and Data Structures 33
5 Experimental Work and Results 36
5.0.1 Environment L 36

vi

Contents

5.0.2 Available interface and situation in the beginning of thesis from

programmer’s perspectiveo 37

5.0.3 How protocol works from programmers’ perspective? 38

5.1 Notion of Shared memory 40
5.2 Directory Structureo 41
5.3 Memory Controller 42
54 Results 47

6 Future research directions 54
Bibliography 55
A Activity diagram of MESI protocol in bus systems 57

Vil

List of Figures

1.1

2.1
2.2
2.3

24
2.5
2.6
2.7

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14

3.15
3.16

3.17

Multi to many core transition. Source: [BDK*05] 2
3x3 fully connected mesh heterogeneous target 2D NoC system 8
Target 3D architectures. L. 8
3-D memory architectures. Source: [WLWT09] Dance hall (a), Sand-

wich (b), Per layer (c), Terminal (d), Mixed (e) 9
Simplified bus based architecture. Source: [Dre07] 10
Directory based protocol "idea". Source:[SJ11] 11
Simplified MPSoC based architecture. Source: Benini Luca. 12
MESI protocol transitions. Source:[Dre07| 13
Distributed Shared Memory 17
High Level Architectural Concept 17
Image to be processed partitioned in regions 18
Distribution of tasks within processing job from data-memory mapping

perspective L L 19
Mapping idea of data into memory(part marked with parallel

lines/hachures) 20
Shared memory interactions 21

Conceptual collaboration diagram between entities in coherency protocol 22
Conceptual diagram between entities in coherency protocol in 2x2 NoC 22

Finite State Diagram of shared memory block/line 23
Local Directory structure idea for single shared memory block 23
Transactional diagram of READ operation, two sharers scenario . . . 24
LD’s pre and post states for Scenario 1, assuming that GloballD of

shared block is 1 L 25
Transactional diagram of READ operation, four sharers 26
LD’s pre and post states for Scenario 2, assuming that GloballD of

shared blockis 1 27
Transactional diagram of WRITE operation, four sharers 29
LDs’ pre and post states for Scenario 3, assuming that GloballD of

shared blockis 1 oo 29
Impossible to Write to Invalid memory block location 30

viil

List of Figures

4.1
4.2

5.1
0.2

Class diagram of main protocol elements and interactions 34
Local Directory (LD) 35
Architectural view oo 46
Flit formats o 46

1X

List of Tables

5.1

5.2

2.3

5.4

Experimental setup in case of 5 sMB; 5 READ and 5 WRITE oper-
ations, with operations start times in case of 2 Sharers (2S) or Three
Sharers (3S) or Four Sharers (4S)
Experimental setup in case of 5 sMB; 10 READ and 10 WRITE oper-
ations, with operations start times in case of 2 Sharers (2S) or Three
Sharers (3S) or Four Sharers (4S)
Experimental setup in case of 5 sMB; 50 READ and 50 WRITE oper-
ations, with operations start times in case of 2 Sharers (2S) or Three
Sharers (3S) or Four Sharers (4S)
Experimental results for coherency protocol based on setup; 5 Memory
Blocks in NoC (100, 101, 102, 103 and 104 where no operations have
been performed on sMB 100 and 101) L.

1 Motivation

The Great need for certain computing real-time tasks to be processed faster using
less power and still fault tolerant in behavior, is pushing innovations and advances in
computer society world. In high performance computing areas such as astrophysics,
genomics, image and biomedical signal processing, homeland security, automotive
industry, simulations and many others ICT (Information and Communication Tech-
nology) areas there is a constant demand for better performance. State of the art in
cutting edge tech companies dealing with computer systems is the trend that instead
of further increasing the processors clock rate, many processors and processing units
are simply connected together, forming a high performance computer system. There
is a simple reason for that. Following the technology scaling trend in past decade, to-
day’s scientists are dealing with 32nm technology with intentions of going to 16nm (or
even less) by 2016. Further scaling would not be possible due to physical constraints
(very small number of Si atoms in MOSFET channel). Scientists are aware that going
towards less nm technologies is not a solution for faster computer systems, and several
different research areas are under examination as basic technologies for development
of future computer systems. One of them is the concept of Network-on-Chip, also
known as NoC.

1.1 Multi core to Many core era transition

On conferences and workshops in Computer Engineering (CE) related areas one can
often hear a sentence: "The core is the logic gate of the 21st century!". True. In
portable devices and smart phones people are using in daily life, uniprocessor sys-
tems are getting out of fashion. During the time interval when this work has been
written, state of the art in commercially available mobile devices is based on dual
cores architectures (for example iPhone 4S or Samsung galaxy S2 and first quad-core
architectures, Samsung Galaxy S3). Desktop Personal Computers(PCs) available on
the market today are generally quad core (several lines of popular Intel’s i-3, i-5 and
i-7). On the other hand, Intel’s Polaris 80 cores processor was officially announced
on February 11th, 2007 mainly for research purposes but there are no doubts that
increasing number of processing cores will become a trend in commercial electron-
ics in time interval that is ahead of us. The number of cores to be integrated on a

1 Motivation

chip is expected to rise according to [BDK™05], moving from multi-core to many-core
architectures. This implies that the scientific community will soon be dealing with
computer systems consisting of hundreds of cores on a single chip.

1.2 Communication and power issues

According to the Moore’s law, number of transistors integrated on a single chip grew
rapidly over the years, making Central Processing Units (CPUs) faster. Memory
remained significantly slow viewed from CPU operational speed perspective. The need
for frequent communication between the two is obvious. The Issue of communication
bottleneck between those two main computer systems ingredients (gap between the
speeds) is known as memory wall issue, also known as memory bottleneck.

Another issue in the chip design area is regarding power consumption, also known
as power wall problem. As chips are becoming smaller in size and containing more
and more transistors (clock rate grows), more power is needed. From equation 1.1,
one can clearly see that dynamic power dissipation Pd in logic gates is proportional
to clock frequency f and that further clock increase is not realistic scenario for next
generation of computer systems since market is demanding for less power consuming
systems that can be embedded and will generally use battery as power source. It
is a known fact that in state-of-the-art smart phones, one battery charging is just
enough for one day of usage for average not so demanding user. The industry giants
are trying to increase this period by reducing power consumption. It would be great
if this time frame could be increased for few more days, wouldn’t it?

Pd=C xVdd* x f (1.1)

At the present moment, a commonly acknowledged fact is that power wall in terms
of uniprocessor chips is hit, even some prevention attempts from hitting the power

Figure 1.1: Multi to many core transition. Source: [BDK*05]

1 Motivation

wall are visible [MJ08|. In this thesis there will be no more elaboration on this
topic, but it is important to mention it as one of main reasons for switching to multi-
core architectures, since scientific community is aware that MPSoCs (Multi Processor
System on Chips) can be less power hungry.

1.3 Network-on-chip paradigm

A good article, which is recommended to the reader, is one by [BMO06]. Traditional
bus based systems, including hierarchical bus based systems are obviously not
scalable enough and applying them in high performance computing area is not likely
to happen in future architectures. Since the number of processing elements and
different Intellectual Property (IP) components that computer architecture designer
wants to attach to bus based systems grows, one needs to accept certain increase in
delays, communication overload and decrease in performance. Accent in bus based
architectures is on computation. Observed from the context of network-on-chip
(NoC) as a mean of communication for scalable MP(Multi Processor) systems-
on-chips, the emphasis in design is not only on on computation, but equal on
communication.!. Also, in terms of optimization of bus based systems, engineers
tried to improve performance by increasing the amount of work performed in each
cycle which is known as ILP (instruction level parallelism), while on the other
hand, real power of parallelism in NoC systems is exploited via principle of TLP
(thread level parallelism). NoCs represent a communication subsystem separate
from resources in a way that NoC is operationally independent from PE (Processing
Element) connected to NoCs nodes. The NoC operates in its own, predefined
frequency and all PE "plugged in" have to adapt to NoC protocol via Network
Interfaces. PEs can operate in their own clock frequencies with respect to GALS
principle (Globally Asynchronous Locally Synchronous). Systems-on-chip based on
the NoC paradigm are especially suited for running multi-threaded applications.

During the last decade, many NoC research platforms were developed for scientific
purposes by different research groups, and in the last few years commercial platforms
are also starting to be present on the market.

During experimental part of this thesis, XHiNoC (extendable Hierarchical Network-
on-Chip) the NoC platform was used (Samman, Hollstein, & Glesner developed in
2008), and more details about the concepts of this NoC architecture can be examined
in [Sam10| and publications referenced in that PhD thesis by scientists from TU

!By NoC systems in future text author is referring to MPSoC systems based on NoC as commu-
nication medium

1 Motivation

Darmstadt. In this thesis, deeper explanations of all properties of this NoC platform,
s topology, switching method, routing mechanism, flow control, router architecture,
quality of services and similar are not present, since it is outside of the scope of this
thesis.

1.4 Research in the Field of High-Performance
Computing

Parallel computer is nothing more than a collection of usually heterogeneous process-
ing elements that cooperate and communicate to solve large problems. Performance
matters and the general idea is to have very fast parallel computer systems. In real-
time systems, where parallel computer systems are being used, time constraint plays
crucial role. Hard real-time systems are for example defined as such that delivering
computational answer is strictly not allowed outside a specified and predefined time
interval. When processing critical cyber-physical systems, delivering an answer late
can cause serious consequences. It is of highest importance that parallel systems
behave as expected from the computational as well as from communicational side.
Here there is a need to clearly understand the concept of what happens-before re-
lationship.? What does it mean from programmer’s perspective? Programmers need
to take care about parallelism. Sequential execution of code is what majority of pro-
grammers are used to, but several years back this practice started to change. Let us
examine part of typical C code for parallel programs:

cnt=0;

for (i=0; i=very_big_number; i++) {
pthread_mutex_lock(&mutex) ;
cnt++;
pthread_mutex_unlock(&mutex) ;

}

Programmers are aware that in multi-processor platforms where code is going to be
executed, several threads (we assume here that each thread is executed on different
core) are going to be involved in this calculation in order to generate faster results,
variable cnt is shared, and each local cache of the involved CPUs will have copies
of this variable in order to process it. If the programmer does not protect critical
section with mutexes - counter in this case, an unexpected result will occur. Cache
controllers (cache coherence mechanisms) are going to invalidate or update value

2By closer look at [Ora| from where happens-before keyword origin is, terms becomes clear and
reading is helpful also to understand how Java programmers are dealing with consistency issues

1 Motivation

of this variable in local cores caches and READ and WRITE operation to same
variable originally stored in main system memory, is going to be performed many
times. Looking deeper into the assembly implementation of simple increment of cnt,
it is obvious that three operations need to be realized: LOAD cnt, INCREMENT
cnt and STORE cnt. If not protected with the mutexes, realization of code becomes
chaotic, some cache will fetch value of cnt from the main memory while in the same
instance some other node tries to write to it, etc. As a result one would have cnt
significantly less than very big number variable. The concept of mutexes is purely
clear and simple, but programmers need to keep this and similar concepts in mind
while dealing with programs for multiprocessors systems. Such concepts were not
generally used while dealing with uniprocessor system, except in a scenario with
several threads running on a single core, are sharing the same address space. In the
Java world the thread interference and memory consistency errors are still giving
developers sleepless nights. By declaring variable as volatile, programmer is sure that
READ and WRITE operations to all types of primitive variables in the code will be
executed as atomic. Yes, this helps a lot in fighting with the thread interference issue.
Regarding memory block consistency views, there is a keyword synchronized which
applies both to methods and statements.

