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ABSTRACT

The Internet of Things (IoT) vision promises to connect and capture devices and
their data from any environment at an unprecedented scale. The rise of IoT drives
interest in how it can be joined with other technologies, such as Business Pro-
cess Management (BPM) systems. BPM has seen a lot of success in improving
processes that are automated with conventional enterprise information systems,
which largely follow the Service-Oriented Architecture (SOA) principles. The
service-oriented perspective is important for 1oT as well, as it largely addresses
one of its core challenges - interoperability between heterogeneous devices and
their services.

While BPM technologies are already generally well-aligned with SOA, mak-
ing it directly applicable for IoT as well, it is not clear however, how exactly can
BPM be applied to IoT applications involving new computing paradigms such as
Edge Computing and Fog Computing. These paradigms shift the control, manage-
ment, and execution of processing, networking and storage tasks from the previ-
ously dominant centralized data-centers to the edge network, onto devices such as
connected vehicles, smartphones, routers and local gateways, resulting in a more
de-centralised system. Communication in the edge network is often reliant on
device-to-device or local wireless area networks. This makes accounting for the
mobility of devices an especially challenging aspect, as movement into and out of
radio coverage areas means intermittent connectivity. We refer to IoT scenarios,
which involve such mobility as the Internet of Mobile Things (IoMT).

Secondly, Fog computing systems include the concept of general-purpose fog
servers deployed near the edge network. This creates the opportunity to offload
some computational tasks from the IoMT devices to these nearby servers. How-
ever, the optimal offloading decisions need to consider the performance, energy
and delay trade-offs.

This thesis studies how Business Process execution can be realized in the Edge
by embedding process engines on Mobile nodes, resulting in so-called Mobile
Process Hosts (MPH), capable of autonomously executing processes in the edge
network without relying on a centralised system. In our approach, we adopt exist-
ing BPM standards and technology, such as the BPMN 2.0 modelling language,
which increases the direct applicability of the results to real systems. We show
how different Internet of Mobile Things applications can be modelled and exe-
cuted with the BPM standards.

We present two distinct features to support autonomous, continuous, adaptive
process execution on the mobile nodes: device-to-device migration of process
instances during runtime and a scheduling algorithm for deciding which nearby
fog servers to involve in the edge process execution.

Device-to-device migration of business processes allows a process execution
continue in a specific edge location even if the set of devices in that location
are changing, and one single MPH is not guaranteed to be available in the loca-



tion. The scheduling algorithm takes into account the locations of the fog servers,
movement trajectory of the MPH, and characteristics of the task being processed.

We demonstrate with experiments on smartphones that the migration feature is
applicable to real-life mobility scenarios such as those in logistics and transporta-
tion. Based on discrete event simulation, we analysed the scheduling algorithm
and showed how it improves energy-efficiency and success rates of processes in-
volving offloading.

Based on insights from the conducted studies and to support further research
into edge-fog process management with a focus towards mobility-oriented scenar-
ios, we established the STEP-ONE testbed. STEP-ONE is a set of tools developed
to simulate mobility-oriented IoT systems where the management and composi-
tion of applications is handled with BPM standards.

We demonstrate STEP-ONE with a smart-city scenario, where an application
modelled as a choreography of processes is executed between different resources
- cloud, fog servers and MPHs. We show how STEP-ONE supports the con-
struction, simulated execution and analysis of such scenarios and how it can be
extended with algorithms and decision-mechanisms to adaptively drive the execu-
tion of such processes.
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1. INTRODUCTION

The ability to manufacture microcontrollers and CPUs of smaller physical dimen-
sions at reduced cost has made it feasible to embed these devices alongside vari-
ous "everyday" objects at a massive scale - home appliances, industrial equipment,
farm animals and street lights, to name a few examples. Combining computing
capacity with sensors, actuators and a communications module such as a WiFi
radio, allows interfacing the physical objects with digital systems. Such a smart
device could for example enable sensing the CO2 level of a room or toggling a
light switch, and when linked to a network, relay its current state and allow re-
mote control.

Usage of smart devices as part of different domain-specific applications and
control systems - industrial manufacturing, healthcare, logistics, etc. improves
the quality and efficiency of these services, as the software can incorporate de-
tailed real-time monitoring, tracking, analysis and control enabled by the smart
devices. The adoption has led each sector to develop their specialised, domain-
specific technologies. As an example, consider domain-specific communication
protocols: OPC-UA for industrial control systems, BACNET and ModBus for
building automation, M-BUS for power metering and Controller Area Network
(CAN bus) for vehicles.

The Internet of Things (IoT) is an idea which takes this a step further: if indi-
vidual smart device-using, domain-specific applications are bridged by domain-
independent intermediary services, networks and unified standards, then the re-
sulting network(s) allows interaction, cooperation and data-sharing between the
applications and devices at an unprecedented scale [Al-+15]. The IoT vision
brings new opportunities for automation, business innovation, collaboration and
data analysis, but it posits two general challenges. Firstly, how to realise this
bridging? How to adapt and mediate existing protocols so that the already-deployed
devices’ communication can be translated, and what should the future technolo-
gies be like to avoid translation and foster interoperability inherently? This bridg-
ing is successful if a holistic method for modelling and describing the set of de-
vices, their capabilities and metadata is used, enabling discovery and querying of
IoT resources. The second challenge is scalability - as the interoperability im-
proves, fostering the growth of adoption, the number of connected devices and
the volume of data produced by them increases. This raises challenges in coordi-
nating the devices’ functions and transporting and processing the large volume of
data efficiently.

For the typical early adopters of smart devices and [oT (industrial manufactur-
ing, logistics and healthcare), the tools and practices of Business Process Man-
agement (BPM) play an important role [LMM19]. BPM [Dum+18] is a research
area concerned with observing, discovering, designing, analysing, automating and
improving business processes. A business process (BP) is a (specific) sequence or
collection of tasks, events and decisions aiming to achieve a specific goal within
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one or across several organizations. As such, BPM marks the continuous effort to
enact and improve BPs. In practice, it is often supported by software for automat-
ing the execution and monitoring of processes and analyzing historical traces of
process execution. Such software are referred to as Business Process Management
Systems (BPMS).

Integrating the IoT and BPM domains benefits them both - IoT data allows for
finer-grained automated monitoring, analysis and control during Business Pro-
cess execution. At the same time, the complexity of large-scale planning and
scheduling of IoT devices’ functions, dataflows and collaboration between indi-
vidual applications and organizations can be enhanced by BPM [Jan+20]. Motiva-
tion of jointly using IoT and BPM is also driven by concepts such as Industry 4.0
[Gre+18], which in addition to the increased smart-device usage also prescribes
a factor of high individual customizability of every manufactured product, some-
thing that BPMS can help effectively capture.

BPM has mainly been focused on supporting enterprise IT systems and pro-
vides comparatively less visibility/integration w.r.t. operational technology as
found in industrial domains [KS14], for example, existing BPMS are generally not
readily interfaced with the previously mentioned domain-specific protocols. On
the other hand, Web technologies are generally well-supported in BPMS. The us-
age of Web services, Web technologies and Service-Oriented Architecture (SOA)
to link different organizations and software has been a key aspect responsible for
the success of using BPM in enterprise software systems. Web technology sup-
port is also important for IoT, as it is seen as a possible solution to the bridging
problem and the lack of standardized communication protocols [Al-+15]. By fol-
lowing frameworks such as Web of Things [W3C20], which prescribes web tech-
nology usage for IoT, the integration of BPM and IoT already becomes feasible
[HM11] - IoT devices expose and describe their functionality as web services, and
the business process execution software invokes and composes these services.

Generally, IoT environments are much more volatile compared to the relatively
static enterprise servers, causing the availability of IoT devices and services to be
intermittent. For instance, energy-related downtime may occur for devices rely-
ing on batteries or energy sources such as solar panels. Outages due to physical
damage are also more likely if devices are deployed in the wild: forests, fields,
oceans, mining sites, etc. This has led to a body of research introducing adaptive-
ness, flexibility and self-healing capabilities to process-aware information systems
[Wie+15; MMS16; SHA17], where the main goal is for the BPMS to compensate
or avoid situations where an IoT resource used within the execution of a BP be-
comes unavailable.

This thesis focuses on another such source of volatility which is mobility. Mo-
bile IoT (MIoT) represents scenarios where movement of devices in the IoT net-
work is typical: smartphone-equipped pedestrians, (autonomous) connected ve-
hicles and drones, for example. In MIoT, issues with wireless signal quality and
connection availability are common - devices are constantly entering and exiting
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the radio coverage areas of other IoT devices, wireless access points or cellular
base stations.

Another concern is the centralized design of the conventional BPMS archi-
tecture, where the software platform is hosted at the cloud/data-center servers.
The increasing count of IoT devices and data streams participating in processes
managed by a central BPMS make it prone to become a bottleneck [Shi+16]. Sec-
ondly, in specific scenarios, this can also raise privacy concerns. An emerging IoT
trend which aims to remedy this Cloud-side bottleneck problem is Edge Comput-
ing [Satl7].

Edge computing is the idea of using devices in the edge network to perform as
many of the processing, networking and storage tasks as possible. Edge comput-
ing moves the data-handling from remote data-centers closer to the data source,
near the IoT devices. While large-scale analysis and storage of historical IoT data
in data-center-hosted servers are essential to [oT solutions, with Edge Computing,
sending pre-processed data instead of raw data reduces network usage (conges-
tion) and avoids overloading the Cloud by distributing some of the processing to
Edge Devices.

Alongside Edge computing, the idea of Fog computing [Bon+12] has also ap-
peared. With Fog computing, some of the edge network devices act as general-
purpose compute, storage and networking providers. These devices, sometimes
also called cloudlets [Sat+09], provide a platform for hosting applications or ser-
vices, where the deployment can happen on-demand, similar to Cloud computing.
We distinguish Fog from Edge computing based the former’s usage of virtualisa-
tion technologies typically found in Cloud. Secondly, Fog specifically relies on
stand-alone general-purpose devices, whereas in Edge computing, the IoT device
that collects sensor data may itself also perform the computing. Thus, we see
Edge as a superset concept of Fog.

These trends have motivated research to try and create BPMS that follow the
Edge computing paradigm by distributing its components to the edge network
devices [SHA17; Mas+18; RML12; Gre+18]. Industry players such as CISCO
[KS14] have also highlighted interest in this, but the overall adoption of Fog or
Edge Computing in popular BPMS software such as Camunda' is rare or non-
existent. The degree to which process execution is shifted to the edge in a sys-
tem can vary, depending on the requirements. For instance, a central system
may still initiate and provide a global view of the process execution, but certain
(sub-)processes or tasks can selectively be delegated to edge devices [DMC15;
DFB14]. Alternatively, the most extreme case is deploying a full BPMS software
on an edge device such as a smartphone or a vehicle’s on-board computer. Works
such as ROME4EU [RML12] and [Sch+16] have shown the feasibility of imple-
menting such an approach, which we term Mobile Process Host (MPH) - denoting
an edge network device with a BPMS that may also move.

"https://camunda.com/
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The MPH approach eliminates reliance on a back-end server, the execution
state is autonomously governed by the mobile device, and it interacts with nearby
smart devices directly in a device-to-device manner. This suits scenarios where
infrastructure is unavailable - disaster scenarios, Humanitarian Assistance and
Disaster Relief (HADR), remote field work - or where privacy is critical (e.g.
healthcare). Usage of remote services is still possible based on the availability of
Internet connectivity.

While the previously-mentioned MPH-s can be used if an organization pur-
chases and configures such devices for process management, Fog computing opens
the opportunity to perform process management in the edge network on-demand.
Fog computing can participate in process execution in 2 ways: A) as the performer
of some compute-intensive tasks contained in a BP executed by the edge device,
such as video processing, or B) as an on-demand host for deploying BPMS in
the edge. Compared to integrating IoT and BPM, the usage of Fog computing
in the context of BPMS has been researched less; the literature which goes in
this direction usually focuses more on Cloud-based solutions [MVJ18; Wai+21;
Bou+17]. These technologies (containerization, PaaS) are applicable to Fog, but
the mentioned works do not explicitly mention Fog computing.

1.1. Motivating Scenario

To illustrate and concretize how MPH-s can be used in process-based Mobile IoT
applications alongside Fog computing, we present a scenario case that motivates
the research goals of this thesis, the scenario is also depicted on Fig. 1.

Walt the warehouse worker uses the logistics companies’ smartphone-based
MPH to organize and help automate Walt’s daily tasks. Walt receives a new as-
signment: deliver some fragile goods packaged in sensor-equipped parcels to the
parking lot, where a truck will pick them up. As he loads the parcels onto his
forklift, he QR-scans each of them. This initiates a process instance (P1) per each
parcel on the BPMS, which constantly monitors the sensors, making sure that
the sensor levels are within normal. Otherwise, alerts and instructions on how to
handle the situation are shown.

The exact process instance varies depending on the product, the BPMS fosters
the management of the different processes. Further, Walt works in a remote area,
cellular and WiFi are not available in all parts of the warehouse. To this end, the
BP execution is done by the stand-alone BPMS embedded in the MPH, ensuring
continuous, autonomous monitoring. When connectivity is available, events or
alarms which occurred during the process are broadcast to the central system,
where a historic trace of all parcels’ transport is collected.

Walt brings the goods to the truck. As he hands them over, the P1 process
instance also needs to be migrated over to the truck’s on-board computer MPH,
since the parcels will now be out of the wireless reach of Walt’s MPH. Walt initi-
ates a procedure to transfer P1 from his smartphone to the truck’s MPH, making
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Figure 1: Motivating scenario for usage of Mobile Process Hosts and BPM across
the Edge-Fog-Cloud continuum

the latter now the sole responsible executor of the P1 instance.

The logistics company is partnered with a road monitoring company’s system,
which performs daily monitoring of roads to identify pot-holes, debris, etc. in
a crowdsourced fashion. Participants need to capture video of an assigned road
segment and transfer it to one of the cloudlets deployed throughout the region
by the local telco. The road monitoring company has deployed a video analysis
service onto the cloudlets.

The trucker is assigned one such road segment and a respective process in-
stance (P2) is started on the truck’s MPH. After capturing the video, the 1st
cloudlet which the truck passes is overloaded due to the large number of other
clients already in the area. The BPMS opts to avoid transferring the data to this
cloudlet, as it is aware of another one on the route. The 2nd cloudlet is idle,
resulting in a smooth data offloading.

The cloudlet processes the captured video and sends the analysis results to the
central system. As a result, the heavy-bandwidth video data is processed in the
Edge and Fog networks, without a need to transfer large payloads to the central
core network where the Cloud services are located, which may become a bottle-
neck in such a system.
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1.2. Problem Statement & Research Goals

In the above scenario, the usage of a MPH allows processes to be executed in
the Edge network in situations where constant reliance on a central system is not
feasible - in the warehouse at a remote location or when driving through tunnels,
for example. Moving the process execution engine from the relatively stable and
static data-centers to the edge means that the process execution now must adapt
to not only the changing context of surrounding IoT devices, but also its own
mobility.

Existing works for process execution on Edge devices have addressed the
need for adapting to faults, context changes, and provide more flexibility to pro-
cess execution [SRT18] [HZL12] [Sei+15]. Device-to-device collaboration and
migration-like functions with BP in the Edge are shown in [SHA17] and [Dar+15],
however, these works mainly capture the context of external devices and not the
internal factors of the edge BPMS host, such as its movement.

Mobility is an important source of uncertainty; it affects which devices, for
how long of a duration and at what signal quality are available. Considering this,
in the following, we identify problems of interest to this thesis and specify the
respective research goals.

* Assuming that process execution is handled entirely by edge MPH-s, the
movement of a host creates an issue if the process execution involves an
IoT device whose trajectory is not identical to the MPH-s trajectory. When
these trajectories are about to separate, one solution to continue the execu-
tion is to migrate the process to another MPH whose location or trajectory
continues to satisfy the constraint. For example, consider processes that
monitor loT-equipped physical objects as in the described logistics com-
pany scenario (further detailed in section 3.1). If the cargo is handed over
from person-to-person, organization-to-organization, the process execution
can simultaneously be migrated between the MPH devices carried by the
persons. Migration of process instances has been studied before [Bar+12],
but not on resource-constrained devices such as smartphones. This moti-
vates the 1st research question addressed in this thesis:

Research Question 1: How to realise execution of processes on edge net-
work devices such as smartphones, with the possibility of device-to-device
process migration during runtime?

To answer this question, our goal is to design and implement a prototype
based on Android smartphones that can perform this migration using wire-
less technologies and assess the performance and technical complexity of
such an approach.

* With Fog computing, processes are interested in making use of the fog in-
frastructure in certain tasks such as compute-heavy processing of data, such
as the road video processing on cloudlets in the above scenario.

When invoking a Fog server, several factors should be considered. Fog
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nodes’ locations and the MPH-s trajectory influence the availability and
signal quality of the communication, affecting both energy consumption
and data transfer rate. Fog node’s load and hardware configuration affects
the wait time and performance of processing the task. The task execution
may be subject to and quality-of-service (QoS) constraints such as temporal
deadlines and an energy budget. Thus, a decision has to be made which
fog node to offload to or whether the offloading is even feasible - perhaps
the task should be handled locally by the MPH itself. Ideally, this type
of adaptive decision-making behaviour should also be configurable at the
process modelling level so that business process designers can define the
behaviour.

Research Question 2: How to schedule the execution of process tasks
involving nearby device-to-device communication, such as offloading to
cloudlets, in an energy-aware and quality-of-service-aware manner while
taking into account the mobility of MPH, the workloads and locations of
the cloudlets?

* While mobility plays a vital role in the edge network, performing mobility-
involving experiments with real world-devices at a larger scale is expensive.
Consider the complexity of distributed road and street condition monitoring
as mentioned in the scenario (described further for a Smart City use case in
section 5.3). Such a scenario may involve hundreds or thousands of MPH
devices and road segments. Simulation tools could help in the initial as-
sessment of process-based solutions involving Fog computing and mobility
- to identify bottlenecks, analyse performance and scalability, assess costs.
While adapting BPM to the edge may help avoid the congestion issues as-
sociated with a centralized process execution approach, it comes with its
own cost, as fog infrastructure needs to be purchased and deployed; and the
quality of service may be lower due to the network volatility. This shows
the need to compare the cost and performance of edge process management
vs centralized process management, simulation can help in this comparison.
Research Question 3: How to simulate scenarios with realistic mobility
and Edge-Fog computing requirements, modelled and executed using exist-
ing BPM technology such as BPMN 2.0?

1.3. Methodology & Contributions

In light of the raised gaps, this thesis proposes a technical framework to realise
what we term Edge Process Management (EPM) with a heightened focus towards
Mobile IoT application scenarios.

* We present the system design and prototype for a BPMS on the Android
platform, where process instance execution can be migrated from one MPH
to another during execution runtime. It allows for "roaming", continuously
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executing processes, whose execution can be transferred from device to de-
vice without reliance on external services, increasing the resilience of ap-
plications such as sensor-based goods monitoring in cases where there is
movement of goods and handover of goods (and sensors) between person-
s/organizations. The temporal performance and scalability of the migration
are evaluated on real devices.

» Secondly, a heuristic decision mechanism for scheduling the execution of
BP tasks that rely on nearby cloudlets is presented. The mechanism takes
into account the movement trajectory and energy state of the BP executor,
the locations and current load of nearby cloudlets, metadata about the task’s
complexity and the user’s QoS preference to make a cost-efficient decision
about which cloudlet to involve in the task execution or whether to resort
to local/offline execution instead. The mechanism is demonstrated in dis-
crete event simulation-based experiments using the Opportunistic Network
Environment simulator (ONE) [KOKO09].

* Finally, to support the development and research of process-based scenarios
and models for EPM in environments such as smart cities, where mobility
aspects are common, we present STEP-ONE: a Simulated Testbed for Edge-
Fog Processes based on the Opportunistic Network Environment Simulator.
STEP-ONE is an extension to the ONE simulator, adding process execution
features based on the Flowable? BPMS. This allows discrete event simu-
lation of scenarios, where the application logic is defined as BPMN 2.0
processes. Process definition is supported by a set of ready-to-use com-
ponents, including events and signals for time, mobility, and connectivity-
related situations in the simulator. Tooling supports visual design of pro-
cess models and configuration options for varying the executed processes,
their inputs and process engine parameters when executing a batch of sim-
ulations. STEP-ONE includes functionality for simulating compute tasks
with different hardware configurations, which help realise Fog-computing
scenarios. We apply STEP-ONE for a case study of EPM-based street con-
dition monitoring in a smart city.

1.4. Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 gives the state of the
art on topics crucial to the thesis, such as business process management, inter-
net of things and describes existing research addressing the overlap of the two in
the context of edge-, fog computing and mobility. Chapter 3 tackles the st re-
search question, focusing on technical aspects of executing processes in the edge
using Android smartphones and is based on the work [MCS16a]. Chapter 4 ad-
dresses the 2nd research question, proposing a context-aware heuristic decision-

Zhttps://flowable.com
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mechanism, based on the work [MCS19]. Chapter 5 addresses the 3rd research
question, describing the STEP-ONE testbed. The chapter is based on the work
from [MSC20]. Finally, chapter 6 is the concluding chapter, including possible
future research directions.
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2. STATE OF THE ART

This chapter gives an overview of the fundamental background in IoT, BPM and
Edge Process Management. For 10T, the chapter covers conceptual layered mod-
els of IoT, how interoperability is achieved with web services, how communica-
tion is organized, the computing paradigms for IoT such as Edge, Cloud and Fog
computing. In addition to the fundamental concept of BPM and how BPMS soft-
ware works, this chapter covers the existing research directions regarding usage
of IoT with BPM such as process modelling or adaptiveness. The last part of
the chapter focuses on execution of IoT processes in the Edge and Fog networks,
including mobile execution.

2.1, Internet of Things

The term Internet of Things has been credited to Kevin Ashton, who used it when
working on linking Radio Frequency Identification (RFID) technologies with the
Internet in the context of supply-chain info-systems around 1999 [Ash09]. The
overview of Internet of Things in this subsection is in part influenced by the book
written by Sunyaev [Sun20].

At the most basic level, IoT represents the transformation of physical objects
(things) and environments into "smart things" and "smart environments", whose
status can be queried and state can be controlled from anywhere and at any time
over the network. It is a reflection of and reaction to the trend of an ever-growing
number of devices connected to the Internet and in particular, the growing count
of Internet-connected devices per-person [Sha+19].

The building blocks of IoT consist of existing technology such as embedded
devices, communication technologies, sensor networks, Internet protocols and ap-
plications. IoT can be seen as a continuation of previous research fields such as
ubiquitous- and pervasive computing, cyber-physical systems. Significant effort
has previously been put into forming a definition and characterizing the concept
of IoT. Several organizations have developed documents in which they define or
characterize the Internet of Things phenomenon, such as IEEE [MBR15], CISCO
[Cis14], the International Telecommunications Union (ITU) [ITU12] and Euro-
pean Research Cluster on the Internet of Things [Ver+11] amongst others. For
instance, IEEE produced a document extensively covering the state of the art
of IoT and proposed two variants of a definition for IoT, distinguishing smaller
scale, "small environment" and large-scale complex "large environment" scenar-
ios [MBR15]. The latter is defined as:

"Internet of Things envisions a self-configuring, adaptive, com-
plex network that interconnects ’things’ to the Internet through the
use of standard communication protocols. The interconnected things
have physical or virtual representation in the digital world, sensing/ac-
tuation capability, a programmability feature and are uniquely identi-
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fiable. The representation contains information including the thing’s
identity, status, location or any other business, social or privately rel-
evant information. The things offer services, with or without human
intervention, through the exploitation of unique identification, data
capture and communication, and actuation capability. The service is
exploited through the use of intelligent interfaces and is made avail-
able anywhere, anytime, and for anything taking security into consid-
eration." [MBR15]

Such a network can be seen as a system of systems, a better understanding of
their nature can be examined using high-level architectural models. Several such
architecture models have been proposed for IoT [Sun20], their aim is to conceptu-
ally organize the problems an IoT system manages. Next, we discuss 2 common
examples of such IoT models: a five-layer and a seven-layer model.

2.1.1. Five Layer Conceptual loT Model

The Five layer model [SS17], popular for its simplicity, consists of the Perception,
Transport, Processing, Application and Business layers, shown on Fig. 2.

Perception The bottom-most Perception layer represents the sensor- (and actuator)-
equipped devices (smart objects) which gather information about the phys-
ical environment or objects therein. Devices generally have a small form-
factor and low energy consumption and may be battery-powered. As a re-
sult, they are relatively constrained in terms of computing resources (no. of
CPU cores, clock speed, amount of memory). Devices are often based on
embedded systems with power-efficient microprocessors (e.g. ARM archi-
tecture CPUs ) or microcontrollers.

Transport This layer interconnects the Perception layer with the Processing layer,
delivering the collected sensor data to the upper layers and vice versa, to
relay processing results and actuation commands to the devices in the Per-
ception layer. Internet infrastructure and wireless technology such as 5G,
4G-LTE, WiFi, ZigBee, Bluetooth Low Energy, Z-Wave, LoRaWAN, NB-
IoT, SigFox are typically used to realize the Transport layer. In addition
to transporting data, this layer allows smart devices to connect and interact
with other smart devices, servers.

Processing This layer consists of a large set of services for storing, accessing,
analysing, transforming the data incoming from the lower Transport layer.
The services act as middleware to the other layers, typically containing
database modules, big data- and stream processing; and are hosted with
cloud computing technology due to the large data volumes.

Application Here use-case/domain-specific applications based on the IoT data
and middleware services are delivered to users. They typically include a
graphical user-interface through a web- or smartphone application.
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Business The final, top layer manages the entire IoT system, defining rules gov-
erning the applications and services in the lower layers, driving e.g. user
Quality-of-Service experience policies, privacy and security policies, busi-
ness and profit models.
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Figure 2: High-level architectural models of Internet of Things. Left - Five-layer
model. Right - Cisco IoT Reference Model. Adapted from [SS17] and [Cis14]

2.1.2. Cisco loT Reference model

Another noteworthy 10T reference architecture was presented by the IoT World
Forum Architecture Committee, led by Cisco [Cis14]. It was developed in col-
laboration with companies from telecommunications and other sectors, amongst
them were Oracle, Intel, Samsung, General Electric, General Motors. The refer-
ence architecture features 7 layers which in large part can be mapped to the layers
of the 5-layer model as depicted on Fig. 2. The lower layers - Physical Devices &
Controllers, Connectivity correspond to the Perception and Transport layers of the
5-layer model respectively. The top-most Collaboration & Processes, Application
layers correspond to the Business and Application layers of the 5-layer model.

However, instead of a single Processing layer, the 7-layer architecture has split
the data-processing related components into 3 distinct layers: Edge (Fog) Com-
puting, Data Accumulation and Data Abstraction.
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Edge (Fog) Computing This layer’s main function is to transform the incoming
flood of raw data into formats and events that are suitable for storage and
higher-level analysis which takes place in the next layers (Data Accumu-
lation, Abstraction). The layer embraces the principles of Fog computing:
information processing should happen as soon possible and be performed
as close to the data source in the edge network as possible. The concepts of
Edge and Fog computing are explained further in section 2.3.2. Typical data
processing activities include: detection of alerts/events based on thresholds
for data values, re-formatting or re-structuring of the data, filtering, aggre-
gation, reduction of the data to avoid redundancy and reduce network traffic
in the upper layers.

Data Accumulation In the Edge (Fog) Computing layer and layers below, the
data is said to be "in motion" and systems operating there work in an event-
driven manner, reacting to the data as soon as it arrives over the network.
At the Data Accumulation layer, the data "in motion" is captured and stored
for non-real time access. Decisions are made whether or which data needs
to be persisted (and for how long) and if necessary, the data are combined
or aggregated with previously stored data. At this layer, the event-based
data is converted for query-based processing, which is necessary for most
applications in the higher layers. Further filtering or sampling of the data
may happen at this layer and new events/alerts may be created based on
analysis of the historical data trends.

