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1 Introduction

The first person to address the problem of diffusion was probably the Ger-
man physiologist Adolf Fick, who was interested in the way water and nutri-
ents travel through membranes in living organisms. In 1855 Fick published
his diffusion laws [1,2|. He also showed that the mean-squared displacement
of an object undergoing diffusion grows linearly in time. However, Fick’s
approach was purely phenomenological, based on an analogy with Fourier’s
heat equation. It took 50 years until Einstein derived the diffusion equation
from first principles as a part of his work on Brownian motion |3,4].

In many systems, however, the mean square displacement of the Brow-
nian particle does not grow linearly in time, but as ¢t¢ with a # 1 [5].
Depending on the value of the anomalous diffusion exponent « the motion
can be subdiffusive, i.e., slower than the normal diffusion, or superdiffusive,
i.e., faster than the normal diffusion [6].

In the present thesis we study normal and anomalously slow diffusion on
periodic substrates and subdiffusion under the action of a force alternating
periodically in time. The original study consists of four parts, the first two
focused on normal diffusion and the other two focused on processes with
anomalously slow relaxation. In the first part we investigate the motion
of non interacting Brownian particles in spatially periodic substrates in the
presence and in the absence of an external bias (papers [I-IV, VI]) and in the
second part the motion of dimers, consisting of two interacting Brownian
particles, in washboard potentials (papers [V, XI|). In the third part we
study processes with anomalously slow relaxation under the influence of
forces that are periodic in space (papers |VII-IX]) and in the fourth part
subdiffusion processes in the presence of time-dependent forces (paper |X]).

The problems investigated are of importance for various applications in
physics, chemistry, nanotechnology, as well as molecular biology [7-11]. In
particular, the problems involving normal diffusion on a periodic potential,
besides describing a real Brownian particle, are of relevance in numerous
other contexts such as superionic conductors [12-14] and the motion of
fluxons in superconductors [15], Josephson junctions [16,17], weakly pinned
charge-density-wave condensates [18], diffusion of atoms and molecules on
crystal surfaces [19-23|, particle separation by electrophoresis [24], rotating
dipoles in external fields [25], rotation of molecules in solids [26], mode lock-
ing in laser gyroscopes [27], plasma accelerators [28|, as well as biophysical
processes such as neural activity and intracellular transport [29,30].

In a variety of processes involving transport in constrained geometries
such as nanoporous materials and ion-channels, a subdiffusive behavior was
observed on a finite time scale [31-34]. Anomalously slow transport can
occur also due to the disordered character of the medium [5]; the prototype
example is the movement of charge carriers in amorphous semiconductors.
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Similarly, many biological systems, such as RNA polymerases, exonuclease
and DNA polymerases, helicases, the motion of ribosomes along mRNA,
the translocation of RNA or DNA through a pore, are advantageously de-
scribed as particles moving along a disordered substrate, and are charac-
terized by anomalously slow diffusion [5,35,36]. Furthermore, during the
hydration process of macromolecules water is experimentally observed to
undergo subdiffusion. At the same time, many biological systems as well
as various condensed matter and artificial nanosystems exhibit (as an ap-
proximation) a periodic structure, thus requiring a study of anomalously
slow transport processes in periodic force fields and the response to applied
external fields.

For the investigation of the normal diffusion, the Langevin and Fokker-
Planck equations are used. The anomalously slow diffusion is studied through
the fractional Fokker-Planck dynamics and the continuous time random
walk, i.e., within our approach we model the subdiffusive dynamics in terms
of a suitable residence time probability density with a long tail [5, 36, 37]
rather than through a random potential [5,38,39]. We employ both, ana-
lytical as well as numerical methods.

The structure of the thesis is the following: in Sec. 2 the general in-
troduction to the theory of normal diffusion is made; in Sec. 3 Brownian
motion in piecewise linear periodic potentials with one and two minima per
period is investigated; in Sec. 4 the motion of dimers in a washboard poten-
tial is studied; in Sec. 5 the general introduction to the anomalous fractional
diffusion is presented as well as a part of the original study on the numerical
simulation of the fractional Fokker-Planck equation through the underlying
continuous time random walk (paper [VIII]); in Sec. 6 we study subdiffu-
sion under the action of a force periodic in space; in Sec. 7 processes with
anomalously slow relaxation in the presence of a time-dependent force are
investigated. Possible applications and motivation of the problems studied
are presented and discussed more in detail at the beginning of each chapter,
and at the end the conclusions are drawn. In Sec. 8 the summary is made.
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2 Normal diffusion: Basic concepts

2.1 On the history of Brownian motion

The phenomenon known today as Brownian motion was first recorded prob-
ably by the Dutch physiologist and botanist Jan Ingenhousz, who in 1765
noted the irregular movement exhibited by motes of carbon dust in ethanol.
In 1827 similar observations were made by Adolphe Brongniart and by
Robert Brown, a Scottish-born botanist, whom the discovery is generally
credited.

Having observed the unceasing motion of the pollen in water, Brown
thought at first that the movement must be due to the living nature of the
particles under observation. However, repeating the experiment with pollen
kept in alcohol for several months and with non-organic particles, he ob-
served the same results for particles of matter that he definitely considered
to be non-alive [40,41]. Thus, the explanation had to lie more on physical
than biological grounds.

Brown was never able to adequately explain the nature of his finding:
it remained a puzzle for a long time also for other scientists. Many phys-
ical hypotheses and explanations for Brownian motion were put forward,
including electrical effects, polarity, surface tension, temperature gradients,
etc. (see Ref. [42]).

The qualitative explanation of the Brownian motion as a kinetic phe-
nomenon was proposed by several authors. An important experimental step,
from which scientists could begin to consider the fundamental implications
of Brownian motion, was made by Leon Gouy in the late 1880s. In a series
of experiments he convincingly demonstrated that Brownian motion was a
fundamental physical property of fluid matter [43-45]. Gouy verified pre-
vious reports of qualitative trends, such as the decrease of “vigour” of the
observed motion with increasing particle size and increasing solvent viscos-
ity (temperature). Gouy’s conclusions may be summarized by the following
seven points [46]:

- the motion is very irregular, composed of translations and rotations,
and the trajectory appears to have no tangent;

- two particles appear to move independently, even when they approach
one another to within a distance less than their diameter;

- the smaller the particle, the more active the motion;

- the composition and density of the particles have no effect on the
motion;

- the less viscous the fluid, the more active the motion;
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- the higher the temperature, the more active the motion;
- the motion never ceases.

In 1900 F. M. Exner undertook the first quantitative studies, measuring
how the motion depends on the particle size and the solvent viscosity.

The first person to elaborate a consistent theory behind Brownian mo-
tion was Louis Bachelier, a French mathematician. In his PhD thesis, pre-
sented in 1900, Bachelier proposed the random walk as the fundamental
model for financial time series [47-49|, many decades before this idea be-
came the basis for modern theoretical finance. He was apparently also the
first to see the connection between discrete random walks and the continu-
ous diffusion equation.

However, the term “random walk” was originally proposed by Karl Pear-
son in a letter titled The Problem of the Random Walk, sent to Nature in
1905 [50]. Pearson was interested in a solution of the following problem [50]:

A man starts from a point O and walks | yards in a straight line;
he then turns through any angle whatever and walks another [
yards in a second straight line. He repeats this process n times.
I require the probability that after these n stretches he is at a
distance between r and r + dr from his starting point, O.

The letter was answered by Lord Rayleigh [51|, who had already solved a
more general form of this problem in 1880, in the context of sound waves
in heterogeneous materials (see also [52]).

In the same year 1905, Albert Einstein completed his doctoral thesis, in
which he discussed a statistical theory of liquid behavior based on the hy-
pothesis of the existence of molecules. He later applied his kinetic-molecular
theory to explain the phenomenon observed by Brown [3,4,53|. In particu-
lar, Einstein suggested that the random movements of particles suspended
in a liquid are an effect of the random thermal agitation of the molecules
that compose the surrounding liquid. In fact, in the work published in
1905 [3,53] Einstein showed that the kinetic theory of heat predicts an un-
ceasing motion of small suspended particles. However, he was not sure that
the phenomenon discussed was exactly the Brownian motion, but considered
this as a reasonable hypothesis. After publication of the work, Siedentopf
and Gouy pointed out that the effect he discussed was really the Brownian
motion, since not only the qualitative properties, but also the predicted or-
ders of magnitude of the effect were correct, as discussed in the Einstein’s
second work in 1906 [4].

FEinstein, in his analysis, connected the motion of the suspended particles
with diffusion and showed that this diffusive behavior follows from three
postulates:

15



(1) the particles considered do not interact with each other: their trajec-
tories are independent;

(2) the motion of the particles lacks long-time memory: one can choose
a time interval such that the displacements of the particle during two
subsequent intervals are independent;

(3) the distribution of the particle displacements during the subsequent
time intervals possesses at least two moments; moreover, for the force
free situation this distribution is symmetric, i.e., it is an even function
of the displacements.