Programming of parallel systems is not a trivial task. Few languages are widely used
today for programming for multi-core systems like OpenMP, MPI, etc. The computer
engineering community is going into direction of trying to hide platform specific imple-
mentation from end users. MOSART |mos| is European Commission funded program
that among other issues addresses: "The difficulties in programming heterogeneous,
multi-core platforms, in particular in dynamically managing data structures in dis-
tributed memory."[CAST10]. Here the idea is to create middle-ware services that will
hide platform architecture from APIs (Application Programming Interfaces) that run
on top of it. This will require a global rethinking of software and hardware design
principles. HIPEAC is open European Network of Excellence on High Performance
and Embedded Architecture and Compilation which monitors and increases European
research in the area of high-performance and embedded computing systems, |[hip] and
the author of the thesis is looking forward to future times when personal professional
contribution plans to these networks will become true.

Curious reader by now might be wondering: Does it mean that same job that one
used to do on uniprocessor platform now can be processed 4 times faster on quad-
core architecture? Well, not necessarily. This depends on the nature of program code
that is being executed on quad core platform. In simple words, if the program is
strongly sequential and can’t be partitioned in separate execution modules that do
not depend on previous modules results, a significant speedup cannot be achieved.
That is why programmers nowadays need to change the way of thinking sequentially,
(which is most natural way of thinking while writing a code) and think little bit in
terms of underlying platform. Back in 1967 Gene Amdahl announced an equation

1 Motivation

nowadays known as Amdahl’s law, which specifies the possible speedup as a result
of parallelization. From equation 1.2 where N represents number of processors, S
describes percentage of serial program code one can conclude that the speedup will
always be less then number of available cores.

N
SXxN+1-S8

Speedup = (1.2)

A speedup analysis was also done by the scientists Finnigan and Gustafson, but
all three of them do not consider communication overhead that is present due to the
fact that threads sharing same address space (looking from uniprocessors perspective)
or cores (looking from multi-core distributed shared memory perspective) frequently
need to exchange informations. Stone in [Sto93| presented a metric that takes into
consideration computation time R and communication time C like described in equa-
tion 1.3, where M stands for number of jobs (tasks) and N stands for number of
available processors in underlying platform where task are executed.

N x (&)
c T2

By now, it is clear that multi- and many-core architectures will only provide more
speed when used with multi-threaded software and regarding this thought, authors of
[LCO09| have in medias res questions that CE community is still struggling to answer:
"First, in terms of computer architecture, the question is: How can we build intercon-
nect systems that minimize the latency of communications between processors? And
second, in terms of parallel algorithm design, the question is: How can we partition
our problems such that we can minimize the communications between processes?".
Yes indeed, first thing we should have in mind is to have smart application mapping
of our programs and services on top of multi-core hardware platform, and this will
in essence decrease communication overhead between the tiles that we would have
otherwise. In addition, one can also try to find inspiration in idea of hiding latencies
of assessing slower part of system memory.

2 Introduction and background

2.1 Memory Hierarchy

Every processing element, connected to a NoC, consists of at least one CPU core which
has several layers of caches. With the increase of the number of cores in a single CPU
the number of cache levels might increase in the future. The scope of this thesis
is examining network memory hierarchy rather than internal PE memory hierarchy
(registers, caches, main memory, etc). Having this in mind, main memory of entire
SoC under our 2D target architecture is distributed DRAM modules connected to
nodes in the NoC. In terms of 3D target architecture and memory stacking possibilities
it is assumed that memory is stacked on chip, being used as distributed local or shared
memory.

2.1.1 Memory organization in NoC based 2D MPSoCs

The latency of memory operations between several entities within NoC as communi-
cation backbone, for example between processing elements and local memory, distant
processing elements, processing element and distant memory blocks,etc is the key
factor that is being examined in context of MPSoCs performance. One can make
classification of NoCs based systems as homogeneous and heterogeneous. If all pro-
cessing elements connected to NoC are identical, such system is homogeneous. On
the other side, if processing elements are different (CPU, DSP, GPU ...) such systems
are known as heterogeneous. Within the scope of this thesis the author assumes that
target architecture (the same will apply to 3D MPSoCs) is heterogeneous.

Other nodes (processing unit nodes) have local caches that contain copies of main
memory blocks. Caches are realized in several levels usually L1, L2 and L3 depending
on processor architecture. Trend in modern multiprocessor design is to have the last
level of cache shared between local processors cores (for example in case of Intel Core
i7 64-bit x86-64 processor where L3 cache is shared between four cores, but it does
not have to be the rule). ! In essence, starting from main system memory which is
measured in GBs of data, until CPUs register which are capable of containing limited

!Some Intel processors with L3 shared cache between cores allow disabling it

2 Introduction and background

Figure 2.1: 3x3 fully connected mesh heterogeneous target 2D NoC system

size data, all memory blocks in memory hierarchy actually can be seen as caches of
bigger block precedents. The L3 cache contains a certain number of exact same copies
of the memory block lines from the main memory, the L2 cache is doing the similar
job viewed from perspective of the L3 cache etc. Looking back in time, computer
engineers tried to solve the memory bottleneck problem by introducing yet another
block in between of existing memory blocks in global hierarchy.

2.1.2 Memory organization in NoC based 3D MPSoCs

The entire memory structure is on chip. Fast accessible via TSV (Through Silicon
Vias) comparing to accessing time of off-chip memory. Several memory layers can be
stacked on top of one or more logic layers, like in Figure 2.2a. Target architecture
under examination in this thesis is assumed to consist of single logic layer and single
memory layer accessible via TSVs.

Multiple layers of memory modules are vertically stacked on top of logic layer, using

(a) Dance hall architecture. Source:(b) Target 3D architecture. Source:
[WLWT09] [LB10]

Figure 2.2: Target 3D architectures

2 Introduction and background

Figure 2.3: 3-D memory architectures. Source: [WLWT09| Dance hall (a), Sandwich
(b), Per layer (c), Terminal (d), Mixed (e)

TSVs as communication medium. Nowadays we speak about several millions of TSVs
in one square centimeter. State of the art in TSV manufacturing process according to
[Sem07] is that the industry is able to produce approximately 4 micro meter square
vias on a pitch of 4 micro meters in 2011. Generally, with 3D technology there exists
a possibility of integrating DRAMs into a single, tightly-coupled chip stack.

Every node (PE element) contains memory controller and it plays two important
roles. On one side, it has to serve all memory operation requests coming from local
PE computation unit, and from the other side it also has to serve memory requests
coming from other PEs through NoC NI it is connected to. If some distant PE unit
(from second row in Figure 2.2 from example) needs certain memory block from first
PE unit stacked memory (first row in 2.2) than request must come trough NoC. If
we imagine many core architecture with hundreds of PEs connected to the NoC, than
keeping event ordering among memory operations and assuring memory
and data consistency is really a challenging task, and aim of this thesis is to
contribute to this challenge.

In the scope of this thesis, focus is on request operation that nodes(PE elements)
will introduce towards shared memory regions, distributed homogeneously over NoC
platform, and requests performed on local, non-shared memory are not in focus.
In further text, one can always assume that once memory controller is mentioned,
it refers to memory controller that operates on shared memory regions. Also it is
important to mention that, XHiNoC simulator, or platform itself, that is our main
and only simulator and platform used during time frame of this thesis, have potential
of 3D integration, but main focus was on 2D NoC platform. Author’s future research
directions are to tackle memory related challenges that 3D XHiNoC will bring.

2 Introduction and background

Figure 2.4: Simplified bus based architecture. Source: [Dre07]
2.2 Coherency

2.2.1 Cache coherency in bus based architectures

Most modern processors with underlying bus based architectures can be simply rep-
resented as on the Figure 2.4. Main memory stores data and local caches contain
copies of certain memory blocks from it. Normally local caches will have a need to
issue READ or WRITE operation to main memory and since only single entity can
use bus at one instance of time, there must exist some kind of arbitration unit, which
will assign mastership over the bus. Central task is to maintain coherency and event
ordering (memory and data consistency topic will be discussed in 2.3) in such sys-
tems. Imagine the case where for example two local caches of two processors (P1 and
P2) fetch the same data from main memory and P1 change the value of certain cache
line (we assume that cache sizes are same in both processors for simplicity reasons).
Naturally, this change should reflect main memory where original data is stored. How-
ever, it must not be allowed for the second processor to continue operations on that
shared memory line, since it has been changed by P1. Therefore, existence of cache
coherence protocols is a must. How is it solved in bus based systems? Widely used
approach is snooping. Cache controllers (as many as there are) have the possibility
to snoop (monitor) fluctuation of memory operations on the bus at the same time,
since cache controllers are directly connected to the bus. Accordingly, they either
update or invalidate cache lines in local caches and what has just been described is
known as write-through and write-back cache coherence mechanisms. Write-through
policy is very intuitive and rather strict. As soon as cache line is modified in the
local cache, update is propagated further toward the main storage. On the other
hand, idea of write-back writing approach is to mark cache line in the local cache as
dirty once it has been modified. Change will not be propagated immediately to main
system memory, it will wait until replacement of cache content occurs. Typical and
very efficient replacement policy is LRU (Least Recently Used) that will in advance
of arrival of new cache line discard least recently used cache line. Meaning, while

10

2 Introduction and background

discarding cache line from local memory, if line is marked as dirty, cache controller
will know that it needs to be written to main storage as well. Write back mechanism
is more represented in modern architectures.

