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Abstract:

Public sector data-driven decision support systems are uniquely challenging to design due

to the ramifications they have on the societal level. Accountability and ethical considerations

require these systems to arrive at an equilibirium between accuracy and interpretability amid

various implementation and data constraints. While these systems need to contribute to legitimate

governance through reasoned and explainable decision-making, they also need to accurately

model the policy outcomes they were designed to support. Inopportunely, inductive data-driven

systems struggle to solve problems that rely on heuristic input. In this thesis, a particular

knowledge engineering technique was adopted to augment a public sector Machine Learning

decision support tool with domain expert knowledge. The case in question is OTT – a job-seeker

profiling tool used by the Estonian Unemployment Insurance Fund to predict the long-term

unemployment risks of their clients. Upon augmenting it with knowledge from caseworkers and

data scientists associated with the project, some evidence was found that accounting for expert

knowledge in probabilistic data-driven models can lead to a model that performs better on new

out-of-sample data and is more in line with underlying domain rules. This yields important

implications on the future of Machine Learning in the public sector as it opens up new potential

use cases in avenues where 1) labelled training data is hard to come by, 2) a more generalizable

model is preferred due to frequent changes in the surrounding context, 3) a model has to perfectly

mimic domain logic for interpretability and explainability reasons.

Keywords:

Public sector, Machine Learning, domain knowledge, knowledge engineering, decision support

systems, expert systems, job-seeker profiling
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1 INTRODUCTION

Automation is the future. Information technologies are increasingly being harnessed for produc-

tivity and performance gains in various organizational processes, from high-level management

to procedural street-level tasks. Intelligent data-driven solutions have transformed business

models across many application domains from medicine to marketing to education (Dwivedi

et al. 2021: 2). While automated systems have proved to excel at tasks that are repetitive or

involve making inductive generalizations from quantifiable data, they struggle to solve complex,

multi-dimensional problems. Machines are known to be inherently probabilistic and lack cogni-

tive judgment invaluable for making reasoned decisions (ibid.: 6). This can render automated

systems unsuitable for use cases where significant weight falls on human judgment.

This limitation is holding back innovation in numerous application domains where per-

formance and workflow optimization benefits of automation would otherwise be welcomed.

The public sector is one such area where the use of automation systems is under scrutiny

due to the ramifications they have on administrative decisions and the inner workings of state

agencies (ibid.: 26). Literature on the use of Artificial Intelligence and Machine Learning

(hereinafter referred to as AI and ML, respectively) in the public sphere calls for the need to

ensure that these systems are fully consistent with the processes they are integrated into. A

slew of publications have denoted the importance of human knowledge and value judgment

in public sector automated systems1. Public agencies have been notably vigilant regarding the

adoption of automation technologies. First, the implementation process of these technologies

can often be an uphill climb because system developers and procurers struggle to find a common

language. While automated systems integrated into public processes must embed appropriate

policy goals, miscommunication between technical developers and public procurers often makes

this requirement hard to fulfill. Second, as government agencies hold a lot of responsibility and

accountability before the public, machines involved in these processes have to produce fully

explainable and actionable output in order to contribute to legitimate administrative decisions.

Third, as public processes have the power to govern human lives, deployment of machines raises

ethical conundrums in this domain.
1See: Mulligan and Bamberger (2019); Wirtz, Weyerer, and Geyer (2019); Dwivedi et al. (2021: 28)
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A special branch in AI and ML literature known as knowledge engineering is devoted

to augmenting data-driven systems with human heuristics to address these issues. Although

a notoriously complex undertaking, some approaches have been proposed for incorporating

human judgment in various stages of model development – from data preparation to parameter

weighting (Yu et al. 2007: 17–21). Literature in this field is encouraging researchers to explore

different methods of accounting for heuristic knowledge in data-driven models across various

application domains2. This thesis adopts Gennatas et al. (2020) Expert-Augmented Machine

Learning method for public sector use cases and seeks to answer the question – what are the

benefits of augmenting public sector data-driven systems with domain expert knowledge?

This method seeks to exploit qualitative knowledge to identify and penalize system components

that are not in line with the logic and business rules of its application domain. Special focus

is on the public sector subfield of social policy, where high associated costs, the requirement

for evidence-based policy-making, and the weight of human judgment in decision-making add

further relevance to the aforementioned issues with public sector automation. The subject for

analysis is OTT, a job-seeker profiling tool used by the Estonian Unemployment Insurance Fund

to estimate long-term unemployment risks for their clients. Expert knowledge is elicited from a

coalition of system developers and unemployment office caseworkers who use the profiling tool

in their day-to-day work. Based on the results of prior similar studies, it is expected that the

integration of expert knowledge will help to 1) identify confounding model artifacts not in line

with labor market domain logic, 2) increase the predictive accuracy of the model, and 3) achieve

a more cost-effective model that is able to learn with less training data.

The thesis is structured as follows: chapter two presents a comprehensive overview of ML-

based decision support systems, including associated challenges and assumptions relevant to

systems designed specifically for public sector use cases. After introducing the case of OTT and

providing theoretical justification to how domain knowledge integration can enhance it, research

questions and hypotheses are formulated in the end of this chapter. Chapter three provides a

detailed overview of the research methodology and data sources. Chapter four is dedicated

to analysis and interpretation of the results, while chapter five summarizes key findings and

discusses study limitations and potential future research avenues.

2See: Sinha and Zhao (2008: 298); Deng et al. (2020: 20); Schapire et al. 2002: 545
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2 RESEARCH RELEVANCE AND PREMISES

Present-day society is surrounded by technological artifacts. New inventions are continuously

being integrated with our lives to make our day-to-day tasks more efficient and convenient.

Technological systems are not only designed and constructed by the society, but they also

innately shape the society that employs them (Hughes et al. 2012: 51). Scholars that have

studied the societal impact of new technologies have recognized that ideally, technologies should

not only aspire to solve issues of efficiency, safety, reliability and ease of use but should also

promote and adhere to the social, moral, cultural, and political values of the domain they are

integrated into (Flanagan, Howe, and Nissenbaum 2008: 322). Machines and technologies

should be judged according to how they convey power and authority in the society, instead

of focusing solely on their material outputs like potential productivity gains or environmental

impact (Winner 1980: 121).

In his essay on political qualities in new technologies, Langdon Winner (ibid.: 123) considers

a vivid historical example where the design of a specific technology contains political properties

and becomes a means of settling a particular issue in society. He mentions that for a visitor

of the Big Apple, it can seem a little strange how highway overpasses on Long Island (a very

affluent neighborhood) are hanging suspiciously low, leaving very little clearance for vehicles

from driving under (ibid.). It turns out, as products of their era, they were deliberately designed

with low clearance to discourage public transport vehicles to drive on these roads (ibid.). That

meant the lower-to-middle class people who relied on public transportation to get about the

city (which just happened to contain most of the Afro-American community in New York at

the time) were kept out of the district because most buses simply could not physically access it

(ibid.: 124).

This would be an example of a situation where a technology intentionally embodies political

qualities and shapes its surrounding social context by design. It is, however, the unintended

social impact that is even more difficult to foresee and address in the process of designing

new technologies. Acknowledging and mediating unintended and undesired consequences has

been of high interest to scholars studying the social role of technologies (Waelbers 2011: 2–3).

Waelbers (2011: 3) echoes a famous example of the early energy-saving lightbulbs that were

invented to save energy but ended up increasing overall energy consumption because they were

cheap to use in places that would not have been lit up in the first place. The same negative effect

can occur with technologies that, instead of directly tackling a practical problem, mediate the
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decision-making process leading to a potential solution to that problem. As put by Vriens and

Achterbergh (2015: 316), responsible decision-making entails solving a particular issue at hand

while “minimizing morally relevant side effects”. In order to ensure responsible use of a decision

support technology, special attention should be cast on which practices and stakeholders will

ultimately be affected and whether this technological fix is compatible with associated values

and social conditions (Waelbers 2011: 94; Vriens and Achterbergh 2015: 328).

These admonitions are not unwarranted – there have been real-life cases where complex

technological agents with too much decision-making discretion have brought about negative

social impacts. An infamous case of algorithm-induced bias in a high-profile decision-support

technology is the story of the COMPAS risk assessment system for the United States judicial

system. In 2016, a team of investigative journalists alleged that the learning-based system that is

used to estimate the recidivism risk of criminal defendants is biased against Afro-Americans

because the algorithm was found to misclassify one as high-risk more likely than for other

groups (Dressel and Farid 2018: 1). This incited a debate among scholars and data scientists

over the issue of algorithmic discrimination, with some arguing that the system is actually not

biased because the base rates for recidivism differed in the first place (Dieterich, Mendoza,

and Brennan 2016: 20–21) (Kleinberg, Mullainathan, and Raghavan 2016: 17). Regardless

of the verdict, it is clear that unwanted societal consequences are not to be overlooked when

designing technologies that can potentially steer the course of human lives. As I will explain in

the following chapters, when and how these concerns should be addressed ultimately rests on

our judgments about the use case of a particular technology in question.

2.1 Automation in public processes

In this rapidly developing digital age, governments are more eager to adopt new technologies

than ever. Public agencies are undergoing a paradigmatic shift in how they operate, with window

clerks, caseworkers, adjudicators and other street-level bureaucrats being replaced by automated

expert systems and web sites (Bovens and Zouridis 2002: 175). Information Technology has

proven to contribute to public administration by making governments perform more effectively

across the board, from internal management to public service provision (Danziger and Andersen

2002: 617). IT-based applications that have generated considerable productivity and efficiency

gains range from backroom operations such as digital data-sharing infrastructures and Big Data

Analytics (Höchtl, Parycek, and Schöllhammer 2016: 149) to more specialized applications
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such as geographic information systems, and public health services (Danziger and Andersen

2002: 593, 605). Over the past decades, the entire novel field of e-government has emerged

to cover a variety of use cases and design practices of IT-based solutions specific to the public

sphere (Yildiz 2007: 650). Despite the recent surge of associated investments and applications

the world over, public sector automation remains a novel subject (Wirtz, Weyerer, and Geyer

2019: 597).

Various definitions of data-driven systems have been brought forward in literature, of which

some can be a bit misleading, yet ultimately refer to the same basic concept. For instance, it

seems like the “Artificial Intelligence” label gets thrown around a lot in literature to glorify even

the least complex of regression models. For the sake of simplicity, I prefer to consider any kind

of data-driven applications under the overarching umbrella term of automated systems in this

subchapter, dedicated to the challenges associated with these systems in the public sector. Wirtz,

Weyerer, and Geyer (2019: 601) identified four major challenges with automated systems that

are amplified in the public domain that the author has further synthesized into two overarching

themes – implementation barriers and the social aspect – that help to explain the rationale of this

thesis.

Implementation barriers

The first implementation barrier with public sector automation concerns data privacy. Gener-

ally, the more data is collected, the better and more tailored the resulting service (Bekkers and

Zouridis 1999: 190). While the collection and use of personal data for automated services are

commonly regulated regardless of the use case or domain of operation, the scope of services

renders proper data collection especially troublesome in the public sector. Private companies

such as social media websites or banks can freely process their customers’ data because they

have generally given a consent of some sort. People have a choice whether or not to become

their clients and share their personal data. Services and applications in the public domain,

however, often assume the availability of data of the entire population because anyone from

the public is by definition a beneficiary of public services. Take a hypothetical assessment tool

that predicts the risk of some person becoming unemployed in, say, the next month in order to

preemptively detect potential recipients for a limited amount of unemployment benefits. While

it is not a problem to legally gather and process data of people who have registered with the

unemployment office in the past, these are not the only people who can theoretically become
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unemployed and eligible for benefits in the future. For this application to produce an output

that accurately represents the labor market status of a person relative to the rest of the society,

time-series data from every single citizen, employed or unemployed, would be necessary. At

the same time, it would be unthinkable to lock essential public services behind an extensive

personal data processing consent as it would be associated with government surveillance the

fearsome “Big Brother” state notion (Bekkers and Zouridis 1999: 190).

The second acute implementation challenge regards communication barriers between in-

stitutions and system developers. Despite public policies commonly affecting a wide range of

stakeholders, it ultimately falls to a small coalition of procurers and system developers to design

a system in accordance with the contents of a particular policy (ibid.: 192). As denoted by

Bekkers and Zouridis (1999: 192), public sector information systems often end up reflecting

what this coalition perceives as relevant. It is the responsibility of public servants and system

engineers – two groups of people with inherently different perspectives and knowledge (Bailey

and Barley 2020: 4) – to build a model with appropriate business rules, variables, and parameters

to serve a functional policy that aims to shape the society in a particular way. It is no secret

that information systems favour machine-readable quantitative data over soft, qualitative data

(Bekkers and Zouridis 1999: 192). As a result, public organizations are employing machine

learning applications that rely on data patterns and inductive reasoning (Mulligan and Bam-

berger 2019: 778) perhaps more than they should in this case. While proven to offer numerous

benefits from prediction accuracy and workflow optimization standpoints, these systems tend to

displace human policymakers’ knowledge-based judgment with fundamentally probabilistic and

sometimes confounding inference that is associated with machines in general. (ibid.).

Recent scholarly attention has converged on the concerning reality that public agencies

procuring and employing machine learning systems have often little to no input nor sufficient

knowledge of the working principles and capabilities of these systems (ibid.). Procurers have no

idea about how different machine learning algorithms predict their outcomes, what variables

are used, or even what kind of data are these predictions ultimately based on (ibid.: 778, 801).

The reality is that it is not public officials’ responsibility to dissect and understand complex

machine learning systems, neither can they be expected to have the necessary time and specialist

knowledge to do so. However, as illustrated by the COMPAS case, there are legitimate concerns

that designing and (mis)using efficiency-oriented machine learning tools in the public domain

with little regard to the surrounding context may have a detrimental impact on the society.
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Finally, financial feasibility and optimal budgeting is another critical point of concern (Wirtz,

Weyerer, and Geyer 2019: 602) as automation projects in the public sector are ultimately publicly

funded. The resulting system has to be financially accountable to the public in that the expected

benefits outweigh the total associated development and maintenance costs.

Accountability and ethical considerations

The other major challenge regards the social role of automation technologies. Innovation in

the public sector can often be an uphill climb because of what is ultimately at stake. Introducing

an automated application in the public sector requires a meticulously optimized and specialized

strategic approach as a myriad of potential issues can potentially shackle the project in develop-

ment hell. While the quality of the application and data it utilizes are essential for any IT-based

solution, those employed in the public sector must be especially flawless due to their societal

ramifications. The data these systems rely on must be accurate, unbiased and relevant, and it

needs to be collected and stored properly (ibid.; Mulligan and Bamberger 2019: 796–797). The

choice and operationalization of sensitive variables such as gender, ethnicity and race is another

particularly important policy decision, as posited by Mulligan and Bamberger (2019: 796).

Inadequately designed applications can result in biased policy outcomes such as in case of the

above-mentioned COMPAS recidivism prevention tool, where it essentially comes down to the

quality of the data and model specification to determine which defendant is detained and who

walks free.

A growing body of literature in the fields of human-AI interaction and Machine Learning is

putting a strong emphasis on developing explainable algorithmic systems (Amershi et al. 2019;

Dwivedi et al. 2021: 7–8) that “provide actionable recourse for the individuals whom they are

making [...] decisions about or for” (Troya et al. 2018: 4). The introduction of machines in the

governance chain challenges a central principle in public administration – that public actors

are to be held accountable for their actions and policies (Bekkers and Zouridis 1999: 191).

Opaque and purely inductive statistical systems cannot contribute to legitimate governance

as they neglect input from policy-makers and relevant stakeholders (Mulligan and Bamberger

2019: 801). The legitimacy of the state is hinged on the premise that administrative decisions are

not taken arbitrarily but through an reasoned deliberation process involving affected stakeholders

(ibid.: 804). Applications that have the power to govern human lives (or at least guide the

decision-making process) must be entirely explicit, transparent, and fair (Wirtz, Weyerer, and
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Geyer 2019: 603). By virtue of minimizing human bias, data-driven systems can often actually

improve upon decision fairness (Dwivedi et al. 2021: 26). However, whenever the machine does

fail (and it eventually does), reduced accountability of public servants evokes the question – who

is accountable when “the computer says no” (ibid.)? While different opinions circulate over

who is to be pointed at in this case (Wirtz, Weyerer, and Geyer 2019: 603), the accountability

requirement certainly puts extra pressure on developers and procurers alike to deploy a system

that does not only minimize machine errors but also allows for these errors to be easily detected

and corrected to avoid unwanted social consequences.

It is an intensely debated question whether data-driven models should be used to solve

problems that rely on cognitive judgment as some attributes intrinsic to humans are yet to be

translated effectively (ibid.: 604) (Dwivedi et al. 2021: 2). While the gross oversimplification

that good machines can think and act like humans often makes its way into literature and

definitions of Artificial Intelligence (Wirtz, Weyerer, and Geyer 2019: 599), in reality they

can at best be trained to mimic human decisions by eliciting empirical correlations from past

data using complex mathematics. The way the system is able to “think” or “act” then, depends

on the quality and objectivity of the data. As indicated in a previous chapter, data-driven

systems are far from ideal in that they are not capable of replicating rational human behavior

influenced by consciousness, emotions, and common sense (ibid.: 604). Systems learning from

bad training data can echo previous human biases and structural issues in future predictions,

potentially amplifying an underlying societal problem instead of fixing it (ibid.: 605), thus

neglecting the ultimate principle of governments to treat their citizens on fair and equal terms

(Dwivedi et al. 2021: 26). The bottom line is that in order to be fully legitimate, public sector

automated systems must reintroduce appropriate expert knowledge to justify their influence on

administrative decisions (Mulligan and Bamberger 2019: 818).