The displacement of the particles can thus be considered as a result of many
small, independent, equally distributed steps. The further development of
his reasoning is very close to what is called now a Kramers-Moyal expansion
[54-56]. That line of reasoning was also adopted by Smoluchowski, who,
however, assumed a more radical approach based on combinatorics.

Marian von Smoluchowski, who had begun to work on the problem of
Brownian motion around 1900 but did not publish until 1906, obtained es-
sentially the same expression for the time dependence of displacement as
Einstein, though with a numerically different coefficient [57] (later found by
Langevin to be in error). Importantly, Smoluchowski countered one argu-
ment against the molecular origin of the irregular motion of large particles,
which was that any molecular “impulse” could never give a strong enough
push to generate the observed displacements. The error lies basically in as-
suming that a visible displacement must arise from a single collision. Unlike
Einstein in his original paper, Smoluchowski also considered the experimen-
tal literature, making a clear unhesitating link between the diffusion theory
and Brownian motion. Finally, Smoluchowski obtained an expression that
directly predicted an exponential “sedimentation equilibrium” equivalent to
the “aerostatic” law describing the variation of atmospheric pressure with
height: the same sedimentation equilibrium measured later in the first ex-
periments of Jean Perrin [46].

In 1908, Paul Langevin demonstrated a third derivation of the time
dependence of the mean square displacement [58-60|. His derivation was
spectacularly simple and direct compared to the others: Langevin equated
forces on the colloidal particle, directly introducing a fluctuating random
force to represent the impulses of the molecules, and using, as Einstein and
Smoluchowski had done, a Stokesian description of the “opposing” frictional
force due to the motion of the particle through the liquid. Through the the-
orem of the equipartition of kinetic energy the mean particle velocity was
linked to the temperature and to Avogadro’s number. Langevin obtained
an expression consisting essentially of Einstein’s diffusion term, plus a de-
caying exponential correction. This last term resolved what had been an
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assumption in Einstein’s method, that beyond some “Brownian time” (the
characteristic decay time in the exponential term) the particle motion could
be assumed completely “diffusive”.

Early attempts to quantify anything in Brownian motion had met with
great difficulties. In fact, before the parallel theoretical treatments of Ein-
stein, Smoluchowski, and Langevin, the real problem was that the experi-
mentalists did not know what to measure. But after 1905, theory guided
experimentalists toward more meaningful measurements. The most deci-
sive experiments in support of Einstein’s theory on diffusion were carried
out by French physicist Jean Perrin, who eventually won the Nobel Prize
in physics in 1926. Furthermore, Perrin’s published results of his empirical
verification of Einstein’s model of Brownian motion are widely credited for
finally settling the century-long dispute about the atomic theory of John
Dalton.

Motivated by the description of Brownian motion different but strongly
interconnected approaches were to describe phenomena where the stochastic
nature of the system plays a considerable role. The theoretical approaches
of Einstein and Smoluchowski from one side and of Langevin from the other
side, marked the two leading strategies to model fluctuation phenomena, the
former based on the notion of probability densities, the latter based on the
notion of stochastic trajectory. These approaches, refined from the physical
and mathematical point of view, provide now the theoretical framework for
analyzing both equilibrium and non-equilibrium processes on a mesoscopic
scale.

2.2 Langevin description: Stochastic differential equations

If a particle of mass m is immersed in a fluid, a friction force will act on the
particle. The simplest expression for such a friction or damping force FY is
given by Stoke’s law,

Fy=—nv, (2.1)

where v is the velocity of the particle and 7 is the viscous friction coeffi-
cient. Stoke’s law is valid if the particle is so large that there are many
simultaneous collisions of the fluid molecules with it and if the velocity is
low enough so that the flow of the fluid around the particle is laminar. For
a spherical particle n = 6myR, where R is the radius of the particle and ~
is the fluid viscosity. In the absence of any additional force, according to
Newton’s law the equation of motion for the particle reads,

do(t)
T

The physical mechanism underlying friction is the collision process be-
tween the molecules of the fluid and the particle. The momentum of the

+no(t)=0. (2.2)
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particle is transferred to the molecules of the fluid and therefore the ve-
locity of the particle decreases to zero. The differential equation (2.2) is
a deterministic equation whereas the velocity v(t) at time t is completely
determined by the initial value v(0),

v(t) = v(0)e 7, (2.3)

7 =mn~! is a relaxation time. However, Eq. (2.2) is valid only if the mass

of the particle is large so that its velocity induced by thermal fluctuations
is negligible.

We now take into account the fact that the environment is a heat bath
at thermal equilibrium with temperature 7. We also assume that all tran-
sients have died out and the particle is in thermal equilibrium with the
environment. From the energy equipartition law it is known that in equi-
librium the mean kinetic energy of the particle reaches (per spatial degree
of freedom) the value

%m<02> = % kT, (2.4)
where kg is Boltzmann constant. For a small enough mass m the thermal
velocity vy, = \/kBT'/m may be observable and therefore the velocity of the
particle can no longer be described exactly by Eq. (2.2) with the solution
(2.3). If the mass of the particle is still large compared to the mass of the
molecules, one expects Eq. (2.2) to be valid approximately. Therefore, it
must be modified so that it leads to the correct thermal energy (2.4). This
result is achieved by adding a stochastic force £(¢) to the right-hand side
of Eq. (2.2), i.e., the total force due to the molecules acting on the free
Brownian particle is decomposed into a continuous damping force Fj; and a
fluctuating force £(t) [58,59] (cf. also Ref. [61,62]): as a result the particle
will be in an animated and irregular state of motion. Thus, Brownian
motion is the motion of a macroscopically small but microscopically large
particle that is subject to the collisional forces exerted by the molecules of
a surrounding fluid. The equation of motion of the free Brownian particle
is given as

du(t)
dt

m = —nu(t) +£(1). (2.5)
The properties of the random force £(t), also called Langevin force, are
given only on average. Equation (2.5) is called Langevin equation [60] and
it is the first example of a stochastic differential equation, i.e., a differential
equation which contains a stochastic term £(t).

Due to the random force £(t), it is natural to introduce a statistical
ensemble of the stochastic processes in (2.5), related to independent re-
alizations of the random fluctuations £(¢) [54]. Because in the Langevin
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equation (2.5) the stochastic force £(t) varies from system to system in the
ensemble, the velocity of the particle will also vary from system to system,
i.e., it will become a stochastic quantity too. Therefore, it is natural to
ask for the probability to find the velocity in the interval (v,v + dv), i.e.,
the number of systems of the ensemble whose velocities are in the interval
(v, v+ dv) divided by the total number of systems in the ensemble. Since v
is a continuous variable one introduces the probability density P(v); then,
the probability density times the length of the interval dv is the probability
of finding the particle in the interval (v,v 4+ dv). This distribution func-
tion depends on time ¢ and the initial distribution. The probability density
P(v,t) for v at time ¢ follows as an ensemble average of the form

P(v,t) = (6(v —0(t))), (2.6)

where §(v) is Dirac’s -function; by (...) we indicate the average over inde-
pendent realizations of the random process £(¢). An immediate consequence
of Eq. (2.6) is the normalization

[e.e]

/ P, t)dv =1, (2.7)

—0o0

and that P(v,t) > 0 for all values of v and t.

The method of the Langevin equation gives a natural way for a stochas-
tic generalization of the deterministic description. However, an adequate
mathematical grounding for the approach of Langevin was not available un-
til more than 40 years later, when It6 published his formulation of stochastic
differential equations [63].

2.3 Gaussian white noise

The right hand side of the Langevin equation (2.5) represents the effects
of the thermal environment: the energy dissipation, modeled as viscous
friction, and random fluctuations in the form of the thermal noise £(t).
Thermal fluctuations are assumed to be unbiased, that is,

{€@)) =0 (2.8)

for all times ¢. The condition (2.8) ensures also that the equation of motion
of the average velocity (v(t)) is given by the deterministic limit (2.2).

