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1. INTRODUCTION 
Many Greek physicians believed that the human soul is located in the thymus, 
the latter being the basis of one’s existence. In the context of immune system, 
the thymus is indispensable, as defects in thymus lead to severe malfunctions of 
the whole body. One of the key factors needed in normal thymus function, and 
in the development of central tolerance, is the autoimmune regulator (AIRE), 
which is conserved from cartilaginous fish to all jawed vertebrates. The best 
known function of AIRE is the regulation of the tissue-specific autoantigen 
(TSA) expression in thymus. These TSAs are presented to T-cell progenitors 
and needed to negatively select the autoreactive ones.  

Mutations in AIRE directly cause a severe autoimmune disease – auto-
immune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED). 
Besides having severe dysfunctions of many endocrine organs, the patients 
show a unique pattern of autoantibodies. The ones specific to type I IFNs and 
Th17 related cytokines are shared with thymus tumor patients, who often also 
lack AIRE expression in their tumors. The mechanism leading to the develop-
ment of these cytokine-specific autoantibodies has remained unexplained, as 
AIRE is not directly linked to type I interferons (IFNs) and Th17 related cyto-
kine production.  

In the current thesis, we focus on studying APECED and its mouse model’s 
autoantibody profile, their dynamics, function/significance in vivo, and the 
characterization of the patients’ specific immunogenic epitopes of the cyto-
kines. Additionally, we describe thymoma patients with similar autoantibodies 
as APECED, and study the tissue-restricted antigen expression in their thymi as 
a potential model, in order to better understand the processes taking place in 
APECED thymus.  
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2. REVIEW OF THE LITERATURE  
2.1. AIRE 

The autoimmune regulator gene was cloned almost 20 years ago (Nagamine et 
al. 1997, Finnish-GermanAPECEDConsortium 1997), whereas the syndrome 
APECED (Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystro-
phy) caused by mutations in the former, was characterized already in the 1980s 
(Ahonen 1985). AIRE gene is located in the long arm of the 21st chromosome 
(21q22.3). It is 13kb long, has 15 exons, and bears a 71% similarity with the 
respective mouse gene (Mittaz et al. 1999, Nagamine et al. 1997, Finnish-
GermanAPECEDConsortium 1997). AIRE is mainly expressed in medullary 
thymic epithelial cells (mTECs), and localizes in nuclear dots or diffusely, alt-
hough in some cases, cytoplasmic accumulation has also been noted (Björses et 
al. 1999). 
 
 

2.1.1. AIRE protein 

AIRE protein consists of four main domains and bears resemblance to transcrip-
tional regulator (Figure 1). At N-terminus, the protein has CARD (caspase 
recruitment domain)/ HSR (homogeneously stained region), which is needed to 
oligomerize and interact with the DNA (Maslovskaja et al. 2015, Ferguson et al. 
2008). AIRE protein oligomerization is important to increase the overall avidity 
towards histone 3 lysine 4 (H3K4) (Kumar et al. 2001, Koh et al. 2008). The 
CARD domain is followed by nuclear localization signal (NLS) region. The 
only active NLS in 113-114 amino acids that is needed for functional inter-
action with nuclear pore transport receptors and for effective translocation of 
AIRE (Saltis et al. 2008, Ilmarinen et al. 2006). Although the SAND (Sp100, 
AIRE, NucP41/75, DEAF-1) domain has lost the traditional DNA-binding 
motif, the β-pleated sheet enables protein-protein interactions with repressive 
complex of transcription (Gibson et al. 1998, Waterfield et al. 2014).  

In the C-terminal part of the protein lie two plant homeodomain fingers 
(PHD), separated by a proline rich region (PRR) (Saltis et al. 2008). PHD1 
domain is negatively charged and necessary for the interaction with the 
hypomethylated H3K4, and may recruit other protein complexes to chromatin 
structures (Org et al. 2008, Gaetani et al. 2012). In contrast, the PHD2 has a 
positive electrostatic surface that, in theory, could allow direct interactions with 
DNA. In both PHD domains, zinc ions are essential for the proper confor-
mation, and are also indispensable for subcellular localization and AIRE 
transcriptional activity (Gaetani et al. 2012, Perniola and Musco 2014). In addi-
tion, AIRE comprises four LXXXLL motifs, which may influence transcription, 
as they interact with nuclear receptors (Savkur and Burris 2004).  
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Figure 1. AIRE protein structural domains and the most common mutations. Mutations 
in circles are autosomal dominant. CARD (caspase-recruitment domain); NLS (nuclear 
localization signal), SAND (SP100, AIRE1, NucP41/P75, and DEAF1 domain); PHD 
(plant homeodomain), PRR-(proline rich region). 

 
 

AIRE is indispensable for the regulation of the TSA expression, the medullary 
thymic epithelial cells (mTEC) maturation and differentiation (Nishikawa et al. 
2014, Wang et al. 2012, Yano et al. 2008, Matsumoto 2011). AIRE expression 
is present in fetus before gastrulation (Nishikawa et al. 2010), and is needed for 
the maintenance of self-renewal and proliferation in embryonic stem cells (Gu 
et al. 2010). AIRE mRNA is found in lymph nodes, testes, ovary, keratinocytes, 
spleen and fetal liver (Anderson et al. 2002, Halonen et al. 2001, Schaller et al. 
2008, Heino et al. 1999, Heino et al. 2000, Poliani et al. 2010, Hobbs et al. 
2015).  

Interestingly, a certain population of thymic B cells, as well as the peripheral 
lymph node dendritic cell-like population (MHCIIhi, CD45lo, EpCAMhi, 
CD11clo, CD80lo, CD86lo), can acquire AIRE expression. AIRE expression in 
these populations is several times lower than in the thymus, and the upregulated 
TSA repertoire is also different, but is necessary for tolerance induction in spe-
cific CD4+ T cells (Yamano et al. 2015a, Gardner et al. 2008, Gardner et al. 
2013, Poliani et al. 2010, Yamano, Steinert and Klein 2015b). 

For AIRE expression, its promoter has a functional TATA box, a GC box 
and inverted CCAAT, plus several transcription factor binding sites (e.g. Ets-
family proteins, activator protein-1) (Murumägi, Vahamurto and Peterson 2003, 
Murumägi, Silvennoinen and Peterson 2006). The timing of AIRE expression is 
controlled through discrete time points and dependent on the differentiation of 
mTECs (Metzger et al. 2013). During mTEC differentiation, AIRE promoter 
region H3K4 is fully methylated, and the proximal CpG island is hypomethyl-
ated (Org et al. 2009, Kont et al. 2011, Murumägi et al. 2003, Murumägi et al. 
2006). AIRE expression in the thymus and lymph nodes is also regulated by a 
conserved noncoding sequence that has two functional NF-κB-sites (LaFlam et 
al. 2015, Haljasorg et al. 2015). It has been shown that tumor necrosis factor 
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(TNF) superfamily members contribute to creating functional thymic environ-
ment, whereas the RANK-RANKL signaling directly mediates the upregulation 
of AIRE and its dependent genes (Khan et al. 2014, Bichele et al. 2016, 
Akiyama et al. 2005, Akiyama et al. 2008). AIRE mRNA splicing is important 
to obtain functional protein, which is controlled by dioxygenase JMJD6 
(Yanagihara et al. 2015). 

 
 

2.1.2. AIRE function in immune tolerance 

AIRE is best characterized as being the key figure controlling the promiscuous 
tissue-specific antigens’ expression in mTECs and presenting them to maturing 
thymocytes. A single mTEC is able to express ~4000 genes, which are pre-
sented directly or via dendritic cells (DC) to maturing T cells. This is necessary 
for the negative selection of autoreactive T cells (Anderson et al. 2002, Liston et 
al. 2003, Sansom et al. 2014, Derbinski et al. 2005). AIRE+ mTECs upregulate 
the different chemokines needed for thymocyte migration and for the accumula-
tion of the thymic dendritic cells that are indispensable for regulatory T cells 
(Treg) induction (Laan et al. 2009, Lei et al. 2011). In addition, the absence of 
AIRE disturbs the correct differentiation of Tregs – leading to a situation where 
the conventional T cell pool includes T cell receptors (TCRs) that would be 
regulatory T cells (Malchow et al. 2016, Malchow et al. 2013, Pomié et al. 2011). 

The exact mechanism whereby AIRE controls the TSA expression in 
mTECs is largely unknown, but can be deduced by studying the interacting 
partners (Abramson et al. 2010). Despite having some features of a transcription 
factor, activation through AIRE is non-traditional, meaning it does not bind to 
the specific DNA motif in promoter, intron or polyadenylation sequences 
(Maslovskaja et al. 2015, Mathis and Benoist 2009). AIRE seems to bind 
transcriptional start sites of many genes and to interact with stalled RNA poly-
merase II (Giraud et al. 2012). However, only transcriptionally inactive genes 
(carrying unmethylated H3K4) are able to stabilize AIRE on chromatin and 
recruit AIRE interacting partners, e.g. DNA topoisomerase 2-alpha, which leads 
to DNA double strand breaks and recruits DNA repair proteins (most 
importantly DNA-dependent protein kinase), and leads to chromatin opening 
and to transcription elongation with the help of bromodomain-containing pro-
tein 4, factor P-TEFb and coactivator CBP binding (Abramson et al. 2010, Liiv 
et al. 2008, Zumer et al. 2012, Abramson and Goldfarb 2016, Chuprin et al. 
2015, Oven et al. 2007, Yoshida et al. 2015). Recently, deacetylase Sirtuin-1 
was found to be an activator of AIRE transcriptional activity (Chuprin et al. 
2015). In addition, AIRE binds to methylated CpG dinucleotides of inactive 
genes through interaction with repressive MBD1-ATF7ip complex, and leads to 
TSA expression (Waterfield et al. 2014). It should be noted that AIRE is prob-
ably not solely responsible for TSA expression in mTECs. This is supported by 
the newly described transcription factor Fez that regulates TSAs directly and 
independently from AIRE (Takaba et al. 2015). 
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AIRE has been shown to interact with the nuclear matrix and has been sug-
gested to influence the chromatin looping, and to bring together transcriptional 
machinery and enhancer regions (Johnnidis et al. 2005, Razin, Iarovaia and 
Vassetzky 2014). Furthermore, AIRE associates with splicing factors and RNA 
helicases needed to process pre-mRNA (Abramson et al. 2010, Giraud et al. 
2014). At the same time, cells expressing AIRE are more prone to apoptosis, 
which could be an additional mechanism to amplify TSAs presentation via DC. 
It is plausible that apoptosis may result from intensive TSA expression, but 
post-AIRE cells have also been described by many groups (Colome et al. 2010, 
Liiv et al. 2012, Matsumoto 2011, Wang et al. 2012, Metzger et al. 2013). 

 
 

2.2. APECED 

As AIRE gene is indispensable in controlling the induction of central tolerance, 
mutations affecting the function of AIRE protein cause rare, mostly recessive 
autoimmune disease APECED (Nagamine et al. 1997, Finnish-German-
APECEDConsortium 1997). Chronic mucocutaneous candidiasis, hypopara-
thyroidism and adrenal failure are the three classic APECED components 
(Husebye et al. 2009). According to the Human Gene Mutation Database, over 
100 different mutations have been found in AIRE gene with the prevalence of 
1:100,000 [HGMD® Professional 2016.1;(Kahaly 2009)]. However, human 
populations that have undergone founder effects and/or geographic isolation, 
carry preferably the disease causing mutations [e.g. Finns 1:25,000 (R257X); 
Iranian Jews 1:9,000 (Y85C), Sardinian 1:14,400 (R139X)], although preva-
lence is also higher in Norway [1:80,000 (967–979del13bp)] and Slovenia 
[1:43,000 (R257X)] (Peterson and Peltonen 2005, Podkrajsek et al. 2005, 
Myhre et al. 2001, Zlotogora and Shapiro 1992, Rosatelli et al. 1998).  

AIRE gene mutations are mostly recessive, emerge throughout the protein, 
although concentrating more in functional domains (Fig. 1) and result in the 
interference in correct nuclear localization and full transcriptional activity 
(Björses et al. 2000). Most common mutations are 13 base-pair deletion (967–
979del13bp) in 8 exon and R257X in exon 6: responsible for truncated protein, 
and exhibiting correlation with chronic Candida infection (Wolff et al. 2007, 
Björses et al. 2000). The autosomal dominant mutations that have been found 
tend to locate in the SAND and PHD1 domains (Fig. 1), interact and disturb the 
function of AIRE (Oftedal et al. 2015, Su et al. 2008). Mutations outside the 
protein domains have been reported, including complete deletion, insertions, 
splicing sites (Podkrajsek et al. 2008, Cihakova et al. 2001, Mora et al. 2014, 
Bruserud et al. 2016b). Also, changes in AIRE gene regulatory regions could 
alter the AIRE transcription (Lovewell et al. 2015, LaFlam et al. 2015, 
Haljasorg et al. 2015). 

The prevalence of dominant mutations seems to be higher than previously 
thought. These are present also in mixed populations and patients with these 
mutations demonstrate non-classical and milder APECED symptoms (Oftedal et 



16 

al. 2015, Bruserud et al. 2016b). The best known phenotype is glycine change to 
tryptophan in SAND domain (at the position of 228) with pronounced tendency 
to hypothyroidism (Cetani et al. 2001, Su et al. 2008, Oftedal et al. 2015). 
Interestingly, among recessive mutations, there is no good genotype-phenotype 
correlation aside of Candida infection, which is 100% present in patients with 
the mutations R257X and R139X, rare in patients with Y85C and 967–
979del13bp (Kisand et al. 2010, Kisand et al. 2011, Björses et al. 2000). 
Instead, some haplotypes of human leucocyte antigen (HLA) show correlation 
with clinical manifestations [e.g. Addison’s disease (HLA-DRB1*03); alopecia 
(HLA-DRB1*04- DQB1*0302)] (Halonen et al. 2002).  

Interestingly, a study in Norwegian population showed that HLA class II 
haplotypes that are otherwise protective or rare in known diseases [Addison 
disease (AD), type 1 diabetes (T1D)] have no protective effect in the case of 
AIRE deficiency (Bruserud et al. 2016a). 

 
 
2.2.1. Organ-specific autoantibodies and clinical manifestations 

APECED clinical picture and disease progression is quite variable between 
patients, even with the same mutation and between close relatives. The emer-
gence of first symptoms can take up to 18 years, although it mostly starts in the 
first months/years of life with the chronic mucocutaneous candidiasis that is 
followed by parathyroid and adrenocortical failures (Perheentupa 2006, Ahonen 
et al. 1990). APECED patients usually have three to five medical conditions 
over lifetime; however, diagnosis is made if at least two of the above-mentioned 
symptoms are present. In addition, type I IFN-specific autoantibodies and 
sequencing of AIRE gene also contribute to final diagnosis (Meloni et al. 2008, 
Perheentupa 2006, Husebye et al. 2009). 

Only two thirds of patients develop the classic APECED triad; others may 
display for many years the more rare symptoms (e.g. autoimmune hepatitis, 
vitiligo, alopecia, rash, keratoconjunctivitis, periodical fevers, gastrointestinal 
dysfunction), which may hinder diagnosis (Perheentupa 2006, Kisand and 
Peterson 2015, Ahonen et al. 1990). This is especially seen in USA populations, 
who are genetically more diverse (e.g. compound heterozygosity) (Ferre et al. 
2016). Developing autoimmune failures is sometimes correlated with high-titer 
organ-specific autoantibodies (Table 1).  
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Table 1. Organ-specific autoantigens and the associated autoimmune disease in 
APECED patients. Modified from (Kisand and Peterson 2015, Landegren et al. 2015, 
Landegren et al. 2016).  