High cost of error

Whereas these aforementioned issues hinder the adoption of data-driven systems across the

public domain, the effectiveness and viability of a particular data-driven tool are ultimately

dependent on its intended use case. Take systems based on the Bayesian classifier – a common

type of supervised prediction model employed across many different application domains,

including the public sector. The Bayesian approach allows for testing whether a given hypothesis

is true or false based on available data and selected influencing factors (Carey and Matthews
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2017: 198). Regardless of application domain, the standard performance measures for this type

of model tend to be based on a simple confusion matrix that reveals how many positive cases

were indeed labelled as positive (true positives) and how many negatives were correctly labelled

as negative (true negatives) (Carey and Matthews 2017: 200). While aspects mentioned above

are important for determining whether a data-driven tool is appropriate in a certain use case, the

most pivotal question for every application should be – what is the cost of machine error and to

what avail can this be remedied. No model is perfect – classification errors are bound to happen

due to model incompleteness, especially in cases where significant weight is put on qualitative

data not easily exploitable by machines.

Comparatively high cost of machine error helps to explain further why the adoption of

data-driven solutions has been rather slow and conservative in public sector use cases compared

to most other application domains. Tasks that rely on qualitative data and complex heuristics

are more difficult to automate. Combined with the far-reaching ramifications of public sector

processes, high cost of error can often outweigh potential efficiency gains. A personalized

advertisement prediction model that wrongly classifies one’s gender and displays an ad for

a lipstick instead of a beard trimmer is nowhere near as consequential as a decision-support

tool that arbitrates the freedom of a real person. A case in point is (once again) the COMPAS

recidivism prevention tool where false positives (defendants not prone to recidivism in reality but

detained until trial nonetheless) and especially false negatives (defendants prone to recidivism

but falsely released) can have huge ramifications for the rest of the society.

2.2 Data-driven tools in social and unemployment policy

Now that general challenges with automated data-driven systems in the public sphere have

been outlined, I shall continue narrowing the scope of this study by focusing on the specific

subdomains of social and unemployment policy. As the overarching goal of social policy is

to enhance welfare by redistributing resources among its citizens as efficiently as possible,

the estimation and management of various financial, social and institutional risks is of key

importance for governments (Baldock, Vickerstaff, and Mitton 2011: 1–2). I will proceed to list

three main reasons why the correct use of data-driven systems should be under scrutiny in the

making of social (and by extension, unemployment) policy.
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The scale and cost of social policy

Welfare provision is expensive. In the European Union, total expenditure on social protection

amounted to a hefty 22% of GDP in 2020, with the most significant expenses being pensions,

sickness and disability payments, family and children related payments, and unemployment

benefits (Eurostat 2022). In addition, 2020 marked the highest expenditure on social protection

ever in the EU as means to mitigate the consequences of the global COVID-19 pandemic (ibid.).

Particularly noteworthy was the increase in unemployment-related expenditures, which rose

from C 180 billion to C 298 billion at the EU level in a span of a single year between 2019

and 2020 (ibid.). High relative cost combined with the magnitude of social services means

that exploring ways to make service delivery more cost-effective and efficient is always at the

forefront of government and public priorities.

More evidence based policy-making

Despite social policy creation being ultimately driven by values and politics, evidence-based

policy-making is paramount to achieving accountable and justified resource distribution within

the society (Baldock, Vickerstaff, and Mitton 2011: 3). Policy-makers and service providers

undergo profound research to determine the most cost-effective intervention strategy that can

lead to desired policy outcomes (Davies and Nutley 2000: 121). The prominent role of extensive

data-based monitoring and impact assessment studies indicates that the necessary infrastructure

for more sophisticated data-driven tools already exists in the field of social policy.

Weight of expert judgment

The primary intended outcome of social policy is what Baldock, Vickerstaff, and Mitton

(2011: 11, 14) call the “Robin Hood” function – to redistribute resources from the less needy

to the more needy. Meanwhile, the importance of evidence-based data-driven policy-making

has already been stressed, this kind of redistribution effort puts a lot of emphasis on ethical and

moral considerations so that the result would ultimately be perceived as “fair” and “rational” by

the society (Baldock, Vickerstaff, and Mitton 2011: 14) (Kemshall 2001: 20). Value judgments

from human domain experts must be embedded into the data-driven system for these decisions

to be meaningful, reasoned, and reflective of the policy that it is designed to fulfill (Mulligan

and Bamberger 2019: 803–804).
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Algorithmic job-seeker profiling in unemployment policy

A key area of social policy where data-driven solutions are showing increasingly promising

results in practice, is unemployment policy (Desiere and Struyven 2021: 367). The process

of job-seeker profiling involves segmenting clients based on their characteristics and statuses

in order to determine the group of people who require imminent intervention by the Public

Employment Service (PES) (Desiere, Langenbucher, and Struyven 2018: 1). The general aim

is to differentiate the people who are likely to find a job on their own from the disadvantaged

people who are in need of support and extra incentives to do so (ibid.). Desiere, Langenbucher,

and Struyven (2019: 8–9) have presented three distinct approaches for job-seeker profiling that

are currently used or developed in OECD countries:

1. Rule-based profiling – this widely used approach involves classifying job-seekers into

client groups based on individual factors such as age, education or unemployment spell

duration (Desiere, Langenbucher, and Struyven 2019: 8) – for example, some employment

benefit may be made available for all people over the age of 50 with a certain level of

education. While this method is simple to understand and implement, most applications of

rule-based profiling need to be combined with caseworker judgment or further assessment

tools to make the service provision as personalized as possible (ibid.). For how easy it is

to understand, a typical rule-based approach still produces relatively heterogeneous client

groups that cannot capture many potentially important personal details about an individual

that a human caseworker would be able to.

2. Caseworker-based profiling relies on human caseworkers’ judgment in classifying job-

seekers into priority groups (ibid.). Caseworkers can either be given full discretion in

judging clients’ risks and needs (as it has previously been done in Estonia), or more

typically, their decision-making may be supported by additional analytical tools (ibid.).

The obvious benefit of this approach is that the decisions are tailored to each client. The

downsides of this approach are cost-ineffectiveness as it requires a lot of human workforce

to deliver, and the fact that decision-making validity ultimately hinges on their competence

and objectivity.

3. Statistical (algorithmic) profiling uses an inductive statistical model to predict output

related to clients’ labor market status (ibid.: 9). Statistical profiling has the advantage

of estimating individual risk scores for each job-seeker as opposed to classifying them
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according to pre-defined decision rules (Desiere, Langenbucher, and Struyven 2019: 9).

At the same time, it remains much more resource-effective than caseworker-based profiling

(ibid.) as it is ultimately a quantitative computational method.

Statistical and algorithmic profiling of job-seekers has recently become a hot subject for ap-

plied research, with quite a few independent methods being simultaneously designed and tested.

Troya et al. (2018) used machine learning models with different levels of complexity to estimate

long-term unemployment risks. They demonstrated the trade-off between model accuracy and

interpretability and highlighted the importance of decision explainability in automated job-seeker

profiling and public processes in general (Troya et al. 2018). Viljanen and Pahikkala (2020)

developed a Markov chain model to estimate risks related to people’s unemployment statuses

based on individual-level registry data obtained from the employment and business service of

Finland. Actual in-use profiling models have been rolled out in different countries as well. Since

2020, the Austrian Public Employment Service (AMS) has used a logistic regression-based

profiling system that classifies job-seekers into support categories based on a statistical model of

individual labor market prospects (Allhutter et al. 2020: 2; Desiere, Langenbucher, and Struyven

2019: 12). Different variations of ML-based statistical profiling tools have also been in use in

Australia, Belgium, Denmark, Ireland, Italy, Latvia, New Zealand, Sweden, the United States

(ibid.) and most recently – Estonia.

The Belgian PES is one prominent case where an ML-based statistical profiling tool has

been piloted in a real public unemployment service process. The Belgian system is intended to

assist employment office caseworkers in deciding which job-seekers to prioritize by estimating

the probability of becoming long-term unemployed for each individual (Desiere and Struyven

2021: 371). Under the hood, it operates on a Random Forest model, which is continuously

being trained with standard socio-demographic data such as job-seekers age, education, and

nationality, and more specific employment-related information, including their previous job

spells and participation in training programs (ibid.). The primary use-case of the Belgian

system is to determine which job-seekers are most at risk and should therefore be contacted first

(ibid.: 372). Thus, the tool does not determine the type of support that the job-seeker receives

but merely ensures that the most vulnerable people are addressed as soon as possible (ibid.).

Just like for the COMPAS case mentioned in chapter 1, concerns over algorithmic dis-

crimination have emerged with automated job-seeker profiling. Allhutter et al. (2020) critical

reflection on the Austrian profiling tool discusses issues with accountability and transparency
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in its working practices. Among their key points is that despite advertised gains in accuracy

and efficiency, decision-making responsibility ultimately still lies on human caseworkers to

correct the occasional mistake made by the system (Allhutter et al. 2020: 14). By shifting to an

algorithmic solution, evaluation of human job-seekers ends up being based on quantifiable data,

and fails to take into account cognitively detectable aspects including “soft” skills and motivation

(ibid.). Because there is a constant need for model validation, caseworkers are torn between

either putting full discretion to the automated prediction system or going back to trusting their

own experience and judgment (ibid.). It needs to be pointed out, however, that as opposed to the

Belgian system that is used for determining contact priority, the Austrian system was given full

discretion to determine what kind of support should be offered to certain people. The Austrian

system classifies people into three categories based on their risk score, which instantly dictates

the type and intensity of provided support measures (ibid.: 2).

2.3 Machine Learning enabled decision support systems

Many decisions are based on predictions for the future. Companies hire employees based on

how productive they predict them to be, banks give out loans based on how likely the client is

to pay them back in the future, and investors put their capital in companies that they believe

will do well in the future. Some of these real-world problems are relatively easy to predict – for

example, when there are not too many factors to be considered and one or two factors are hugely

decisive. When one witnesses a completely clear blue sky as far as the eye can see, one would

be quite confident that the chance of imminent rainfall is small to none. More complicated

prediction problems require a deeper analysis of multiple factors and their possible interactions.

Predicting a Formula One race winner requires considering a range of factors – from the skill

and motivation levels of the drivers, to changing weather conditions, to different race strategies,

to performances of certain cars on certain tracks, and so on. The more factors are included,

the more complex the model grows, introducing questions like how much weight should each

factor be assigned to predict the outcome? Is the value for some predictor variable dependent

upon the value for some other predictor variable(s)? For example, if some drivers drive better in

the rain than others, their skill levels would be conditioned upon the weather variable, and this

interaction would somehow have to be accounted for in the model for accurate output.

There is a famous saying in the field of statistics, most often attributed to British statistician

George E. P. Box (1976: 792) that all models are wrong, but some are nonetheless useful. In other
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words, in most cases of statistical modelling, we end up making tentative assumptions about the

real world, which we know are incorrect or over-generalized (Box 1976: 792). Yet by treading

carefully, researchers may still be able to reach a relatively valid and informative approximation

of the situation (ibid.). There is virtually no hope for researchers to ever accurately predict

highly dimensional problems such as the stock market or the result of a sporting event (being

able to do so would render these activities essentially pointless anyway). Still, even the most

daunting problems can theoretically be modelled with a reasonable degree of success as long as

the interpreter knows roughly when and where the model tells the true story. Bookies capitalize

on experts’ knowledge to try and predict the outcomes of sports events accurately enough that

it is profitable for them to do so, whereas financial analysts rely on their domain knowledge

and market history in predicting the general trends that the market should adhere to in the

long run. It is a notoriously difficult problem to predict how a stock will perform in the next

week, day, or hour. Predicting its performance over the long term is a lot easier, however, as it

allows the analyst to examine long-term patterns in the company’s quarterly financial results,

the performance of the sector it belongs to, together with various macroeconomic factors.

Advances in the relatively young and novel field of Machine Learning have proven to be

helpful in tackling some of those complex, multi-dimensional prediction problems. Machine

Learning is a breakthrough in data science that allows analysts to detect complex and highly

dimensional patterns in data (Kleinberg, Lakkaraju, et al. 2018: 238). The fundamental goal of

machine learning is to make computer systems learn from available data and use this knowl-

edge to improve their decision-making accuracy for future predictions (Jordan and Mitchell

2015: 255). ML methods and applications vary greatly, to the point where the term itself

has become somewhat overused. At one end of the spectrum, complex ML methods such as

deep neural networks have become integral components in different artificial intelligence (AI)

frontiers by facilitating speech recognition, visual detection and natural language processing

through learning from training data (ibid.). At the other end, the term can technically be used to

glorify simple regression models that link a set of predictors to an outcome variable and are then

used to predict new output for previously unseen data.

For the purpose of this thesis, I will focus on a particular branch of ML systems – Supervised

Machine Learning. Supervised (also referred to as inductive) ML systems typically estimate a set

of complex functions that link a desired output variable Y to a set of various predictor variables

X (Molina and Garip 2019: 28). The set of functions (the model) can then be applied to new
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(unseen) data to predict the outcome variable Y for that data (Molina and Garip 2019: 28). Yu

(2007: 3) describes the inferential process behind inductive machine learning in two relatively

straightforward steps:

1. “A learning system L constructs a hypothesis space H from a set of training examples (or

observations) S, for example a set of training examples consisting of input-output pairs

S = {⟨x1, c(x1)⟩}, and the inductive bias B predefined by the learning system and the

task T ;”

2. “the learning system then searches through the hypothesis space to converge to an optimal

hypothesis f consistent with training examples and also performing well over other unseen

observations.”

In layman’s terms, a supervised ML algorithm is given the opportunity to learn or train from

using human-labelled data – for example, if training data indicates that for ten recorded clear

days, it only rained once, then the algorithm predicts that in the future it is likely not going to

rain on a clear day. Of course, a problem worthy of ML application usually involves a vector of

many potential predictors, which makes it hard for humans to estimate the outcome as reliably

and accurately as a trained machine would.

Supervised ML prediction algorithms can only be as reliable as the data they are trained

with. It is unlikely that the data set used for training or “teaching” the model covers the whole

population (Yu et al. 2007: 4). In other words, the algorithm must often predict the outcome for

observations for which there does not exist an ideal match from the training set, meaning the

algorithm has to make some sort of a generalization based on other, similar training observations.

When the training set is rather small, the model has to generalize more, resulting in lower

prediction accuracy. At the same time, if the model is set to account for as much variation in the

training data as possible, the model runs a risk of overfitting – generalizing too little. Such a

model becomes too specific to the underlying data structure of the training set and, as a result,

performs poorly on a new unseen set of observations (ibid.). This trade-off is known as inductive

bias in the Machine Learning community (also known as the bias-variance trade-off in statistics),

and it presents one of the most problematic questions for ML system designers: how to find the

optimal hypothesis space for the learning task so that it is large enough to solve the problem at

hand, yet small enough to ensure that the solution remains generalizable for future observations

(ibid.: 5; Baxter 2000: 149).
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Modelling constraints are just the tip of the iceberg, however. As machines and AI-based

solutions are gaining an increasingly important role in human lives, the use of ML applications

has introduced broader challenges that go beyond mathematics and data science. Different

contexts and use cases often require prediction tasks to be approached on a case-by-case basis, as

constraints set by available resources, data privacy or the social, legal and political environment

that the system is eventually integrated into, tend to vary considerably (Jordan and Mitchell

2015: 255). Certain use cases may require the system to be easily interpretable, explainable,

and/or visualizable (ibid.), achieving which is often a surprisingly difficult feat when engineering

ML applications. For example, an ML algorithm that predicts the likelihood of getting some

disease should ideally not be black-box. While it may be considered valuable to highlight the

group of people who are most at risk based on a simple probability score, it would be crucially

important to understand why their risk is as high as it is and which factors contribute most to

each individual score, as this additional information can determine the type of treatment that is

ultimately offered to the individual. Increased model interpretability usually comes at a cost,

however. It has been established that in AI and ML applications, there is an inherent trade-off

between model accuracy and interpretability because the underlying interactions become less

comprehensible as the complexity of the model increases (Dwivedi et al. 2021: 8). This trade-off

is especially noticeable for modern deep learning systems such as neural networks, which make

the task of model explanation notoriously difficult for analysts (ibid.). Ultimately, there is little

use for a data-driven system that does not produce fully interpretable, actionable output, that

should ultimately be the basis for evidence-based policy intervention.