Central question is how will rest of the processors in interconnection network be
aware that shared cache line is dirty in other processors? This information must
be delivered to all relevant nodes in real time, since no further operations (READ
or WRITE) should be allowed on shared cache block marked as dirty until it gets
update of latest values.

2.2.2 Coherency in NoC based systems

Cache coherence actions increase traffic overhead on shared bus. When the number
of CPUs connected to bus becomes bigger than just a few, snooping solution is not
applicable any more. In Network-on-Chip systems cache coherence cannot be im-
plemented using snooping.? Snooping is not applicable for coherency of distributed
shared memories. Let us take analogy from real life. In a ten floor building with
single entrance and circular stairs in the middle of the building, if one stands on top
of stairs, one can easily monitor when someone enters the building and on which floor
he stopped. On the other hand, if we now imagine several of identical buildings,
connected via bridges for example, one cannot monitor all entrances at the same time
and collect all information at once.

— e z
k] 2
Z 77 Z
-l -
Memory block—" '_
=
Memory Directory

Figure 2.5: Directory based protocol "idea". Source:[SJ11]

Commonly accepted solution for cache coherency of large scale multi-core systems
is directory based protocol. As one can see from Figure 2.5 each node keeps track
of all nodes that have copies of certain memory block from it. Every moment, when

2 However, principles of snooping are applicable in NoCs terms

11

2 Introduction and background

some node changes value of certain memory block, protocol knows which nodes should
receive invalidation or update information. To be more precise, here full-map direc-
tory based protocols are referred, where every single sharer keeps track with whom
particular memory block is being shared. As you can already conclude, this approach
is just not good enough in terms of large scale MPSoCs, since it introduces large
memory overhead in a system. Another disadvantage, besides memory overhead, are
long transaction delay.

2.2.3 MESI protocol - general idea

Many protocols were developed and upgraded over the years. In the beginning, MSI
protocol (Modified Shared Invalid)represented very efficient and good enough solution
for coherence problem. More comprehensive and specific solutions were proposed as
improvements of MSI protocol and in this section intention is to examine MESI
protocol, having in mind computer system high level organization as in Figure 2.6.

Figure 2.6: Simplified MPSoC based architecture. Source: Benini Luca.

Name of the protocol comes from the four states a cache line can be in when using
the MESI protocol (Modified, Exclusive, Shared, Invalid).

e Modified - M: cache line has been modified by local CPU core, and it is known
as dirty. 3 All sharer copies, if any, which have this particular value were in
advance of this action invalidated, and if ever needed for processing, they will
have to fetch value again,

3By dirty cache line referred is cache line which content has been changed comparing to original
value in main system memory (distributed shared memory) and in general case it is required to
write the line back to memory at some point in the future, before permitting any other READ
from main memory on that specific line

12

2 Introduction and background

e Exclusive - E: cache line is unmodified from main memory perspective, it is
clean*® and present only in this particular CPU cache, nowhere else,

e Shared - S: cache line is shared between at least two cores and it is clean

e Invalid - I: cache line is invalid since some other node, that has the same copy,
modified that copy and invalidated its value.

In bus based systems, it was such a case that certain operations that processor
performed, regarding cache/memory handling, were announced on external pins, so
outsiders cache/memory controllers can get this information. In NoC context, local
directory structures are used to keep track of what changed where and how, so this
allows to always know from where one can get latest valid desired memory block
content.

It is allowed to execute a READ from any state except Invalid. An Invalid cache
line must first be updated. If executing READ operation from M or E state only
source and destination nodes local directories will be updated with latest happening.
If one performs it from S state, all relevant sharers, as well, need to be informed about
this action.

A WRITE operation can occur if the cache line is in the Modified or Exclusive
state, similarly as for READ. If in the Shared state, all other nodes’ cached copies
must be invalidated first. This is typically done by a broadcast operation known as
Request For Ownership (check the diagram path which leads to RWITM (Read With
Intention To Modify) in appendix A). A WRITE operation is not allowed from Invalid
state. Other possible transitions are shown in Figure 2.7. They show which state will

Figure 2.7: MESI protocol transitions. Source:|Dre07|

be the next logical state after certain local or remote operation has been executed.

4By clean cache line here referred is such one that corresponds to the one in main system memory

13

2 Introduction and background

Generally, transitions caused by memory operations coming from local CPU core are
less expensive comparing to ones caused remotely.

Other protocols also exist (MOESI, MERSI, MESIF, Firefly protocol, etc) but they
are out of the scope of this thesis.

2.3 Memory consistency

In a way, one can look at the coherence protocols as means of implementation of
consistency models. Cache coherence protocol aims at updating every relevant node
that contains block of shared memory with latest values of that particular block
which can be changed in any of those relevant nodes that share the same memory
block. Preserving memory operations order in MPSoCs is a highly important task
and different memory consistency models have been developed until now. Early work
in this field [Gha95] elaborates memory consistency problem in general. From one
side there is a strict memory consistency model with following main idea: Once
something is done, inform everybody before doing the next step. On the other side,
relaxed consistency models are proposed. Further division of relaxed consistency
models is on weak and release. Idea behind relaxed memory models is to allow the
programmer to specify when relaxation is possible by reordering some of the memory
operations and specifying when to synchronize all events. In essence, intention of
relaxed models is to allow either software or hardware optimization in the system
in order to gain more performance. The disadvantage of strict memory consistency
model is that it disable us to make hardware optimizations (write buffers for example)
as well as optimizations on compiler level (for instance, if you have something like
following in your code

asm volatile("" ::: "memory location");

that would forbid GCC compiler to reorder read and write commands around that
memory segment). There is a great thought on this topic by authors of [Gha95]:"The
illusion of sequentiality can be maintained by only preserving the sequential order
among memory operations to the same location".

To ensure correct behavior regarding release consistency authors of [PGG06| pro-
pose:

e " Request and responses packets issued by a given initiator to the same target
are delivered in-order. This ensures the sequentiality of memory access for a
processor. This can be done either by a NoC with FIFO behavior, or by having
an initiator wait for the response of packet i prior to send the request of packet

14

2 Introduction and background

i+ 1,
e [f a given initiator needs to send requests to two different targets, then it awaits

the response from the first target prior to send the request to the second target.

e the interconnect is not allowed to arbitrary drop packets when it cannot handle
them. "

Application that is executed on NoC has to take care of certain re-sending action-
s/requests, if for example coherency protocol was not able or did not allow the desired
request at specific instance of time. (This will happen rather rarely in case of 2x2
NoC but in larger scale NoC will not be that rare.)

In further discussion it is assumed that underlying NoC must have all these services
available.

15

3 Concept of assuring memory and
data consistency

3.1 Vision

In this thesis, heterogeneous Multi Processor System-on-Chip (MPSoC) architecture
with Distributed Shared Memory (DSM) modules and local memory modules in each
node is assumed. Concept of DSM is illustrated on Figure 3.1. Each node can
be loaded with tasks differently, and percentage of total processing job to be done
vary from node to node, depending on its performance and strength characteristics.
Single shared address space is distributed over multiple physical memory entities and
accessible to all processing elements in NoC.

In short, question that this thesis demonstrates and contributes to is how to guar-
antee that on every memory request in our MPSoC, received memory block value will
be coherent. It is a must, to always have in mind that action that will lead towards
incoherent memory sharing or memory usage should not be allowed! At the same
time, system performance must be taken into consideration, meaning that designer
needs to be aware how performance expensive is protocol. As mentioned before, di-
rectory based protocols are commonly proposed solution to this issue. Within this
focus, designers also have to be careful, not to inject unnecessary traffic into NoC.

This thesis provides contributions on alternatives of full map directory based pro-
tocols that in general solve issues of memory consistency and memory coherency in
MPSoC with NoC as underlying backbone, but are not scalable. They represent static
solution and memory usage reduction improvements are noticeable. Scalable NoC
memory coherency solution is still an open problem since general aim is to maintain
(or speedup) solid (good enough) overall system performance, not only to guarantee
memory and data coherency. The main drawback of traditional solutions (full map,
chained, and similar flat distributed directory based protocols) are identified to be:
memory overhead and long latencies (communication delays). This is point where
smart management of local directory structures and choosing of appropriate sharer
from list of sharers in protocol is important. By optimizing already proposed full map
distributed directory based coherence protocols, it is realistic to expect reduction of
memory overhead and introduction of less communication messages in this particular

16

3 Concept of assuring memory and data consistency

Figure 3.1: Distributed Shared Memory

protocol.

3.1.1 Architecture and Example of assumed application data
mapping

Let us imagine some image processing application that runs on 2x2 NoC ! and archi-
tecture of single node is represented on following figure:

Figure 3.2: High Level Architectural Concept

Meaning, every node will have LOCAL memory and SHARED memory. Local
memory will be collaborator while processing/performing largest part of the work,

'Here simple NoC is selected for demonstration purposes, but idea is general and can be applied
to any NoC size

17

3 Concept of assuring memory and data consistency

and this type of operation will not introduce/inject any messages into NoC. Process-
ing on shared regions will require cooperation between nodes and sharing resources,
so memory coherency protocol is highly needed to guaranty coherent view on shared
memory and injection of coherency protocol messages into NoC' is unavoidable.

Now let us consider for example an image that needs to be processed. Internal
processing logic and used algorithms are out of scope and not relevant here. Let us
split image in four segments since 2x2 NoC platform is used. Here, it is chosen to
split the image homogeneously for simplicity reasons, but one could split it in any
other heterogeneously way since it is assumed that underlying nodes are with different
characteristics.

Figure 3.3: Image to be processed partitioned in regions

Tasks will be mapped /distributed as such that every node will receive part of the
image to process. Assignment of processing those image parts that can be processed
independently by one node, every node will do in collaboration with its LOCAL mem-
ory (00, 01,10 and 11 LOCAL). Majority of the job is done in previously mentioned
manner - yellow colored regions on Figure 3.4. On the intersections, nodes will be
working on the same part of image and there is a need of sharing resources and co-
herency. It is important to mention that application is mapped as such that for very
small percentage of the entire image there is a need to be processed with several nodes
(intersections/collaboration segment on Figure 3.4). In order to be processed prop-
erly, central part of image requires collaboration of all nodes, symbolically marked as
’ALL’ in same Figure. Having this in mind, coherency protocol will inject additional
overhead into NoC (looking form perspective of entire job that needs to be done,
this percentage is reasonably small) and this is the only reasonable way in terms of
scalability to enable functionality of coherence protocol.