Autoantibody targets % Associated with Expressed in 

steroid 21-hydroxylase 
(CYP21A2) 

55–69 AD adrenal, IC 

steroid 17-α-hydroxylase 
(CYP17A1) 

24–58 AD, OF adrenal, IC 

side chain cleavage enzyme 
(CYP11A1) 

38–68 OF 
adrenal, ovary, testis, 
IC 

NACHT leucine-rich-repeat 
protein 5 (NALP5) 

32–49 HP 
ovary, parathyroid, 
breast, testis, IC 

calcium-sensing receptor 
(CaSR) 

86 HP 
parathyroid, pancreas, 
kidney, IC, M 

thyroglobulin (TG) 15–21 HT thyroid, IC, EC 

thyroid peroxidase (TPO) 15–36 HT thyroid, IC, EC 

islet antigen-2 (IA-2) 7 T1D pancreas, IC, M 

glutamic acid decarboxylase 
(GAD65) 

27–42 T1D pancreas, brain, IC, M 

testis-specific gene 10 pro-
tein (TSGA10) 

8   testis, brain, IC 

transglutaminase 4 (TGM4) 52–78 prostatitis prostate, IC, EC 

protein disulfide isomerase-
like testis expressed (PDILT) 

30 
gonadal 
insufficiency? 

gonadal germ cells, IC 

melanoma antigen family B 2 
(MAGEB2) 

34 
gonadal 
insufficiency? 

gonadal germ cells, IC 

tudor domain containing 
protein 6 (TDRD6) 

49   testis, brain, IC, M 

intrinsic factor ( IF) 15–30 PA stomach, IC, M, EC 

aromatic L-amino acid 
decarboxylase (AADC) 

39–68 AIH, VIT 
kidney, intestine, brain, 
liver, pancreas, IC, EC 

cytochrome P450 1A2 
(CYP1A2) 

6–8 AIH liver, IC 

Cytochrome P450 Family 2 
Subfamily A Member 6 
(CYP2A6) 

 
AIH liver, IC 

tryptophan hydroxylase 1 
(TPH1) 

28–61 GID, AIH multiple, IC 
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Autoantibody targets % Associated with Expressed in 

histidine decarboxylase 
(HDC) 

37 GID 
brain, stomach, lung, 
IC 

tyrosine hydroxylase (TH) 44–50 AL, ED brain, adrenal, IC, M 

SOX9/SOX10 15–22 VIT 
nervous system, breast, 
IC 

potassium channel-regulating 
protein (KCNRG) 

6 ILD lung, cervix, IC 

bactericidal/permeability-
increasing fold-containing B1 
(BPIFB1) 

10 ILD 
lung, stomach, 
esophagus, cervix, EC 

Defensin, alpha 5 (DEFA5) 27 GID Paneth cells, IC, EC 

AD: Addison’s disease, AIH: autoimmune hepatitis, AL: alopecia, CMC: chronic mucocutaneous candidiasis, 
EC: extracellular, ED: enamel dysplasia, GID: gastro-intestinal dysfunction, HP: hypoparathyroidism, HT: 
hypothyroidism, IC: intracellular, ILD: interstitial lung disease, M: plasma membrane, OF: ovarian failure, 
PA: pernicious anemia, T1D: type 1 diabetes, TIN: tubulo-interstitial nephritis, VIT: vitiligo 

 
 

As AIRE is involved in the mechanisms of self-tolerance and APECED patients 
develop a wide number of autoimmune diseases, one would expect that 
APECED patients are prone to a large variety of autoimmune diseases. Interest-
ingly, mainly endocrine organs are affected: e.g. parathyroid (77–96 %), adrenal 
cortex (63–92%), ovary (60%), pancreatic islets (up to 30%) (Perheentupa 
2006, Wolff et al. 2007, Meloni et al. 2012, Kisand and Peterson 2015). 

In addition, APECED patients share some organ-specific autoantibodies with 
other known autoimmune diseases: e.g. anti-CYP21A2 with AD and APS-2; 
anti-GAD65 with T1D. At the same time, they develop also quite unique pattern 
of organ-specific autoantibodies – many of those target hormone-/neurotrans-
mitter- synthesizing enzymes, which are in vivo protected by their intracellular 
location (Table 1) (Peterson and Peltonen 2005, Kluger, Krohn and Ranki 2013, 
Kisand and Peterson 2015, Ahonen et al. 1990). 

 
 

2.2.2. Cytokine-specific autoantibodies 

One of the most peculiar features of APECED patients are high-titer cytokine-
specific autoantibodies, as AIRE is not directly regulating cytokine gene expres-
sion in mTECs. Autoantibodies against type I IFN are used as diagnostic 
markers, because they are so prevalent and present before any clinical symp-
toms (Meloni et al. 2008, Meager et al. 2006, Toth et al. 2010). APECED 
patients’ sera recognize and neutralize IFN-ω (100%) and IFN-α (95%), and 
IFN-β (22%) and IFN-λ (14%). Although the autoantibodies inhibit the biologi-
cal function of interferons in vitro and downregulate IFN-dependent genes, the 
susceptibility towards viral infections is not increased (except for very rare 
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cases of viral encephalitis) and IFN-producing dendritic cell numbers are 
unaffected. This is probably because IFNs affect cells locally and other inter-
feron types may compensate (Meager et al. 2006, Kisand et al. 2008, Kisand et 
al. 2011). 

The other group of cytokines targeted in APECED is the one produced by 
Th17 cells – interleukin (IL)-22 (91%), IL-17F (75%) and IL-17A (41%) (Puel 
et al. 2010, Kisand et al. 2010). Interestingly, IL-22 and IL-17F antibodies 
correlate with Candida infection (Kisand et al. 2010). In addition, stimulated 
peripheral mononuclear cells (PBMCs), steady-state and skin memory CD4+ T 
cells of autoantibody positive APECED patients’ show decreased IL-22 produc-
tion (Laakso et al. 2014, Ahlgren et al. 2011, Kisand et al. 2010). While the 
amount of IL-17F and IL-22 producing PBMCs in APECED patients is 
reduced, the IL-17A expression can even be increased, indicating that the 
immune response is more towards IL-22 producing cells and pathways (Kisand 
et al. 2010, Ahlgren et al. 2011).  

The mechanism by which cytokine-specific autoantibodies are provoked in 
AIRE deficiency is unknown. Both type I IFN and Th17 specific autoantibodies 
are seen in patients with thymic epithelial tumors that are known to have tertiary 
lymphoid organ-like formation in thymus, containing plasma cells producing 
autoantibodies against IFN-α and IL-12 (Shiono et al. 2003, Kisand et al. 2010). 
So it is plausible that, if AIRE is not expressed in mTECs, the microenviron-
ments of thymus will change and possibly initiate active autoimmunization 
against these cytokines (Kisand et al. 2011, Meager, Peterson and Willcox 
2008). As the type I IFN, IL-17A/F and IL-22 are expressed in the thymus by 
macrophages, γδT cells, natural killer cells and innate lymphoid cells (ILCs), 
the potential for autoimmunization there exists (Dudakov et al. 2012, Meager et 
al. 2006, Shibata et al. 2008, Cupedo et al. 2009, Wolk et al. 2010). In the 
periphery, locally produced IL-17, IL-22 and/or type I IFNs could constantly 
restimulate germinal center responses and autoantibody production (Meager et 
al. 2006, Mitsdoerffer et al. 2010). 

The intrathymic autoimmunization hypothesis is also supported by the find-
ings in young myasthenia gravis (MG) patients, who have autoantibodies 
specific to acetylcholine receptor (AChR) and ongoing anti-AChR antibody 
production by thymic plasma cells (Hill et al. 2008). In addition, their thymi are 
under chronic inflammation: they have dysfunctional regulatory T cells (able to 
produce inflammatory cytokines) and conventional T cells that are unresponsive 
to suppression by Tregs (Gradolatto et al. 2014). 

 
 

2.3. Aire deficient mouse 

AIRE/Aire proteins are 71% identical and contain same domains. Creating Aire 
deficient mouse strains was only possible after cloning and mapping mouse Aire 
gene, two years after human’s. A possible breakthrough was hoped for 
explaining the mechanism of APECED (Mittaz et al. 1999, Saltis et al. 2008). 
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Indeed, the importance of Aire in thymic architecture, and its function as one of 
the drivers of negative selection, has been unveiled during the following years 
(Zuklys et al. 2000, Anderson et al. 2002, Kuroda et al. 2005, Matsumoto et al. 
2013, Liston et al. 2003). 

The four main mouse models that have been created replicate the most com-
mon APECED mutations, leading to: truncated protein or deletions in SAND, 
CARD, PRR, PHD1 and PHD2 domains (Jiang et al. 2005, Hubert et al. 2009). 
The original Aire deficient mouse is on C57BL/6 background, but as mouse 
strains carry different susceptibilities to autoimmune diseases, they have been 
crossed with mice on different backgrounds (NOD, BALB/c, SJL/J) (Hubert et 
al. 2009, Jiang et al. 2005, Anderson et al. 2002, Ramsey et al. 2002, Kuroda et 
al. 2005). Conspicuously, the Aire deficient mice on NOD or SJL background 
develop more frequently exocrine pancreatitis and thyroiditis, respectively; 
BALB/c mice are predisposed to gastritis (Jiang et al. 2005). The phenotype in 
C57BL/6 mice is rather mild; these mice have been known to suffer from 
keratoconjunctivitis and uveitis (Taniguchi et al. 2012, DeVoss et al. 2006, Yeh 
et al. 2009). However, despite infiltrations in the organs, they remain functional 
and their life expectancy is overall unaffected (Jiang et al. 2005, Hubert et al. 
2009, Hässler et al. 2006). Interestingly, the NOD.Aire deficient mice stay 
normoglycemic. However, these mice show intensive autoreactivity, accom-
panied by autoantibodies and infiltrations in liver, stomach, reproductive organs, 
lungs and exocrine pancreas (Jiang et al. 2005). In addition, NOD.Aire-/- mice 
have high mortality (~79%), which is preceded by severe weight loss between 
5–15 weeks of age. This correlates best with lung lesions and generalized 
pneumonitis (Jiang et al. 2005). Surprisingly, the autosomal dominant mutation, 
G228W, results in a more severe phenotype in mice than in humans, with 
multiple infiltrations in thyroid and retina, salivary and lacrimal glands. In addi-
tion, on NOD background, the mice develop progressive peripheral neuropathy 
(Su et al. 2008). 

Overall, the generated mouse models display several times milder auto-
immune manifestations and lack the classical APECED triad. Nevertheless, the 
T cell population show alterations in peripheral and thymic TCR repertoire; 
also, the size of activated and memory cell compartments is increased 
(Anderson et al. 2002, Hubert et al. 2009, Malchow et al. 2016, Ramsey et al. 
2002). Infertility, organ infiltration and the destruction of ovaries, eyes, lungs, 
stomach, thyroid, liver, lacrimal and salivary glands are all common manifesta-
tions (Anderson et al. 2002, Ramsey et al. 2002, Hubert et al. 2009, Kuroda et 
al. 2005). Furthermore, in the ageing process, the changes in thymus mor-
phology of Aire deficient mice become more pronounced (e.g. increase in B 
cells, contracted medullary compartment, atrophy) (Gillard et al. 2007, Ramsey 
et al. 2002, Milicevic et al. 2010, Hässler et al. 2006, Pöntynen et al. 2006). 

The phenotypic differences between Aire deficient mice and APECED 
patients could emerge because of the differences in the development of the 
immune system in the two species. Newborn mice are lymphopenic and in Aire 
deficient mice, this is further amplified by the dysregulation of the chemokines 
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needed for thymocyte migration (Chang 2012, Guerau-de-Arellano et al. 2009, 
Kisand, Peterson and Laan 2014, Laan et al. 2009). Although this extended 
lymphopenic situation causes the proliferation of existing autoreactive T cells in 
the periphery, further failures in peripheral tolerance mechanisms are needed for 
it to lead to autoimmune manifestation (King et al. 2004, Kekäläinen et al. 
2011, Kisand et al. 2014). Aire deficient mice have also decreased numbers of 
regulatory T cells; this possibly promotes peripheral autoreactivity (Malchow et 
al. 2013, Yang et al. 2015). 

 
 

2.3.1. Autoantibodies  

Aire deficient mouse sera have autoantibodies that correlate with organ infiltra-
tion. Also, the autoantibody patterns are strain-specific and suggest oligoclonal 
autoimmune responses (Jiang et al. 2005, Pöntynen et al. 2006). Interestingly, 
the autoantigens are mostly different from those of APECED patients, even the 
ones that are directly under Aire control (Pöntynen et al. 2006). This is in agree-
ment with the lack of any endocrinopathies in Aire deficient mice, although 
mild infiltrations have been described (Pöntynen et al. 2006, Hubert et al. 
2009).  

Autoantigens [BPIFB1 and vomeromodulin (human orthologue LPLUNC1)] 
characteristic to rare interstitial lung disease, are shared by the mouse model 
and APECED patients (Shum et al. 2009, Shum et al. 2013). In addition, two 
prostate-specific autoantigens – seminal vesicle secretory protein 2, (human 
homolog of semenogelin) and TGM4 – are shared by the patients and Aire 
mouse model. These help to explain fertility problems and prostatitis seen in 
both (Hou et al. 2009, Landegren et al. 2015). The lack of Aire also causes the 
development of autoreactive T cells specific to melanocyte antigen – tyrosinase 
related protein-1 (TRP-1). Recognition of TRP-1 by T cells correlates with 
development of vitiligo (Zhu, Nagavalli and Su 2013). 

Aire deficient mice exhibit destruction in pancreas and stomach, and have 
two specific autoantigen targets: mucin 6 expressed in stomach mucosa; and 
protein isomerase A2 (PDIA2) that is present both in stomach and pancreas 
(Gavanescu et al. 2007, Kurisaki et al. 2013). In addition, as previously men-
tioned, the autoimmune infiltrations in the eyes, lacrimal and salivary glands are 
prevalent manifestations in Aire deficient mice. Autoantibodies against the 
odorant binding protein 1a and α-fodrin are well correlated with lacrimal gland 
destruction leading to Sjögren's syndrome like condition (Kuroda et al. 2005, 
DeVoss et al. 2010, Ulbricht, Schmidt and Witte 2003). Those against α-fodrin 
correlate with several exocrine gland infiltrations (parotid, submandibular 
glands), due to its ubiquitous expression (Kuroda et al. 2005). Another autoanti-
gen interphotoreceptor-retinoid-binding-protein has been described in spontane-
ous autoimmune uveitis (DeVoss et al. 2006). 

Aire deficient mouse strains completely lack the type I IFN specific autoanti-
bodies characteristic of APECED patients (Hubert et al. 2009). Regarding the 
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Th17 related cytokines, which are targeted in APECED and correlate with 
chronic mucocutaneous candidiasis, no spontaneous Candida infection nor IL-
17A, IL-17F or IL-22 autoantibodies have not yet been described in the mouse 
model. Artificial Candida infection has given contradictory results, for instance 
Hubert et al. noticed no difference between Aire wild-type and knock-out, while 
Ahlgren et al. described increased vulnerability towards mucosal candidiasis 
and difficulty in the clearing of infection in knock-out (Ahlgren et al. 2011, 
Hubert et al. 2009). In the latter model, Aire knock-out (KO) mice had 
enhanced responses of Th1 and Th17 cells with high IFN-γ and IL-17A produc-
tion, yet the immune memory development towards Candida albicans was 
defective (Ahlgren et al. 2011). 

Surprisingly, Aire regulates neither type I IFNs nor α-fodrin and PDIA2 
expression, meaning TSA expression and negative selection is not the only 
mechanism by which Aire induces tolerance (Kisand et al. 2011, DeVoss et al. 
2010, Kurisaki et al. 2013). 

 
 

2.4. Thymoma  

2.4.1. Clinical features and diagnosis  

Thymomas are rare (occurrence rate <1% of all tumors) slow-growing tumors 
of thymic epithelial cells that usually arise in the anterior mediastinum 
(Scorsetti et al. 2016, Weis et al. 2015). However, the capability of turning into 
a clinically aggressive tumor lies in all the subtypes of the disease (Moran et al. 
2012). The risk of thymoma is low before age 20, increases in middle age, is the 
highest in the seventh decade of one’s life, and does not differ in men and 
women (Engels 2010, Weis et al. 2015). However, onset takes place earlier if 
the patients have myasthenia gravis (Scorsetti et al. 2016, Lewis et al. 1987, 
Marx et al. 2010). In the absence of MG, thymoma may be discovered by 
chance (routine X-rays) or even go undetected, as 30–50% of the patients with 
thymomas are asymptomatic (Scorsetti et al. 2016, Riedel and Burfeind 2006). 
The “thoracic symptoms” noted by others, which include cough, dysphagia, 
chest pain, and/or superior vena cava syndrome, are associated with local inva-
sion (Scorsetti et al. 2016, Lewis et al. 1987). Approximately 30% of all 
patients have systemic symptoms (e.g. fever, night sweats, fatigue, or weight 
loss), which might still be difficult to distinguish from those of lymphoma 
(Scorsetti et al. 2016, Thomas, Wright and Loehrer 1999, Lewis et al. 1987). 
 
 

2.4.2. Histology and genetics 

Thymomas are heterogeneous (Table 2); the World Health Organization (WHO) 
classifies them based on the epithelial cells’ shape and the amount of thymo-
cytes they generate. Types AB, B2 and B3 are soft, friable, and with numerous 
thymocytes. Other types are firm or hard, and there may be some calcification 
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in any type (Thomas et al. 1999). Type B is further divided into subclasses 
based on the proportion of increase in lymphocytes [B1 (predominantly corti-
cal); B2 (cortical); B3 (well-differentiated thymic carcinoma)], and the presence 
of atypical epithelial cells (Table 2) (Inoue et al. 2003, Marx et al. 2015, Moran 
and Suster 2008). The corticosteroid treatment used for accompanying auto-
immune diseases may deplete lymphocytes (Willcox et al. 1987), converting 
type AB towards type A or type B2 towards B3.  
 