Today, more and more organizations are trying to leverage the potential of Machine Learning

technology to optimize their working and decision-making processes (Edwards, Duan, and

Robins 2000: 36). While earlier literature about Artificial Intelligence and technological

transformation revolves around AI replacing human workers, more recent accounts recognize

the limits of automation and take a more realistic view – AI should ideally enhance and optimize

human capability, not replace it (Dwivedi et al. 2021: 4)(Bailey and Barley 2020: 3). AI-enabled

expert systems can theoretically be employed at all organizational levels, but historically, expert

systems have proven to be most effective at the lowest operational levels, where problems

tend to be the most structured and therefore the most predictable (Edwards, Duan, and Robins

2000: 44). Expert systems can also be used to support decision-making at higher organizational

levels, however, as problems become more unstructured (such as high-level strategic decisions),
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the effectiveness of expert systems generally wanes off due to higher decision uncertainty and

complexity (Edwards, Duan, and Robins 2000: 44). The more complicated and qualitative

the nature of the problem is, the harder it is to design and exploit a reliable data-driven expert

system.

Ultimately, however, there are a number of traits that cannot (yet) be acquired by machines

at all, including cognitive skills, critical thinking, creativity, and intuition (Deng et al. 2020: 1;

Dwivedi et al. 2021: 6). Errors caused by the overly probabilistic behaviour of machines

are relatively common, which is why building explainable and interpretable systems has been

a key avenue in AI and ML research (Amershi et al. 2019: 2). One of the most ambitious

and highly researched problems in the field of Human-Computer Interaction (HCI) is how to

integrate human knowledge and experience into data-driven models. The goal is to get the best

of both worlds – efficient and robust decision-making process and accurate and explainable

decisions. Successfully integrating human cognitive knowledge into machine learning models

can yield a number of important benefits, such as fewer data would be required for accurate

and reliable predictions, but perhaps most importantly, human-in-the-loop systems tend to be

easier to interpret and explain than systems that are purely data-driven (Deng et al. 2020: 1).

To maximize value creation and minimize undesired social consequences stemming from the

overly probabilistic behavior of AI, it is best to utilize AI technologies in a way that they result

in a synergy with human workers, with the former doing the calculations and the predicting and

the latter being responsible for analysis and interpretation of the results (Yang et al. 2020: 1;

Amershi et al. 2019: 1–2; Dwivedi et al. 2021: 4–7; Duan, Edwards, and Dwivedi 2019: 63).

2.4 Domain knowledge in Machine Learning

Designing AI and ML for specific application domains can be difficult for data engineers because,

despite their best intentions to inform themselves of the problem they are working with, they

are often left ill-equipped in terms of domain-specific knowledge and experience (Yu et al.

2007: 1–2; Bailey and Barley 2020: 5). At the same time, experts of the respective domain

are usually not able to comprehend complex Machine Learning models and their working

principles, meaning that it is just as difficult for them to combine data-based information with

their qualitative domain knowledge (Yu et al. 2007: 1–2). Matters are further complicated

by the fact that, as experts themselves often find it difficult to explain what is it exactly that

their special “rule of thumb” knowledge entails, it is challenging to acquire it in the first place
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(Sinha and Zhao 2008: 287). Studer, Benjamins and Fensel (1998: 163) add that even when

experts are capable of articulating their knowledge, some skills and experiences may remain

hidden in their subconscious. Human heuristic knowledge is regarded as highly valuable in the

context of many prediction problems, and so the question of how to integrate it with data-driven

models as conveniently as possible remains elusive. This chapter introduces the concept of

domain knowledge (sometimes referred to as expert knowledge – this thesis uses these concepts

interchangeably) and covers topical literature that involves integrating it with machine learning

applications.

In an effort to synthesize this relatively vague concept into a more tangible and measurable

construct, Alexander (1992: 34) defines domain knowledge as “the realm of knowledge that

individuals have about a particular field of study”. Yu et al. (2007: 9) definition ties it into the

context of AI and Expert System design:

“the prior domain knowledge is all of the auxiliary information about the learning task that can

be used to guide the learning process, and the information comes from either some other

discovery process or domain experts.”

It is usually relatively straightforward to consider domain knowledge that can be quantified

and represented in an equation-based format. The simplest example of exploiting quantitative

domain knowledge in machine learning is explicitly defining some rule that sets constraints on

the training process, for example that Mass = Density × Volume (Deng et al. 2020: 5). In many

cases, however, domain knowledge is abstract and non-quantifiable, which makes it difficult

to integrate with machine learning frameworks operating exclusively with quantitative data

(ibid.: 2). Knowledge based on observation, logical inference, and induction typically requires

the qualitative input of people with domain-specific experience and skills (ibid.: 5). At the same

time, experts and specialists of one domain operating at different organizational levels may

develop different kinds of domain knowledge and experience (Yu et al. 2007: 9). For example,

a labor economist and an unemployment office desk worker are largely knowledgeable in the

same umbrella domain that is labor economics. However, the former is likely to have better

macro-level knowledge of prevailing trends in the labor market, while the latter is more likely to

accurately predict employment for individual job-seekers based on direct interaction with them.

Numerous efforts have been made to integrate domain knowledge with Machine Learning – a

process known as knowledge engineering (Sinha and Zhao 2008: 288). The problem of combin-

ing domain knowledge and inductive data-driven learning models has proven to be notoriously
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complicated and there is no universally “right” way to do so (Yu et al. 2007: 1). Prior applied

studies have adopted highly customized ad hoc methods depending on the domain context,

availability of data, and perhaps most importantly, the use case of the designed application.

It is important to note that the process of knowledge engineering does not entail building a

perfect cognitive model that perfectly replicates human heuristics but a model that replicates

the problem-solving process as adequately as possible in a given application domain (Studer,

Benjamins, and Fensel 1998: 163). As mentioned above, experts may not always be conscious

about their skills and experience, much less articulate them in a quantifiable way. These (often

crucial) parts of expert knowledge are not directly accessible to system designers, “but have

to be built up and structured during the knowlegde-acquisition phase (ibid.)”. According to

Studer, Benjamins and Fensel (1998: 163), such an approach should be viewed as a part of the

modelling process itself rather than a separate ex-post transfer of knowledge.

Yu et al. (2007) acknowledge four types of methods to account for domain knowledge

in machine learning models. The first category includes methods that rely on prior domain

knowledge in the earliest phase of model design to select, transform, and prepare the data used

for training the model (Yu et al. 2007: 17). This approach is especially handy when the data is

noisy, and there are many, possibly redundant and overlapping variables to consider (ibid.). As

brought out earlier, an inductive learning algorithm can only be as useful as the data it relies

on to make predictions. In specific application fields, domain experts’ profound knowledge of

underlying processes can be useful for sanitizing the data set, including detecting outliers and

redundant or missing observations. In some cases, training data even comes in certain underlying

structures, such as in the form of a tree or a network, which has to be detected, validated, and

transformed to a suitable format by domain experts (ibid.: 18).

Enhancing the data preparation process using domain knowledge has been hugely prosperous

and beneficial in medical studies. One reason for this is that in medicine, laboratory samples

usually involve a very marginal amount of clear-cut positive cases, which means that the

training set is far from the ideal representation of whatever real-life scenario is being modelled

(Mirchevska, Luštrek, and Gams 2014: 163). Additionally, the proportion of positive cases

itself may often be incredibly small (in case of some rare disease, for example), which further

hinders classification accuracy and gathering a sufficiently representative training set. Another

reason is that in medicine, raw data (for example, electronic health records) is often not in a

“flattened table” format that is typically suitable for data analysis and learning methods (Lin and
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Haug 2006: 489). Lin and Haug (2006) proposed a part metadata, part domain knowledge-based

data preparation framework for sanitizing noisy and redundant data for learning algorithms

and successfully applied it in the development of a decision support system. Coulet et al.

(2008) presented an ontology-based data selection method that takes advantage of underlying

assumptions and associations in the data set. The works of Rajagopalan and Isken (2001: 466)

and Soibelman and Kim (2002: 47) also proved that domain knowledge can contribute to

effective data preparation. Finally, Sinha and Zhao (2008) combined knowledge engineering

and data mining and showed that the performance of ML models can be significantly improved

through integration with expert knowledge.

The second category of Yu et al. (2007: 19) entails exploiting domain knowledge to construct

the hypothesis space for the learning model. Given that the hypothesis space represents the

set of all possible functions available for the training data, domain knowledge can be helpful

for seeking out the best hypothesis and, therefore, the best function for predicting the desired

outcome. This can be done by constructing the initial hypothesis space on the basis of which

hypotheses satisfy prior domain rules (Mirchevska, Luštrek, and Gams 2014: 164).

The remaining approaches employ domain knowledge to modify the search for the optimal

hypothesis (function) itself that is ultimately extracted from the hypothesis space. Purely

inductive learning algorithms solve their prediction problems by finding the best objective

function that minimizes prediction error, without direct regard to underlying theoretical or

logical assumptions (Yu et al. 2007: 21). Domain knowledge can be used to alter or augment

the search for the optimal function by introducing additional regularizers or constraints to the

objective function itself (ibid.). In practice, this can be done by either setting learning constraints

or, more often, weighting the training observations’ influence based on some external domain

rules (Mirchevska, Luštrek, and Gams 2014: 164). Cao and Tay (2003) forecasted financial time

series using Support Vector Machines (a complex non-parametric learning method) augmented

by adaptive regularization parameters. These parameters were set to place more weights on

recent training observations because, in this domain, recent data is considered more influential

for predicting future trends (Cao and Tay 2003: 1513, 1517). Their results showed that model

augmented by domain knowledge are able to achieve better generalization performance while

using less data (ibid.: 1517). Schapire et al. (2002) similarly integrated prior knowledge with

a tree-based ML algorithm by weighting model parameters according to pseudo-examples

estimated by human experts, which also proved to improve performance for fewer data.
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Proving most relevant to the thesis at hand, Gennatas et al. (2020) introduced another

parameter weighting method to enhance probabilistic machine learning models with expert

knowledge and tested it by predicting mortality risk from physiologic data. They used a

prediction rule ensemble model aptly named RuleFit to extract a set of easily interpretable

decision rules from the data and asked experts to assess the risk of subpopulations defined by

each rule (Gennatas et al. 2020: 4575). They then ranked these rules based on the extent of

expert and model disagreements in assessing subpopulations’ risks (delta rank measurement)

(ibid.: 4573). Finally, they penalized decision rules with the highest delta ranking by excluding

them from the final model (ibid.: 4572). This resulted in those rules having more predictive

influence, where experts and the empirical model agreed with each other.

Gennatas et al. (2020) method proved to be effective for several reasons. First, this approach

was able to discover what they call hidden confounders in training data (ibid.: 4575). In

statistics, confounders (or confounding variables) commonly represent unobserved factors that

create bias in causal effect estimation (Greenland, Pearl, and Robins 1999: 29). Gennatas et

al. (2020: 4571) bring the example of a study where a learning algorithm was configured to

estimate the probability of death from pneumonia. The resulting algorithm predicted a lower

mortality risk for asthmatic patients than for non-asthmatic patients, a correlation that is certainly

misleading but nonetheless based on actual data (Gennatas et al. 2020: 4571). The hidden

confounder in this case is that asthmatic pneumonia patients are treated much more aggressively

(rightly so), resulting in a lower mortality rate overall (ibid.). A learning algorithm is not able to

detect such an artifact when the level or even the presence of treatment is absent from the model.

By letting experts virtually compete with the empirical model in estimating subpopulation

risks, Gennatas et al. (2020) method effectively helps to discover cases where some important

predictor is clearly missing from the model. Alternatively, consistent disagreements in regard to

the risk of some specific subpopulation can hint at limitations of experts’ knowledge instead

of hidden model bias (ibid.: 4575). Their approach also resulted in better generalization to

new data while requiring less data to achieve comparable prediction accuracy to base models

(ibid.). Finally, they found that expert knowledge considerably improved model performance

when tested on a population whose variables changed over time or were collected at a later time

(ibid.).
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It is important to note that incorrect domain knowledge, or knowledge that only partially

covers the domain, may yield unsatisfactory results and, in some cases, even harm the predictive

performance of the model (Yu et al. 2007: 2). Therefore it is necessary to arrive at an optimal

solution where domain knowledge can mediate hidden confounders in training data and improve

model generalizability while the benefits of data-driven predicting remain intact.

To sum up the preceding subchapters, three main areas of improvement can be listed when the

theoretical benefits of integrating domain knowledge with statistical tools (hereinafter referred

to as expert-augmentation) are put into the context of automation in the public domain:

1. Expert-augmentation can make automated tools contribute to accountable and

legitimate decision-making. As explained in subchapter 2.2, the use of automated tools

in public processes automatically becomes more justified simply by virtue of containing

the judgment of human decision-makers. While the legitimacy of an ML application is not

to be ultimately judged in this thesis, this benefit should be reflected in improvements in

the predictive performance of the model. As prior studies have recorded notable accuracy

gains on expert-augmented models compared to purely statistical ones, improved accuracy

can be taken as a sign that expert knowledge helps to bring the model in line with domain

rules and policy goals.

2. Expert-augmentation can make automated tools operate more efficiently. Financial

feasibility was brought out as an important requirement in public sector automation

projects. As shown by prior studies listed above, expert-augmented models are often able

to achieve comparable or better predictive performance on less training data. Reducing

the required minimum amount of training observations would make automated systems

more cost-effective and expand applications to use cases where pre-labelled data is hard

to come by.

3. Expert-augmentation can make automated tools more explainable. Machine Learning

models are notoriously difficult to interpret. The behaviour of automated tools in the

public sector, however, needs to be fully comprehensible in order to support administrative

decision-making. Machine Learning systems infused with qualitative domain knowledge

should theoretically produce more interpretable and actionable output. For example,

by penalizing those system components that produce confounding output in the vein of

Gennatas et al. (2020), a simpler, more interpretable model is constructed.
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2.5 Case of OTT

This subchapter introduces OTT, the subject for this applied study. OTT3 is an ML-enabled deci-

sion support system for profiling job-seekers jointly developed by the Estonian Unemployment

Insurance Fund (Eesti Töötukassa, hereinafter referred to as UIF) and a team of researchers,

labor economists and data scientists from the University of Tartu. The case of OTT was chosen

for its relevance in regard to the issues mentioned in the last chapter. As with other public sector

machine learning tools, its predictive accuracy is under scrutiny as its output can influence ad-

ministrative decisions. OTT operates on a rather complex ML method (introduced in subchapter

2.5.1), making it challenging to ensure that its technical system accurately conveys important

unemployment policy and domain objectives. This, however, is a crucial requirement, as the

policy objective that OTT seeks to support relies heavily on human judgment, as explained

in subchapter 2.5.2. Let it be mentioned that, while in theory, most public sector machine

learning tools match these criteria, OTT was chosen in this case to support the feasibility of this

project from two aspects: 1) the author had access to invaluable first-hand knowledge about the

development and inner workings of OTT as a part of the development team, and 2) the quality

and sheer extent of expert input from Töötukassa caseworkers (explained in chapter 3.1.2) was

greatly enhanced by the author’s ability to communicate in their native language.

As the subject matter was developed and piloted rather recently, research on the subject

matter is lacking. Consequently, the bulk of a priori knowledge about the use case and inner

workings of OTT originates directly from system developers who incidentally supervised this

thesis. In terms of its working principles, goals, and use cases, OTT bears a lot of resemblance

to the Belgian system. After a brief piloting period in the first half of 2020, OTT was officially

integrated into unemployment office caseworkers’ workflow in October 2021. The next section

provides an overview of the technical aspects of the model, followed by an explanation of its

use case – how it is intended to be used and interpreted by caseworkers.

2.5.1 Technical background

Under the hood, OTT is a Random Forest based ML model that, at the time of writing, includes

a total of 45 variables that are proven to offer predictive value in estimating job-seekers’ future

labor market prospects. The underlying model has gone through various updates and changes

regarding its inputs and outputs throughout the period that OTT has been in active use (including

3Otsustustugi – Estonian for “decision support”
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Table 1. Categorization of input variables in OTT.

Category Examples of variables

Socioeconomic char-

acteristics

Gender, age, citizenship, county of residence

Motivation to look

for/accept job

Information about last employment spell(s): total number, length, time

since, field, reason for ending, etc., way of registering as unemployed

(online or at the bureau), assigned unemployment allowance and UIB,

frequency of receiving salary within the last 2 years

Job readiness Level, field and type of education, work capacity, Estonian language

skills, computer skills, has e-mail account, has driver’s license, belongs

to risk groups (released from prison, caretaker, etc.), is board member,

participation in training programs

Opportunities Amount of job requests and clients registering as unemployed at the

same time, job vacancy rate for suitable positions, proportion of job-

seekers exiting unemployment status in the last 30 days, amount of

unique employers in the last 3 years

the pilot project). Initially OTT launched with as many as 63 predictor variables and seven

different outputs, which over time has been reduced to 45 predictors and one concise output. At

this time, the model output value is defined as the probability of exiting unemployment status

within the next 180 days after registering as unemployed. Input variables range from basic

socio-demographic factors such as age, education, and region, to more specific labor market

variables such as information about previous employment spells, job vacancies and claimed

unemployment benefits. Examples of predictor variables consistent with Desiere, Langenbucher,

and Struyven (2019: 13) profiling requirements are presented in table 1, an exhaustive list with

variable types and verbose explanations can be found in appendix 1.