What is interesting at this point is to observe here is how shared data is mapped

18

3 Concept of assuring memory and data consistency

Figure 3.4: Distribution of tasks within processing job from data-memory mapping
perspective

into DSM (Distributed Shared Memory). How data is mapped into local memory
blocks is not interesting within this thesis scope, and from now on it will not be
depicted on diagrams and figures, even it is assumed (meaning - disregard yellow
sections from now-on). Every node will store certain portion of shared data in its
shared memory blocks, accessible to all other nodes via NoC. While collaborating,
nodes will come into situation that they share same copy of data, needed mutually.
As one can see from Figure 3.5, segment b), node 11 will have data in its shared
memory blocks (that is part of global DSM) mapped as such that:

e some of those memory blocks represent data that will be used by node 11 but
also node node 01

e some of those memory blocks represent data that will be used by node 11 but
also node node 10

e some of those memory blocks represent data that will be used by node 11 but
also all other 3 nodes

This is why there will be a need for node operation that will read data from another
node (READ in future text) as well as this is why there will be a need for inform-
ing sharers about certain changes node made on shared data, or asking sharers for

19

3 Concept of assuring memory and data consistency

(a) Initial mapping(b) Initial mapping of shared data for(c) Initial mapping of shared data for

of shared & node 11 node 11 with info about sharers
local data for (part marked with parallel lines)
node 11

Figure 3.5: Mapping idea of data into memory(part marked with parallel
lines/hachures)

permission to do something on top of the shared data (idea of WRITE operation in
future text).

Part of the same Figure, section ¢) illustrate initialization idea from single node per-
spective, meaning illustrates what information besides shared data is being mapped
to node 11. The idea is same for all other nodes. Segment that is crossed with parallel
lines, actually that shared data represented with this lines, is not mapped in node 11,
but crucial is fact that information about sharers of those specific memory blocks is
encoded at the very beginning. In conclusion, every node is aware with whom certain
memory blocks is shared, and this information is recorded in nodes local directory.

Now, let us focus on allowed operations. The difference is that when READ
operation is under elaboration, in context of our thesis, it only makes sense
to READ from the foreign nodes, but not from the caller node. Why: if
the processor wants to Read shared Data from the local memory and it is
available and valid, then everything will be o.k. as well. In case of WRITE
operation, it makes sense to always WRITE only to the caller node, never
to the foreign node, but other relevant nodes should always be informed
and asked for acknowledgement prior this action.

20

3 Concept of assuring memory and data consistency

Figure 3.6: Shared memory interactions

3.1.2 Logic

Assuming that high level idea is clear, as well as necessity of such a concept, let us
step one level down and see which modules are needed and under which assumptions,
so that such a services can be guaranteed.

As stated before, coherence protocol is a designers’ toolbox of implementing con-
sistency models. Main entities in coherency protocol are Memory Controller (MC)
and Local Directory (LD). Main focus is on MC unit that controls requests on shared
memory regions, and as stated in previous chapters, one can think of it as of MC
for shared memory. As visually represented on Figure 3.7, MC communicates both
ways with Network Interface (NI). Messages (flits) that are available to specific node
via NI will be delivered to MC in the same order as NI received them. MC contains
internal logic that interprets incoming messages. While interpreting messages MC
collaborates and accesses its own LD as well as SHARED memory that is physically
stored in that specific node. This collaboration and internal logic will result in ma-
jority of cases in a way that MC needs to inject messages into NoC traffic. Messages
will be injected via NI in the same order as they have been created in the MC.

21

3 Concept of assuring memory and data consistency

Figure 3.7: Conceptual collaboration diagram between entities in coherency protocol

General concept observed from perspective of single NoC node is represented on
Figure 3.7 and Figure 3.8 represents conceptual view from the perspective of an entire
NoC examined in this thesis, which is, 2x2 NoC with mesh topology.

Figure 3.8: Conceptual diagram between entities in coherency protocol in 2x2 NoC

As represented on Figure 3.9 possible states that memory block can be found at
are Invalid, due to write operation invalidation or Valid, that typically happens due
to read operation or write operation.

22

3 Concept of assuring memory and data consistency

Figure 3.9: Finite State Diagram of shared memory block/line

Figure 3.10: Local Directory structure idea for single shared memory block

Represented on Figure 3.10, idea of Local Directory structure per single entry is
provided. In general, it is sufficient to elaborate diagram c¢). The structure represents
a list of n connected elements. First element always contains data about shared
memory block virtual address (unique for all nodes),local physical representation of
that memory block(length), and validity flag/status. All other elements are based
on same concept. They provide information in which node same shared memory
block is used - network address field, and its validity status - second field. Looking
vertically, there exist pointers to entry before or to entry after, and point here is that
as much shared memory blocks one node is involved in, that much entries will be
created and connected also as a list. This 'vertical’ connection will allow programmer
to manipulate and iterate big, entire double linked list, also known as LD.

In the following sections demonstration of concrete illustrative examples (concrete
scenarios) how coherence protocol should look like from algorithmic programmer’s
perspective is presented. Every scenario has short introduction that specifies pre-
conditions and setup at the beginning. To understand the use cases easier please
have ideas of shared memory interactions between the nodes in network illustrated
on Figure 3.6, even though in following scenarios nodes are enumerated according to

23

3 Concept of assuring memory and data consistency

XHiNoC standard, not as above, Figure 3.10 and Figure 3.9.

3.2 Scenario 1. READ operation, two sharers

Let us examine following use case PE doesn’t want to read from PEO1, it just accesses
the local memory controller, which detects, that the locally available shared data
under this virtual address is invalid and the data has to be read from the memory of
PEO1; elaborated on Figure 3.11. Suppose that PE 00 wants to read specific available
shared memory block value from PFE 01, or to be fully correct, shared memory block
value is stored within node’s 01 shared memory space.

Figure 3.11: Transactional diagram of READ operation, two sharers scenario

MC that belongs to node 00 will assemble and sent request that express a need to
get desired memory block value from PFE 01. Once message is received and memory
controller of node 01, MC 01, interprets the message, first thing to happen is that MC
01 will internally detect that the content of requested memory block is in Valid state
according to protocol, meaning that PF 01 it is the only place where such a content is
available, regardless possible prior local processing. Since there are no other sharers
for example or similar actions to take care off in advance, requested memory block

24

3 Concept of assuring memory and data consistency

(its content) can be sent back to initiating PE 00, or to be more correct, to its MC 00.
Next, the message is sent back to initiator. Initiator will interpret received message
as data response on his READ request generated before. Newly arrived value will be
saved into available memory block in shared address space. Operation is successfully
performed and data is available for potential processing in PE (0. Validity statuses
are updated according to diagram.

————— > (dashed line arrow) represents local operation
> (full line arrow) represent operation that is
performed via NoC

First thing that is noticeable in this moment might be - there is a certain delay
from the moment MC 01 start to send response to PFE 00, and the moment when MC
01 receives acknowledgement. This is true. Intention here is not to allow any WRITE
operation in noticed time interval on same memory location in node 01. Second
notification represented above, from one side can be interpreted as acknowledgement
of node 00 that operation has been performed successfully and, from other side, that
all sharers flags, one it this scenario will get updated.

From Figure illustrating this scenario, one can notice that requester and its memory
controller exchanged exactly two messages. Once first is triggered, node (via MC)
needs to make sure that there will be memory block reserved for the result of READ
operation. This reserved block will be available for memory controller to store received
operation result. Similar concept applies for next scenario’s.

Figure 3.12: LD’s pre and post states for Scenario 1, assuming that GloballD of shared
block is 1

25

3 Concept of assuring memory and data consistency

3.3 Scenario 2. READ operation, four sharers

Now, let us interpret Figure 3.13 that represents one of the more complex scenario’s
that may occur. Imagine as precondition of this use case that node 01, node 10 and
node 11 are sharing certain memory block value, meaning that all of them have valid
copy of memory blocks and awareness of this is noted down in each of the LDs’, and
of course all nodes are aware that Node 00 is also sharer, but at this moment his copy
is invalid. Node 00 decides that content of that same memory block is also needed
for its own purposes and it wants to get this data from its northern neighbor node
01. Once MC that belongs to node 01, MC 01, receives and interprets a message,
response will be assembled and sent back. (It is perfectly not necessary to activate
lock mechanism (more words in write scenario) at any sharer, since it is sharers who
receives response message (with read data) responsibility to inform all other sharers
of its flag change on the same memory block context in meanwhile).

Figure 3.13: Transactional diagram of READ operation, four sharers

26

3 Concept of assuring memory and data consistency

Figure 3.14: LD’s pre and post states for Scenario 2, assuming that GloballD of shared
block is 1

Now, message with response will be delivered to requester node. MC 00 will get
desired data and it can now store it locally at available shared memory block location.
Next, it is time to inform the sharers about success of transaction. Sharers will
update their LD’s. However, more than one parallel reading should be allowed by
protocol since it will not inject incoherency, but one needs to pay attention on properly
updating LDs. Following flow of scenario and diagram - READ operation is now
marked as completed and initiator’s PE unit has ability to potentially process this
value further, of course by the rules of protocol.

In conclusion, READ operation is non-blocking and this is important to emphasize.

27

3 Concept of assuring memory and data consistency

3.4 Scenario 3. WRITE operation, four sharers

The preconditions for use case presented on Figure 3.15: all nodes share certain
memory block, they are all aware of it and details are mapped in each of LD’s and
memory block is in Valid state in all sharers. Node 00 processed block value locally in
its PE, and now attempts to write to it. For this MC 00 needs to ask for permission
from all sharers, meaning all other copies need to be invalidated before WRITE can
be triggered. MC 00 will assemble and send invalidation messages to all 3 other
sharers and will activate lock on that memory block in the same time. MC 01,
MC 10, and MC 11 will act accordingly on received invalidation and invalidate their
own copies. MC 00 issued 3 invalidation requests, and to proceed further 3 tokens
(acknowledgement) messages need to be received. Once this condition is met, WRITE
can be performed, then lock can be deactivated and operation is now marked as
successful. After writing, node will inform all sharers above write success. In a way,
this idea of ’lock activation/ deactivation’ reminds us of idea of mutexes present
in C' programming language world for example

In future, if any of the sharers needs to process its own local copy, for example
if he wants to WRITE to it, this will not be allowed by our protocol, node will be
forced to fetch valid data first.