Data Abstraction The Data Abstraction layer provides an abstracted data inter-
face for applications in the upper layers. While data may be stored in differ-
ent databases and different regions, this layer should combine the various
data sources and provide a unified interface to it while maintaining consis-
tent data semantics across the different sources. The interface should also
be performant, prescribing indexing and normalizing of the data.

2.1.3. Discussion

The described two models give an idea of the collection of functions an IoT system
must provide, however the physical organization of the layers/functions is not
strongly defined by them. For instance, following the Edge Computing principle,
this organization should maximize proximity of data processing to the data source
in the bottom-most layer. However, an IoT system could also be built without
any Edge processing at all, hosting all the layers except the Physical Devices and
Connectivity in a cloud datacenter, for example.

Secondly, there is no consensus of any single IoT reference architecture, fur-
ther overviews of large reference documents have been composed by Sunyaev in
[Sun20] and by Weyricht and Eber [WE16], for instance.

In this thesis and for the rest of the state of the art chapter, primary focus
goes towards the software-related aspects, which involve the top 3 layers (Busi-
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ness, Application, Processing) more so than the Transport and Perception layers.
Business & Application layer are largely captured by BPM, while Edge and Fog
are concerned with the Processing layer. This thesis aims to enable processes in
the Business & Application layers to drive the decision-making of using Fog in-
frastructure in the Processing layer with awareness of context in the Connectivity
layer.

2.2. Interoperability and Communication in Internet of Things

This section discusses the importance of interoperability across the IoT layers and
categorizes different types of interoperability. Then, we cover what protocols,
standards are used on top of the physical data links - in the Processing and Appli-
cation layers - that facilitate interoperability, and give special focus to frameworks
which apply a service-oriented approach. Finally, we also discuss how IoT com-
munication is organized physically in the Transport layer of 10T - which patterns
are common in mediating information between devices, what (radio) technologies
are commonly used for the physical level of communication.

2.2.1. Interoperability

Considering the layered IoT models, both intra- and interlayer interoperability is a
crucial requirement for IoT. Intra-layer interoperability is based on the protocols,
technologies, standards used by the individual devices and software within a layer
to communicate between themselves. Interlayer interoperability allows software
in one layer to interact with software in another layer. This involves larger-scale
frameworks and standards, managing device- and service discovery, business-to-
business cooperation, open APIs and public documentation, developer support
etc.

A general lack of interoperability in the past has resulted in IoT applications
developed for a narrow, domain-specialized use cases or within closed ecosys-
tems. Such an approach makes the applications difficult to extend and maintain or
integrate with other systems. To avoid this, we can consider interoperability from
four different levels: device, network, syntactic and semantic [NAG19].

The devices in the Perception layer come with different hardware configu-
rations, which sets constraints on their capabilities and interoperability - this is
referred to as device interoperability. For example, virtualisation technology
greatly simplifies portability of software. However, a low-end device, such as a
microcontroller, may not support virtualisation features due to its hardware ar-
chitecture, while more capable devices such as Raspberry Pi-s support it. Sec-
ondly, the communication hardware and protocols: WiFi, ZigBee, Bluetooth, Z-
Wave, NFC and other similar radio modules embedded into the device distinguish
whether a physical communication channel can be established and whether a new
IoT device can be integrated to an existing [oT system.
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In the Transport layer, networking interoperability determines whether end-
to-end communication can take place, considering there may be multiple options
(wireless/wired/delay-tolerant networking). For instance, a set of dispersed gate-
ways may need to link their local networks containing end devices to a global IoT
system available in the public Internet. Achieving a seamless message exchange
in such a case can involve addressing, routing, QoS and security issues.

Once hardware-level communication issues and networking interoperability
are ensured, syntactic interoperability is concerned with whether the data for-
mat, data structure and interfaces - e.g. Web Service Description Language (WSDL),
RESTful API - used by IoT systems support integrating the systems with one an-
other. Serialization and de-serialization of messages needs to follow the same
formats (e.g. JSON or XML) or be able to translate between them. Otherwise, if
the sender of a message does not use the same encoding standard as the receiver
does for decoding, the message payload is lost.

Semantic interoperability - While syntactic interoperability ensures that the
data is serialized in a known way, the contents of the data may still not be usable
by different parties, since the representation of knowledge within a single data-
structure (e.g. CSV or JSON) may differ. By following a standard for semantic
interoperability, reasoning about data can be automated. Examples include Sen-
sorML [BRO7] - a markup language for sensor data; Semantic Sensor Network
Ontology, which is encoded in Web Ontology Language (OWL) and it’s deriva-
tives such as IoTLite [Ber+16]; or data structured according to a specific frame-
work’s semantics, such as FIWARE (explained below in 2.2.2).

While in the lowermost layer, the question is more about how fo securely di-
rectly link devices, towards the upper layers, a challenging question is how can
the applications and processing components discover, query and optimally use
only those data-sources which are of interest? This requires abstraction of the
underlying physical devices and annotation of them with meta-data describing
their capabilities in terms of what IoT data they can supply, their context/envi-
ronment and what standards they support. This is realized by middleware and
IoT platforms which links a particular clients query/demand with a set of devices,
using above-mentioned interoperability approaches to achieve it. However, one
platform’s abstractions and choice of standards are often not compatible with a
different provider’s platform - a lack of platform interoperability. The next sub-
section brings examples of some existing platforms.

2.2.2. Service Oriented loT Frameworks

IoT frameworks aim to provide an answer to the interoperability challenges in
the form of specifying a set of technological standards that address all the inter-
operability challenges in unison. Notably, the idea of Service-Oriented Archi-
tecture (SOA), which emerged in enterprise systems, has also become dominant
within IoT frameworks [Spi+09]. SOA supports syntactical software interoper-
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ability through standardized service interfaces based on Web Service (WS) tech-
nology, such as the previously mentioned WSDL, REST API, XML/JSON, OWL.
Following SOA, IoT devices expose their functionality through service interfaces
defined with these standards. While there are plenty of commercial frameworks,
a few larger open-source projects also exist, such as FIWARE and Web of Things.

Fi-Ware. The European Commission-initiated FIWARE project! defines a set
of APIs and open-source software to realise an interoperable platform for smart
solutions, focusing on syntactic and semantic interoperability. The core of FI-
WARE is the context broker component, which mediates contextual IoT data be-
tween data producers (sensor, actuator devices, public info services) and con-
sumers (applications, processing modules, etc.) [Cir+19]. Interaction is done
through the FIWARE Next Generation Service Interface (NGSI). NGSI defines a
data model for entities, their types, attributes, metadata, serializable as JSON. Fur-
ther, it defines RESTful HTTPS interfaces for querying devices, data, including
support for geographical context.

IoT data arrives to the context broker either directly from devices publishing
data using NGSI API or alternatively, through a software agent which translates
the device-specific interface to NGSI (e.g. from MQTT, SigFox, or OPC-UA), in-
creasing device interoperability for FIWARE. Similar to the device-specific agents,
FIWARE includes various optional modules which users of the platform can pick
and choose. For example, this includes different domain-specific data models:
Smart Agrifood, Smart Sensoring or Smart Cities.

More recently, NGSI is being superseded by the NGSI-LD standard, which
adds linked data support and is an ETSI standard [FGB18]. NGSI-LD describes
FIWARE:s foundational data model concepts (Entitities, Relationships, Types) us-
ing RDF, OWL and JSON-LD, which are common standards for semantic web.

W3C Web of Things. Another framework for an interoperable IoT is Web
of Things (WoT)?, led by W3C WoT Working Group. Web of Things seeks
to achieve an interoperable IoT architecture by using existing standardized Web
technologies. WoT describes a set of building blocks and an abstract architecture
defining the relationships between the blocks. In the following we give a quick
overview of these building blocks.

The WoT Thing Description is the format for describing IoT smart object meta-
data and interfaces. The Thing Description is formatted as JSON-LD. WoT Bind-
ing Templates explains how protocols of a device (e.g. CoAP, MQTT, ModBus)
should be translated to the WoT Thing Description abstractions and interfaces,
and vice versa.

WoT Scripting API component allows interacting/composing Thing actions
in Javascript without directly concerning the underlying protocols, they are ab-
stracted away thanks to the WoT semantic and syntactic device-, device function

Thttps://www.fivare.org/
*https://www.w3.org/WoT/
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and interface descriptions.

The WoT project also includes a set of Security and Privacy Guidelines on
how to securely implement and configure systems built based on WoT. WoT also
proposes its own mechanism for device discovery, which can be based on DNS-
Based Service Discovery.

Notably, the WoT project lists service mash-ups as one of the goals that the
framework should help realise. For mash-ups, WoT supports orchestration using
NodeRED.

Commercial Frameworks. In addition to FIWARE and Web of Things, large
software companies provide their commercial platforms to facilitate integration
and interoperability of IoT solutions. Well-known examples include Amazon
AWS IoT Core, Microsoft Azure IoT Suite, IBM Watson IoT. Besides these tech-
nology giants’ platforms, numerous smaller companies specializing in IoT so-
lutions offer their own platforms, such as Cumulocity, Ubidots, ThingWorx. In
general, these frameworks offer similar interfaces based on service-oriented ap-
proaches and standards mentioned above. In case of platforms offered by Cloud
providers such as Amazon, their solutions offer the benefit of seamlessly integrat-
ing with existing other Cloud services.

2.2.3. Communication Models & Protocols

Data movement within an IoT system can be organized in several ways, here we
present 3 general IoT communication models which represent the basis of most
IoT system designs [Yu+18].

For each one, we show how the smart objects (Things) in the Perception layer
may share their collected data with other devices or a client, which is typically
an application running on a smartphone / personal computer or a server running
business logic.

Thing-to-Thing. Fig. 3 represents direct, device-to-device (D2D) communi-
cation between individual Things in the Perception layer (sometimes also called
Machine-to-Machine). The communication does not rely on any external hard-
ware device (such as a network master or router), the direct link is usually based
on a radio-based solution such as Z-Wave, etc. A common example can be a smart
lightbulb, which is controllable via Bluetooth using a Smartphone. The limitation
of this model is that remote control/monitoring is not possible, but on the other
hand the privacy and security management is reduced to only the local physical
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network. Further, devices which embed multiple radio capabilities (e.g. both
WiFi-Direct and Bluetooth), may choose or combine the different technologies
(hybrid approach) to achieve the best latency/QoS.

The devices themselves are responsible for interoperability - they embed soft-
ware stacks that allow clients to discover device capabilities, query data or sub-
mit commands/operations (e.g. in case of Bluetooth, the GATT protocol). The
drawback of this is that each link depends upon both devices supporting the same
protocol (which often sets hardware-level requirements).

Thing-to-Cloud. To foster data sharing and easier, remote access to the de-
vices, as depicted on Fig. 4a, the system relies on a remote server (typically cloud-
hosted), to which the Things connect over an IP network. The cloud usually per-
forms functions such as providing persistent storage for the (historic) loT data and
acting as a proxy to the IoT device, forwarding commands, queries to the device
on behalf of a client. For this, the server provides a virtualized representation of
the connected devices to external clients for data querying or command submis-
sion. From the device’s perspective, this prescribes the usage of communication
technology that is compatible with IP networks (WiFi, LTE, NB-IoT), involving
cellular base stations or wireless access points.

Here, the Thing-to-Cloud link may be based on a protocol which minimizes
data payload sizes and latency, such as MQTT. At the cloud, the small-format
data is usually transformed to some other format which is easier to share at the
interface for clients. The drawback is that embedding a TCP/IP stack on the Thing
can hamper power-efficiency and drive up cost of hardware, while on the cloud-
side, scaling to a large number of devices can become challenging considering the
network bandwidth and data volume [You+19].

Thing-to-Gateway. In Fig. 4b, a gateway device is introduced into the local
network as a mediator between the Things and the Cloud. The gateway acts as
a unifying bridge, translating the different local network protocols used by the
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Things into a single IP protocol for use by the Cloud-hosted services. Such an
intermediary also allows moving certain application components from the remote
server-side to the local gateway, for instance data compression, filtering, encryp-
tion, anonymization could be done at the gateway before leaving the local network
into the (public) cloud.

From the perspective of client-side access to the [oT services, the gateway also
creates the opportunity of hosting a local version of the client interface, decreasing
latency and reducing traffic at the cloud. Typically, the cloud-side interface still
remains an option even with the use of a local gateway, as it allows the system
to be reachable anywhere over the Internet. A simple example of this structure
is a wearable medical device which forwards data to a smartphone, which then
publishes it to a cloud application.

Discussion. These 3 models serve only as the fundamental building blocks
of network structures in IoT systems. Hybrid approaches are possible and for
instance, a system may have an entire network of gateway-type devices both in
the local and remote network serving the IoT system, as is the case with Fog
computing, described in chapter 2.3.2.

2.2.4. Delay-Tolerant & Opportunistic Networking

The described communication models may be employed in various networking
conditions. If we consider Thing-to-Thing and Thing-To-Gateway communica-
tion, the lack of a stable network connection is more common, especially if the
Thing is moving. In this case, the communication in the edge must be based on
brief, device-to-device wireless communications. The fields of Opportunistic Net-
working and Delay-Tolerant Networking have studied this problem for more than
a decade [Tri+17].

In Delay-Tolerant Networking, to transfer messages to destination host that is
not reachable by a direct device-to-device link, routing protocols based on a store-
carry-forward scheme are used. Hosts exchange messages during encounters, for
which the final recipients are not currently available, and as the hosts later move,
these messages are further propagated to other encountered hosts, with the aim
that the message will eventually reach its destination host.

Opportunistic networking aims to take into account contextual information
such as mobility patterns (moving from home to work, bus lines), daily routines
and social interests when routing messages in delay-tolerant networks or when
forming mobile ad-hoc networks.

2.3. Computing Paradigms for Internet of Things

Large, scalable IoT systems rely on modern computing paradigms such as Cloud
Computing. While Cloud usage has become common-place, it alone is not suffi-
cient to realize the full potential of IoT, namely more de-centralised approaches
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such as Edge and Fog Computing are also necessary, as we explain in the rest of
this section.

2.3.1. Cloud Computing

Cloud Computing refers to the provisioning of (virtualized) compute, storage, net-
working resources on-demand, as a service [BVS13]. Public Cloud Computing
service providers such as Amazon AWS, Microsoft Azure, Digital Ocean run data-
centers with server clusters providing a wide array of different Cloud services.
For instance, one may rent Virtual Machines (VM-s) and disk space with a de-
sired configuration and manage the entire software stack within the OS by oneself
or alternatively, directly deploy application code to a language/framework-specific
runtime environment avoiding the configuration at OS-level. The former approach
is known as Infrastructure-as-a-Service, the latter Platform-as-a-Service. In addi-
tion, Software-as-a-Service refers to usage of applications hosted in the cloud by
thin clients (e.g. web browsers), removing the need to install software on the
client device/manage its updates.

These different Cloud services have revolutionized the IT industry, drastically
reducing the upfront capital expenses of establishing a software company and
allowing Cloud users to quickly elastically scale their resources based on needs,
on a pay-per-use basis. For IoT solutions, Cloud is often used for hosting user-
facing applications, middleware, and for data storage (the Business-, Application-
and Processing layers of the 5-layer IoT model).

In addition to typical use cases for Cloud, such as hosting web applications,
the simultaneous rise of smartphone usage at the end of the first decade of the 21st
century sparked interest in using Cloud resources to extend the limits of mobile
devices. Utilization of Cloud resources by a mobile, for offloading, storage, or
other purposes, is known as Mobile Cloud Computing [Din+13]. The motivation
is to conserve the battery life or making processing more performant by moving
computational tasks from the mobile CPUs to the Cloud, where processing, mem-
ory and storage resources are abundant. The transfer of computational tasks is
referred to as computational offloading, or offloading in short [Kum+13].

Practical examples of mobile code offloading included mobile applications
from large companies such as Google which executed tasks such as voice or im-
age recognition on remote cloud servers on the input from the smartphone. In
such solutions, the integration with the (Cloud) back-end is tightly coupled with
the software product. In contrast, academic researchers were interested in creating
general-purpose frameworks that leverage virtualisation, dynamic deployment for
offloading of code from smartphones to (Cloud) servers at different levels of gran-
ularity. Another wide research trend is development of algorithms for decision-
making whether offloading is necessary/beneficial from the mobile’s perspective
[Kum+13].

Cloud datacenters represent a relatively centralised approach from the network
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structure perspective. For instance, Amazon Web Services (AWS), one of the
leading Cloud providers, operates a total of 6 datacenters within Europe?. If the
Application and Processing layer components from the 5-layer IoT model are
hosted in the Cloud, the data flood of IoT converges at such data centers.

From a networking perspective, several researchers have noted that the cen-
tralised Cloud infrastructure is not well suited to handle the growing volume of
data produced by the dispersed loT devices [Zha+15; Bot+16; Bit+17; Satl7;
APZ18]. The same applies for mobile offloading for low-latency interactive ap-
plications with high bandwidth, such as Augmented Reality or critical systems
such as collision avoidance in autonomous vehicles [Bit+15]. The issue lies in
network latency, involving two factors: 1) the mentioned geographic datacenter
placement sets fundamental latency limits based on the users/devices location and
speed of light, 2) the growing volume of network traffic, which leads to conges-
tion and jitter. In response, the Edge Computing [Sat17] paradigm has emerged.
Besides networking, another issue arises when regulation constrains the allowed
locations for data processing or storage, but the Cloud operators datacenter loca-
tions do not comply with this [Mou+18].

2.3.2. Edge Computing

Edge Computing decentralizes the Cloud-centric IoT approach by using compute
nodes in the immediate vicinity of the IoT devices to capture and process the
data as close to where it is being produced as possible, instead of transmitting
data to the datacenter. The processing (or storage) could be done by the data
source device itself (e.g. a camera which has face detection/event detection capa-
bilities), a nearby networking device such as a router with adequate capabilities
or a stand-alone machine dedicated for the purpose, sometimes referred to as a
cloudlet [Sat+09].

The origins of Edge Computing can be seen in content delivery networks
(CDN’s) in the end of 1990s [DPW04]. CDN-s were conceived to speed up perfor-
mance of web requests by caching content at nodes close to end users. CDN’s not
only serve static cached content, but could involve some dynamically composed
content (e.g. advertisements on a website that are based on the user’s location).

Satyanarayanan [Sat17] highlights 4 key benefits of Edge Computing:

1. Minimal latency - processing in the edge network ensures the lowest possi-
ble communication latency and least network hops, this allows reacting to
the data quickly and realizing applications with real-time latency require-
ments such as augmented reality.

2. Scalability of systems increases, as the stream of frequent, raw data gets
consumed at the edge network and only already processed, extracted data

3As of July 2021 Frankfurt, Ireland , London, Milan, Paris, Stockholm according to
https://aws.amazon.com/about-aws/global-infrastructure/
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are transmitted to nodes further away (such as the ones handling functions
of the upper layers in the discussed IoT models).

3. Privacy. The proximal edge compute nodes can enforce privacy policies
early in the edge network, before the data traverses to the cloud over Wide
Area Networks.

4. Masking cloud outages. By hosting fall-back functionality on cloudlets,
failures and outages of the cloud infrastructure (e.g. due to network failure
or cyberattacks) can be temporarily masked.

Although the above latency-argument has become debatable, as recent studies
[Moh+20] show that Cloud round-trip-times in areas like Europe or North Amer-
ica from experimental probes are under 20ms for 80% of probes in optimistic
scenarios, we can still recognize the utility of Edge based on the combination of
the mentioned benefits.

2.3.3. Cloudlets, Fog Computing

In this thesis, we use Edge Computing as an umbrella term for several similar con-
cepts, including cloudlets, mobile edge computing, microclouds and Fog Com-
puting, Mist Computing [ You+19]. This subsection aims to give an overview and
comparison of these similar terms.

In 2009 Satyanarayanan et al. presented the idea of cloudlets - "a trusted,
resource-rich computer or cluster of computers, well-connected to the Internet and
available for use by nearby mobile devices" [Sat+09]. Cloudlets provide a VM-
based platform to which mobile clients can deploy and subsequently use software
packaged as a VM on-demand (e.g. a speech recognition service). The mobile
client may alternatively choose to use a distant cloud server or its own resources
in cases where cloudlet infrastructure is not available. The vision of cloudlets
prescribes their decentralized and widely dispersed deployment, similar to how
Wi-Fi access points have been deployed.

The idea of using devices dedicated for general-purpose / utility computing lo-
cated close to the clients was driven further by the Fog computing term proposed
by Cisco in 2012 [Bon+12]. The core idea is highly similar to Edge and cloudlets
- providing a (virtualized) platform for hosting compute, network, storage, usu-
ally at the edge of the network. However, Fog Computing represents a larger,
more general system - a network of nodes spanning from the cloud to core- and
metropolitan networks and to the fog nodes in the edge network, as opposed to the
self-contained cloudlets. Another way to look at the concept of Fog computing is
to see it as a set of cloudlets, who may rely on other cloudlets or the Cloud when
necessary (multi-layer architecture).

Compared to the original Edge computing idea (Sec. 2.3.2), there is no strict
restriction for placement of the Fog nodes / Fog services, the services may or may
not be close to the data source. Fog Computing prescribes usage of virtualization,
while Edge Computing can also take place without it. Secondly, Edge Comput-
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ing does not explicitly require dedicated nodes for the processing, it merely states
that data should be processed near the data source, possibly even on the same de-
vice that generated the data, whereas Fog Computing and cloudlets are described
as separate devices from the data producers. Due to the autonomous nature of
cloudlets, they need little management compared to the network of Fog comput-
ing nodes, which need management and federation of services and providers.

We shall refer to the computing resource providing devices, such as cloudlets
or the nodes in Fog computing as Fog Nodes.

Another significant Edge initiative is the specification of Mobile Edge Com-
puting (MEC) [Hu+15] by the European Telecommunications Standards Institute
(ETSI) in 2014, later renamed to Multi-Access Edge Computing. MEC takes the
principles of Edge Computing and focuses on realizing them in mobile cellular
networks - using the cellular base stations and/or Central Offices as the nodes
providing the edge computing platform. A driving force behind MEC is the trend
of virtualising the network components in mobile network infrastructure, known
as Network Function Virtualisation (NFV). The dedicated networking hardware is
replaced with general-purpose computers, which results in the telcos effectively
operating small data-centers which run various virtualised network function ser-
vices. This creates the opportunity to open the Radio Access Network (RAN) edge
(e.g. Core base stations ) to trusted, authorized 3rd parties and provides means to
flexibly and quickly deploy applications and services to the RAN, where they are
hosted near to the mobile users. An interesting concern for MEC is the focus on
client mobility - the edge services need to follow the user as they move, for this
RAN data can be beneficial, as for example 5G networks bring enhanced user mo-
bility tracking features. An example commercial solution based on MEC is Ama-
zon AWS Wavelength 4, which allows deployment of AWS compute and storage
services within the mobile network infrastructure of telco providers, avoiding the
latency of traffic having to leave the telecommunications network.

2.3.4. Practical Fog Computing - Standards, Technology

The biggest international consortium in Industrial IoT and Fog/Edge Computing
is the Industrial Internet Consortium (IIC). While IIC-s focus was originally accel-
erating the secure adoption of IoT technology for businesses, industry and society
in general, in 2016, IIC was joined by the OpenFog Consortium, expanding the
scope and partnerships more towards Fog networks and Edge computing. The
OpenFog Consortium was founded in 2015 by Arm, Cisco, Dell, Intel, Microsoft,
and Princeton University [Opel7] and in 2017, OpenFog Consortium published
the reference architecture for Fog Computing [Opel7]. The document intends to
aid business leaders, software developers, silicon architects, and system design-
ers create and maintain the hardware, software and system elements necessary for
fog computing. The document describes how Fog systems can be assembled and

“https://aws.amazon.com/wavelength/
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function in terms of necessary technical features related to networking, security,
virtualization and describes several use-case scenarios which show the necessity
of a Fog Computing framework (instead of a Cloud-based solution). The OpenFog
reference architecture was adopted as an IEEE standard in 2018 [Ass18].

On the hardware side, the majority of existing solutions are proof-of-concepts
published as academic research. Few commercial products do exist, such as
Cisco’s routers for the Cisco 10x platform. Such routers support application
deployment based on VM and containerisation technology. Containerisation is
a crucially important virtualisation technique for Fog computing, being a more
lightweight alternative to VM-s and provides the opportunity of sharing a base
software stack layer among multiple applications packaged as containers.

2.3.5. Key Challenges for Fog Computing

To summarize, Fog and Edge computing refer to distributed systems spanning
the continuum from cloud datacenters to devices in the edge network. The sys-
tems offer services for storage, processing, networking purposes in an on-demand,
elastic fashion a la Cloud Computing. The need for these services is for achieving
low-latency, data-privacy, and distribution of networking/computational load in
the whole network. In this subsection we highlight some key remarks regarding
Fog Computing and its applications, challenges interesting to this thesis.

Mobility and Location-Awareness. An important challenge for Fog Computing
is enabling mobility: usually movement of client devices, but also movement of
the Fog nodes themselves. For a client device on the move, such as smartphone
worn by a pedestrian, vehicle, drone, the set of available Fog nodes is constantly
changing as the client traverses between local-area networks. The Fog network
needs to adapt to the mobility of the clients: services and applications have to
be migrated between nodes to ensure proximity to the clients and intermittent
connectivity due to changing signal strengths must be taken into account. An
abundant geographical distribution of fog nodes also creates opportunities for new
location-based services (LBS) [Gua+18]: clients can use LBS without sharing
their location data with the Cloud - this is kept private at the Fog node. The fog-
hosted LBS can only receive requests from nearby devices, so explicit location
data need not be shared to maintain location-awareness.

Load-balancing and scheduling. The resource allocation within the Fog net-
work must be efficiently managed, optimally balancing low-latency requirements
with capabilities and current workloads of the nodes in the network. In Fog Com-
puting, the balancing and task placement also includes the Cloud resources, not
just edge network nodes. This is challenging due to the heterogeneity of Fog
network nodes - differing hardware capabilities, workloads and latencies need to
be accounted for in the decision-making [Sun20]. For mobility-oriented scenar-
ios, the optimal resource balancing further needs to take into account the mobility
context in addition to the workloads and hardware configuration.
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2.3.6. Fog applications - overview

In this subsection we analyse software applications for Fog from 2 perspectives.
Firstly, which characteristics of an application make it most suitable for Fog/Edge
instead of Cloud. Secondly, which party (client or central system) is the main
invoker of services.

Low-latency, high-bandwidth applications. While a wide array of applica-
tions could be adapted for Fog, the largest benefit is reaped by those with low
network latency and high local bandwidth requirements. High bandwidth appli-
cations either involve: 1) large amounts of data generated by single entities (e.g.
4K video camera), industrial equipment/automotive equipped with a large no. of
high-frequency sensors; or alternatively 2) the single entities’ data production is
relatively small, but the number of total devices whose data needs to be trans-
ported is large (e.g. thousands of traffic sensors deployed over across a smart city).
Fog nodes located as close as a single network hop from the client devices offer
low latency. While in ideal conditions Cloud-hosted applications can still provide
quite low latency (10-100 ms depending on region [Moh+20]), they are still prone
to suffer from jitter, making Fog the best candidate for latency-sensitive applica-
tions. These are applications which need to provide feedback/react fast enough so
that the experience is seamless for humans - AR/VR applications, gaming, health
monitoring or industrial scenarios where the intervention/reaction delay must be
minimal.

Top-down and bottom-up approaches. We categorize the applications also
based on who initiates and manages the application and services, i.e. how the
control logic is distributed within the network [Man+19]. The two approaches
-top-down and bottom-up [MRB21]- are visualized on Fig. 5.