Since the friction force only depends on the present state of the system
and not on what happened in the past, also the random fluctuations are
assumed to be uncorrelated in time,

(E@REE) =0 i tA7. (2.9)
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Furthermore, the fact that the friction involves no explicit time dependence
has its counterpart in the time-translation invariance of all statistical prop-
erties of the fluctuations, i.e., the noise £(¢) is a stationary random process,
which implies that (£(¢)E(¢')) = (£(t — t')€(0)). Finally, since the friction
force acts permanently in time, the same is valid for the fluctuations. Dur-
ing a small time interval the effect of the environment thus consists of a
large number of small and, according to Eq. (2.9), practically independent
contributions. Due to the central limit theorem [64] the net effect of all these
contributions on the particle coordinate z(t) is Gaussian-distributed. All
the discussed features together with (2.4) lead to the fluctuation-dissipation
relation [54,65-68],

(E()E[X) = 2mkpT 0(t — 1) ; (2.10)

the quantity nkpT is called the intensity of the noise or the noise strength
of the Langevin force [54]. The fluctuation-dissipation theorem expresses
the fact that the energy dissipation and random fluctuations are not inde-
pendent of each other since both of them have the same origin, namely the
interaction of the particle with a huge number of microscopic degrees of
freedom of the environment. Since £(¢) is a Gaussian random process, all
its statistical properties are completely determined by the mean value (2.8)
and the autocorrelation function (2.10) [54,64,69]. The only particle prop-
erty which enters the characteristics of the noise is the friction coefficient 7,
which may thus be viewed as a measure of the strength of its coupling to
the environment.

A random force with the d-correlation (2.10) is called white noise, be-
cause the spectral distribution [54], which is given by the Fourier transform
of (2.10), is independent of frequency. If the stochastic forces are not J-
correlated, i.e., if the spectral density depends on frequency, one uses the
term colored noise and Eq. (2.10) must be modified. Of course, white noise
does not exist as a physically realizable process; it is, however, fundamental
in a mathematical, and indeed in a physical sense, in that it is an ideal-
ization of many processes that do occur. Furthermore, situations in which
white noise is not a good approximation can often be indirectly expressed
in terms of white noise [63]. In this sense, white noise is the starting point
from which a wide range of stochastic models can be derived.

2.4 Einstein relation

Averaging over many realizations of the stochastic process one finds the
average particle position (z(¢)) and the average velocity (v(¢)). Usually, one
is interested in the asymptotic (¢ — oo) behavior of these quantities. For
free Brownian motion Eq. (2.5) yields that in the long time limit (¢ — o0)
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(v) =0 and (z) = (x(0)) + (v(0))7. The general definition of the particle
current is,

o) — 1t ) = (0)

t—00 t

(2.11)

Besides the average particle position and current one is usually also
interested in the behavior of the mean square displacement,

(02%(1)) = ([w(t) — (x(t)]*) = (&*(1)) — (=(t))* (2.12)

Dealing with normal diffusion, in the long time limit the mean square dis-
placement grows linearly in time, and the diffusion coefficient is defined in
the following way,

b 657(0) = 67(0)
t—o00 2t

(2.13)

In the absence of an applied force Eq. (2.13) defies the free diffusion coeffi-
cient Dy .

Let us find an expression for the coefficient Dy characterizing the free
diffusion. Multiplying the Langevin equation (2.5) by z(t) and averaging
over a large number of different particles, one obtains,

m (E(t)(t)) = —n (@()x(t)) + €z (t)); (2.14)

here # = da/dt and & = d%z/dt>.

A crucial implicit assumption in Eq. (2.5) is the independence of the
friction force, and hence also of the fluctuation force £(t), from the system
coordinate z(t) [63], i.e.,

(Et)z(t)) =0 for t>t". (2.15)

This relation reflects the assumption that the environment can be repre-
sented as a heat bath so that its properties are practically not influenced
by the behavior of the particle [65].

The left hand side of Eq. (2.14) can be written as

m{iz) =m %(a’;@ —m (&%), (2.16)

From Eq. (2.13) with (2.12), we have for asymptotically large times that in
the absence of an external force

2Dt = (z%(1)), (2.17)

as (z(t)) = const. for ¢ — oo. By differentiating (2.17) we have that
(zx) = Do and hence d(zz)/dt = 0. Observing (2.4) and (2.15) we finally
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obtain from (2.14) and (2.16) for the free diffusion coefficient the following
expression [3,4,53,63],
Dy = kT , (2.18)
n

known as Einstein relation. Equation (2.18) is a special form of the fluc-
tuation-dissipation theorem; it implies that fluctuation and dissipation are
intimately related, and that one cannot be present without the other. How-
ever, dissipation would also occur if the collisions with the molecules were
not randomly distributed, but occurred at regular intervals. In that case
the motion of the particle would be damped, but would not fluctuate. The
reason for the relation between dissipation and fluctuation is that the time
between collisions is a random variable [62].

One can easily verify that the Einstein relation (2.18) is valid also in
the presence of a space-independent force; in this case the system is out of
equilibrium and instead of (2.4) one has

1 1
5 m(ov?) = 5 ksl (2.19)
where (v?) = (v?) — (v)2.

2.5 Overdamped dynamics

In the presence of an external force f(z,t) the Langevin equation (2.5)

becomes,

d2xz(t)
dt?

dx(t)

m dt

= f(z,t) - +&(1). (2.20)

The dynamics of fluctuations of microscopic systems can often be described
within a good approximation with the overdamped dynamics [70,71]. In this
approximation the inertial term in the equation of motion is neglected [72].
Hence the second order differential equation (2.20) can be replaced by the
following first order differential equation,

dz(t)
dt

= [, ) +£(1), (2.21)

which defines the overdamped Brownian dynamics.

Importantly, most of the microbiological systems are well modeled by
the overdamped approximation. As an example, we consider the kinesin
which is one of the biological (molecular) motors [73-75]. The kinesin moves
along microtubules inside the cells [76-78| and after its head detaches from
the microtubule binding site, it engages in Brownian movement [72]. Mi-
crotubules are spatially periodic structures built of tubulin heterodimers
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which are arranged in rows called protofilaments which, in turn, are ori-
ented nearly parallel to the microtubule axis. A heterodimer is about 8 nm
long and is composed of two different globular subunits, a- and g-tubulin.
This leads to the reflection symmetry breaking of the microtubules. As a
consequence, the corresponding potential with period 8 nm is asymmetric.

One should note that the velocity v(t) = dx(t)/dt in the corresponding
Langevin equation is the velocity of the kinesin head during the diffusion
phase, which should be distinguished from the overall velocity of the kinesin
moving along microtubules. The radius of the kinesin head (the ellipsoidal
catalytic core head is often approximated as a sphere) is R = 2.94nm,
and the mass of the head is approximately m = 6 x 10720 g. The aqueous
medium of the cell around the kinesin head has a viscosity of approximately
v = 0.01g/cm s. Therefore, = 5.54 x 10~® g/s and the Langevin relax-
ation time is 7 = 1.08 x 1072 s, which is so fast that the inertial term in
the equation of motion can be neglected [72].

Approximating the second order Langevin equation by the first order
equation affects neither the fluctuation-dissipation relation (2.10) nor the
Einstein relation (2.18).

2.6 Random walk model and master equation

Brownian motion can be well described also by the random walk model,
proposed by Pearson. Let us consider here a one-dimensional random walk.
Following the general picture presented by Pearson, we introduce a one-
dimensional lattice {z; = iAx} with a lattice Az and i = 0,£1,4+2,... We
assume that at every time-unit a particle at site ¢ hops to site ¢ £ 1 with a
probability ql?t (see Fig. 1); qf +¢; = 1. Such a random walk corresponds
to an overdamped motion and is described by a master equation for the site
populations P;(t) [64,79],

9
ot

P;(t) is normalized as ), P;j(t) = 1. The first two terms on the right hand
side of Eq. (2.22) present the gain of state ¢ due to the transitions from states
141 and the last term presents the loss due to transitions from 7 into states
i £ 1, i.e., the master equation is a gain-loss equation for the probabilities
of the separate states i. The quantities gz-+ = qj v; and g; = q; v; are,
correspondingly, the forward and backward rates. Using the normalization
condition for the splitting probabilities one obtains that v; = gi+ +g; ., 1ie.,
v; represents the total rate; in more general terms, v; is the time-scaling
parameter at site i. In our problem v; = 1, as we assume that at every time
unit a particle at site ¢ hops to site ¢ 1. It is obvious that the random walk
described by the master equation (2.22) is a Markov process, i.e., it is not

Pi(t) = ;"1 Piea(t) + 9531 P (8) — (9 + 97 ) Pi() (2.22)
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Figure 1: Random walk on a one-dimensional lattice: ql?t are the splitting
probabilities to jump from site ¢ to site ¢ £ 1; the quantities gii are the
forward and backward rates; Az is the lattice period.

affected by any knowledge of the process at earlier times: the probability at
a later time is determined only by the probability at time ¢ = ¢ [54,63,64].

FEinstein’s explanation of diffusion and Pearson’s random walk are both
based on the same two assumptions, namely, the existence of a mean free
path (the step length in Pearson’s model and the distance between the
collisions in Einstein’s description) and of a mean time (to perform a step
in Pearson’s model and the time between collisions in the description of
Einstein). Therefore, in the limit Az — 0 the random walk model leads to
the same results as obtained by Einstein.