 
Table 2. The main WHO thymic tumor histotypes and their relative prevalence. Modi-
fied from (Scorsetti et al. 2016, Weis et al. 2015, Suzuki et al. 2008, Scarpino et al. 
2007, Ströbel et al. 2007, Marx et al. 2015) 

  Main component(s) 
Previous 
name/behavior 

% of all 
thymomas 

Type A 

Spindle/ oval shaped TEC; no 
nuclear atypia; almost no 
thymocytes. No Aire expres-
sion, MG (26%). 

‘spindle cell’ ‘medullary’ 
thymoma, benign 

Asia 6 

Europe 15 

USA 14 

  

  

Type AB 

Admixed areas of type A TEC 
with and without abundant 
thymocytes, segregated either 
sharply or indistinctly. Rare 
AIRE expression. MG (25%) 

‘mixed’ thymoma, 
benign 

Asia 27 

Europe 23 

USA 18 

  

Type B1 

Resemble normal thymus, most 
areas cortical, some small/ 
medullary; sparse TEC/ little 
atypia. ~50% of B1 thymomas 
express AIRE. MG (35%) 

predominantly ‘cortical’ 
‘organoid’ thymoma, 
local invasion uncom-
mon 

Asia 16 

Europe 17 

USA 20 

  

Type B2 

Plump TEC (vesicular nuclei, 
conspicuous nucleoli), either 
single or in small clusters, 
enmeshing abundant thymo-
cytes. Rarely express AIRE. 
MG (49%) 

‘cortical’ thymoma, often 
invade locally, some-
times via pleura, rarely 
via blood 

Asia 20 

Europe 31 

USA 32 

  

Type B3 

Round or polygonal TEC, with 
mild atypia, and fewer thymo-
cytes. Rarely express AIRE. 
MG (40%) 

well-differentiated 
‘thymic carcinoma’ 
‘epithelial’ thymoma, 
invasion as for B2 

Asia 32 

Europe15 

USA16 
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The neoplastic TEC rarely show the atypia seen in thymic carcinomas, and 
evidently retain the ability to select polyclonal thymocytes, and export their 
progeny to the periphery (Buckley et al. 2001b). Although all thymomas are 
potentially malignant (Moran et al. 2012, Hoffacker et al. 2000), types A and 
AB very rarely invade outside their capsule (Scorsetti et al. 2016, Weis et al. 
2015). By contrast, types B2 and B3 often invade locally, and sometimes more 
distantly via the pleura, but rarely via the blood stream or lymphatics (Thomas 
et al. 1999). The frequency of invasion/stage seems to have gradual progression 
A~AB<B1<<B2≤B3 (Weis et al. 2015, Kondo et al. 2004). 

The prevalent treatment strategy is thymectomy, followed by prophylactic 
radiotherapy for types B2 and B3, or preceded by radio- and/or chemotherapy if 
invasion is already evident before surgery (starting from stages II) (Ströbel et al. 
2004). Many autoimmune symptoms accompanying thymomas tend to dis-
appear after resection (Bernard et al. 2016). However, the MG typically deterio-
rates over the subsequent years, frequently requiring immunosuppressive ther-
apy (e.g. corticosteroids, azathioprine). In severe cases of myasthenia gravis, 
plasmapheresis and immunoglobulin treatments are also applied (Bernard et al. 
2016, Romi 2011). However, the corticosteroid usage may increase the overall 
susceptibility for infections that some thymoma patients contract (Holbro et al. 
2012). 

Genetic changes are not easy to study in the neoplastic TEC, because of 
the large numbers of ‘contaminating’ lymphocytes (Inoue et al. 2002). 
Nevertheless, some recurrent aberrations have been identified. These are 
histotype-dependent and are usually associated with the thymoma stage and 
survival rate. Malignant tumors tend to have more mutations, deletions, 
duplications, changes in tumor suppressor, growth hormone receptor, epige-
netic regulator, cell-cell interaction and cell cycle genes (Scorsetti et al. 
2016, Petrini et al. 2014, Inoue et al. 2003, Marx et al. 2015). Interestingly, 
all histotypes share a loss of heterozygosity in several regions on chromo-
some 6. One of these is situated in the major histocompatibility complex 
region (Inoue et al. 2002). That might help tumor cells to escape immune 
surveillance, and impair self-tolerance induction in developing thymocytes, 
or may promote concurrent autoimmune manifestations (Inoue et al. 2002). 

 
 

2.4.3. Paraneoplastic autoimmune syndromes  
with organ-specific autoantibodies 

Thymomas are associated with a great variety of autoimmune disorders, 
whether neuromuscular [MG (30–44%), neuromyotonia (NMT) (~3%), poly-
myositis (1–5%)], hematological [pure red cell aplasia (4%) or hypo-γ-globuli-
nemia (5–20%)], cutaneous [pemphigus, alopecia areata or totalis, vitiligo (0.5–
17%)] or systemic [systemic lupus erythematosus (SLE) (2%)], or other, more 
rare examples. The accompanying autoantibodies recognize a restricted subset of 
known targets (Table 3) (Klein et al. 2013, Marx et al. 2010). 
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Table 3. Most common autoantigens in thymoma patients modified from (Marx et al. 
2010). 

Autoantigen Accompanying disease 

Acetylcholine recep-
tor (AChR) 

myasthenia gravis**, Rippling muscle disease, autonomic 
neuropathy, gastrointestinal dysmotility, NMT 

Titin myasthenia gravis 

Ryanodine receptor 
(RyR) 

myasthenia gravis, Rippling muscle disease*, polymyositis*, 
myocarditis*, NMT 

Voltage-gated potas-
sium channel com-
plex (VGKC) 

Morvan's syndrome, myocarditis, encephalitis (limbic and 
cortical), gastrointestinal dysmotility 

Glutamate 
decarboxylase 
(GAD65) 

encephalitis (limbic and cortical), cerebellar degeneration, T1D 

Collapsing response 
mediator protein 
(CRMP-5 ) 

autonomic neuropathy, cranial nerve impairment, sensory 
neuropathy 

CRMP3,4,5 encephalitis (limbic and cortical) 

Neuronal nuclear 
antigens (NNA-1) 

sensory neuropathy, encephalitis (limbic and cortical), cerebellar 
degeneration 

Thyroglobulin Hashimoto's thyroiditis, Graves' disease 

Thyroid peroxidase Hashimoto's thyroiditis, Graves' disease 

Thyroid-stimulating 
hormone receptor 
(TSHR) 

Graves' disease 

Insulin Type 1 diabetes 

Plakin family paraneoplastic pemphigus 

Desmoglein1 and 3 pemphigus vulgaris; foliaceus 

Nuclear autoantigens 
(NAA) 

minimal change >membranous >other glomerulonephritis, SLE 

(ds)DNA minimal change >membranous >other glomerulonephritis, SLE 

NMT: neuromyotonia; SLE: systemic lupus erythematosus; **definitely, *debatably, or possibly pathogenic 

 
 

These associations might result from: (a) failed induction of self-tolerance of 
the T cells developing in these disorganized microenvironments, where the 
neoplastic TEC show greatly reduced expression of both HLA-class II (Willcox 
et al. 1987, Marx et al. 2010) and AIRE (Scarpino et al. 2007, Ströbel et al. 
2007), and/ or (b) a ‘dangerous climate’ where, because of these reductions, 
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local autoantigens are more likely to autoimmunize than to induce self-tolerance 
(Kisand et al. 2011, Liu et al. 2014, Okumura et al. 2008). 

Patients with thymomas also show altered T cells in the periphery, altered 
ratios of CD4/CD8 cells; also increased numbers of recent thymic emigrants 
[especially from types AB and B2; (Buckley et al. 2001a)] and CD8+CD45RA+ 
T cells (Hoffacker et al. 2000), which disappear after thymectomy. In the case 
of thymoma, both a decrease in numbers of regulatory T cells and unaltered 
numbers have been reported (Scarpino et al. 2007, Ströbel et al. 2004). 

The autoimmune disease most frequently associated with thymoma is MG, 
which is in most cases caused by autoantibodies against acetylcholine receptor. 
These autoantibodies impair neuromuscular transmission (Lindstrom et al. 
1976, Vrolix et al. 2010). MG patients often have striational autoantibodies 
against several intracellular muscle antigens e.g. titin and/or the skeletal muscle 
calcium release channel [ryanodine receptor (RyR)] (Gautel et al. 1993, 
Mygland et al. 1994, Lindstrom et al. 1976, Vrolix et al. 2010, Williams and 
Lennon 1986, Marx et al. 1989). In one study, RyR autoantibodies were asso-
ciated with more severe MG (Mygland et al. 2000). These antibody subclasses 
were IgG1 and IgG3, so they could activate complement and reduce both the 
complexity of the post-synaptic folds and AChR numbers, thus causing long-
lasting muscle weakness (Lindstrom et al. 1976, Gomez et al. 2010, Marx et al. 
2010).  

In very rare cases of thymoma – such as the thymoma associated-
multiorgan-autoimmunity generalized failure of negative selection leads to 
graft-versus-host-like disease, where autoreactive T cells attack multiple 
peripheral organs (Wadhera et al. 2007). 
 
 

2.4.4. Autoantibodies against cytokines 

In addition to various autoimmune manifestations, many thymoma patients have 
neutralizing autoantibodies to certain cytokines, especially type I IFNs and/or 
IL-12 (Meager et al. 1997, Burbelo et al. 2010, Meager et al. 2003). Those spe-
cific to type I IFNs are highly selective for IFN-αs and IFN-ω, as IFN-β 
neutralization is rare and IFN-γ recognition is completely absent (Meager et al. 
2003). Moreover, they are not found in numerous other autoimmune, infectious 
or neoplastic diseases, the two exceptions being with late-onset MG patients 
without evident thymoma (Meager et al. 2003, Burbelo et al. 2010), and  
APECED patients (Meager et al. 2006). Interestingly, these autoantibodies are 
usually present at diagnosis, persist long after thymectomy, and are poorly con-
trolled by corticosteroids. Their titers tend to rise, often strikingly, around the 
time when thymomas recur (Meager et al. 2003, Hapnes et al. 2012). Further-
more, thymoma tissue from seropositive patients has the capacity to produce 
these antibodies spontaneously in vitro; suggesting the presence of terminally 
differentiated plasma cells (Shiono et al. 2003).  
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The prevalent cytokine-specific autoantibody class is IgG (Meager et al. 
2003). It has been shown in vitro that IL-12 autoantibodies inhibit Th1 polariza-
tion of naïve CD4+Tcells producing IFN-γ (Zhang et al, 2003); by interfering in 
the signal transducer and activator of transcription 4 (STAT)-dependent signal-
ing pathway, they also halt the positive feedback loop of IL-12 production 
(Burbelo et al. 2010). However, their IL-12-neutralizing capacity is influenced 
by their titer and epitope-specificity (Burbelo et al. 2010). Similarly, the type I 
IFN autoantibodies affect the STAT1 pathway (Meager et al. 1997, Hapnes et 
al. 2012, Meager et al. 2003, Zhang et al. 2003, Burbelo et al. 2010). It has been 
proposed that such antibodies can suppress inflammatory immune responses 
(Montoya et al. 2002, Smyth, Taniguchi and Street 2000): their neutralization 
might thus favor tumor growth, possibly also by inhibiting the anti-angiogenetic 
effects of IL-12 (Strasly et al. 2001). 

Occasional BAFF-, IL-1β-, TNF-α-, IL-6-, IFN-ε-, IL-18-, APRIL- and 
EBI1-specific binding, and in some cases, also neutralization, have been noted 
in thymoma patients, but without any clear clinical correlates (Burbelo et al. 
2010, Meager et al. 2003). 

The strong neutralizing capacity of the cytokine-specific autoantibodies 
might possibly predispose the patients to opportunistic infections, though they 
are infrequent. Susceptibility to several infections, e.g. Cryptococcal, is associ-
ated with IL-12 neutralization (Burbelo et al. 2010, Meager et al. 1997, 
Rowland, Griffiths and Kabat 1965). However, this is not seen with autoanti-
bodies specific to type I IFN or IL-1β (Burbelo et al. 2010, Meager et al. 2003, 
Meager et al. 1997, Holbro et al. 2012).  

The evidence is much stronger for the correlation between anti-IL-17/22 and 
mucocutaneous Candida infection (Kisand et al. 2010, Burbelo et al. 2010) (see 
Chapter 2.2.2). In most of these autoantibody positive patients, susceptibility to 
other infections is not increased, most likely because of differences in epitope, 
titer, in effects on epithelial barriers in vivo, and possibly, yet unknown factors 
that influence immune defenses (Burbelo et al. 2010).  
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*** 

In recent years, AIRE has been studied thoroughly, and much has been discov-
ered that has broadened researchers’ views on its function and regulation. The 
understanding on how AIRE promotes self-tolerance in thymus is based on 
experiments using transgenic mouse models, and it is only assumed that similar 
events occur in humans. AIRE is still considered to be above all a transcrip-
tional regulator of thymic TSAs, in spite of its additional functions as mTECs 
lifespan and differentiation/maturation regulator, and an indispensable shaper of 
thymic microenvironment. Moreover, the development of autoantibodies to 
cytokines in APECED patients is not in line with the defective negative selec-
tion theory in AIRE deficiency. The exact mechanisms by which AIRE func-
tions remain yet to be discovered, since the development of APECED pheno-
type is still unexplained due to its surprising differences from the Aire deficient 
mouse model. Whether or not Aire deficient mice lacked also autoantibodies to 
Th17 cell related cytokines, was unknown before this study. 

Type I IFN specific autoantibodies are useful for APECED diagnostics, but 
their effect on APECED manifestations has remained obscure. At the same 
time, the Th17 cell related antibodies correlate directly with CMC. Some addi-
tional mechanisms influencing the Th17/Th22 cell populations and leading to 
CMC need to be taken into account. As similar autoantibodies are found in 
thymomas, which themselves are often AIRE deficient, the involvement of 
thymus in the development of cytokine-specific autoantibodies seems plausible. 
These similarities should be studied further. 
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3. AIMS OF THE STUDY 
The general purpose of this study was to characterize cytokine-specific auto-
antibodies in APECED, thymoma patients and in the Aire deficient mouse 
model.  

More specifically, the aims were: 
1. to characterize the isotypes of cytokine-specific autoantibodies in adult as 

well as very young APECED patients; 
2. to determine whether APECED and thymoma patients have neutralizing 

autoantibodies against cytokines important for Th17 cell differentiation 
or maintenance; 

3. to find the immunodominant epitopes of IFN-α2a and IL-22; 
4. to test the Aire deficient mice for immunoreactivity towards autoanti-

genic cytokines; 
5. to study the AIRE-dependency of the main organ-specific APECED auto-

antigens in thymoma tissue in comparison to thymic remnants and normal 
pediatric thymus; 

6. to test the hypothesis that type I IFN neutralization capacity of APECED 
patient sera is inversely correlated with development of T1D. 
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4. MATERIAL AND METHODS 
4.1. Patients and controls 

All samples (Table 4) were taken with informed consent and an ethics commit-
tee approval in each referral center (in Bergen, Ljubljana, London, Oxford, and 
Tartu). All experiments were conducted in accordance with the Helsinki 
Declaration, with informed consent and local Ethics Committee approval. Blood 
sera were collected in parallel from patients and controls, and stored at –20°C 
until used. 

The APECED diagnosis was confirmed by both: mutations analysis of AIRE 
gene and the presence of autoantibodies to IFN-ω and IFN-α2.  

Thymomas were removed surgically or biopsied and examined by routine 
histopathology (hematoxylin-eosin, additional keratin and anti-CD3 or anti-
CD1 staining) in nearly every case. In very rare exceptions, where surgery was 
unfavorable, tumors were noted on X-rays or scans. The MG was diagnosed 
based on the typical clinical features, electromyography and positivity for serum 
AChR autoantibodies in every case. 

 
 

Table 4. Overview of the study groups 

Study groups 

Study I: 
Anti-cytokine antibodies in 
APECED and Aire deficient 
mice 

19 APECED patients  
4 controls 
40 thymoma patients 
6 controls 

IgG and IgA isolation from 9 
APECED patients and 7 
controls 

Aire deficient mice (BALB/c; B6) 
69 KO + 43WT  
6–8 weeks, 1.5–2 years old 

Study II:  
Anti-cytokine antibodies in 
young APECED 

11 APECED patients  
2 asymptomatic relatives 

Study III:  
AIRE and tissue restricted 
antigen expression in thy-
moma patient 

26 thymoma patients (31 samples)  
5 thymus samples from healthy children 

Study IV:  
IL-6-specific autoantibodies 
among APECED and thy-
moma patients 

41 APECED patients  
56 controls  
104 thymoma patients 

Study V:  
Type I IFN autoantibodies 
as possible protecting factor 
against type 1 diabetes in 
APECED patients 

81 APECED patients 21 APECED patients: 
 
5 GAD65+T1D+ 
3 GAD65-T1D+ 
13 GAD65+T1D- 
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Study I 
19 APECED patients of Finnish, Norwegian and Slovenian origin (age 29±16 
years), among whom 15 had Candida infection. Patients were matched with 
healthy controls (N=6) for age and nationality. Immunoglobulins were isolated 
from 9 patient and 7 control sera. Sera from 40 UK thymoma patients (age 
51±14) were studied.  
 