In case of a top-down approach, a central controller (often Cloud-hosted)
deploys necessary resources to other nodes in the geo-distributed network (e.g.
services S1, S2 on Fig. 5). This is based on information about the entire Fog
topology managed by the Cloud. Devices carry out instructions received by the
controller. This centralised view allows for very complex decision-making for re-
source allocation, considering user/node loads across the Cloud-Fog continuum,
etc. This assumes a centrally federated network. Top-down approach can achieve
efficient load-balancing and realize applications which "follow" the user as they
travel. For example on Fig. 5 S1 can be deployed to those Fog nodes which are
predicted to be near Client A during different moments of time (0, t/). The top-
down approach is suitable for services which are shared between a large no. of
clients, e.g. a road-side unit at a traffic junction, exchanging data between pass-
ing vehicles and a central system. Top-down approach enables optimization for
large numbers of users: consider CDN-s where the data is cached according to
knowledge about which content is requested in which regions.

Alternatively, in the bottom-up approach, the resource deployment and man-
agement is initiated by the client devices and/or Fog gateways. They try to query
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the network for availability of nodes which could be used for the deployment.
For example, on Fig. 5, the Client distributes S1-S3 to a nearby Fog node, which
in turn deploys S1 and S3 to another peer Fog node and the Cloud, respectively.
Here, usage of nodes by different vendors (public, private clouds, public/private
fog nodes) is more common. The bottom-up approach is thus more de-centralised
and autonomous, the resources are used opportunistically based on their current
availability, the Fog gateway can influence the entire Fog network less compared
to the top-down Cloud perspective. Examples of this approach can be seen more
in sensor network research, crowdsensing, mobile code offloading, etc. Generally,
the applications support a single client at a time.

Both of these solutions should also be capable of adapting to cases where ad-
ditional resources are not available at all, and the application needs to have a
fallback option, to work based solely on the client and controller.

2.4. Workflow & Process Management

In this section we explain the fundamental concept of BPM and then show the
current situation of applying BPM in the IoT context.

Business Process Management is the practice of designing, monitoring, analysing,
improving and automating business processes [Dum+18]. Business processes
themselves are the fundamental set of actions that businesses and organizations
enact to deliver a product or service. They involve a sequence of actions, events
and decisions and BPM aims to manage these processes as a whole, not just fo-
cusing on improving some individual sub-actions.

An example of a process could be a Procure-to-pay process - where an orga-
nization needs to purchase a product or service, they go through steps such as
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obtaining quotes, selecting a supplier/vendor, issuing a purchase order, consum-
ing the service once delivered and paying the invoice. This type of process could
take place when a client requests computing resources from a set of Fog Comput-
ing providers and decides on a single provider. A continuous application of the
different BPM activities is referred to as the BPM lifecycle.

2.4.1. Business Process Management Lifecycle

The so-called BPM lifecycle describes the components of BPM and how they re-
late to one another, forming a cycle. The following explanation is adapted from
the book by Dumas et al. [Dum+18], where the main lifecycle components con-
sidered are: Process Identification, Discovery, Analysis, (Re)-design, Implemen-
tation and Monitoring, as illustrated on Fig. 6.

To begin applying BPM, an organization must first look at it’s existing pro-
cesses and identify which of these are of interest for a particular business problem
at hand. This phase, referred to as Process identification, results in a selection of
processes of the organization to be managed throughout the rest of the lifecycle.

Next, in the Process discovery phase, the identified existing processes are doc-
umented in detail. The goal is to accurately capture the existing processes as-is.
This can be done with modelling tools such as BPMN 2.0. While not required,
Process Discovery may be supported with automated tools and techniques such as
Process Mining. Process Mining refers to analysing historical log traces and gain-

40



ing insights from them, including automatic generation of process models based
on them. To this end, specialized process mining software such as ProM [Van+09]
exist.

Issues related to the as-is processes are identified and documented in the Pro-
cess Analysis phase. Quantitative performance metrics may be used to achieve
this. As a result, a prioritized collection of issues with the existing processes is
produced.

Based on this, changes to the processes are proposed, analysed and eventually
chosen to create a re-designed process. This phase is termed "Process redesign"
and results in an improved, "To-be" process model. At this stage, various analysis
techniques may be employed to determine which of the changes to choose for
acting on, such as using Simulation to play out various versions of a process and
their performance, identify bottlenecks, usage of resources. An example of such
a simulation tool is QBP simulator’.

In the "Process implementation"” phase, the as-is process(es) in the organiza-
tion are then transformed to the to-be process(es). The changes needed to achieve
this include both organizational change management and automation aspects. The
latter concerns development, deployment and operation of IT systems which sup-
port enacting the to-be process. The organizational change management concerns
the participants involved in the process and changes to the work culture, skillsets,
etc.

During enactment of the deployed re-designed process, relevant metrics data
are collected to further analyse how the process is performing. The aim is to
identify bottlenecks, recurrent issues, misalignment between the modelled process
and actual execution of the process. The result of this (called Process Monitoring)
is a new collection of issues with the process(es) to be improved. Finally, this
closes the cycle, as the newly identified issues from the Process Monitoring lead
to a new iteration of the cycle - again identifying the existing process, prioritizing
the flaws and improving them.

The research questions addressed by this thesis are mainly concerned with the
Process implementation phase, as RQ1 and RQ2 directly deal with how to imple-
ment and execute processes. RQ2 also touches upon how the adaptive behaviour
can be captured in the process models. RQ3 is concerned with Implementation
phase, but also the process Analysis and Redesign phases, as a simulation tool
allows for analysing and experimenting with different process designs. The map-
ping between the research questions and BPM lifecycle is also depicted on Fig.
6.

2.4.2. Modelling and Analysis of Business Processes

The common approach to modelling business processes is using standards such as
BPMN 2.0, CMMN and others. These standards establish semantics for describ-

Shttps://www.gbp-simulator.com/
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ing Business Processes - the activities, resources involved, decisions, pathways
and events. The most prevalent modelling language here is the Business Process
Model And Notation Specification Version 2.0 (BPMN 2.0, or just BPMN). It
defines an XML-based schema for defining business process diagrams in flow-
chart-like fashion, and it also includes visual specification of how certain mes-
sages, activities (e.g. human or non-human tasks) should be represented.

Thanks to the XML-backed format, BPMN models can be interpreted by soft-
ware for analysis or automation, supporting the implement phase. While BPMN
itself is not tailored for a particular execution or implementation environment, the
standard is easily extensible, so an information system implementing or automat-
ing its processes with BPMN can define its own extension elements to the model
according to its needs.

A visual example of a BPMN diagram can be seen on Fig. 7. It represents a
process for reviewing applications (e.g. for a loan), and based on the information
provided by the applicant, the application may need external review from a 3rd
party that then has to be checked by a human or can be automatically reviewed by
the companies’ info-system if it is determined to be a non-exceptional case. After
a review has been conducted, the applicant is sent a message with the review,
finishing this process. Looking at the example model left-to-right, it starts using
a "Message-receive"-type Start Event, which indicates that an instance of this
process is started upon receiving a particular kind of message. Subsequently, the
flow of this process includes different types of tasks (Service Task, Message Send
Task, User Task) and involves a split of the control flow, which is represented by
an XOR gateway. Different task types reflect some differences in how they are
enacted. User tasks involve some input or operations from the user, e.g. through
some form-based graphical user interface, while Service tasks involve invoking
some software service, e.g. performing an HTTPS request to a Web Service.
Message-related tasks and events involve sending and receiving of messages, the
messaging medium depends on the implementation/use-case: e.g. e-mail, instant
messaging, web requests, SMS, etc.

In cases when more formal analysis is required, methods such as Petri Nets
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or graph-theory-based methods may be used to model the processes. Petri Nets
and its variants such as Timed Petri Nets are mathematical modelling languages,
which allow using the existing theories and proofs surrounding them to perform
rigorous analysis of processes. For instance, Petri Nets allow verification of pro-
cess models (checking for deadlocks, checking for the reachability of a desired
state from a given current state) or with Time Petri Nets, consider temporal con-
straints.

2.4.3. Process-Aware Information Systems, Process Execution

An array of open-source and commercial software aimed at supporting the BPM
lifecycle stages exist. These systems, called Business Process Management Sys-
tems (BPMS) or Business Process Management Suites or sometimes Process-
Aware Information Systems (PAIS), each combine several tools, the typical com-
ponents of such a system are the following:

* Process designer (modeller) - a visual modeller for creating BPMN (and
other) models. The tool allows defining the executable processes for the
BPMS. This includes defining the control flow, data flow, and other con-
straints, such as assigning which resources can be assigned to which activi-
ties (e.g. based on business roles).

* Execution engine for the implement phase, which drives the automated
enactment of process definitions in software - managing process instance
state, involved resources, etc. It orchestrates the invocation of required ser-
vices / other components of the BPMS according to a process’s state. As a
side-effect of process execution, log traces are written to an Execution log.

* Worklist handler Based on the active tasks within running process in-
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stances and available resources, the worklist handler maps which tasks may
be completed by which resources. It provides an "inbox"-like functional-
ity, where users/clients can query which work items (tasks) are currently
available to them. When one resource assigns/accepts a work item, it then
becomes locked and cannot be assigned to other resources.

¢ Administration & Monitoring tools These provide overview of the avail-
able processes, resources, running instances. Among administrative tasks is
managing the resources such as the roles of human users in the system (e.g.
junior or senior level employees have different roles in the system, Worklist
handler assigns them different tasks based on this). Monitoring, analysis
and insight tools facilitate monitoring the state, statistics of currently run-
ning instances as well as historic data. This part may include advanced,
business process intelligence functions which allow analysing performance
of process execution, detect outliers and even suggestions for improvement.

* Workflow clients and External Services - BPMS are often designed to
work with a kind of Client Application, often HTTPS / Web interface based
or some stand-alone client software (e.g. desktop client or mobile app),
to interact with the BPMS. In case of user-facing web-based clients, the
BPMS provides libraries and standards to generate Ul-s (e.g. input forms)
for tasks based on the process models, to support process execution, saving
development time of creating GUI-s for the tasks. Another common feature
is bundling various integration modules and libraries - e.g. to easily con-
figure BPMN tasks to interface with other web services, process engines
integrate HTTP client libraries.

The above components are shown also on Fig. 8, which represents an architec-
tural view of a typical BPMS. The BPMS architecture on Fig. 8 is based on com-
bining 2 literature sources: the workflow reference model [Hol95] by Workflow
management coalition and the BPM book [Dum+18]. We found this combina-
tion to be a useful representation of a typical BPMS, since the literature review of
BPMS architectures by Pourmirza et al. [Pou+17] highlighted a lack of a modern
reference architectures for BPMS. Namely, as of 2017, 25 out of 41 architecture-
related studies considered in their review did not base their architecture on any
existing reference architecture. The most prominent reference architecture ac-
cording to the study was the workflow reference model [Hol95], published in
1995.

An influential open-source BPMS has been Activiti, a Java-based workflow
engine for BPMN. Activiti was first released in 2010, later, several projects based
on forks of Activiti have also seen success: Camunda and Flowable. In addition to
the Activiti and its forks, other open-source alternatives (jJBPM, Bonitasoft) exist.
The common model for these projects is to also have a company associated that
provides a commercial version of the open-source core project with support for
customers. There are of course other, fully closed-source commercial solutions.

44



Well-known proprietary BPMS examples are IBM Blueworks, Oracle Business
Process Management Suite® and Genexus’.

For the Process Implementation phase, which is the main focus of this the-
sis, the crucial parts are creating executable process models and the modules
for executing them. This involves managing a repository of process definitions
deployed to the system; managing the execution state of any running processes;
managing an interface which allows resources (software agents, human resources
using BPMS clients) to acquire tasks for execution and indicate that a task has
been finished with certain results. We refer to the component which handles these

functions as the execution engine of the BPMS.

2.4.4. Flowable Java API

Flowable is a relatively recent fork of Activiti, which includes modern features
such as support for event-based systems (Kafka, RabbitMQ, ..) and enhanced
asynchronous execution abilities. It can be embedded into an application as a
singe library, revealing the Java API of Flowable, or it can also be deployed as a
RESTful service, where other system components interact with it over the Flow-
able REST API. We give an overview of how Flowable’s execution engine can be
used in practice by software developers.

Listing 2.1 shows a basic example of how the Java API can be used to deploy
process definitions, start process instances, and complete tasks within a running
process instance. In the listing we see usage of a RepositoryService, which
provides means to interact with the Process Model Repository described in section
2.4.3, the RuntimeService is used to start and interact with running process
instances, while TaskService is used to query for tasks and their status plus
updating their status (such as marking them completed), as such TaskService
involves some functions of the WorkList handler from section 2.4.3.

The code example also shows how process variables can be attached to pro-
cesses and their tasks (lines 13-18). These process variables are a key enabler of
automating business logic within the workflow. While often some variables are set
during the instantiation of the process instance, during execution of the process,
variables may be updated or new variables may set as well.

// Main modules of the Engine:
RepositoryService repositoryService;

3 RuntimeService runtimeService;

TaskService taskService;
// initialization of the Engine and Modules

repositoryService.createDeployment ()
.addClasspathResource ("process_a.bpmn20.xml")

Shttps://docs.oracle.com/cd/E14571_01/doc.1111/e15176/intro_bpm_suite.
htm
"https://www.genexus.com
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.deploy O ;

// Start process instance with variables

3 Map<String, Object> variables = Map.of (

"employee", "John McClane",
"nr0fHolidays", "5",
"description", "Description of John’s Holiday");

runtimeService
.startProcessInstanceByKey ("holidayRequest", variables);

// Query for a task and it’s attached variables

Task task = taskService.createTaskQuery ()
.taskCandidateGroup ("managers")
.singleResult () ;

Map<String, Object> processVariables = taskService
.getVariables (task.getId ());

int days = (Integer) processVariables.get ("nrOfHolidays");

// Complete the task based on business logic
if (noOfHolidaysRequested < 7){

variables = Map.of ("approved", true);

taskService.complete (task.getId (), variables);
} else {

1/

¥
Listing 2.1: Example of Flowable Java API usage

Flowable’s REST APl is organized similarly to the Java API: the /service/repository
endpoint is used to interact with the RepositoryService, while /service/runtime/
corresponds to the RuntimeService, and so forth. Additional parameters such as
setting of process variables takes place based on JSON-formatted payloads.

The more detailed description of the Flowable Java API can be found at docu-
mentation website®.

2.5. Integration of loT and BPM

As mentioned in the introductory chapter, the integration of IoT and BPM tech-
nologies can be seen from dual perspectives - based on the benefits this integration
brings to either side. For IoT, BPM helps capture the agendas and routine activi-
ties of smart things with process-based modelling and enactment. This simplifies
orchestration and efficient planning of resources [Jan+20]. This is especially im-
portant for Fog computing, where service placement is a core challenge. Further,
BPM can be used as an intermediary layer between raw event data and higher-
level (business) knowledge and events [Jan+20].

8https://wwv.flowable.com/open-source/docs/bpmn/ch04-API/
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On the flip side, IoT devices and data enhance the digitization of the real-
world context that a business process is concerned with. Thanks to this, detection
of starting and ending of process activities in the physical world can be automated,
something which would otherwise rely on manual human input for their digitiza-
tion. The result is more timely and accurate data. [oT data can also be used in the
decision-making of business process control-flows [Jan+20].

The core theme of integrating IoT technologies within BPM execution is the
conflict between: 1) the prescribed stability of the process model and services
implementing the BP execution in existing BPM solutions; and 2) the dynamic,
volatile behaviour of IoT environments [LMM19; HKS09].

The survey of BPMS usage for IoT by Chang et al. [CSB16] also identified
the following challenges in light of implementing IoT with the static conventional
SOA-architecture based BPMS: the existing BPMS have no way of directly com-
municating or influencing the edge devices or their network, they are dependent
on the abstraction and mediation middleware for this, which limits the possibility
of defining fault-tolerance or dynamic behaviour at the process level that takes
the edge topology into account. For instance, if two physically co-located devices
need to interact with one another in IoT BP execution, in a SOA-based system
this communication may need to go through multiple upper layers, despite the
device’s co-location, decreasing performance.

In the following subsections, we focus on how existing research addresses the
following BPMS for IoT issues:

* How to model IoT devices and processes and bring the IoT data, context to
the processes?

* How to support flexibility, dynamicity and adaptiveness in IoT process en-
actment?

* How to transform the existing centralised BPMS architecture to more dis-
tributed designs, including to the mobile/edge network?

However, we note that the full scope of described challenges in the literature is
even wider [Jan+20; LMM19; HA19], including amongst others: cooperation and
incentive models for things to participate in processes, privacy and ethics-related
issues, and automatic detection of processes from IoT data (process mining) and
adaptation [LMM19], and how to effectively but conveniently notify humans in
processes where IoT and human resources coexist [HA19].

2.5.1. Modelling loT processes

BPMN has been noted to be the most suitable business process modelling ap-
proach for IoT compared with WS-BPEL, UML or ePC [Mey+11]. The same is
reflected in the systematic literature survey by Compagnucci et al. [Com+20] -
only 4 out of 48 considered research works used non-BPMN-related notations.
Despite this, the question of how to represent IoT devices and their events within
BPMN models is not straight-forward. One issue is whether to represent IoT de-
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vices and their services explicitly as process participants (resources) or process
tasks, or to abstract them away from the models. The former means choosing
which BPMN constructs to use and possibly extending the BPMN specification
with new constructs accordingly, while the latter means that the modelling can be
based more on conventional BPMN 2.0 approaches, but the BPMS or some mid-
dleware needs to provide the abstraction layer that transforms between the raw
IoT devices / data and more abstract business events.

Various proposals to extend BPMN 2.0 for explicit representation of IoT in the
process model are described in the IBM research report by Brouns et al. [Bro+18]
and also above-mentioned systematic literature review [Com+20]. Brouns et al.
identify the following categories of sub-aspects, how to model and represent (which
primitives to use):

¢ Control flow and activities, tasks
* the things and devices of 10T - agents participating in the process

* events, how the (often real-time) IoT data can be brought to processes
through BPMN 2.0 event primitives

* location - the geographic context and mobility of IoT participants

 temporal constraints and specification - which are important for real-time,
low-latency IoT applications

Asrevealed by the systematic literature review of Compagnucci et al. [Com+20],
one of the most significant efforts of extending BPMN for loT has been presented
by Meyer et al. The works stem from the EU project IoT-A and are concerned
with how to represent things (real-world objects which IoT digitizes), the smart
devices, their interrelationships and involvement with Task/Activity primitives of
BPMN 2.0. They proposed to capture the IoT devices and individual native ser-
vices offered by IoT devices as new kinds of process resources with their own
metamodel. Their extension to the BPMN 2.0 standard uses lanes to indicate IoT
devices and new Task extensions such as "Sensing Task" for native services of
IoT devices. The metamodels of these extensions specify possibility of various
parameters for the resources, which the BPM engine can then evaluate and adapt
the execution based on, e.g. sensor accuracy for use in BPM business rules.

The things are represented as a separate Pool-like construct, whose custom
implementation is based on the Participant construct of BPMN Things [MRH15].
An example IoT process based on this approach is shown on Fig. 9.

The uBPMN BPMN 2.0 extension also proposes how to model IoT devices
and things [You+16]. While Meyer split the physical thing and smart device as
separate artifacts, uBPMN merges them under the Smart Object element, based on
the BPMN 2.0 Data Object. uBPMN provides a more varied set of Activity/Task-
based extension: Sensor Task, Reader Task, Audio Task, Image Task, Collector
Task. Similarly, Sensor Events, Reader Events, Image Events, Audio Events and
Collector Events are included. They also present typical context-aware modelling
patterns using their extension in [You+18]. Thus, uBPMN is concerned with the
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Figure 9: Example of loT-annotated BPMN process model (based on Meyer et al.
[MRH15])

different types of data from ubiquitous computing scenarios, and does not cover
the relationship between things/devices.

Events. uBPMN and IOT-A project extensions focus more on representing De-
vices, Things, and Activities. If we consider BPMN Events, we see that standard
BPMN 2.0 Events such as Signal, Message or Timer events are already useful for
IoT, to represent communication between devices, temporal limits or scheduling
and so forth. Error, Cancel and Compensation events can even be useful for de-
scribing fault-tolerance. For applications with mobility and location-awareness,
however, introducing new location-related events can simplify expressing situa-
tions such as reaching a destination (e.g. arriving at a Fog server, a Point-of-
Interest) [Bro+18; Koz10].

Data. Alongside Events, BPMN Data Object-s are general-purpose and thus
already fit also a lot of IoT purposes without any extensions necessary. Existing
works regarding Data representation in BPMN have covered amongst others data
quality [MSM11] and security [SZ15]. IoT data are often revealed as a stream
of data or stream of events. The above-mentioned BPMN 2.0 Events however
represent singular events, not streams. Data streams are not well captured by
standard BPMN 2.0, the system relies on some other component to map the event
stream into (business) events. In this light, Appel et al. [App+14] proposed an
extension for Stream Processing Unit Tasks.

It should be pointed out that standard BPMN 2.0 without extensions can also
be successfully used for IoT, the drawback being that in this case, the modeller
may need to provide more annotations to improve the readability of the models.

Besides BPMN, another BPM-related standard which has been gaining atten-
tion recently [Man+19] as a suitable way of modelling IoT is the Case Man-
agement Model and Notation (CMMN) standard. Compared to BPMN, CMMN
has less rigid control flow structure constraints - they consist of a set of "mini"-
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processes or process fragments, each of which can be worked on independently.
As such it supports unpredictable, knowledge-intensive processes with less clear
structure.

2.5.2. Execution of loT Business Processes

The above-mentioned extensions define the machine-readable XML Schema Def-
initions (XSD), they are still not sufficient to automate the process execution fully.
The BPMS can automate the control and data-flow, but invocation of devices usu-
ally relies also on service discovery, deciding which service to bind the activity to
and negotiating the interface on which to communicate.

The involvement of 10T devices in BP execution (corresponding to Implemen-
tation phase of the BPM lifecycle) can be realized in 3 main approaches, as ex-
plained by Chang et al. [CSB16]:

» "Centralized - Device as BP participant" - The devices are invoked directly
by the centrally hosted BPMS, in a Thing-to-Cloud manner. This is based
on either the device directly hosting some invokable (web) services, open-
ing a socket for direct communication; or through some Adapter compo-
nent, which the BPMS relies on to interact with IoT devices. This is the
most common approach in previously described modelling works and SOA
BPM. If the IoT system exposes all of its devices’ functionality as web
services, existing BPMS generally already provide the necessary HTTPS
client implementations and parsers to interpret the responses of devices.

* "De-centralized - Device as executor of compiled BPM code fragments" -
To reduce the centralization of the previous option, some of the BP logic is
moved to the IoT edge devices, to increase autonomy. More specifically, in
this case fragments of the process model are centrally transformed into exe-
cutable code, in a language supported by the edge device. These executable
fragments are deployed on the IoT devices, allowing them to interact with
the central BP. This allows even resource-constrained devices to participate
in centrally modelled abstract processes, but the approach relies on the cen-
tral system having a component for translating the BP model to executable
code. Examples of this approach are [Tra+12; MCS16b; MD17].

* "De-centralized - Device as BPMS host". In case an IoT device’s hard-
ware and software constraints allow it, a full standards-compliant BP en-
gine could be hosted on the device allowing it to execute and manage entire
BPMN processes itself. Thus, the highest level of flexibility is provided
- the device may orchestrate a process by itself locally, or participate in
process choreography with other central or local processes. Previous works
demonstrating this are for instance [RML12; Sch+16]. This thesis’s interest
lies in the case where the 10T device hosting the BPMS is a moving device,
i.e. a Mobile Process Host (MPH).

The mentioned approaches help capture some of the IoT behaviour at the mod-
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elling level and how to organize the execution in terms of (de-)centralization.
However, to manually describe and handle all the potential contingencies of IoT
processes is laborious and bloats up the process control flow with technical de-
tails. IoT process execution should dynamically be able to adapt to the current
process state and the context of the IoT environment - availability, capabilities
& status of devices. Optimal decisions here minimize likelihood of failures and
inefficiencies.

Regardless, even with such context-aware planning, the BPMS should still pro-
vide fault-tolerant mechanisms to overcome failures if they do occur. In following
subsections we outline different approaches in the existing research towards fault-
management and adaptive, context-aware BPM execution for IoT.

2.5.3. Dynamic service binding

Instead of relying on fixed bindings of activities (e.g. service tasks ) to services
that are defined during design-time, as is the case with conventional enterprise
processes, IoT BPMS often feature dynamic discovery of suitable service(s) dur-
ing run-time. A prerequisite to realize dynamic Service Discovery is a semantic
model/ontology to describe the IoT devices and their capabilities, services. These
descriptions would be managed by a discovery server, which allows clients (the
BPMS) to query for known devices and their service descriptions. Secondly, the
task definition of a dynamically bound service task in the process model needs
to define criteria which the service descriptions must match in order to be chosen
during the dynamic binding (e.g. sensor type, data accuracy, location, supported
protocols, etc.). Based on task criteria, the BPMS can query the discovery server
and attempt to find a matching service to be bound and invoked. Depending on the
degree of (de-)centralization in the system, discovery could be based on a global
central repository system [Jar+14; Dar+15]; a federated discovery network based
on an edge network [TVM18]; or direct device-to-device based local discovery
(Bluetooth, WiFi-Direct, LTE-Advanced D2D, NFC).

The devices and services could be described with existing Web-Service stan-
dards (WSDL) or Semantic Web (RDF, JSON-LD, OWL) technologies or IoT-
specific description languages (as mentioned in section 2.2.1). For instance, in
[Hub+16] IoT devices are described using the DogOnt domain-specific ontology,
which is based on OWL, and dynamically bound process steps describe criteria
for matching services using SPARQL queries based on contextual data such as
location.

The problem of deciding which discovered service is the optimal match for the
given process or task - i.e. optimal resource allocation - is recognized as an impor-
tant research challenge for the intersection of BPM and IoT [HA19; Jan+20]. If
we leave this problem unsolved/delegate it to the domain expert process designer,
we see another use of dynamic service discovery - using it as an assistance tool
for process designers
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In [Dar+15], the process designer defines service requirements for the process
task and the modelling tool then lists suitable discovered services. The final bind-
ing in this case is still manual, but the assisted service discovery can be helpful to
quickly identify appropriate services in systems with a huge number of devices.
When adding the IoT service to the process, the service description is also re-
tained in the process definition, which allows later (run-time) fault-management
or replacement of the service.

Goal-based refinement of abstract tasks. In the above described dynamic ser-
vice binding approach, the process task is defined by the criteria which will be
dynamically matched with a single service. A possible expansion of this is for
the task to describe the expected outcomes/changes to the process state that a ser-
vice or a composition of services should produce after invoking. In other words,
the dynamic matching is no longer only about finding atomic suitable services,
but also considers compositions of services that would produce the desired ef-
fect on the process state. Some works include pre-defined compositions (process
fragments) [Kép+16] while others are able even to perform the composition com-
pletely dynamically [Buc+12].

In order to realize this, the semantic model needs to involve more details -
the necessary pre-conditions (e.g. input data and process state, context) and ef-
fects of invoking a given atomic service or process fragment. Bucchiarone et al.
present a framework as part of the ASTRO project [Buc+12], where actors (busi-
nesses, devices) involved in a process each offer a selection of discoverable pro-
cess fragments they support. Processes and process-fragments are modelled using
Adaptable Pervasive Flows based on Blite, a process calculus for WS-BPEL. In
their approach, abstract tasks are annotated with an expected goal in terms of the
expected state of context variables. The system tries to realize the goal during run-
time using automated planning. Based on the goal and system state, a planning
domain and problem are formulated, and using automated planning techniques, a
suitable composition of process fragments is generated.

In [Kép+16], process models are analyzed to identify process sub-parts for
which there exist equivalent fragments in a repository of process fragments, based
on structural and semantic matching of the process activities. The original process
is transformed so that the regions for which matching alternative fragments were
identified are replaced with placeholder activities which invoke a situation-aware
middleware. The latter dynamically chooses a suitable process fragment that best
matches the current context during runtime.