As mentioned, OTT is based on Random Forest – a popular ML method that has been

adapted in job-seeker profiling before, most notably in the Belgian application. The following

section is dedicated to briefly examining the working principles of the Random Forest model. I

shall start by explaining the cornerstone of decision forest models in general – a single decision

tree. Building a decision tree is a relatively straightforward process of splitting observations in

two step-by-step based on the characteristic (variable) that offers the greatest homogeneity as a

result (Speybroeck 2012: 243). A simple example of a decision tree can be seen in figure 1 that

predicts the average fuel consumption of a hypothetical set of cars based on three factors: type

30



Figure 1. Example of predicting fuel consumption of different cars using a decision tree.

of powertrain, engine displacement, and curb weight. It can be seen that there are a maximum

of three steps for splitting the cars into subgroups. First, the biggest factor that appears to

determine a car’s fuel efficiency is the type of its powertrain. Then, depending on whether the

powertrain is hybrid or not, the next splitting variable would be either weight for hybrids or

engine displacement for non-hybrids. In every split (internal node), the algorithm chooses a

splitting variable so that the resulting two subgroups would differ from each other as much as

possible. For regression trees, the resulting mean value for each terminal node is the prediction

for that particular group of observations.

On its own, a single decision tree does not yield very good predictive accuracy on new data

because the tree splits closely follow the properties of the particular training set that was used

to build the tree. Random Forest, as its name suggests, combines many decision trees into an

ensemble to increase the predictive accuracy of a single tree in order to improve predictive

accuracy while simultaneously reducing overfitting to training data (Montgomery and Olivella

2018: 734). The randomness that is referred to in the name of Random Forest comes from the

way that the model handles variable selection at each split. As opposed to a regular decision

tree, at each split node, the RF model is allowed to split observations only based on a randomly

picked subset of all predictor variables (Breiman 2001: 11). For example, in figure 1, instead of

splitting observations based on type of powertrain at step 1, a RF tree may instead be allowed

to only split them either by weight or engine displacement, if by chance, powertrain was not

allocated into the subset of predictor variables for that particular split. By constraining the

selection of possible splitting variables for each tree and node, the individual trees become
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less correlated, which in turn makes the model more flexible and generalizable for new data

(Montgomery and Olivella 2018: 734).

An important nuance regarding how Random Forest is implemented in OTT needs to be

mentioned. While the model is essentially set up to solve a classification problem (predicting a

binary representation of whether a person exits unemployment in the next 180 days), it instead

outputs the probability of the outcome event not happening, interpretable as the risk of not

resuming work in 180 days. The need for probability scores, as opposed to simple yes-no classes,

is explained in the next subchapter that describes the intended use case of OTT and similar

decision support tools used in welfare provision.

2.5.2 Use case and potential areas of improvement

As OTT has been in active use for a relatively short period of time, it remains to be studied how

exactly caseworkers integrate OTT with their workflow in practice. However, as the fundamental

working logic of OTT closely follows that of the Belgian system, the assumption may be made

that the use case is, for the most part, similar as well. The Estonian caseworkers are intended to

use the tool primarily for creating a virtual priority order in their client portfolio – job-seekers

who are most at risk of becoming long term unemployed are offered services more intensively.

Therefore, the myriad of ethical and fairness concerns that emerged with COMPAS or even the

Austrian profiling system are avoided, as will be explained.

Just like the COMPAS recidivism prevention case in the US, the Belgian and Austrian job-

seeker profiling systems have received criticism for potentially discriminating and stigmatizing

certain types of people, as well as amplifying existing underlying inequalities in the labor

market (Allhutter et al. 2020: 2; Desiere and Struyven 2021). Desiere and Struyven (2021: 380)

explain why, for the Belgian job-seeker profiling tool (and by extension, OTT), these concerns

do not really matter. The key argument boils down to the use case of the system – what are

these systems used for, and what kind of consequences do the decisions made by the system

have. As Desiere and Struyven (2021: 380) astutely point out, concerns over labor market

discrimination are not as severe as often portrayed because the services that these algorithms

help to distribute are ultimately considered helpful and benevolent. The use case of such decision

support tools is not to decide whether an individual should be punished but instead whether they

should be offered help. Indeed, it raises questions when a COMPAS-like system systematically

predicts higher recidivism rates for Afro-Americans as simply being Afro-American should
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not increase one’s chances of being detained. For that reason, it makes sense to avoid using

so-called protected variables such as ethnicity and race in statistical tools because their presence

can reinforce historical biases and existing inequalities encoded in training data (Allhutter et al.

2020: 7). When we consider OTT or other decision support tools in social policy, excluding

sensitive variables as a conscious design choice can actually produce the opposite effect. If

in some hypothetical society, a racial minority has historically been less likely to find a job

on their own compared to the rest of the population, then it is important that the algorithm is

able to detect that artifact so that the employment service can remedy this underlying social

inequality. Excluding race from the model would ultimately enforce inequalities instead, as the

underlying relationship would be largely undetected by the algorithm and, in turn, neglected by

the employment service and their support mechanisms. Job-seeker profiling tools (and other

automated tools in social policy, for that matter) circumvent this caveat with their specific

use case – what they are ultimately being used for. While a recidivism prevention tool that

systematically points at individuals from a certain disadvantaged group can (and arguably must)

be construed as unfair, an equivalent tool in social policy should point at these groups to ensure

that government aid reaches those who need it most. The goal of OTT and other job-seeker

profiling tools is to find people that are disadvantaged or discriminated on the labor market. If it

emerges that a certain disadvantaged group forms strongly based on some sensitive variable,

then so be it – in the end, these people will ultimately benefit from this discovery.

That is not to say that there is no room for improvement for OTT and other automated

job-seeker profiling tools, however. While the rather cautious use case of OTT (it is merely

supposed to rank clients based on the need for intervention) generally renders aforementioned

concerns over its algorithmic fairness moot, one point of criticism towards similar applications

in this domain remains acute. Briefly touched upon in previous chapters, there are certain factors

that are difficult to accurately measure and/or include in quantitative models, yet are known to

have a considerable influence on the outcome – in this case, one’s likelihood of finding a job.

Allhutter et al. (2020: 11) mention the inability of the Austrian system to capture job-seekers’

soft skills, engagement and motivation in a quantifiable way – features which are traditionally

considered by caseworkers through a more customer-oriented profiling approach. At this time,

the Belgian system does not consider soft skills, personal attitudes and job search strategies either

(Desiere and Struyven 2021: 372). Desiere, Langenbucher, and Struyven (2019: 14) also denote

that while labor economics literature has emphasized the importance of behavioural factors in
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determining employability, they are notoriously difficult to directly measure and operationalize

in statistical models. Furthermore, there is some evidence that including behavioural “soft”

variables in profiling models does not offer a substantial increase to most profiling models

because usually, the model already includes other “hard” variables that are strongly correlated

with them (Desiere, Langenbucher, and Struyven 2019: 14).

Another important caveat with automated job-seeker profilers (including OTT) has to do with

their (in)ability to capture abrupt shifts in the surrounding economic context. Automated data-

driven decision support tools can only make predictions based on data that has been collected

in the past. Unfortunately, this data might not always represent the future as accurately as

desired, especially in this particular application domain. Job-seeker profiling tools need to be

constantly updated with the latest data that best models the most recent trends and changes in

the continuously changing labor markets (ibid.: 23). Certain characteristics of job-seekers that

in the past were strong indicators of a person finding a job quickly might not be good predictors

today if, for example, that line of work is not in high demand anymore (ibid.: 16). It is not

technically difficult to recalibrate profiling models with new data per se as it is done for the

Belgian system, for instance (ibid.). However, re-training the model with new data is costly

in terms of time and computational resources, which is why OTT’s core model has only been

updated on a quarterly basis so far.

A sudden labor market shift occurred recently as a consequence of the COVID-19 crisis. The

pandemic that hit 2020 brought severe disruptions in labor markets across the globe, skyrocketing

unemployment rates and causing a shakeup in the job market (Dang and Viet Nguyen 2021: 2).

Since then, studies have identified pandemic induced artifacts, for instance, that women were

more likely to lose their job during the pandemic than men (ibid.: 6), (Kristal and Yaish 2020: 5).

Besides women’s employment being concentrated in the most affected sectors, another reason

behind this effect was that, as schools and daycares were closed, many women suddenly had

to take care of their children at the expense of working hours (Radulescu et al. 2021: 4). This

relationship seems rather intuitive to a human interpreter. In hindsight, anyone with some

understanding of labor market dynamics could have come to that conclusion. At the same time,

it would have been completely impossible for OTT to preemptively capture this effect because it

predicts exclusively based on past data-elicited relationships.
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2.6 Formulating research objectives

Throughout this chapter, I have established that public sector ML-based decision support systems

can and should theoretically be enhanced through integration with qualitative domain knowledge.

I have presented a review of studies from various research fields where such endeavors have

succeeded before and singled out a particular method that fits the general assumptions and use

cases of decision support tools used in social and unemployment policy. The practical goal of

this research is to adopt Gennatas et al. (2020) Expert Augmented Machine Learning method

to discover to what extent can the predictive accuracy of a Machine Learning risk model be

improved by modifying it according to experts’ judgment. The broader aim of this research

is to shed light on whether augmentation with expert knowledge is feasible and beneficial for

ML-based tools in public services in general. For the purpose of guiding the analysis, a single

concise research question is worded as follows:

What are the benefits of augmenting public sector data-driven systems with domain

expert knowledge?

The expected benefits are threefold. First, an expert-augmented model is expected to solve

or at least mitigate accountability- and ethics-related conundrums with public sector automation,

as explained in previous chapters. It has been established that data-driven tools in this domain

must contribute to fully explainable, reasoned, and ethical administrative decisions. It is of

utmost importance that the internal formulae of Machine Learning models employed in the

public domain complement the policies they are designed for. By relying fully on data-elicited

relationships, an inductive statistical model can potentially make crucial mistakes by ignoring

certain domain rules that the data does not adhere to, or historical biases that have been encoded

into data and therefore will only be fortified by the model. Integrating expert judgment into

a statistical model is a way of safeguarding against these pitfalls. Expert augmented Machine

Learning models are theoretically able to capture and discard some of these hidden confounding

artifacts that go into conflict with human judgment and domain rules.

H1: Expert-augmented models are able to reveal model artifacts that are in conflict with

domain knowledge.
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The second and most straightforward expected benefit is an increase in peak predictive accu-

racy. By using qualitative expert assessment to identify conflicting model artifacts, I effectively

minimize model prediction error by eliminating features responsible for the least accurate risk

estimations. As brought out in the previous chapter, a number of prior studies have shown that

such approaches can yield significant accuracy benefits, especially when tested on data from

different contexts. To measure the extent of this potential benefit, all models will be tested

on three data sets with varying degrees of deviation from training data. The first data set will

be drawn from the same distribution as training data to match its structure and underlying

relationships. The second test set is comprised of individuals that became unemployed shortly

after a sudden labor market shock, resulting in a visibly “abnormal” data structure. The third set

includes data from a longer-term future time period, during which the labor market was expected

to be recovering from said shock. The rationale behind choosing appropriate time frames for

test sets as well as validation methods are explained in chapter 3.2.

H2.1: Expert-augmented models are able to outperform the base model in terms of predictive

accuracy on previously unseen data with different structure and feature distributions compared

to data used to train the model.

H2.2: Expert-augmented models yield the highest accuracy improvements on test data that

differs the most from training data and the lowest on data that differs the least.

The third benefit that is expected as a direct result of this augmentation process has to do with

model generalizability. As mentioned in chapter 2.4, a number of prior studies have discovered

models that include some form of qualitative domain knowledge tend to perform better on less

training data compared to their purely inductive counterparts4. A model that achieves good

prediction accuracy on minimal training data would be useful in situations where 1) resources

such as computational power and time are scarce – for example, when the model needs to be

re-trained with new data at short intervals; and 2) labelled training data is costly or otherwise

hard to come by. At first, it might seem like these aspects are not exactly at the forefront of

priorities for OTT and other job-seeker profilers alike. There is usually no shortage of good

input data, nor is it especially important to minimize the time and resources spent to re-train

models. However, these benefits start to look more appealing when considering that frequent

4See for example Gennatas et al. (2020), Cao and Tay (2003), Schapire et al. (2002).
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re-training can essentially contribute to the same goal as expert augmentation. Re-training

ensures that the model is constantly adjusted to underlying shifts in the data structure that can

possibly occur as a result of changes to domain rules or the surrounding environment. On the

one hand, an important objective of expert augmentation is precisely to reduce the need to

re-train models too frequently, as expert knowledge theoretically makes for a more versatile

model that is better suited for different contexts. On the other hand, a model that is incidentally

both expert-augmented and frequently updated with the most recent data can combine the best of

both worlds. Constant re-training ensures that the model accounts for temporal changes, while

integrated expert knowledge safeguards that the model is not overfitted to specific cases that are

not in line with existing domain rules and common sense.

H3: Expert-augmented models will be able to achieve better prediction accuracy with less

training data compared to the base model.
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3 METHODOLOGY

The thesis at hand focuses on applying an existing knowledge engineering technique to a case

from a particular field (social and unemployment policy) while adjusting it to meet the demands

and assumptions of that field. While the former part of this problem setup strongly hints toward

applied research, the latter ensures that this thesis also makes an academic contribution to the

novel subfield of Machine Learning in the public sector. Indeed, research concerning Machine

Learning is usually neither purely theoretical nor applied but instead falls somewhere on a

smooth continuum between the two research types (Provost and Kohavi 1998: 128). A major

cornerstone of the presented methodology is the Expert Augmented Machine Learning algorithm

designed by Gennatas et al. (2020). Their multi-step approach, originally designed and tested

in medical studies, will be optimized and validated for social and unemployment policy use

cases. The ultimate goal is to shed light on whether this method is suitable for integrating human

knowledge with public sector ML-based support tools in general.

The bulk of analysis, including the development and augmentation of models, was done in

the R (v4.1.1) programming language using RStudio (v1.4.1717), a widely popular data analysis

freeware. The R script used to produce the results of this thesis can be examined on the author’s

GitHub page5. All models were trained using their respective functions from the rtemis package

(v0.83) developed by the authors of Gennatas et al. (2020) study.

3.1 Augmenting a public sector Machine Learning tool with expert knowl-

edge

Gennatas et al. (2020) method was chosen as it allows to complete three crucial stages of

domain knowledge integration while maintaining a good balance between research validity and

feasibility. These four pivotal stages are listed below, together with brief explanations of the

methodological steps taken to execute them in practice. Each step will be warranted in detail

further along in this chapter.

1. Transform a complex ML algorithm to a more easily interpretable rule-based format.

Train a replica of the OTT Random Forest model with individual level job-seeker data

obtained from the Estonian Unemployment Insurance Fund. In parallel, train another

model on the same data using a Gradient Boosting based RuleFit model as proposed by
5https://github.com/peeterleets/expert-augmentation
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Friedman and Popescu (2008). This method allows to extract human-readable and easily

interpretable decision rules from complex decision trees and tree ensembles. Specifics of

this step are elaborated in subchapter 3.1.1.

2. Design a platform for human experts to assess and validate the output of the rule-

based model. Juxtapose empirical model-calculated risks with expert risk assess-

ments and combine them for a theoretically better expert-augmented ML model. In

the same vein as Gennatas et al. (2020), have labor market experts qualitatively assess the

risk of job-seeker subpopulations defined by each decision rule using a specially designed

survey method. Calculate the difference between experts’ assessments and empirical risks

extracted from the RuleFit model. A specialized penalty value will be calculated for each

rule based on 1) the difference between empirical and expert-assessed risk and 2) the

extent of inter-expert variation for the expert assessment. Decision rules with the highest

penalty values (biggest conflict between empirical estimation and expert judgment) will

be successively removed from the final expert-augmented models in the hope for a better,

more realistic model. This step is explained in detail in subchapter 3.1.2.

3. Test the predictive performance of the expert-augmented model to confirm the bene-

fits of integrating domain knowledge with Machine Learning. Finally, the performance

of the expert augmented model will be compared to that of 1) the Random Forest base

model and 2) the base RuleFit model without expert calibration. All three types of models

will also be tested with new, previously unseen data with slightly different underlying

feature distributions.

3.1.1 Base model specification

In order to measure the improvement this methodology is able to offer to OTT, a base model

replica is required to benchmark against. The first step in this methodology is to train a Random

Forest base model that as accurately as possible represents OTT as it is currently employed by

Töötukassa for profiling job-seekers. An ideal model replica assumes the availability of the very

same data that was used to train the real model and that is as comparable in structure and scale

as possible. A classification Random Forest benchmark model is trained with appropriate data

obtained from the Estonian UIF. Hyperparameters for training the base model are chosen to

match those of the OTT model in use. The number of trees trained for the ensemble (ntrees)
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is 500, and the number of random features that are considered for splitting at each tree node

(mtry) is automatically tuned for best model performance within the range of 4 to 15. The binary

dependent variable, as defined by OTT, is whether or not the observation exited unemployment

status within 180 days from registering as unemployed. While this is, in principle, a classification

problem, the direct output of the model is interpretable as the probability (0-1) of not exiting

unemployment status within the next 180 days after registering as unemployed. It is

important to emphasize that the output is indeed the the inverse probability of resuming work in

180 days, interpretable as the risk of the positive outcome not happening6. This output definition

is consistent across all models trained throughout this analysis.