2.7 Fokker-Planck equation

Another widely used description of diffusion under an external force field
is offered by the Fokker-Planck equation [54], which is just an equation
of time evolution for the probability distribution function; it follows as a
generalization of the Einstein’s approach, based on the discussion of the
deterministic equations for the probability densities.

Let us derive the Fokker-Planck equation for the random walk model of
Sec. 2.6. Using the notation P;(t) = P(x;,t) and Pyq(t) = P(x; £ Ax,t)
we introduce the finite difference operator

AP(z;,t) Pz + Ax,t) — P(x; — Ax,t)

Az 2 Az ’ (223)
for small Az Eq. (2.23) is equivalent to the operator
AP(zi,t) Pz + Ax/2,t) — P(x; — Az /2,t) (2.24)
N Az ’ ’
Applying twice the operator (2.24), we can write,
A [AP(zi,t)] _ Plzi+ Az, t) + P(w; — Az, t) — 2P(z,) (2.25)
Az Az B (Az)? T

In the continuous limit, Az — 0, the finite difference operator (2.23) yields
the partial derivative operator 9/0x and (2.25) gives us 9?/9z2.
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Let us first consider the case when there is no external force applied on
the system; natural boundary conditions are assumed. Then the rates to
jump to left or right are site-independent and equal, i.e., g;r =g, =g. The
master equation (2.22) becomes,

2P0 = g [Pia(t) + Poa (1) — 2R (0)] (2.20)
In view of (2.25)

O P =m o [Afafﬂ | (2.27)
with

o = (Az)?g = (Az)*v/2. (2.28)

Taking in Eq. (2.27) the continuous limit, we obtain,

0 P(z,t) o P(z,t) (2.29)
— P(z,t) = a1 = P(x,1); .

ot s 1 922 s U)o

the normalization condition becomes, [ P(z,t)dz = 1. Assuming for the
initial distribution the delta-function, P(xq,ty) = d(x¢g — Xo), the solution
of Eq. (2.29) is given by Gaussian distribution,

P(z,t) = [4mon (t — to)] /% exp [-%} (2.30)
Therefore, oy = Dy is the free diffusion coefficient and

D) 2

e P(z,t) = Dy 922 P(z,t). (2.31)
The latter equation is the diffusion equation for the probability density
P(z,t).

In the case of a space and time dependent force f(z,t), taking into
account that g7 (t) + g; (t) = v;(t) = v, the master equation (2.22) can be
rewritten,

SR = 2 [Palt) + Poa(t) — 2R00)
— 5 1o () — 51 0] P ()
— g1 () =g ()] Pia(t)} - (2.32)
In view of definitions (2.23) and (2.25), and posing
a1 = (Az)? (g (t) + g7 (1)] /2 = (Ax)?v/2 (2.33)

25



and

az = Az [gf (1) - g; (V)] , (2.34)
we obtain,
O P = o [Afﬂ o (2.35)

Taking the continuous limit in Eq. (2.35), we can write,

2

0
—P(I’,t):alw

o Pz,t) — o P(x,1)] ; (2.36)

ap is a function of space and time. Comparing Eqgs. (2.28) and (2.33) one
sees that a; = Dy also in the presence of an external force. Finding the
first moment of Eq. (2.36) one sees that 9(x)/0t = (a3). Comparing this
result with the one from the Langevin equation (2.21) corresponding to
the master equation (2.32) and therefore also to Eq. (2.36) one see that
ag = f(x,t)n~t. Equation (2.36) can be written therefore,

0 9 [f(a;t)

P(z, t)} + Dy 88—;2 P(z,t). (2.37)

The latter equation is the Fokker-Planck equation corresponding to the
Langevin equation (2.21): it describes the overdamped Brownian motion
under a force field f that can be space- and time-dependent. The first term
on the right hand side of Eq. (2.37) is the drift term and the second one
the diffusion term. In the absence of an external force the Fokker-Planck
equation (2.37) reduces to the diffusion equation (2.31).

The diffusion-like equation (2.37) was first proposed by A. D. Fokker
in his dissertation in 1914 [80], and discussed by M. Planck in 1918 [81].
In fact, Fokker presented an equation for the distribution function of the
velocity, P(v,t) [see Eq. (2.41)]. In 1915 Smoluchowski proposed the same
equation for the distribution function of the position, P(z,t), [82] and there-
fore Eq. (2.37) is also known as the Smoluchowski equation.

The Fokker-Planck equation (2.37) can be also written in the form of a
continuity equation for the probability density P(x,t):

) )
= Plat) = == J(a.t). (2.38)

where J(x,t) is the probability current,

J(a,1) = f(fl’ ‘)

P(x,t) — Dy a% P(x,t). (2.39)
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A general Fokker-Planck equation for IV macroscopic variables (1,...,(n
= {(} has the form [54]

P = Z (ch + Zag 5z D | U0
(2.40)

the drift vector Di(l) and the diffusion tensor Di(]?) (see e.g. Ref. [54] for the
exact definitions) generally depend on the N variables.

The Fokker-Planck equation for P(v,t) corresponds to the underdamped
Brownian motion in the absence of an external force, which may be de-
scribed also by the Langevin equation (2.5). The Fokker-Planck equation
for P(v,t) reads [54],

2

9 plot) = L2 (P, 1)] + ” L Dy o

= 1 , 5 P(v.1). (2.41)

Considering the underdamped Brownian motion in the force field f(x,t),
the system is described by the Langevin equation (2.20), or equivalently by
the Kramers (Klein-Kramers) equation for P(z,v,t) [54,55,83],

o [0, 0 n, fan] w08
P(a:,v,t)—{ o U+8v[ v p- 2D 502 P(z,v,t).

(2.42)
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3 Brownian motion in periodic potentials

3.1 Motivation and applications

The investigation on Brownian motion in periodic potentials originates from
the question, whether it is possible to convert Brownian motion into useful
work. The basic idea can be traced back to a talk given by Smoluchowski
in 1912 [84], and was later extended by Feynman [85]. The main ingredient
of Smoluchowski and Feynman’s Gedankenexperiment now known as the
Smoluchowski-Feynman ratchet is an axle with vanes at one end and at
the other end a so-called ratchet, reminiscent of a circular saw with asym-
metric saw-teeth (see Fig. 2). The whole device is surrounded by a gas
at thermal equilibrium. If the described device could turn freely around,
it would perform a rotatory Brownian motion due to random impacts of
gas molecules on the paddles. Whereas the pawl blocks the turns of the
axle in one direction and allows it to turn in the other one, it seems quite
convincing that the whole gadget will perform on the average a systematic
rotation in one direction, even if a small load in the opposite direction is
applied [65]. However, this would be in contradiction with the second law
of thermodynamics (see Refs. 85, 86]).

The Smoluchowski-Feynman ratchet has been experimentally realized
on a molecular scale by Kelly, Tellitu, and Sestelo [87,88]. The predicted
absence of a preferential direction of rotation at thermal equilibrium was
confirmed in nuclear magnetic resonance experiments.

A bona fide modeling and analysis of the ratchet and pawl device as it
stands is rather involved, especially on a microscopic level (see Ref. [65]).
However, one can focus on a considerably simplified mathematical model,
which retains the basic qualitative features, and is formulated as Brownian
motion in a one-dimensional spatially periodic potential.

Brownian motion in periodic structures has now become a relevant prob-
lem in several fields of physics, being very interesting from technological,
experimental, as well as theoretical point of view, and has been a subject of
intense investigations already many years [54,89-91|. It represents a model
that can be applied to numerous systems named already in Sec. 1.

3.2 General model

Brownian motion in a periodic potential Uy(z) = Up(x + L) under the
influence of a constant bias F' can be described by the following Langevin
equation:

d?z(t) _ dUp() - dz(t)

dez dx dt +E(0)- (3:1)
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Figure 2: The Smoluchowski-Feynman ratchet and pawl machine.

In Eq. (3.1) the total potential reads,

U(x) =Uy(x) — Fz, (3.2)

and the resulting force
dU (x)
- _ 3.3
fw) =-S5 (33)
when averaged over the period is thus F,

1 z+L

Gahi=7 [ fa)de=F. (34)

The total potential U(x) is referred to tilted periodic potential, or wash-
board potential.

In the model of the Smoluchowski-Feynman ratchet the periodic poten-
tial corresponds to the ratchet (wheel) and the constant force F' models
the load; in the absence of load F' = 0. As the symmetry of the ratchet is
broken, because of the pawl mechanism (teeth are asymmetrical), also the
reflection symmetry of the substrate potential is broken: no real number x’
exists such that the relation Up(z’ — x) = Up(z’ + ) is fulfilled for every
. In the remainder of this chapter, however, we concentrate on the more
general problem of Brownian motion in spatially periodic force fields and
do not assume the broken reflection symmetry by definition.