2.5.4. Control-flow based Dynamic Fault handling

The description of expected effects of executing a task is also useful for identi-
fying when the expected state and actual state mismatch, indicating a fault has
occurred. In such a case, a compensation or repair mechanism needs to align
the real state with the expected state before the rest of the process execution can
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continue. This re-aligning typically means that the process structure is modi-
fied during runtime. In [Buc+12], the same automated planning-based approach
described above in Sec. 2.5.3 is also applied to deal with such exceptions. Au-
tomated planning is also used by Marella et al. in the SmartPM [MM17] system
for automatically adapting the process and creating a dynamic substitute service
composition in-case of failures. Based on a domain theory, the tasks in the pro-
cess model and a task repository are described in terms of their pre-conditions and
effects. IndiGolog and LPG-td are used to realize the automated-planning based
adaptation.

Seiger et al. [Sei+19] use the MAPE-K feedback loop principle to detect faults
and apply dynamic adaptation to them. IoT-related process steps are annotated
with Goals and Objectives based on the authors proposed meta-model. The con-
text of the environment and IoT-related process state is modelled based on DogOnt
ontology. Every time a potentially adaptive process task is executed, a Feedback
Service is invoked in parallel with the execution, which given the goal and con-
text information, will return if the original task has fulfilled its goal criteria, or
apply some extra self-healing mechanisms to bring the state to match the goal.
The compensations are based on graph queries to find suitable services in the IoT
environment to fulfil the goals.

The PROtEUS execution system by Seiger et al. [SHS18] combines the men-
tioned MAPE-K feedback loop with dynamic service invocation. PROtEUS is a
model-based workflow execution engine which can execute process models de-
fined in a YAWL-compatible meta-model variant. The system supports complex
event processing, dynamic service invocation and is demonstrated through 2 sce-
narios: health monitoring processes and smart home automation. It features self-
healing functionality via feedback loops, where the system adapts to inconsistent
states between the process and actual physical world. Similar to BPMN, PRO-
tEUS supports human tasks and invoking services through web standards. PRO-
tEUS uses the SPARQL-based Semantic Access Layer [Hub+16] to dynamically
invoke services based on context and requirements.

While approaches like [Buc+12; SHS18] rely on a custom PAIS for the adap-
tive behaviour, in [SHA19] Seiger et al. discuss how existing PAIS can also be
retrofitted with similar dynamic, runtime goal-based process structure changes.

In this thesis, we do not employ a dynamic healing/adaptation based on device
capabilities or process-task goals, expected effects of a task at the PAIS level.
Instead, our adaptive behaviour is based on the implementation logic of indi-
vidual tasks and the process design, without runtime process structure changes.
We have included this discussion to showcase another research direction that is
definitely also useful for mobile 10T use-cases, where the process may need to
adapt to an unexpected change in the route or simply due to connectivity is-
sues related to movement. Considering mobility, one distinction is whether the
adaptation/self-healing process can influence the movement of agents or not. In
case of autonomous vehicles or robots (such as in [MM17]), movement can be
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part of the generated adaptation. But in other scenarios, such as a person riding
a bus, the movement pattern usually cannot be influenced, and the adaptations to
the process control flow can only use the fixed movement (trajectory, speed) into
as extra context when planning its adaptation.

2.5.5. Context-aware process driving

Another kind of adaptive behaviour in IoT-oriented BPM is the dynamic driving
and constraining of the execution engine or worklist handler components of the
BPMS. For the execution engine, the state of tasks and whether or not they can
be executed may be bound to context-based information, such as location. For
instance, [Zhu+16] use a coloured Petri Net-based approach that allows defining
the process control-flow with geospatial information-aware constraints and rules.
As a result, certain tasks may only be finished if the associated resources are
currently in a certain location, for example.

Context information can also be used by a BPMS Worklist handler to prioritize
and filter the list of available tasks for resources involved in processes. Smart-
phones provide several opportunities to capture the user’s context for human pro-
cess resources. Giner et al. [Gin+10] use tagging technology such as QR-codes
or RFID to present dynamic task lists to the process participants. Stach et al.
[Sta+18] use various mobile context information, such as battery levels, connec-
tivity and Bluetooth beacon-based location proximity to automatically prioritize
work items for resources.

The aim of these systems is to stream-line interactions with the PAIS, mini-
mizing the steps a user must perform to find the work items most relevant to them
and avoiding tasks which involve some waste (e.g. changing location to complete
them). These systems also include notification aspects, to avoid missing tasks
which are relevant to the user and easy to complete in their current context.

2.5.6. Adaptive Process Execution Platforms

Adaptive behaviour can also be introduced on the level of the execution host and
software, infrastructure providing the execution environment. At this level, tech-
niques such as replication or distribution of PAIS or their components, dynamic
migration/delegation of process instances between hosts can be found.
A logical fragmentation of the process was presented by Zaplata et al. [Zap+10a]

- i.e. migrating the process instance between different execution hosts, where each
host takes care of executing particular logical fragments. This increases flexibility
as the process can be migrated between hosts during runtime based on different
criteria such as privacy-constraints but also resource-efficiency, predictions about
stability of hosts, etc. Two approaches for the necessary information for run-time
migration are discussed by the authors: 1) altering the original process model to
explicitly include the migration-related data and tasks (e.g. state of the process in-
stance, applicable target process engines) and sending this data in a message or 2)
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store this information in some additional annotation or document object, keeping
the original process unaltered, but requiring support for interpreting them from
the engine. The former has the benefit of being applicable even with existing BP
modelling standards, but requires extra effort during design-time and alters the
process, whereas the latter relies on novel components and middleware in the en-
gine, but allows the migration functions to be handled more dynamically during
run-time, as they are not fixed in the process control flow.

Another version of migration is used in [Dar+15]. Here, the goal is to execute
the process always near the user and as the user moves around, the process is
migrated to another device currently near the user (e.g. from a home set-top-box to
the user’s smartphone as they leave the home). However, due to heterogeneity of
the different platforms, for each device, a different variant of the process has been
modelled, to better support the particularities of that device. While it increases
customisability for particular device, this requires extra effort during design-time,
plus it requires a mechanism of transforming the state of the process between
different process variants. In this case, due to having different (device-specific)
variants representing the same process, we call this approach process delegation.

Seiger et al. [SHA17] have extended the previously mentioned PROtEUS en-
gine to also distribute fragments of a main process from a leader process engine
to peer engines, managed by the leader. This increases resiliency of the system
- the fragment executing peer can enact autonomously and be less dependent on
network conditions, etc.

Besides migration and delegation, another way to increase fault-tolerance is
to replicate the execution platform (or parts of it) on many hosts. This increases
resilience to host failure, as clients can immediately continue execution based
on the other replicas of the engine. This approach is followed by Zhang et al.
[Zha+18] where a multi-engine replicated workflow architecture for mobile ad-
hoc networks is presented. In their design, a master/replicas approach is taken,
where clients interact with the master instance of the engine, while simultaneously
the process instance states are synchronized between the master and all replicas.
Should the master become unavailable, a new master is elected and clients are
transferred to interact with the new master.

While [Zha+18] follow a simple trigger and heart-beat based approach to syn-
chronization and fault detection, a more complex replication scheme is presented
by [SRT18], where compensation and rollbacks are also taken into account in case
of replicated engines.

As the synchronization of the entire BPMS and all its process states is chal-
lenging, another possibility is to replicate sub-parts of the engine and process
instances. For instance, only the worklist handler and process tasks relevant to a
particular resource are replicated in [Sta+18]. The worklist handler component
and currently active work items are replicated on the smartphone-based client,
which can perform decisions-making related to the task even if connectivity to the
master process engine is lost. Regardless, there is still a periodic synchronization

55



of state.

2.5.7. Discussion

It is common practice to capture the adaptive behaviour in the form of an abstract,
proxy task, which when executed, then realizes the adaptive behaviour as neces-
sary. The run-time adaptive enactment relies on extra knowledge - about goals,
constraints for the tasks as well as the context of the environment. This knowl-
edge can be captured with standard process model annotations or by customised
workflow execution engines that have context-aware modules or additional goal-
modelling capabilities. Striking a balance between these approaches is challeng-
ing - annotations encumber the process modeller and bloat the process definition;
whereas a complex, custom PAIS is highly context-aware, but limits influence of
modellers as they are rather opaque incompatible with existing standards.

From the perspective of handling faults, the discussed mechanisms can be di-
vided into 2: pro-active and reactive approaches. Pro-active approaches attempt
to minimize likelihood of runtime failure by taking into account current context
of the system and requirements of the process model when:

* binding the process activities to resources and services
* managing, constraining the execution state of the process
* deciding which work items are currently available for a resource

Reactive approaches attempt to identify mismatches in the expected and actual
states of the system and environment, and attempt to re-align the mismatching
states through approaches such as automated planning.

Challenges and gaps. From the modelling perspective, the SLR of Compag-
nucci et al. identified some IoT challenges which have gained less attention by the
existing works, they are: Scalability, Availability, Mobility, Fault tolerance and
Uncertainty of Information.

2.6. Adaptive Edge Process Management

Compared to the integration of loT and BPM, relatively fewer research addresses
usage of Edge / Fog Computing and BPM in unison. This section provides the
overview of that perspective in the literature.

Considering the goals of this thesis, we are mainly interested in aspects where
devices and hosts in the system participate as infrastructure / platform hoster-
s/providers. That is, if an edge device is invoked from a central service as part of
a process, we see this as [oT device usage in processes, not Edge Computing. But
if the edge device can take care of executing (sub-)processes by hosting a BPMS
or sub-modules of it, we see it as Edge Process Management.

The following subsections describe related works from the following themes:
embedding process engines into edge devices and other de-centralised edge pro-
cess execution schemes; how mobility is taken into account in a) fog/edge of-
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floading and b) workflow management; and what tools exist that could be used to
simulate scenarios of this sort.

2.6.1. Edge-Hosted Execution Engine

In this subsection, we focus on PAIS or process execution engines which are on
devices in or near the edge network, focusing mainly on smartphone-type devices
and Fog servers as the engine host. The problem here is that a typical edge device
is either not using hardware platforms like x86 or ARM (on which respective soft-
ware is usually already supported) or the OS is a lightweight or modified version
of the desktop/server counterpart, which disallows running standard commercial
off-the-shelf process engines, as libraries may be missing, and available memory,
storage, etc. capabilities may not be sufficient.

As aresult, either a custom light-weight process engine tailored to the platform
needs to be developed or existing BPMS need to be modified to fit the available
software stack. For example on platforms such as smartphones (i0OS, Android),
which run custom OS kernels, a custom engine must be built or the COTS engines
must be adapted to fit the available software stack.

Since the emergence of devices such as PDAs or smartphones, the possibility
of automated execution of processes on these devices has been studied, allowing
direct involvement of business activities and information at the mobile device.
In earlier custom, mobile hosted BPMS, such as Sliver [Hac+06], the dominant
standard for defining workflows was WS-BPEL. Sliver was built based on Mobile
Information Device Profile (MIDP) Java specification for embedded devices from
early 2000s.

More recently, as sensor-enriched mobile devices have become commonplace,
mobile process engines have begun integrating sensor support at the process-level.
For example, Schoebel et al. built a custom [Sch+16] Android-based mobile pro-
cess engine developed for the QuestionSys questionnaire system project, which
can execute models defined in the non-standard ADEPT?2 specification and con-
siders integration of additional sensors in its architecture. An iPad prototype of
a custom engine for XML-based non-standard processes is presented in MEDo
[Pry+15], an engine for supporting medical ward round processes.

Custom-built engines for the BPMN standard on Android, such as [Pen+14]
tend to have limited functionality and are in prototype stage, as implementing
a full-featured engine is a resource-intensive effort. The alternative is to adapt
an existing engine, as done by Dar et al. in [Dar+15], where the open-source
Activiti engine has been adapted to utilize those software packages available on
the Android platform: e.g. the XML parsers used in the original source code
needed to be replaced with Android-specific XML libraries.

Compared to mobiles, hosting the process engine on a Fog node is generally
simpler, as Fog architecture prescribes some kind of virtualized platform, in which
COTS can be deployed. For this purpose container-based virtualization (Docker,
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Kubernetes, LXC containers), or Virtual-Machine based virtualization are both
suitable and directly applicable [Wai+21].

In case of Android, up until recently, normal virtualization has not been an op-
tion. However, virtualisation support has been very recently introduced Android
version 13 with the addition of protected kernel-based virtual machine (pKVM) 2,
plus another possibility is to run COTS software within a terminal emulator, such
as Termux'®. Termux provides a Linux environment and its own package manager,
where a large set of software has been patched and cross-compiled for Android,
including programming language interpreters and compilers. If the PAIS is based
on software and dependencies available in the Termux package repository, e.g.
Java in case of Activiti/Camunda, it can be installed and run within Termux or
one may cross-compile the necessary software.

The above approaches enable execution of processes on the device, which al-
lows performing them offline, irrelevant of connectivity issues. This is fine for
processes where the tasks only involve activities local to the device/user. More
complex processes may involve several devices, external sensors or a choreogra-
phy of processes hosted by different devices. Here, execution frameworks with
collaboration and choreography features have arisen, where the process engine is
distributed among multiple Edge hosts, in a mobile ad-hoc network (MANET).
A MANET-based PAIS was used in the WORKPAD EU project [Cat+11], which
also combined dynamic fault handling adaptation techniques similar to those men-
tioned in 2.5.4. In WORKPAD, one Edge device acts as the orchestrating leader
engine, and assigns tasks to peers who host specific sub-services.

An extension of Sliver is presented in [SRGOS8], where the process is de-
composed into sub-processes and distributed among hosts. Another example is
[Zha+18], where MANET devices may host Wf engines in order to enable Wf-
based technologies in situations with missing communication infrastructure (e.g.
natural disasters). Their architecture features a multi-engine scheme, where in
case of failing nodes in the MANET, another node quickly replaces the failed
node acting as an engine. As discussed in Section 2.5.6, these MANET-based
distributed engines can increase fault-tolerance, but also increases the complexity
of managing the state, synchronization of the engine and processes.

Discussion. In general, standard-based process engines are not readily avail-
able for popular platforms such as Android, due to the difference in library sup-
port. Custom-built mobile engines tend to be based on proprietary/custom pro-
cess modelling languages, which decreases interoperability. On the other hand,
the custom modelling languages often include adaptive features support not avail-
able in the standards such as BPMN. The edge hosted engines may feature various
adaptive functions, such as process instance migration or delegation [SHA17] and
others discussed in section 2.5.6. These execution engines do not feature compu-

‘https://source.android.com/docs/core/virtualization/architecture
Ohttps://termux. com/
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tational offloading of individual process tasks to Fog nodes.

2.6.2. Task Scheduling in Edge and Fog

Considering the bottom-up Fog applications (refer to section 2.3.6), an important
use-case for mobile process engines is the offloading/delegation of tasks from the
mobile to the fog server(s), such as the video processing task offloading presented
in the introductory chapter. In an edge environment, offloading may be desirable
to achieve better latency or to save energy, but if possible, the system should also
be capable of falling back to local computation, if there is no offloading target
available.

First, let us consider factors other than mobility which affect scheduling of
task offloading from mobiles to proximal Fog or Edge nodes. In [Liu+16], the
authors create a delay minimizing task scheduling policy based on Markov deci-
sion processes that takes into account power constraints, communication channel
status, task queues. Similarly, Zeng et. al [Zen+16] consider the task scheduling
between embedded devices and computation servers in the Fog context and use
non-linear programming-based algorithm to minimize the task execution time.
Like [Liu+16], the algorithm also involves deciding whether to execute locally or
to offload. These works focus on information about workloads, task queues and
energy usage for the decision-making.

2.6.3. Mobility-Aware Offloading

To the best of our knowledge, few workflow-based works address mobility-related
details, in the following we give an overview of how mobility is addressed in
other edge- and fog computing research. Fog computing works addressing the
placement question of task offloading (which fog server to offload to?)[ATH16;
CTC17] usually consider the geographic locations of the servers and system re-
source utilization. More precisely, Alam et al. [ATH16] manage mobility in fog
computing offloading in terms of migrating the already offloaded tasks (basic
blocks) within the fog network and/or neighbouring networks to support mobility
of the user. That is, the task migration minimizes the distance and latency between
the fog server and moving user.

The placement question addressed also in the framework proposed by [CTC17].
Their Software-Defined Network-backed fog platform takes into account the geo-
graphic locations of the mobile and fog server, but does not consider the trajectory
of the mobile.

Lee et al. [LS13] create a Markov model from user smartphone mobility pat-
terns based on records of encountered networks. Based on such trained mobility
models, the future network condition is predicted, which serves as the basis for
the fog task distribution decisions.

Mobility-awareness for allocating computing resources in fog and cloud based
on number of active users is addressed in [Bit+17]. Here, the mobility of sev-
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eral users causes congestion for certain fog servers, and thus policy-based load-
balancing between the fog and cloud is used to alleviate it.

The ENDA architecture [Li+13] collects smartphone GPS traces of user move-
ment routes, based on these traces, current user movement is predicted. This pre-
diction is used for WiFi access point (AP) selection during offloading. The AP
selection mechanism also considers the AP locations, bandwidth and latency ca-
pabilities.

Alongside the above-described offloading cases, mobility-awareness has been
studied also in other similar applications, such as data-fetching, or vehicular com-
munications, which we describe next.

Using predictions about user mobility trajectory and processing tasks, authors
in [Hon+13] pre-emptively fetch and process necessary data to reduce latency for
spatio-temporal Event Processing in a mobile situation awareness system.

A scheduling scheme for wireless communication in Vehicle-to-Vehicle net-
works is proposed in [CWB17], where the markov decision process is based on a
stochastic game theory approach.

The authors in [Ott+14] proposed an adaptive mobile Complex Event Processing-
based vehicular warning system where based on user location, the event process-
ing, which is modelled using operator graphs, is dynamically updated to reduce
latency and increase energy efficiency.

Another example is marion [Sch+13], where the agricultural harvesting pro-
cess which involves cooperating machines is dynamically optimized. The system
solves the planning problem of involved machine routes given the set of spatio-
temporal constraints using robotics algorithms.

Mobility awareness involves performing geo-location fix acquisition opera-
tions. However, continuously tracking the location involves additional energy
cost. In [Phal4], the system tries to perform location acquisition tasks sparsely, at
the appropriate moment to conserve energy. The acquisitions are scheduled based
on user activity recognition, e.g. when the user’s transportation mode changes
(e.g. from driving car to on foot).

Discussion. A common theme in the above works is reliance on models trained
on historic user movement datasets, which may be difficult to obtain. Instead,
some knowledge could already be predicted based on the path-finding algorithms
and map data (e.g. as in offline car navigation systems). Secondly, none of the
described works have integrated the scheduling models with workflow or process
management systems. In contrast, the proposed contribution in this thesis has
integrated with WfMS and it utilises run-time context factors without additional
historical data.

2.6.4. Process-Oriented Fog Computing

While fog computing is not directly dependent on process-based management, we
highlight some of the fundamental research challenges of fog computing [MSW18]
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that could effectively be implemented with process-aware information systems:
* how to distribute computational tasks/applications within the network

* how to offload tasks (e.g. which tasks to offload, to where), while assuring
SLA (Service-level Agreement), QoS (Quality of Service) and QoE (Qual-
ity of Experience) [Mah+19]) such as latency (Rodrigues et al., 2017), re-
source utilization [Du+18], task priority [AMS19], energy efficiency [ Yan+18],
profit-awareness [Mah+20], etc.

* how to manage the deployment of tasks and execution in heterogeneous
infrastructure

* how to migrate computation within Fog nodes

From the processes perspective, this means distributing execution of some of
the (sub)processes to Fog nodes situated in proximity to the end clients, by host-
ing the process engine in the Fog infrastructure, this is feasible using light-weight
BPMS such as Flowable, that can be deployed within a second [AG19]. Since
decision-making and exception handling are integral to business processes, the
algorithms and models for these issues (such as SLA and QoS control of Fog ap-
plications) can be integrated into process engines and be directly invoked at the
process abstraction level. A lot of fog applications, which deal largely with mes-
saging and deployment tasks can comfortably be modelled as processes. Since
the definition of processes is standardized, deployment across devices is simpli-
fied. More recent works have begun exploring this process-based fog computing
direction as well. Cheng et al. [Che+18b] describe an IoT execution environment
which hosts process engines on the smartphone, while Fog nodes manage service
discovery, deployment and event management.

To the best of our knowledge, few workflow-based works address mobility-
related details, in the previous subsection we gave an overview how mobility is
taken into account in other, non-workflow-oriented edge- and fog computing re-
search. Let us now look at works which use non-standard workflow methods in
the context of Fog/Edge.

Numerous existing works in mobile-cloud computing, robotics, IoT and re-
lated domains model the application workflow as a directed acyclic graph (DAG)
[STB17; Che+18a; Xu+19; Rah+16] and capture workflow characteristics (e.g.
input/output requirements of individual Wf tasks), network and hardware con-
figuration of the system (e.g. the mobile nodes, cloudlets, cloud VMs) in order
to optimize the offloading of workflow tasks to other nodes in terms of energy-
efficiency or to meet deadline constraints, for example.

While mobile phones are often considered as participants in the workflow,
they do not take the mobile’s movement into account. As an example, the multi-
objective workflow-based computation offloading framework proposed by Xu et
al. [Xu+19] uses genetic algorithms to simultaneously consider energy usage and
deadline constraints when offloading to cloudlets, however the user mobility and
related network changes were left as part of future work.
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The robotics framework by Rahman et al. [Rah+16] includes mobility when
modelling the cost of offloading workflow tasks. Here, mobility influences two
aspects: (1) movement energy consumed by the robot and (2) the bandwidth of
the network in the robot’s current location. However, their simulation considered
3 location zones, each one with a distinct, fixed bandwidth value, the proximity to
the signal source and its influence on link-speed is not considered.

A more detailed consideration of mobility is in [Qi+16], where in addition to
the geographic location of the fixed compute resources (cloudlets), the availability
of mobile resources is determined based on a headlight model, capturing a zone
along the direction of movement, similar to the headlight of a vehicle. The model
also takes into account the mean encounter time between a mobile and a cloudlet
network, based on statistics about user historic movement data.

Alternatively, analysis of workflow-based systems may also be done using
Petri Nets. Ni et al. [Ni+17] model tasks in fog computing using Priced Timed
Petri Nets and give an algorithm to predict the time consumption of executing
these tasks. Based on predicted execution times and other factors such as fog
node credibility rating, they devised a dynamic resource allocation scheme that
maximizes resource utilization and ensures QoS for users.

Discussion. Above-mentioned works do not consider the implementation as-
pect of a workflow-based system, they focus rather on the theoretical model of the
decision-making. The approach of how the devices handle execution and offload-
ing of workflow tasks in terms of standards and software stack are omitted.

2.6.5. Simulation of Edge Process Management

Considering that IoT and edge systems are to involve huge numbers of devices, the
evaluation of most existing related works is done at a scale of up to a few devices
(e.g. 2 robots and 1 stationary system in [SHA17]). Indeed, large-scale real-
world experiments are costly to perform, so the common approach is to simulate
the behaviour [Ded+18].

Simulating mobility behaviour is usually based on discrete-event simulation,
where the state changes of the modelled world are caused by events occurring
at discrete points in time. As opposed to continuous simulation, a discrete event
simulator (DES) jumps from one event to the next, the system state between these
jumps is not captured. In this subsection we outline the better-known networking
and mobility simulators relevant to edge-fog computing.

Ns-3. Ns-3!! is a general-purpose network DES. It includes simulation models
that closely reflect the Linux networking stack and as a result can be used as a
real-time network emulator, enabling plugging it into real-world networks and
integrating with real-world protocol implementations.

Ns-3 primarily targets IP networks at its core, but also includes simulation
models for wireless technology such as Wi-Fi, LTE, WiMax. The ns-3 project has

https://www.nsnam. org/
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a large community and consortium behind it, contributing development of various
modules, including an energy framework and mobility modelling.

The mobility module currently supports random-walk and random/non-random
waypoint mobility models. While ns-3 does not support map-based movement
models or schedule-based user movement out of the box, it can be integrated to
mobility simulators such as SuMO, importing map-based mobility traces gener-
ated by these tools.

The energy framework of ns-3 takes into account several ISO/OSI model PHY
layer properties in the case of WiFi.

As such, ns-3 offers multiple options for modelling physical layer properties
of wireless links, includes a very detailed modelling of the ISO/OSI layers 2-4,
and provides base classes for defining applications (layers 5-7).

OMNeT++. OMNeT++ [Varl0] DES provides a core set of network mod-
elling and simulation blocks which have been used in several specific extension
frameworks for IP networks, vehicular networks, wireless networks, but also from
domains such as sickness dissemination.

e INET is the OMNeT++ framework for IP-based networks and protocols at
the layers OSI 2-4 in wired and wireless networks. It includes a rich set
of implemented models for wireless technology such as IEEE 802.11 or
802.15.4. In addition to basic set of deterministic mobility models'?, INET
provides trace-based and stochastic mobility models. Further, it has energy
models!3 - both power generators and consumers.

* VEINs is an OMNeT++ based framework for inter-vehicular communica-
tion simulation, using SUMO simulator for road mobility modelling. It can
import OpenStreetMap scenarios with buildings, speed limits and traffic
light restrictions.

ONE Simulator. The Opportunistic Network Environment simulator (ONE)
[KOKO09] was developed for modelling behaviour of opportunistic networks and
routing protocols there-in. The networking is captured at the link layer, so the
PHY layer modelling is not very complex, as ONE focuses on store-carry-forward
networking.

The radio links have communication range and bit-rate properties and do not
include aspects such as signal attenuation. However, some of the provided mod-
els reflect interference and signal strength by updating the bit-rate based on the
distances of hosts or by the number of other hosts nearby.

The set of movement models includes both random-based movement as well
as map-based movement models, and for instance user behaviour modelling (e.g.
workday model) or group-based behaviour, such as a group of pedestrians using
public transport.

2https://inet.omnetpp.org/docs/users-guide/ch-mobility.html
Bhttps://inet.omnetpp.org/docs/users-guide/ch-power.html
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SUMO. Simulation of Urban Mobility (SUMO) [Beh+11] is a renowned sim-
ulation framework for road vehicles, pedestrians and their routing, accounting for
aspects such as traffic lanes, intersections, traffic lights and multi-modal traffic.
While SUMO does not provide any networking features, the rich mobility mod-
elling of SUMO has been recognized by the above-mentioned networking sim-
ulators (OMNeT++, Ns-3), as they provide means to integrate SUMO-generated
traces into them. SUMO supports importing maps from OpenStreetMap, VISUM,
VISSIM and NavTeq.

iFogSim, EdgeCloudSim. Unlike the above-mentioned tools, iFogSim [Gup+17]
specifically targets IoT, edge and fog computing environments. The project was
developed for evaluating resource management policies with respect to latency,
energy consumption, bandwidth usage and operational costs. iFogSim extends
the CloudSim project, as such it inherits its features such as executing and migrat-
ing applications / VMs, and managing virtualization, resource management and
scheduling functions for cloud datacenter.

However, iFogSim does not capture lower level networking properties such
as interference. The infrastructure is defined as a hierarchy, where messages can
be passed among child-parent pairs, in bottom-up direction (e.g. edge to fog).
It does not support device-to-device communication, except for the cloud layer,
where data centers can exchange messages.

iFogSim provides a set of entity classes for the main node types, such as
FogDevice, Sensor and Actuator, and classes to model the Fog applications, which
are a set of application modules that form a directed acyclic graph. FogDevice
classes can be described by their memory, processor, storage size, uplink, and
downlink bandwidths properties, while sensors, actuators have a latency property.

While iFogSim does not provide any mobility modelling features, another tool
based on CloudSim, called EdgeCloudSim [SOE17], which specifically targets
the edge computing environment, does include a nomadic mobility model. Fur-
ther, it provides a networking module to reflect edge WLAN/WAN communi-
cations and an Edge Orchestrator module which performs decision-making for
incoming requests, tasks.

Discussion. While tools such as ns-3 provide the most detailed networking
simulation, the learning curve and set-up can be considerable. In novel areas
such as Edge Process Management, quickly evaluating a selection of approaches
at a higher abstraction level can be more important than the specific, realistically
defined (and usually smaller scale) scenarios [CGO3]. In fact, more detailed sim-
ulations can sometimes obscure effects of fundamental changes in the algorithms,
since they involve managing a large amount of simulation parameters in addition
to the algorithms themselves [CGO3].

