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1. INTRODUCTION 

Islands are considered perfect ecological study systems due to their distinct 
physical boundaries and resulting well-defined populations. Evolutionary curio-
sities, high endemism rates, and disproportionate contribution to the global bio-
diversity loss add to reasons why islands have attracted ecologists’ attention for 
centuries. Among them, oceanic islands of volcanic origin, that have never been 
connected to the mainland, offer a special opportunity to study biodiversity 
development in action, driven by the immigration and evolution processes 
(Whittaker and Fernández-Palacios 2007, Warren et al. 2015). In addition, 
oceanic archipelagos act as networks of directional species dispersal, driven by 
spatio-temporal dynamics. Intriguingly, fragmented habitats within landscapes, 
that are mostly a result of human activity, function somewhat similarly to real 
archipelagos and offer an equally interesting opportunity to study the dynamics 
of spatially isolated populations, as well as an equally important conservational 
challenge.  

The equilibrium theory of island biogeography, first proposed by MacArthur 
and Wilson in 1963, replaced the until-then dominated static view on oceanic 
islands with dynamic equilibrium and quickly claimed the role of leading 
paradigm among island ecologists. It elegantly connected two defining processes – 
immigration and extinction – with their principal limiting factors – isolation and 
area respectively – into a simple model. Theory states that as both processes 
depend on the number of species already present on the island, a dynamic 
equilibrium between immigration and extinction occurs after some time, resulting 
in a more or less steady number of species with changing assembly. This dynamic 
view on local species composition laid the foundation for the concept of species 
pool, which is defined as the set of all species available to colonize a focal site 
(Cornell and Harrison 2014) and has been later widely developed and discussed 
in ecology (Zobel 2016).  

During the following decades the equilibrium theory was tested and proved 
on several different systems (reviewed by Schoener 2010), but also challenged 
and criticized for its limitations. Several authors have argued that the assumption 
of island ever getting to the equilibrium state is false, as volcanically active 
islands are constantly disrupted by new explosions (Bush and Whittaker 1993, 
Heaney 2000). It has been also demonstrated that immigration is not only limited 
by island isolation, as stated by MacArthur and Wilson, but can be also affected 
by island area (target area hypothesis, Gilpin & Diamond, 1976) and extinction 
is not only limited by island area but also by island isolation (rescue hypothesis, 
Brown & Kodric-Brown, 1977). Whittaker et al. (2008) argued that MacArthur 
and Wilson’s theory is unfit for oceanic islands, where evolution contributes at 
the same time scales as immigration to the species richness increase. In addition, 
the lack of several other factors – habitat diversity, archipelagic configuration, and 
geological development – have been pointed out (e.g. Heaney 2000, Whittaker 
et al. 2008). General dynamic theory of oceanic island biogeography (Whittaker 
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et al. 2008) ties the rates of immigration and extinction as well as the local spe-
ciation to the life cycle of a typical hotspot oceanic island, which emerges from 
the sea, builds to the maximal area and height, and then starts eroding and sub-
siding. The peak of local speciation approximately cooccurs with the topographic 
complexity in the island’s ‘middle age’ shortly after the maximal elevation and 
area have been passed, and species richness forms a hump-shaped relationship 
with island age.  

Despite the shortcomings, MacArthur and Wilson’s theory of island bio-
geography undeniably became a paradigm and a starting point for every island 
biogeography study to be published in coming decades. Even more, for a while it 
also dominated the entire spatial ecology: it was quickly adopted as the primary 
model to study the ‘habitat islands’ of the fragmented landscapes. By the early 
1980s, it had become the dominant ecological paradigm in conservation biology 
(Hanski and Simberloff 1997) and it was even used as a basis for the best spatial 
configuration of nature reserves (Diamond 1975, Terborgh 1975, Hanski 2001). 
However, by the end of the decade, its popularity was declining both in ecology 
and in conservation biology, while conceptually close metapopulation theory, 
first introduced by Levins in 1969, began to gain popularity. Metapopulation, 
according to Levins, is a set of spatially separated subpopulations, which are con-
nected by dispersing or migrating individuals. Each subpopulation is charac-
terized by a high extinction probability, whereas the migrating individuals are 
buffering the entire metapopulation from being endangered by the small-scale 
environmental change. Similarly to island biogeography theory, metapopulation 
theory emphasizes the importance of spatial arrangement of individuals and popu-
lations and resulting ecological interactions (Hanski 1998). The main difference 
from island biogeography theory is the lack of mainland species pool and the 
occurrence of several small ‘island’ populations.  

If first, landscape ecology had adopted elements from island biogeography, 
then in the 2000s, the latter started to look towards landscape ecology for the 
methods. One such aspect has been the island isolation metric, as MacArthur and 
Wilson’s initial theory fails to cover the archipelagic organization of most 
oceanic islands. It has been pointed out that for real oceanic islands, older islands 
of the neighborhood are much more probable sources of species than the very 
distant mainland and thus, island isolation metric should not reflect only the 
distance to the mainland, but rather account for the entire spatial organization of 
the archipelago (Weigelt and Kreft 2013). Thus, several alternative isolation 
metrics have been tested, e.g. distance to the nearest older island (Cardoso et al. 
2010), distance to the center island of the archipelago (Willerslev et al. 2002), 
mean distance to other islands (Borges and Hortal 2009), the availability of 
mainland in the surrounding of the island (Weigelt and Kreft 2013), distance to 
the climatically similar landmass (Price 2004, Weigelt and Kreft 2013) as well as 
the dispersal ability of the mainland species pool (Cabral et al. 2019a). 

Although real and habitat islands share several properties, there is also a 
crucial difference between the two. While ocean around the islands is considered 
a totally unfit habitat for terrestrial species, this binary habitat/nonhabitat classi-
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fication may not apply for habitat fragments, such as old-growth forests (Kupfer 
et al. 2006). Forest fragmentation is a global conservation concern, resulting in 
small and isolated populations of forest-specific biodiversity. Estonian old stable 
forest fragments are no exception, being surrounded by the areas of non-forest 
and anthropogenic habitats, but also by younger secondary forests which have 
mainly developed on abandoned agricultural land as a result of socio-economic 
changes. Whereas grasslands or anthropogenic landscapes might be totally un-
inhabitable for old-forest specific biodiversity, the secondary or managed forests 
might support it to some degree. Therefore, it is suggested that treating forest frag-
ments as oceanic islands is unreasonable and instead, landscape around the forest 
patches (matrix) should be considered in its heterogeneity (Kupfer et al. 2006), 
while counting for the organisms’ response to the landscape. For that purpose, 
functional connectivity, which describes organisms’ ability to move among the 
patches (Tischendorf and Fahrig 2000), can be used in addition to the spatial 
arrangement – or the structural connectivity – of the patches. Moreover, for slowly 
or passively dispersing taxa, such as plants, lichens, fungi and even insects, func-
tional connectivity might not solely depend on their ability to move among the 
patches, but also on their ability to establish temporary populations in the matrix. 
Similarly to island isolation, high connectivity between the habitat fragments 
leads to higher immigration rates and consequently, to higher species richness 
(Taylor et al. 1993, Rosenberg et al. 1997). Additionally, forest age has often 
been associated with habitat quality (reviewed by Nordén et al., 2014), but it is 
unsettled, how well the surrounding different-aged secondary forests support 
connectivity and biodiversity of the old-forest fragments. 