Study II 
For this study, we collected sera and clinical information from 11 very young 
APECED patients and 2 asymptomatic siblings from Finland, Hungary, 
Norway, Italy and USA (Table. 5). 

 
 

Table 5. Characteristics of young APECED patients 

Patient ID CMC Age at sampling and follow-ups Sample origin 

S1 (Fam1) – 1.5m–48m Hungary 

S2 (Fam2) 15m 5m–30 m Sardinia 

P1 (Fam3) 54m 53m–43yr Finland 

P2 (Fam4) 9yr 62m–16yr Finland 

P3 (Fam5) – 72m USA 

P4 (Fam6) 41m 36m–60m Sardinia 

P5 (Fam7) 34m 24–72m USA 

P6 (Fam8) 30m 40m–36yr Finland 

P7 (Fam9) 36m 36m–17yr Norway 

P8 (Fam9) 24m 6.5yr–20yr Norway 

P9 (Fam10) 18m 60m–84m Hungary 

P10 (Fam10) 42m 72m–120m Hungary 

P11 (Fam12) – 60m–144m USA 

CMC: chronic mucocutaneous candidiasis; Fam: Family number; m: months, yr: years; P: patients, S: yet 
unaffected siblings 

 
 
Study III 
Thymoma tissue samples (N=31) were snap-frozen as blocks from 26 patients 
and stored at –80˚C until use. Nearly all thymomas were encapsulated and could 
be clearly separated from any adjacent thymic remnants (n=5), which were 
often minimal or absent in older or steroid pre-treated cases. Five pediatric 
thymi, removed during cardiac surgery were used as controls. 
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Study IV 
We used sera from Finnish and Slovenian APECED patients (n=41) and healthy 
controls (n=56; 51±15.9 years old) (Table 6). 104 patients with thymomas were 
from UK, 99 of them with myasthenia gravis plus acetylcholine receptor anti-
bodies. About 50% of the thymoma patients were first sampled pre-treatment, 
but most eventually needed corticosteroids (alternate-day dosing) and/or 
azathioprine for their MG, at varying times and doses. 

 
 

Table 6. Characteristics of APECED and thymoma patients 

  APECED patients 
(N=41) 

Thymoma patients 
(N=104) 

Mean age (min; max) 35 (4; 73) 52 (20;80)* 

CMC 39 3 

Autoantibody positivity:   

IL-17A 16 8 

IL-17F 34 2 

IL-22 41 14 

IFN-α2 41 76 

IL-12 0 91 

*data on the age of only 79 thymoma patients were available; CMC: chronic mucocutaneous candidiasis 

 
 

Study V 
81 APECED patients from Finland, Italy, Norway, and Slovenia were assayed 
for type I IFNs and GAD65-reactivity, and then further compared with their 
T1D status. All GADA+T1D+ (N=5), GAD-T1D+ (N=3) and GAD+T1D- 
patients (N=13) were selected for further analysis. Eight patients with T1D 
(mean age: 48±11 years) were compared with an available cohort of thirteen 
patients without T1D but with strong reactivity to GAD65 (relative luciferase 
units >5) (mean age: 31±12 years). 
 
 

4.2. Mice 

Aire-mutant (967–979 del13) mice were used, originally on the C57BL/6 back-
ground [12]; one subline was backcrossed onto the BALB/c background for at 
least ten generations. Homozygous Aire-mutant (N=69) and wild-type (N=43) 
littermates were bred and maintained at the mouse facility of the Institute of 
Molecular and Cell Biology (Tartu University, Tartu, Estonia). Test sera were 
collected from mice aged either 6–8 weeks or 1.5–2 years, in accordance with 
the European Communities Directive 86/609/EEC. 
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4.3. Purification of immunoglobulins  

Total IgG fractions were separated with fast protein liquid chromatography 
using Protein G Sepharose 4 Fast Flow (GE Healthcare), then concentrated and 
buffer-exchanged for PBS with iConTM Concentrator 7ml/20K tubes (Pierce 
Biotechnology). Total IgA was separated using agarose-bound Jacalin lectin 
(Vector Laboratories Inc), and dialyzed against 1xPBS using Spectra/Por Dialy-
sis Membrane (MWCO 12 – 14 000) (Spectrum Laboratories). Protein concen-
trations were determined with the Bio-Rad Protein Assay, based on the Brad-
ford method and using bovine gamma globulin as standard (Bio-Rad Laborato-
ries Inc). 

The purities of the isolated IgGs and IgAs were assessed by SDS-PAGE and 
Western blotting. The identity of the IgH bands was confirmed with specific 
antibodies (data not shown). The mean (±SD) protein concentration of IgG 
samples was 3.581 μg/ml ± 2.570 (range 514.5 – 10.158 μg/ml) and for IgA 533 
μg/ml ± 278; (range 177.5–1.012 μg/ml). We detected ≤3% IgG contamination 
in isolated IgA preparations by immune-turbidimetry with Cobas Integra 400 
Plus (Hoffmann-La Roche). Binding ELISA for detecting type I IFN-specific 
IgG in purified fractions (25μg/ml) was done as previously described (Meager 
et al. 2006).  

 
 

4.4. Autoantibody detection 

4.4.1. ELISA 

Serum autoantibodies binding to mouse cytokines were assayed by ELISA. 
Microtiter wells were coated with carrier-free recombinant mouse IL-17A, IL-
17F or IL-22 (Biolegend) or IFN-4 (PBL InterferonSource) at 1-2 μg pro-
tein/ml (PBS, pH 7.0), overnight at 4°C. After blocking, mouse sera diluted 
1:10 were incubated overnight at 4°C, before washing and development with 
either anti-mouse IgG [γ-chain-specific] -alkaline phosphatase (AP)-conjugate 
(Sigma-Aldrich Corporation) or anti-mouse IgG subclass-specific (IgG1, 
IgG2b, IgG2b, IgG3) biotinylated antibodies (Biolegend) followed by streptavi-
din-conjugated horseradish peroxidase and appropriate enzyme substrate and 
OD reading. 
 
 

4.4.2. Constructs encoding luciferase (LUC) fused to cytokines 

An overview of all full-length and truncated human IFN-α2a and IL-22 proteins 
and the primer sequences described in (Kärner et al. 2013). Human IFN-α2a and 
IL-22 coding sequences were amplified by PCR without the signal sequences. 
The PCR products were ligated into the BamHI/NotI site of pPK-CMV-F4 
(PromoCell GmbH) mammalian expression vector using T4 ligase (Invitrogen).  



34 

IFN-α1, -α2, -α4, -α5, -α6, -α7, -α8, -α10, -α14, -α16, -α17, -α21, -ω, IL-6, 
IL-1β, IL-21, IL-23A (p19), IL-12A (p35) and IL-12B (p40), TGF-β3 or GAD 
65 sequences (without signal peptide) were cloned into modified pPK-CMV-F4 
fusion vector (PromoCell) downstream of naturally secreted Gaussia luciferase 
(Gluc) that was substituted in the plasmid for Firefly luciferase.  

All plasmids containing correct inserts (as confirmed by DNA sequencing) 
were propagated in E. coli NOVA XG cells, amplified, extracted and purified using 
conventional methods. Finally, HEK 293 cells were transfected with the plasmids; 
after 48h the crude protein extracts were prepared using 1x passive lysis buffer 
(Promega). In the case of Gaussia luciferase, the fusion proteins were obtained by 
collecting the cell culture medium. All solutions were stored at –20°C. 

 
 

4.4.3. Luciferase immunoprecipitation assay  

Serum samples were incubated with fusion proteins solutions (2x106 lumin-
escence units) overnight at +4°C. The next day, Protein G Agarose beads (25 μl 
of 4% suspension, Exalpha) were added and incubated at room temperature for 
1 h in 96-well microfilter plates (Merck Millipore) to capture antibodies and 
immune complexes to the beads. After washing to remove unbound fusion pro-
teins, luciferase substrate was added (coelenterazine GAR-2B, Targeting Sys-
tems), and luminescence intensity (LU) measured in VICTOR X Multilabel 
Plate Readers (PerkinElmer Life Sciences). The results were expressed as rela-
tive luciferase units  
 

(RU)= 
௅௎௦௔௠௣௟௘௔௩௘௥௔௚௘	௅௎	௢௙	௛௘௔௟௧௛௬	௖௢௡௧௥௢௟	௦௔௠௣௟௘௦ 

 
The positive/negative discrimination level was set to the mean plus 3 standard 
deviations of the healthy control samples. 

Patients with the highest binding values were selected for IL-6 and IL-23 
blocking experiments. Briefly, the serum samples were pre-incubated with 
40µg/ml of recombinant human (rh) IL-6, (PeproTech EC Ltd) or IFN-γ 
(Miltenyi Biotec). To test for IL-23 blocking, the thymoma serum samples were 
pre-incubated with 40µg/ml of rhIL-23 (PeproTech EC Ltd), IL-12 (PeproTech 
EC Ltd) or rhIL-6 (PeproTech EC Ltd). The samples were rotated for two hours 
at room temperature and centrifuged for 15 minutes at 16,000g and supernatants 
were transferred into new Eppendorf tubes before performing LIPS assay as 
above.  

To render the assay IgG subclass-specific, agarose beads coupled with strep-
tavidin (25μl of 4% solution, Life Technologies) were coated with 10μl of bio-
tin-conjugated human subclass-specific antibodies (1:100 dilution, anti-IgG1, 
anti-IgG2, anti-IgG4, from BD Pharmingen, anti-IgG3 from Life Technologies) 
for 1 hour in microfilter plates (Merck Millipore), to capture any subclass-spe-
cific immune complexes formed during the standard overnight pre-incubation, 
before washing and readout as above.  
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4.5. Autoantigen expression in thymus 

4.5.1. RNA extraction from thymomas and real-time PCR 

Snap-frozen tissue samples were homogenized in Trizol (Thermo Scientific) 
using AutoMACS with M-tubes (Miltenyi Biotech), followed by RNA extrac-
tion according to the manufacturer’s protocol. RNA concentrations were meas-
ured with NanoDrop (Thermo Scientific); 5 mg of total RNA was reverse tran-
scribed using Superscript III (Invitrogen), 10mM dNTP Mix, RiboLock RNase 
inhibitor and random hexamers (Thermo Scientific).  
 
 

4.5.2. Real-time quantitative PCR  

qPCR was performed using Applied Biosystems ViiA 7 Real-Time PCR Sys-
tem with 384-Well Block (Life Technologies) and Maxima SYBR Green /ROX 
qPCR Master Mix (Thermo Scientific). Every sample was run in three parallel 
reactions in two separate series of experiments; their results were broadly con-
sistent and have been combined. We detected reliable signals for all transcripts 
tested, except NALP-5. Every transcript signal was expressed as 2–ΔΔCt (where 
Ct represents the threshold cycle), and normalized relative to the value for β-
actin in the same sample, and then to its (β-actin-normalized) KRT8 value to 
adjust for the highly variable TEC content. The resulting AIRE or TSA values 
were next expressed relative to that in one control infant thymus. Primers are 
listed in Wolff et al. 2014. 
 
 

4.6. Western blot 

IFN-ω and IL-6 luciferase fusion proteins or human IFN-α2 (PBL Interferon-
Source) were heated at 95°C for 4 min in reducing sample buffer [3% SDS, 
10% glycerol, 0.1 M dithiothreitol, 0.02% bromophenol blue and 6.25 mM 
Tris–HCl, pH 6.8], run in 12% SDS-PAGE and blotted onto polyvinylidene 
difluoride filters. After blocking, strips of the filter were incubated with patient 
or control sera (1:100) or rabbit anti-luciferase antibody (1:1000 New England 
Biolabs) or mouse anti-IFN-α2b antibody (1:1000, Abcam) followed by 
secondary antibodies (anti-human HRP 1:10,000 or goat anti-rabbit-HRP 
1:5000; anti-mouse-HRP 1:30,000, Jackson ImmunoResearch), and visualiza-
tion by enhanced chemiluminescence using the manufacturer's protocol (GE 
Healthcare). 
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4.7. Cell-based cytokine neutralization assays 

4.7.1. IL-17A, IL-17F and IL-22 neutralization assays  

For IL-17A and IL-17F, NCTC 2544 keratinocytes (Interlab Cell Line Collec-
tion) preincubated with 0.1 ng/ml TNF (Biolegend) were seeded at 1 x 104 
cells/well, in which IL-17A or IL-17F (2 ng/ml, R&D Systems) had been pre-
incubated with serially diluted IgG or IgA for 2 h. After incubation at 37°C for 
16–20h, supernatants were collected and assayed by ELISA (R&D Systems) for 
CXCL1. For human IL-22, we used the cell line Colo205. Cells were seeded at 
3 x 104 cells per well in which IL-22 (2 ng/ml, R&D Systems) had been pre-
incubated with serially diluted patient sera or IgGs or IgAs for 2h. After incuba-
tion at 37°C for 24–30h, supernatants were collected and analyzed for IL-10 by 
ELISA (R&D Systems). Results from all the cytokine neutralization assays 
were estimated from graphs of ELISA absorbances as the ED50s – the 
concentration of Ig needed to halve the cytokine activity of the test sample – 
and represented graphically as cytokine neutralization units (NU) per µg of 
protein.  
 
 

4.7.2. Type I IFN neutralizing assay using reporter cell-line 

Interferon neutralization capacity was tested using reporter cell line: HEK-
Blue™ IFN-α/β cells (InvivoGen), which expresses alkaline phosphatase (AP) 
under the inducible ISG54 promoter after IFN-stimulated-gene-factor binding to 
the IFN-stimulated response elements (ISRE) in the promoter,aspreviously 
described (Breivik et al. 2014). 

The cells were grown in DMEM (Naxo), heat inactivated 10% FBS and 
supplemented with 30g/ml blasticidin (InvivoGen) and 100g/ml Zeocin 
(InvivoGen). IFN-α2a was used at concentration of 12.5U/ml (Miltenyi Bio-
tech). IFN-α4b and IFN-α5 (PBL assay science) were used at final concentra-
tions of 37.5 U/ml. IFNA-α1, IFN-α6, IFN-α7, IFN-α8, IFN-α10, IFN-α14, 
IFN-α16, IFN-α17, IFN-α21, IFN-ω fusion proteins cloned for LIPS were also 
used for neutralization assays. Serial dilutions were made from the antigen 
preparations to determine the optimal dilution. The dilution that induced 
approximately the same AP concentration in the stimulated reporter cell super-
natant as 12.5 U/ml recombinant IFN-α2a was selected for neutralizing assays. 

50µl of patients’ plasmas were three-fold serial diluted in 96 well flat bot-
tomed cell culture plates (BD Biosciences) and coincubated with interferons for 
2 hours at 37°C, 5% CO2. Then 105 reporter cells were added and incubated 21 
hours at 37°C, 5% CO2. QUANTI-Blue™ (Invivogen) colorimetric enzyme 
assay was used to determine AP in the cell culture supernatants. 180µl of warm 
(37°C) substrate was pipetted into 96 well flat-bottomed microtiter plate and 20 
µl of cell culture supernatant was added and incubated in 37°C for 30 minutes. 
OD was measured at 620nm with Multiscan MCC/340 (Labsystems) ELISA 
reader. IC50 was calculated from the dose-response curves.  
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4.8. Statistical analysis 

Mann-Whitney or Kruskal-Wallis or One-Way ANOVA with Bonferroni's 
Multiple Comparison tests were used to assess the differences between studied 
groups using GraphPad Software. For TSA transcript values, the threshold for 
significance was set at p=0.01. Differences between thymoma and thymus rem-
nant expression of AIRE were evaluated using paired t-tests. We also calculated 
z-scores to show the number of standard deviations by which each thymoma 
TSA signal differed from the corresponding mean of the five infant control 
thymi, either above the mean (positive z-scores) or below (with minus signs).  
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5. RESULTS 
5.1. Anti-cytokine antibodies in APECED and  

Aire deficient mice (Study I, II) 

5.1.1. IgG is responsible for binding and neutralizing  
type I IFNs and Th17 related cytokines in APECED patients  

One of the aims of this study was to characterize the isotypes of cytokine autoanti-
bodies in APECED patients. In order to do this, we looked to the main immun-
oglobulin class of autoantibodies. An autoantibody class gives suggestions as to the 
site and the type of immune cells involved in the autoantibody responses. For 
example, Candida infection is on the mucosa and a lot of cytokines (especially 
Th17 related) are produced to suppress the infection (Netea et al. 2015). Therefore, 
it is plausible that emerging cytokine-specific autoantibodies would belong to the 
IgA class, as a mechanism to alleviate the inflammation. 