Meanwhile, the existing fog-oriented tools like iFogSim provide powerful dat-
acenter/virtualization modelling features derived from CloudSim, however, the
definition of application logic tends to be limited to certain types of applications.
Table 1 summarizes this comparison of the related simulation tools.
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Wireless Edge & Fog Learning

Simulator Networking Mobility Computing Complexity Languages
random,  way-point Cot
ns-3 Detailed based, map-based  None Complex p th;)n
with SuMO traces ¥
Resource
iFogSim Basic None Management Medium Java
policies
EdgeCloudSim Medium Nomadic models Edge Orches- Medium Java

tration

Detailed map-based &
SUMO None random models, incl.  None Medium C++
lanes, traffic

Map-based & ran-

ONE Medium dom, OSM support None Medium Java
. Trace-based, stochas-
Detailed . .
OMNET++ (INET) tic, OSM support with  None Complex C++

VEINs + SUMO

Table 1: Comparison of networking and mobility-oriented simulation tools.
Acronyms: OSM - OpenStreetMap

2.7. Summary

This chapter established the concepts of loT and BPM. We explained the dif-
ferent kinds of typical communication styles of [oT (device-to-device, device-to-
gateway, device-to-cloud), how SOA can alleviate the interoperability issues of
IoT and covered new computing paradigms for IoT such as Edge- and Fog Com-
puting, contrasting them against Cloud Computing. We showed how process ex-
ecution is typically realized in technical terms, including specific examples from
the Flowable BPMS. We covered the state of the art of integrating IoT and BPM:
how processes are modelled, executed and made fault-tolerant and adaptive in the
existing literature. We discussed the existing works specific to edge networks,
de-centralised execution of processes, and processes involving computational of-
floading and mobility-awareness. Finally, we compared various simulation tools
that may be helpful to study these systems.
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3. PROCESS EXECUTION & MIGRATION IN THE
EDGE

This chapter describes our effort to answer the 1st research question: How to
realize execution of processes on edge network devices such as smartphones, with
the possibility of device-to-device process migration during runtime?

In the 2nd Chapter (Sec. 2.6.1), we discussed how process execution software
has previously been used on different Edge devices. However, our study of delega-
tion and migration of processes between PAIS (Sec. 2.5.6) revealed that existing
works proposing migration solutions either involve designing different, device-
specific versions of the process that is being migrated [Dar+15] or did not directly
consider migration between Edge devices specifically [Zap+10a]. Our research
question is targeted at migrating processes in the Edge without altering them and
directly considers the smartphone as a representative moving Edge device with
limitations such as software portability (due to its CPU architecture).

Several reasons motivate D2D process migration - load-balancing of process
execution between multiple hosts; energy management (e.g. a low-battery de-
vice may offload its processes to one with abundant energy) or other constraints
such as business goals (e.g. geographic location/proximity) that dictate which
host should currently execute a process. In this thesis, we focus on the latter, our
study is framed from the perspective of a hypothetical application scenario in the
domain of logistics and transportation, where process-based IoT is used to real-
ize fine-grained monitoring of goods. Equipping workers with smart devices and
parcels with sensors, the IoT system can recognize events occurring to individ-
ual parcels during transportation, notifying nearby workers to take action, while
simultaneously collecting a unique, detailed history of all events that the parcel
goes through during its journey within the logistics chain.

Generally, asset tracking is a typical IoT scenario which can be modelled and
implemented using BPMN technologies, which is the dominant approach to mod-
elling IoT business processes (as discussed in section 2.5.1). However, the goods
monitoring should be continuous and take place even when Internet connectivity
is not available (e.g. driving through a tunnel). Executing the process on an edge
BPMS solves this issue - a device near the monitored goods, such as a warehouse
worker’s smartphone executes the process, querying the parcels’ sensors for their
status. Additionally, the edge BPMS should still propagate monitoring informa-
tion to remote servers as early as possible in order for remote parties to react to
events in an agile fashion.

Secondly, it is common that goods are handed over from one organization
(company) to another during transportation and warehousing, which means no
single device is always accompanying the goods. Thus, the challenge is how to
realize continuous, process-based goods monitoring even if the monitored objects
move through the boundaries of different business organizations and their devices’
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coverage areas?

In the rest of this chapter, we detail this scenario further, to highlight its chal-
lenges and to illustrate the usefulness of D2D BP migration in the edge. We then
propose a system architecture which enables decentralised Business Process exe-
cution in the edge network by MPH-s. Namely, throughout the lifetime of a single
BP instance, the process execution is carried out by different devices (Mobile Pro-
cess Hosts). This is realized by a process migration function in the BPMS of the
MPH, that enables MPH-s to transfer running process instances to other nodes
when appropriate. This allows BP execution in a way where during the lifetime
of a single BP instance execution, it has been run by different process hosts be-
longing to different organizations, thus supporting the creation of long-running,
delay-tolerant, pervasive business processes. For the mentioned scenario, this
manifests in the goods monitoring BP-s being migrated from the MPH device of
one company’s worker to the MPH device of another company’s worker dynami-
cally, while the BP-s are being executed, to maintain a continuous monitoring of
the goods.

We explain the technical details of implementing such MPH-s and their process
migration functionality based on Android smartphones. We evaluate the scalabil-
ity and temporal performance of D2D process migration and discuss the feasibility
of this approach.

3.1. Scenario

Real-time monitoring of goods during transportation is necessary in case of prod-
ucts that bear damage if handled poorly (e.g. frozen foods exposed to unsuitable
temperatures or fragile products experiencing rapid movement). Our motivating
scenario is as follows.

A set of products is stored in Warehouse A. The warehouse uses an intelligent
goods monitoring platform called "WiseWare", which keeps track of the status of
compatible products stored at the warehouse. WiseWare-compatible products use
parcels which have battery-powered, low-energy sensors attached to them. The
sensors attached to the parcel vary by product (and manufacturer). During storage,

Figure 10: A selected sequence of events from the WiseWare goods monitoring
scenario. From left to right: 1) scanning of products, 2) real-time reaction to
events such as product orientation change, 3) transferring of products and their
monitoring, 4) support for transferring (sub)selections of products, 5) web appli-
cation based on the result of monitoring.
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these parcel sensors are queried by monitoring devices attached to the warehouse
shelves. The warehouse worker carries a personal digital assistant (PDA) with
WiseWare software. The worker receives a notification that boxes X, Y and Z
are to be delivered to the loading bay and handed over to a truck driver about to
arrive and pick up these products. As the warehouse worker gathers the 3 items,
each time (s)he picks up a parcel, (s)he scans the QR code on the parcel using the
PDA to indicate that they are now handling the collected items (see Fig. 10 (1)).
This triggers an event in the WiseWare system in which the task of monitoring the
scanned parcels is handed over from the static, shelf-attached monitoring devices
to the PDA of the worker. This is necessary because after picking them up, the
parcel sensors are now out of wireless communication range of the static shelf
devices.

Approaching the loading bay, the warehouse worker bumps into a corner with
the pallet jack (s)he is using to transport the goods (Fig. 10, (2)). As a result, one
parcel becomes tilted at an angle. The worker immediately receives a message
on their PDA, stating that a parcel which needs to be held upright at all times
has become dislocated. After taking care of the issue, the worker proceeds to the
loading bay where the trucker is waiting.

When handing over the products, the warehouse worker uses the PDA to dis-
cover nearby WiseWare-compatible PDA devices. After choosing the trucker’s
PDA and the bundle of products, the trucker receives a notification on their smart-
phone that the warehouse worker would like to hand over the monitoring of goods
X, Y, Z to the trucker. The trucker confirms this request and begins loading the
boxes onto the truck, meanwhile the warehouse worker proceeds with their next
task at hand (Fig. 10 (3)).

The trucker is fulfilling a delivery which involves two tasks: deliver product
X to Warehouse B and deliver Y, Z to Store C. After driving to Warehouse B,
the trucker similarly searches for nearby WiseWare-enabled PDAs, selects the
appropriate one, but this time, only product X is selected. The warehouse worker
at Warehouse B confirms the request and the product is handed over (Fig. 10 (4)).

While continuing the drive to Store C, the trucker receives a notification that
the temperature of a parcel is becoming too high. The trucker adjusts the trucks’
climate control and thus the issue is resolved. Finally, the products are handed
over to Store C in previously described fashion.

After a few weeks, Store C has sold product Z to a retail customer. The cus-
tomer is able to use the QR code on the product to open a web application which
provides a history of events associated with the products’ lifetime, including the
slight increase in temperature at one point of time (Fig. 10 (5) ).

Additionally, the manufacturer of product Z is able to look at the detailed log
trace generated by using the WiseWare monitoring platform. Using this infor-
mation, the manufacturer is able to assess which organizations are handling their
products better and thus improve their business choices.
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Figure 11: Movement of data between Process Executors and Process Owners.
3.1.1. Challenges

We focus on 3 challenges which the presented scenario raises. Firstly, the goods
being monitored are in motion, posing the question: how to continue the moni-
toring, regardless of location? Using a conventional centralized approach is un-
suitable, as it would require constant network connectivity, which may not be
available during transportation (e.g. the truck is driving in a tunnel). Addition-
ally, it would involve constant messaging between the WiseWare parcels and the
central server, consuming bandwidth and increasing latency.

Secondly, how can the various devices which perform the monitoring adapt to
the requirements of different goods dynamically? The warehouse worker might
handle hundreds of different kinds of products per day, each one requiring a dif-
ferent kind of monitoring process, using different types of sensors, thresholds and
activities for example.

Thirdly, the goods are being handled by different organizations (Warehouse A,
truck company, Store C), so the WiseWare platform must support inter-organizational
support on the fly.

3.2. Architecture

To address the raised challenges, we propose leveraging BPMS to realize goods
monitoring in the presented scenario. When a product manufacturer decides to
use WiseWare for goods monitoring, they model a Business Process for the mon-
itoring of each of their products. As such, the BP is tailored to meet the product’s
monitoring requirements (e.g. temperature reading frequency) and the capabilities
of the product’s packaging (which sensors are bundled with the parcel).

By using Business Processes, devices can adapt to monitoring of arbitrary
products, as the BP model provides the description of how the monitoring is car-
ried out. Secondly, the use of standardized BP models such as BPMN 2.0, the
potential for inter-organizational compatibility is increased.

However, if the goods are moved, e.g. handed over from a warehouse to a
truck, the task of monitoring must also be handed over. For this, WiseWare is
capable of process migration from device to device during runtime (explained in
Section 3.3). This avoids constraining the monitoring only to a single device.

The system has two main categories of software agents: Process Owners and
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Figure 12: Architectural Overview of WiseWare platform

Process Executors. The Process Owner is interested in having their BPs executed
to provide whatever service the process entails and so that they can gather log
data regarding the execution of the process, which enables performing discovery
or analysis-related activities of the BPM lifecycle (as discussed in section 2.4.1).

On the other hand, the Process Executor carries out the actual execution of
processes. Process Executors can obtain BPs for execution in 2 ways: either
instantiate a new BP acquired from a Process Owner or receive an already-running
BP from another Process Executor via workflow instance migration (see Fig. 11).

In our WiseWare platform scenario, the product manufacturers who wish to
enable goods monitoring and provide a "product history" service to their end-
customers are the Process Owners. The various transportation entities (ware-
houses, truck drivers) who wish to provide an intelligent transportation service
to manufacturers are the Process Executors. A single organization may partici-
pate in the system as a Process Owner and Process Executor simultaneously. For
example, a manufacturer could also act as the Process Executor while the product
is being stored at the factory warehouse.

Our proposed architecture (Fig. 12) adapts several of the common components
of the BPMS reference architecture mentioned in section 2.4.3, distributing them
between the Process Owner and Process Executors. Secondly, the conventional
architecture is extended by modules necessary to perform device-to-device com-
munication and migration. In the next subsections we detail each of the sub-
components.
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3.2.1. Process Owner

A Process Owner consists of a Business Process Manager and other, process-
specific components which support the processes provided by the Process Owner
(Fig. 12).

Business Process Manager. The Business Process Manager (BPMan) takes
care of storing process definitions and allowing remote Process Executors to log
their execution. BPMan exposes a REST interface to enable the invocation of
these services by other parties.

In the WiseWare scenario, the product manufacturer’s process designers create
BP definitions that correspond to the company’s products and submit them to the
Process definition repository (see step 1 on Fig. 12). From this repository, Process
Executors can retrieve process definitions to instantiate a process execution.

If a BP hosted by the Process Owner requires additional online services, these
should also be deployed onto the Process Owner system. As an example, suppose
that product X-s BP involves a BPMN Send Task which sends a set of recent
temperature readings to the manufacturer (Fig. 12, step 2), where they are stored,
so that a customer can later see them in a web application (step 3 of Fig. 12).

3.2.2. Process Executor

After the BP definition and relevant supporting components have been set up by
the Process Owner, Process Executors may instantiate BPs by retrieving the def-
inition from the Process Owner (Fig. 12, step 4). In our scenario, we assume
that the manufacturer wishes to initiate the goods monitoring at the moment when
the goods are handed over to Warehouse A. In this case, when the products ar-
rive at Warehouse A, the warehouses Process Executor’s Discovery & Commu-
nications module (DC module, explained further below) uses technology such as
RFID scanners to identify the products and look up their corresponding process
definitions. For each item, a corresponding BP instance is started. For example, if
100 units of product X arrived, then 100 instances of product X-s BP are started.
Discovery and Communications Module. The DC module provides interfaces
for discovering and communicating with other entities and nodes within the plat-
form. The communication may happen via proximity-based technologies such as
Bluetooth Low Energy (BLE), NFC, RFID or via the Internet. Additionally, the
DC module provides User Interaction (UI) functionality to notify the user about
something or ask for user input. In our scenario, when Warehouse A-s worker
wished to hand products over to the trucker, (s)he used the UI provided by the
DC module to look for nearby WiseWare devices, selected the trucker’s device,
and was then presented a list of products whose BP-s were currently being ex-
ecuted by the worker’s PDA. After selecting all products, the DC module sent
the request to the truckers WiseWare device via BLE (step 5, Fig. 12). Upon re-
ceiving this request, the DC module of the trucker’s device presented the request
details, including information about the source of the request and the contents (list
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of products) to the trucker. After the trucker confirmed the request, the warehouse
worker’s WiseWare device began the BP migration procedure, described in detail
below (MigrationModule subsection).

Business Process Engine. Execution of BPs is carried out by the BP Engine.
Unlike conventional BP engines such as jBPM or Activiti, the Process Executors
BP Engine is extended with a Remote Execution Logger component. This com-
ponent uploads execution log data to the Process Owner of the BP (step 6 of Fig.
12). If network connectivity is available, the Remote Execution Logger will up-
load log entries at a certain rate. When connectivity is unavailable, the Logger
will buffer log entries so that they may be uploaded at a later time.

Migration Module. One of the critical enablers of the proposed system is the
Migration Module (MM). MM is used to transfer a running BP instance from
one Process Executor to another. To do this, MM halts the execution of the pro-
cess instance, captures the process instance state and metadata using a migration
model such as the one proposed by Barkhordarian et al. [Bar+12]. This metadata
includes the execution state and attached process variables.

The migration module must include a strategy for deciding at what moment
process instances can be halted. For example, should any currently pending jobs
and activities be finished or instead should the process along with any actively
running jobs (e.g. a BPMN Service Task reading a sensor value) also be sus-
pended. The former approach is simpler, and avoids having to capture the internal
state of already running jobs, but the trade-off is that the migration includes the
additional delay of waiting for the active jobs to finish.

Once the process has been halted and the process state captured (step 7, Fig.
12), the model is serialized to a format such as JSON or XML. Now, the serialized
migration data and process definition are sent to another Process Executor via the
DC module (step 5, Fig 12).

When the process and its migration data are received at the destination device,
the DC module forwards the data to the MM which then deploys the process onto
the BP Engine and restores its state on the device. After succeeding, the original
Executor is notified of a successful migration, and the process definition and any
running instances are discarded.

As discussed by Barkhordarian et al. [Bar+12], the halting of a BP execution
is not straight-forward, and can be especially complex if the BP execution is in a
state of processing or waiting for (external) events. In this case, the unsubscribing
and subscribing to the event source for the 2 Process Executors involved in the
migration must be carried out.

The efficiency of the migration procedure determines the downtime of the pro-
cess execution. For the goods monitoring scenario, this means that the faster the
migration procedure is, the less monitoring time is lost.
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3.3. Prototype and Experiments

We have implemented a prototype of the Process Executor component of our sys-
tem as an Android application. The prototype is capable of executing and mi-
grating BPs. For the BP Engine, we used the open-source Activiti BPM software
version 5.21 (June 2016), which has been adapted to run on the Android OS (by
referring to the source code from [Dar+15], which they used for an earlier version
of Activiti BPM). Activiti uses a relational database to manage BP instance exe-
cution metadata and state. The Android version has been adapted to use SQLite
as this database.

The Migration Module has been implemented as an extension to the Activiti
engine. As described by [Bar+12], the Migration module listens to events broad-
cast by the Activiti Engine to determine the exact moment when migration can
be triggered. Our prototype uses the strategy which waits for the currently ac-
tive jobs to finish before initiating the migration. We distinguish two types of
migration operations: BP instance export and BP instance import.

Instance Export denotes the process of suspending the execution of a BP in-
stance, capturing the information relevant to the BP instance from the Activiti
database (DB), and serializing this information into a format suitable for transfer-
ring to another Process Executor. In our prototype, we chose JSON as this format.
After serializing into JSON, our prototype writes the data into a file.

Instance Import is the opposite of the previously described Export operation.
Import involves deserializing the chosen BP state format, inserting the data into
the Activiti DB and then activating the BP instance in the BP engine so that pro-
cess execution may continue.

Our prototype presumes that when a BP is migrated from one node to another,
then both nodes already have the BP definition deployed to their BP engine. Tech-
nically, dynamic deployment of the process definitions alongside the migration is
feasible. The process definition .bpmn20 files have to be migrated and any addi-
tional libraries/classes which the process definition relies on need to be transferred
and dynamically loaded into the Android Java Runtime, as described for example
by Schobel et al. [Sch+16].

The source code of our migration-capable Activiti engine for Android is avail-
able at: https://github.com/jaks6/WiseWare-BP-Engine.

3.3.1. Experiment Description

In order to evaluate the scalability and performance of our prototype, we con-
ducted a series of experiments with real devices. The experiment consisted of
migrating different numbers of BPs concurrently from one Process Executor to
another. The BP used in the experiment is a simple looping process which ac-
quires two sensor values and acts on the result when appropriate, the BP model
is presented in Fig. 13. Such a process represents a possible implementation
of goods monitoring used in the WiseWare scenario. An instance of this process
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runs for each product parcel, and when the parcels are handed over in the scenario,
these processes are migrated.

[WiseWare
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Figure 13: Business process used in the experiments.

Using LG Nexus 5 phones, we separately measured the execution time of both
BP instance export and import. The focus of this contribution was to study the
feasibility of the mobile Process Executor, our experiments did not cover D2D
transfer performance of the serialized migration file. This D2D transfer is influ-
enced by factors such as the type of technology used (BT, WiFi-Direct, for exam-
ple) and environmental factors such as signal strength and device proximity. One
can learn about the impact of the D2D transfer on the performance from works

such as [Con+13].

3.3.2. Results

Execution time. Measuring the execution time for instance export and import
yielded the results summarised in Fig. 14. As can be seen, exporting is consider-
ably more time-consuming than importing. During export, the BP engine DB was
actively being used by all the running BP instances, whereas during import, the
engine DB was mostly idle as no BPs were running in our test scenario.
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Figure 14: Time consumption of process migration.
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No. of instances 1 3 5 10 15 25 50

migrated
File size (kilobytes) 1.88 3.79 6.45 12.84 189 28.75 54.93
Time (s) 044 1.01 215 3.07 37 454 9.63

Table 2: Migration file sizes and total time consumption with different numbers
of instances.

We have presented the time consumption of the migration process (adding both
the import and export operations) in Table 2. In total, the migration would take
slightly less than 10 seconds in case of migrating 50 instances. While this cannot
be considered fast, as the D2D transmission is not included in this time, we find
this to be still an acceptable result considering the WiseWare scenario, where
the time waiting for BP migration is probably spent on cargo loading activities
anyway. Additionally, we consider our prototype to be preliminary, so it can likely
be significantly optimized.

Migration file size. Table 2 also presents the file size of the serialized BP in-
stance state metadata. Considering the 54.93 kB migration file used when migrat-
ing 50 BP instances, a single instance took up around 1.1 kB of the file.

3.4. Discussion

This contribution proposes a system architecture for enabling continuous, delay-
tolerant BP execution that brings the execution of processes to mobile process
hosts as opposed to centralized BP execution. The system is capable of handing
over the task of BP execution from one node to another in the form of process mi-
gration, enabling executed by different parties and thereby increasing the adoption
of long-running edge processes.

We presented a motivating application scenario for this architecture from the
domain of transportation and goods monitoring, showing how such a system can
be applied to maintain detailed insight about product status throughout the process
of transportation from the manufacturer to the end customer.

Through implementing a prototype of the application scenario and MPH, we
showed in practice how edge process execution can be realized on Android smart-
phones using Activiti software, how to implement device-to-device process migra-
tion, which were the goals of the 1st research question. Previous works who con-
sidered Activit BPMN migration did not evaluate the feasibility on smartphones
[Bar+12] or involved device-specific multiple variants of the process model, not
direct migration [Dar+15] .

Evaluating the time consumption of our prototypes migration operations showed
the performance being in the order of a few seconds when migrating up to 50 pro-
cesses. Further investigation into optimizing the migration performance is nec-
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essary to make this approach feasible for use-cases with larger parallel migration
counts.

In the presented scenario, the decisions whether and when to migrate have been
handled by the human users who manually initiate the migration procedure. This
is reasonable for the described use-case, however, in other applications, it may
be desirable to automatically initiate such procedures, as soon as the devices are
within effective communication range for instance.

While this analysis did not include the effect of wireless signal quality on
the D2D transfer, we have explored the impact of device proximity and signal
strength on file transfers in the study [MCS18]. Our practical experiments us-
ing WiFi routers and smartphones investigated the communication performance
in cases where the mobile device is moving. The results showed that the transfer
times, which in optimal conditions took a few seconds, can double or triple de-
pending on the exact scheduling of communications, showing that the timing of
the communication is crucial.

In the next chapter we see how such D2D communication tasks can be sched-
uled automatically and explicitly modelled as part of an edge process.
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4. CONTEXT-AWARE BOTTOM-UP SCHEDULING OF
FOG-RELATED PROCESS TASKS

The Fog Computing trend [Bon+12] introduces cloudlets (fog servers) to the Edge
network, where the IoT devices are located. This allows Mobile Process Hosts to
execute business processes that make use of the nearby Fog infrastructure, such
as offloading compute-heavy tasks to a nearby cloudlet.

Offloading of tasks can be desirable for energy-saving and performance, as a
Fog server’s computational capacity is likely larger than that of an edge device,
such as smartphone or SBC. Further, compared to offloading to the Cloud, the
Fog-based approach is more resilient to conditions where a constant core network
connection is not available (such as disaster, military scenarios and other hostile
environments) [Sat+13].

Making optimal decisions about scheduling interactions with the Fog is chal-
lenging for MPHs due to having to account for dynamic context factors of edge
network environment, such as mobility and interrupted connections. Namely, the
locations of the fog servers, their current load, task execution deadlines, offloaded
task payload size and movement trajectory of the MPH influence this. A failure
to take into account radio signal conditions in the coverage area of a Fog server or
the Fog servers load can incur wasted energy and excessive time consumption for
the MPH process.

In this chapter, we introduce the term Edge Process Management (EPM) to
identify both the execution of IoT processes at the edge network, including the
above-mentioned scheduling-related decision-making. This term follows the ex-
ample of concepts such as Edge Computing [Sat17], Edge Analytics [Sat+15] and
Edge Networking [Hua+16], which emphasise the activities at the edge networks
in contrast to the core network, where the cloud or central management servers
are located, as we explained in section 2.3.2.

Our discussion in section 2.6.1 revealed that the existing Edge-hosted execu-
tion engines do not consider using the Fog infrastructure as part of process execu-
tion. Additionally, section 2.6.4 concluded that while a number of BPMS for IoT
(BPMS4I0T) have already integrated Fog- and Edge-related approaches in their
architecture [CSB16], few of them address offloading decisions and mobility si-
multaneously as we will explain further in this subsection.

In order to clarify the problem statement, we describe an emergency response
scenario for natural disasters. Fig. 15 illustrates a mobile IoT scenario in which the
wearable device of a first responder, who is performing rescue activities, is contin-
uously operating real-time sensing and context reasoning processes, e.g. gathering
sensory data and video from nearby devices to map out people density or dam-
aged infrastructure. These operations involve distributing some context reasoning
and processing tasks to the fog when the device encounters fog servers. In order
to identify the feasible schedule for executing the distributed task between the de-
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Figure 15: Run-time factors that influence the cost-performance efficiency of
EPM in mobile IoT-based disaster scenario.

vice and fog server, common service-oriented systems would require the wearable
device to continuously update its GPS location to the distant management server
and to receive the best schedule from the management server. Such an approach
however is fully reliant on the central server, plus involves extra energy costs due
to using mobile Internet. Alternatively, the system could configure the wearable
device such that the device autonomously executes the task whenever it enters a
fog server’s signal coverage. Ideally, such an approach can reduce significant re-
source usage for the wearable device. Yet mobility-related factors, identified as
an important research challenge in mobile and fog systems [Guo+18; Mou+18;
Reh+17] can result in poor performance and hence reduce the Quality-of-Service
(QoS) for this approach.

For instance, as Case 1 of Fig. 15 shows, if the system executes the task while
the person only stays in the signal coverage for a short period, the task can easily
fail as the communication time for completing the task is insufficient; Case 2
shows that the system executes the task while the person enters the border of the
fog’s coverage, which has poor signal strength and consequently the timespan of
the task execution is much longer than the ideal case (Case 4), which executes the
task while the person is within the good signal coverage. Further, there are other
factors which affect the cost-performance efficiency of distributed tasks in EPM.
For example, in Case 3 (see Figure 15), the system executes the distributed task
while the rescue worker is in the good signal coverage. However, there are other
IoT devices simultaneously interacting with the fog server. Hence, the heavy
workload of the fog server has increased the latency of the wearable device’s
distributed task and indirectly increased the energy consumption of the device
because it has to maintain the network communication for a longer period.

Based on this scenario we highlight the 2nd research question:

How to schedule the execution of process tasks involving nearby device-to-device
communication, such as offloading to cloudlets, in an energy-aware and
quality-of-service-aware manner while taking into account mobility of MPH,
the workloads and locations of the cloudlets?
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Movement-induced connectivity disruptions can potentially be handled with
the reactive approaches taken by [SHS18; MMS16; Zha+18] introduced in sec-
tion 2.5, but these systems do not pre-emptively avoid connectivity issues which
could be predicted based on knowledge about network coverage areas and move-
ment trajectories. Additionally, the use cases presented in these papers do not
explicitly focus on modelling system behaviour during such connectivity-related
occurrences.

Dynamic workflows using opportunistically discovered services are managed
in [Zou+16]. Here, the system uses the workflow template and therein described
QoS requirements to schedule the services involved in the workflow on cloud
servers fitting the requirements, considering available resources and geographic
location. The system thus considers the user’s current location to choose servers
that are closer, but does not consider the user’s mobility and future locations for
future tasks within the workflow

A problem that has received significant attention in past literature is whether to
distribute a task to a cloudlet or process it locally instead. Works such as [LS13;
Li+13; Zha+14] give various mechanisms to make this decision. The common ar-
gument is that in case the offloading takes place, but the connection is interrupted,
the user has to either re-offload or perform the process locally instead and as a
result has consumed more resources than simply performing the task locally. On
the other hand, in this chapter we emphasize when to offload, given that the deci-
sion whether to offload has already been made. As such, we focus on anticipating
weak or interrupting signals, instead of reacting to exceptions with the adaptive
schemes mentioned in [SHS18; MMS16].