Island biogeography has historically been dominated by descriptive research 
approach and correlational statistical models. A main shortcoming of corre-
lational methods is their inability to identify causal relationships (Gotelli et al. 
2009, Cabral et al. 2017, Hagen 2022) and therefore, process-based (mechanistic) 
models which dynamically simulate processes and resulting biodiversity patterns 
through the rules or equations that have biologically meaningful parameters, have 
been suggested as a more informative approach (Cabral et al. 2017). During the 
recent decades, using process-based models in island biogeography has greatly 
advanced (e.g. Rosindell and Phillimore 2011, Rosindell and Harmon 2013, 
Valente et al. 2015, Borregaard et al. 2016, Gascuel et al. 2016, Matthews et al. 
2020, Aguilée et al. 2021) owning to the simultaneous progress in computational 
power and availability of spatial data. Agent-based simulations are process-based 
models that simulate populations and communities via discrete agents that repre-
sent individual organisms or groups of similar individual organisms (DeAngelis 
and Mooij 2005). In ecology, these models have been mostly used to study animal 
movement and behavior and thus, they have often been called individual-based 
simulations. Unlike the classical differential-equation models, agent-based models 
are based on relatively simple rules that apply to individual agents, which leads 
to system-level biodiversity patterns emerging bottom-up. A strategy called 
pattern-oriented modeling has been proposed for agent-based modeling, which 
focuses on reproducing the observed patterns of nature (Grimm et al. 2005). To 
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prevent a situation, where a single model is parametrized to fit empirical data 
regardless of its underlying processes, contrasting alternative models and their 
outcomes is suggested (Grimm et al. 2005).  

Due to their obvious advantages for smaller-scale studies, where individual 
differences and spatial organization of individuals are of great importance, agent-
based simulation models have been much more widely used in landscape and 
population ecology (e.g. Travis et al. 2005, Xiao et al. 2010, Kazmierczak et al. 
2016) than in biogeography. For example, forest gap models which simulate the 
establishment, growth and mortality of individual trees as a function of com-
petition and abiotic factors, have been developed since the 1960s (e.g. Botkin 
et al. 1972). Individual-based models have been also often used to study forest 
connectivity, but these studies have mostly considered active animal movements, 
behavior, and habitat selection (e.g. Trapp et al. 2019, Zeller et al. 2020, Roh-
wäder and Jeltsch 2022). However, agent-based models can be a helpful tool to 
study connectivity of passively dispersing organisms, as well as for larger-scale 
studies of biogeography and macroecology due to their clearly mechanistic, 
stochastic, and spatially explicit nature and relatively easy and intuitive para-
metrization. Gotelli et. al (2009) suggest that simulation approach for modeling 
large-scale species distributions in macroecology helps to deal with challenges of 
spatial autocorrelation, inter-correlated predictor variables, nonlinear responses 
of species richness to environmental variables and effects of spatial scale, im-
posed by traditional curve-fitting methods.  

In this thesis, I used spatially explicit mechanistic agent-based simulation mo-
dels to study biodiversity drivers on real (oceanic) islands as well as in Estonian 
old-forest fragments.  
 
The main objectives of the thesis were:  

1. to explore the ability of relatively simple agent-based simulation models to 
emulate realistic biodiversity patterns and their potential for biogeography and 
landscape ecology research (I, II, III); 

2. to disentangle the effects of habitat diversity and archipelago configuration 
from the effect of island area on biodiversity development in oceanic archi-
pelagos (I);  

3. to study the imprint of geological and eustatic histories of oceanic archi-
pelagos in their modern biodiversity (II); 

4. to assess the functional connectivity (or insularity) of the old-forest fragments 
(III);  

5. to determine which process (establishment and / or survival) is limiting the 
old-forest specific biodiversity from exploiting the younger forests between 
the old-forest fragments (III). 
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2. MATERIALS AND METHODS 

2.1. Study areas 

All archipelagos used in papers I and II (Hawaiian Islands, Canary Islands and 
Galápagos Islands in both papers, and Azores and Cape Verde only in paper I) 
are volcanic hotspot archipelagos. In hotspot archipelagos, tectonic plate motions 
that carry older islands further away from the mantle plume where new islands 
emerge, cause different-aged islands to follow each other in age-progressive con-
figuration (Wilson 1963). This, in turn, causes intra-archipelagic dispersal to 
occur mostly from older to younger islands, and thus, the sequence of coloni-
zation of a species group to correspond to the geological ages of islands (known 
as the progression rule; Funk and Wagner 1995). Hawaii probably represents the 
most typical example of such stepping-stone pattern, as the islands are very 
linearly spaced in the archipelago. However, even there the pattern is confounded 
by the historical fusions and splittings of the islands due to geological develop-
ments as well as by the eustatic sea level fluctuations (Price 2004, Price and 
Elliott-Fisk 2004), and in other archipelagos, the pattern is even less clear. The 
archipelagos differ significantly in their age, with the oldest of modern Canary 
Islands being over 20 million years old (Fernández-Palacios and Whittaker 2008) 
whereas the oldest present-day island of Galápagos archipelago emerged approxi-
mately 3 million years ago (Geist et al. 2014). 

In paper III, I used Estonian fragmented old-growth nemoral forests as a sys-
tem of insular habitat patches. In Estonia, two forest types prevail: boreal and 
nemoral forests. Nemoral forests which occur in southern Sweden and east of the 
Baltic Sea (Metzger et al. 2005) are characterized by neutral to alkaline nutrient 
rich soils and broad-leaved deciduous trees. They are the most species rich forests 
of the region, while their species composition significantly differs from the boreal 
forests (Noreika et al. 2019). In Estonian landscape, old-growth nemoral forests 
occur as habitat fragments, surrounded by different-aged secondary nemoral and 
boreal forests and by other natural and anthropogenic ecosystems. 

 
 

2.2. Biodiversity and abiotic environmental data 

In all three papers, using a pattern-oriented modeling approach, simulated data of 
different scenarios were compared against the empirical data to define scenarios 
(implemented factors and processes, parameter values) that resulted in most 
realistic biodiversity patterns. Empirical data from oceanic islands and from 32 
Estonian forest sites were used.  

For oceanic islands, native species lists of Spermatophyta and Pteridophyta (I 
and II) and Passeriformes, Lepidoptera and Coleoptera (II) were used from several 
literature sources (Nishida 2002, Izquierdo et al. 2004, Arechavaleta et al. 2005, 
2009, Silva et al. 2005, Boyer 2008, Imada 2012, Jaramillo Díaz and Guézou 
2013, Jiménez-Uzcátegui et al. 2014, Illera et al. 2016, Peck 2017, Roque-Álbelo 
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and Landry 2018, Weigelt et al. 2020). In addition, either the Jaccard similarity 
index between the islands (I) or proportion of single-island endemics on each island 
(II) was used.  

For Estonian nemoral forest sites (III), I used species richness numbers of 
different functional groups (ground diversity, epiphytes, ectomycorrhizal (EcM) 
fungi, arbuscular mycorrhiza (AM) fungi, saprotrophic and pathogenic fungi, 
woody plant diversity, carabid beetles) and empirical abiotic data (soil NPK, soil 
pH, mean annual temperature, precipitation, spatial coordinates) by Noreika et al. 
(2019). 
 
 

2.3. Spatial input data 

Empirical landscapes of the oceanic islands and around the forest study sites were 
represented as raster maps in the simulations. For oceanic archipelagos, I derived 
present archipelago maps from elevation–bathymetry raster maps (Amante and 
Eakins 2009, Danielson and Gesch 2011) where one raster cell represented an 
area of 0.0167° × 0.0167° (2–3 km2, depending on the latitude of the archipelago). 
These realistic present-day maps were modified in different simulation scenarios 
in several ways. In paper I and II, island cells were classified into 5–6 habitat 
types based on their mean elevation. In some scenarios of paper I, I deleted any 
habitat diversity (all elevations were defined as habitat type 1) to test the effect 
of habitat diversity. Islands were also shuffled around in the convex hull of the 
archipelago or in a circle with a diameter equal to the largest extent of the archi-
pelago to test the effect of archipelago spatial configuration (Figure 1). In paper II, 
I reconstructed greatly simplified geological histories of Hawaii, Galápagos, and 
Canary Islands, by creating dynamic simulations where each 0.5 Myr was rep-
resented by one map that was used for 50 simulation cycles. Simulations started 
with the emergence of the oldest present-day islands and ended with the modern 
map – thus using 41 maps for the Canary Islands, 10 for Hawaii and six for Galá-
pagos. Islands emerged in chronological order and increased and decreased in 
size and elevation during the simulation (Figure 2). In addition, I reconstructed 
eustatic histories of the same archipelagos, by combining the elevation–bathy-
metry maps (Amante and Eakins 2009) with historical global sea-level recon-
structions (Bintanja et al. 2005). I derived a map for every 10 000 years, which 
resulted in 100 maps for the last 1 Myr (sea level between 0 and 130 m below 
present level). 
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Figure 1. An example of simulation map alterations to study the effect of habitat diversity 
and archipelago configuration. Hawaiian archipelago with real configuration and habitat 
diversity (A), real configuration without habitat diversity (B), with convex hull randomi-
zation (C) and with circle randomization (D). Modified from paper I.  
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Figure 2. Three illustrative stages of geological history and sea-level fluctuation simulation 
scenarios in all studied archipelagos. Figure from paper II. 
 