 

 

Figure 2. Binding and neutralizing activities of immunoglobulin (Ig) isolated from 
APECED and control sera. (a) Enzyme-linked immunosorbent assay (ELISA) was used to 
test for anti-interferon (IFN)-α2a autoantibodies in patient and control (ctrl) IgG fractions. 
The neutralizing activity of the isolated IgG and IgA fractions towards IFN-α2a, (b), IFN-ω 
(c) and interleukin (IL)-22 (d) in cell-based assays. Cytokine-neutralizing units (NU) per mg 
of protein are shown. Nine patient and seven control samples were tested. 
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In order to verify this, the IgG and IgA fractions from APECED patients’ and 
healthy control sera were isolated. First of all, an ELISA test confirmed the 
presence of type I IFN specific binding only in APECED patients, and not in 
healthy control purified IgG isolates (Fig 2a). Thereafter, the cell-based 
neutralization tests with purified IgGs and IgAs proved that the IgG fraction 
carries the biological neutralization capacity of IFN-α2a, IFN-ω and Th17 cell-
associated cytokines, as concentrations as low as 40 ng/ml were functionally 
active (Fig. 2, Table 7). On the other hand, some purified IgA samples from 
several APECED sera also showed weak neutralizing activity against IFN-α2a 
and IFN-ω (Fig. 2b,c). Per µg of protein, however, this was only ~3% (for IFN-
α2a) and ~7% (for IFN-ω) of that measured in the respective IgGs. Although 
this reaction was positive, it is likely, that the IgA preparations were contami-
nated by a small amount of IgG. As for IL-22, the neutralization by the IgAs 
was even weaker, and was seen only in two out of six patient samples (Fig. 2d, 
Table 7). Although the IL-17A and IL-17F specific antibodies were rarer among 
APECED patients, the neutralization activity was mostly detectable in the IgG 
fraction (Table 7).  

 
 

Table 7. The presence of neutralizing autoantibodies in 9 APECED sera, and IgGs and 
IgAs purified from them, against Th17 cytokines (P–positive, N–negative). ED50=the 
concentration of Ig needed to halve the cytokine activity of the test sample. 

  Serum antibodies 
against 

IgG neutralizing activity 
ED50 (ng/ml) against 

IgA neutralizing activity 
ED50 (ng/ml) against 

Sample IL-
22 

IL-
17A 

IL-
17F 

IL-22 IL-17A IL-17F IL-22 IL-17A IL-17F 

A1 P N P 43 >25000 5540 2500 >25000 >25000 

A2 P P P 200 2200 11890 10000 >25000 >25000 

A3 P P P 1900 1000 >25000 >16700 >25000 >25000 

A4 P N N 105 >25000 >25000 >16700 >25000 >25000 

A5 P N P 900 >25000 >25000 >16700 >25000 >25000 

A6 P N N 2600 >25000 >25000 >16700 >25000 >25000 

A7 N N N >16670 >25000 >25000 >16700 >25000 >25000 

A8 N N N >16670 >25000 >25000 >16700 >25000 >25000 

A9 N N N >16670 >25000 >25000 >16700 >25000 >25000 
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5.1.2. IgG1 and IgG4 are the dominant  
subclasses against IFN-α2a and IL-22 

For investigating the environment that leads to autoimmunization, we looked 
further into the IgG subclasses that hint at the cell types that orchestrate B cell 
class switch. The organ-specific immunoglobulins described above are mainly 
of IgG1 type (Brozzetti et al. 2010, Bøe et al. 2004). Interestingly, in APECED 
patients, the anti-cytokine antibodies showed high binding in the IgG4 fraction 
(Fig. 3a). The signals for IgG1 were overall higher than for IgG4, except for 
two APECED patients, who completely lacked IgG1 reactivity towards IFN-α2a 
and IL-22 (Fig. 3a,b) but had substantial neutralization capacity.  

Both IL-17A/F and IL-22 antibodies have been described in rare thymoma 
patients (Meager et al. 1997, Kisand et al. 2008); we analyzed the IgG subclass 
distribution in these patients. The results corroborated that the IFN-α2a and IL-
22 specificity lies in IgG1 and IgG4 fractions. Remarkably, the autoantibody 
positive sera showed even stronger IgG4 dominance, especially against IL-22 
(Fig. 3b), where the binding was almost exclusively by IgG4 in 4 out of 15 sera. 
However, both subclasses were detected in anti-IFN-α2a fractions in every 
positive thymoma serum. 

IgG4 is often associated with allergic diseases, as a sign of tolerance induc-
tion and decrease in IgE titer. Both patient groups presented rather low values 
of autoantibodies of IgE subtype: APECED patients exceeded the controls 
significantly only against IL-22 (Fig. 3a) and thymoma patients only against 
IFN-α2a (Fig. 3b). In addition, IgA-type autoantibody levels were low in both 
syndromes, confirming the previous results with isolated Ig isotypes. Collec-
tively, the similar subclass/isotype distributions of their anti-cytokine autoanti-
bodies suggest Th2 and/or regulatory T cell involvement in their induction in 
these two syndromes. 
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Figure 3. Immunoglobulin subclasses against IFN-α2a and IL-22 in APECED (a) and 
thymoma (b) patients. Antibody levels are shown in luminescence units (LU). Mean 
values with standard error of the mean are indicated. Thymoma sera were selected by 
prior testing for autoantibody positivity (n=30 for anti-IFN-α2a and n=15 for IL-22). All 
the sera were tested at least twice in three different experiments. Patient samples are 
indicated with filled circles, control samples with open triangles. 

 
 
5.1.3. The preference towards IgG4 antibodies is present already 

before the onset of APECED (Study II) 

We had the opportunity to study the cytokine-specific autoantibodies in some 
very young APECED patients and their asymptomatic siblings. We saw that, 
again, IgG1 was prevalent in all the autoantibodies detected in six of the studied 
subjects (Table 8). Surprisingly, against IL-22, there were already substantial 
proportions of IgG4 at 7 months in S1 (with traces of IgG2 and IgG3). What is 
more, in patient P7, the IgG4 already exceeded IgG1 as early as 42 months. 
Against IFN-α2a, IgG4 constituted, once again, a substantial proportion in S1 
(at 30 months) and P4 (30 months), but not in the two other seropositive 
patients. 
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Table 8. IgG subclasses of autoantibodies against IL-22 and IFN-α2 in young APECED 
patients 

IL-22   IgG1 IgG2 IgG3 IgG4 Ratio   

age IgG1 : IgG4

S1 7m 94208 6011 1439 17607 5.4   

S1 25m 48435 2113 1332 83035 0.6 IgG4>IgG1 

S1 30m 4761 257 148 7242 0.7 IgG4>IgG1 

S2 6m 551 235 128 707 0.8 IgG4>IgG1 

P4 36m 7858 271 159 755 10.4   

P5 42m 2093 402 131 10240 0.2 IgG4>IgG1 

P5 6yr 2236 360 144 11518 0.2 IgG4>IgG1 

P9 48m 5784 195 186 282 20.5   

P9 60m 8041 204 173 392 20.5   

P11 5yr 137 319 122 154 0.9 IgG4>IgG1 
 

 IFN-
α2 

  IgG1 IgG2 IgG3 IgG4 Ratio   

age IgG1 : IgG4

S1 30m 2249 178 123 1471 1.5   

S2 6m 1596 161 128 144 11.1   

P4 36m 2973 189 169 1284 2.3   

P5 42m 111 113 110 117 0.9 IgG4>IgG1 

P5 6yr 189 135 111 125 1.5   

P9 48m 528 145 158 139 3.8   

P9 60m 2241 121 121 107 20.9   

P11 5yr 108 152 106 102 1.1   

High IgG4 values are marked in bold. *different substrate, m: months; yr:years 

 
 

5.1.4. Immunodominant epitopes of IFN-α2a and  
IL-22 are conformational or C-terminal 

Next, we attempted to identify the conformational requirements and immuno-
dominant epitope(s) of IFN-α2a and IL-22. For that, we first cloned three 
shorter cDNA fragments from IFN-α2a (corresponding to amino acid 
sequences: 24–69aa; 67–124aa, 123–188aa) or IL-22 (34–76aa, 74–114aa, 113–
179aa) into CMV vectors. After the LIPS analysis, we did not find autoantibody 
binding to IFN-α2a, nor to IL-22 fragments (data not shown), indicating that 
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any specific epitopes had apparently been lost from these constructs. As these 
fragments might have been too short to form conformational epitopes, we used 
the same primers to create longer fragments. APECED patients still failed to 
recognize N-terminal fragments of IFN-α2a (24–124aa) and IL-22 (34–114aa). 
However, the C-terminal fragments (67–188aa, 74–179aa) showed some 
binding, although the reactivity was much weaker than to full-length cytokines 
(Fig. 4a). These findings suggest that the major immunodominant epitopes are 
conformational. These results were corroborated further using recombinant 
human IFN-α2 that was denatured in reducing conditions before SDS-PAGE. 
We found that the APECED sera that bound exclusively to the full-length 
construct in LIPS assays (e.g. P3 in Fig. 4b) did not recognize denatured IFN-α2 
in Western blots, unlike other sera which had additional binding to the C-
terminal construct (P1 and P2 in Fig. 4b). 
 
 

 

Figure 4. Epitope mapping of IFN-α2a and IL-22. (a) APECED sera were tested against 
full-length and N- and C-terminal fragments of IFN-α2a and IL-22 using luciferase-
conjugated polypeptides as antigens. (b) Western blot against denatured human IFN-α2 
revealed that APECED sera had exclusively conformation- (P3) or C-terminus-specific 
(P1 and P2) autoantibodies. Monoclonal antibody (mAb) to IFN-α2 was used as a posi-
tive control. 

 
 

5.1.5. Cytokine-specific autoantibodies in Aire deficient mice 

Although different Aire deficient mouse models have been created, only a few 
overlapping organ-specific autoantigen targets have been reported (Ali-
mohammadi et al. 2008, Landegren et al. 2015, Pöntynen et al. 2006, Shum et 
al. 2009, Shum et al. 2013). Interestingly, Aire deficient mice, on both BALB/c 
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and C57BL/6 backgrounds, completely lack the type IFN autoantibodies, the 
major hallmark in APECED patients (Meloni et al. 2008, Hubert et al. 2009). We 
confirmed this by testing 1.5–2 year old BALB/c mice sera (Fig. 5). 
 
 

 
Figure 5. Aire deficient mice have no type I IFN specific antibodies 

 
 

Aire deficient mouse sera had not been tested for autoreactivity towards IL-
17A/F or IL-22. We chose mice from C57BL/6 and BALB/c backgrounds and 
two different age groups (6–8weeks, 1.5–2years old). Notably, sera from 22 of 
the 24 aged Aire deficient BALB/c mice (92%) bound IL-17A versus only three 
of the eight young mice (38%; all very weak, Fig. 6a). In sharp contrast, we 
found weak binding in only one of the 12 (8%) aged AIRE deficient C57BL/6 
mice versus none of their young counterparts (Fig. 6a). Furthermore, 9 of the 13 
available aged BALB/c sera neutralized IL-17A bioactivity (Fig. 6c) versus 
none of those from young BALB/c or old C57BL/6 mice (data not shown). 
Their neutralizing activity correlated broadly with the ELISA binding values 
(Fig. 6a,c). Finally, we tested the subclasses of the mouse autoantibodies to IL-
17A. Interestingly, they were mainly IgG1 (Fig. 6b), implying a Th2 bias even 
more clearly than in the human syndromes. 

We also found autoantibodies against IL-17F in 7 of the 19 old (37%) 
and 5 of the 10 young (50%) BALB/c mouse sera (Fig. 7a). Signals were 
mainly weaker than against IL-17A, and almost all sera from the C57BL/6 
mice were negative (Fig. 7a). Very few BALB/c or C57BL/6 sera showed 
even moderate binding of IL-22; it was detected mainly in the mice positive 
against IL-17F, but age differences were again less obvious (Fig. 7a,b). In 
addition, their sera did not neutralize IL-22 detectably (data not shown). 
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Figure 6. Aire deficient mice develop neutralizing antibodies against IL-17A. Autoanti-
body subclasses versus IL-17A are shown in (b).  
KO: Aire deficient mice; ctrl: combined Aire wild-type and heterozygotes. Mean values with standard error of 
the mean are indicated. Horizontal lines indicate positive–negative discrimination levels drawn according to 
the old BALB/c group (mean + 2 standard deviations). 

 
 

 

Figure 7. Murine IL-17F and IL-22 specific antibodies in Aire deficient mice 
KO: Aire deficient mice; ctrl: combined Aire wild-type and heterozygotes. Mean values with standard error of 
the mean are indicated. Horizontal lines indicate positive–negative discrimination levels drawn according to 
the old BALB/c group (mean + 2 standard deviations). 

 
 

Thus, in contrast with APECED patients, neutralizing and/or binding autoanti-
bodies to Th17 cell-associated cytokines reached higher prevalences and titers 
in aged than in younger Aire deficient mice. Their higher prevalences on the 
more severely affected BALB/c background, and in older mice, possibly reflect 
the progression of the pathological changes. 
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5.2. AIRE and tissue restricted antigen  
expression in thymoma patients (Study III)  

We wanted to test whether the autoimmune manifestations present in APECED 
and thymoma patients are caused by decreased expression of AIRE and TSA 
transcripts (Anderson et al. 2002), or alternatively, by some other mechanism, 
e.g. active autoimmunization against certain common targets present in aberrant 
thymic tissue (Kisand et al. 2011). We studied TSA expression in AIRE-nega-
tive thymoma tissue as a surrogate for APECED thymus. 

We analyzed AIRE and 16 TSA transcripts in the available thymoma, remnant 
or control thymus blocks. As thymic epithelial cell content varies greatly between 
thymomas, we normalized qPCR results by using keratin-8 (KRT-8) signals, which 
correlate negatively with thymocyte content (Willcox et al. 1987). 

Relative AIRE transcript levels were low in almost all thymoma subtypes, 
but there were large individual differences (Fig. 8a). Values were high in one of 
the two available type B1 thymomas, in line with previous reports (Scarpino et 
al. 2007, Ströbel et al. 2007). As expected, AIRE expression was much lower in 
the thymomas than in the adjacent autologous thymic remnants in four of the 
five available pairs (one was non-MG; Fig. 8b). 

 
 

 

Figure 8. Relative AIRE expression in thymoma types and adjacent thymic remnants. 
(a) AIRE expression in blocks from different thymoma types using keratin-8 (KRT-8) to 
adjust for epithelial cell content, and a pediatric control sample as calibrator. (b) AIRE 
expression in paired thymomas or thymic remnants for five informative patients. 
Expression was calculated as for (A). *p<0.05. 

 
 

Data from these paired thymomas or thymic remnants also illustrate the 
variability between different patients and different TSAs (Table 9). TDRD6 and 
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H+/K+ ATPase transcript values were lower in most of the thymomas than in 
the remnants, as we had expected. In contrast, the steroidogenic enzyme tran-
scripts mostly showed similar or even higher values in the thymomas. 

 
 

Table 9. Tissue-specific autoantigen transcript values in paired thymoma divided by 
autologous thymic remnant 

Gene Patient no. 

  P1 non-MG P2 P3 P4 P5

AIRE 0.02 0.04 0.10 0.02 0.00

21OH 4.87 0.11 0.38 0.22 13.90

17OH 7.87 0.11 0.26 0.88 1.17

SCC 0.22 0.32 0.49 1.44 0.12

AADC 0.00 1.40  0.00 0.04

TPH-1 0.40 0.15 0.19 0.11  

HDC 0.02 0.01 0.04 0.37 0.65

TG 0.58 0.11 0.14 0.46  

TPO 0.01 0.32 0.20 1.55 0.03

GAD65 0.01 0.06 0.00 38.30  

INS 0.31 0.19 0.02 2.31 0.07

IA-2 0.16 0.10 1.54 2.17 2.63

TDRD6 0.07 0.06 0.05 0.17 0.37

H/K ATPase 0.01 0.05 0.01 0.04  

SOX9      1.51

AChR-α 0.00 0.35  3.49  

 
 

Each number is the TSA transcript value in the patient’s thymoma block 
divided by the value in the autologous thymic remnant. Numbers in bold are  
4-fold higher in thymomas than in thymic remnants, regular font indicates tran-
script values 4-fold lower, those underlined are intermediate transcript values 
(0.26–4.00). 