In the overdamped approximation the Langevin equation (3.1) describ-
ing the Brownian motion in a periodic potential reduces to

dx(t) dUp(x)

=g T (3.5)
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3.3 Phenomenology and quantities of interest

If F =0, as long as the fluctuations are zero on average, the average current
is zero, i.e., no directed motion occurs. At the same time, because of the
excitation due to the Langevin forces the particles may leave the potential
well and jump either into the neighboring left or right potential well or they
may move in the course of time to other wells which are further away. For
long enough time the particles will thus diffuse in both directions of the z-
axis. In the long-time limit this diffusion can be described by the effective
diffusion coefficient D, defined by (2.13). Instead, in the presence of the
constant bias F' the particles will preferably diffuse in the direction of the
bias and in average there is a current (v), defined by (2.11), which depends
on F. Notice that in the following we use the notation v instead of (v) for
the current.

Let us discuss in short the overdamped and underdamped motion in a
tilted periodic potential. The total potential (3.2), depicted in Fig. 3, is
a corrugated plane with an average slope determined by the external force
F'. There exists a value of the tilting force F' = F,,. such that for values
F > F, the effective potential U(z) has no minima, whereas for F' < Fi,
minima do occur; Fg; is called the critical tilting.

In the overdamped regime and in the absence of the noise &£(t), the
particles in a washboard potential perform a creeping motion. If the tilting
force F' is large enough, so that the potential U(z) has no minima, the
particles move down the corrugated plane; this solution is termed running
solution. If minima do exist, the particles arrive there and stop; this solution
is called locked solution. In the presence of noise, the particles do not stay
permanently in the locked state but will undergo noise-activated escape
events. The particles thus perform in average a hopping process from one
well to the next lower one [54].

In systems where inertial effects become important, in the absence of
the noise a locked solution may occur if minima exist. Differently from the
overdamped system, however, also a running solution can occur, even if the
minima of the potential are present: namely, due to the momentum that the
particles have, they may overcome the next potential barrier if the friction
constant is small enough. In the presence of noise, the particles may be
kicked out of the well where they are, i.e., out of the locked state. If the
damping is small enough, the particles do not lose their energy very rapidly
and therefore may no longer be trapped in the neighboring lower well, as
they are for large friction. The particles may thus get in the running state
and may stay in this state for some time. However, due to the Langevin
forces, the energy of the particles fluctuates and they may again be trapped
in one of the wells if their energy decreases. As a result, the particles can
be again in the locked state [54].
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U(x)

Figure 3: The tilted periodic potential U(x) = Uy(x) — Fa for different
values of the tilting force F'; the periodic part of the potential is Up(x) =
sin(2rx/L).

From Eq. (3.5) one can find for the current,

@)
n

where the average is taken over the ensemble; f(z) is given by (3.3), (3.2).
Since the force f(z) is nonlinear, one finds more convenient to solve the
corresponding Fokker-Planck equation instead of the Langevin equation.
The Fokker-Planck equation (2.38) corresponding to (3.5) is valid also for
the reduced probability density and for the reduced probability current
defined in the following way,

; (3.6)

P(z,t)= > P(z+nL,t), (3.7)

J(z,t)= Y J(x+nLt). (3.8)
Furthermore,

P(z+ L,t) = P(x,t), (3.9)

and the normalization condition reads,

L
/ P(z,t)dz =1. (3.10)
0

In the stationary state

lim P(z,t) = Py(x) (3.11)

31



and from the continuity equation,

tlim J(z,t) = Jg = const. ; (3.12)

N f(gj) . d -

Jst = —= P — Do — F;s . 3.13
t 7 t(2) 0 1z t(2) ( )

Equation (3.6) can be written also in the following way,

* f(z) f(z) -
o= = / P t)da (3.14)

In the stationary regime, making use of Eq. (3.13) and taking into account
Eq. (3.9) we see that

L
N d - N
v = / |:<]st + D() - Pst(l'):| dxr = JStL . (315)
0 dx

When F=0 then the probablhty currents to the right and left are equal,
JI = J3, and Jy = JI — J; = 0 (this is nothing but detailed balance).

st

Then, from (3.13), using also (3.3), (3.2), and the Einstein relation (2.18),
we get,
dPy ()
Py (x)

= —BdUy(z), (3.16)

where 3 = (kgT)~! is the inverse temperature. Integrating Eq. (3.16) from
xo to x and using the normalization condition (3.10) we find,

Py(x) = P (wo) e IWo@)=lo(mo)] = y—1e=0l0(@) (3.17)
with
L
N = / e @)y (3.18)
0

By that we have obtained the solution for the stationary probability density
in a periodic potential.
When F' # 0 then on the basis of Egs. (3.13) and (3.15) one can write,

d )

1= Pula) = 81 (@) Pule) = ~ 5 (319)

Multiplying the latter equation by efV(®),

d v
il BU@)| _ YV pU®@)
dz [P i(x)e T TIDC ' (3:20)
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Figure 4: The stationary current v in a washboard potential with the pe-
riodic part given by Up(x) = cos(2mz/L) vs the tilting force F. Different
curves correspond to different values of temperature.

Integrating here from z to x + L and using the fact that U(x) = Up(z) — Fx
with Up(z) = Up(x + L) and taking into account condition (3.9), we obtain,

: U@ (—pFL N _ U [T s,
Py(x)e e 1) = D e dz’". (3.21)
0Jgx

The latter equation can be also written as

. x+L ,
Py(z) = N-1e=PU@) / AU dy (3.22)

T

From the normalization condition (3.10) we find,
L z+L ,
N :/ dz e‘ﬁU(I)/ AU dy (3.23)
0 x

Herewith we have obtained the solution for the stationary probability den-
sity in a tilted periodic potential.
If instead we write Eq. (3.21) as

. v -1 z+L ,
Py (x) = LDy (1 — e_ﬁFL) e‘ﬂU(r)/ AV da! (3.24)

and use here the normalization condition (3.10), we find the expression for
the stationary current,

LD, (1 —e=PFE)

v = : 3.25
JE dze=BU@) [THE oBUR)dg (3.25)
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Figure 5: The mobility p vs the tilting force F' for the same substrate
potential as used in Fig. 4; different curves correspond to different values of
temperature. The linear response regime is clearly visible.

This result was first obtained by Stratonovich [92,93] and is known as the
Stratonovich formula. From here one can see that FF = 0 implies that
v = 0, as discussed previously. Also, taking into account that for F© — oo
the potential U(x) = Up(x) — Fx ~ —Fx, one obtains from the Stratonovich
formula,

v=Fn ', for F— oo, (3.26)

i.e., at large values of the tilting force F' the particle recovers the motion
in a constant force field; the effective diffusion coefficient becomes D = Dj.
The behavior of the stationary current v defined by Eq. (3.25) is illustrated
in Fig. 4.

Instead of the current one can also study the mobility u of the particle,
defined as,

p=vF1. (3.27)

As can be seen from Fig. 5, in the low temperature regime, T' < 1, the par-
ticle mobility is close to zero for subthreshold tilting (locked state). Around
the depinning threshold Fy ~ F,., which separates the locked and running
regimes, the mobility grows sharply and in the large force limit the free
particle motion described by g = ! is recovered (running state). If the
temperature is increased, the transition from the locked to the running state
is smoother. For small values of F' the mobility u is independent of the bias,
as to be expected in linear response theory.

In the linear response regime the mean-square displacement in the ab-
sence of bias and the mean particle position for a vanishing bias are related
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Figure 6: The effective diffusion coefficient D in the periodic potential
Uo(z) = cos(2mz /L) vs the temperature 7. The dashed line corresponds to
the free diffusion.

in the following way,

[(62°(t) — 622(0))] ”’"(0»}

_o = 2ksT [L . t— 00, (3.28)

F
F—0

which, using the definitions of the diffusion coefficient and the current
[Eqgs. (2.13), (2.11)], can be written also as,

v
D ::kT(—) — knTul . 3.29
|Fo B F)ro BM|F0 ( )

For a constant force v = Fip~!, u = n~! and we recover the Einstein relation

(2.18). The relation (3.29), or equivalently (3.28), is thus a general form of
the Einstein relation.

Equation (3.29) allows one also to find the effective diffusion coefficient
in a periodic potential. Using the L’Hospital’s rule we see that

_ e B
(1 eF FL>F OZﬁL‘ (3:30)

Furthermore, for F' = 0 the potential U(x) = Uy(x) is periodic and we may
perform the integration in (3.25) from 0 to L instead of from x to 4+ L so
that the double integral in the denominator of Eq. (3.25) factorizes. As a
result we find for the effective diffusion coefficient in a periodic potential,

D
D= 0

(3.31)

L L )
Of e—BUo(z) dfw Of eBUo(z') %
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Figure 7: The effective diffusion coefficient D in a washboard potential with
the periodic part of the potential given by Up(x) = cos(2mz/L) vs the tilting
force F'. Different curves correspond to different values of temperature.