For Estonian nemoral forest plots (III), I combined four mappings of forested 
land (from the 1900s, 1940s, 1970s and 2010s) into static maps of different-aged 
nemoral forests in 5 km radius circles around the old-growth nemoral forest study 
sites. In this study, one raster cell represented an area of 100 × 100 m. Similarly 
to translating island elevation into habitats in paper I and II, here forest occur-
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rence in different decades was translated into forest age class. Areas that were 
classified as forested land only on the map of 2010 were defined as the youngest 
forests (“Age1”); forested land that was present on the maps of 2010 and 1970s – 
“Age2”; 2010 and 1940s – “Age3”; 2010s and 1900s – “Age4”. All habitats other 
than nemoral forests were defined as 0, where nemoral forest-specific species 
couldn’t survive (Figure 3).  

Figure 3. Simulation maps with four forest-age classes and uninhabitable matrix, rep-
resenting the empirical landscapes in the 5 km radius surrounding the 32 Estonian nemoral 
forest sites (black cells in the center) where the observed diversity data of several func-
tional groups were collected. Maps are ordered according to the mean rank of observed 
species richness of all studied groups (increasing from top left to bottom right). Figure 
from paper III.  
 
 

2.4. Simulation model 

I simulated the dynamics of subpopulations of virtual species either on and among 
the oceanic islands or in a 5 km radius circle around the old-growth nemoral forest 
study sites, using empirical landscapes. In papers I and II, immigration, establish-
ment, dispersal, mortality, and speciation processes were simulated. In paper III, 
simulations operated on ecological timescale, thus excluding speciation but in-
cluding immigration, establishment, dispersal, and mortality. In all three papers, 
I then compared simulated diversity of virtual species to the observed diversity 
of different biodiversity groups to find which simulation scenarios result in the 
values that have highest correlations with the empirical data. I did not parameterize 
the model separately for each functional group but correlated the simulated species 
richness of the virtual species to the observed species richness of each group to 
find parameter values that best fit each group (pattern-oriented approach, see 
section 2.5.).  

The stochastic, spatially explicit agent-based simulation model, written in R 
programming language (R Core Team 2022) simulated dynamics and interactions 
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of subpopulations of virtual species, using raster maps as simulation arena (see 
section 2.3.). The operating agent of the model was a subpopulation of a virtual 
species. Each cell was described by two state variables: habitat type and whether 
it was empty or inhabited. In papers I and II, subpopulations were described by 
their position, species identity, species-specific genome, and species-specific 
phenotype. In that case, randomly generated composition of the genome deter-
mined the species dispersal and establishment ability. All subpopulations of the 
same species were identical (no intraspecific variation) but did not act identically 
due to stochastic variation. In paper III, only one species was simulated at a time, 
and subpopulations were characterized only by their position. Spatial scale of the 
simulation frame varied from about 78 km2 (7843 cells) in paper III to on average 
about 150 000 km2 in papers I and II (about 6000 cells).  

Each simulation run was initialized with empty islands in papers I and II or 
with all forest cells occupied by a single species in paper III. The simulation pro-
ceeded in distinct time steps. At each time step, some subpopulations immigrated 
from outside, established a cell, reproduced, dispersed, and died. In papers I and 
II, some subpopulations also evolved into a new species. Number of time steps 
varied between 100 (III) and 2050 (II). One time step represented approximately 
a year in paper III and 10 000 years in paper II. In paper I, time step did not have 
an explicit meaning.  

In papers I and II, several species were simulated together and mainland 
species pool of 100 species was included; in paper III, one species was simulated 
at a time and results of 1000 runs were stacked to obtain simulated species rich-
ness of virtual species.  

Simulation model consisted of several parts, which were run sequentially: 
immigration, establishment, reproduction together with dispersal, and mortality / 
survival. Below, these submodels are described. 

Immigration: In all scenarios of all papers, at each time step, 10% of the cells 
received immigrants. That simulated either the arrival from mainland (in I and 
II) or from outside of the 5 km radius area in paper III. Immigration was non-
directional with all cells having equal probability of receiving the immigrants.  

Establishment: A subpopulation established an unoccupied cell with the prob-
ability determined by the simulation variation and scenario. It varied between 
10% and 100%. 

Reproduction and dispersal: In all scenarios of all papers, at each time step 
40% of all subpopulations (randomly chosen) tried to send a descendant to another 
cell. Dispersal distance was either dependent on the genome (I and II) or gene-
rated randomly (III) but was always described by a negative binomial dispersal 
kernel and varied randomly due to stochasticity. As a result, most dispersal events 
occurred quite close to the initial subpopulations and only a few reached longer 
distances.  

Mortality / Survival: At each time step, some subpopulations were randomly 
removed. The number of removed subpopulations depended on the simulation 
variation and scenario. Mortality varied between 10% and 25%, while the re-
maining 75% to 90% subpopulations survived.  
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Speciation: In papers I and II, at each time step, 0.1% of the subpopulations 
evolved into a new species by a random change in their genome. Only species 
that were present on the islands were able to evolve, whereas species in the initial 
species pool remained unchanged. In paper III, no speciation was implemented.  

 
 

2.5. Experimental design 

In all three papers, different simulation scenarios were contrasted to define crucial 
factors in biodiversity pattern development:  

‒ in paper I, habitat diversity (no diversity vs diversity) and archipelago spatial 
configuration (real configuration, convex hull randomization and circle ran-
domization) were used (Figure 1);  

‒ in paper II, one factor in four levels (degree of included historical data: no 
archipelago history, eustatic history, geological history or both combined) was 
used (Figure 2); 

‒ in paper III, eight by eight (altogether 64) survival and establishment scenarios 
were used, which differed in how much they favored older forests over younger 
ones (Figure 4).  

Figure 4. Establishment (A) and survival (B) rates (%) in eight establishment and eight 
survival scenarios of Estonian nemoral forest simulations. Color intensity indicates the 
probability of the process. Higher scenario number generally indicates greater differences 
between the forest-age classes in establishment or survival value (thus, stronger affinity 
for older forests). Each establishment value was combined with every survival value. 
Scenarios of both parameters follow a common logic and thus the text explanations apply 
for both. Figure from paper III.  
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2.6. Statistical analyses 

In all three papers, I derived simulated diversity data at the end on the simulation 
runs and calculated correlations between simulated and observed data. In papers 
I and II, mean species richness of the final 50 cycles on each island, and either 
compositional dissimilarity among the islands (Jaccard index, paper I) or the 
proportion of single-island neo-endemics (paper II) at the end of the simulation 
were used. In paper III, simulated species richness was obtained by assessing the 
frequency of inhabited central study cell over the 1000 simulation runs.  

In papers I and II, correlations between the log-transformed observed and 
simulated species richness numbers were then found. In addition, either Spear-
man correlations between observed and simulated Jaccard index matrices (paper I) 
or between logit-transformed observed and simulated proportions of single-island 
endemics (paper II) were found.  

In paper III, to remove the effects of environmental factors and spatial auto-
correlation, I first calculated the residuals to the linear models, where empirical 
or simulated species richness was the dependent variable and environmental factors 
and / or spatial parameters were the independent variables, and then correlated 
the residuals.  