The 26 thymomas (including two non-MGs) showed the most striking varia-
bility in TSA transcripts, even when AIRE expression was low (black circles in  
Fig. 9). Values for AADC, H+/K+ ATPase and AChR-α clearly followed the AIRE 
expression pattern: highest in control thymi, intermediate in remnants, and low in 
thymomas (Fig. 9). The expression levels of insulin, HDC, TDRD6 and GAD65 in 
thymoma tissue each showed significant differences from combined remnants and 
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control thymi (p<0.01; Mann–Whitney U test) (Fig. 9). For the above TSAs, values 
were all higher in non-neoplastic tissue than in thymoma tissue. 

Surprisingly, even when AIRE values were very low, we found higher TSA 
transcript values per epithelial cell in many thymomas (number of thymoma 
samples, with z-scores >3 are shown in brackets) than any of the control thymi 
for: 21OH (10/26), 17OH (1/26), TG (3/26), TPO (5/26), TH (1/26), HDC 
(2/26), TDRD6 (2/26), IA-2 (1/26), SOX9 (11/26) and TPH-1 (3/26). These 
TSAs appear AIRE-independent, despite their frequent recognition by autoanti-
bodies in thymoma and APS-I patients.  

 
 

 

Figure 9. Relative transcript signals for APS-I target autoantigens (normalized to kera-
tin-8) and shown as fold change compared with one pediatric control sample. The bars 
for each group represent the medians. The gray squares and black circles indicate sam-
ples with AIRE expression >0.1 or <0.1, respectively. Thymomas differed significantly 
from the combined remnants plus controls ** p< 0.01 (Mann–Whitney U tests).  
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5.3. IL-6-specific autoantibodies among  
APECED and thymoma patients (Study IV) 

The effect of Th17 cytokine-neutralizing autoantibodies predisposing to Can-
dida infection is not clear, as APECED and thymoma patients’ PBMCs show 
also severely impaired IL-22 and IL-17F production (Laakso et al. 2014, Ng et 
al. 2010, Ahlgren et al. 2011, Kisand et al. 2010). Interestingly, IL-17A secre-
tion by APECED T cells can range from almost absent to supra-normal in the 
patients (Kisand et al. 2010, Ng et al. 2010, Ahlgren et al. 2011). This led us to 
hypothesize that neutralizing autoantibodies to Th17-driving cytokines (IL-1, 
IL-6, IL-21, IL-23 and/or TGF- (Veldhoen et al. 2006, Stockinger and 
Veldhoen 2007, Deenick and Tangye 2007) might be involved in shaping or 
stunting Th17 responses. 
 
 

5.3.1. APECED and thymoma patients share autoantibodies  
specific for IL-6 but anti-IL-23 is present only in thymoma patients 

Sera from APECED patients, thymoma patients and healthy controls were 
tested for autoantibodies against IL-6, IL-1β, IL-21, IL-23 (p19 + p40) or TGF-
β3 using LIPS assays that preserve the natural cytokine conformations. We 
could not detect any significant autoantibody binding to IL-1β, IL-21 and TGF-
β3 except for single borderline reactivities to IL-1β and IL-21 (Fig. 10a-c). We 
found autoantibodies to IL-6 in 8 of the 41 APECED patients’ sera (19.5%, Fig. 
10d; Table 6); also in 13 (12.5%) of 104 thymoma patients, though mostly at 
moderate levels (Fig. 10d; Table 6). However, these antibodies did not correlate 
with any clinical symptoms (including CMC). The infections seen in thymoma 
patients were probably due to corticosteroid use for their MG. As the number of 
IL-6 positive patients was small, correlations with other clinical or demographic 
parameters, or tumor histology were not justified. 

Notably, 2 out of 56 (3.6%) control sera showed moderate but consistent 
anti-IL-6 levels (Fig. 10d). 

Autoantibodies in thymoma patients recognize IL-12 by its p40 subunit 
or the p35/p40 heterodimer [A. Meager, unpublished, (Meager et al. 1997, 
Meager et al. 2003)]. Therefore, it was not surprising to find autoantibodies 
also to IL-23, as it shares the p40 subunit with IL-12.  

Notably, they were evident only in patients with thymoma but not with 
APECED. Indeed, p19 + p40 were bound by 28 of the 92 anti-IL-12 positive 
thymoma patient sera (Fig. 10e). However, none of them showed reactivity 
against the IL-23-specific chain p19 alone (Fig. 11). IL-23 autoantibodies did 
not correlate with CMC in thymoma patients. 
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Figure 10. Cytokines related to Th17 maintenance and differentiation were tested with 
LIPS analysis for autoantibodies in APECED (41), thymoma (104) patients and 56 
healthy controls. The dashed lines indicate the mean of controls + 3SD 

 
 

 
Figure 11. Binding of IL-23(p19+p40), IL-23A(p19) and IL-12(p35+40) by thymoma 
sera. RU-relative units. 

 
 

To confirm the specificity of the detected autoantibodies, we pre-incubated 
positive APECED or thymoma patients’ sera with recombinant human cyto-
kines before assaying them by LIPS. Indeed, the binding of luciferase-tagged 
IL-6 to autoantibodies was completely blocked by rhIL-6 (p<0.01) but not by 
rhIL-IFN-γ (p >0.05), which was used as a control cytokine (Fig. 12a). Further 
supporting the p40-specific cross-reactivity between IL-12 and IL-23 noted 
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above, they both strongly blocked binding by the anti-IL-23 antibodies  
(p< 0.0001 for each), and with almost equal potency (Fig. 12b). 

We also used Western blotting to test for recognition of conformation-inde-
pendent epitopes by the strongest APECED sera. Binding was not detected to 
denatured IL-6: however, it was still strong against IFN-ω (Fig. 12c), which we 
used as a positive control, as autoantibodies are known to recognize linear 
epitopes in type I interferons too (Kärner et al. 2013). 

 
  

 
Figure 12. Binding specificities of IL-6 and anti-IL-23 antibodies in patients with 
APECED (A) and thymoma (T). (a), (b) Blocking of serum antibodies by pre-incuba-
tion with recombinant human (rh) IL-6, IFN-γ or/and rhIL-23 or IL-12, or buffer only 
(no); ns- not significant; (c) IFN-ω and IL-6 Gluc fusion proteins were denatured in 
SDS buffer, separated with PAGE and analyzed by Western blot using patient or control 
sera. A-APECED, T-Thymoma 

 
 

 5.3.2. IL-6 antibodies develop later in life and are mainly IgG1  

In APECED, titers against both type I IFNs and Th17 cytokines are nearly 
maximal at diagnosis (Meager et al. 2006, Kisand et al. 2010, Wolff et al. 
2013), and are found even before the onset of CMC in informative cases and 
even in infancy (Puel et al. 2010, Kisand et al. 2010). Moreover, they tend to 
decline subsequently (Fig. 13). Likewise, in most seropositive thymoma 
patients, IFN-α and/ or IL-12 antibodies are usually also found at diagnosis 
(Meager et al. 1997), though their titers usually rise sharply if the thymoma 
recurs (Buckley et al. 2001b), and may vary with changes in doses of immuno-
suppressive drugs (Meager et al. 2003). 

In sharp contrast, the IL-6 autoantibodies – when present – were low initially 
but apparently increased over time in both patient groups, and were maximal in 
samples taken decades after disease onset (Fig. 13).  
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Figure 13. Changes in IL-6, IFN-α2, IL-17A, IL-17F and IL-22 specific autoantibody 
levels over time in APECED and thymoma patients. We detected no antibodies against 
Th17 related cytokines in patient T37. A: APECED, T: thymoma, LU: luminescence 
units 

 
 

Next, we studied the IgG subclasses of the antibodies in the six strongest IL-6-
binding sera (3 patients with APECED and 3 with thymoma). Reactivity was 
mainly in the IgG1 or in some IgG3, except T1, who showed reactivity in all 
four subclasses (Table 10). 
 
 
Table 10. IL-6-specific IgG subclasses in APECED and thymoma patients 

APECED IgG1 IgG2 IgG3 IgG4

A23 25 1 3 1

A28 1 1 29 1

A35 31 1 1 1

Thymoma  

T1 2 3 2 3

T37 6 1 1 1

T48 27 1 1 1

The values are expressed as RU (fold changes over the average luminescence of healthy control samples). 
Positive values are marked in bold. A-APECED patients; T-Thymoma patients 
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5.3.3. Autoantibodies fail to neutralize IL-6,  
but may increase its stability  

To help understand the biological significance of these autoantibodies against 
IL-6, we next tested their capacity to inhibit signaling from its receptor via 
phosphorylation of STAT3, which acts downstream in this pathway. FACS 
analysis clearly showed no inhibition by purified IgGs from six APECED pa-
tients; indeed, mean signals were even marginally higher than with the six con-
trol IgGs (3.927 vs 3.584, p >0.05; Fig. 14a). This is well in line with the rarity 
of staphylococcal infections in APECED patients and argues strongly against 
our hypothesis that anti-IL-6 autoantibodies are involved in the pathogenesis of 
CMC in APECED patients.  

Next, we studied the serum levels of IL-6 and of the Th17 cytokines IL-17A, 
IL-17F and IL-22 in the available unthawed APECED and healthy control 
serum aliquots. IL-17F and IL-22 levels were below the detection limit in most 
of these sera, but IL-6 and IL-17A levels were both higher in the two anti-IL-6 
positive patients than in the nine negatives or the ten healthy controls (p<0.001, 
Fig. 14b and c). This suggests that IL-6-specific autoantibodies could prolong 
the half-life of IL-6 in vivo, thus indirectly enhancing IL-17A production by 
Th17 cells. So as to confirm this finding, the experiment should be repeated, as 
the number of anti-IL-6 positive patients’ was too small. 

In summary, we demonstrated novel IL-6 antibodies in APECED and thy-
moma patients. These antibodies develop later in life, are mainly IgG1, recog-
nize conformational epitopes, and fail to neutralize the biological effect of IL-6, 
rather they seem to stabilize it in vivo. 
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Figure 14. Testing for biological effects of IL-6 antibodies. 
 (a) Intracellular phospho-STAT3 staining in cells incubated with medium alone (black), or plus IL-6 
(red) or plus IL-6 pre-incubated with either APECED patients’ IgG (blue) or controls’ IgG (green). 
Serum concentrations of IL-6 (b) and IL-17A (c) in APECED patients with or without IL-6-specific 
autoantibodies and in age-matched healthy controls. APECED patients positive for anti-IL-17A 
autoantibodies are indicated with red open diamonds. 
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5.4. Type I IFN autoantibodies as possible protecting factor 
against T1D in APECED patients (Study V) 

The biological significance of neutralizing type I IFN specific autoantibodies in 
APECED patients have been puzzling for a long time. The studies in mouse 
models have suggested that type I IFNs contribute to the development of T1D 
(Carrero et al. 2013, Downes et al. 2010, Ferreira et al. 2014, Kallionpää et al. 
2014, Foulis, Farquharson and Meager 1987). Although APECED patients by 
definition suffer from polyendocrinopathy, T1D affects only ~10–20% of patients 
and manifests primarily in adulthood (Husebye et al. 2009, Kisand and Peterson 
2015). This is surprising, because radioimmunoassay analyses have shown that 
clinically-applied biomarker for the likely onset of T1D, GAD65 specific auto-
antibodies, are present in higher proportions of APECED patients’ sera (Ziegler et 
al. 2013). Our LIPS analyses show that many patients carried GAD65 antibodies, 
but among them relatively few presented clinically with T1D (Fig. 15).  
 
 

 

Figure 15. Autoantibodies against the T1D specific sensitive marker, GAD 65, in 
APECED patients. 

 
 

Considering the possibility of the protecting role for type I IFN-autoantibodies, 
we analyzed the patients further for the ability to neutralize type I IFNs. Con-
sistent with the fact that T1D onset in APECED patients is usually in adulthood, 
GAD65-reactivities almost invariably arose post-adolescence, so the patients 
comprised 20 adults and one 8-year-old girl. In common with almost all 
APS1/APECED patients, each of the 81 patients harbored autoantibodies to 
IFN-α and IFN-, as assayed by LIPS (Fig. 16). 

However, when those antibodies were tested for their capacity to neutralize a 
series of IFN- subtypes (using a HEK-Blue IFN-α/β/reporter cell line express-
ing an alkaline phosphatase reporter from an ISRE), they showed a striking, 
statistically significant segregation with the patients’ clinical status (Fig. 17). In 
sum, the eight patients presenting with T1D showed negligible or very low 
capacity to neutralize any of the 12 IFN- subtypes tested, whereas patients 
presenting without T1D collectively neutralized each IFN- subtype.  
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Figure 16. Heatmap for type I IFN binding by APECED patients’ sera. 
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6. DISCUSSION 
APECED syndrome is the best known example of large-scale failure of central 
tolerance, caused by defective AIRE function, leading to aberrant negative 
selection of autoreactive T cells. Nevertheless, a large portion of the clinical and 
serological manifestations seen in APECED patients cannot only be explained 
by failures in negative selection: the preference for failures in endocrine organs, 
weak genotype-phenotype correlation, and high titer cytokine-specific auto-
antibodies. This thesis looked further into the peculiarities and varieties of 
autoantibodies seen in AIRE/Aire deficiency. 
 
 

6.1. AIRE deficient mice differ from APECED patients  

Aire deficient mice do not display the APECED specific parathyroid and 
adrenal failures or CMC, but preferentially have immune cell infiltration in 
thyroid, exocrine pancreas, stomach, eye and lacrimal/ salivary glands. Further-
more, all Aire knock-out models lack the IFN-specific binding that is distinctive 
to APECED patients (Hubert et al. 2009, Pöntynen et al. 2006). 

For the first time, we describe Th17 related cytokine-specificity in Aire defi-
cient mice. However, the generation of these autoantibodies in mice is different 
from APECED patients, as they recognize mostly IL-17A and their capacity to 
neutralize develops in older mice (~2years). As reported earlier, the background 
of the Aire deficient mouse influences significantly the development of 
autoantibodies. Aire deficient mice on BALB/c background have overall higher 
serum autoreactivity towards different organs (especially stomach) and develop 
more infiltrations than B6 mice (Jiang et al. 2005, Hubert et al. 2009). We also 
saw higher titers and stronger neutralization of IL-17A, IL-17F and IL-22 
autoantibodies on BALB/c background. 

We can speculate that variability in autoantibodies is the reason for different 
outcome of Candida susceptibility (Hubert et al. 2009, Ahlgren et al. 2011). In 
addition, the skin composition of mice and humans is different, as humans have 
more of interfollicular epidermis compared to hair follicle epithelium, and there 
are differences in the skin immune cell populations as well (Pasparakis, Haase 
and Nestle 2014). The important phenotypic differences of AIRE deficiency 
between the two species call into question the relevance of the mouse model in 
understanding the disease mechanisms in APECED patients. Therefore, it is 
important to study patients in every possible way. What complicates studying 
the disease pathology in humans, though, is that there is currently no APECED 
thymus available for research. 
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6.2. Thymoma as a surrogate for APECED thymus 

One of the most peculiar phenomena in human AIRE deficiency are the cyto-
kine-specific autoantibodies that develop early in life and are predictors of dis-
ease progression. The ability to bind and neutralize type I IFNs and Th17 
related cytokines also emerges in the presence of thymus tumors (Kisand et al. 
2010, Meager et al. 1997, Meager et al. 2006). 

As thymi from APECED patients were unavailable, we studied the changes 
in the expression of TSAs in thymomas, which also present deranged thymic 
architecture and often lack AIRE expression, while the production of T cells 
continues, especially in type B (Scarpino et al. 2007, Ströbel et al. 2007, Marx 
et al. 2010). 40% of thymoma patients showed APECED typical antibodies [e.g. 
21-hydroxylase, IFN-α, GAD65, side-chain cleavage enzyme; (Table II from 
Wolff et al. 2014). However, these antibodies did not always correlate with their 
corresponding diseases. The typical APECED clinical manifestations [e.g. auto-
immune thyroiditis, T1D, alopecia, CMC, vitiligo; (Table 1, Wolff et al. 2014)] 
were present in only 8% of thymoma patients and often appeared long after 
thymoma.  

Nevertheless, some TSAs were clearly underexpressed in thymomas, notably 
AChR-α, H+/K+ ATPase, AADC, insulin, GAD65, HDC, and TDRD6. This 
partially fits with previous reports of AIRE-dependent, but variable expression 
of insulin, AChR-α, IA-2, and H+/K+ ATPase (Ströbel et al. 2007, Kisand et al. 
2011, Taubert, Schwendemann and Kyewski 2007, Giraud et al. 2007). 
Notably, AChR-α transcript levels were high in some thymoma patients, imply-
ing that underexpression is not the sole cause of their MG. This also seems 
unlikely because none of our APECED patients had MG or detectable autoanti-
bodies against AChR or titin. Other AChR subunits can be important targets, 
too (Maclennan et al. 2008), and so can pre-existing peripheral tolerance to any 
of the subunits. In striking contrast, transcript values for 21OH, TPO, and 
SOX9 were higher (with positive z-scores) in 40–65% of our thymoma samples 
than in the control thymi – even in the tumors in which AIRE transcripts were 
almost undetectable. 