Since, in theory, prediction rule ensembles can incorporate both Boosting and Random

Forest learners under the hood (Fokkema 2020: 3), the next step is to determine which model

type can yield better prediction accuracy on this data set to begin with. Accordingly, a competing

Gradient Boosting model is to be trained with hyperparameters shrinkage (0.01) and interaction

depth (10) chosen to reflect a good balance of model accuracy and interpretability7. Boosting

hyperparameters were manually optimized so that, in the event GBM was to be chosen over

Random Forest, the resulting ensemble would produce a realistic number of decision rules with

enough predictors involved. This combination of shrinkage and interaction depth ensures that

the resulting set of decision rules is comprehensive enough to contain enough useful information

yet compact in size, which is crucial in regard to the feasibility of this study. In addition, it has

been found that models with a small non-zero shrinkage parameter and a limited depth yield the

best results overall (ibid.: 5). The number of trees to be trained is again 500 as it has shown to

yield the best results for this type of base learner (Friedman and Popescu 2008: 926).

After determining the more potent learner, a RuleFit model will be trained to extract the

most important prediction rules from the base model. The principal difference between RuleFit

and regular tree ensembles considers its base learners. For tree ensembles, the base learner is an

individual decision tree (Figure 1) that can be confounding and time-consuming to analyse. For

6As of May 1, 2022, OTT has been reconfigured to output the probability of resuming work instead. In this

thesis, the previous definition is used as all analysis was completed by the time of this revision.
7It is important to note that the naming of the interaction.depth parameter for the GBM algorithm used in this

study is slightly misleading. It defines the total number of splits done when growing a tree, not the actual depth of

the resulting binary tree. Ergo an interaction.depth value of 10 means that starting from the root node, data is split

ten times, resulting in exactly 11 terminal (leaf) nodes.
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RuleFit, however, each base learner is in the form of a conjunctive decision rule

rm(X) =
n∏

j=1

I(xj ∈ Sjm), (1)

where I(·) indicates the truth of its argument (Friedman and Popescu 2008: 919). Therefore,

given Sj is the set of all possible input values, for any value xj, xj ∈ Sj , each rule rm(X) can

either return 1 (TRUE) or 0 (FALSE) depending on whether the value belongs to its respective

subset Sjm (ibid.). For continuous and ordinal variables, these subsets Sjm = (tjm, ujm] define

lower and upper boundaries tjm < xj ≤ ujm, and for nominal variables the subsets are explicitly

enumerated (ibid.). In plain language, every decision rule captures a subset of the whole

population based on some empirically defined criteria. For example, a decision rule

Gender = male & Age ≥ 35 & Age < 20

would return 1 (TRUE) for observations that are male and between 35 and 20 years of age, and 0

(FALSE) for everyone else. The generation of those rules is just as intuitive – for each resulting

decision tree, each node apart from the root node (ibid.: 920) is transformed into a rule based on

which splitting variables were used to reach that node, as illustrated in figure 2.

Figure 2. Example of a decision tree with three terminal nodes achieved by splitting data twice and its equivalent

set of decision rules.

After the rule generation process, the resulting decision rules will be used in the final model

as linear base learners with estimated variable coefficients (Fokkema 2020: 5–6). Transforming

each tree node to a decision rule yields that the total number of rules K is

K =
M∑

m=1

2(tm − 1), (2)
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where tm is the number of terminal nodes for the mth tree (Friedman and Popescu 2008: 921);

and the total number of rules for terminal nodes is M × tm. Given a binary tree with 11 terminal

nodes, a model trained with 500 such trees would yield a whopping 5500 decision rules. While

some of these rules are likely duplicates (all 500 trees are grown independently from one another

but are expected to split data in a relatively similar pattern), this number hardly supports the

promise of a more interpretable method as it is practically infeasible to examine and comprehend

the characteristics of over 5000 different subgroups. This is solved by extracting and including

in the final linear model only these rules that significantly contribute to predictive accuracy

(Fokkema 2020: 6). By default, RuleFit employs the LASSO penalty, which penalizes model

terms with low predictive power and coefficients close to zero (ibid.; Friedman and Popescu

2008: 928). The LASSO shrinkage parameter λ that determines the severity of penalization

applied to model coefficients is tuned for best training set performance via cross-validation.

While the author acknowledges that the ideal scenario would be to have experts assess each

and every rule that obtains a non-zero coefficient, time and resource constraints can render that

infeasible if the amount of selected rules grows too large. This problem is especially acute with

the particular application under analysis. There are over 30 distinct predictors involved with the

OTT replica trained in this study, with more than half of them being nominal. This means that

reviewing each rule is expected to be more time consuming for experts than in Gennatas et al.

(2020: 4573) study, which already reported an average response time of 41± 19 minutes per

126 questions with 3-5 variables each. To ensure the feasibility of this study with the resources

at hand, it is needed to reduce the number of rules that experts will have to assess to a reasonable

amount. In this case, ten LASSO-extracted rules with the highest and ten with the lowest model

coefficients were selected for further expert validation. This choice of rules was somewhat

arbitrary as, to my knowledge, no study has treated only a selection of model parameters with

expert validation before. Given RuleFit parameter coefficients represent the extent of change in

predicted value if the associated rule is satisfied (ibid.: 940), rules with the highest coefficients

were considered to be the most influential in regard to predicted output values. This leads to

the assumption that targeting these rules can potentially yield the biggest overall performance

improvement.
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3.1.2 Collecting and integrating qualitative expert risk assessments

The next step is to elicit expert assessment for rules selected by the LASSO-penalized RuleFit

model. For this, a questionnaire was created using the University of Tartu LimeSurvey online

survey tool. The questionnaire was comprised of as many questions as many rules were extracted

from the RuleFit model, with each question corresponding to one rule. For each rule, experts

were asked to assess the probability of a subpopulation of job-seekers to resume work in the next

180 days after registering as unemployed8. Experts had to assess the probability of a particular

subpopulation defined by its respective rule relative to the entire population of job-seekers,

also interpretable as the “average” job-seeker. Variables that defined a particular subpopulation

(decision rule) were presented in the questions as a basis for assessment, similarly to Gennatas et

al. (2020: 4573). A minimum of two and a maximum of five defining variables were presented

for a subpopulation. For continuous variables, subpopulation arithmetic mean together with

value range was displayed, whereas for ordinal variables, mode (most frequently occurring

value) was provided instead. Equivalent indicators for the whole population were displayed

for comparison. The response scale was a five-point Likert scale where the lowest response

represented a much lower probability and the highest response a much higher probability for a

person from some subpopulation to resume work, while the middle value represented probability

equal to the whole population. Because some model-created decision rules can be too obscure for

experts to make an informed assessment, a “cannot say” option was included as well. Moreover,

experts were provided with a thorough yet concise guide for how to interpret and assess decision

rules (see appendix 4). An example of a question is seen in figure 3. All 20 decision rules

subject to expert assessment are listed in appendix 3, together with associated variables and

statistics presented in the questionnaire.

The final and most important step is to integrate collected expert assessments with the final

model. In the same vein as Gennatas et al. (2020: 4572), average expert assessment was

calculated for each subpopulation. In their study, all LASSO-extracted rules were ranked from

highest to lowest twice – one ranking was formed on the basis of model-calculated empirical

risks and another on the basis of expert-assessed risks. The delta rank measurement was then

calculated as the difference of both rankings (∆R = RankEm − RankEx) that effectively

8Although, at the time of writing, OTT and equivalent models trained in this study output the probability of this

event not happening, experts were presented with this phrasing instead as it was deemed more straightforward and

easier to understand. Their responses were then inversed for the purpose of the analysis.
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Figure 3. Example of a question presented to experts describing a particular subpopulation of job-seekers defined

by a RuleFit-generated decision rule, translated from Estonian.

measures disagreement between experts and the empirical model (Gennatas et al. 2020: 4571).

In the thesis at hand, however, a slightly different approach will be taken to detect and penalize

supposedly unreliable rules. Instead of operating with rankings, the absolute difference between

empirically estimated risks and expert-assessed risks will be calculated instead. Gennatas et al.

(2020) method seems to be unsuitable for cases where multiple decision rules can have equal

expert-assessed risks. In that case, the ranking of expert-assessed risks will be shorter than that

of empirical risks because it will have two or more rules tied for the same rank. This means

that rules further down the empirical risk scale end up having comparatively higher delta rank

measurements and by extension, unfairly high penalties for the final model. Operating with

absolute risks ensures that rules from both ends of the risk scale will be penalized on equal terms.

To integrate inter-expert disagreement with the final penalty value P for rule r, the absolute

difference between empirical and expert-assessed risks will be divided by the standard deviance

for the average expert-assessed risk, such that
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Pr =
|RiskEm −RiskEx|

STDVEx

. (3)

This yields that rules where experts disagreed with each other will be penalized less as the

validity of expert judgment cannot be completely confirmed. Finally, rules will be binned into

five ranks (R1-R5) based on their assigned penalty values to form five levels of penalization.

The final expert-augmented models take the form of a group-penalized regression where

each linear term corresponds to a decision rule (thereby also including non-linear relationships

modelled by RuleFit) that is penalized as a function of experts’ disagreement with the empirical

model and a measurement of trust in this disagreement in the form of STDVEx (Gennatas et al.

2020:Appendix). Penalization is realized by excluding rules with penalty rank R higher than

some predetermined threshold. In this case, a total of four expert-augmented models will be

trained corresponding to each penalty rank minus the lowest (there is no reason to discard all

expert-validated rules at once). The first model features the strictest penalization with complete

discretion on expert assessment R ≤ 1, and the last features all but the rules from the 5th R rank

(only those rules where experts disagreed with the model the most).

Finally, prediction accuracy will be measured for all models using the AUC (Area Under the

Curve) statistic, that “represents the probability that a randomly chosen negative example will

have a smaller estimated probability of belonging to the positive class than a randomly chosen

positive example” (Huang and Ling 2005: 300). This measurement suits the use case of OTT

well – since caseworkers are expected to use it primarily for ranking their clients from most to

least likely to find a job, the numeric accuracy of the actual probability values themselves is not

at the forefront, but rather is the correct ranking of those values. The AUC measurement has

been used to evaluate classifier models in other related studies, notably Sinha and Zhao (2008).

3.2 Data sources and sampling method

This research utilizes two distinct types of data from both qualitative and quantitative research

paradigms. The first data set, obtained from the Estonian UIF, was required to train base models

that as accurately as possible replicate the actual in-use OTT prediction tool. Ideally, all 45

predictors used in OTT should be involved in the replica; however, due to strict data protection

policies regarding sensitive personal data (for example, working capacity is a proxy to one’s

health condition) renders this practically impossible for research purposes. Therefore, significant

aggregation was inevitable for certain variables. All such data transformations are described in
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appendix 1. From all 45 predictors used in the real in-use OTT, 33 most important variables

(according to model-calculated variable importance measure) were included in the replica to

further reduce the possibility of identifying people in the sample.

The full data set consists of 423038 unemployment spells that were registered between

January 1, 2015, and September 19, 2021 (both included). Four samples were drawn from this

data set, feature distributions for each are presented in detail in appendix 2. For the purpose of

training the models, a stratified random sample of 20% of all observations that were registered

as unemployed between January 1, 2015 and September 13, 2019 was drawn. The latter

date refers to the latest point in time that one could have registered and still have 180 days to

potentially exit unemployment before March 13, 2020, the day before the official COVID-19

lockdown period started in Estonia (more on that below). Three test samples from different time

periods were drawn for model testing; the first test sample (hereinafter referred to as test data)

was drawn from the same time period as the training set to match its structure and distribution. A

stratified random 50% sample of all eligible observations was taken due to technical limitations

for the size of the resulting feature matrix. Another test set (hereinafter referred to as short-term

future) with theoretically different feature distributions stemming from the COVID-19 induced

labor market shakeup was drawn from the period starting from March 13, 2020, to July 5, 2020

(all observations). A final test set (hereinafter referred to as mid-term future) represented a

longer period of new unseen data, consisting of all individuals registered between March 13,

2020 and September 19, 2021 (both included). As seen in the table in appendix 2, COVID-19

induced labor market shifts manifest in almost every variable across data sets from different

time periods. Some key shifts that could be observed are summarized below:

1. Since the beginning of the COVID-19 crisis, significantly more people who were recently

employed suddenly became unemployed (see variables time since last employment spell

and status before unemployment), often stemming from employer-related reasons such as

lay-offs (see variable reason for ending last employment).

2. Proportionally more work-capable people with stable job histories suddenly became

unemployed as indicated by duration of last employment spell, months with payment in the

last 2 years, work capacity, unemployment days in the last 3 years, previous unemployment

spells, duration of assigned UIB and assigned UIB daily rate9.
9UIB with a higher daily rate for a longer period generally indicates that the individual has earned it with a long

and stable job history (Töötukassa n.d.)
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3. In regard to field of employment, the personal service sector took the most notable hit (as

indicated by field of last employment), and it did not recover significantly even during the

mid-term period.

4. For most variables, the greatest shift occurs between the base test set and the short-term

future set, reflecting a sudden shock in the labor market caused by the COVID-19 crisis.

In the mid-term future data set, full or partial recovery can be observed for many of these

variables (see for example months with payment in the last two years and number of people

registered as unemployed around the same time).

The domain knowledge to augment the models was sourced from a coalition of caseworkers

from the Estonian UIF and a team of data scientists and labor economists responsible for

designing and developing OTT. Töötukassa caseworkers were chosen for this study for two

simple reasons. First, because most of them have already employed OTT in their day-to-day

tasks, they need not be briefed about its goals and working principles in great detail, saving their

as well as the researcher’s time. Second, their particular knowledge and experience can also

be regarded as most valid since OTT, a Töötukassa specific tool, operates with the exact data

and features handled by them on a daily basis. Thirdly, as street-level unemployment officials,

they have first-hand experience and knowledge of the Estonian labor market situation at any

given time. The questionnaire described in subchapter 3.1.2 was distributed to 353 Töötukassa

caseworkers, five of whom completed it in its full length. Two data scientists behind OTT

were also included in the target group as their in-depth knowledge about the architecture and

behaviour of OTT was deemed invaluable for detecting illogical model artifacts.

47



4 PRESENTATION AND INTERPRETATION OF ANALY-

SIS RESULTS

4.1 Training base models

A Random Forest OTT replica was trained to benchmark against RuleFit and expert-augmented

models (AUC = 0.7218, table 3 in section 4.3). Random Forest offers stable prediction accuracy

across the risk score distribution on test data with structure and feature distributions similar

to training data, as seen on the top left plot in figure 4. However, the two plots to the right

reveal obvious calibration issues at the extreme ends of the risk scale for new data drawn

from future time periods. The middle plot represents prediction accuracy for individuals who

registered as unemployed within the next few months after the start of the COVID-19 lockdown.

It can be noted that Random Forest consistently overestimates the risk of staying unemployed

beyond 180 days for individuals that in fact, did resume work in that time frame; and conversely

underestimates risk for true high-risk individuals. This behaviour is also confirmed for the actual

in-use OTT model. The rightmost plot for test data from a longer one and a half year time period

indicates that, as the labor market situation recovers from the crisis over time, model predictions

become more reliable again. Still, prediction accuracy has improved for low-risk individuals

only, indicating that there is still room for improvement in terms of reliably detecting those

people who will not resume work in the defined time frame.

A Gradient Boosting alternative was trained to determine which base model performs better

on this data. As seen in table 3, Gradient Boosting consistently outperformed Random Forest on

all three data sets. Despite overall accuracy improvements, the issue of miscalibrated risk scores

that occurred with Random Forest persists with Gradient Boosting. As Gradient Boosting seemed

to perform better overall, this model was chosen to facilitate the ensuing expert-augmentation

process.
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Figure 4. Quintile distribution of risk scores predicted with Random Forest, Gradient Boosting and GBM-based

RuleFit. Observations were divided into quintiles based on their model-predicted risk scores (red bars). For every

quintile, the average empirical risk – for how many observations the risk actually realized – was calculated for

comparison (blue bars). Test data drawn from the same data distribution as training data vs test data from short-term

and mid-term future time periods.

As seen in table 3 (chapter 4.3), the AUC accuracy measurements reflect the underlying data

structures – all models yielded the highest AUC for the first test set that matched the distribution

of training data; the lowest for data from a shorter time period immediately after the COVID-19

lockdown; and second-lowest for mid-term future data where labor market conditions were

expected to have recovered to some extent. It can be noted that the LASSO RuleFit model with

only the 142 most important rules was already able to outperform the RuleFit with all 3199
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decision rules in terms of prediction accuracy on all test sets. Curiously, the GBM RuleFit model

even outperformed the base Random Forest model on future data before it was augmented with

expert knowledge, in spite of slightly lesser accuracy on the base test set (table 3). As seen in

figure 4, RuleFit predictions for future data were also better calibrated, suggesting that this type

of model is already more generalizable to new data and therefore may be less sensitive to sudden

market shifts. From the 142 decision rules generated by the LASSO-penalized RuleFit model,

20 rules with the largest coefficients (absolute value) were selected for further expert validation.

The resulting subset was mostly well representative of the initial rule set in terms of empirical

risk distribution; however, on average, the final 20-rule subset included rules with slightly higher

empirical risks assigned to them (figure 5).