This expression was first derived by Lifson and Jackson in Ref. [89] (see also
Refs. [94,95]). By the Cauchy-Schwartz inequality [96], the denominator of
(3.31) is always larger than unity: thus, the effect of any one-dimensional
periodic potential is to produce a macroscopic diffusion constant which is
always smaller than the free diffusion constant Dy. Of course, when the
temperature is large enough, the particles do not feel much the influence of
the periodic potential and free diffusion is recovered for kg7 > AUy; AUy =
Uo(Zmax) — Up(min) is the potential barrier between the two neighboring
potential minima (F = 0); Zmin, Tmax correspond to the minimum and
maximum of the periodic potential. The behavior of the effective diffusion
coefficient D wversus the temperature T is depicted in Fig. 6.

A closed analytical expression for the diffusion coefficient in a periodic
potential under the influence of an arbitrary tilting and temperature was
derived for the overdamped regime only recently [97-99] in the renewal
theory approximation [100]. The starting point in Ref. [97] was the following
expression for the diffusion coefficient [97,98,100-102],

L% (t*(wg — x0 + L)) — (t(wo — 0 + L))?
b= 7 <t(3§‘0 — X + L)>3 ’ (332)

where xg is an arbitrary reference point and (t"(a — b)) is the n-th moment
of the first passage time from a to b > a for a stochastic trajectory obeying
Eq. (3.5), with the assumption that F' > 0 in order to keep those moments
finite !. The moments of the first passage time, for the dynamics (3.5), are

1One can make this assumption with no loss of generality (see also Fig. 4), and in the
following we study F' > 0, unless indicated differently.
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given by the analytical recursion relation [11]

b T
("0 — b)) = 2 / dz V@) / 2’ ("L — b)) e~V (3.33)
0

for n = 1,2,... and with (t°(' — b)) = 1. By introducing (3.33) into
(3.32), one finds,

zo+L
D= % / dfx [(2) 2(x), (3.34)
zo
where
zo+L
N = / dfx I (2), (3.35)
x0
z+L
Ii(x) = Dio e AFLUED)/2 (2BU(2) / dz’ AU (3.36)

T

The dependence of the diffusion coefficient in a tilted periodic potential on
the value of the tilting force F' is plotted in Fig. 7. For small values of
bias and low temperature, the diffusion coefficient is suppressed compared
to the free diffusion; in linear response the diffusion coefficient is given ap-
proximately by D(F,T) ~ kgTu(F,T) [54]. Around the critical tilt the
giant enhancement of the diffusion is observed [103]; the lower the temper-
ature, the more prominent is the growth of the depinning diffusion peak.
In the large force limit, the free diffusion regime is eventually recovered, as
mentioned earlier.

The viscous friction coefficient 7 can be expressed also in the following
way, 1 = m7y, with v being here a damping constant and m the mass of
the Brownian particle (c.f. Sec. 2.2). The condition for the underdamped
regime is then, v < /F,;. The mobility and the diffusion coefficient in the
underdamped regime display a similar behavior as in the overdamped limit,
with one significant difference: the depinning threshold Fjy is a monotonic
function of the damping constant with

lirr%) Fy ~ 3.367/ For (3.37)
y—

and Fy ~ F, for v 2 \/F; [54,104].
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3.4 The choice of potentials and dimensionless units

In the studies of Brownian motion in a periodic potential the easiest choice,
and also the mostly exploited one, is to use a simple cosine-type poten-
tial. However, in many cases this is an oversimplification and we are closer
to a real situation using more complicated potentials (see Ref. [105], and
also [106]). The role of metastable and bistable potentials in the diffusive
motion of particles in periodic structures was pointed out in Refs. [107,108],
in the context of superionic conductors. The molecular-dynamics simulation
of self-diffusion on metal surfaces [109] and experimental data for superionic
conductors [110] provide the evidence that the potential barriers of differ-
ent heights are important for the understanding of transport processes in
corresponding systems. Potentials with barriers of different heights are also
of relevance in modeling the kinetics of motor proteins [111] (see also [112]).
In this part of the work we study the dependence of the overdamped
Brownian motion on periodic potentials of various shapes. This target can
be achieved to a great accuracy using piecewise linear potentials (see also
Ref. [78]). Piecewise linear potentials are important for at least three rea-
sons: they can be used as a first approximation of the shape of an arbitrary
potential, and they are sufficiently simple to allow an exact algebraic treat-
ment of the relevant quantities. The third feature is that varying only some
parameters it is possible to obtain a new shape of the potential, enabling
to use the same analytic equations for the quantities under investigation.
The piecewise linear periodic potential with one minimum per period is
characterized by the asymmetry parameter k: 0 < k < L. The potential
is symmetric if & = L/2 (see Fig. 8). The critical tilting force is given by
F., = A(L—k)™!, where A is the amplitude of the potential. At the critical
tilting F' = F,, the force acting on the particle in the region [k, L] is zero.
For the potentials with two minima per period we assume that 0 < k; <
ko < k < L, where ki corresponds to the additional minimum and ks to
the additional maximum (see Fig. 8). The potentials with one and two
minima per period are considered to be comparable for the same values of
the parameter k, and the corresponding right-hand potential barrier we thus
name the primary barrier. In the case of the potentials with two minima
per period we also assume that 0 < A7 < Ay < Aand AA = Ay — A1 <
A, whereas we are interested in having an additional trap with a smaller
potential barrier than the primary barrier (see Fig. 8). The tilting force
corresponding to the disappearance of the additional minima is given by
Foe = AA/AE, where Ak = ko — k.
For the sake of convenience we recast the problem into a dimensionless
form 2. With no loss of generality we take the period L = 1 and replace the

2Note that all the quantities plotted in the figures are dimensionless.
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Figure 8: The general shapes of the periodic potentials with period L:
(above) simple sawtooth potential with one minimum per period; (below)
piecewise linear potential with two minima per period. Concerning the
double-hump potential, we call the potential barrier with the unit-height to
be the main barrier, and the one with the height AA = Ay — A1 < 1 the
additional barrier. The parameters ki, ko and k define the positions of the
extrema of the potential, while the quantities «, (3, v and AA define the
slopes (forces) for the double-hump potential.

relevant quantities with the corresponding dimensionless ones:

T=kgTA™Y, F=FF;', D=DnA"', Dy=DyA!, (3.38)

cr

so that
Dy=T, o=wnA"l. (3.39)

We also choose A = 1 and for brevity, in what follows, we will omit the
tilde signs above the symbols. Hence,

CAA(1—k)

Fce— 5 Fcrzl- 3.40
AR (3.40)

Considering the case of the double-hump potential, we refer to the critical
tilt, as the value max(Fie, Fey).
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The dimensionless potentials that will be considered (see Fig. 8), are
defined as follows (n = 1,2, ... is the number of the period):
(I) Simple sawtooth potential with one minimum per period:

Uan(x) = agp, — ax, n—1)<z<k+Mmn-1), (3.41)
Upn(x) = —boyp, + bz, k+(n—-1) <z <n, '
where
n—1 1-(1-F)k
an =1+ 052, o= SRR, (3.42)
bon =1 125, b= F
(IT) Potential with two minima per period:
Uan(z) = app, — azx, n=1)<z<k+((n-1),
Uen(x) = con, — ¢z, ko+(n—1)<z<k+(n-1), '
Udn(x)__dOn"i'dx, k+(n—1)§aj§n,
where
aOn:A1+12fl[kl+(n_1)]¢ azlzfl_‘_%)
bOn:_f{ll_‘_%[kl_‘_(n_l)]a b:%_;]?_%a (344)
cOn:k_—zQ[k—i_(n_l)]a c:k—i}?—i_lf‘k’

3.5 Transport in potentials with one minimum per period
3.5.1 Analytic computations

The quantities that best characterize the stationary flow are the current
v, or, equivalently, the related mobility p, and the diffusion coefficient D,
defined, correspondingly, by Eqs. (2.11), (3.27), and (2.13). Beside these
quantities, the randomness parameter r is also of some case:

(622(t)) — (62%(0)) 2D

r= lim =—; (3.45)
5o Ta() — @O L oL
equivalently, one defines the Péclet factor,
Pe=2r"' =yLD™!. (3.46)

In the overdamped limit the current and diffusion coefficient in a tilted
periodic potential are given by Eqgs. (3.25) and (3.34), respectively. Proceed-
ing from these formulas, in the dimensionless units, the diffusion coefficient,
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current, and Péclet factor in sawtooth potentials can be expressed in the
following form:

D=TYZ3, (3.47)
v=oZ ", (3.48)
Pe = o Z3(TY) L. (3.49)
Here
F
=1- _ | . .
oo =1-exp| - (3.50)

In the case of a sawtooth potential with one minimum per period, the
quantities Z and Y read,

k 1
Z= [deH_o(z)+ [ de H_p(z), (3.51)
[ ]
k 1
y = / du H o o(z) H2, (z) + / du Hop(x) H2,(x). (3.52)
0 k

Equations (3.51) and (3.52) contain the functions Hy, and Hy, where
the subscripts a and b associate, correspondingly, with the limits of integra-
tion from 0 to k& and from k to 1. Having defined for brevity the generalized
potential u(z) = U(z)T~*, we have,

F(1+1

—Fa£1)
Hy,(x) = Dale ST(1-F) eTual(T)

K I o+1
% fdw/ eFrail®) + fdx’ eFuen (@) + f da’ e:Fua2(x'):| )
~ —raen 1 (3.53)
Hib(a;) = D0_162T(17k) e:l:ubl(gc)

r1 k+1 z+1
x | [ da’ eFu (') 4 [ da eFuaz(z’) 4 [ da exub?(x')} .
Lz 1 k+1

Performing the integration in Eqgs. (3.53), we finally obtain,

Hio(w) = % + g Ya exp{%} 7 .
Hip(z) = 22 + gy exp{b[iz(m—n;#—k)uﬂ)]} ’ .
where the following notations are used:
1 1

Tab 3.55

9= + 5 (3.55)
1= F 1—(1—F)k

Pa = exp<T> -1, op =1 —exp [—ﬂ} (3.56)



Substituting the functions Hy, () given by Egs. (3.54) into Egs. (3.51)
and (3.52), performing the integration, and introducing the notation

@a = €xp [M - ]-7
5 1 2[1—(1-F)k] (3.57)
Yo =1 = &XPY T TR [
the quantities Z and Y can be expressed analytically as
E 1—k
Z = (5 - T) w0+ Tg°¢a pv, (3.58)
k. 1—-Fk\ . 1 1
Y = <$ - b—3> o+ 3T (g + b_3> 995 ©a b
1,5 1 5. 1 5.
+ §T9 %0 <ﬁ Pa b~ 35 P SOa)
k 1—k
+ 2% (220 - ) - i )
1 1
+ 16 [Tetonlt - o) + G etenl+ 0n)] (3.59)

By that we have derived the exact algebraic expressions for the current
v, the diffusion coefficient D, and the Péclet factor Pe in the sawtooth
potentials with one minimum per period.

3.5.2 Asymptotic limits and particular cases

In this section we will examine the asymptotic limits and essential particular
cases on the basis of the analytical formulas derived.
(I) In the absence of tilt (F' = 0), Egs. (3.50) and (3.56) reduce to

0o =0, 0o =eT -1, gobzl—e_l/T, (3.60)
and from Egs. (3.47), (3.58), and (3.59) one obtains

1

D=5z [cosh(T-1) — 1] °

(3.61)

This expression is as a special case of the general formula of the diffusion
coefficient in an arbitrary unbiased periodic potential [89] [see Eq. (3.31)]. It
is to be noticed that for F' = 0 the diffusion coefficient becomes independent
of the asymmetry parameter k.

(IT) In the high temperature limit, one can take into account only the first
order terms in the expansions of the exponents in Egs. (3.50) and (3.56).
Then

F 1-F 1-(1-Fk

(Pa%—a SDbN T(l—k) )

T . (3.62)

o ~
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and
Higy=T"", z=T77"' Y=T7" (3.63)

The diffusion coefficient, current, and Péclet factor now become

D=T, (3.64)
F
F

(IIT) Under the conditions F' > 1 and FT~! >> 1, the following approximate
equations hold,

0o R —pg o1, a~ —b~ —— (3.67)

and

1— 1— 1—k\?®
=

As a result, the expressions for D, v, and Pe coincide with Eqs. (3.64)-(3.66).
Thus, at high temperatures and at large values of tilting force, the transport

properties of Brownian particles are the same.
(IV) At the critical tilt (F' = 1), one has

Hyg(z) = 2 + %exp{% 7

lf) 1-k ak wo [£2(z—1)+(1—k)(1£1)] (3.69)

Hap(w) = 5+ 7 exp(= ) + 2T :

whereas in the low-temperature limit Eqgs. (3.47)-(3.52) and (3.69) yield
2T
D=5 —wp 70
3(1— k)2’ (3.70)
2T

e 3.71
TR (3.71)
fo=3. (3.72)

(V)If F <1and (1—F)T~! > 1, we have the following asymptotic limits:

ep Py l, om0 g 2070T =2 (3.73)

Then Egs. (3.51) and (3.52) with (3.54) yield

Z = Tg?e =T (3.74)
y = Lgpea-myr (1Y oL —mamnr (1L g 75
2 a b a b
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Figure 9: The plot of the derivative 0D /OF|p—o vs the asymmetry param-
eter k for various values of temperature T

and
_ H;;%, (3.76)
v = % , (3.77)
Pe = 22_“’;0 = 2tanh [m} , (3.78)

(cf.also Ref. [99]). If, additionally, the condition F/T'(1—k) > 1 is fulfilled,
then e~ ¥/T(0=k) ~ 0 and wo ~ 1. Consequently, we have, 2D = v and
Pe = 2. This indicates that an extremely exact stabilization between the
diffusion and current occurs in this region of parameters. The value Pe = 2
corresponds to the Poissonian one-step hopping process.

3.5.3 Suppression of diffusion by a weak external field

As we saw, in the weak noise limit, when the conditions (1—F)T~! > 1 and
F < 1 are fulfilled, the expressions for the transport coefficients simplify
substantially. In particular, one can present the diffusion coefficient and
current for this case in terms of escape rates. An analysis of diffusion in
a tilted smooth symmetric potential in the terms of escape statistics was
carried out for various damping regimes in Ref. [113]. In the following we
analyze the behaviour of diffusion in the overdamped regime under a weak
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Figure 10: The plot of the diffusion coefficient vs the tilting force F' at fixed
temperature 17" = 0.1 for various values of asymmetry parameter k.

external field as well as the relationship between diffusion and current in
this regime.

In the weak noise limit the transport of particles in a periodic potential
subject to a small bias is influenced mainly by the heights of potential
barriers. For the piecewise linear potential (3.41) the right-side and left-
side barrier heights read respectively

AU, =1-F,

AU_ =1+ F. (3.79)

The quantities AU4 2 determine the escape rates over the corresponding
barriers (AUL > T)

wy = (AU, (AU )’ exp <—AUi> . (3.80)

T T

Equations (3.80) can be obtained using the standard scheme for the deriva-
tion of the Kramers escape rates [63], except the expansion into Taylor series
near the extrema of U(x), which is not applicable in the case of a piecewise
linear potential; however, in the present case this expansion is not neces-
sary as the relevant integrals can be explicitly calculated. By means of
escape rates (3.80) we can express the diffusion coefficient and current in
the following form (c.f. Ref. [65]):

1
v=wg —wo. (3.82)

3Note that the chosen scale of external force depends through the critical tilt on the
asymmetry parameter k.
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Figure 11: The plot of the diffusion coefficient vs the tilting force F' at fixed
asymmetry parameter k = 0.95 for various values of temperature 7T'.

Therefore, D(F') and v(F’) are completely determined by the rates wy in the
relevant approximation. At F' = 0 we have D(0) = w, where w = T~ ! e~ V/T
is the escape rate in the untilted potential [c.f. Eq. (3.61)]. The expressions
(3.81) and (3.82) are particular cases of the general formulas (3.34), (3.25).

The response of diffusion to the application of an infinitesimally weak
tilting force is characterized by the slope of the function D(F) in the limit
F — 0, that is by the derivative 0D/OF at F' = 0. The dependence
of this quantity on the asymmetry of the periodic potential is shown in
Fig. 9. As one can see, the slope of D(F')|p—o changes its sign regardless
of the temperature if the asymmetry parameter passes the value k£ = 0.5,
being positive for k < 0.5 and negative for £ > 0.5. Consequently, if a
tiny load is applied, diffusion is reduced in the potentials with positive
asymmetry (i.e., with the asymmetry in the direction of the bias). With
the further increase of the tilting force the diffusion coefficient D(F’) passes
through a minimum (see Figs. 10 and 11) followed by its rise caused by
delocalization processes. In the case of the potentials with £ < 0.5 the
diffusion coefficient increases monotonically if an external field is turned
on (see curves 3 and 4 in Fig. 10). The curves plotted in Figs. 10 and 11
demonstrate that the suppression of diffusion is favoured by larger values
of k and by lower temperatures. The reduction of diffusion is maximal in
the limit £ — 1. Let us also mention that the situation is symmetric under
the following transformation: F' — —F and k — 1 — k.