We recognize that measuring only the expression of TSA transcripts is prob-
ably not sufficient to describe changes in their protein levels; however, in our 
current study we were unable to quantify TSA proteins, as their levels were low. 
In addition, several factors could have possibly affected AIRE and TSA expres-
sions, for example changes in thymoma, blood supply and hormone levels that 
occur over time (Willcox et al. 1987). Also, the clonal nature of TECs (Inoue et 
al. 2003) suggests that expressions are different for each TEC (Derbinski and 
Kyewski 2010, Taubert et al. 2007), so they could also vary between and within 
individual tumors. However, we could not see striking variations with our dupli-
cate samples (Fig. 8b). Finally, thymomas seem to have one common progenitor 
with maturation and differentiation defects, which differs between thymoma 
types (Willcox et al. 1987, Ströbel et al. 2014). We believe that the influence of 
some of these restrictions could be reduced if single TECs were to be analyzed. 
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Our data also suggest AIRE-independent expression of 17OH, SCC, TG, 
TH, and TPH-1. Likewise, AIRE-independent expression has been reported for 
TG, TPO, and GAD67 in control human TECs (Taubert et al. 2007, Li et al. 
2009), and for 17OH and 21OH in AIRE-negative thymomas (Ströbel et al. 
2007). What is more intriguing, type I IFNs, IL-17A, IL-17F, IL-22, thyro-
globulin and steroidogenic enzymes are not expressed in mTECs (Kisand et al. 
2010, Li et al. 2009, Pazirandeh et al. 1999), meaning that negative selections 
naturally continue in AIRE deficiency. However, as these autoantibodies and 
organ pathogeneses still occur in the latter, there seem to be other mechanisms 
that contribute.  

Taking into account all the similarities that have hitherto been found 
between thymoma and APECED patients, and the emerging knowledge about 
the additional roles of AIRE in mTEC maturation and differentiation, tissue and 
blood samples from thymoma patients can be accepted as substitutes for those 
of APECED patients. However, as with the Aire deficient mouse model, several 
factors have to be considered when results from thymomas are interpreted. 

 
 

6.3. Autoantibodies to IL-6 are not  
neutralizing the biological effect 

Our study characterized autoantibodies specific to IL-6 in APECED and 
thymoma patients. Interestingly, autoantibodies to other cytokines needed for 
the maintenance and induction of Th17 were not present in APECED patients. 
Thymoma patients had autoantibodies that bound to IL-23, although it was due 
to cross-reaction with the shared IL-12p40 subunit (Fig. 10e), as there was no 
significant difference between binding efficiencies of the two (Fig. 11). Surpris-
ingly, the IL-6 antibodies lacked neutralizing capacity (Fig. 14a), meaning that 
impaired IL-22 and IL-17F production, seen in both syndromes with CMC 
(Kisand et al. 2010, Laakso et al. 2014, Ng et al. 2010), have other causes than 
disturbed Th17 induction. Non-neutralizing autoantibodies are also in line with 
the absence of staphylococcal infections, otherwise characteristic of disturbance 
in IL-6 signaling pathway (Puel et al. 2008). Interestingly, studies on large num-
bers of healthy blood donors have revealed IL-6-binding reactivity in up to 9% 
of the cases, and also, in human IgG preparations, using either RIA or ELISA in 
earlier studies (Galle et al. 2004, Hansen et al. 1991). Only 0.1% of the sera 
showed high binding levels and were able to neutralize the biological function 
of IL-6 without any sign of disease in the respective donors (Galle et al. 2004).  

The anti-IL-6 autoantibodies seem to produce the opposite effect in systemic 
sclerosis patients, as they are able to stabilize IL-6 in vivo, leading to higher IL-
6 levels in autoantibody positive patients. These autoantibodies are believed to 
work as carriers, as IL-6 activity was preserved in these immune complexes 
(Suzuki et al. 1994). This kind of cytokine-stabilizing effect has been described 
for anti-IL-2 (Spangler et al. 2015). According to current opinions, antibodies 
may increase the persistence of the cytokine in the circulation through neonatal 
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Fc receptor (FcRn). FcRns are expressed on vascular endothelium and on 
myeloid cells that take up IgG, which is then pinocytozed with plasma and 
binds to FcRn in late endosomes. Finally, it is recycled back into the plasma 
still retaining its bound cytokine (Pyzik et al. 2015). Our data also indirectly 
suggest that the IL-6 autoantibodies can potentiate Th17 development, as the 
two informative anti-IL-6 positive patients had the highest IL-17A levels in 
their sera (Fig. 14b and c). Both patients’ sera lacked reactivity towards IL-17A, 
as did six of the nine anti-IL-6-negative patients (Fig. 14c). Furthermore, we 
saw the highest percentage of IL-17A producing T cells (Fig.3c from 
Ref.Kisand et al. 2010) in one of the patients (A35) with IL-6 antibodies. 
However, as the sample size was too small, given that we had only two anti-IL-
6 positive patients, further analysis on a larger scale is required to repeat and 
confirm this finding. 

 
 

6.4. Autoantibodies bind cytokines by  
their conformational epitopes 

In order to understand the neutralizing mechanisms of the anti-cytokine 
autoantibodies, we attempted to map their immunodominant epitopes in IFN-α2 
and IL-22. In many cases, these proved to be conformational, as none of the 
shorter truncated polypeptides or denatured IFN-α2 was recognized by these 
patients’ sera. Other sera were able to bind to their longer C- but not N-terminal 
polypeptides (encompassing approximately two-thirds of their lengths). These 
results were corroborated further using recombinant human IFN-α2 that was 
denatured in reducing conditions before SDS-PAGE. IL-22 and IL-6 seem to be 
even more conformation-sensitive, because adsorption to plastic for ELISAs 
reduces or even abolishes antibody binding [Fig. 12c; (Kisand et al. 2010)]. 
Autoantibodies to IL-12 and IL-23 seem to be less conformation-dependent: 
many can be detected using protein arrays (Rosenberg et al. 2006), ELISAs 
(Meager et al. 2003), or even immunoblotting (A. Meager, unpublished data), 
though LIPS must be more sensitive for detecting low autoantibody levels. 

These C-terminal regions of IL-22 and IFN-α2 contain amino acids that are 
more prone to make β-turns, and are hydrophilic: two important qualities for 
evoking specific antibodies that recognize intact proteins (Grant 2002). As 
receptor-binding of both IL-22 and IFN-α2 is via sites closer to their C-termini 
(Quadt-Akabayov et al. 2006, Bleicher et al. 2008), any autoantibodies against 
these are likely to neutralize. The C-terminus of IL-6 has been described to 
form an α-helix, and to be indispensable for biological activity (Brakenhoff et 
al. 1990). However, as IL-6 signaling can be mediated both in cis (forming 
tetrameric complex: IL-61*IL-6R1*gp1302) and in trans (hexameric complex 
IL-62*IL-6R2*gp1302), blocking the binding of one of these does not abolish all 
signaling (Lacroix et al. 2015, Scheller and Rose-John 2006). It is plausible that 
IL-6 specific autoantibodies in APECED and thymoma patients allow one of the 
receptor signaling pathways to continue. Furthermore, as the serum levels of  
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IL-6 are higher in patients with antibodies, these autoantibodies could poten-
tially mediate stabilization through FcRn. As conformation sensitivity seems to 
prevail among cytokine-specific autoantibodies, tests should be carried out in 
solution. There, the natural conformation and superior sensitivity is preserved 
(neutralization, LIPS, bead-based assays) (Kisand et al. 2010, Puel et al. 2010, 
Burbelo et al. 2010, Kisand and Peterson 2015). 

 
 

6.5. Autoantibody isotypes may reveal the sites  
and environment of autoimmunization 

Determining the cytokine-specific immunoglobulin classes and their subclasses 
helps to eliminate the possibility of other interfering serum components in 
neutralization assays, e.g. soluble receptors (Xu et al. 2001, Novick et al. 1995) 
and also hints at the possible cytokines, environment and cells involved in these 
antibody responses (van Zelm 2014, Jackson, Wang and Collins 2014). 

The predominance of the IgG class in these cytokine autoantibodies elimi-
nates the possibility of mucosal autoimmunization against them, as in this case, 
the potency should lie in IgA fraction. IgA autoantibodies would be quite an 
expected outcome, as they are produced at high concentrations in mucosal sites, 
for protection against invading pathogens. APECED patients suffering from 
chronic Candida infection could overstimulate the cytokine production and 
autoantibodies could emerge. In addition, some gastrointestinal autoimmune 
diseases are often characterized by IgA autoantibodies in the blood sera. For 
example, anti-tissue transglutaminase specific IgA is highly specific, used as a 
diagnostic marker of coeliac disease (Teesalu et al. 2009, Dieterich et al. 1997). 
Interestingly, in primary biliary cirrhosis, the major autoantigen, pyruvate 
dehydrogenase, is recognized and inhibited by both the IgG and IgA fractions 
(Kisand et al. 1998). However, as in the case of APECED and thymoma 
patients, the high IgG prevalence suggests a different place for the auto-
immunization.  

Subclass analysis of autoantibodies against type I IFN, Th17 related cyto-
kines and IL-6 added another surprising finding – a high proportion of autoanti-
bodies recognizing IFN-α and IL-22 belonged to IgG4 subclass, in addition to 
the expected IgG1 that is the dominant subclass of organ-specific 
autoantibodies (Brozzetti et al. 2010, Bøe et al. 2004). This prevalence of IgG4 
was not seen in the less frequent IL-6 antibodies (Table 10). As IL-6 antibodies 
are mainly IgG1, this result correlates well with the idea of the IL-6 stabilizing 
effect by the FcRn, which preferentially binds IgG1 (Roopenian and Akilesh 
2007). In addition, the anti-IL-17A subclass analysis of the Aire deficient 
mouse emphasizes even more the dominance of mIgG1, implying a Th2 bias 
even more clearly than in the human syndromes. However, one should keep in 
mind that the BALB/c strain, which had the highest reactivity in our 
experiments, is Th2 biased (Locksley et al. 1987).  
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The early emergence of type I IFNs and IL-22 autoantibodies seems to 
involve Th2 differentiation, in addition to Th1 cytokines. High IgG4 serum 
levels are usually associated with a decrease in allergic reactions and IgE anti-
bodies (Aalberse et al. 2009, Tomicic et al. 2009). In our study, the levels of 
IgE were minimal (Fig. 3). Thus, it is plausible that IL-10 produced by Tregs, 
and possibly a specific subset of B cells, as well as chronic antigen exposure, 
are involved in generating high IgG4 levels (Mobs et al. 2008, van de Veen et 
al. 2013). The IgG4 is known to moderate IgE hypersensitivity by competing 
with both high and low affinity receptors and possibly engaging the inhibitory 
receptor FcγRIIb (Platts-Mills et al. 2004, James and Till 2016, Lambin et al. 
1993). IgG4 is induced during hyposensitizing therapy by injecting 
intradermally small amounts of allergen (Aalberse 2011, Müller 2005). The 
IgG4 antibodies do not activate complement pathways, and therefore, may help 
to inhibit IgG1-antigen complex binding to the complement factors. This ability 
could be involved in regulation of immune inflammation (van der Zee, van 
Swieten and Aalberse 1986, Schroeder and Cavacini 2010). For example, the 
anti-inflammatory characteristics may lie in the potential of exchanging a heavy 
chain and attached light chain with another IgG4 molecule, resulting in 
bispecific antibodies (van der Neut Kolfschoten et al. 2007, Aalberse et al. 
2009). Although we had two patients’ sera that contained only IgG4 
autoantibodies to IFN-α and IL-22, their neutralizing capacity was as high as in 
those with IgG1 autoantibodies. 

Interestingly, IgG4 is prevalent in certain autoimmune diseases affecting the 
epidermis, e.g. pemphigus (Aoki, Sousa and Diaz 2011), or other epithelial 
tissues, e.g. IgG4-related sclerosing disease (Zen and Nakanuma 2011). In our 
view, these suggest autoimmunization in epithelial tissues, such as the skin, or 
the thymus, where AIRE-expressing medullary epithelial cells show maturation 
markers similar to those in the epidermis (Kisand et al. 2011, Wang et al. 2012). 
This is supported by a strikingly similar IgG4 autoantibody bias in patients with 
thymomas (Fig. 3b), wherein the key feature shared with APECED appears to 
be the generation of new T cells in the absence of AIRE (Kisand et al. 2011, 
Kisand et al. 2010). Also, one subset of myasthenia gravis patients have mainly 
IgG4 autoantibodies that target the muscle-specific kinase (MuSK) (Vincent, 
McConville and Newsom-Davis 2005). However, the thymus appears to be less 
involved in this subgroup (Leite et al. 2005). Although IgG4 antibodies do not 
activate complement, their pathogenicity is generally accepted in pemphigus 
(Sitaru and Zillikens 2005), and has now gained ground in MuSK-MG, where it 
might result from interference in MuSK dimerization or other interactions 
(Vincent et al. 2005). So it is plausible that the IgG4 bias in APECED and 
thymoma patients might reflect active regulatory mechanisms rather than 
inflammatory responses. 
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6.6. Dynamics of cytokine autoantibodies 

The cytokine-specific autoantibodies have become the hallmark of APECED, 
because of the early onset and prolonged presence in the patients’ blood sera. In 
APECED patients the autoantibodies against type I IFNs reach high levels, 
which remain stable for up to 30 years (Meager et al. 2006, Meloni et al. 2012, 
Toth et al. 2010). As to thymoma patients, their anti-IFN-α/IL-12 titers are 
persistent and a sudden increase in titer is a marker of tumor recurrence 
(Meager et al. 1997, Buckley et al. 2001b). The titers of Th17 specific autoanti-
bodies also rise very early in life in APECED patients, but the titer seems rather 
to decrease over time (Kisand et al. 2010). In sharp contrast, the IL-6 autoanti-
bodies – when present – were initially low, but apparently increased over time 
in both of our patient groups, and were maximal in samples taken decades after 
disease onset (Fig. 13).  

During this study, we had the opportunity to study IgG subclasses of anti-
IFN-α and IL-22 antibodies, starting from very young ages. In addition to find-
ing substantially high autoantibody titers, we also saw high IgG4 levels, espe-
cially to IL-22, already at an early age (Table 8). This is rather surprising, as the 
constant region of IgG4 is known to be the minority subclass and the most distal 
of IgG subclasses, therefore rearrangements of Cγ4 would be more likely to 
take place later in life, as seen after vaccination (Hendrikx et al. 2011). On the 
other hand, the immune system of infants is considered to be tuned more 
towards Th2 responses, and our finding of high IgG4 titers conforms to this 
theory, as IgG4 antibodies, like IgE, need IL-13 and IL-4 (Punnonen et al. 
1993).  

The overall high autoantibody titers against cytokines in APECED children 
are rather peculiar, as vaccination of healthy infants (before 2 years of age) 
usually results in rather weak immune responses (Siegrist and Aspinall 2009, 
Truck and Pollard 2010). This may hint that the immune system of APECED 
patients goes through more rapid maturation, similarly seen in IPEX (immuno-
dysregulation polyendocrinopathy enteropathy X-linked syndrome), where 
patients often suffer from type 1 diabetes already at birth (Xavier-da-Silva et al. 
2015). Nevertheless, the mechanism of APECED seems to involve more 
immune cells and functions than IPEX, which is largely mediated by T cells. 

 
 

6.7. Thymus as a possible site for  
autoimmunization towards cytokines 

Although thymus is regarded to be a tolerogenic organ, tertiary lymphoid organ-
like structures, and plasma cells specific to AChR, IL-12 and/or type I IFNs, are 
present in the thymus of thymoma patients with MG (Hill et al. 2008, Willcox 
et al. 2008, Shiono et al. 2003). Also, B cell numbers are increased in mouse 
thymus in the absence of AIRE (Hässler et al. 2006). Magri et al. 2014 have 
shown that RORγt+ ILCs can interact with spleen marginal zone B cells that are 
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T cell independent, and give necessary survival signals (CD40L, BAFF, Delta-
like 1). In addition, they get survival signals (e.g. IL-7) from MAdCAM-1+ 
marginal reticular cells and influence them via tumor necrosis factor and 
lymphotoxin (Magri et al. 2014). It can be conceived that distorted micro-
environments emerge in AIRE deficient thymi and that AIRE-independent 
autoantigens are available there for bias selection. This may create pro-inflam-
matory environments, where cytokine expressions are high, creating an altered 
cross-talk between ILCs and mTECs (Kisand et al. 2011). So, it is plausible that 
T and B cells could be primed and actively autoimmunized against cytokines 
and/or target organs, as seen in thymomas (Shiono et al. 2003, Kisand et al. 
2011). Given that cytokine-specific autoantibodies persist for decades, the ILCs, 
that are present in peripheral lymphoid tissue, could produce cytokines and 
thereby boost the autoimmunization against cytokines (Kim et al. 2009, Meager 
et al. 2006, Kisand et al. 2010). Persistent secretion of type I IFNs in homeo-
static conditions have been already reported in the normal thymic medulla and 
in germinal centers (Meager et al. 2006). 