In all cases, after applying Fisher’s z-transformation to the correlation coeffi-
cients, I used them as dependent variables in linear models to determine the effect 
of the simulation scenario on the correlation strength. To understand the pairwise 
differences between the scenarios, I also conducted post hoc comparisons on the 
model results. In paper II, to determine which islands caused the differences in 
correlation strength between the simulation scenarios, I also conducted a residual 
analysis for each simulation run: after standardizing simulated and observed 
species richness, I calculated residuals from the perfect correlation (i.e., inter-
cept=0, slope=1).  
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3. RESULTS 

3.1. Accordance between the simulated  
and observed biodiversity 

In papers I and II, simulated species richness had strong positive correlations 
with observed species richness in most cases (Figure 5 and Figure 6). Strongest 
correlations generally emerged for Hawaii (mean across the species groups was 
around 0.87 in both papers) and the weakest for Canary Islands (0.25 in paper I, 
0.72 in paper II). Mean correlations for compositional dissimilarity (I) varied 
greatly among archipelagos (from 0.01 for Canary Islands to 0.64 in Hawaii). 
Mean correlations between simulated and observed proportion of single-island 
endemics (II) varied between 0.44 (Hawaii) and 0.48 (Canary Islands) (Figure 7).  

In paper III, positive correlations were obtained for ground layer and epi-
phytic vegetation as well as for EcM, saprotrophic, and pathogenic fungi at least 
in some scenarios (Figure 8). Mean correlations varied from 0.03 in pathogenic 
fungi to 0.41 in EcM fungi and respective maximum correlations from 0.21 to 
0.52. Woody plants, carabid beetles and AM fungi mostly resulted in negative 
correlations, suggesting that these groups are more dominant in other habitats 
than forest.  
 
 

3.2. Island habitat diversity affects species richness  
and composition in all studied archipelagos, whereas 
archipelago configuration affects species composition  

mainly in elongated archipelagos 

Habitat diversity significantly increased simulation ability to emulate realistic 
patterns of species richness and species composition of spermatophytes and 
pteridophytes in all archipelagos (Figure 5 A, B, E, F). Archipelago configuration 
had a significant effect on the correlation between simulated and observed com-
positional dissimilarity in more elongated archipelagos of Hawaii and Azores 
(Figure 5 G, H). There, real archipelago configuration gave significantly stronger 
correlations than circle randomization either for both plant species groups 
(Hawaii) or only for pteridophytes (Azores). In Canary Islands, a significant dif-
ference between real configuration and convex hull randomization emerged, but 
not between real configuration and circle randomization (Figure 5 G). 
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3.3. In Hawaii and Galápagos, archipelago geological  
and eustatic histories have both affected species richness 

and proportion of single-island endemics 

In Hawaii and Galápagos, simulation scenarios with more historical information 
generally increased correlations between simulated and observed biodiversity 
data. For the species richness of most studied Hawaiian taxa, the scenario with only 
geological history performed significantly better than the scenario with only 
eustatic history, and the combined scenario performed significantly better than any 
other (Figure 6). For the single-island endemics of Hawaii, the historical scenarios 
performed rather equally, except for spermatophytes, where both scenarios which 
included geological history performed slightly better than the scenario with only 
eustatic history (Figure 7). In Galápagos, the effect of implementing only eustatic 
history was mostly insignificant (except for the species richness of Lepidoptera); 
implementing only geological history had some effect (on the species richness of 
Passeriformes, Lepidoptera and Pteridophyta and on the proportion of single-
island endemics of Coleoptera and Spermatophyta), but the combined scenario per-
formed better than the present-day map in almost all cases (except for the single-
island endemics of Lepidoptera) (Figure 6 and Figure 7). In Canary Islands, imple-
menting geological history always significantly decreased simulation performance 
(Figure 6 and Figure 7). Implementing only eustatic history had no effect on species 
richness but had a significant positive effect on proportion of single-island 
endemics of Coleoptera and Spermatophyta (Figure 7).  

Results of the residual analyses revealed that in Hawaii, implementing archi-
pelago history generally reduced overestimations of species richness and single-
island endemics on the island of Hawai’i and respective underestimations on Maui, 
Molokai, Oahu, and Kauai. In Galápagos, implementing history reduced the over-
estimations on Isabela and underestimations on St. Cruz. In the Canary Islands, 
implementing history increased the overestimations of the proportion of single-
island endemics on Fuerteventura and Lanzarote and of species richness on 
Fuerteventura.  
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 Figure 5. Effects of habitat diversity (A,B,E,F) and archipelago composition (C,D,G,H) 
on species richness (A–D) and species composition (E–H) of spermatophytes and pterido-
phytes. White bars indicate correlations without habitat diversity (‘0’) or with real con-
figuration (R). If habitat diversity significantly increases the correlation (post hoc pair-
wise comparisons), the second bar (‘1’) is green. If circle (‘C’) or convex hull (‘H’) rando-
mization significantly decreases correlations, respective bar is dark blue, otherwise grey. 
(Haw. – Hawaii, Gal. – Galápagos, Can. – Canary Islands, C.V. – Cape Verde, Az. – 
Azores). Figure from paper I. 
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Figure 6. Effects of geological and eustatic history on correlations between simulated 
and observed species richness of Passeriformes, Coleoptera, Lepidoptera, Pteridophyta 
and Spermatophyta. Same letter (and box color) indicates no significant difference 
between the scenarios. (EUS = eustatic sea-level fluctuations; GEOL = geological history; 
GEOLEUS = geological history and eustatic sea-level fluctuations; PR = present map). 
Figure from paper II. 

Figure 7. Effects of geological and eustatic history on correlations between simulated 
and observed proportion of single-island endemics of Coleoptera, Lepidoptera and Sper-
matophyta. Same letter (and box color) indicates no significant difference between the 
scenarios. (EUS = eustatic sea-level fluctuations; GEOL = geological history; GEO-
LEUS = geological history and eustatic sea-level fluctuations; PR = present map). Figure 
from paper II. 
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3.4. Estonian old-growth nemoral forest fragments  
are not functionally well connected by the younger 

secondary forests for several functional groups 

In forest fragment simulations, most realistic species richness patterns of ground 
layer vegetation, epiphytes, EcM fungi and pathogens were achieved by the 
scenarios which defined large differences in establishment values between younger 
and older forests. Correlation strength culminated in the three most extreme 
scenarios with establishment values 10-15-95-100, 10-25-50-100 and 10-15-30-
100 in different-aged forests (Figure 8 A–D). Common characteristic of all these 
three scenarios that distinguishes them from other five scenarios is the low 
establishment value in the second forest age-class, in approximately 40 – 50-year-
old forests (see Figure 4). However, in saprotrophs, an opposite trend emerged: 
more differentiation between forest age classes resulted in weaker correlations 
and the strongest correlations were achieved in the scenario which treated all 
forests equal regardless of their age (Figure 8 E). 
 
 

3.5. Establishment is the main limiting factor behind  
the old-forest affinity 

Although establishment and survival rate both had significant effect on corre-
lation strength between simulated and observed species richness across all func-
tional groups, survival value had no significant effect on correlation strength in 
ground layer, epiphytes, or EcM fungi (Figure 8 F–H). Only in pathogens and 
saprotrophs, some differences emerged. For pathogens, survival scenario which 
defined equal survival values in all forest age classes, resulted in negative corre-
lations, whereas in other scenarios correlations slightly increased (Figure 8 I). For 
saprotrophs, correlations decreased towards more differentiation between the 
forest age groups, similarly to the trend among the establishment scenarios 
(Figure 8 J). These results suggest dominance of establishment limitation over 
the survival limitation.  
 