From Figure illustrating this scenario, it is noticeable that requester and its memory
controller exchanged exactly two messages. Once first is triggered, node (via MC)
needs to make sure that any other operation on this memory block should not be
allowed until current operation success is confirmed via second message. Similar rule
applies for next scenarios as well. Also, to clarify what is happening in each of LDs’
in this scenario, context of each LD is given on Figure 3.16, assuming that GloballD
of shared block is 1.

28

3 Concept of assuring memory and data consistency

Figure 3.15: Transactional diagram of WRITE operation, four sharers

Figure 3.16: LDs’ pre and post states for Scenario 3, assuming that GloballD of shared
block is 1 20

3 Concept of assuring memory and data consistency

3.5 Scenario 4. WRITE operation, n sharers,
Invalid state

Attempt of WRITING into memory block that is in INVALID state will result with
failure status. Protocol must not allow such an operation. Simply - if memory is
in INVALID state, that implies that same value is shared with one or many other
nodes in the network and some of them has valid copy. But however, this scenario of
node attempting to write into INVALID block may occur due to a fact that node(its
PE), let us call it node I, can take certain value that is originally in Valid state, and
PE I can process it during longer time interval for example. In meanwhile, some
other sharer (node IT and PE II) processed its copy of same value faster and already
executed WRITE operation (this was acknowledged by MC of node I but here general
assumption is that MC I has no permission to stop or invalidate any operations in PE
I). Therefore, node I shall not be allowed to perform WRITE since it appears that
he was working with outdated value for a certain time interval lately. Upon failure,
node will understand that next logical step would be to update marked memory block

value and to try with processing it again?.

Figure 3.17: Impossible to Write to Invalid memory block location

2Probably an improvement (after the thesis) would be here, that WRITE operations first cause a
temporary invalidation (TI) in all sharer’s memory controllers. During TI state a local write (as
considered in this section) is not allowed. With the S-flag update the state is set from TI to I.
If the local flag is V, then WRITE is allowed, following the standard procedure (invalidating all
potential sharers to TI state before performing the local WRITE).

30

3 Concept of assuring memory and data consistency

3.5.1 Introducing node’s priority levels

Analysis showed that there exist one possible scenario that might happen and that
protocol itself would not be able to solve without additional assumptions. Let us
imagine situation where there is 2x2 NoC and each out of 4 nodes contains in its own
SHARED memory (on specific memory block) certain memory content that is shared
between all 4 nodes. And let’s assume that current status of all those shared memory
blocks is Valid (according to protocol notation).

e Typical scenario

One node decides to write on that location. Meaning, node has processed that data
and now it want to write new value to this location. Protocol will prior to allowing
this node to execute WRITE operation send via NoC invalidation messages to all
other sharers (3 in this case) and after receiving 3 acknowledgements confirmation,
ability to write is granted to requesting node and WRITE operation can occur now.
Acknowledge about success is sent to all sharers.

e More complicated scenario

What happen if all four nodes (more than one in general) decide in the same
time to perform WRITE operation? Same time here refers to same clock cycle. All
nodes will attempt to send (inject into NoC) invalidation messages to other shares.
Let’s imagine that node 01 will get invalidation from node 00, and then node 11 will
get invalidation from 10, and when for example node 01 informs node 11 regarding
invalidation of that specific memory block that has recently been invalidated by 00,
and this confusion happens within other nodes as well, it has to be stated that chaotic
scenario will occur and simple protocol could not be able to solve current issue. This
would result and lead to incoherent view of specific memory location and its computer
engineer task to prevent it.

e Solution

As a solution, idea about nodes priority levels was introduced, where protocol designer
would in advance specify hierarchy of nodes, so coherency protocol would know in
above described complicated scenario which invalidation request has greater priority
and advantage among several incoming one. Here, one can also think of scenario
when lower level invalidation comes before higher level invalidation request, but in
this less likely scenario one of the possible solutions can be issuing cancellation of
invalidation request given earlier.

31

3 Concept of assuring memory and data consistency

3.6 Concept Summary

Key points of this chapter are:

e Modules MC, LD and their interaction and maintenance are heart of the pro-
tocol.

e Intelligent application data mapping with predefined sharers knowledge for ev-
ery memory block is needed.

e No matter how many sharers exist for certain memory block value, while per-
forming READ operation, it is not necessary to activate lock mechanism for
any sharer. READ operation is meant to be non-blocking. This is implied by
WRITE policy, which states that protocol needs to invalidate all sharers and get
write permission for every single one of them. Diagrams given in this chapter
demonstrate typical scenarios in 2x2 NoC, but concept is intuitively applicable
to any NoC size.

32

4 Protocol initialization phase and
Data Structures

In this chapter an overview of protocol initialization is presented. Before initialization
phase, certain data is assumed to be given. This data is observed as an input for
protocol initialization phase, and from the other side, data structures and it’s content
created during this phase are observed as an phase output. Protocol is designed to be
fully dynamic and to adopt to given inputs, meaning there are no limitations in terms
that protocol allows limited number of shared memory blocks or limited number of
sharers, moreover, this characteristics are determined by protocol inputs and one can
experiment with the same. However, in general, system memory is limiting factor.

Given inputs are:

e 1. Information about an amount of shared memory blocks and its sizes. For
the purpose of this thesis memory blocks content is observed as an abstract.

e 2. Information about which nodes are sharing which memory blocks with whom,

e 3. Time information about the PE operations triggered from each node (read
or write),(testbench).

Figure 4.1 represents class diagram of main protocol elements, MC(memory con-
troller), LD(local directory), shared memory modules and its interaction. Memory
Controller object, instantiated for each router in NoC, contains several elements but
most significant to mention are pointers to: NI buffer, first element of node’s shared
memory array, first element of VerticalDirectory list also known as Local Directory.
With this pointer MC can access and communicate respectively with NI (inject mes-
sages into NoC), node’s shared memory and entire Local Directory structure.

Let’s elaborate each class/list and its role in class diagram:

e SharedMemory: represents an dynamic array of shared memory blocks within
single node. Array is of a certain fixed size, generally configurable.

e VerticalDirectory: represents node’s LD. Represented also on Figure 4.2,
it is in essence list of pointers, where each pointers points to first element of
horizontal list. As many shared memory blocks certain node is assigned to as
an sharers, same number of elements of VerticalDirectory will be initialized.

33

4 Protocol initialization phase and Data Structures

Figure 4.1: Class diagram of main protocol elements and interactions

e HorizontalDirectory: Represents a structure that contains sharers info and
their statuses for single shared memory block. HorizontalDirectory has only and
only one HeaderEntry and multiple SharersEntries which depends of sharers to-
tal count for specific shared memory block. See also Figure 4.2. Both structures,
VerticalDirectory and HorizontalDirectory and their subcomponents, are driven
by input data 2.

e HeaderEntry: Information about shared memory block and its validity status
in local node

e SharerEntry: Information about sharers of the same memory block(as the one
in HeaderEntry) and its validity statuses.

Methods of MC class, are examined deeper in next chapter.

Finally, input data 3. represents degree or amount of real time operations on top
of shared memory in each node of NoC system, and basis of experimental work/ex-
periments is driven by this input data.

34

4 Protocol initialization phase and Data Structures

Figure 4.2: Local Directory (LD)

35

5 Experimental Work and Results

5.0.1 Environment

e Some words about Jonas Bargon’s thesis and XHiNoC' code

As a starting point of this thesis, Bachelor thesis titled "Mixed Level Simula-
tion for Network-on-Chip’ by Jonas Bargon defended at Technical University of
Darmstadt, Germany in 2011 was selected. In Bargon’s thesis, the goal was to
create an interface that will be able to instantiate and make operational XHiNoC
routers (TU-Darmstadt internally developed routers) together with the Atlas
tool (allows creation of different size NoCs). As a main result the SystemC in-
terface that performs above mention tasks was created, and it provides end user
with an ability to use XHiNoC routers originally written in Very-high-speed in-
tegrated circuits (VHSIC) hardware description language (VHDL). Simulation
of code (both VHDL and C++/SystemC) is done in ModelSim environment
and more words about this programming languages and tools will come later.
In this master thesis Bargon’s interface is used as a starting point, on top of
which implementation of directory based protocol is provided. The original code
written in VHDL language that implements XHiNoC router was used as it is
and available functionality and features of XHiNoC were used as an underlying

NoC.
o C++/SystemC

SystemC is a C++ class library. At the moment of creation of Bargon’s thesis
SystemC was determined and distributed as an Open SystemC Initiative pub-
licly available standard also known as as IEEE Std 1666-2005. During the time
interval of this master thesis same class library got updated and now it corre-
sponds to IEEE Std 1666-2011, available via same medium. Even though there
were certain changes and deprecated features in the newer version of library,
that could not create any potential misunderstanding in this thesis case. In
terms of C++, refered is C-++ programming language represented in ISO/IEC
14882:2003 standard.

e ModelSim
Represents popular simulation tool by Mentor Graphics. ModelsSim SE 6.6d,

36

5 Experimental Work and Results

Revision 2010.11 was selected since it allows simulation of two different Hard-

ware Description Languages (HDL) languages in the same time, for example in
this thesis case VHDL and SystemC.

e Available code (VHDL + SystemC)

Current interface is configurable in such a manner that it can correspond to
various sizes of NoC (2x2, 3x3, 4x4, 6x6 and 10x10). However, for the research
conducted in this thesis 2x2 NoC has been selected as a simplest scenario and all
experimental coding was done against this NoC size. For the future work,testing
and improving protocol to an arbitrary NoC size is planned.

Simulating mixed-language designs with ModelSim is the feature that makes this
tool popular and very practical simulation software. In this thesis case, simulation
initialization and execution includes these general steps:

1. Compiling VHDL source code using vcom command. Compiling SystemC C++
source code using sccom. Compile all modules in the design following order-of-
compile rules.

2. For designs with SystemC code linking of all objects in the design is achieved
using sccom -link.

3. Elaborating and optimizing design using the vopt command.
4. Simulates the design with the vsim command.

5. Runs design.

VHDL source code is compiled by vcom, from other side SystemC/C++ source
code is compiled with the sccom command. Therefore, there exist two separate
compilers. By default, ModelSim version used during this thesis, in general does
not come with preinstalled compiler for C+-+ code, therefore there was a need to
install it additionally in the beginning. More detailed information about mixed-
language simulation and other specification are available within Document folder of
installation file of ModelSim.