Mobile-based works addressing the question "which cloudlet to offload to?"
usually involve the geographic locations of the nodes and system resource utiliza-
tion, as in [ATH16; CTC17]. Here, the distance between the mobile and cloudlet
are taken into account, however, the effect of user mobility during the task and
communication are not taken into account. The other common approach is to use
historical recorded movement and connection events to train a model for predic-
tion and decision-making, such as in [LS13; Li+13]. This kind of approach is
limited in the sense it may not work for situations with new fog nodes or new
mobile users for which there exist no historic data at all.

With respect to the above literature gaps and raised research question, we pro-
pose an adaptive task execution scheduling scheme for service-oriented EPM sys-
tems based on context-awareness. To validate the proposed scheme, we imple-
mented and evaluated a proof-of-concept prototype in a simulated setting which
consists of mobile devices and fog servers.

4.1. System Design

The Edge Process Management system we propose aims to fulfil the following
high-level goals:
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* Enable de-centralized process execution by hosting process engines on the
edge devices
* Leverage mobility-related context such as user movement trajectories and
fog infrastructure geographic locations.
* Manage the process task execution based on the mobility context, optimiz-
ing trade-offs between delays in task execution versus energy-efficiency and
QoS
» Adapt existing Fog computing architecture approaches, such as virtualisation-
based runtime environments
Based on these requirements, we propose a workflow-based fog system ar-
chitecture, described in detail in the following subsections. The architectural
overview of the system is shown in Fig. 16. It consists of 3 types of entities: fog
servers, Mobile Thing Hosts (MoTH-s) and supporting Cloud Services (Central
Management Cloud and Federated Fog Service Registries). These components
are described further in detail.

4.1.1. Fog Server

The fog server is a cloudlet-type node, which provides compute, storage and net-
working services to MoTHs in proximity. It involves the following submodules
(see Fog Server on Fig. 16).
Fog Application Runtime Environment. Following the fog computing paradigm,
the fog server hosts a Fog Application Runtime Environment (FARE), which is
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Figure 16: Overview of System Architecture
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based on computing virtualisation technology (e.g. Virtual Machine or Container-
ization ) and thereby provides an environment where isolated Fog Applications
can be deployed and run. All of the services which a fog server provides to its
nearby clients are packaged as Fog Applications, they can be seen a Software-as-
a-Service style applications, which are deployed either by nearby MoTHs or from
the Central Management Cloud.

The virtualised FARE allows applications to use the operating system func-
tions of the host machine, including networking functions or system hardware
status information. So, for example, if the FARE hosts an analytics server ap-
plication (such as Apache Edgent!), then nearby MoTHs can use the functions
provided by that application over the network.

The deployment of applications is based on either a central repository of appli-
cations (e.g. Docker Hub in case of Docker’-based containerization) or by direct
device-to-device deployment (e.g. VM images) between Mobile Thing Hosts and
Fog Servers.

In the context of this thesis, we focus at a particular Fog Application, the so-
called Workflow Execution App. By using BPMS such as Flowable® as discussed
in section 2.4.4, the fog server can execute processes and be used as part of edge
process choreography, interacting with BP execution engines hosted on other de-
vices.

Application Management and Service Interfaces. Application deployment and
other life-cycle related functions of the FARE are handled by the Fog Application
Manager. This component defines the supported operations for FARE, such as
reserving an application to a particular client, allocating resources and priorities
between the different applications, creating and deleting application instances.

The Fog Application Manager can be accessed through the Service Interfaces
provided by the Fog Server. Service Interfaces are web standards-based interfaces
(e.g. HTTPS RESTful API with JSON) that MoTHs can use to interact with the
fog server. The exact technology may be motivated by the choice of a particular
IoT framework uses (e.g. JSON-LD in case of FIWARE or Web of Things, as
mentioned in section 2.2.2).

Service Management. In this architecture, each Fog Server is managed by
some central organization (e.g. a regional government or a company). The Fog
Server periodically reports to the corresponding central Federated Fog Service
Registries, indicating its status, by sending Service Description Metadata (SDM).
SDM includes characteristics such as hardware configuration (including rated
wireless coverage range), server geographical location and logs of exceptional
events or warnings. Providing SDM to the federated registries is the crucial re-
quirement to enable discovery of fog servers based on their locations and capabil-
ities (discussed further in 4.1.2, "Cloud-Thing-Agent"). The SDM updates can be

Ihttp://edgent .apache.org/
Zhttps://www.docker . com/
3https://www.flowable.org/
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seldom, since hardware configuration and location are usually very static, thus the
system can continue operating even when the central systems are not reachable
(e.g. during a disaster).

Proximity-based Advertisement. Finally, to notify nearby clients of the exis-
tence and current real-time status of the Fog Server, the Proximity-based Adver-
tisement component broadcasts the Fog Server’s current state to nearby devices.
This should be implemented with a lightweight technology that enables frequent
periodic broadcasting, such as Bluetooth Low Energy. The advertised real-time
status includes the resource utilization of the FARE, indicating whether the fog
server is under significant load or idle.

4.1.2. Mobile Thing Host

The Mobile Thing Host is the moving edge device, which can communicate with
nearby sensor devices and interact with Fog servers. In our system, the MoTH
includes a Worklow Manager component, which enables it to execute edge pro-
cesses or partake in them.

Controller. The inter-component messaging is performed through the Con-
troller, which mediates requests and response messages from the different com-
ponents listed in the following subsections, acting as a message bus.

Workflow Manager. The Workflow Manager of a MoTH provides means to
execute workflows defined in a process modelling language (BPMN 2.0). The
executed workflows involve the service composition and decision-making tasks
involved in IoT scenarios. Workflow Execution component is the core of the
Workflow Manager and in our system, we use the same Flowable-based solution
that the FARE Workflow Execution App mentioned in 4.1.1 uses.

Adaptive Task Manager. If the IoT process involves distributed tasks interact-
ing with proximal devices such as Fog Servers, then the task execution schedule
must take into account energy or cost efficiency based on contextual factors. We
call these types of tasks Adaptive Tasks. When workflow execution reaches such
a task in the process, it uses the Adaptive Task Manager to manage its execution.

The Adaptive Task Manager creates a unique Task Manager (TM) instance (see
Task Managers on Fig. 16) for each Adaptive Task. The TM instance contains the
task requirement metadata, described in the workflow model, such as timeouts or
QoS parameters and hardware requirements for the involved Fog Server.

Further, each TM instance uses the Adaptive Scheduling Manager to acquire
the context-based execution schedule for that TM. Using the resulting schedule,
TM signals the Workflow Execution of the chosen execution time and chosen Fog
Server for the associated adaptive task.

Adaptive Scheduling Manager. This component performs the actual context
reasoning and decision-making. It uses as input the Adaptive Task description
from the TM and contextual information from the Context Manager to determine
a fitting candidate Fog Server for the respective task. The contextual information
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includes:

* Infrastructure Context, which contains the known fog server locations of
the current area

* Mobility Context, which contains the current position and predicted move-
ment trajectory of the Mobile Thing Host ( based on GPS sensors, map data,
user set destinations, etc. )

* System Context, which includes values such as battery level

Based on the above, an initial set of eligible Fog Servers are chosen. When-
ever the Proximity-based Service Discovery component encounters a Fog Server
nearby, additional information from the Fog Server advertisement message is used
by the Adaptive Scheduling Manager to decide if the current Fog Server fits the
current task.

Fog Service Agent. As mentioned above, the Fog Service Agent includes the
Proximity-based Service Discovery for handling the advertisements of Fog Servers.
Further, the Service Invocation component is used to call functions of the Fog Ap-
plication Manager of the server, as explained in 4.1.1.

Cloud-Thing Agent. This component handles communication with the Central
Management Cloud, and fulfils two functions: a) refreshing knowledge about Fog
Servers and b) handling Workflow Manager requests from the cloud. For a), the
Centralised Service Discovery queries the remote Fog Service Discovery reposi-
tory. Here, the SDM of the Fog Servers, including their locations are returned. For
b), the Request Handling module is capable of receiving workflow related oper-
ations from the Management Cloud, such as deployment of new Workflow Mod-
els or starting workflow execution instances (top-down approach as explained in
2.3.6).

Context Manager. As mentioned previously, the Context Manager accumu-
lates contextual information such as fog server locations in the area, metadata
about proximal devices and fog servers, mobility related information such as
user’s current moving trajectory and system data such as battery level.

4.1.3. Central Management Cloud (CMC)

This component is the initiator of tasks and workflows executed in the edge. On
one hand, the CMC interacts with the Federated Fog Service Registries to stay
up to date about the available Fog Infrastructure. On the other hand, the CMC
Central WEMS can deploy workflow Models onto MoTHs, invoke execution of
workflow instances on mobiles, or invoke workflow tasks on the mobile as part of
cloud-edge workflow choreography.

To illustrate, consider the disaster recovery scenario mentioned earlier. The
first responders on the scene each have a MoTH device, while the chief coordina-
tors of the rescue operations use the CMC to deploy workflow models needed for
the rescue to the MoTHs and Fog Servers in the region. Now the rescue workers
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can operate the scene, while their devices perform the adaptive edge processes
involving fog servers and workflow choreography.

4.1.4. Adaptive Task Execution Scheduling Scheme

In this subsection, we describe the heuristic scheme used by the MoTHs Adaptive
Scheduling Manager for deriving adaptive task execution schedules. The scheme
consists of a multi-criteria decision model which tries to decide which fog server
to invoke in a distributed task.

The continuously running scheme has 2 phases: 1) candidate fog server set
formation and 2) fine-grained decision-making.

Phase one. Let S be the set of known fog servers. Next, for each s € S we have
some numeric parameters:

- E(s) gives the estimated remaining energy (battery life) value of the MoTH
when entering coverage area of s.

M(s) is meeting duration, the time spent in the coverage area of s by the
MoTH .

- D(s) is the average distance to s during movement in the coverage area.
- B(s) is the maximum bandwidth capability of s.

Next, we normalize the parameters by scaling each value to [0, 1], and invert D,
as lower values are seen as better and get the following set of parameters: <7, =
{es,ms,ds,bs}, where for any s € S:

o E(s) —min(E) _— M(s) —min(M)
* max(E) — min(E) * max(M) — min(M)
doe1— D(s) —min(D) _ B(s) — min(B)
: max(D) — min(D) *" max(B) —min(B)

Using this parameter set, Vs € S we define the score f;:

Bi:=) axo, 4.1

ac.a

Where o is a vector @ € R*, that assigns a weight to each parameter in .. This
allows to fine-tune the model to emphasize a certain factor, such as battery life,
for example.

The idea is to choose an s which maximizes ;. Given some threshold y, we
can now omit some unfit fog servers. ¥ is set by the user or application as a QoS
requirement. This concludes the first phase, and as a result we end up with the set
of eligible candidate servers S’ = {s | B; > v},5' C S.

At this point, the task execution and Adaptive Scheduling Manager can go to
sleep until the geographically closest s € S’ is approached.
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Phase two. Whenever the communication range of any of the servers in S’ is
entered by the MoTH, phase two is started. When this occurs, the MoTH fetches
the status of the fog server. This introduces additional parameters:

- O(s) the work queue size of s, how much time it takes for tasks already
queued on the server to finish.

- J(s) the server’s time consumption for processing the current task which
the MoTH wants to distribute, including the transmission time.

Let A be a QoS modifier, which amplifies the penalty of waiting for a task
queue has, we define a weight w for every s:

M(s)

) 14 A(1 — Qo) iff s status information is available,
w(s) =
1 otherwise

Then, we get a weighted score 8*
By i=w(s) Z a, 4.2)

B* is used for final decision-making. Here, we can either choose the server
s with max 7. or set another threshold y* to again filter out all suitable servers,
§” ={s|B(s) > y*} and select an element of S” based on a parameter of interest,
e.g. choosing the closest of the fitting servers. However, if §” = (), we can decide
to either deem the task as failed or choose to process it locally.

4.2. Experimental Case Study

To see the impact of our proposed adaptive scheduling, we conducted experiments
in a simulation test-bed that supports executing processes defined in BPMN 2.0,
following the principles of the proposed system architecture.

4.2.1. System implementation in Simulated Testbed

Following the comparison of available simulation tools described in section 2.6.5,
we based our prototype on the ONE simulator [KOKO09], which is a discrete event
simulation engine designed as a Delay-Tolerant Protocol testbed. The ONE sup-
ports various mobility models, including map-based movement models, it simu-
lates communication interfaces, connections and messaging between nodes (called
hosts). Further, the ONE includes an energy model based on the communication
energy costs caused by using varying connection speeds. This makes it a suit-
able tool for simulating fog environments and implementing the fog servers and
MoTHs in our architecture as ONE hosts.
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Parameter Value

Radio range 91 m

Linkspeed 1-54Mbps (distance-based)
Transmission Energy Cost 1 ul/s

Scan Energy Cost 0.2 uJ

Scan Response Energy Cost 0.1 pJ

Table 3: Simulated wireless interface & energy model configuration

Workflow Manager & other Modules. While the Java-based ONE is easy to
extend, the original software has no notion of workflow-based messaging and
model-based process execution. To this end, we extended The ONE by imple-
menting a Workflow Manager (WfM) (as described in section 4.1.2) for the hosts.
The WM is based on the Flowable Java process engine. Although in the 1st con-
tribution the process engine used was Activiti, Flowable is a fork of the Activiti
project. The switch to Flowable was made due to the Flowable projects active
focus on optimizing the engine to be efficient and lightweight, allowing its usage
in modern paradigms such as serverless*, making it a better fit for Fog/Edge solu-
tions. By integrating the ONE simulator and Flowable engine, the hosts involved
in the simulation can execute BPMN 2.0-defined process models, and thereby par-
ticipate in process choreography where simulated hosts can exchange messages,
variables and do decision-making based on the defined workflows.

Other components presented in the system architecture, such as the Fog Ser-
vice Agent, Adaptive Task Manager, Adaptive Scheduling Manager were also
implemented for the simulator hosts. For instance, the mobility context is de-
rived from the mobility models used by the simulator, while proximity-based ad-
vertisement and service discovery are implemented as ONE simulator messaging
applications.

Technical Details. To keep the simulation performant, the Flowable engine
used by the ONE hosts is configured to use an in-memory database, and features
such as process diagram image rendering and process history have been disabled.

For the networking interfaces of hosts, we use the ONE’s DistanceCapacityln-
terface implementation, which adjusts the link speed according to the distance to
the other connected host. The interface is configured to resemble an IEEE WiFi
802.11g interface, with a maximum linkspeed of 54Mbps. Combined with ONE’s
energy model, weaker signals (longer distances) cause more energy consumption
due to lower data rates. ONE’s energy model® consists of an energy budget, which
gets reduced by a fixed amount per second when transferring data or when scan-
ning/responding to scan events. The numeric parameters of the wireless interface
and energy model are listed in Table 3. The simulations were run on a PC with an

“https://www.flowable.com/blog/flowable-engine-as-a-serverless-function
5The model is defined in the Java class routing.util. EnergyModel
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Intel i5-6200U processor and 16 GB of memory.

Discussion. The created testbed allows analyzing the influence of the dynamic
fog environment on workflow-based process execution. On one hand, the pro-
cesses can be designed at an abstract level through visual BPMN modelling tools.
For instance, distributed task message sizes and QoS requirements have been set
at the process modelling level, instead of configuring these at the lower level of
the simulation engine itself. On the other hand, thanks to the ONE simulators
map-based functionalities, the testbed enables more realistic process-based sce-
narios, by importing map and route data files from OpenStreetMap®, useful for
applications in the Smart City vision, for instance.

4.2.2. Scenarios

We studied two categories of scenarios: first, we examined the four isolated sce-
nario cases described in the beginning of this chapter. These involve a simple
setting with 1 MoTH and 2 fog servers and highlight the scheduling decisions of
the individual MoTH. The second kind of scenario involves larger numbers of
MoTHs, servers and a map more similar to real life streets, aiming to demonstrate
the usage of the scheme on a larger scale.

The respective workflows (described below) enacted by the MoTH and fog
server are the same for all scenarios, but the configuration of server locations,
MoTH movement speeds, message sizes, etc are varied.

Workflow models. The experiments use a choreography of 2 processes, shown
in Fig. 17. The core idea is to perform distributed edge processing/analytics,
where a MoTH gathers data from a nearby sensor device and forwards it to a
proximal fog server where the data is processed, in other words, offloading the
processing to the fog server. The processing results are directly sent back to the
MoTH. If no fog servers are available or the connection is interrupted, the MoTH
will fall back to processing the task locally.

More precisely, in the MoTH process (middle pool of Fig. 17a), after gathering
the sensor data, the Adaptive Distributed Task (ADT) subprocess is called, Fig.
17b. Here, as described in 4.1.2, first a new TM is created for the current ADT.
Then, the process arrives at an event-based gateway, where the execution waits for
the TM to raise one of the following events: a) the ADT timeout period (defined
in the process model) is exceeded; b) the adaptive module has determined that no
fog servers will be encountered within the given movement path or c) the Adaptive
Scheduling Manager signals the process of a fitting nearby fog server. In the latter
case, the execution proceeds: the gathered data is sent to the nearby fog server via
a message (Send Distributed Task in the process diagram). After this, the process
waits for the response message from the fog server which contains the analysis
results.

The Fog Server process, at the bottom of Fig. 17a, is a reactive process, which

Shttps://www.openstreetmap.org/
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Figure 17: BPMN 2.0 Process Models used in the case study

is started each time a new message indicating a distributed task is sent to the
Workflow Execution Application. The first task performs the compute intensive
processing of input data that was attached to the message and usually takes some
time. The 2nd task sends the results of the processing as a message to the respec-
tive MoTH.

The described process choreography is used in all of the experiments. We
wish to emphasize "Create Adaptive Task Manager" task, where the task includes
some parameters for the adaptive model, such as the required QoS level, size of the
distributed task and weight preferences. This way process modellers can configure
the offloading behaviour and adaptive model to their application needs. While this
process model definition is re-used for the different scenarios and for different
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hosts, they are instantiated with varying parameter values in the experiments.

4.2.3. Isolated scenarios with single mobile host

The simulated environment for the first 2 cases is shown in Fig. 18(a), where
the circles depict coverage areas of fog servers (named sO and s/ hereafter) and
movement of the MoTH is shown as a line, beginning at the top-left.

We compared our adaptive scheduling model against a baseline naive approach,
where the MoTH always tries to distribute the task to the first fog server it encoun-
ters. This is actually also how our model will behave, if the QoS parameter v is set
to 0.0. We compare this naive approach against our scheduling mechanism with
Y = 2.5, observing the execution time and energy consumption of the distributed
task. With these settings, the baseline always chooses the closer server s0, while
our model tends to choose s/ with the better signal coverage.

Case 1: Handling brief contact times. Here, the MoTH moves through the
coverage area of sO only near the edge, where signal reception is poor, while s/ is
located exactly on the MoTH’s trajectory.

The results are shown in Fig. 19, where the top row y-axis depicts total time
(in seconds), measured starting from delegating the task to the fog server until re-
ceiving the task results, i.e. that includes both transmission and processing times.
If server connection is dropped and the MoTH falls back to local task processing,
then that time is also included. Please note that this time only includes time spent
on the distributed task and not including movement. In other words, the time
spent on approaching any server, which may also be located farther away, is not
included.

The bottom row depicts the energy consumption of the process in Joules, as
measured by ONE’s energy model mentioned in section 4.2.1.

\L{ ™ 100m

] 2
=0

\ 0

(a) Case 1, Case 2 (b) Case 3

Figure 18: Simulation settings, sO and s/ are the fog servers, p2 is the Mobile
Thing Host

&9



A Speed = 0.5 B Msg Size = 2M © C Msg Size = 2M

Task Complexity = 100 Speed = 0.5 v Task Complexity = 100
250 £ @ P 250 250 T
0 LS
< 200 200 . 200 R S
g N e )
-5 150 { 150 { 150 Re @y o > A
= 29 Vol ke | ke | K NS I PePodavalle|lelle | lelle | |e
[%]
100 100 100
e Vo
50 50 m 50
0 0 0
IM 2M 3M 4M 5M 50 100 150 01 02 03 04 05 06 07 08 09 1.0 1.1 Task
Message Size (bytes) Task Complexity Speed (m/s) Scheduling
D Speed = 0.5 E  MsgSize=2M & = Msg Size = 2M l:‘ Naive
Task Complexity = 100 Speed = 0.5 hd Task Complexity = 100 l:‘ Adaptive
150 o o o 150 150 e T = = = s
2 $ 8 E A
5 100 100 100
g © © © ©
w 6 & ° ° ‘s © 4 o> k4 “&‘g’% u?"bq: P
N [ﬁw i Ni 1 ﬁ | ) m |:ﬁ |:ﬁ [ﬁ@[ﬁv TN
vV
0 Dj 0 D] 0
M 2M 3M 4M 5M 50 100 150 01 02 03 04 05 06 07 08 09 1.0 1.1
Message Size (bytes) Task Complexity Speed (m/s)

Figure 19: Case I distributed task time- and energy consumption for Mobile
Thing Host

Fig. 19(A) and 19(D) show the effect of the distributed task message size,
which affects how long it takes to delegate the task, but does not affect the task
processing itself. We see that for smaller messages, the result is similar for both
approaches, with the baseline performing slightly worse due to the poorer signal
quality.

However, a sharp increase in the processing time and energy consumption for
the baseline case can be observed in all sub-figures of Fig. 19 (e.g. starting from
speed 0.6 on sub-figures 19(C), 19(F)). This is due leaving the fog servers range
before the distributed task finishes, causing the task to be processed locally. Mean-
while, our approach (QoS=2.5) always chooses server s/, where the distributed
task can finish even with larger message sizes or task complexity. In the simu-
lated implementation, task complexity is defined as how much simulation time
it takes for the host to finish processing that task, excluding communicating the
inputs or outputs. A single host can concurrently process 1 task.

High movement speed of the MoTH (Fig. 19 C,F) causes sO-s connection to
drop earlier, causing the local processing to happen sooner in the naive approach,
thus reducing the total task time. Whereas for the adaptive approach, higher move-
ment speeds mean the mobile reaches the best signal areas faster, improving per-
formance.

Case 2: Handling poor signal contact. The 2nd case differs from the first
one in that sO is located slightly closer to the MoTH-s movement path. This
way, the coverage is large enough for the distributed task to finish, although the
performance will be worse due to the weak signal compared to s/.

As can be seen from Fig. 20(A), with small message sizes, the time difference
is minuscule. However, as the message size when communicating with the servers
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Figure 20: Case 2 - distributed task time- and energy consumption for Mobile
Thing Host

grow, the difference between the baseline and our approach increase, due to the
signal strength influence which limits transmission data rates. The same can be
observed for energy consumption (Fig. 20 (D)).

Sub-figures 20(B) and 20(E) show the effect of task complexity. Task complex-
ity influences how long it takes for the task to be processed either on the server
or the MoTH. As signal strength does not influence the processing itself, differing
task complexities do not give our model an advantage if the server has idle load,
however, with the visible results, our model still outperforms the baseline case
due to the involved 2 megabyte communication.

Similar to Case 1, with higher speeds the mobile host either reaches better sig-
nal faster, increasing the performance up until a point where higher speeds cause
the best reception area to be left sooner, again worsening performance. In this
case, it can be seen that the optimal speed zone for the baseline case is narrower
than for the adaptive model.

Case 3: Handling overloaded servers. In the final isolated case, server sO is
already processing other tasks while the MoTH encounters it, meaning new dis-
tributed tasks are placed in a queue. Here, both servers are located equally close
along the MoTH-s path (Fig. 18, b).

Fig. 21 shows the impact of different sO loads. The load of a server is the sum
of task complexities of all tasks currently distributed to the server. If both servers
are idle, both approaches opt for the closer server and result in the same task
time. In case of 0 load, the energy consumption of the adaptive scheme is slightly
higher because it involves communication to obtain the real-time fog server status
information.

But as the load of s0 increases, the baseline approach consumes more time and
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Figure 22: Case 5 Simulation Map

energy due to the added waiting time, while the adaptive model on the other hand
chooses to use s/, which is idle, instead.

4.2.4. Scenario with Multiple Mobile Thing Hosts

The final examined scenario is more distinct, here, the simulation setting mimics
Manhattan-style city streets (Fig. 22), there are 9 fog servers (grey squares) spread
out on the map and 50 MoTHs (not depicted on the figure). The MoTHs randomly
take trips from one of the marked points to the other, the red dotted line shows an
example path. Each host start a new process instance per trip.

The idea is to see how the choices made by multiple MoTHs using our adaptive
scheme influence the distribution of tasks among servers and performance for
MoTHs. The simulation is run for 10 hours (simulation time), Table 4 lists the
detailed configurations used in this simulation case.

Fig. 23 shows the mean success rate of tasks distributed by the MoTHS. In
other words, how many distributed tasks were successfully finished (failure can
occur due to the server being overloaded and the connection dropping before the
server finishes processing the task). Recall that a QoS level of 0.0 means that all
mobiles delegate the task to the first encountered server. As can be seen on the
figure, the baseline approach can successfully finish less than 50% of distributed
tasks. On the other hand, with our model, task completion improves significantly.
With a setting of QoS=2.5, task completion reaches above 70%. Generally, raising
the QoS constricts the decision-making to only include servers which are closer
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Parameter Value

Simulation time 10 hours
No. of MoTH 50

No. of Fog Servers 9
Median processes started per MoTH 40

A 1.5
MoTH speed 0.6 (m/s)
Task Complexity 100 units

Table 4: Case 5 Simulation parameters

and more idle. As a result, setting too high values ( e.g. with QoS=3.5 on Fig.
23) lead to under-utilized fog servers (in other words, MoTHs are looking for
completely idle servers even though the server may be able to finish the task in
time with a small load).

Secondly, the distribution of tasks among all the servers is shown in Fig. 25.
The more uniform the distribution of tasks among servers, the higher the success
rates for the participants, as overloaded servers are avoided. With QoS value of
0.0, the variation in balancing the load across servers is large, some servers are
overloaded while others are utilized much less.
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Figure 23: Mean Distributed Task com- Figure 24: Case 5 Energy usage
pletion for MoTHs

Using our model, we see that the variation becomes smaller and more uniform
up until a certain point. In this scenario, QoS of 2.5 showed best results, as higher
values again constrained the decision-making too much and some servers were
left under-utilized. This is especially evident with QoS 3.5, where some servers
started O tasks, as was the case with QoS 0.0.

Fig. 25 also shows how setting different lambda values affect the performance.
Recall that lambda affects how much the server load-related contextual data is
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taken into account. In this case, similar to QoS, raising the value has a constricting
effect.

The energy consumption of MoTHs with different message sizes are shown in
Fig. 24. We see the direct correlation between increased QoS and saved energy,
additionally, the adaptive approach can outperform the baseline even when the
former uses larger message sizes than the latter.

4.2.5. Discussion

Based on the previous results, we saw that using the adaptive scheme is beneficial
in terms of energy consumption, task execution time, but also for balancing the
load among multiple hosts and servers. The improvement is especially large when
incorrect decision-making causes the task to fail and to be re-tried locally, which
effectively doubles the processing time and energy consumption.

While the scenario in section 4.2.4 showed promising results for applying the
model in real-world scenarios, it is important to note that choosing the appropriate
QoS threshold and 7y value affect the model’s performance. The optimal values for
these parameters may depend on the use case or user preference. For instance, set-
ting very high QoS values may be imperative for more latency-sensitive scenarios
or if the user prioritizes saving battery life over small delays.

Our adaptive scheme fits workflows and scenarios where some delay-tolerance
is acceptable. But it is important to note that in some scenarios, choosing to
distribute the task to a server which is encountered later may not be an option
if the task is time-critical. In these scenarios, our model can revert to the local
processing option based on the set time-out (as was shown in Fig. 17).