 
  



24 

Figure 8. Effects of establishment (A – E) and survival (F – J) scenarios on correlations 
between simulated and observed species richness of different forest biodiversity func-
tional groups. Higher scenario number generally indicates greater differences between 
the forest-age classes in establishment or survival value (thus, stronger affinity for older 
forests). Letters indicate the significant difference between the scenarios: scenarios that 
do not share a letter, differ significantly. Color gradient illustrates correlation strength. 
Figure from paper III. 
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4. DISCUSSION 

Oceanic islands and habitat fragments share several common properties and 
therefore, landscape ecology and island biogeography have developed by inspiring 
each other. That much so, that leading theories of the two fields have been even 
called different aspects of the same, a more general model (‘spatially realistic meta-
population theory’, Hanski 2001). Immigration and extinction dynamics, clear 
spatial distinction of the populations, as well as the conservational priority make 
both, real oceanic islands and habitat fragments, valuable study objects. The over-
all aim of this thesis was to explore the biodiversity drivers in these systems, that 
are characterized by the underlying effect of spatial and functional isolation.  

Using agent-based simulations with pattern-oriented approach, I was able to 
emulate the emergence of realistic biodiversity patterns in oceanic archipelagos 
and in Estonian forests, and to gain knowledge of crucial processes behind these 
patterns. In paper I, simulation approach enabled me to disentangle the effects of 
habitat diversity and archipelago configuration from island area. In paper II, 
I was able to reconstruct the archipelago histories and in paper III, simulations 
helped me to gain mechanistic knowledge of processes behind the old-forest 
affinity. All these tasks are hard to achieve via field studies or statistical methods 
alone. In my thesis I showed that passive dispersal can successfully be studied 
with the help of agent-based models and that due to their clearly mechanistic, 
stochastic, and spatially explicit nature, they are a useful tool for both large-scale 
biogeography studies as well as for smaller-scale landscape ecology. 

In papers I and II, I explored the factors that affect biodiversity development 
in oceanic hotspot archipelagos, thereby taking a step forward from island area and 
isolation. Although the relatively high overall correlations between simulated and 
observed data in both island studies indirectly confirmed the essential effect of 
island area, the significant increase in correlation strength when additional factors 
were implemented, clearly demonstrated their importance. Especially pronounced 
was the effect of habitat diversity (I), which increased the correlation strengths 
for species richness as well as for species composition in all studied archipelagos. 
These findings agree with empirical works which have shown either globally (Kreft 
et al. 2008, Hortal et al. 2009, Barajas-Barbosa et al. 2020) or in single archipela-
gos (Duarte et al. 2008 – Cape Verde, Roell et al. 2021– Galápagos) that although 
island area is a crucial determinant of biodiversity, it does not fully override nor 
reflect the additional effect of habitat diversity on insular species richness.  

Archipelago configuration affected species composition in elongated archipela-
gos, such as Hawaii and Azores, where circle randomization profoundly altered 
the overall connectivity of the archipelagos (I). However, archipelago spatial con-
figuration did not affect species richness, which refers to the prevailing effect of 
other factors such as island area and habitat diversity, while species composition 
is more sensitive to the effect of archipelago configuration. This result agrees 
with a global study by Cabral et al (2014) who found island species richness as 
well as archipelago species richness to be strongly affected by the biogeography 
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and climate, whereas beta-diversity was mostly explained by the archipelago 
structure. The importance of archipelago structure both on island diversity and 
endemism has been also demonstrated in hypothetical archipelagos by Gascuel 
et al. (2016) with a spatially explicit neutral simulation model and by Aguilée et al. 
(2021) with an individual-based model which accounted for the spatio-temporal 
dynamics of the archipelagos. In contrast, in Galápagos and Cape Verde, I did 
not detect any effect of configuration randomization. This can be attributed owning 
to the more compact archipelago configuration, combined with more complex geo-
logical development of the archipelago which have been shown to alter the dis-
persal patterns between the islands (Carvalho et al. 2015).  

In paper II, I demonstrated that the modern biodiversity of Hawaii and Galá-
pagos is not fully adjusted to their current geography. Simulation scenarios, which 
concerned geological history, significantly decreased overestimations of native and 
endemic species richness on the youngest islands of both archipelagos. These 
results imply that despite the effect of habitat loss on the oldest islands (Price 2004), 
time available for immigration and speciation is a limiting factor of biodiversity 
variation on the entire archipelago level in the relatively young archipelagos, such 
as Hawaii and Galápagos. In Hawaii, historical dynamics also reduced the un-
derestimation of species richness on Maui, Molokaʻi and Oʻahu, confirming the 
importance of the higher historical connectivity between these islands (Price and 
Elliott-Fisk 2004). Similarly, archipelago ontogeny has been demonstrated to 
significantly increase performance of grid-based island biodiversity simulations 
by Chalmandrier et al. (2018) and by Cabral et al. (2019b). However, a recent 
simulation study by Santos Neves (2022) showed that ignoring geodynamics still 
gave reasonable simulation results for isolated oceanic archipelagos. Combining 
the results of papers I and II, it appears that stronger reflection of historical 
(temporal) dynamics in the modern archipelago (spatial) configuration is why 
I found latter to strongly affect modern biodiversity patterns in Hawaii (I). On the 
contrary, in Galápagos, the complex patterns of landmass developments have 
caused more derivations from stepping-stone pattern, such as back-colonization 
events (Carvalho et al. 2015) and therefore, meaningful spatio-temporal patterns 
were first emulated by implementing geological history in paper II (but not by 
modern archipelago configuration in paper I).  

In Canary Islands, implementing geological history even decreased corre-
lations. It was mostly caused by the increased overestimation of single-island en-
demism (and to lesser degree, also of species richness) for the oldest and most 
degraded islands because of their increased availability for immigration and 
speciation in relation to younger islands of the archipelago. Thus, in contrary to 
Hawaii and Galápagos, in an old and mainland-close archipelago such as Canary 
Islands, erosion and consequent extinctions have become a limiting process. Also 
Carvalho et al. (2015) showed that whereas dispersal patterns in Hawaii can be 
successfully described by a relatively simple stepping-stone network model, 
much more complex patterns are needed for Canary Islands and Azores. Imple-
menting eustatic history improved simulation performance in all three archipela-
gos, although, in Canary Islands the effect was significant only on single-island 
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endemics and not on total species richness (II). This finding is in line with other 
works that have demonstrated that although total species richness might adjust to 
the area change relatively quickly, endemic biodiversity patterns can have long-
lasting legacies of historical connections and island areas (Weigelt et al. 2016, 
Norder et al. 2019).  

In paper III, I approached another aspect of connectivity: the properties of the 
suboptimal habitat around the habitat fragments. I asked, how well are the Estonian 
old-forest fragments functionally connected by the surrounding secondary forests 
for several passively or slowly dispersing functional groups. I found ground layer 
vegetation, epiphytes, EcM and pathogenetic fungi to show dependence on old-
forest availability in the surrounding of old-forest habitats: the more the simu-
lation scenario favored the oldest forests over the other age classes, the better was 
the fit between the simulation results and observed data. However, saprotrophs 
followed an opposite trend: the most realistic biodiversity patterns were obtained 
by not differentiating between the forest age classes at all. This contrast might be 
caused by the more generalist strategy of saprotrophs who take over the former 
open habitat at the beginning of the secondary forest formation, whereas over the 
course of forest succession, ectomycorrhizal fungi start providing them compe-
tition (Cairney and Meharg 2002). 