Figure 5. Distribution of empirical risk scores for the initial 142 LASSO-selected decision rules and the subset of

20 rules selected for expert validation. Error bars indicate 95% CI (left figure); black dot indicates sample mean

and horizontal line sample median (right figure).

4.2 Validating collected expert risk assessments

A total of seven experts completed the questionnaire and assessed the likelihood of resuming

work for subpopulations defined by selected decision rules. While this might seem like a small

number of participants for a survey, relatively low standard deviation for responses indicates that,

for most questions, experts’ opinions did not clash very often, and elicited information would

have likely started to saturate with a higher number of responses. Moreover, although Gennatas

et al. (2020: 4571) application of this method involved 15 experts, other similar studies have
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had to make due with insight from only as few as one single expert10. Expert-assessed as well as

empirical risks for each of the 20 selected decision rules can be examined in appendix 3. The

distribution of expert-assessed risks and empirically modelled risks can be seen in figure 7. It can

be noted that the expert-assessed risks are distributed more evenly across the probability scale,

which may be a good indication that 1) expert judgment differs from empirical induction to a

certain extent, and 2) experts tend to give more pessimistic judgments to high-risk individuals

and more optimistic judgments to low-risk individuals – confirming the potential to alleviate the

miscalibration issue mentioned above and seen in figure 4.

Figure 6. Model-calculated variable importance measure for individual predictors normalized to range 0-1 (left

figure). Blue bars represent variables that also occurred in the 20 decision rules selected for expert validation.

Constructed comparative variable importance measurement for expert assessments (right figure).

Figure 6 shows model-calculated variable importance of individual predictors for the Ran-

dom Forest base model and a comparative estimation on the basis of experts’ questionnaire

responses11. First, it can be noted that among the most important predictors for the replica

10See: Sinha and Zhao (2008: 289); Schapire et al. (2002: 542)
11For every decision rule that includes a particular predictor, variable importance for that predictor increases by

the absolute difference from the average response (the “equal” option equivalent to 0.5 on the probability scale)

divided by the total number of predictors in the same rule. Each summed variable importance is then divided by

how many times it occurred throughout the entire set of 20 rules to ensure correct scaling. Finally, calculated

variable importance measures were normalized to a 1-0 scale.
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base model were macro-level variables representing the overall labor market situation at the

time training observations entered unemployment. This is where the base model trained in

this study differs most from the real in-use OTT as for the real model, individual job history

related variables tend to be most influential. This difference can likely be accounted to excessive

aggregation of individual predictors and the exclusion of unique job-seekers in this study due

to data protection requirements. Regardless of these inaccuracies and different approaches for

calculating variable importance for empirical and expert assessments, the overall concurrence of

these rankings helps to confirm the validity of collected expert risk assessments. Interestingly,

whether an individual has a functional e-mail account seems to have been an important flag for

experts. It can be hypothesized that, for experts, having (or providing) an e-mail account as

a contact form proxies motivation to find a job as soon as possible. More likely, however, it

ranks this high because it appeared in decision rules where other variables were already strong

indicators of whether or not an observation is capable of finding a job fast. Compared to the base

model, work capacity also ranks considerably higher as it does for the real in-use OTT model.

Figure 7. Empirical risks and expert-assessed risks for each selected decision rule (left figure). Error bars for

expert-assessed risks indicate 95% CI. Distribution of empirical risks and expert-assessed risks for the set of 20

selected decision rules (right figure); black dot indicates sample mean and horizontal line sample median.

Expert-assessed risks and empirical risks were also plotted for each rule to ensure further that

valid information was acquired from caseworkers (figure 7). A monotonic relationship exists

between empirical and expert-assessed risks, confirming the general validity of collected expert

knowledge. Despite this, five rules out of 20 fell outside the 95% confidence interval as seen in
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figure 7, indicating a substantial difference between expert and model judgment. Following the

methodology of Gennatas et al. (2020: 4573), these rules (presented in table 5) were further

investigated as they may reveal hidden confounders or systematic expert misjudgment.

The first notable discovery is that out of these five, three (116, 15 and 25) included job-

seekers from the same age group of 50-60-year-olds (mode for the “average” job-seeker being a

much lower value of 20-30). All three such subpopulations fell on the higher end of the risk

scale, and in every case, experts significantly overestimated the risk of staying unemployed

compared to the empirical model. Additionally, out of 7 times the age group variable appeared

throughout the rule set, 50-60 appeared exactly thrice, meaning that experts overestimated the

risk for every single assessed rule defined by this age group. There is a good reason to suspect

that this points towards a hidden confounding artifact. Contrary to what may sometimes be

mistakenly stated, a probabilistic model cannot actually under- or overestimate the empirical

risk of some event happening if it already knows the outcome. For the model to output a risk

score of 0.776, this outcome indeed had to happen for exactly 776 individuals out of 1000

that satisfied this decision rule in the training data. The fact that qualitative expert judgment

systematically differed from the inherently objective empirical risk suggests that experts either

misjudged the risk or some unobserved confounding variables and/or ex-post interventions are

secretly modifying it (Gennatas et al. 2020: 4573).

Assuming that expert assessment was exclusively based on logical deductions from factors

present in decision rules, there are two possibilities as to why the risk scores are so different.

The first possibility is that these particular subpopulations received some sort of intervention

in the form of special unemployment benefits and/or training programs that the experts did

not foresee. This intervention ultimately improved their chances of finding a job, effectively

lowering their risk of staying unemployed. Another explanation could be that there are other

confounding variables at play that result in the empirical risk being lower than it may seem from

the hard variables present in that rule. I will bring a purely hypothetical yet plausible example

of how a hidden confounder may be distorting the empirical risk score in this case. Besides all

three subpopulations mostly consisting of 50-60-year-old job-seekers, it can be noted that they

also hold individuals that to our knowledge have not worked for a relatively long time12. It can

be hypothesized that these rules have incidentally also captured completely work-capable people

12See variables time since last employment spell and n of employment spells in the last 3 years for rules 116, 15

and 25.
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who had recently returned from working abroad. Because there is no accurate track record of

their job or travel history, experts may have mistakenly assumed that these people are less capable

of finding a job than they apparently are; thus, the more pessimistic evaluation. It goes without

saying that any such explanation is mostly speculative as they cannot be confirmed without

additional relevant information. Still, this hypothetical confounder would explain why the

average empirical risk for all three of those subpopulations was notably lower for short-term data

– as travel restrictions imposed by the COVID-19 crisis were looming on the horizon, it seems

plausible that more job-seekers had returned from working abroad than before. Speculations

aside, the most important thing is that in this case, expert assessment theoretically offers a

more pure risk prediction because it is not muddled by unobserved (and often unexplainable)

confounding variables and interventions. Irrespective of the true explanation, there seems to be

enough evidence that individuals between the ages of 50 and 60 that have officially been inactive

for a while, can be considered a confounding artifact. Thus, hypothesis 1 can be confirmed.

Table 2. Five rules for which expert assessment significantly differed from empirical risk (expert-assessed risk fell

outside the 95% confidence interval) ordered by assigned penalty value ( |∆Risk|
STDVEx

) from highest to lowest.

ID Subpopulation defined by decision rule Empiri-

cal risk

Expert

assess-

ed risk

Expert

STDV

Penalty R

116

Time since last employment spell = unknown/no spell

Competition for suitable job vacancies = 0.03

Age group = 51-60

0.776 0.964 0.094 1.994 5

61

N of employment spells in the last 3 years = 1

N of months with payment in the last 2 years = 24

Time since last employment spell = up to 3 months

N of unemployment days in the past 3 years = 1.1

Length of assigned UIB in days = 0

0.294 0.083 0.129 1.632 5

15

N of employment spells in the last 3 years = 0

Time since last employment spell = 3 to 5 years

Age group = 51-60

0.824 0.964 0.094 1.483 4

69

Time since last employment spell = up to 3 months

Duration of last employment spell = 3 to 12 months

Length of assigned UIB in days = 230.9

Received wage subsidy in the past 3 years = no

0.397 0.571 0.122 1.427 4

25
Time since last employment spell = 3 to 5 years

Age group = 51-60
0.754 0.929 0.189 0.924 3
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4.3 Penalizing unreliable rules to form final expert-augmented models

Penalties were applied to decision rules based on the extent expert assessments coincided with

the empirical risks assigned to each of these rules. These penalties ultimately determined

which rules were to be included in the final expert augmented linear regression models. Figure

8 shows applied penalties for each expert-assessed decision rule. It can be seen that higher

penalization occurs when 1) the absolute difference between empirical and expert-assessed risks

is higher, and 2) the standard deviance for the recorded expert assessment is low (indicating

inter-expert agreement). The 20 penalized rules are then discretized into five ranks R1-R5. Four

expert-augmented models were trained with each subsequent model excluding another rank

of decision rules from the set of predictor variables. For example, the first expert augmented

model includes rules for which R ≤ 4 (rules 61 and 116 will be excluded as seen in figure 8),

the second model rules for which R ≤ 3 and so on. Another model was trained by specifically

discarding rules 116, 15 and 25 that were suspected to involve a common confounding variable,

as discovered before.

Figure 8. Penalty values for each decision rule subject to expert assessment. Red bars display the initial absolute

difference between empirical and expert-assessed risk (|∆Risk|). Blue bars display the final calculated penalty

value, obtained by dividing |∆Risk| by the standard deviance for expert assessment (inter-expert agreement,

represented by black vertical bars).

55



AUC accuracy measures for all four expert-augmented models are shown in table 3. On

the base test set, none of the expert-augmented models was able to improve in accuracy over

either the LASSO RuleFit nor the Random Forest model. On future data sets, expert-augmented

models were able to consistently outperform the Random Forest benchmark model, however,

no improvements were recorded over the base non-augmented RuleFit and boosting models.

The one expert-augmented model that matched the accuracy of RuleFit on all but one test set

(trailing by just 0.01 percentage points on mid-term future data) was the one that was specifically

configured to exclude the rules with the aforementioned hidden confounder. Other relatively

potent performers included model R ≤ 1 that strictly only retained the most reliable rules and

rule R ≤ 4 that only discarded the most conflicting rules. Since no overall improvement in AUC

was recorded for any of the expert-augmented models compared to a non-augmented RuleFit,

hypotheses 2.1 and 2.2 cannot be confirmed.

Table 3. Comparison of the predictive accuracy of trained models based on test samples from 1) the same

distribution as training data (job-seekers who registered as unemployed between January 2015 and September

2019); 2) a short-term future time period (March-July 2020); 3) a long-term future time period (March 2020 to

September 2021).

Step Model AUC (test

data)

AUC (short-term

future data)

AUC (mid-term

future data)

OTT replica model Random Forest 0.7218 0.6836 0.6917

GBM base model Gradient Boosting 0.7238 0.6975 0.7030

RuleFit

GBM-trained RuleFit (all

rules)

0.7128 0.6879 0.6967

GBM-trained RuleFit

(142 LASSO-selected

rules)

0.7131 0.6880 0.6967

Final expert-
augmented models

R ≤ 4 0.7129 0.6877 0.6965

R ≤ 3 0.7127 0.6876 0.6961

R ≤ 2 0.7126 0.6875 0.6961

R ≤ 1 0.7127 0.6878 0.6962

Discarded R116, R25

and R15

0.7131 0.6880 0.6966

Average improvement
of expert-augmented
models

over Random Forest -0.0089 +0.0041 +0.0046

over Gradient Boosting -0.0109 -0.0098 -0.0067

over LASSO RuleFit -0.0002 -0.0003 -0.0004
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To investigate how this penalization method affected the model, predicted risks were plotted

for ten (out of 142) rules for which the best expert-augmented model prediction differed most

from regular RuleFit prediction, regardless of whether these rules were actually subject to

expert assessment (figure 9). It can be noted that all such rules that saw their associated risk

predictions improve (although incrementally) included individuals with either very high or very

low empirical risks. That can be considered a sign that the resulting expert-augmented model

has somewhat better generalization properties than the base RuleFit, predicting slightly more

reliably for irregular data points. Moreover, five out of ten rules present in figure 9 formed the

five smallest subpopulations in the model. This is further evidence of improved generalizability

and reduced overfitting, as the resulting expert-augmented model has the strongest corrective

effect on the most uncommon cases. It can also be noted that only one rule (R61) that itself was

subject to expert validation was significantly affected by the expert-augmentation process. This

suggests that predictive performance across the entire model can be affected by only having

experts validate a fraction of its parameters.

Figure 9. Average empirical and predicted risks for decision rules where the absolute difference between predictions

given by the R ≤ 1 expert-augmented model and the base RuleFit was the highest. Rules are ordered from highest to

lowest in terms of absolute difference in predicted risk scores. Red represents rules for which the expert-augmented

model predicted a higher, and blue rules for which it predicted a lower risk than the base RuleFit model.
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While these improvements were indeed marginal, predictive accuracy notably declined for

one decision rule. As seen in figure 9 in red, the best expert-augmented model predicted a

significantly lower score for R50. Upon closer inspection, this rule was confirmed to capture

similar individuals to removed rules R116, R15, and R25. It can therefore be assumed that, had

this particular rule been a part of the expert-validated rule set, it would have also emerged as a

confounding variable that should not be included in the model formula. The performance dip in

the ∼70% risk range highlighted in figure 10 confirms that rule 50 largely accounts for the lesser

overall predictive performance of the best expert-augmented model compared to base RuleFit.

The same figure also suggests that rule-based models perform better at the higher end of the risk

scale, although this artifact is likely unique to this particular data and/or subject of analysis.

Figure 10. AUC measurement vs empirical risk for each rule-defined subpopulation – base RuleFit vs Random

Forest vs the best expert-augmented model (discarded rules 116, 15 and 25).

Performance of all five expert-augmented models and the RuleFit base model was also eval-

uated on different training sample sizes. Figure 11 shows classification accuracy for all models

trained on samples ranging from 500 to 16000 observations in size. It can be seen that with

less training data, two expert-augmented models, R ≤ 4 and the one that discarded a suspected

confounder, performed marginally yet statistically significantly better than base RuleFit. As

expected, this improvement was the most notable on short-term data – the confounder-discarding

model learned faster up to about 4000 training observations. Hypothesis 3 can therefore be par-

tially confirmed – while expert-augmented models proved to learn slightly faster for short-term

data and base test data, no improvement was recorded for mid-term future data. Furthermore, the
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improvements were relatively marginal; however, that is likely due to the fact that only 20 rules

out of 142 received expert validation. My results suggest that there is potential for considerably

faster-learning models with more extensive integration of expert knowledge.

Figure 11. Predictive performance of expert-augmented models vs base RuleFit on different size training sets.

Error bars indicate 95% CI across five stratified random subsamples. Top-left plot represents a “zoomed out” view.
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4.4 Discussion

As more and more tasks are outsourced to automated tools in this sector, the level of accuracy

these machines can perform public tasks with is becoming under scrutiny. From a policy stand-

point, the accuracy of statistical tools contributes to the overall legitimacy of the administrative

procedures they are integrated into. Given the legitimacy of state agencies hinges on the com-

petence of their internal workings, it is crucial that these processes are fully accountable to

the public. Introducing complex machines in this accountability chain certainly makes it more

difficult to trace the roots of administrative decisions and actions. This puts further weight on

prediction accuracy and reliability as the output of these machines must be in compliance with

policy goals and the surrounding context at all times.

Augmenting public sector Machine Learning systems with expert knowledge was expected

to yield three benefits in this area. First, integrating human experience and value judgment with

Machine Learning models was to boost its predictive performance on new data (H2.1 & H2.2).

Although this analysis was unable to confirm substantial accuracy improvements in augmenting

Machine Learning models with expert knowledge, certain findings give reason to believe that

the expected benefits discussed in literature hide right around the corner. It was expected that

expert-augmented models are more generalizable for new contexts, resulting in better predictive

performance on fewer training data (H3). Performance evaluation of models showed that some

expert-augmented models can learn slightly faster with less training data compared to purely

quantitative models, indicating better generalization properties on out-of-sample test data with

alternate structure and feature distributions. While the recorded improvements were relatively

marginal, they nonetheless harmonize with other similar studies, most notably the work of

Gennatas et al. (2020) whose approach was adopted in this thesis.

Somewhat unrelated to the primary goal of this research – to improve the accuracy and

generalizability of ML-based tools through integration with expert knowledge – another potential

benefit emerged during the base model preparation phase. The particular expert-augmentation

method followed in this study required transforming a complex tree-based ML model to a

more simplistic and intuitive rule-based format. Despite the fact that this step did not yet

involve additional qualitative data, the resulting prediction rule ensemble model was able to

outperform the tree-based benchmark model as well as each subsequent expert-augmented model

in terms of prediction accuracy. As some previous studies have demonstrated that prediction

rule ensembles can yield superior classification accuracy compared to more complex tree-based
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models (Friedman and Popescu 2008: 926–927), this finding was not completely surprising

on its own. What is noteworthy, however, is that these types of models are decidedly easier

to comprehend due to being composed of a relatively small number of independent linear

components interpretable as decision rules (Fokkema 2020: 1–2). Contrasting different models

from the perspectives of interpretability and explainability was ultimately not in the scope of

this study. Regardless, a reasoned assessment can be made based on the extracted set of decision

rules that this type of model allows for a more comprehensible examination of different variables

and latent factors that influence one’s risk score. This is supported by some caseworkers’ positive

feedback to the rule assessment questionnaire (collected independently from risk assessments

for validation purposes), highlighting the straightforwardness of presented decision rules. Using

prediction rule ensembles instead of tree-based models might therefore help ML tools meet

the explainability requirement that is crucial in the public domain. Despite having not been a

direct objective of this study, this posteriori knowledge opens up interesting avenues for future

research in the field of explainable AI and Machine Learning.