4.3. Summary

In this contribution, we presented an Edge Process Management system architec-
ture which involves mobile devices that distribute certain tasks in their processes
to nearby fog servers. Our system included a mobility- and context-aware mech-
anism for scheduling these distributed tasks to servers, based on the user’s move-
ment trajectory, server load, fog server location and configuration. The mecha-
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nism includes QoS threshold parameters, which allow to constrain the decision-
making to guarantee higher chance of success or fall back to local processing
earlier, if it is estimated that no fog server can satisfy the constraint. Experiments
with a prototype implementation of the system, conducted in a simulated testbed,
showed how this adaptive scheme can avoid costly local task processing due to
dropped connections and choose servers for efficient task offloading. The results
showed how our approach raises success rate of distributed tasks from 48% to 71%
and consumes up to 4 times less energy than greedy opportunistic approaches.

As part of future work, it is important to pursue more detailed modelling of
wireless radio, taking into account physical factors such as radio and obstacle
interference. To transform the simulation-based approach into a real-life deploy-
ment, introducing a trajectory prediction component may also necessary if the
user is not willing to specify their destination and trajectory explicitly (e.g. when
using a navigation software). The adaptive schedule can be fine-tuned with the
per-parameter weights, however a means to easily infer the weight values for a
given application’s requirements is still needed.

Our decison model is very much focused on the bottom-up perspective of fog
applications, the mobile device context and the currently proximal Fog server’s in-
formation are the primary source of contextual data, with some limited info about
the rest of the fog network. However there exists a lot of research on managing
the fog network, with both centralised and decentralised architectures, exploring
how fog servers can collaborate, perform load-balancing via replication or migra-
tion of application services [MRB21]. For example in [Bro+21], the fog network
autonomously tries to balance resources based on decentralised collaboration be-
tween fog servers. Thus as future work, it is worth investigating how the MoTH
could take into information not only about the currently proximal Fog server, but
also it’s neighbours, their scheduling, load-balancing policies. Outside of disaster
scenarios, Cloud resources may still be available, and then the decision-making
should include the trade-off between offloading ot the cloud or fog as for example
in [AC21].

Finally, another important direction is to explore additional scenarios from
domains such as smart transportation or smart city, using real-world city maps
and bus route data in the simulation setting and how this information could be
used in the decision-making. In the next chapter we present an advanced version
of the testbed used in this chapter, which has been supplemented with modelling
tools and more EPM-related simulation features, designed to be a suitable general-
purpose toolset for such studies.
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5. SIMULATING MOBILITY-ORIENTED EDGE-FOG
PROCESSES

In the state of the art, adopting BPMS for execution on end-devices such as mo-
bile phones has been researched several times [Hac+06; Dar+15; Sch+16], where
a standards-compliant process engine is embedded on the device. However, while
considering that IoT and edge systems are to involve huge numbers of devices,
the evaluation of existing related works is typically done at a scale of up to a
few devices (e.g. 2 moving robots and 1 stationary system in [SHA17] ). Indeed,
large-scale real-world experiments are costly to perform, so the common approach
is to simulate the behaviour [Ded+18]. However, to the best of our knowledge, no
existing simulation tool has adopted a process-oriented and mobility-aware per-
spective to IoT systems, this has motivated our 3rd research question and research
goal.

To support development and research of process-oriented scenarios and mod-
els by simulating EPM environments where mobility aspects are common (such
as smart cities), we propose STEP-ONE: a Simulated Testbed for Edge-Fog
Processes based on the Opportunistic Network Environment Simulator. STEP-
ONE is an extension to the Opportunistic Network Environment simulator (ONE)
by Kerédnen et al. [KOKO09], adding business process execution support on the
hosts. This allows discrete event simulation of scenarios where the application
logic is defined as BPMN 2.0 processes. STEP-ONE supports defining these pro-
cesses with a set of ready-to-use process components, such as Message tasks for
inter-process messaging across hosts, events and signals for time, mobility and
connectivity-related situations and configuration options for varying the executed
processes, their inputs and the process engine parameters when executing a batch
of simulations. The testbed provides feedback in the ONE graphical user inter-
face during execution and a visual modeller for creating processes. For results
interpretation, we make use of the report generation features available in ONE to
generate process execution traces. The process execution and visual modelling
tools in STEP-ONE are based on the Flowable BPMS . STEP-ONE includes fea-
tures modelling of computational tasks and computational capacity of the hosts
in the simulation, to support studies of fog- and edge computing scenarios, where
task delegation, migration and offloading play an important role.

We demonstrate STEP-ONE with a hypothetical Smart City scenario set in the
city of Tartu, where the city uses an edge process-based approach to monitor the
street and road conditions in a de-centralised fashion. This testbed enables en-
acting scenarios with large number of hosts in city map-based environments, thus
allowing to explore the question of mobility, resource scheduling and placement
effect on processes in the edge and fog.
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5.1. STEP-ONE Software Requirements & Design

In the 2nd chapter, section 2.6.5, we gave an overview of different simulators
such as NS-3, ONE, SUMO. Considering our review of these simulators, for this
thesis, ONE emerged as the suitable selection for EPM. On one hand, its less-
detailed lower-level networking favours rapid prototyping considering that finely
detailed simulations may obscure effects of fundamental changes in algorithms,
as a lot of attention goes to managing simulation parameters, in addition to the
algorithms themselves [CGO3].

Secondly, we considered the programming languages. Several industry-recognized
process management software suites such as jJBPM, Camunda, Flowable and Bizagi
BPM are based on Java, as is ONE. This makes integrating initial results from the
testbed into the real systems (and vice versa) easier than it would in the case of
NS-3 or OMNeT++.

Based on its mobility, networking and communication features (see section
2.6.5), we have based the core of the testbed on the ONE simulator. Fig. 26
highlights how our contribution expands upon ONE while highlighting how our
contribution is positioned with regard to the focuses of the other related simulation
tools.

Before going into the details of how STEP-ONE expands on ONE in order to
realize process-based scenarios, we first describe ONE’s existing main concepts.
Then we define requirements for STEP-ONE and proceed with a detailed expla-
nation of how the tool fulfils the requirements.

0SI 1
(PHY)

Processes

OSI 2-4

NS-3

iFogSim

ONE

0SI 5-7 ~|&i  STEP-ONE
Mobility

(APP) B SUMO

Figure 26: Comparison of STEP-ONE with related simulators in the level of detail
addressing OSI network layers, mobility, energy and processes modeling
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5.1.1. Existing ONE simulator features

Simulations in ONE are defined by configuration files that describe the hosts
(nodes) involved in the simulation, their behaviour and capabilities in terms of
communication interfaces, (delay-tolerant) routing mechanisms and movement.
Given a configuration file, ONE simulations can be run: a) using a graphical
user interface (GUI), which displays the movement of the nodes in the simulated
world, connectivity and messaging events or b) in batch-mode, without a GUI,
which is useful for running permutations of simulation configurations at higher
performance. The simulation results are captured in report files, which can be
selectively enabled. These reporting modules produce summaries of messaging
statistics, e.g. delivery ratios, performance (latency), movement and connectivity
information, such as contact times.

Hosts in ONE can run applications: custom programmable modules, that han-
dle incoming messages, create new messages, or run custom logic at every discrete
time step. The implementation of applications in ONE is left to the developer. In
addition to applications, messages can be produced from an external event gener-
ator.

5.1.2. Requirements for STEP-ONE

The above functions provide a foundation for the testbed, however, to achieve
process management support, we define the following requirements. The testbed
should:
* REQ1: support executing BPMN 2.0-defined processes on simulated hosts.
¢ REQ2: allow executed processes to interact with the simulated world and
other simulated processes through messages, events and signals.
* REQ3: provide means to specify the process-related parameters for the
simulation from a configuration file.
* REQ4: provide means to create process definitions and related messages
using a visual editor.
* REQS: allow specifying the computational complexity of certain process
sub-tasks and specify the computational capabilities of host groups.
* REQ6: support generating reports based on the process execution-related
logs.
* REQ7: be extendable with decision mechanisms and algorithms to study
their effects on the scenario and process execution(s).

5.1.3. Process Engine Application

To address REQ1, we provide a specific ONE application implementation - a
Process Engine Application (PEA) (see Fig. 27). During simulation runtime, the
PEA handles deployment of BPMN 2.0 process definitions or starting execution
of individual instances of deployed processes through respective messages from
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Figure 27: Overview of STEP-ONE architectural Components

other hosts (their processes). Alternatively, these actions can also be performed at
initialization of the simulation based on the configuration file. The PEA enables
various functionality for executing process instances based on REQ2, for example:
connectivity events within ONE are mapped to events which processes can catch
and Message tasks defined within a process will create a ONE message to be sent
to other hosts.

Messaging. Messaging is the core functionality of both ONE and STEP-ONE.
STEP-ONE processes exchange Process Messages, that are encapsulated within
standard ONE messages. This allows the message routing to be handled by ONE
networking capabilities.

ONE messages are defined by an ID, size, recipient host address and custom
extension properties (key-value pairs). STEP-ONE uses these extensions to at-
tach extra data which define a Process Message, for example: attaching process
variables (optional) or name of the message (mandatory), processes which are
interested in receiving messages have to subscribe to them by name.

STEP-ONE distinguishes four types of Process Messages, all of which can
be sent from or received within a process execution, except "ONE Application
Message", which can only be sent from processes.

* Generic Process Message - A generic message which originates from a
"Send Message" task within a process. The receiving process engine for-
wards the message to the process instance which is subscribed to the mes-
sage (if any).

* Deploy Process Message - when a process engine receives a "Deploy pro-
cess" message, it attempts to deploy a process definition based on the re-
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source file path attached to the message.

 Start Process Message - when a process engine receives a "Start process”
message, it attempts to start a new process instance, given the identifying
process key contained in the message. This assumes that a process defi-
nition with a start event corresponding to the message name has been de-
ployed.

* ONE Application Message - this message can be sent from a process and
is targeted at other ONE applications (that are not PEA-s). For example,
invoking an atomic service from a central process engine would be done
with this type of message.

Section 5.2.1 discusses the implementation details how these messages can be
defined within a Process and how the process engine maps them to ONE messages
and vice versa further.

Events, Signals. The process engine also handles events from the simulation
world and notifies running process instances which are subscribed to related events.
This is particularly useful for driving the process execution based on the events -
waiting for a connectivity-related event before proceeding with a message send-
ing task or interrupting a flow in reaction to an event. In the following, we list the
events STEP-ONE processes can handle.

* Connectivity Events - When a network connection is established or broken
between hosts, the events are translated into BPMN signals.

* Timer Events - Processes which contain timer-based events (e.g. timeouts
or cyclic repeating behaviour) are notified of time elapsing based on the
simulation clock.

* Location Events - When a moving host arrives at a location to which a run-
ning process instance is subscribed (based on coordinates), it is broadcast
to the process engine as a BPMN signal.

* Message Events - This allows processes to wait for a given message to
arrive before proceeding with the control flow.

Tasks & Activities. Processes are sequences of tasks. STEP-ONE provides a
set of useful BPMN tasks which help quickly define simulated scenarios. STEP-
ONE provided tasks are listed as follows:

* Send Message Tasks - for creating each of the above message types, a Send
Task subvariant exists.

* Simulated Work Tasks - to simulate long-running, compute-intensive tasks
(See REQS in 5.1.2), this task type is defined by a work size parameter, how
large the task is in terms of millions of instructions (MI).

* Generic Service Tasks - Service tasks are generic tasks, whose implemen-
tation is up to the developer. This allows creating experiment-specific func-
tionality, programmed in Java. For instance, a scheduling algorithm may
be implemented as a Service task, which based on some process variables,
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produces a scheduling decision and writes it into another variable, used in
the rest of the process flow.

In general, the duration of tasks in simulation clock time is instantaneous, except
for Simulated Work Tasks, whose duration depends on the node’s hardware con-
figuration and Send Message tasks configured not to finish execution before the
message has been received at the destination.

5.1.4. Discussion

Since in addition to the above-mentioned STEP-ONE messages, tasks and events,
BPMN 2.0 allows defining various control flow structures such as AND or (X)OR
gateways, and custom logic can be attached through Service Tasks, execution lis-
teners, etc., complex behaviour can be modelled and enacted.

As we will show in section 5.3, one class of applications to model as pro-
cesses are Fog computing scenarios, where ONE-s networking abilities and STEP-
ONE’s messaging, simulated work tasks will be used.

5.2. Implementation

STEP-ONE is packaged as a Gradle-based Java project and is available as a public
GitHub repository!, with additional documentation and reference materials on
how to use it.

The Process Engine Application embeds an instance of Flowable BPMS (ver-
sion 6.4.2), which is a light-weight process software that supports a particular
extension of the BPMN 2.0 standard - namely some Flowable-specific extension
elements have to be included in the process model to enable automated execution.

To improve simulation performance, STEP-ONE uses Flowable with an in-
memory database and features such as process history tracing can be turned off.

Implementation of the tasks mentioned in section 5.1.3 is based on the Ser-
vice Task BPMN construct. Custom Service Tasks in Flowable must implement
the JavaDelegate interface, which defines an execute () method called when-
ever the process execution flow reaches that task (Listing 5.2 shows an example).
When describing a Service Task within a BPMN 2.0 process definition, an XML
attribute specifies the Java class which implements the JavaDelegate interface.
This was the basis of the Java implementations for the various task types.

5.2.1. Messaging implementation

STEP-ONE provides an implementation for each of the mentioned Message Tasks.
When executed, the Java code constructs a ONE message and embeds a Process
Message into it. After constructing the message object, it is added to an "outgo-
ing messages" queue. The PEA queries the queue on each simulation update, and

"https://github. com/jaks6/step-one
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Figure 28: Overview of how Process Messages are mapped to ONE messages and
vice versa.

hands them over to networking and routing modules of the ONE, which handle
the message transfer to other hosts (Fig. 28).

When the target PEA receives a ONE message, the contents are parsed and if
the message contains a STEP-ONE Process Message, the appropriate Flowable
API (e.g. deployment, process start, message received) is invoked with the mes-
sage contents and attachments.

Message Parameters. When defining a STEP-ONE Task, in addition to select-
ing the appropriate Java implementation, a number of task-specific parameters
must be specified as BPMN extensionElements, more precisely Flowable’s exten-
sion fields, which are parsed by the Java implementation.

The compulsory parameters for all types of message tasks are: Message Name,
Message Size, and Destination Address.

Additional parameters vary by message task type. Both the compulsory and
additional values are part of the Process Message object that is encapsulated in a
ONE Message. The full list of parameters is shown in Table 5. These parame-
ters can either be defined with static values, or alternatively using the dynamically
evaluated expressions feature of Flowable. This allows for example inferring a
message recipient address from a process variable during process runtime, instead
of hardcoding it during design-time. Listing 5.1 shows an example of a BPMN
2.0-defined message task using the extension element parameters - the name and
message size are defined with fixed values, while the destination address is a dy-
namic expression.
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Parameter Applies to Req. Description

String. Used to forward the message

Name All Messages + to all process instances that have sub-
scribed to this name.

Size All Messages + Bytes

Destination ~ All Messages + ONE host address

Target Process Instance Execution ID. Allows

Execution Generic Messages - the message to be forwarded to the ex-

1D act corresponding process instance.

. Comma separated list of values at-

Included Generic Message, p .
tached to the message. The vari-

Process Start Process -

ables become available to the destina-
tion process instance

Location of BPMN 2.0 process defini-

Variables Message

Resource Deploy Process + tion file (on simulation host machine
Path Message

classpath).
AppID ONE App Message + ONE Application identifier - which

ONE application this message targets

Table 5: BPMN 2.0 Message Task parameters in STEP-ONE. "Req." - Required

| <serviceTask id="exampleMessageTask" name="Example Message"
flowable:class="ee.mass.epm.sim.task.MessageTask"
flowable:triggerable="true" flowable:type="stepone_msg">
2 <extensionElements>

3 <flowable:field name="msg_name">

4 <flowable:string><![CDATA [Hello World]]></
flowable:string>

5 </flowable:field>

6 <flowable:field name="msg_size">

7 <flowable:string><![CDATA[1]]1></flowable:string>

8 </flowable:field>

9 <flowable:field name="msg_destination">

10 <!-- Using Dynamic expression evaluation -->

0 <flowable:expression><! [CDATA [${myDestinationVariable}]]
></flowable:expression>

12 </flowable:field>

13 </extensionElements>

14 </serviceTask>

Listing 5.1: Generic Process Message Task example

5.2.2. Events & Signals implementation

Movement- and connectivity-related events are handled via Flowable/BPMN sig-
nals. Like messages, signals have names and processes can subscribe to them
based on their names. Further, signals can have process variables attached to
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Name Description Defining in a process

Timer Event  Notifies host of time passing. De- Define the Timer Event and
fined with ISO-8601, e.g. PT45S specify the duration
represents a time duration of 45 sec-

onds
New When a connection is established, Define a signal catching event
Connection  both hosts receive signal with name  for respective signal name
Signal Device Connected and the other de-

vice’s address attached as a process

variable

Disconnected When a connection is lost, both Define a signal catching event
Signal hosts receive signal with name Dis-  for respective signal name
connected and the other device’s
address attached as a process vari-

able
Location When host position reaches a given Define a signal catching event
Signal coordinate, the host process engine  with extensionElement named
receives the signal with name New "coordinate" giving the coordi-
Coordinate. nate pair as value and specify a

location execution listener?.

Table 6: Event & signal constructs in STEP-ONE

them.

Time-based events on the other hand are handled with a modification to Flow-
able’s time/calendar APIs that use ONE-s simulated time instead of the real world
time. Time-based events are defined with an extension element, which specifies
the value and whether it is a repeating time period, a single duration.

Table 6 lists the exact signal names, attached process variables and expected
time format for Timer events.

5.2.3. Simulated Work Task & Cost Management

STEP-ONE provides functions for modelling of computational work for Simu-
lated Work tasks mentioned in 5.1.3.

A host’s computing capability is defined by: number of CPU cores: NoO fCpus,
and speed per CPU: CpuSpeed (in DMIPS, Dhrystone Million Instructions Per
Seconds - a commonly used metric for performance evaluation [LKC17]). All
CPU jobs, as defined by Simulated Work Tasks, are placed in a registered job
queue. On every simulation update, the PEA manages the execution of job units
in the queue using the algorithm shown in Alg. 1. While a single job can only be
run by a single CPU at once, multiple jobs can be processed in parallel by differ-
ent CPUs and a single CPU can work on several jobs sequentially within a single

2ee.mass.epm.sim.LocationSignalExecutionListener
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simulation update iteration if the job sizes are sufficiently small.

On every simulation update: for cpu; < 1 to NoO fCpus do
instructionsLe ft <— CpuSpeed ;
while instructionsLe ft > 0 and not ( empty(activeJobs[cpu;]) and
empty(registeredJobs)) do
if empty(activeJobs|cpu;]) then
‘ activeJobs|cpu;|.add(registeredJobs.dequeue());

end
currentJob < activeJobs[cpu;].peek();
currentJob.workLe ft —= instructionsLeft ;

if currentJob.workLeft < 0 then
activeJobs|cpu;).dequeue() ;
processEngine.notifyJobFinished(currentJob));
instructionsLe ft —= currentJob.workLe ft ;

else
instructionLe ft = 0;

end

end

end

Algorithm 1: Processor routine on every simulation update

Cost Estimation Helper. 1t is also possible to define cost parameters to a node’s
computational and networking resources. For compute resources, cost is defined
per CPU usage at a granularity of either hours or seconds, (e.g. $0.02 per hour).
For networking, cost is defined for each interface as cost of transmitting 1MB.
If these values are specified, it is possible to use the CostHelper class, which
provides methods:

1. getCostForTransmission(X, y) - returns the cost of transmitting x bytes over

network interface y.

2. getCostForTask(z, w) - returns the cost of processing a task with size z (in
MI) on host w. The time of processing the given task is rounded up to the
specified cost granularity level.

The above methods can be used in Applications or Process Service tasks for mak-
ing decisions based on costs and budgets. For instance, if a process involves
deploying and starting another process including Simulated Work tasks to some
external host, the CostHelper can be used to first perform some calculations to
determine the most cost-efficient qualifying node. Code listing 5.2 shows an ex-
ample usage of the CostHelper as part of a custom Service Task.
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class CostAwareTask implements JavaDelegate {
@0verride
public void execute(DelegateExecution execution) {
DTNHost cloud;
int taskWorkSize;
int taskBandwidth;

// Assign values to above, e.g. from process variables
> ,
// process field expressions or from simulation instance

double cpuCpost = CostHelper.getCostForTask(taskWorkSize, cloud);
double networkCost = CostHelper.getCostForTransmission(
taskBandwidth, cloud.getInterface(1));

// Make decision based on cost - e.g. whether to invoke cloud or
not ,
// set process variables accordingly, etc.

}
}

Listing 5.2: Java example of a Service Task implementation using the Cost-related
functions in STEP-ONE

5.2.4. Other features

Full Duplex network Interface. Network interfaces provided by ONE simula-
tor operate in half-duplex mode and the message routing is restricted to sending
1 message from a single host concurrently. This becomes an issue if a single
host is communicating large messages with several hosts simultaneously, e.g. a
cloudlet servicing multiple nearby MPHs. Thus, we implemented a full-duplex
network interface SharedBandwidthInterface, which considers network speed
of the upload and download links separately, and divides the bandwidth between
all active transmissions. SharedBandwidthInterface is to be used in combi-
nation with STEP-ONE-s DirectMultiTransferRouter, a message router that
enables transferring multiple messages at a time.

Reporting Tools & GUI additions. To complement the existing set of reporting
facilities in ONE, we have added two additional modules: BpmAppReporter and
DetailedBpmReporter.

The former gives aggregate statistics of processes run on all hosts during the
simulation, such as total number of processes started/completed/cancelled, num-
ber of Process Messages sent/received, number of Process Activities started, com-
pleted, cancelled, and so forth. DetailedBpmReporter, on the other hand, records
data about every individual executed process instance: the start and end times-
tamp of the process, which host executed it and various aggregate counts such as
messages received/sent, activities started/completed as part of that process.

Alongside the reports, another way of getting feedback on process executions
in STEP-ONE is using the GUI. We have modified ONE-s GUI, which provides
routing & message-related details, to also show process states during runtime (see
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Figure 29: ONE Simulator with the Process Info Extension of STEP-ONE visible.

Fig. 29). The GUI panel captures running and finished process instances of a host,
their process variables, process start time and currently executing sub-task (in case

of running processes).

Configuration. STEP-ONE uses ONE-s configuration file approach to enable
setting the parameters of its modules. STEP-ONE introduces the following new

configuration options:
* The number of CPUs and CPU speed of hosts
* Compute and networking costs of hosts

* The Upload and Download speed of SharedBandwidthInterface
* Process definitions to be auto-deployed at beginning of simulation

* Processes that should be auto-started at beginning of simulation, including

process variables that may be attached when starting them.

* Some of the features, such has generating signals for connectivity and move-
ment events can be selectively disabled, as they have some effect on perfor-

mance
An example of these configuration options is shown in Listing 5.3.
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# Configuring the Process Engine Application

fogProcessEngine.type = bpm.BpmEngineApplication
fogProcessEngine.generateMovementSignals = false
fogProcessEngine.generateConnectionSignals = true

# Processes to run at simulation start:

fogProcessEngine.autoDeployedProcesses = ./bpmn/Road_Analysis_Process
.bpmn20.xml

fogProcessEngine.autoStartedProcessKeys=roadanalysisprocessV2

fogProcessEngine.autoStartedProcessVars=segmentStartCoord
=(12.00,23.00) &segmentEndCoord=(22.00,23.00)

# Network interface

wlanInterface.type = SharedBandwidthInterface
wlanInterface.downloadSpeed = 6750k
wlanInterface.uploadSpeed = 6750k
wlanInterface.transmitRange = 45

# Assign a group of hosts to use the above engine and interface
Groupl.applicationl = fogProcessEngine
Groupl.interfacel = wlanInterface

# Setting compute capacity for the process engine
fogProcessEngine . .no0fCpus = 4

fogProcessEngine.cpuSpeed = 31500

# Specify costs for compute and networking

fogProcessEngine.cpuCostGranularity = hour
fogProcessEngine.cpuCostPerTimeUnit = 0.017
fogProcessEngine .networkInterfacesCostsPerMb = 0.015

Listing 5.3: Example excerpt of a STEP-ONE configuration file

5.2.5. Modelling Processes

Manually writing the XML of BPMN 2.0 models including the STEP-ONE- or
Flowable-specific extension elements and classpaths of STEP-ONE task imple-
mentations can be tedious. The easiest way to attain a compatible process model
is to use the Flowable modeller, which is a web-based application for visually
defining the process - its tasks and their parameters. Hence, STEP-ONE includes
an extended version of the Flowable modeller, which adds the main STEP-ONE
task types to the modellers palette and allows configuring their parameters in a
fashion similar to the overall experience of Flowable modeller.

With the STEP-ONE modeller, the extension pre-fills the Java implementation
values for the STEP-ONE tasks, while custom task behaviour can be defined by
specifying execution listeners or specifying the Java class implementation.

Fig. 30 shows a screenshot of a STEP-ONE model designed with the modeller.
As depicted on the bottom of the image, parameters such as the message name,
size can be defined in text fields, note that these fields can also be specified as
dynamic variables, e.g. the message Destination Address on the figure has been
defined as the value of variable videoAnalyserAddress.
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Figure 30: STEP-ONE version of Flowable Modeller
5.3. Case Study

We illustrate the usage of STEP-ONE with a hypothetical Smart City scenario:

The city of Tartu performs monitoring of street and road conditions along pub-
lic transport routes using image processing techniques. Video footage captured by
camera-equipped buses is analysed for objects such as potholes, cracks, snow and
ice build-up using image processing techniques [ZNF17]. The analysis is done
individually per road segment, each segment starting and ending at a bus stop.
Based on the location, traffic frequency and weather conditions, the information
system schedules analysis requests for individual road segments at different rates.
A segment analysis request initiates video capturing from a vehicle whose route
corresponds with the requested segment. Once the segment video is captured on
the bus, it is forwarded to an external video processing service. The processing re-
sults are recorded in the monitoring systems database and are used to plan timely
maintenance, repair, snow clearing etc. operations.

We show how this scenario can be realized as a process-based application in
STEP-ONE as: 1) a 2-layer cloud-centric design and 2) a 3-layer fog computing
design. In the scope of this case study, our process begins when a new request
for analysing a road segment is received and ends when the video processing re-
sults are produced, we replace the dynamic scheduling of road segment analysis
requests with some fixed request rates and leave out the management of the main-
tenance activities that occur based on the results.

The high-level process of a single segment analysis is shown on Fig. 31. It can
be seen as a composite application with the following sub-components:

* Choosing a vehicle to perform video capture
* Capturing the video
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Figure 31: Single Road Segment Analysis Process Overview

* Performing video analysis

The subparts may run on different types of devices (bus, Fog server, cloud
server). In the cloud approach, vehicle selection and video processing are run in
the datacenter. However, in the Fog design, bus stops in the city are equipped with
Fog servers. Vehicle selection is done by a Fog server located at the beginning
of the road segment, while the Fog node at the segment end performs the video
processing. In this case, the full raw video file is processed at the Fog, saving
the bandwidth of transferring it from the bus to the cloud and also shifting more
computational load to the Fog.

5.3.1. Implementing scenarios in STEP-ONE

The outline of steps needed to establish and simulate such scenarios is the follow-
ing.

1. Establishing the simulation world map - the necessary .wkt format file can
be attained by e.g. downloading a map from OpenStreetMap and converting
it to .wkt. With software such as OpenJUMP, these files can be edited or
created manually.