Several possible mechanisms have been proposed to explain the higher species 
richness in older forests. Similarly to oceanic islands, time that forest has been 
available for immigration (in landscape ecology, often called ‘habitat continuity’) 
in combination with dispersal limitation can be important, if forest-specific species 
are not locally available (e.g. Randlane et al. 2017). However, the effect of habitat 
quality has been found to often prevail over the habitat continuity (Nordén and 
Appelqvist 2001). Diverse old forest offers several microhabitats for different 
species, as well as buffers the hostile environmental conditions. In paper III, I 
compared the effects of establishment and survival processes and found bio-
diversity of ground layer vegetation, epiphytes and EcM fungi to be clearly domi-
nated by the establishment limitation. This finding is in line with many empirical 
studies from Estonia and Northern Europe that have found the suitable substrata 
to be of crucial importance in the oldest forests for lichens, fungi, and bryophytes 
(Fenton and Bergeron 2008, Lõhmus and Lõhmus 2011, Runnel and Lõhmus 
2017). Specifically, I found that strongest correlations were obtained by low 
establishment probability in the abundant 40–50-year-old forests which have 
probably resulted from the abandonment of small farms, fields, and grasslands in 
the 1970s. Interestingly, no clear pattern revealed for the 70–80-year-old forests 
(contrasting scenarios gave similar results), although the minimum forest age to 
receive and support specific old-growth biodiversity has been typically shown to 
be even higher in Estonia (~100 years, Lõhmus & Lõhmus 2011) as well as else-
where in Europe (200 years, or at least two or three generations, Graae 2000, Fritz 
et al. 2008, Dittrich et al. 2013). Nevertheless, these results clearly indicate that 
for most functional groups, middle-aged forests, developed on former agricultural 
land, do not yet functionally connect the old forest patches. 
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My aim in this thesis was not to achieve real absolute species numbers but 
realistic biodiversity patterns among the islands and Estonian nemoral old-forest 
patches. In general, higher correlations were obtained in island studies (I and II), 
than for Estonian forests (III), which agrees with the well-established under-
standing of oceanic islands as relatively simple natural model systems (Vitousek 
2002, Warren et al. 2015). As discussed above, among the archipelagos, Hawaii 
showed the highest correlations between the observed and simulated species 
richness and always gave expected results in the scenario comparisons, whereas 
the biotas of other archipelagos proved more complicated to emulate. For instance, 
in Canary Islands, proximity of the mainland, prevailing winds and currents, and 
repeated volcanic activity, which has ‘restarted’ species accumulation on the 
islands, may all have had a significant effect on biodiversity development. Several 
additional processes, acting on different ecological levels (such as trophic inter-
actions, intraspecific variation, demographics, metabolic constraint, natural and 
anthropogenic disturbances) have been argued to be important to consider in 
models for obtaining realistic biogeographical or macroecological patterns (Cabral 
et al. 2017, 2019b, Leidinger and Cabral 2017, Hagen et al. 2021).  

However, using correlation strength between simulated and empirical data as 
a dependent variable in statistical models assumes some variation in the corre-
lation strength. Moreover, low correlations or unexpected scenario comparisons 
can be helpful in detecting data gaps or differences among the study objects. For 
example, in paper II, an unexpected decrease in correlation strength if geological 
history was implemented in Canary Islands, referred to the crucial role of habitat 
loss owning to erosion. In paper III, contrasting trend of saprotrophs and only 
negative correlations in woody plants, AM fungi and carabid beetles pointed at 
their different ecology and that their diversity patterns could be possibly emulated 
by a different simulation model. It might be attempting to parametrize a simu-
lation model to the best achievable fit with the empirical data. However, because 
of the inevitable trade-off between the model universality and realism, the neces-
sity of additional details should always be weighed carefully. A more complex 
model does not necessarily lead to more realistic results, but it does always add 
additional uncertainty (Cabral et al. 2017). 
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5. CONCLUSIONS 

Based on the results presented in this study, I conclude that: 

1. Relatively simple agent-based simulation models could largely emulate natural 
patterns on oceanic islands (I and II) and – although with somewhat smaller 
accuracy – in Estonian forest fragments (III). This simultaneously demon-
strates the relative simplicity of the island biotas and their role as ecological 
model systems as well as the usefulness of agent-based models for biogeo-
graphy and landscape ecology. Their spatially explicit and mechanistic nature, 
together with pattern-oriented approach offers an intuitive and well-control-
lable approach for large-scale virtual experiments that are not feasible in the 
real world. Thus, they are a powerful tool for understanding biodiversity pat-
terns of both – real and habitat – islands, as well as for predicting and avoiding 
biodiversity losses in these systems.  

2. Despite the strong island area effect, habitat diversity and archipelago con-
figuration are significant drivers of biodiversity on oceanic islands. Habitat 
diversity had strong effect in all studied archipelagos and on species richness 
as well as on species composition (I). Archipelago configuration had signifi-
cant effect only in elongated archipelagos and affected species composition 
but not species richness (I).  

3. Modern biodiversity of oceanic archipelagos carries legacies of the geological 
and eustatic processes of the past. Archipelago history and consequent spatio-
temporal connectivity had a slightly stronger effect on proportion of single-
island endemics than on total species richness (II). 

4. Young and middle-aged forests are not supporting functional connectivity 
among the Estonian nemoral old-forest fragments for several forest-specific 
functional groups, such as ground layer vegetation, epiphytes, EcM and patho-
genic fungi, and this obstacle has a significant effect on their biodiversity in 
old-forest patches (III).  

5. Establishment limitation dominates over survival limitation in young to 
middle-aged forests, suggesting that microhabitat availability is the most im-
portant mechanism behind the old-forest affinity. Especially significant proved 
to be the effect of the abundant 40–50-year-old secondary forests on former 
agricultural land. On the other hand, functional connectivity among the forest 
fragments is strongly group-specific: while for most studied groups forest frag-
ments can be considered almost as islands, saprotrophic fungi can successfully 
exploit the younger forests as well.  
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SUMMARY 

Oceanic islands and habitat fragments within landscapes are both valuable eco-
logical study objects, characterized by clear physical boundaries, immigration 
and extinction dynamics of well-defined populations, and high conservational 
priority. Therefore, the most influential model of island studies – theory of island 
biogeography – was historically also adopted to study the fragmented landscapes. 
Similarly, when later metapopulation theory gained popularity among landscape 
ecologist, it also inspired island biogeographers. Both theories emphasize the 
importance of spatial arrangement of individuals and populations and resulting 
ecological interactions and have been even called different aspects of a same 
theory. Classically, island biogeography and landscape ecology have been domi-
nated by correlational methods and thus often mechanisms behind the biodiver-
sity patterns have stayed unsettled. For example, the effects of island habitat 
diversity, archipelago configuration and island history on its biodiversity are hard 
to disentangle from the well-established effects of island area and isolation. 
Similarly, the mechanisms behind the forest connectivity and old-forest affinity 
of forest-specific biota are unclear.  

In this thesis, I mechanistically explored the biodiversity drivers in oceanic 
archipelagos (Hawaii, Galápagos, Canary Islands, Cape Verde, Azores) and Esto-
nian old-forest fragments, that are both characterized by spatial and functional 
isolation. I used spatially explicit agent-based simulation models together with 
empirical biodiversity data and compared different simulation scenarios in their 
ability to emulate realistic biodiversity patters. In paper I, I showed that despite 
the substantial effect of island area, implementing habitat diversity in simulations 
always increased correlations between the simulated and observed plant species 
richness and composition, demonstrating the additional effect of varying environ-
ments. Implementing realistic archipelago configuration instead of randomi-
zations proved to be important for gaining more realistic species composition 
patterns in elongated archipelagos, such as Hawaii and Azores, but did not affect 
species richness. This result again indirectly refers to the crucial role of island 
area for species richness development, whereas species composition is more 
sensitive to additional drivers. In Galápagos and Cape Verde, I did not find any 
effect of using real modern archipelago configuration, which hinted at the over-
riding role of more complex spatio-temporal development of these archipelagos. 
This hypothesis was also supported by the results of paper II, where simulation 
scenarios which accounted for the geological and eustatic archipelago history, 
resulted in significantly more realistic results on the native and endemic species 
richness of birds, plants and insects of Hawaii and Galápagos, than the scenarios 
using static present-day maps. In Canary Islands, implementing eustatic history 
significantly increased the correlations but geological history had no positive 
effect, which referred to the importance of other processes, such as habitat de-
gradation or repeated volcanic activity in this very old archipelago.  
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In paper III, I approached another aspect of connectivity: the properties of the 
suboptimal habitat around the Estonian nemoral old-forest fragments. Despite the 
apparent similarity, there is a crucial difference between oceanic islands and habitat 
fragments. Unlike real islands, isolation of habitat patches is not solely affected 
by their spatial arrangement, but also by organisms’ response to the surrounding 
landscape, or the ‘functional connectivity’. Estonian old-forest fragments are sur-
rounded by non-forest and anthropogenic habitats, but also by younger secondary 
forests on former agricultural land. Whereas grasslands or anthropogenic land-
scapes might be totally uninhabitable for old-forest specific biodiversity, these 
secondary forests could be inhabitable to some degree. Therefore, I asked, how 
well are the Estonian old-forest fragments functionally connected by the sur-
rounding younger forests for passively or slowly dispersing organisms. I found 
for ground layer vegetation, epiphytes, EcM and pathogenetic fungi, that the more 
the simulation scenario favored the oldest forests over the other age classes in 
terms of establishment and survival probabilities, the more realistic were the 
simulation results. This clearly indicates that for most functional groups, sec-
ondary forests on former agricultural land do not functionally connect the old-
forest fragments. In contrast, the most realistic biodiversity patterns on sapro-
trophs were obtained by not differentiating between the forest age classes at all, 
hinting that for this group, forest connectivity is not limited by the age of the 
forest in the surrounding landscape. I also compared the effects of establishment 
and survival processes and found biodiversity of ground layer vegetation, epiphytes 
and EcM fungi to be clearly dominated by the establishment limitation, confirming 
the understanding of old-forest affinity being mainly caused by microhabitat limi-
tation.  