Increased predictive accuracy was not the only improvement achieved by transforming a tree

ensemble model to a simpler, rule-based model. Comparison between trained Random Forest

and RuleFit showed that the latter was able to offer more stable prediction accuracy throughout

the risk scale on new data. Random Forest proved to miss the mark, especially at the far ends of

the scale, often yielding overly optimistic scores for those at risk and pessimistic for those not at

risk. A rule-based model proved to remedy that by having prediction errors distributed across

the scale more evenly. For policy areas where the actual risk scores are of little relevance and

the focus is on how these scores ultimately rank individuals (such as job-seeker profiling), the

calibration issue innate to Random Forest is not a deal-breaker. However, as indicated by this

finding, prediction rule ensembles might be a good fit for use cases where numeric differences

in predicted values are also meaningful from a policy perspective.

While this thesis empirically tested improvements to a public sector Machine Learning

model from pure predictive performance and domain logic consistency standpoints, the literature

dissected in chapter 1 suggested another theoretical benefit to this endeavor. Data-driven systems

tend to become more interpretable and explainable when infused with some form of prior

knowledge. The premise for this was that as expert knowledge helps to discover confounding

artifacts in the form of unobserved factors and interventions, models that discard those artifacts

become more easily explainable since their output is more consistent with real-life scenarios
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(H1). In this analysis, systematic differences in expert and model assessments revealed that for

job-seeker groups with certain common observed features, a confounding latent variable was

modifying model-predicted risks. Model parameters involving this unexplained confounding

variable were then penalized in the hope of a more accurate model. While, in this case, some

statistical evidence emerged that it may have indeed been a hidden confounder (as suggested

by increased generalization properties of the respective expert-augmented model, including the

ability to learn faster on new data), the true explanation behind it can only be speculated. It

was not in the scope of this thesis to collect additional expert opinions regarding discovered

confounding variables to validate whether they are consistent with domain context. Future

studies that apply this method can improve the validity of results by conducting another round

of expert deliberation in the form of a survey or a focus group interview to confirm that the

exclusion of this unobserved factor is indeed necessary and justified.

There are other limitations to the results of this study that need to be addressed. The most

prominent bottleneck of this analysis was that only a fraction of all model components were

given the expert knowledge treatment. Due to resource constraints, only 20 decision rules out of

142 were chosen for expert validation, meaning that the hypothesized accuracy improvement

should have manifested itself in less than 30% of all model components. I identified and

discarded what was deemed to be a hidden confounder according to differences in model and

expert risk assessments. The problematic part is that these differences are, in part, relative to the

set of rules chosen for expert validation. It was my analytical decision to have experts assess

exactly 20 rules with the highest model coefficients to maximize expected improvements. A

differently defined set would have possibly revealed different confounding variables. It can

also be that experts judged each rule not entirely based on provided population statistics but

rather on how they compared to other rules in the questionnaire, resulting in somewhat distorted

assessments specific to the particular set of rules subject to qualitative validation.

Another limitation concerns a trade-off between research feasibility and the quality of

elicited information. In this study, the questionnaire for collecting expert risk assessments

was deliberately designed to be as easy to comprehend and respond to as possible. Although

prediction rule ensembles are often lauded for their interpretability benefits compared to more

complex algorithms, some model-created rules can still end up being hard to comprehend or

outright nonsensical. While the author could have gone the extra mile in explaining how to

interpret each rule, a conscious decision was taken to avoid cluttering the questionnaire with
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long instructions and excessively detailed questions. The reason for that is simple – answering

20 questions that each require special attention to subpopulation statistics and variables is time-

consuming and, frankly, rather boring. As the author’s resources to compensate for respondents’

efforts were limited, compromises had to be made in regard to how much information was

presented to them. One such compromise was that, unlike in Gennatas et al. (2020) study, only

population mode was displayed for nominal variables, with no reference to other levels that

were also present in that subpopulation. For example, a group of job-seekers was presented to

be construction workers by training, despite that actually being the most frequently occurring

level in that subpopulation. Other levels were not displayed to avoid overcomplicating the

questions and potentially confusing respondents. It would have been hard to make an educated

risk assessment if that group was said to consist of individuals from many seemingly unrelated

fields – for example, a mix of construction workers, lawyers, and family doctors. On the other

hand, as confusing as some of these combinations may have been, presenting them exactly as

they appeared in model-created decision rules may have contributed to revealing confounding

variables. As a total of seven experts completed the questionnaire – just above the desired

minimum – the decision to sacrifice some information quality for a satisfactory number of

respondents ultimately proved to be the right call for this study. Future research using this

approach can expect to elicit better quality expert knowledge with more detailed questionnaires

that perfectly represent all model parameters.

Finally, the broader aim of this thesis was to generate knowledge regarding the technical

benefits of expert-augmentation for public sector machine learning systems in general. While

this thesis successfully demonstrated the viability of said approach within overarching imple-

mentation constraints that exist in the public domain, these concrete findings are still largely

particular to decision support tools in social and unemployment policy. The set of decision rules

to be validated by experts, as well as the AUC accuracy measurement for benchmarking were

chosen with the specific objectives of OTT and welfare provision systems in mind. As OTT can

ultimately only determine the order in which policy-based intervention is to be delivered among

the society, the correct ranking of predicted values was ultimately in the crosshairs. It cannot

be taken for granted that these findings stand for use cases with completely different priorities

and definitions regarding model goodness – for example, cases where predicted nominal values

yield greater policy implications instead.
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5 CONCLUSION

The public sphere is a notoriously challenging domain to design automated systems for. Imple-

mentation barriers include miscommunication issues between technical developers and public

procurers, high system performance and cost requirements stemming from the ramifications of

administrative decisions, and ethical considerations in relying on data-driven systems to steer

human lives. The aim of this applied thesis was to explore how public sector machine learning

systems can be improved through integration with qualitative expert knowledge in order to

mediate some of these concerns. First, qualitative domain knowledge has proven to enhance

the predictive performance of machine learning models, especially on new data. Second, by

augmenting data-driven models with qualitative expert input, system integrity and consistency

with domain rules can essentially be validated, resulting in a model that fits its intended use case

and policy objectives better.

The subject for this study was OTT – a real in-use ML-based decision support tool from the

field of unemployment policy. The tool in question estimates long-term unemployment risks

of job-seekers based on quantitative individual-level data, including a fairly large number of

standard socio-demographic and job history variables known to affect one’s labor market status.

Training data relied on by the model inherently reflects the labor economy situation at the time of

its collection, meaning that sudden labor market changes in the temporal dimension can render

this model ineffective. A more flexible model with better generalization properties was expected

to remedy that issue. Therefore, the aim of this study was to test whether expert-augmentation

1) improves the overall predictive accuracy of a public sector machine learning decision support

tool, 2) yields a model more generalizable for new data, and 3) helps to identify model artifacts

not in line with the rules and objectives of its use case.

A suitable knowledge engineering method was adapted from medical studies to incorporate

domain knowledge with a data-driven model. This method entailed transforming a complex ML

model to a collection of simple decision rules that were then subjected to expert validation. Sys-

tem developers and caseworkers from the Estonian Unemployment Insurance Fund qualitatively

judged the risks of 20 rule-defined job-seeker groups through a specially designed platform.

Model-calculated risks were then compared to expert-assessed risks, and those decision rules

with substantial differences in empirical and expert risk estimations were removed from the final

expert-augmented models.
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This study was unable to confirm substantial peak accuracy benefits of the tested approach.

Although the procedural step of converting a complex ML model to a more interpretable rule-

based format did improve overall accuracy, the ensuing expert-augmentation process itself did

not. However, expert-augmented were confirmed to be more flexible as they 1) performed

comparatively well on new data, 2) could learn faster with less training data, and 3) yielded

somewhat higher prediction accuracy for uncommon observations. Moreover, this method

was able to reveal job-seekers for whom empirical and expert risk assessments systematically

differed, indicating the presence of a common hidden confounding variable. Although this study

did not validate the consistency of that confounder with domain logic, it was confirmed that its

exclusion from the model contributes to increased generalization properties.

These findings yield important implications regarding future use cases for Machine Learning

based decision support tools in the public sphere. As was brought up earlier, a myriad of

implementation challenges, including strict data regulations, cooperation barriers between

procurers and system developers, and budget constraints, hinder advancements in public sector

automation. For one thing, models with good generalization properties can be deployed in

various different contexts with no significant drop-off in predictive performance. My analysis

provides some evidence that machine-learning models augmented with expert knowledge can

adapt to irregular contexts better. On the other hand, systems that can learn with less input

data are not only more versatile but can yield serious cost optimization benefits in areas where

labelled training data is scarce. While shortage of individual-level data has not been of particular

concern in job-seeker profiling, future work may explore the benefits of expert-augmentation in

public processes where good quality data is especially hard to come by.

This thesis highlighted the importance of integrating public sector data-driven systems with

qualitative domain knowledge and showed promising results in practice. To my best knowledge,

it is the first study focused on improving machine learning models with expert knowledge

specifically in the public sphere, not to mention the subfields of social and unemployment

policy. This alone warrants that it contributes to academic research on public sector automated

systems and knowledge engineering. Given this study confirmed advantages of the demonstrated

approach from a purely technical perspective, follow-up research is welcomed to test whether

it a) enhances justifiable and actionable decision-making from the perspectives of explainable

AI and human-computer interaction and b) yields similar benefits for use cases with different

policy- and performance priorities across the public sphere.
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APPENDIX 1. DATA TYPES AND VARIABLE TRANSFORMATIONS

Variable Data type Explanation Applied transformation

EMPLOYED AF-

TER 180 DAYS

binary Whether or not observation resumed work

within 180 days from registering as unem-

ployed

no transformation

EMPLOYMENT

SPELLS

continuous Number of employment spells in the last 3

years

no transformation

UNIQUE EM-

PLOYERS

continuous Number of unique employers in the last 3

years

no transformation

LAST STATUS nominal (3 levels) Last status/activity before unemployment Different types of employment contracts

were aggregated into level “employed”; “In

prison”, “military conscription” and “un-

known” were aggregated into level “other”;

and “caretaker”, “sick”, and “studied” into

one level.

REASON FOR

ENDING LAST

SPELL

nominal (5 levels) Reason for ending last employment spell 13 specific reasons were divided into 4 cate-

gories depending on whether the reason was

related to the employer (such as lay-off), em-

ployee (such as incompetence), mutual agree-

ment or end of contract. An additional level

was reserved for those who were not em-

ployed at all.

MONTHS WITH

PAYMENT

nominal ordered

(1-24)

Number of months with payment in the last 2

years

no transformation

TIME SINCE

LAST SPELL

nominal ordered

(8 levels)

Time passed since last employment spell no transformation

LAST FIELD OF

EMPLOYMENT

nominal (11 lev-

els)

Field of last employment spell A total of 53 specific fields were aggregated

into 11 more general employment fields. For

example, “forestry/fishing/hunting”, “agricul-

ture and veterinary” and “husbandry” were

labelled as “agriculture”.

COMPETITION

FOR SUITABLE

VACANCIES

continuous Ratio of the total number of active vacancies

and competing job-seekers for jobs that are

suitable for a particular observation. In sim-

pler terms, this ratio indicates competition for

suitable/desired job vacancies, the smaller the

more competition there is.

no transformation

AGE GROUP nominal ordered

(6 levels)

Age group Numeric age variable was converged into 6

age groups as seen in appendix 2.

REGION nominal ordered

(5 levels)

Region of residence 15 Counties were divided into five regions:

“North”, “West”, “Central”, “North-East” and

“South”. Observations with unknown county

of residence were excluded.

DURATION OF

LAST SPELL

nominal ordered

(6 levels)

Duration of last employment spell no transformation

LEVEL OF EDU-

CATION

nominal ordered

(4 levels)

Level of education “No education” and “unknown” were com-

bined into one category
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WORK CAPAC-

ITY

nominal (3 levels) Capacity to work no transformation

UNEMPLOYMENT

DAYS IN THE

LAST 3 YEARS

continuous Number of unemployment days in the last 3

years

no transformation

REGISTERED

JOB-SEEKERS

AT THE SAME

TIME

nominal (3 levels) The total number of people that registered

as unemployed around the same time (± 15

days) as the observation.

no transformation

FIELD OF EDU-

CATION

nominal (11 lev-

els)

Field of education no transformation

DURATION OF

ASSIGNED UIB

continuous Duration of assigned UIB in days no transformation

SUITABLE VA-

CANCIES

nominal ordered

(7 levels)

Number of job vacancies in the desired ISCO

field

no transformation

LAST SPELL

ISCO

nominal (11 lev-

els)

ISCO category (occupation group) of the last

employment spell

Observations from group “0” (military) were

excluded due to the marginal size of the group

potentially allowing identification of certain

individuals.

SHORT SPELLS

IN THE LAST 3

YEARS

continuous Number of employment spells in the last 3

years that were shorter than 90 days

no transformation

ESTONIAN

LANGUAGE

SKILLS

nominal ordered

(8 levels)

Level of Estonian language skills, including

“missing” and “unknown”.

no transformation

ASSIGNED UN-

EMPLOYMENT

ALLOWANCE

continuous Duration of assigned unemployment al-

lowance in days

no transformation

SHARE OF

JOB-SEEKERS

RESUMING

WORK

continuous Share of job-seekers that exited unemploy-

ment within the last 30 days

no transformation

ASSIGNED UIB

DAILY RATE

continuous Assigned UIB daily rate in Euros. no transformation

PRIOR UNEM-

PLOYMENT

SPELLS

nominal ordered

(7 levels)

Number of previous unemployment spells in

the last 3 years

no transformation

COMPUTER

SKILLS

nominal (6 levels) Self-reported computer skills no transformation

HAS E-MAIL binary Whether observation has provided the unem-

ployment agency with a functional e-mail ad-

dress

no transformation

HAS DRIVER’S

LICENSE

binary Whether observation has a valid driver’s li-

cense (Estonian B-category license for regu-

lar cars)

no transformation

IS BOARD

MEMBER

binary Whether observation is a board member of

some company or organization

no transformation
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RECEIVED

WAGE SUBSIDY

binary Whether observation received wage subsidy

in the last 3 years

no transformation

CITIZENSHIP nominal (4 levels) Citizenship Four categories for “Estonian”, “Russian”,

“other” and “undetermined”. Observations

with unknown citizenship status were ex-

cluded.