2. Preparing the process definitions - Using the Flowable modeller extension
for STEP-ONE, the BPMN 2.0 files can be visually designed.
» The process defines the tasks, message exchanges, signal & event lis-
teners.
* If the process includes custom code, these should be created accord-
ingly in Java.
3. Configuring the ONE simulation
» Network interfaces & routing algorithms on the nodes
* Movement models of the nodes

* Assigning applications for nodes, including bpm.BpmEngineApplication
for STEP-ONE engine

* Configuring STEP-ONE engine application
— Auto-deployed processes for hosts (host groups)
— Auto-started processes for hosts and their process variables
* Choosing which reports to generate
4. Running the simulation(s)
5. Interpreting the results
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* From GUI, including STEP-ONE-s process info pane, which shows
running and finished processes, their execution states and variables

* From Generated Reports, including Process Reports

5.3.2. Establishing the simulation world map

For the Tartu Smart City scenario, we extracted a 50 km? area .osm file from
OpenStreetMap, from which we extracted vehicle-navigable streets and converted
the result to .wkt format, ending in a file with 20440 points and 3296 features
(polylines). Then, we defined two bus routes using OpenJUMP by marking points
on the map which correspond to a bus stop, this produced files with 38 and 51
points (stops) respectively. Finally, we also specified locations for fog servers as
points, coinciding with the bus stops. The results are shown on Fig. 32, where the
bus routes are shown in green and red, bus stops are marked as squares, and Fog
servers are marked with blue circles.
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Figure 32: Simulation World Map Preparation: Tartu City streets, two bus lines
(shown in green and red), bus stops shown as squares, fog servers shown as blue
circles
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5.3.3. Describing Processes Definitions

Before we discuss the technical implementation aspects of the processes in this
scenario, we first introduce their behaviour - the tasks, messages, signals events
and variables used. The visual BPMN process description used in our case study
is presented on Fig. 33. It features several BPMN pools, the Master Process leads
the orchestration and deployment of other processes, such as the ones depicted in
the Vehicle Selection and Video Processor pools.

Master Process. The entire analysis is started by sending a Road Segment
Analysis Request message, to which the Start Event of the Master Process is
subscribed to. The request message includes an Analysis Instance Descriptor
(AID), which is a set of process variables: the segment’s start and end coordinates,
the Master Process executor network address. Using information from these vari-
ables, the first task in the process, Select Placement Strategy, determines whether
the components of the analysis (Vehicle Selector, Video Processing) should be
placed on one of the fog nodes or be Cloud. As the output of this task, the pro-
cess variables Video Processor Address, Vehicle Selector Address and
Placement Strategy (Cloud or Fog) are added to the AID, these will be used
to initiate resources during later stages of the process.

Next, the deployment and initiation of external processes takes place - first,
the Video Processor is deployed to the previously assigned address and secondly,
if applicable, the Fog version of the Vehicle Selection process is deployed at the
road segment start Fog server. The Cloud variant is assumed to be pre-deployed.

After the external processes have been deployed, the Vehicle Selection Pro-
cess is initiated through a Start Process Message Task. From the Master Process
perspective, what follows are simple receive message events (Recording Started,
Recording Finished), which reflect the progress of the segment analysis. These
messages are sent from the external processes which the Master Process has initi-
ated by this stage, described below.

Vehicle Selection Processes. The Vehicle Selection Process has the goal of
choosing a bus for deploying the "Video Capture Process" and invoking it. The
message starting this process instance includes process variables from the AID.

Cloud variant of Vehicle Selection. In the Cloud variant of this process, the bus
located closest to the segment start and whose route includes the road segment is
selected, based on AID object and queries to the Transport Information System.
Then, the process is deployed and started.

Fog variant of Vehicle Selection. The Fog variant of the process catches new
connection (WiFi) events, and in each case, queries the other device (bus) what
its” next movement destination (stop) is. If the response message indicates that the
next stop of the bus matches the requested road segment, the video capture process
is deployed and started on that device via messages. Finally, the Video Selection
Process sends a notification message to the Master Process about its progress.
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Video Capturer Processes. After receiving a start message with the AID, the
capturer process awaits for a coordinate-based signal event (Segment Start Loca-
tion Signal) matching the segment start coordinate. Once the signal is received,
the Start Capture task initiates video capture on the device. Next, another location-
based signal triggers the subsequent "Stop Video Capture" task, after which the
recorded file is sent to the Video Processor as indicated by the address from the
message which started the process. The Video Processor will be either the Cloud
(4G) or the Fog server (WiFi).

Video Processor. This process starts when receiving a message including a
road segment video file and AID. Before processing, the Master process is noti-
fied that the video has been captured. Then, the resource-intensive video process-
ing Simulated Work task is executed, the results of which are sent to the Master
process through the end message event.

5.3.4. Process Implementation in STEP-ONE

The Master Process, two variants of Vehicle Selection Processes, Video Capturer
and Video Processor workflows were created as separate BPMN 2.0 processes
(Fig. 33) designed with the STEP-ONE Flowable designer.

The Message tasks were implemented as STEP-ONE Process Message tasks,
to which the relevant variables of AID were attached. For Deploy message tasks,
e.g. "Deploy Video Capture Process", the STEP-ONE Deploy Message task was
used, with the attached resource specified by a file path in the XML.

For the Start Capture, Stop Capture, and Process Video File tasks we used the
Simulated Work task. The capture-related tasks had a worksize of 500 millions
instructions (MI), while the Video Processing Task had a 7000 billion instructions
task size.

With the exception of "Video File Message", the message sizes are relatively
small, below 1024 kB. In our setup, the Video File Message has been fixed at 100
MB.

For the "New connection” signal catching events in the Fog Vehicle Selection
we used the STEP-ONE connection signals, while the Video Capturer Location
signals use the Coordinate-based STEP-ONE signals that are based on a custom
execution listener ee.mass.epm.sim.LocationSignalExecutionListener using the
segment end coordinate variable from the AID. Other process parts, such as the
gateways and their evaluation expressions or start events were defined following
typical process modelling approaches for Flowable.

Custom Code for Tartu Scenario. To realize this scenario, two custom ONE
applications supplement the above processes. First, the scheduling of Road Seg-
ment Analyses is performed by an application which maintains the set of all road
segments based on the world map, and then periodically sends the Segment Anal-
ysis Request messages to the Cloud node, initiating the Master process.

The second custom application is the Bus response application, which re-
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sponds to "Next Stop Inquiry" messages with a message containing the bus’s next
stop coordinates.

5.3.5. Configuring Networking and Reporting

The configuration of ONE takes places with the settings.txt file, STEP-ONE-
specific settings are also to be defined there.

For Fog and Cloud nodes, we used the SharedBandwidthInterface network in-
terface for 54Mbps wired network links in the simulation. Additionally, Fog and
Bus nodes are equipped with a WLAN interface with a max transmit speed of
54Mbps, while Bus and Cloud nodes are interconnected with an interface repre-
senting 4G LTE connection with a 12Mbps speed.

We captured the full details of processes using the DetailedBpmReporter, and
some messaging data with ONE-s DeliveredMessagesReport.

5.4. Evaluation

We analysed the behaviour of the presented scenario when varying 2 parameters:
1) how often new analysis requests are scheduled; and 2) how many analyses
are scheduled concurrently. Further, we investigated how the processes perform
with different process placement strategies: when run on Cloud, Fog, or both
interchanged.

5.4.1. Experiment Setup

First, we describe how Road Segment Analysis Requests were scheduled and the
parameters which affected the process placement strategy.

Rate of starting processes . A custom ONE application, RoadmonitoringApp,
maintains the set of all road segments - S, and the set of currently running road
segment analyses - Syuning C S.

At an interval of every i seconds, it randomly chooses a set of new analysis
requests to schedule Syew € S\ Srunning » |Snew| < 1, where n is the no. of requests
to start each interval.

For each s € §,,.,,, a Master Process instance in the cloud is started, and the set
of running analyses is updated, S,uning := Srunning U Snew

When a segment request process finishes, it is removed from S,,ping-

Placement strategy - fog or cloud . The output of the "Select Placement Strat-
egy" task is a pre-configured as a simulation parameter: ratioc,.. The ratio
determines what fraction of processes use cloud in the placement. For instance, if
the value is 0.0, all processes use Fog placement strategy, if it is 0.5, then every
other process uses Fog placement.

This acts as a placeholder for a dynamic resource scheduling algorithm, that
could be easily implemented in STEP-ONE. For this case study, such an algorithm
implementation is out of scope, instead, we wish to focus on how the testbed
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Figure 34: No. of different Processes run across experiments

supports evaluating such algorithms through its general features and refer to the
2nd contribution described in section 4.1.4 as an example of an algorithm, which
was also implemented using an early version of STEP-ONE.

In our evaluation, we considered the values shown in Table 7 for |S|, i, n,
ratiocjouq, resulting in a total of 15 simulations. In each simulation the no. of
hosts is 71: 1 cloud, 60 fog servers, and 10 buses.

Parameter Value(s)

S| 87

i 400

n 14..19
ratiocioud 0.0,0.5,1.0

Fog Computation Conf. CPUs: 4 (31500 DMIPS)
Cloud Computation Conf. CPUs: 8 (35500 DMIPS)

Table 7: Evaluation parameters and their values

5.4.2. Case Study

Fig. 34 shows a breakdown of how many processes were run by type, across all
hosts. As can be expected based on the process design from Fig. 33, for each
Road Analysis Master Process, there is 1 Video Processor, 1 Video Capturer and
1 of either Cloud- or Fog Vehicle Selection process - depending on the process
placement decision. For instance, scheduling 15 requests at 400 second intervals
started a total of 1250 road analysis processes.

At up to 16 parallel requests, all process placement strategies run the same no.
of processes (with a small amount of jitter). At above 16 requests, the no. of Solo
Cloud processes becomes smaller than the other cases and peaks at near 1400. We
discuss the reason for this below in subsection 5.4.4
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5.4.3. Process allocation

Using the Fog placement strategy reduces the load for Cloud in terms of total
number of processes run, as visible in Fig. 35, which shows for each host type
the number of processes executed in each experiment. The effect is significant in
the "Solo Fog" case, where the load for cloud is reduced by 2/3 compared to Solo
Cloud. The hybrid approach does reduce load for cloud, but by 1/3.

Looking at the distribution of processes among fog hosts, Fig. 36, we can note
that fog server 25 is handling more processes than others. Server 25 is actually
located at the crossing of the two bus-lines so higher utilization of this server is
expected (see Fig. 32).

5.4.4. Process Performance - Duration

The issues with the cloud stem from the Video Analysis process. At lower loads,
Video Analysis in cloud takes 200s to complete, in all placement configurations.
However, for Cloud Solo, already from 17 parallel requests at 400s interval, the
cloud cannot complete Video Analysis processes in time before new requests are
scheduled, hugely increasing the median duration of the Video Analysis process
and by extension the Road Analysis Master Process as well (see Fig. 37).

On Fig. 37, the different behaviours of the cloud and Fog placement strategies
can be seen as well - in the Fog case, the Vehicle Selector takes more time to
delegate the capturing to a bus compared to the clouds Vehicle Selector. On the
other hand, since the bus is already at the segment start once it starts the capture
process, the Video Capture process duration is lower for Fog, since in the Cloud
case, the Capturer process includes the time spent travelling to the road segment.

When comparing the Solo Fog and Solo Cloud approaches, the Road Analysis
Process finishes faster in the fog case, which in our simulation is caused by the
network interface differences between Cloud and Fog.

Fig. 38 shows the Empirical Cumulative Distribution Functions (ECDF) of
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cesses

Master Process durations in cases where Cloud was not lagging due to a high re-
quest rate. Here, the Hybrid case has been further separated depending on whether
the analysis was placed in Fog or Cloud.

We see that all processes take more than 200s to complete, and that in both
Hybrid or Solo Fog configurations at 15 requests, 90% of processes run on Fog
finish under 1000s, while for cloud, this is around 80%. This suggests that the bus-
selection algorithm has room for improvement - the slower behaviour of Cloud is
explained by the Cloud choosing a bus which is not optimal. At request rates
higher than 15, the slow-down of cloud is again visible.

Bandwidth allocation. The impact of moving some of the communication to-
wards the edge networks can be seen from Fig. 39, which shows the message count
on the y-axis, and the bandwidth per message type with text. While the total no.
of messages handled by the cloud does not reduce drastically when considering
the hybrid or solo fog case, the impactful difference comes from the Video File
Messages, which make almost the entirety of the bandwidth consumption. The
sum of bandwidth taken by Video File messages is 117600MB, and we can see
how either half or the entirety of that is shifted to the Fog nodes depending on
the process placement. Shifting large file transfers to the local networks has an
impact on the overall process speed as well, since we consider Fog servers to have
speedier network interfaces than the 4G LTE interface which connects the buses
with the cloud.

5.4.5. Discussion

STEP-ONE is a set of tools to define and study EPM scenarios using BPMN 2.0
processes. The core of STEP-ONE is a Flowable process engine embedded into
the ONE simulator that has been interfaced with the simulators’ environment.
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The conducted case study confirmed how shifting both the processing load and
bandwidth from the cloud to Fog is feasible. In this study, we saw shortcomings
in scalability of a cloud-based solution - notably that at a 400s interval, the Cloud
alone cannot support more than 15 parallel requests. Meanwhile, Fog-oriented
placement could support 19 parallel requests without slow-downs.

While in these results Cloud showed worse scalability, it’s important to note
that in our simulation, the network interface of the cloud was slower than the fog
server’s and that the processing capability of Cloud, while higher than the fog
nodes’, was still in the same order of magnitude.

The results gave insight into the (over)-utilization of nodes (such as Fog server
25 or the Cloud node), which is useful for planning the geographical placement
and hardware needs of nodes.

With these experiments, we wished to show that STEP-ONE can be used for
in-depth study on the effect of load-balancing, scheduling etc. algorithms within
realistic scenarios. The algorithms could be implemented as process sub-tasks.
While Fog yielded promising results, an aspect which we did not consider in our
study are the capital- and operational expenses of deploying Fog infrastructure.
With some additions, other researchers could explore these directions with STEP-
ONE as well, e.g. by using the CostHelper described in section 5.2.3.

Another research theme are scenarios where data transfer is subject to temporal
quotas - e.g. the cloud or individual fog nodes have a bandwidth budget per time
unit, which can be used in process-level decision-making. This would require
creating an application or service for ONE nodes that can report their data usage
during runtime, then this data can be forwarded to the processes as variables and
be used in the decision gateways, deployment and service tasks.
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6. CONCLUSION

The Business Process Management and Internet of Things domains have a lot
to offer each other. Implementing BPM for IoT in the scope of new comput-
ing paradigms such as Edge & Fog computing can be challenging, especially for
mobility-oriented IoT applications, which were the focus of this thesis. We distin-
guish 2 styles of Fog Computing - a centralised, top-down approach and a more
autonomous, bottom-up approach. The former has received more attention in the
state of the art, in the context of process management, it marks the approach where
a global vision on the system promises optimal decisions (e.g. which resources
to invoke), but privacy is reduced, and constant stable connectivity is relied upon.
We call the notion of orchestrating and execution of processes in the edge - Edge
Process Management (EPM).

In the bottom-up approach, the edge device, such as a Mobile Process Host, is
the initiator and manager of the process and it may involve additional resources
(Cloud, Fog, other MPHs) in the process opportunistically, as they are available,
thereby representing a far more autonomous approach. Regardless, for Mobile
10T, both top-down and bottom-up approaches need to take into account loca-
tions and trajectories of hosts, bandwidth and processing size of tasks/data being
offloaded.

In this thesis, we showed in the 1st contribution how MPHs can be realized
technically, by implementing a prototype of a process-engine-embedded smart-
phone. Importantly, our MPH implementation includes the capability of migrat-
ing process instances device-to-device during runtime, increasing the resilience
of process execution in the edge, as execution is not bound to a single device,
without relying on a central manager for this. We showed how D2D edge process
migration between MPHs can be useful for a mobility-heavy domain - logistics
& transport. Practical experiments confirmed that the time-performance of the
migration procedure make this a feasible approach.

While for logistics & transportation use cases scheduling the interactions be-
tween a MPH and other devices can be left as a manual human task, other scenar-
ios need the scheduling decisions to be automated. For this, we proposed a heuris-
tic scheduling algorithm that optimizes the decisions about which cloudlet a MPH
should offload to, given the trajectory of the MPH, locations of nearby cloudlets,
offloaded task size, MPH energy level and current cloudlet load and constraints
for quality-of-service in terms of temporal performance. We then observed the
effectiveness of the algorithm in 5 specific mobility-related task offloading sce-
narios in a simulated setting, varying the positioning, load, and number of nodes
for each scenario. The results showed that the heuristic algorithm outperformed a
naive opportunistic baseline approach in terms of successfully finished tasks and
energy consumed.

Preparing and conducting the above experiments convinced us of the need for
a simulation tool which would support the design and study of various business
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processes, their execution, algorithms for their management and task scheduling
in realistic mobility-oriented scenarios. We proposed the STEP-ONE simulator as
such a tool, which extends the ONE simulator by embedding Flowable BPMS into
the simulated hosts, and integrating the ONE simulation world with the process
engines. STEP-ONE leverages ONE simulator’s existing networking and mobil-
ity features, including map-based mobility models, while adding to it modules for
modelling necessary Fog computing features such as task modelling, task execu-
tion cost estimation and adapting the graphical process designers and ONE graph-
ical interface to be directly usable for designing and monitoring simulated busi-
ness processes. We showed how STEP-ONE can be used to simulate a complex
smart-city road monitoring process choreography, based on a top-down Fog ap-
plication design. The process choreography involves Cloud resources, Fog nodes
and MPHs, the invocation of which is managed at the process-level. A detailed
analysis of this scenario showed the capability of STEP-ONE to be used for rich
evaluation of edge process management. For instance, how processes perform,
which nodes become bottlenecks, and how STEP-ONE can be used to compare
how including or excluding Fog resources in the choreography affects results.

6.1. Future Research Directions

In the 1st contribution, we focused on the Process Executors in the edge, while the
presented system design included more parties, such as the central Process Owner.
As possible future research, the Process Owner-related modules can be studied,
to identify technical challenges of implementing the full end-to-end system and
applying it in practice. In the case study of STEP-ONE’s smart city, the city
initiating the road monitoring processes can be considered as the Process Owner,
so0 an initial idea of how the process-level integration may work was attained, but a
practical implementation outside of simulated scenarios would surely reveal more
gaps and challenges of this approach. Additionally, STEP-ONE currently does not
implement the D2D migration feature, as we previously implemented on Activiti,
not Flowable. Adapting this feature to STEP-ONE should be straight-forward, as
Flowable is a fork of Activiti. Once this is done, the migration capability can be
studied under more scenarios besides the presented logistics case.

As part of future work, it is important to pursue more detailed modelling of
wireless radio, taking into account physical factors such as radio and obstacle
interference. To transform the simulation-based approach into a real-life deploy-
ment, introducing a trajectory prediction component may also be necessary if the
user is not willing to specify their destination and trajectory explicitly (e.g. when
using a navigation software). The presented heuristic scheduling algorithm can be
fine-tuned with per-parameter weights, however a means to easily infer the weight
values for a given application’s requirements is still needed.

STEP-ONE can be used to model various vehicular applications [MCK19].
A direction to analyse, for example, is the effect of other edge nodes such as
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pedestrians and cars, on the discussed scenario. On one hand, these nodes may
also be using Fog services or invoking processes simultaneously with the road
analysis processes, affecting the compute load of the fog servers or bandwidth
usage of the networks, as we saw in chapter 4. On the other hand, even if the
other nodes are not directly invoking functions of the fog resources, the radio
interference of their presence may still affect the performance.

As part of future work for the proposed testbed, modelling of networking and
computing for cloud-layer nodes can be improved, by introducing virtualization
and cluster-based concepts. STEP-ONE currently mainly focuses on catching
events from the simulation and mapping them to the process execution. To com-
plement messages, more tasks which influence the simulation world could be
added, such as a "Move to" task, which would allow to direct host movement from
processes and would be interesting to model self-driving cars, drones, robots.

The BPMN 2.0 processes used in this thesis have a fairly fixed structure. As we
noted in the State of the Art (cf. 2.5.1), CMMN based modelling of applications
could also be suitable for modelling 10T applications, due to having more relaxed
control flow structure constraints. Because CMMN is compatible with BPMN
(it can include BPMN-based sub-processes), it would be interesting to explore
introducing the proposed concepts of this thesis to a CMMN-based approach.
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SISUKOKKUVOTE

Mobiilse varkvorgu protsessihaldus

Sensorite, aktuaatorite ja mikrokontrolleritega varustatud seadmeid toodetakse ai-
na viiksemates modtmetes ja itha soodsamate hindade juures. Tédnu sellele sage-
neb taoliste seadmete integreerimine meid igapievaelus limbritsevaisse esemeisse
- alates kodumasinatest ja toostuslikest tootmisliinidest kuni tdnavavalgustite ja
loomakarjadeni. Nutikatele seadmetele ka sidevéimekuse lisamine (nt WiFi moo-
duli ndol) véimaldab nende igapdevaelu objektide arvutivorkudega liitmist, kaug-
jélgimist ja -juhtimist.

Virkvorgu ehk Asjade Interneti (ingl Internet of Things, lith IoT) visioon tdo-
tab selle trendi jatkumist ning keskendub sellele, kuidas seadmeid iiksteise ja vi-
liste siisteemidega suhtlema panna; ning kuidas hallata siisteeme ja rakendusi,
mis ndnda suuri seadmehulki hélmavad. Varajaste IoT tehnoloogiate kasutajate
seas paistavad silma valdkonnad nagu t60stuslik tootmine, logistika ja tervishoid.
Need on valdkonnad, kus driprotsesside haldus (ingl Business Process Manage-
ment, lih BPM) on olnud olulisel kohal. BPM teadusharu uurib driprotsesside
seiret, kaardistamist, disaini, analiiiisi, automatiseerimist ning tdiustamist. Sestap
on virkvorgu populaarsuse tdus dratanud huvi probleemi vastu, kuidas iihildada
IoT-d tehnoloogiatega nagu &riprotsesside haldussiisteemid.

BPM on seni olnud edukas selliste driprotsesside parendamisel, mis kasutavad
dra konventsionaalseid ettevottesiisteeme, viimased jirgivad tihti teenusekeskse
arhitektuuri (ingl Service Oriented Architecture, lih SOA) printsiipe. Teenuse-
keskne lihenemine on oluline ka IoT jaoks, lahendades iiht IoT tuumikprobleemi-
dest - ithilduvuse saavutamine heterogeensete seadmete ja nende teenuste vahel.
Juhul, kui IoT seadmed pakuvad oma funktsionaalsusi (nt sensorandmete luge-
mine, mootori liilitamine) standardsete veebiteenustena, on IoT kasutamine BPM
protsessides vordlemisi lihtne.

Samas pole selge, kuidas rakendada BPM-i IoT lahendustele, mis hdlmavad
uusi arvutusparadigmasid nagu serva- ja uduarvutus (ingl Edge Computing, Fog
Computing). Need paradigmad nihutavad arvutuste, vorgu ja andmetega seondu-
vaid iilesanded (mis tiitipiliselt paiknevad andmekeskustes) vorgu servas asuvaile
seadmetele - nagu niiteks vorku ihendatud autod, nutitelefonid, ruuterid ja liiiis-
seadmed. Kommunikatsioon servavorgus toetub lokaalse kohtvorgu kasutamisele
vOi seadmelt-seadmele (ingl device-to-device) suhtlusele. See aga muudab sead-
mete mobiilsusega arvestamise suureks véljakutseks, sest pidev levialade vahel
liikumine vahel tihendab katkendlikku iihenduvust. Kdesolevas t60s nimetatak-
se loT stsenaariume, mis taolist lilkuvust hdlmavad, mobiilseks asjade internetiks
(ingl Internet of Mobile Things, liih IToMT).

Teiseks, uduarvutuse kontseptsioon hdlmab uduserverite kasutuselevottu, mis
peaksid paiknema vOrgu servas, 10ppkasutajate ja IoT seadmete vahetus lidhe-
duses. Tegemist on iildotstarbeliste serveritega, nn mini-andmekeskustega - see
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avab voimaluse delegeerida osad arvutuslikud iilesanded IoMT seadmetelt uduser-
veritele. Ent optimaalne delegeerimisotsus peab arvestama kompromissidega joud-
luse, energiatarbimise ja ajakulu vahel. Oletame niiteks, et seadme liikumistra-
jektoor kulgeb lébi serveri kohtvorgu leviala vaid pdgusalt ning ajal, kui server on
koormatud juba ka teiste [oMT seadmete poolt delegeeritud to6de protsessimise-
ga. Sellisel juhul on tdendosus, et jarjekordse t66 delegeerimine ebadnnestub suur
ning eelistatud oleks valida moni teine piirkonnas asuv server.

Kéesolev doktorit6d uurib, kuidas vdimaldada #riprotsesside kiditamist ser-
vas, paigaldades protsessikditusmootorid mobiilseadmetele, muutes nad seelédbi
nn mobiilseteks protsessihostideks (MPH). MPH-d suudavad servavdrgus auto-
noomselt protsesse kiitada, kesksest siisteemist (ja ithendusest) sdltumata. Lihe-
nemine kasutab olemasolevaid BPM standardeid ja tehnoloogiaid, nagu nt BPMN
2.0 modelleerimiskeel, mis suurendab tulemuste otsest rakendatavust péris-siisteemidel.
Me demonstreerime, kuidas on vdimalik erinevaid IoMT niidisrakendusi BPM
standarditega modelleerida ja kiitada.

Esitleme kahte funktsionaalsust, mis toetavad mobiilseadmetel autonoomset,
pidevat ja adaptiivset protsessikditust: seadmelt-seadmele protsessi-isendite kéi-
tusaegne migreerimine; ning plaanimisalgoritm, mis otsustab, milliseid uduserve-
reid servaprotsessides delegeerimisel kaasata.

Seadmelt-seadmele driprotsesside migreerimine vimaldab protsessikiitusel
pidevalt jitkuda ka siis, kui antud driloogikale olulises asukohas olevate seadmete
hulk muutub ja pole garantiid, et leiduks MPH-d, mis oleks alati 1ihedal kitte-
saadav. Niiteks kauba transpordil, kui protsess hdlmab kauba sensorite pidevat
jélgimist, ent kaup liigub eri organisatsioonide ja isikute (ja nende seadmete le-
vialade) vahel. Migratsioonifunktsioon vdoimaldab protsessi jitkata eri servasead-
metel, kesksest siisteemist sdltumata. Katsed Android nutitelefonidega niitasid, et
migratsioonifunktsionaalsus toimib piisavalt kiiresti, et olla taolistes rakendustes
kasutatav.

Plaanimisalgoritm arvestab uduserverite asukohti, MPH liikumistrajektoori ja
kéitatava arvutuse karakteristikuid, et leida antud hetkel sobivaim uduserver. Ana-
liitisisime algoritmi diskreetse siindmuspdhise simulatsioonitddriistaga ONE eri-
nevates olukordades, varieerides seadmete asukohti, trajektoore ja serverite koor-
must. Tulemused niitasid, kuidas algoritm parandab energiasdistlikkust ning ar-
vutusi delegeerivate protsesside eduka kiditamise tdendosust.

Lébiviidud uurimustest saadud dppetundide pdhjal 16ime STEP-ONE nimelise
testkeskkonna, et soodustada edasisi serva- ja uduprotsesside haldamisega seon-
duvaid uuringuid. STEP-ONE on toériistade komplekt simuleerimaks IoMT siis-
teeme, kus rakenduste haldus ja kompositsioon pdhineb BPMN 2.0 modelleeri-
miskeelel. STEP-ONE v&imaldab protsesse simuleerida realistliku mobiilsusega,
niiteks on vGéimalik protsessimudelites arvestada tdnavakaartidel pdhinevat liiku-
mistrajektooride infot. Demonstreerime STEP-ONE-i targa linna stsenaariumiga,
kus ndidisrakendus on modelleeritud protsesside koreograafiana, mille kéitami-
ne leiab aset erinevatel ressurssidel - pilves, uduserveritel ja MPH-del. Niitame,
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kuidas STEP-ONE toetab selliste stsenaariumite ehitamist, simulatsioonipdhist
kéitamist ja uuringuid ning kuidas see hdlbustab selliste protsesside adaptiivset
juhtimist algoritmide ja otsustusmehhanismidega.
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