In conclusion, biodiversity in oceanic archipelagos and habitat fragments de-
velops as a result of many interacting factors, which are often hard to disentangle 
in the nature. Spatially explicit and intuitively parametrizable agent-based models 
allow us to create virtual experiments for gaining mechanistic knowledge which 
is crucial for predicting and avoiding biodiversity losses in these isolated and 
valuable systems.  
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SUMMARY IN ESTONIAN 

Elurikkust kujundavad tegurid ookeanisaarestikes ja 
killustunud elupaikades uurituna agendipõhiste mudelitega 

Saari peetakse ideaalseteks ökoloogilisteks mudelsüsteemideks nende selgete 
füüsiliste piiride ja defineeritavate populatsioonide tõttu. Samuti on sajandeid 
teadlaste tähelepanu köitnud saarte eripärane ja kergesti haavatav elustik ning 
kõrge endeemsete liikide osakaal. Ookeanisaared, mis pole kunagi mandriga 
ühenduses olnud, sobivad uurimaks, kuidas elurikkus kujuneb sisserände ja 
evolutsiooni koosmõjul. Peale selle toimivad ookeanisaarestikud huvitavate 
võrgustikena, kus saarte paiknemine üksteise suhtes mõjutab liikide levimist. 
Sarnased võrgustikud on inimtegevuse tagajärjel tekkinud killustunud elupaigad, 
seda nii looduskaitselise olulisuse pärast kui ka selle poolest, et pakuvad võima-
lust uurida rohkem või vähem isoleeritud populatsioonide dünaamikat. Seetõttu 
on ookeanisaarte ja killustunud koosluste uurimine aastakümneid arenenud käsi-
käes.  

R. MacArthuri ja E. O. Wilsoni poolt 1963. aastal avaldatud saarte biogeo-
graafia tasakaaluteooria pani aluse nii saarte kui ka elupaigalaikude liigirikkuse 
dünaamilisele käsitlusele. Teooria põhiidee järgi suurendab saare väiksem iso-
leeritus tõenäosust liikide sisserändeks, samal ajal kui liikide väljasuremise tõe-
näosus on väiksem suuremal saarel. Kahe protsessi vahel tekib dünaamiline tasa-
kaal, mis hoiab liikide arvu saarel enam-vähem muutumatuna, kuna mõlemad 
protsessid sõltuvad ka saarel juba olemasolevate liikide arvust. Hiljem on sellele 
teooriale küll ette heidetud mitmete tegurite (nagu elupaikade mitmekesisus saarel, 
geoloogiline ajalugu ja saarte paiknemine saarestikena) arvestamata jätmist, kuid 
siiski sai sellest aastakümneteks paradigma, mida rakendati ka maastikuöko-
loogias killustunud elupaigalaikude uurimisel. 1980ndate aastate lõpus hakkas 
aga maastikuökoloogias populaarsust koguma kontseptuaalselt lähedane meta-
populatsiooniteooria, mis tegeleb ruumiliselt eraldatud, kuid levivate isendite 
kaudu ühenduses olevate osapopulatsioonidega. Sarnaselt saarte biogeograafia 
teooriale on metapopulatsiooniteooria tuumaks isendite ja populatsioonide ruu-
miline paigutus ja sellest tulenevad ökoloogilised interaktsioonid, mistõttu on 
neid kahte teooriat nimetatud ka ühe üldisema teooria teisenditeks. 

Kuigi saari ja killustunud elupaiku on ajalooliselt käsitletud sarnastena, on 
nende vahel siiski üks oluline erinevus: erinevalt saartest ei määra elupaiga-
laikude isolatsiooni ainult nende ruumiline paigutus, vaid ka levivate organismide 
võimekus ümbritsevas maastikus toime tulla. Näiteks Eesti vanu laialehiseid 
metsatukkasid ümbritsevate elupaikade hulgas on nii selliseid, mis on metsa-
elustikule täiesti sobimatud, kui ka selliseid, mis võivad vanametsa-spetsiifilist 
elustikku teatud määral toetada. Funktsionaalne sidusus iseloomustab, kui hästi 
organismid on võimelised elupaigalaikude vahel liikuma ning aeglaselt või pas-
siivselt levivate organismide puhul võib oluline olla ka see, kui hästi nad suu-
davad seda maastikku ajutiselt asustada. Sarnaselt saartega soodustab elupaiga-
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laikude suur sidusus (väike isolatsioon) sisserännet ja kõrgemat liigirikkust. Samuti 
on teada, et vanemad metsad toetavad kõrgemat liigirikkust, kuid ei ole selge, kui-
das ümbritseva metsa vanus mõjutab vanametsalaikude funktsionaalset sidusust. 

Saarte biogeograafias on klassikaliselt valitsenud korrelatiivsed meetodid, 
mille peamiseks puudujäägiks peetakse vähest võimet selgitada välja põhjuslikke 
seoseid. Seetõttu on informatiivsema meetodina välja pakutud protsessipõhised 
mudelid, mis simuleerivad põhjuslikke seoseid protsesside ja elurikkuse mustrite 
vahel. Agendipõhised mudelid toimivad reeglite kaudu, mis kehtivad iseseis-
vatele agentidele, kelleks võivad olla üksikud isendid või sarnaste isendite grupid. 
Kõrgema tasandi mustrid tekivad sel juhul „alt üles“. Oluliselt rohkem kui saarte 
biogeograafias on agendipõhiseid simulatsioone kasutatud maastikuökoloogias 
ning ka metsade sidususe uurimiseks, kuid need on peamiselt käsitlenud loomade 
käitumist ja rännet. Oma protsessipõhise ja ruumiliselt täpse olemuse, stohhasti-
lisuse ja võrdlemisi napi parametriseerimise tõttu võivad agendipõhised simulat-
sioonid olla aga kasulikud nii passiivse levimise uurimiseks maastikuökoloogias 
kui ka saarte biogeograafia jaoks.  

Oma doktoritöös uurisin agendipõhiste simulatsioonimudelitega elurikkust 
kujundavaid tegureid ruumiliselt ja funktsionaalselt isoleeritud süsteemides: 
ookeanisaarestikes ja elupaigalaikudes. Tahtsin teada, kui hästi suudab võrdlemisi 
lihtne simulatsioonimudel jäljendada elurikkuse mustreid ookeanisaarestikes ja 
elupaigalaikudes; kas elupaikade mitmekesisusel ja saarestiku konfiguratsioonil 
on elurikkuse kujunemisel roll lisaks saare pindala tugevale efektile; kas täna-
päevastes elurikkuse mustrites kajastub saarestike ajalugu; kuivõrd on Eesti laia-
lehised vanad metsad funktsionaalselt ühendatud nooremate sekundaarsete met-
sade abil ning mis protsess sidusust enim mõjutab. 