5.0.2 Available interface and situation in the beginning of
thesis from programmer’s perspective

The cycle-accurate VHDL model of XiNoC with SystemC intefrace was provided as
a starting point. Author’s practical task was to implement coherency protocol into
existing simulation environment. Main guidelines and software requirements were
to always think into implementation direction which will leads towards the scalable
protocol solution. Assuming that one is familiar with XiNoC code, before this protocol

37

5 Experimental Work and Results

was implemented situation was as follows: central logic of an interface is implemented
in local interface class. The local interface systemC module is responsible for the
main tasks of the complete interface: the sending, receiving and logging of the traffic.
As a main functions available via this interface two functions have been identified:

void ni_send(sc_bv<T> flit);
void ni_receive_test();

Function ni_send takes a flit and injects it into NoC. Function ni_ receive_ test
is constantly watching is there something new at dout port and what it is basically
performing is polling strategy. Once something arrives (and that must be flit, since
it is the smallest unit of data that can be moved around the NoC) flit will be stored
and available to be processed further on the receiver side. It is important to mention
that function ni_send is functionally same for all routers (no matter of number of
routers, router ID), and it is important to know that programmer needs to call this
function from each specific router separately. Flit will ’know” where to go (since it
contains info about destination router), meaning on receiving side, where there is
ni_receive_ test function only flits meant for this specific routers will arrive.

In the TopNOC.cpp file let us examine line:

#ifdef No(C22
local_interface r00_1,r01_1,r10_1,r11_1;
#endif

This means that there exist 4 local interfaces (identical) instantiated in case of 2x2
NoC, which is the primary experimental focus at this moment of master thesis. So
far, processing cores have been “simulated” as void functions within local interface.h
file and within them programmer needed to specify actions for each router.

5.0.3 How protocol works from programmers’ perspective?

Implemented protocol represent pure software integration into existing simulation
environment. For overview of simulation environment of XHiNoC, relevant for un-
derstanding of this protocol, the best reading is most probably thesis by Bargon,
mentioned above. The scalability requirement influenced entire software development
life-cycle. Here, entire flow of actions relevant for protocol simulation is described.
Once simulation is initialized with do run.do command in ModelSim console (as-
suming that project is properly created and both VHDL and SystemC source codes
are imported), compilers will perform their tasks, design is loaded and simulation

38

5 Experimental Work and Results

starts. Let us concentrate on SystemC part here, since protocol is implemented in
this part. SystemC kernel will among others, identify protocol test-bench thread and
simulate it:

SC_THREAD (fake_processing_core);
sensitive<<this—>clk—>posedge_event () ;

With every positive clock edge (on every 2ns) test-bench thread will be triggered.
Within local interface (routers) main file, function named fake processing core is the
one actually being watched in this case by kernel. By examining the code given below
(which is generic), it becomes clear that as long as there exist more operations to be
executed, the simulation will continue until all operations have been completed. Those
actions will trigger main protocol component, Memory Controller and it will further
cooperate with Shared Memory and Local Directories as elaborated in conceptual
chapter. More details are given in sections below describing MC in detail. The
approach is very generic and fully scalable in terms of test-bench actions triggering
protocol reactions.

void fake_processing_core(){

this—>totalNumberOfActions — this—>triggeringActions.size();
'/ Given as system input. Testbench info
this—numberOfActionsToGo = this—>totalNumberOfActions;
list<triggers >::iterator it;
triggers is just a list with details of when to trigger <«
which action by specific node
list is unique for all nodes, that's why keyword this is <
used .

for(it=this—>triggeringActions.begin(); it!=this—«
triggeringActions.end(); ++it){
//nexttriggeringTime=(*it).t time;

while (this—>numberOfActionsToGo—this—>totalNumberOfActions)+

{
if (sc_simulation_time ()>=(%it).t_time){

is because we have 2ns cycle accuracy in current <
setup

39

5 Experimental Work and Results

if ((xit).t_action—'R"){
this—memoryController.read((xit).t_gid);
// READ operation has just been triggered from this <
node by calling its MC
total_number_of_read_requests++;
telse if ((*it).t_action—'W"){
this—memoryController.write ((xit).t_gid);
// READ operation has just been triggered from this <
node by calling its MC
total_number_of _write_requests-f+;
}else{
cout<<"Error in input file with R or W. Should be in <«
capital letters!'"<<endl;
}

this—>numberOfActionsToGo——;

}else{
wait () ;
'/ waiting for times to match so next action can be <«
triggered ;

}
}
this—totalNumberOfActions ——;

}

MC will further trigger additional protocol actions, as described in conceptual
chapter, and those actions will also be recognized by kernel and simulated. Those
actions represent actual READ (memoryController->read()) and WRITE (memo-
ryController.write()) operations. On the end of simulation, statistics are displayed in
ModelSim console, similar to ones available in experimental results table. Statistics
include total simulation execution time, as well as information of operations success
details.

5.1 Notion of Shared memory

Shared memory is the one available to every router at (almost) any moment. Physi-
cally, this memory is distributed homogeneously among all routers in the NoC. Shared
memory consists of certain number of memory blocks per node, which are multiples of
chunks of 32 bit. Meaning is there is such a case that certain memory block is 31 bit,
then protocol will allocate one chunk of 32 bit, and that would represent this memory
block. If there is a need to have block of 55 bits, protocol will allocate 2 chunks, all

40

5 Experimental Work and Results

together 64 bits for this memory block. Just like as previous collaborators, protocol
operates on abstract data, since the idea was to prove concept. Working with real
data that would be given to protocol as an system input is easily implementable, but
within this thesis this task was considered out of scope. In conclusion, protocol is
just moving around the NoC abstract flits of the same sizes as it would have been
doing in case of real application data.

5.2 Directory Structure

Each router/node has dynamic local directory structure based on assumed system
inputs elaborated before. Manipulating with directory structure is crucial in terms
of optimization. Here one can make a differentiation in terms of simple protocol and
future work, modified protocol in following manner. If there is a need for node to fetch
its outdated value from valid sharer, memory controller unit will look under specific
directory, specific shared memory line entry from where this is possible. Simple
protocol will just iterate thought list of shares and will fetch data (assemble READ
request) from first sharer in the list. Modified protocol can be smarter here, and
iterate via list till its end, and calculate on the way who of available sharers has
minimum distance from requester, meaning who can deliver desired data fastest. Also,
immediate multi-cast implementation would calculate who else might be needing same
info soon, so protocol could delivered data in advance. Note that modified protocol
would show off it benefits in larger size NoCs, so in terms of 2x2 NoC, results are
expected to be on the same level, so in this thesis simple protocol is implemented.

An example of Local Directory structure for one single node (data token from ran-
dom experiment setup) is presented below. Refer to Figure 4.2 from protocol concept
chapter for clearer understanding of below given structure generated by protocol for
each router. In this specific case, experiment started with an assumption that all
memory blocks are valid (val 1) in entire NoC system.

Start of VD

1(val_1)——>>0(val_1)———>>1(val_1)———>>2(val_1)—>> End of HD

8(val_1)———>>0(val_1)———>>1(val_1)—>> End of HD

4(val_1)———>>0(val_1)———>>1(val_1)——>> End of HD

3(val_1)——>>0(val_1)———>>1(val_1)———>>2(val_1)——>> End of HD

7(val_1)———>>0(val_1)———>>1(val_1)———>>2(val_1)—>> End of HD

41

5 Experimental Work and Results

2(val_1)——>>0(val_1)———>>1(val_1)—>> End of HD

9(val_1)——>>0(val_1)———>>1(val_1)———>>2(val_1)—>> End of HD

5(val_1)———>>0(val_1)———>>2(val_1)—>> End of HD

100(val_1)———>>1(val_1)—>> End of HD

25(val_1)———>>2(val_1)—>> End of HD

35(val_1)———>>2(val_1)—>> End of HD

40(val_1)———>>1(val_1)—>> End of HD

45(val_1)———>>2(val_1)—>> End of HD

End of VD

In conclusion, flexibility of the local directory structures complies with scalability
of current software solution, which makes protocol applicable to any NoC size.

5.3 Memory Controller

Memory controller, unit which tightly cooperates with LD, operates on the informa-
tions available in LD and takes care of updating the same. As such MC has same the
logic for every node, irrelevant of how many nodes there are in the NoC.

Memory controller is in charge of all actions, requests, issuing invalidation or up-
date messages, etc; which will affect directory content and values of abstract shared
memory. Memory controller unit is the central part of the protocol. It communicates
with network interface, both with ni_send and ni_receive functions. Let me elabo-
rate it in more details. Improving current sending and receiving functions in a way
that communication is available on the message granularity level is part of program-
ming task covered in this thesis. This was done in C++ /SystemC and simulated in
ModelSim. Memory controller is the unit assembling messages, passing it to Network
Interface (NI), that will inject message into an existing traffic. On the other side (re-
ceiving) logic is a bit different. NI will assemble messages out of incoming flits and as
a such atomic units, deliver messages (to be more precise, implementation uses only
pointers) to Memory Controller object for interpreting it and acting correspondingly.

In theory this approach is connected to work of T.Bjerregaard and S. Mahadevan,

42

5 Experimental Work and Results

[BMO06] where flits/phits are identified as mediums that correspond to Link level,
packets that are built out of flits correspond to Network/Session/Transport level,
and as a highest level in Open Systems Interconnection (OSI) layer there is Appli-
cation level, where granularity of medium is represented via messages built out of
packets. In this thesis, main lower level goal is to implement protocol and demon-
strate its correctness, and as such one of assumption was to consider packet always
built out of 3(three) flits (header, body and tail), unless data is transported by pro-
tocol, when there are 4+ flits(header, body, body+ and tail). Also for simplicity
reasons, assumption was made that 1(one) packet represents single message. It is im-
portant to always keeps this fact in mind, but as of future research work, directions
are that this protocol has to support random size of flits constructing packet (header,
n x body, tail), as well as arbitrary number of packets constructing message. This
assumption cannot be restrictive in terms of proving correct behavior of protocol.

It is a priori known and guaranteed, (and here author of the thesis has to give
HUGE credit to previous developers and teams that created XiHNoc platform) that
flits of the same message issued by single router are being delivered in order to
destination router. However, due to complex traffic scenarios, incoming traffic into a
single router may arrive from multiple directions, in general 2 on power of n, where
n is homogeneous NoC x dimension, for any size of NoC under examination. Already
available feature, implemented by previous teams, assigns flit ID that distinguishes
same type of incoming flits. Meaning for example if two header flits arrive one after
another into single router, one can differentiate them by flit ID which clearly states
that header flits come from different direction/different physical routers. What does
it means for protocol? Modified ni_receive function was implemented, in a way that
there exist buffers/containers that will step by step be loaded with flits in correct
incoming order and where messages will be assembled. Complete messages(once tail
flit has arrived) are passed to Memory Controller.