LAST EM-

PLOYMENT

CONTRACT

nominal (4 levels) Type of last employment spell Eight specific types of employment were ag-

gregated into 4 general levels as seen in ap-

pendix 2

APPENDIX 2. STRATIFIED TRAINING AND TEST SAMPLES

Levels (nominal) or

mean and median

(continuous)

Training sample Test sample Short-term fu-

ture test sample

Mid-term future

test sample

Total observations 54027 109469 31515 117815

EMPLOYED AF-

TER 180 DAYS

0

1

27054 (50.07%)

26973 (49.93%)

54882 (50.13%)

54587 (49.87%)

15416 (48.92%)

16099 (51.08%)

61585 (52.27%)

56230 (47.73%)

EMPLOYMENT

SPELLS

mean

median

2.57

2

2.57

2

3.26

2

3.14

2

UNIQUE EM-

PLOYERS

mean

median

2.10

2

2.11

2

2.56

2

2.44

2

LAST STATUS

Carer/sick/studied

Employed

Other

4801 (8.89%)

42805 (79.23%)

6421 (11.88%)

9693 (8.85%)

86768 (79.26%)

13008 (11.88%)

1458 (4.63%)

27925 (88.61%)

2132 (6.77%)

8490 (7.21%)

98161 (83.32%)

11164 (9.46%)

REASON FOR

ENDING LAST

SPELL

Contract deadline

Employee related

Employer related

Mutual agreement/other

Not employed

13608 (25.19%)

14517 (26.87%)

7870 (14.57%)

15062 (27.88%)

2970 (5.50%)

27173 (24.82%)

29686 (27.12%)

16241 (14.84%)

30388 (27.76%)

5981 (5.46%)

7346 (23.31%)

8337 (26.45%)

9399 (29.82%)

5803 (18.41%)

630 (2.00%)

31515 (26.75%)

33212 (28.19%)

24728 (20.99%)

24095 (20.45%)

4265 (3.62%)

MONTHS WITH

PAYMENT

mean

median

11.33

11

11.39

11

14.93

18

13.32

15

TIME SINCE

LAST SPELL

< 3 months

3-6 months

6-12 months

1-2 years

2-3 years

3-5 years

> 5 years

Unknown/missing

37701 (69.78%)

3297 (6.10%)

2973 (5.50%)

2422 (4.48%)

1252 (2.32%)

2450 (4.53%)

962 (1.78%)

2970 (5.50%)

76504 (69.89%)

6737 (6.15%)

5960 (5.44%)

4852 (4.43%)

2488 (2.27%)

5004 (4.57%)

1943 (1.77%)

5981 (5.46%)

25633 (81.34%)

1356 (4.30%)

1511 (4.79%)

1031 (3.27%)

484 (1.54%)

681 (2.16%)

189 (0.60%)

630 (2.00%)

89961 (76.36%)

5243 (4.45%)

5412 (4.59%)

5208 (4.42%)

2512 (2.13%)

4031 (3.42%)

1183 (1.00%)

4265 (3.62%)
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LAST FIELD OF

EMPLOYMENT

Agriculture

Business service

Construction

Education

Health & social

Industry

Other

Personal service

Public sector

Retail

Transport

1686 (3.12%)

7960 (14.73%)

6685 (12.37%)

946 (1.75%)

1311 (2.43%)

10282 (19.03%)

6249 (11.57%)

8975 (16.61%)

753 (1.39%)

6345 (11.74%)

2835 (5.25%)

3536 (3.23%)

17575 (16.05%)

13741 (12.55%)

1855 (1.69%)

2816 (2.57%)

20433 (18.68%)

10869 (9.93%)

17738 (16.20%)

1666 (1.52%)

13519 (12.35%)

5721 (5.23%)

440 (1.40%)

6067 (19.25%)

3438 (10.91%)

463 (1.47%)

845 (2.68%)

5280 (16.75%)

1906 (6.05%)

6712 (21.30%)

427 (1.35%)

4421 (14.03%)

1516 (4.81%)

2742 (2.33%)

21218 (18.01%)

13943 (11.83%)

1673 (1.42%)

3286 (2.79%)

18742 (15.91%)

9142 (7.76%)

24090 (20.45%)

1559 (1.32%)

16020 (13.60%)

5400 (4.58%)

COMPETITION

FOR SUITABLE

VACANCIES

mean

median

0.14

0.09

0.14

0.09

0.06

0.03

0.07

0.04

AGE GROUP

< 20

20-30

31-40

41-50

51-60

> 60

2020 (3.74%)

16019 (29.65%)

11886 (22.00%)

10718 (19.84%)

12242 (22.66%)

1142 (2.11%)

4025 (3.68%)

32397 (29.59%)

23726 (21.67%)

22189 (20.27%)

24692 (22.56%)

2440 (2.23%)

1018 (3.23%)

9940 (31.54%)

7461 (23.67%)

6241 (19.80%)

5856 (18.58%)

999 (3.17%)

5488 (4.66%)

35771 (30.36%)

27673 (23.49%)

22882 (19.42%)

22246 (18.88%)

3755 (3.19%)

REGION

Central

North

North-East

South

West

4667 (8.64%)

21160 (39.17%)

9335 (17.28%)

13220 (24.47%)

5645 (10.45%)

9515 (8.69%)

42816 (39.11%)

18985 (17.34%)

26676 (24.37%)

11477 (10.48%)

2516 (7.98%)

15910 (50.48%)

3812 (12.10%)

6295 (19.97%)

2982 (9.46%)

9546 (8.10%)

55700 (47.28%)

15763 (13.38%)

24939 (21.17%)

11867 (10.07%)

DURATION OF

LAST SPELL

< 3 months

3-12 months

1-3 years

3-10 years

> 10 years

Unknown/missing

17960 (33.24%)

14437 (26.72%)

8780 (16.25%)

6836 (12.65%)

3044 (5.63%)

2970 (5.50%)

36092 (32.97%)

29037 (26.53%)

18031 (16.47%)

14126 (12.90%)

6202 (5.67%)

5981 (5.46%)

8215 (26.07%)

8996 (28.55%)

6912 (21.93%)

4877 (15.48%)

1885 (5.98%)

630 (2.00%)

37316 (31.67%)

30993 (26.31%)

22011 (18.68%)

16584 (14.08%)

6646 (5.64%)

4265 (3.62%)

LEVEL OF EDU-

CATION

None/unknown

Primary level

Secondary level

Tertiary level

811 (1.50%)

12786 (23.67%)

26447 (48.95%)

13983 (25.88%)

1546 (1.41%)

25944 (23.70%)

53449 (48.83%)

28530 (26.06%)

885 (2.81%)

6412 (20.35%)

15747 (49.97%)

8471 (26.88%)

2849 (2.42%)

26983 (22.90%)

58527 (49.68%)

29456 (25.00%)

WORK CAPAC-

ITY

Has work capacity

Partial work capacity

No work capacity

44604 (82.56%)

7261 (13.44%)

2162 (4.00%)

90596 (82.76%)

14423 (13.18%)

4450 (4.07%)

27644 (87.72%)

3461 (10.98%)

410 (1.30%)

101085 (85.80%)

14444 (12.26%)

2286 (1.94%)

UNEMPLOYMENT

DAYS IN THE

LAST 3 YEARS

mean

median

124.15

12

122.75

10

82.05

0

103.38

0

REGISTERED

JOB-SEEKERS

AT THE SAME

TIME

mean

median

5941.65

5964

5938.33

5959

9879.16

9012

8024.23

8004
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FIELD OF EDU-

CATION

Business & law

Education

Humanities

IT & communication

Natural sciences

Agriculture

Social sciences

Unknown/missing

Service

Health

Industry & construction

3941 (7.29%)

1143 (2.12%)

1353 (2.50%)

1009 (1.87%)

810 (1.50%)

1673 (3.10%)

643 (1.19%)

25172 (46.59%)

6455 (11.95%)

767 (1.42%)

11061 (20.47%)

8119 (7.42%)

2223 (2.03%)

2878 (2.63%)

2067 (1.89%)

1505 (1.37%)

3452 (3.15%)

1384 (1.26%)

50808 (46.41%)

12969 (11.85%)

1690 (1.54%)

22374 (20.44%)

2547 (8.08%)

648 (2.06%)

927 (2.94%)

713 (2.26%)

360 (1.14%)

670 (2.13%)

375 (1.19%)

14639 (46.5%)

3792 (12.03%)

609 (1.93%)

6235 (19.78%)

8942 (7.59%)

2400 (2.04%)

3105 (2.64%)

2478 (2.10%)

1367 (1.16%)

2753 (2.34%)

1327 (1.13%)

56443 (47.91%)

13796 (11.71%)

2241 (1.90%)

22963 (19.49%)

DURATION OF

ASSIGNED UIB

mean

median

73.53

0

74.04

0

118.63

0

95.71

0

SUITABLE VA-

CANCIES

0

1

2

3

4

5

6 or more

3213 (5.95%)

11502 (21.29%)

11576 (21.43%)

9168 (16.97%)

6607 (12.23%)

4175 (7.73%)

7786 (14.41%)

6576 (6.01%)

23011 (21.02%)

23702 (21.65%)

18662 (17.05%)

12994 (11.87%)

8683 (7.93%)

15841 (14.47%)

2082 (6.61%)

5242 (16.63%)

5581 (17.71%)

4602 (14.60%)

3576 (11.35%)

3079 (9.77%)

7353 (23.33%)

17585 (14.93%)

18262 (15.50%)

19155 (16.26%)

15490 (13.15%)

12444 (10.56%)

10475 (8.89%)

24404 (20.71%)

LAST SPELL

ISCO

1

2

3

4

5

6

7

8

9

Missing

Unknown

3439 (6.37%)

2855 (5.28%)

4039 (7.48%)

2295 (4.25%)

9365 (17.33%)

763 (1.41%)

10450 (19.34%)

5828 (10.79%)

11521 (21.32%)

2970 (5.50%)

502 (0.93%)

4637 (4.24%)

7721 (7.05%)

8615 (7.87%)

5284 (4.83%)

19695 (17.99%)

1537 (1.40%)

21429 (19.58%)

11687 (10.68%)

21884 (19.99%)

5981 (5.46%)

999 (0.91%)

1681 (5.33%)

2717 (8.62%)

3079 (9.77%)

1679 (5.33%)

7214 (22.89%)

188 (0.60%)

5300 (16.82%)

3137 (9.95%)

5175 (16.42%)

630 (2.00%)

715 (2.27%)

6719 (5.70%)

8343 (7.08%)

9998 (8.49%)

5809 (4.93%)

26312 (22.33%)

927 (0.79%)

18979 (16.11%)

11367 (9.65%)

23133 (19.64%)

4265 (3.62%)

1963 (1.67%)

SHORT SPELLS

IN THE LAST 3

YEARS

mean

median

1.19

0

1.19

0

1.49

0

1.52

1

ESTONIAN

LANGUAGE

SKILLS

Missing

Unknown

A1

A2

B1

B2

C1

C2

5674 (10.50%)

1476 (2.73%)

7936 (14.69%)

862 (1.60%)

839 (1.55%)

4494 (8.32%)

1795 (3.32%)

30951 (57.29%)

11336 (10.36%)

2844 (2.60%)

16070 (14.68%)

1895 (1.73%)

1778 (1.62%)

9013 (8.23%)

3632 (3.32%)

62901 (57.46%)

1979 (6.28%)

284 (0.90%)

3148 (9.99%)

1686 (5.35%)

1745 (5.54%)

2289 (7.26%)

1942 (6.16%)

18442 (58.52%)

7783 (6.61%)

968 (0.82%)

11859 (10.07%)

6684 (5.67%)

6835 (5.80%)

8120 (6.89%)

7642 (6.49%)

67924 (57.7%)

ASSIGNED UN-

EPLOYMENT

ALLOWANCE

mean

median

60.63

0

61.36

0

52.71

0

60.95

0

75



SHARE OF

JOB-SEEKERS

RESUMING

WORK

mean

median

0.13

0.12

0.13

0.13

0.09

0.11

0.10

0.11

ASSIGNED UIB

DAILY RATE

mean

median

0.16

0

0.17

0

0.28

0

0.23

0

PRIOR UNEM-

PLOYMENT

SPELLS

0

1

2

3

4

5

6 or more

26347 (48.77%)

13548 (25.08%)

7020 (12.99%)

3775 (6.99%)

1705 (3.16%)

811 (1.50%)

821 (1.52%)

53575 (48.94%)

27726 (25.33%)

13909 (12.71%)

7476 (6.83%)

3453 (3.15%)

1756 (1.60%)

1574 (1.44%)

18497 (58.69%)

7295 (23.15%)

2978 (9.45%)

1438 (4.56%)

642 (2.04%)

317 (1.01%)

348 (1.10%)

62379 (52.95%)

29156 (24.75%)

13336 (11.32%)

6769 (5.75%)

3111 (2.64%)

1490 (1.26%)

1574 (1.34%)

COMPUTER

SKILLS

None

Basic

Adept

Specialist

Expert

Unknown

197 (0.36%)

4291 (7.94%)

7391 (13.68%)

1541 (2.85%)

306 (0.57%)

40301 (74.5%)

413 (0.38%)

8803 (8.04%)

15176 (13.87%)

2997 (2.74%)

568 (0.52%)

81512 (74.5%)

605 (1.92%)

7711 (24.47%)

16171 (51.31%)

2963 (9.40%)

743 (2.36%)

3322 (10.54%)

2855 (2.42%)

31569 (26.80%)

63618 (54.00%)

10516 (8.93%)

2236 (1.90%)

7021 (5.96%)

HAS E-MAIL
0

1

5247 (9.71%)

48780 (90.29%)

10109 (9.23%)

99360 (90.77%)

958 (3.04%)

30557 (96.96%)

3903 (3.31%)

113912 (96.69%)

HAS DRIVER’S

LICENSE

0

1

24750 (45.81%)

29277 (54.19%)

49954 (45.63%)

59515 (54.37%)

12807 (40.64%)

18708 (59.36%)

50412 (42.79%)

67403 (57.21%)

IS BOARD

MEMBER

0

1

53423 (98.88%)

604 (1.12%)

108167 (98.81%)

1302 (1.19%)

30021 (95.26%)

1494 (4.74%)

113345 (96.21%)

4470 (3.79%)

RECEIVED

WAGE SUBSIDY

0

1

52394 (96.98%)

1633 (3.02%)

105985 (96.82%)

3484 (3.18%)

30488 (96.74%)

1027 (3.26%)

113602 (96.42%)

4213 (3.58%)

CITIZENSHIP

Estonian

Russian

Other

Undetermined

43653 (80.80%)

3899 (7.22%)

756 (1.40%)

5719 (10.59%)

88449 (80.80%)

7914 (7.23%)

1559 (1.42%)

11547 (10.55%)

26345 (83.60%)

1863 (5.91%)

700 (2.22%)

2607 (8.27%)

98101 (83.27%)

7351 (6.24%)

2454 (2.08%)

9909 (8.41%)

LAST EM-

PLOYMENT

CONTRACT

Employment contract

Not employed

Obligation contract

Other

42583 (78.82%)

2970 (5.50%)

7193 (13.31%)

1281 (2.37%)

86326 (78.86%)

5981 (5.46%)

14446 (13.20%)

2716 (2.48%)

25997 (82.49%)

630 (2.00%)

4074 (12.93%)

814 (2.58%)

92892 (78.85%)

4265 (3.62%)

16871 (14.32%)

3787 (3.21%)
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APPENDIX 3. 20 DECISION RULES SUBJECT TO EXPERT ASSESS-

MENT

ID Subpopulation defined by decision rule N

cases

Coef. Empiri-

cal

risk

Avg.

Exp.

assess-

ment

Expert

STDV

Penalty R

116

Time since last employment spell = unknown/no spell

Competition for suitable job vacancies = 0.03

Age group = 51-60

5353 0.154 0.776 0.964 0.094 1.994 5

61

N of employment spells in the last 3 years = 1

N of months with payment in the last 2 years = 24

Time since last employment spell = up to 3 months

N of unemployment days in the past 3 years = 1.1

Length of assigned UIB in days = 0

1714 -0.142 0.294 0.083 0.129 1.632 5

15

N of employment spells in the last 3 years = 0

Time since last employment spell = 3 to 5 years

Age group = 51-60

4770 0.166 0.824 0.964 0.094 1.483 4

69

Time since last employment spell = up to 3 months

Duration of last employment spell = 3 to 12 months

Length of assigned UIB in days = 230.9

Received wage subsidy in the past 3 years = no

2806 -0.174 0.397 0.571 0.122 1.427 4

25
Time since last employment spell = 3 to 5 years

Age group = 51-60
8853 0.215 0.754 0.929 0.189 0.924 3

109

N of employment spells in the last 3 years = 3.7

Time since last employment spell = up to 3 months

Work capacity = has work capacity

Has e-mail account = yes
29837

-0.140 0.403 0.250 0.204 0.752 2

105

N of employment spells in the last 3 years = 0.2

N of months with payment in the last 2 years = 0

Has e-mail account = no

1915 0.152 0.897 0.964 0.09 0.716 2

21

Time since last employment spell = missing/unknown

Age group = 20-30

Has driver’s license = no

3101 0.136 0.607 0.964 0.250 0.571 2

13
Time since last employment spell = missing/unknown

Has e-mail account = no
2574 0.141 0.844 0.917 0.129 0.561 2

54

Time since last employment spell = up to 3 months

Age group = less than 20

Has driver’s license = no

344 -0.413 0.360 0.500 0.250 0.558 2

85

N of employment spells in the last 3 years = 1.9

Reason of ending last employment spell = employee-related

N of months with payment in the last 2 years = 22.5

Time since last employment spell = up to 3 months

Length of assigned UIB in days = 0

820 -0.641 0.09 0.179 0.189 0.467 2

36
N of employment spells in the last 3 years = 8.7

Time since last employment spell = up to 3 months
4314 -0.189 0.267 0.357 0.283 0.319 1
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59

N of employment spells in the last 3 years = 4.2

N of months with payment in the last 2 years = 20.4

Length of assigned UIB in days = 9.9

7123 -0.166 0.237 0.179 0.189 0.311 1

42

N of employment spells in the last 3 years = 1.4

Time since last employment spell = up to 3 months

Work capacity = partial work capacity

Length of assigned UIB in days = 271.9

1501 0.204 0.736 0.786 0.225 0.220 1

137
Time since last employment spell = up to 3 months

Work capacity = no work capacity
2055 0.429 0.834 0.786 0.267 0.181 1

97

N of employment spells in the last 3 years = 0.6

Work capacity = has work capacity

N of unemployment days in the past 3 years = 288.4

5721 0.188 0.714 0.750 0.204 0.175 1

60

Reason of ending last employment spell = end of contract

N of months with payment in the last 2 years = 15.8

Time since last employment spell = up to 3 months

Length of assigned UIB in days = 23.4

4383 -0.314 0.215 0.250 0.204 0.172 1

41

N of employment spells in the last 3 years = 1

N of months with payment in the last 2 years = 22.2

Time since last employment spell = up to 3 months

Age group = 20-30

Length of assigned UIB in days = 227.4

428 -0.138 0.449 0.429 0.278 0.072 1

126

Time since last employment spell = up to 3 months

Age group = less than 20

Field of education = industry & construction

384 -0.136 0.435 0.429 0.189 0.033 1

57

N of employment spells in the last 3 years = 0.2

Time since last employment spell = unknown/missing

Working capacity = no working capacity

1444 0.151 0.925 0.929 0.122 0.028 1
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APPENDIX 4. EXPERT ASSESSMENT QUESTIONNAIRE GUIDE
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