Kasutatud protsessipõhine, stohhastiline ja ruumiliselt täpne mudel simuleeris 
virtuaalsete taksonite alampopulatsioonide dünaamikat ookeanisaarte vahel saa-
restikes ning 5 km raadiuses vanametsalaikude ümber. Simulatsioonides kasutasin 
Hawaii saarte, Galápagose saarte, Kanaari saarte, Roheneemesaarte ja Assooride 
ning Eesti laialehiste metsalaikude rasterkaarte. Simulatsiooni agentideks olid 
virtuaalse taksoni alampopulatsioonid, mis teatud tõenäosusega immigreerusid 
uuritavale alale, asustasid vabu rastriruute, levisid, paljunesid, surid, ning – saarte 
simulatsioonide puhul – ka evolutsioneerusid. Kasutades nn mustrile orienteeritud 
lähenemist, võrdlesin erinevate simulatsioonistsenaariumite elurikkuse mustreid 
empiiriliste elurikkuse andmetega, leidmaks, millised parameetrite kombinat-
sioonid loovad tegelikkusega paremini vastavuses olevaid tulemusi. Artiklis I 
võrdlesin maapinna kõrgusandmete põhjal elupaikadeks jagatud saartega stse-
naariumeid sellistega, kus saartel puudusid erinevad elupaigad, ning tegelikkusele 
vastava saarestiku konfiguratsiooniga stsenaariumeid juhusliku saarte paigutusega 
stsenaariumitega. Artiklis II võrdlesin staatilisi saarestikumudeleid sellistega, 
kus saared muutusid ajas vastavalt nende geoloogilisele arengule ning globaalsele 
merevee taseme kõikumisele. Artiklis III võrdlesin omavahel stsenaariumeid, 
mis määratlesid erinevad asustamis- ja ellujäämistõenäosused (mis koos peegel-
dasid funktsionaalset sidusust) erivanuselistele metsadele vanade metsade lähi-
ümbruses. Artiklis I kasutasin ookeanisaarestike seemne- ja eostaimede andmeid, 
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artiklis II lisasin nendele rühmadele ka värvulised, mardikad ja liblikad. Artiklis 
III kasutasin Eesti metsade rohurinde, epifüütide, puittaimede, jooksiklaste ning 
ektomükoriissete, arbuskulaar-mükoriissete, patogeensete ja saprotroofsete seente 
andmeid. 

Minu töö tulemused näitasid, et nii tänapäevane elupaikade mitmekesisus saarel 
ja saarestiku konfiguratsioon kui ka saarestiku geoloogiline ajalugu ning maailma-
mere taseme muutused pleistotseenis on mänginud olulist rolli ookeanisaarte elu-
rikkuse kujunemisel. Artiklis I osutus elupaikade mitmekesisus saarel oluliseks 
teguriks realistlikumate simulatsioonitulemuste saamiseks kõigis uuritud saares-
tikes, seda nii seemne- kui ka eostaimede liigirikkuse ja liigilise koosseisu puhul. 
See näitas, et hoolimata saare pindala tugevast mõjust on elupaikade mitme-
kesisusel elurikkusele täiendav efekt. Saarte paigutuse juhuslikustamine saares-
tikus ei mõjutanud simuleeritud liigirikkuse vastavust tegelikkusele, küll aga oli 
oluline mõlema taimerühma liigilise koosseisu jäljendamisel. See viitas taas saare 
pindala olulisele efektile liigirikkuse kujunemisel, samal ajal kui liigiline koos-
seis on kergemini mõjutatav lisateguritest. Saarte realistlik paigutus saarestikus 
oli siiski oluline vaid pikliku kujuga saarestikes nagu Hawaii ja Assoorid, osu-
tades, et teistes saarestikes on saartevahelisi levimismustreid mõjutanud keeru-
lisemad ajalis-ruumilised protsessid, mistõttu ei seleta tänapäevane saarte pai-
gutus oluliselt nende elurikkust. Ka artikkel II kinnitas seda hüpoteesi, näidates, 
et Hawaii ja Galápagose saarte tänapäevane liigirikkus ja endeemse elurikkuse 
osakaal taime- ja putukarühmades on mõjutatud saarte vanusest ning geoloogilise 
arengu ja veetaseme kõikumise põhjustatud kunagistest saarte suurustest ja 
omavahelistest ühendustest. Artiklite I ja II tulemuste kombineerimisel saab 
selgeks, et kui saarestiku ajalugu peegeldub hästi saarte tänapäevases paigutuses 
(nagu Hawaii puhul), siis seletab viimane saarte liigilist koosseisu; kui aga saares-
tiku ajaloo jooksul on toimunud saarestiku konfiguratsioonis suured muutused 
(nagu Galápagosel), ei ole tänapäevasel saarte paigutusel olnud piisavalt aega 
elurikkusele mõju avaldada. 

Kanaari saarestikus põhjustas geoloogilise ajaloo rakendamine mudelis aga 
hoopis tegelikkusega halvemas kooskõlas olevaid simulatsioonitulemusi. See 
tulenes peamiselt liigirikkuse tugevast ülehindamisest saarestiku vanimatel saartel, 
kus sisseränne ja evolutsioon said nooremate saartega võrreldes oluliselt kauem 
toimuda. Sellised tulemused viitasid, et erinevalt noortest saarestikest, nagu Hawaii 
ja Galápagos, ei piira vanas ja mandrilähedases Kanaari saarestikus saarte liigi-
rikkust mitte sisserändeks ja liigitekkeks vajalik aeg, vaid oluline elupaikade 
kadu vanimatel erodeerunud saartel. Sarnaselt teiste saarestikega muutis maailma-
mere taseme kõikumiste jäljendamine siiski simulatsioonitulemusi realistlikumaks 
ka Kanaari saarestikus, kuigi mõjutas vaid liigilist koosseisu, mitte liigirikkust. 

Eesti laialehiste vanametsalaikude kohta leidsin, et paljude organismide jaoks 
ei ole nad funktsionaalselt hästi ühendatud. Simulatsioonitulemused korreleerusid 
seda tugevamini rohurinde, epifüütide, ektomükoriissete ja patogeensete seente 
empiiriliste elurikkuse andmetega, mida suuremad olid simulatsioonistsenaariumis 
erinevused asustamis- ja ellujäämistõenäosustes erineva vanusega metsade vahel. 
Eriti oluliseks osutus tugevate korrelatsioonide saavutamiseks madal asustamis-
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tõenäosus ohtrates 40–50-aastastes metsades, mis on kujunenud endistele põllu-
maadele väikeste maamajapidamiste mahajätmise tagajärjel 1970ndatel aastatel. 
Saprotroofsete seente puhul esines aga vastupidine trend: kõige realistlikumad 
olid simulatsioonitulemused, kui stsenaarium ei eristanud metsade vanuseklasse, 
mis näitab, et saprotroofsetele seentele ei ole metsa vanus maastikus oluline. Puit-
taimede, arbuskulaar-mükoriissete seente ja jooksiklaste empiirilised andmed 
andsid simulatsioonitulemustega ainult negatiivseid korrelatsioone, mis viitas, et 
nende elustikurühmade jaoks on noorem mets vanast metsast sobivam või eelis-
tavad nad metsale üldse teisi elupaiku. Lisaks näitasid metsade simulatsioonide 
tulemused, et nooremate metsade kasutamist metsaspetsiifiliste gruppide poolt 
piirab rohkem nende asustamine kui seal ellujäämine. Sarnasele järeldusele on 
kaudselt jõutud ka varasemates töödes, mis on näidanud mikroelupaikade mitme-
kesisuse olulisust vanades metsades.  

Kokkuvõtteks võib öelda, et elurikkus ookeanisaarestikes ja elupaigalaikudes 
kujuneb väga paljude protsesside koostoimel, mis teeb tihti põhjuslike seoste tuvas-
tamise looduses keeruliseks. Võrdlemisi lihtsad agendipõhised mudelid võimal-
davad aga teha suureskaalalisi virtuaalseid eksperimente ning koguda teadmisi 
põhjuslike suhete kohta, mis aitavad ennustada ja vältida elurikkuse kadusid neis 
väärtuslikes isoleeritud süsteemides. 
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