Main memory controller functions are:

e read : Checks if shared memory block is valid locally (read hit), or in case it is
invalidated (read miss), send read request to first valid sharer from horizontal
list directory structure.

e write: Triggers sending of token requests (acknowledgement requests) from all
sharers in case write is allowed (memory block in valid state - see Figure 3.9).
Otherwise, cancels write requests and informs PE.

e interpret received message: The most complex MC method. Decodes
what’s been encoded in first data-body message flit data region - see Figure 5.2,
and acts accordingly. Regarding Figure 5.2, 32 available bits are used to encode
info about protocol message type (P_TYPE), memory block involved in oper-
ation (P_GID) and P_ EXTENSION is left for future protocol improvements.

43

5 Experimental Work and Results

Sizes are configurable in main XiHNoC config file.

Below, simplified pseudo code of the complex MC method is given. Based on
flit count within message and based on decoded protocol types MC will perform
appropriate actions.

void interpret_received_message(message){
if (message.size () <3){

// Within protocol there are no messages with
// less that 3 flits. Signal error

telse if (message.size()==3){

//temprary extract flits
//gets 32 protocol data body flits where protocol is <
encoded into variable tempProtocolData
//see what is encoded into protocol type and act <«
acordingly
// range(protocol type hi, protocol type low) defines what«
type of protocol message is encoded

if (protocol_type_token_request arrived){

//CASE WHERE TOKEN REQUEST ARRIVED
//invalidate its own flag in LD
//send response token back to message sender

}else if (protocol_type_token_response arrived){
/ /CASE WHERE TOKEN RESPONSE ARRIVED

if ((all tokens arrived)({
//perform write
//lock release on specfic GID
//ittereate over HD and send acknowledgements to <«
all sharers

telse{

//wait for more tokens to arrive
// decrease expected token counter

44

5 Experimental Work and Results

}else if (protocol_type_write_success arrived){

//CASE WHERE SOME NODE IS INFORMING OF ITS WRITE SUCCESS+
on CERTAIN GID

//invalidate all sharers flags for same GID in LD
//make sender flag valid for specific GID in LD

}else if (protocol_type_read_request arrived){

//CASE WHERE SOME NODE NEEDS VALID DATA
// starts to send valid memory block of GID to requestor

// header + protocol databody + as many databody flits <
needed for real data + tail

else if(protocol_type_update_am_also_valid arrived
P yp P
//update senders flag in HD for specific GID

}else{
//some other protocol type, for future extension...

}

telsef
// Message with more than 3 flits arrived
// Real application data arrived
// Store data

// Assemble update messages; itterate over HD and inform <«
all sharers

In the code itself, more helper’s functions are noticeable and their purpose is to
supporting above mentioned primary functions or logging desired values to standard

output. In general, main software and hardware architectural view of protocol and
basic interaction is given of Figure 5.1.

45

5 Experimental Work and Results

Figure 5.1: Architectural view

Figure 5.2: Flit formats

46

5 Experimental Work and Results

5.4 Results

As an underlying experimental platform, 2x2 XiNoC with 4 nodes (each node
connected to single router and contains 1 PE, 1 MCs, 1 LD and certain amount
of shared memory) was used, similar as ilustrated on Figure 3.8. The experiments
were conducted based on different equivalence classes of system inputs. As an input,
random number of total shared memory blocks in system memory (5 or 10 or 50
or 100), random overall sharers distribution (2 or 3 or 4) per shared memory block
and random number of actions(read or write operations) to be performed on same
shared Memory Block(sMB) with ID: 102 (in case of two sharers) or 103 (in case
of three sharers) or 104 (in case of four sharers) were selected in each experiment.
Time instances (with 1 ns accuracy in our setup) in which operations were triggered
and above mentioned scenarios are shown in tables Tables 5.1, 5.2 and 5.3. Tables
for 10, 50 and 100 or even more shared memory blocks look same as in case of 5,
since no perations were performed on other sMBs but only one stated in tables.
Simulation is run for 18668 seconds, just to be on safe side, even this number could
go lower. All shared memory blocks in all sharers local memories were valid at the
beginning of simulation 1.

2S 3S 4S8 oP at 2S 3S 4S
Type (ns) |sMB sMB sMB
1D ID ID

I I I W 89 102 103 104

IT IT IT R 300 102 103 104
I ITI ITI R 305 102 103 104
IT IT IT W 315 102 103 104
IT IT IV R 325 102 103 104

I I R 344 102 103 104
I I1I vV W 556 102 103 104
IT IT IT R 590 102 103 104
I I I W 600 102 103 104

A

IT IT IT 740 102 103 104

Table 5.1: Experimental setup in case of 5 sMB; 5 READ and 5 WRITE operations,
with operations start times in case of 2 Sharers (2S) or Three Sharers (3S)
or Four Sharers (4S)

!Table 5.1 should be observed as actually 3 seperate tables, case with 2S (disregard all collumns
with 3S and 4S), case with 3S (disregard all collumns with 2S and 4S) and case with 4S (disregard
all collumns with 2S and 3S). Same applies for Tables 5.2 and 5.3

47

5 Experimental Work and Results

2S 3S 4S8 oP at 2S 3S 4S
Type (ns) |sMB sMB sMB
ID ID 1D
I I I W 89 102 103 104
II II IT R 300 102 103 104
I 111 111 R 305 102 103 104
II II 1Y W 315 102 103 104
II 111 11 R 325 102 103 104
I IT R 344 102 103 104
I I I W 556 102 103 104
II II 111 R 590 102 103 104
I 111 111 W 600 102 103 104
II II IT W 740 102 103 104
I I 1Y W 889 102 103 104
II II II R 900 102 103 104
I I I R 950 102 103 104
II 111 111 W 1100 | 102 103 104
II II IT R 1120 | 102 103 104
I R 1130 | 102 103 104
1Y W 1201 | 102 103 104
II II 11 R 1204 | 102 103 104
II IT I W 1299 | 102 103 104
I 111 111 W 1390 | 102 103 104

Table 5.2: Experimental setup in case of 5 sMB; 10 READ and 10 WRITE operations,
with operations start times in case of 2 Sharers (2S) or Three Sharers (3S)
or Four Sharers (4S)

48

5 Experimental Work and Results

2S 3S 4S OoP at 2S5 3S 4S
Type (ns) |sMB sMB sMB
1D ID 1D

I I I W 89 102 103 104

IT IT IT 300 102 103 104

I I11 II1 305 102 103 104

IT II v 315 102 103 104

IT I1I I1I 325 102 103 104

I I 344 102 103 104

ITI IV 556 102 103 104
IT IT IT 290 102 103 104
I I I 600 102 103 104
IT II1 II1 740 102 103 104
I I I 889 102 103 104
IT IT IV 900 102 103 104
I ITI ITI 950 102 103 104

IT IT IT 1100 | 102 103 104

IT IT IT 1120 | 102 103 104

III IV 1130 | 102 103 104

1201 | 102 103 104

IT IT IT 1204 | 102 103 104

IT I1I III 1299 | 102 103 104

I I 1390 | 102 103 104
ITI IV 1489 | 102 103 104
IT IT IT 1500 | 102 103 104
I II1 IIT 1503 | 102 103 104

IT IT vV 1540 | 102 103 104

IT IT IT 1550 | 102 103 104

I1I III 1560 | 102 103 104
I I 1600 | 102 103 104
IT IT IV 1610 | 102 103 104
I III III 1670 | 102 103 104
IT IT IT 1740 | 102 103 104
I I I 1889 | 102 103 104
IT I1I 1Y% 1900 | 102 103 104
I I I 1950 | 102 103 104
IT IT IT 2100 | 102 103 104
III III 2120 | 102 103 104
I I 2130 | 102 103 104
I I vV 2201 | 102 103 104

II III III 2204 | 102 103 104

IT IT IT 2299 | 102 103 104

=l = = = | =] = = =] = =) = 2| 2| | m| = F| w2 =) =] B 2| 2| m =) 9w =) = =] | =) w9 E| = 9] @

2390 | 102 103 104

49

5 Experimental Work and Results

I III IV W 2889 | 102 103 104
IT IT IT R 2900 | 102 103 104
I I1I III R 2950 | 102 103 104
IT IT IT W 3100 | 102 103 104
IT IT IV R 3120 | 102 103 104

ITI III R 3130 | 102 103 104

I I W 3201 | 102 103 104
IT IT IT R 3204 | 102 103 104
IT I1I v W 3299 | 102 103 104

I W 3390 | 102 103 104

I W 4089 | 102 103 104
IT ITI IT R 4300 | 102 103 104
I I IV R 4305 | 102 103 104
IT IT IT W 4315 | 102 103 104
IT II1 II1 R 4325 | 102 103 104

I I R 4344 | 102 103 104

I IV W 4556 | 102 103 104
IT ITI ITI R 4590 | 102 103 104
I I I W 4600 | 102 103 104
IT II IT W 4740 | 102 103 104
I III III W 4889 | 102 103 104
IT IT IV R 4900 | 102 103 104
I I I R 4950 | 102 103 104
IT I1I I1I W 5100 | 102 103 104
IT IT IV R 5120 | 102 103 104

I I R 5130 | 102 103 104

II IT W 5201 | 102 103 104
IT IT IT R 5204 | 102 103 104
II I1 IT W 5299 | 102 103 104

I1I vV W 5390 | 102 103 104

I I W 5489 | 102 103 104
IT IT IT R 5500 | 102 103 104
I III III R 5503 | 102 103 104
IT IT II W 5540 | 102 103 104
IT IT IV R 5550 | 102 103 104

I1I I1I R 5560 | 102 103 104

I I W 5600 | 102 103 104
IT IT IT R 5610 | 102 103 104
I ITI III A 5607 | 102 103 104
IT II IV W o740 | 102 103 104

50

5 Experimental Work and Results

IT IT IT
IT ITI IV
I I I

7204 | 102 103 104
7299 | 102 103 104
7390 | 102 103 104

I I I W 5889 | 102 103 104
IT II1 II1 R 5900 | 102 103 104
I I I R 344 9950 103 104
IT I1I IT W 6100 | 102 103 104
IT IT IV R 6120 | 102 103 104
I I R 6130 | 102 103 104
III III W 6201 | 102 103 104
IT IT IV R 6204 | 102 103 104
IT IT IT W 6299 | 102 103 104
I1I I1I W 6390 | 102 103 104
I I W 6889 | 102 103 104
IT IT IV R 6900 | 102 103 104
I III III R 6950 | 102 103 104
IT IT IT W 7100 | 102 103 104
IT IT IT R 1120 | 102 103 104
I1I v R 7130 | 102 103 104
I I W 7201 | 102 103 104