On the one hand, autoimmunization towards cytokines could be mediated by 
AIRE-expressing thymic B cells, on the other, it seems improbable, as these 
type I IFNs, Th17 cytokines, and additional self-protein specific autoantibodies 
are also found in thymomas, where B cells are rare, and also, AIRE sufficient 
(Yamano et al. 2015a, Kisand et al. 2011, Meager et al. 1997). This casts doubt 
on the participating role of extrathymic Aire-expressing cells, whose tolerance 
induction functions have only been shown in mice (Gardner et al. 2008, Poliani 
et al. 2010). Moreover, AIRE seems to be dispensable in tolerance induction in 
specific dendritic cell populations (Crossland et al. 2016). So it is possible that 
AIRE deficiency influences thymic B cell tolerance indirectly through function-
ally competent thymic γδ-cells or ILCs, dysregulated in thymomas and capable 
of creating pro-inflammatory priming environments (Ribot et al. 2009, Dudakov 
et al. 2012, Meager et al. 2006). 

 
 

6.8. Autoantibodies can have protective roles 

Although the autoantibodies specific to type I IFNs have been known for a long 
time, the direct effects had remained inexplicable. Susceptibility to viral or 
other infections is not increased in APECED patients (Kisand and Peterson 
2011), in contrast with children that have genetically impaired type I IFN path-
way (Ciancanelli et al. 2015). In our study, we analyzed APECED patients for 
GAD65 autoantibodies, which are considered to be a potential sign of β cell 
autoimmunity (Ziegler et al. 2013), and of the capacity of the patient serum to 
neutralize type I IFNs. Intriguingly, the patients whose sera lacked the ability to 
interfere with type I IFNs biological function, or only moderately inhibited it, 
had T1D. As type I IFNs have been known to be important in the development 
of T1D (Foulis et al. 1987, Downes et al. 2010), neutralizing them could poten-
tially have a protective effect. Recently, the connection between autoantibodies 
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to IFN-γ and Aspergillus spp. protein was found. The cross-reaction was linked 
to the shared linear epitope (Lin et al. 2016). According to one hypothesis, T1D 
development is probably triggered by enterovirus infection (Hober and Sauter 
2010, Filippi and von Herrath 2008). However, in our case, the epitope that 
APECED patients recognize is conformational, and thereby discovering similar 
molecular mimicry is almost impossible. 

We here propose a new concept that in certain cases, the naturally-arising 
autoantibodies can be protective against some of the autoimmune diseases. The 
existence of protective autoantibodies is not widely accepted, although studies 
in humans and animals have shown that naturally occurring IgM autoantibodies 
that recognize senescent and pro-apoptotic cells help to clear cell debris, 
protecting thus against autoimmunity (Nagele et al. 2013, Binder 2010, 
Tuominen et al. 2006). Protective effect of IgG autoantibodies is not widely 
acknowledged, despite the widespread use of therapeutic monoclonal anti-
bodies. Systemic sclerosis, Sjögren's syndrome, multiple sclerosis or SLE – 
pathologies known to develop through interplays of IL-17/Th17 and type I IFNs – 
are absent in APECED patients, making it a potentially elegant example of the 
beneficial effect of these cytokine-neutralizing autoantibodies (Ambrosi, 
Espinosa and Wahren-Herlenius 2012). Likewise, Th17-driven psoriasis was 
diagnosed in only two of our patients, each of whom lacked auto-antibodies to 
IL-17A, IL-17F and IL-22 (our unpublished data). Furthermore, atopy/allergy is 
seemingly rare among APECED patients, although whether anti-IL-5 antibodies 
are causative for this phenotype requires more study. For now, the data pre-
sented by this study strongly suggest that antibodies prevalent in APECED 
patients include several with profound therapeutic and diagnostic potential. 

In conclusion, the studies on cytokine autoantibodies in APECED and thy-
moma have advanced the knowledge about central tolerance mechanisms in 
thymus. They support the view that AIRE should have more roles than solely 
being the regulator of transcription and thereby being the key factor of T cell 
negative selection (Anderson and Su 2011). As AIRE has other roles in terminal 
differentiation of mTEC (Matsumoto 2011, Matsumoto et al. 2013), in 
intrathymic thymocyte migration (Laan et al. 2009), in thymic architecture 
(Gillard et al. 2007) and in mTEC ultrastructure (Milicevic et al. 2010), it may 
have essential function in normal thymic homeostasis.  
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7. CONCLUSIONS 
1. High proportions of type IgG4 autoantibodies that develop already at a very 

young age in APECED patients and the lack of IgA autoantibodies indicate 
non-mucosal sites and regulatory T cell involvement in the autoimmuniza-
tion process against type I IFNs and IL-22.  

2. In contrast, IL-6-specific autoantibodies develop late in APECED and thy-
moma patients’ life, are mainly of IgG1 type and fail to neutralize the 
biological effect of IL-6. Instead, they might mediate the stabilization of  
IL-6 in vivo. 

3. The autoantibody binding to type I IFNs, Th17 related cytokines and IL-6 is 
mostly conformation-sensitive. 

4. Most of the major organ-specific autoantigens that are shared by APECED 
and thymoma patients appeared to be AIRE-independent, supporting the idea 
of multiple roles of AIRE in thymic tolerance induction. 

5. Aire deficient mouse model is not suitable for studying the mechanisms of 
autoimmunization against cytokines. 

6. Our data suggest that high titers of neutralizing autoantibodies to type I IFNs 
are protective against T1D in APECED patients. 
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8. SUMMARY IN ESTONIAN 
Tsütokiinide spetsiifilised autoantikehad  

AIRE puudulikkuse korral 

Autoimmuunne polüendokrinopaatia-kandidoos-ektodermaalne düstroofia 
(APECED) on haruldane autoimmuunhaigus, mis esineb ennekõike väikestes, 
isoleeritud populatsioonides (Iraani juudid, soomlased, sardiinlased). APECED 
on põhjustatud ainult ühe geeni – autoimmuunsuse regulaatori (AIRE) – mutat-
sioonidest. AIRE geen ekspresseerub eelkõige tüümuse säsirakkudes, kus selle 
üheks peamiseks teadaolevaks ülesandeks on reguleerida koespetsiifiliste anti-
geenide avaldumist. AIRE mutatsioonide tagajärjel häirub arenevate tümot-
süütide negatiivne selektsioon, mille tagajärjel pääsevad potentsiaalselt auto-
reaktiivsed T rakud perifeeriasse, põhjustades autoimmuunkahjustusi.  

APECED patsientide haiguspilt on väga kompleksne, kuid peamiselt saavad 
kahjustada endokriinorganid. Enamasti algab haigus lapseeas kroonilise naha ja 
limaskestade kandidoosiga (KMK), millele järgnevad neerupealiste ja kõrval-
kilpnäärme puudulikkused. Hiljem võib lisanduda väga erinevaid autoimmuun-
seid organikahjustusi, näiteks pankrease -rakkude hävitamise tagajärjel kuju-
nev esimest tüüpi diabeet. APECED patsientidele on iseloomulik kõrges tiitris 
autoantikehade esinemine. Nende hulgas on kõige suurema esinemissagedusega 
tsütokiinide vastased autoantikehad. 

I tüüpi interferoonide (IFNide) spetsiifilised autoantikehad on olemas kõigil 
patsientidel ning need on kujunenud usaldusväärseks diagnostiliseks markeriks. 
Kuigi antud antikehad on enamasti kõrges tiitris ja neutraliseerivad, ei ole 
täheldatud patsientide kõrgenenud vastuvõtlikkust viirushaigustele, mis olnuks 
ootuspärane, kuna I tüüp IFNid on olulised kiire viirusvastuse tekkeks. Lisaks 
esinevad 40–90% patsientidest interleukiin (IL-)17A, IL-17F ja IL-22 spetsiifi-
lised autoantikehad, mis otseselt korreleeruvad kroonilise Candida albicans’i 
infektsiooniga. Nii I tüüpi IFNide kui IL-17A, IL-17F ja IL-22 vastaste anti-
kehade tekkemehhanism ning -keskkond AIRE puudulikkuse korral on jäänud 
veel seletuseta, kuna antud tsütokiinide ekspressiooni ei reguleeri AIRE. 

Aire uurimiseks on loodud ka erineva taustaga Aire-defitsiitseid hiireliine, 
kuid mudel-haiguse fenotüüp pole nii tõsine ning puuduvad ka enamik 
APECED patsientidele iseloomulikest autoimmuunkahjustustest ning autoanti-
kehadest. Samas on leitud tüümuse kasvaja – tümoomiga – patsientidel nii I 
tüüpi IFNide kui IL-17A/F kui IL-22 spetsiifilisi antikehasid, millest viimasena 
mainitud on korrelatsioonis C. albicans' i esinemisega. Osadel neist patsienti-
dest jätkub tüümuses T-rakkude küpsemine, kuid kuna normaalne homöostaas 
koos AIRE ekspressiooniga on häirunud, satub perifeeriasse ka autoreaktiivseid 
T-rakke, mis võivad põhjustada mitmeid autoimmuunilminguid. Lisaks on 
tümoomi patsientide tüümuses kirjeldatud idukeskuse sarnaseid struktuure, 
milles toimub autoantikehade tootmine. 
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Uurimistöö eesmärgid 
Käesoleva töö põhiliseks eesmärgiks oli iseloomustada APECED patsientides, 
tümoomihaigetes ja Aire puudulikus hiiremudelis tsütokiinispetsiifilisi anti-
kehasid: 

− iseloomustada tsütokiinivastaseid antikehasid täiskasvanud ja väga noo-
rtel APECED patsientidel, 

− uurida, kas APECED ja tümoomi patsientides on autoantikehasid Th17 
toovate rakkude diferentseerumiseks ja säilitamiseks vajaminevate tsüto-
kiinide vastu; 

− leida IFN-α2a ja IL-22 immunodominantsed epitoobid; 
− uurida Aire-puudulikes hiirtes tsütokiinivastaste autoantikehade 

esinemist; 
− uurida, kas põhilised APECED patsientide organspetsiifilised autoanti-

geenid on tümoomi, tüümuse jäänukis ja normaalses tüümuses AIRE-
sõltuvad; 

− uurida, kas APECED patsientide vereseerumis esinevate I tüüpi inter-
feroonide spetsiifiliste autoantikehade neutraliseerimisvõime võiks olla 
negatiivses korrelatsioonis 1. tüüpi diabeedi (T1D) esinemisega. 

 
Materjal ja metoodika 
Uurimistöös olid kasutusel viis erinevat patsientide gruppi: 1) 19 APECED ja 
40 tümoomi patsienti; 2) 11 APECED patsienti ja 2 diagnoosita sugulast (vanu-
ses 15 kuud – 9 aastat); 3) 26 tümoomi patsienti ja 5 südameoperatsiooni käigus 
eemaldatud lapse tüümust; 4) 41 APECED ja 104 tümoomi patsienti; 5) 81 
APECED patsienti. APECED patsientide vereseerumid pärinesid Norrast, 
Sloveeniast, Soomest, USAst, Ungarist ja Eestist; tümoomi patsientide vere-
seerumid ja tüümuse koeproovid Suurbritanniast ning tervete laste tüümuse koe-
proovid Eestist. Kontrollgruppide vereseerumid pärinesid tervetelt perekonna-
liikmetelt ja/või tervetelt veredoonoritelt. Kõik teostatud uuringud on kooskõlas 
Helsingi deklaratsiooniga, omavad kohalike eetikakomiteede luba ning uuri-
tavad olid allkirjastanud informeeritud nõusoleku. Aire-puudulikud hiired olid 
967–979 del13 mutatsiooniga ning C57BL/6 või BALB/c taustal, uuritav 
vereseerum eraldati neilt 6–8 nädala või 1,5–2 aasta vanuselt. Kõik hiirtega 
tehtud tööd olid kooskõlas Euroopa Liidu direktiiviga 86/609/EEC. 

Vereseerumist isoleeriti immunoglobuliin (Ig) G ja IgA vedelikkromato-
graafia abil ning seejärel kontsentreeriti lahused ja hinnati nende puhtust SDS-
PAGE’i ja Western blotiga. Autoantikehade seondamisvõimet hiirtel tuvastati 
ensüüm-immunosorptsioon-analüüsi (ELISA). Lutsiferaasil-põhinevat-immuno-
sadestamis-analüüsi (LIPS) kasutati inimeste vereseerumi tsütokiinispetsiifilise 
seondamisvõime ja IgG alaklasside määramiseks. IFN-α2a ja IL-22 immuno-
geensete epitoopide hindamiseks jagati need fragmentideks, mis kloneeriti 
kokku lutsiferaasiga ning teostati seejärel LIPS analüüs. Samuti testiti Western 
blot analüüsiga patsientide vereseerumi seondamisvõimet pärast IFN-α2a, IFN-
ω, IL-6 ja IL-22 denatureerimist SDS-geelil. Autoantigeenide ekspressiooniks 
eraldati külmutatud tümoomide ja kontrollisikute koetükkidest RNA, millest 
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seejärel tehti cDNA ning teostati reaalaja PCR. Seerumite/väljapuhastatud 
immunoglobuliinide neutraliseerimisvõime hindamiseks kasutati rakupõhiseid 
neutralisatsiooniteste. 

 
Uurimistöö peamised tulemused ja järeldused: 

1) immunoglobuliini G fraktsioon, mitte IgA, neutraliseerib APECED pat-
sientide vereseerumis tsütokiine. See tähendab, et tsütokiinivastane auto-
immuniseerimine ei toimu limaskestadel ja pole ilmselt otseselt Candida 
infektsiooni tagajärg. APECED ja tümoomi patsientidel on IgG1 ja IgG4 
põhilised IFN-α ja IL-22 seondavad alaklassid. Kuna IgG4 tase vere-
seerumis on tavaliselt kõige madalam ning APECED patsientidel on seda 
tüüpi autoantikehade tase kõrge väga varajases eas, siis võib järeldada, et 
autoimmuniseerumises nende tsütokiinide vastu osalevad ka regula-
toorsed T-rakud.  

2) APECED ja tümoomi patsientidel on vereseerumis IL-6 spetsiifilised 
antikehad, mis tekivad hilisemas eas, on eelistatult IgG1 alaklassist ning 
ei suuda IL-6 bioloogilist funktsiooni neutraliseerida, vaid näivad selle 
taset vereseerumis stabiliseerivat.  

3) autoantikehade seondumine I tüüp IFNide, Th17 tsütokiinide ja IL-6ga 
toimub peamiselt konformatsiooniliste epitoopide kaudu: tsütokiinide 
lineariseerimise või nende molekulaarse terviklikkuse häirumisel auto-
antikehade seondumine vähenes või kadus hoopis. 

4) Aire-puuduliku hiire vereseerumis, sarnaselt APECED patsientidele, on 
olemas Th17 tsütokiinide vastased autoantikehad. Samas on nende 
dünaamika vastupidine APECED patsientidele: tiitrid tõusevad ja neutra-
liseerimisvõime tekib hiire vananedes ning need sõltuvad hiireliini taus-
tast. Seega ei ole võimalik Aire-puudulikku hiiremudelit kasutada tsüto-
kiinde vastase autoimmuniseerumise mehhanismide uurimiseks. 

5) kuigi tümoomi koes on AIRE ekspressioon madalam kui normaalses tüü-
muses, ei järgi peamised APECEDi ja tümoomi patsientide poolt jagatud 
autoantigeenid sama mustrit. See tähendab, et paljude autoantigeenide 
avaldumine tüümuses ei ole AIRE-st sõltuv ning viitab sellele, et AIRE-l 
on tüümuses kanda mitmekesisem roll kui vaid koespetsiifiliste geenide 
transkriptsioonilise regulaatori oma.  

6) esimest tüüpi diabeet kujuneb vaid väikesel osal APECED patsientidest, 
ning enamasti alles täiskasvanueas. Samas on GAD65 spetsiifilised auto-
antikehad, mis on isoleeritud T1D markeriks, määratavad ka neil 
APECED patsientidel, kellel T1D puudub, mis viitab pankreasesaare-
keste vastasele autoimmuunsusele. Meie töö tulemused lubavad oletada, 
et APECED patsientide vereseerumite võime neutraliseerida I tüüpi IFNe 
kõrges tiitris kaitseb neid T1D avaldumise eest. 
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