R

A

W

Table 5.3: Experimental setup in case of 5 sMB; 50 READ and 50 WRITE operations,
with operations start times in case of 2 Sharers (2S) or Three Sharers (3S)
or Four Sharers (4S)

Observations after experiments:

e (leneral: Protocol takes more time to complete all actions as number of opera-
tions increases. As number of sharers grows for specific shared memory block,
it is more expensive to complete all coherency actions. Same experiments were
conducted in NoC with 20, 50, and 100 shared memory blocks and it is clear
that overall number of shared memory blocks in NoC does not have an impact
on protocol efficiency. Why there is significant number of canceled operations?
Explanation consists of two facts. First, if same node, via its MC, attempts to
WRITE on shared memory location in specific time interval, when exact same
operation (same node, same operation type and same shared memory location)
was already triggered before and still not have been completed, protocol will
cancel such an attempt. According to Table 5.4 it is clear that in experimental
setup there exist certain number of described cancelation. Second fact refers to
READ request cancelations on such shared memory locations that have ongoing
WRITE operation already started and still not completed, either localy or in

o1

5 Experimental Work and Results

Number| Total Total Number| Number] Number, Number| Last
of num- num- of com- | of can- | of com- | of can- | mes-
Shar- ber of | ber of | pleted | celed pleted | celed sage
ers READs| WRITEs READs | READs | WRITEs WRITESs arrived
@ ns
5 5 5 0 3 2 823
2 10 10 9 1 5 5 1391
50 50 31 19 22 28 7391
5 5 5 0 2 3 871
3 10 10 10 0 4 6 1391
50 50 42 8 19 31 7391
5 5 5 0 2 3 883
4 10 10 10 0 3 7 1455
50 50 39 11 18 32 7391

Table 5.4: Experimental results for coherency protocol based on setup; 5 Memory

Blocks in NoC (100, 101, 102, 103 and 104 where no operations have been
performed on sMB 100 and 101)

some distant nodes. Let us elaborate those facts on example from Table 5.1,
case of two sharers (2S). For easier understanding of same table, let us diregard
all collumns with cases of 3S or 4S. Therefore, 10 opetarions in total, 5 of type
READ and 5 of type WRITE in predefined time instances, were triggered by
nodes on memory block block that has two sharers, marked as I and II. In ex-
periments results table 5.4, first subrow after the table headings text, it is stated
that there were 5 successful READs, 0 unsuccessful, 3 completed WRITEs and
2 canceled WRITEs. Protocol canceled WRITE on sMB with ID 102 by node
IT at 315 ns, because of reason that his copy was invalid, and invalidation came
because node I performed WRITE operation on same SMB starting at 89 ns.
Second cancelation is for case of node I attempting to WRITE on sMB 102 at
600ns. This is due to fact that same node started exactly the same operation
on same SMB just 44ns ago, and this request was still not completed, therefore
protocol cancelled it. In this particular scenario, there were not any READs
cancelations, but in general they exist in other scenarios, due to above mention
reasons.

Advantages: Concept of dynamic local directory structures is fully scalable
and can adapt to any size of sharers and any size of shared memory blocks in
NoC. Communication between NI and MC and vice versa is as expected and as
described in conceptual protocol idea.

Disadvantages: If two or more sharers start to write to same memory block

52

5 Experimental Work and Results

location in approximately same time, this will cause inability of protocol to
complete above specified write actions. Each sharer will ask for acknowledge-
ment tokens from others, and will not give away its own to rest of sharers.
This will lead to deadlock situation and current implementation of protocol is
unable to handle such a scenarios. However, solution to this problem has been
analyzed and presented within earlier section where node’s priority notation
was introduced. Also, many cancelations due to too soon start of exactly the
same operation by same nodes on same sMB cannot be classified as protocol
disadvantages, but more likely as too time dense experimental sutup selection.

Conclusion: All assumptions mentioned during the thesis, created general play-
ground where this protocol behaves as correct. Having in mind complexity of
SoC system with NoC with communication backbone, size of this playground
is rather small at the moment, and going into direction of enlarging its size is
now possible, since the foundations have been established.

53

6 Future research directions

The three key fields where optimization or new ideas are needed are identified, having
scalability constraint always in mind :

e coherence protocol,

e dynamic directory based coherence schema’s,

e compatibility with underlying NoC structure and its behavior.
Innovative Ideas:

a) Idea (immediate multi-cast) of calculating shares probabilities (in the same time
frame [same task graph cycle]) of need to fetch the same data from distant node can
save us some communication cost.

b) Flexible, dynamic (in terms of size, not homogeneous) hierarchical clusters, to
reflect non uniform work distribution over the NoC is one potential idea for possible
contribution. This would reflect implementation of local directory structures present
in our protocol, and would have great positive effect in large scale NoC networks.
Here, one needs to think in terms and based on what input designer of hierarchical
directory based protocol needs to propose solution for optimal directory structure? In
essence, one should be aware of several factors. As one of important influencer turns
out to be the way of how applications are being mapped on MPSoC. Typically, since
heterogeneous platform is assumed, distribution of work load on NoC nodes is not
equal (symmetric) and this can be as well, one of determining factors of optimal direc-
tory structure and size. In my opinion, it is evident that size of optimal hierarchical
solution will not be fixed, but rather should be reconfigurable (resize-able) in such a
way that can adopt to different (non-balanced work load) mapped applications.

Also, future work may include:

e Testing and optimization of coherency protocol on bigger size NoCs (up until
10x10)

e 3D integration brainstorming

54

Bibliography

[BDK™05]

[BMOG]

[CAS*10]

[Dre07]
|Gha95]

[hip]

[LB10]

[LC09)

[MJOS]

[mos|

S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and
J. Rattner. Platform 2015: Intel processor and platform evolution for
the next decade. Technology, 2005.

T. Bjerregaard and S. Mahadevan. A survey of research and practices of
network-on-chip. ACM Computing Surveys (CSUR), 38(1):1, 2006.

B. Candaele, S. Aguirre, M. Sarlotte, I. Anagnostopoulos, S. Xydis,
A. Bartzas, D. Bekiaris, D. Soudris, Zhonghai Lu, Xiaowen Chen,
J. Chabloz, A. Hemani, A. Jantsch, G. Vanmeerbeeck, J. Kreku, K. Tien-
syrja, F. leromnimon, D. Kritharidis, A. Wiefrink, B. Vanthournout, and
P. Martin. Mapping optimisation for scalable multi-core architecture:
The mosart approach. In VLSI (ISVLSI), 2010 IEEE Computer Society
Annual Symposium on, pages 518 —523, july 2010.

U. Drepper. What every programmer should know about memory. 2007.

Kourosh Gharachorloo. Memory Consistency Models for Shared-Memory
Multiprocessors. PhD thesis, Stanford University, 1995.

European network of excellence on high performance and embedded ar-
chitecture and compilation. http://www.hipeac.net. Accessed: Dec 27th,
2011.

I. Loi and L. Benini. An efficient distributed memory interface for many-
core platform with 3d stacked dram. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, pages 99 —104, march 2010.

S.P. Levitan and D.M. Chiarulli. Massively parallel processing: Its deja
vu all over again. In Design Automation Conference, 2009. DAC ’09.
46th ACM/IEEE, pages 534 —538, july 2009.

C.H. Meenderinck and B.H.H. Juurlink. (when) will cmps hit the power
wall? In Proceedings of the Euro-Par 2008 Workshops (HPPC), August
2008.

Mapping otimization for scalable multi-core architecture. www.mosart-
project.org. Accessed: Dec 27th, 2011.

%)

Bibliography

[Ora]

[PGGO6]

[Sam10]
[Sem07]
[ST11
[Sto93]

[WLWTO9]

Oracle. The java tutorials. http://docs.oracle.com/javase/tutorial/. Ac-
cessed: Dec 27th, 2011.

F. Petrot, A. Greiner, and P. Gomez. On cache coherency and memory
consistency issues in noc based shared memory multiprocessor soc archi-
tectures. In Digital System Design: Architectures, Methods and Tools,
2006. DSD 2006. 9th EUROMICRO Conference on, pages 53 —60, 2006.

F.A. Samman. Microarchitecture and Implementation of Networks on
Chip with a Flexible Concept for Communication Media Sharing. PhD
thesis, TU Darmstadt, 2010.

International technology roadmap for semiconductors, 2007.

Dimitrios Soudris and Axel Jantsch, editors. Scalable Multi-core Archi-
tectures: Design Methodologies and Tools. Springer, 2012 edition, 2011.

Harold Stone. High-Performance Computer Architecture. Addison-
Wesley, MA, 1993.

AY. Weldezion, Zhonghai Lu, R. Weerasekera, and H. Tenhunen. 3-
d memory organization and performance analysis for multi-processor
network-on-chip architecture. In 3D System Integration, 2009. 3DIC
2009. IEEE International Conference on, pages 1 —7, sept. 2009.

56

57

A Activity diagram of MESI protocol in bus systems

A Activity diagram of MESI
protocol in bus systems

58

1Source: Wikipedia. Accessed: Dec 27th, 2011

	Used Abbreviations
	Motivation
	Multi core to Many core era transition
	Communication and power issues
	Network-on-chip paradigm
	Research in the Field of High-Performance Computing

	Introduction and background
	Memory Hierarchy
	Memory organization in NoC based 2D MPSoCs
	Memory organization in NoC based 3D MPSoCs

	Coherency
	Cache coherency in bus based architectures
	Coherency in NoC based systems
	MESI protocol - general idea

	Memory consistency

	Concept of assuring memory and data consistency
	Vision
	Architecture and Example of assumed application data mapping
	Logic

	Scenario 1. READ operation, two sharers
	Scenario 2. READ operation, four sharers
	Scenario 3. WRITE operation, four sharers
	Scenario 4. WRITE operation, n sharers, Invalid state
	Introducing node's priority levels

	Concept Summary

	Protocol initialization phase and Data Structures
	Experimental Work and Results
	Environment
	Available interface and situation in the beginning of thesis from programmer's perspective
	How protocol works from programmers' perspective?

	Notion of Shared memory
	Directory Structure
	Memory Controller
	Results

	Future research directions
	Bibliography
	 Activity diagram of MESI protocol in bus systems