Equation (3.81) also enables us to provide a simple interpretation of
the discussed suppression of diffusion. The barrier heights AUy wversus
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Figure 12: The plot of the normalized escape rates w4 /w (curves 1) and
w_/w (curves 2) vs the tilting force F' at fixed temperature T' = 0.01 for
two periodic potentials with different asymmetries.

F vary at different rates in the potentials where k& # 0.5 4, resulting in
the asymmetric behaviour of the escape rates w4 under an arbitrary weak
external field, as illustrated in Fig. 12. By that, as one can observe in Fig. 12,
for a potential with positive asymmetry the escape rate w_ over the left-side
barrier diminishes more rapidly compared with the rise of the escape rate
w4 over the right-side barrier if a very small tilting force is applied, which
leads to the suppression of diffusion. Further the decrease of w_ slows down
while the increase of w4 picks up speed, i.e., the delocalization processes
in the direction of bias become dominating, and the diffusion coefficient
passes through a minimum. On the other hand, diffusion is promoted by
a weak external field in a potential with negative asymmetry whereas the
increasing contribution from w,y prevails anyway over the decrease of w_ in
this case.

From Eq. (3.81) one can evaluate approximately the tilting force Fiyin,
which corresponds to the minimum of the diffusion coefficient:

Fuin = T(1 — k) InZ(T, k), (3.83)

k(T k)1 — k(T k)] — 2T(1 — k)[2k (T, k) — 1]

=(T,k) = (1 — k){®(T,k)[1 — k®(T, k)] + 2T[2k (T, k) — 1]} (3:84)

Tt follows from Eq. (3.79) that in the potentials with k& > 0.5 the increment of the
left-side barrier height overcomes the decrement of the right-side barrier height as the
tilting force increases. The situation is opposite for the potentials with £ < 0.5.

47



D min 0.8
D(0)

Figure 13: The plot of the ratio Dy, /D(0) vs the asymmetry parameter k
for various values of temperature T'.

with

k—2T(2k — 1)
1—k+2T(2k —1)

O(T,k)=1-T(1—k)In . (3.85)

Substituting Fii, from Eq. (3.83) into Eq. (3.81), we obtain for the minimal
value of the diffusion coefficient Din = D(Fpin) the following expression:

Din = %[1 + E(T,k)][1 + TkInE(T, k))?
X [1—T(1—k)InZ(T, k)]>. (3.86)

According to Eq. (3.86), Dy decreases with the increase of the asym-
metry parameter k as depicted in Fig. 13. In this figure one can also observe
that the minimum of the diffusion coefficient is deeper for smaller noise in-
tensities. From Eq. (3.86) follows the limit

D(0)
250(T)

1-2T /1—2T
Eo(T) = 1 . .
o(T) T (3.88)

Equation (3.87) provides the asymptotic lower bound for the maximal sup-
pression of diffusion under a weak external field at fixed temperature T'. If
T — 0, diffusion vanishes and the ratio Dp,in/D(0) approaches the lowest

lim Diyin = [1 4+ Zo(T)][1 4+ T'ln Zo(T))? (3.87)

with
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Figure 14: The plot of the current vs the tilting force F' at fixed temperature
T = 0.01 for various values of asymmetry parameter k.

value equal to 0.5 when k — 1 (see also Fig. 13). This limiting value cor-
responds to the asymptotic behaviour of the escape rates at F' = Fij,: if
k —1and T'— 0 then wy /w — 1 and w_/w — 0.

Although one can suppress the diffusion by means of an external field,
the current versus the tilting force is always increasing due to the different
roles of the backward escape processes in the diffusive and directed motion
of particles. Furthermore, the growth of the current caused by a weak
external force is larger just in the potentials where diffusion is reduced by
a small bias (see Fig. 14). Such a behaviour becomes comprehensible from
the expression of current, Eq. (3.82), according to which the rapid fall of
the escape rate w_ under a very weak external field applied to a potential
with positive asymmetry (see Fig. 12) acts as an additional trigger in the
rise of current as bias is turned on. In Fig. 14 one should also notice that
the current approaches zero with negative curvature if £ > 0.5 and with
positive curvature if k& < 0.5 consistently with the relation > [103]

v
OF
which becomes asymptotically exact in the limit F© — 0. Thus, according
to Eq. (3.89), the dependence of the current on the tilting force shown in
Fig. 14 reflects equivalently with Fig. 9 the peculiarities of the behaviour
of diffusion in the potentials with various asymmetry subject to a weak
external field.

The described interrelation between current and diffusion manifests it-
self also in the dependence of the Péclet number [97-99], on the tilting force.

D=T(1-k) (3.89)

5The pre-exponential factor 1 — k in Eq. (3.89) appears in connection with the defini-
tion of the dimensionless tilting force used.
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Figure 15: Diffusion coefficient vs tilting force F' and the potential asym-
metry parameter k at fixed temperature T = 0.1.

In the weak noise limit we obtain on the basis of Egs. (3.81) and (3.82) that
Pe = 2(w; — w_)(wy +w_)~'. In the external field the Péclet number in-
creases and approaches the value Pe = 2 if w_ /w; < 1. The system reaches
the Poissonian regime earlier in the case of positive potential asymmetry due
to the suppression of diffusion and the more rapid enhancement of current
in the pre-Poissonian region. With the further increase of the tilting force
the unidirectional one-step hopping nature of transport is preserved until
the inequality AU, > T holds. However, if the latter condition is violated
by a sufficiently strong external field [i.e., the approximate Eqgs. (3.81) and
(3.82) are not applicable anymore|, the Péclet number starts to increase.

The broken spatial inversion symmetry of the periodic system is one
of the possible conditions for the appearance of the Brownian motor effect
[65,114,115]. As shown above, the special case of this symmetry breaking
leads to the decrease of diffusion and to the increase of current of particles if
a small stationary bias has been applied. Thereby the suitable asymmetry
of a periodic potential favours the enhancement of the Péclet number of
Brownian motion under a weak external field. This result may have a certain
relationship with the conditions for the suppression of the fluctuations of
current and for the increase of rectification efficiency in Brownian motor
transport studied in Ref. [116].

3.5.4 Non-monotonic behavior of diffusion

In Secs. 3.5.2 and 3.5.3 we studied the behavior of the diffusion coefficient,
current and Péclet factor for certain values and limits of temperature and
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Figure 16: Diffusion coefficient vs the temperature T and the potential
asymmetry parameter k at fixed F' = 0.95.

tilting force. We now discuss the general dependencies of the transport
characteristics on the system parameters.

The expression of the diffusion coefficient as a function of tilting force
F and temperature T is given by Eq. (3.47) together with (3.58), (3.59).
The diffusion coefficient as a function of F' reveals a qualitatively similar
behavior to that found in Refs. [97,98], exhibiting a resonant-like maximum
if the temperature is sufficiently low. This effect is strongly influenced by
the shape of the periodic potential, as illustrated in Fig. 15. For positive
bias (F' > 0), the increase of the value of the asymmetry parameter k favors
the amplification of diffusion compared to free thermal diffusion.

The behavior of the diffusion coefficient as a function of temperature
T is similar to that observed in Ref. [99] (see also Ref. [39,117]): there
exists a maximum of D(T"), which is followed by a minimum (see Fig. 16).
The suppression of D(T') is attributed to the competition between two time
scales: noise driven escape time over potential barrier from the minimum
along the bias, and the second time scale being the relaxation time into
the next potential well from the barrier top [99]. The second time scale is
weakly dependent on the noise intensity and has a small variance as opposed
to the first one. When the second time scale dominates over the first one,
it is expected to result in the suppression of the diffusion coefficient as a
function of temperature (see Ref. [99]). The influence of the potential shape
on the diffusion coefficient D(T') is analogous to the one on D(F'): the peak
of D(T) becomes rapidly narrower and higher as k approaches unity.

The analytical properties of the diffusion coefficient as a function of the
tilting force and temperature at the fixed value of the asymmetry coefficient
are summarized by the contour-plot of the surface D(F,T) in Fig. 17. The
surface D(F,T) exhibits two stationary points, a maximum and a saddle
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Figure 17: Contour-plot of diffusion coefficient D = D(F,T) for k = 0.95.
To the maximum and saddle points of D correspond, respectively, the values
Py~ 0.9144, Ty ~ 0.0364, Dy ~ 1.3086, and Fs ~ 0.388, Tg ~ 0.363,
Dg ~ 0.588.

point, whose coordinates are given in the figure caption. The plot reflects
the characteristic features of the non-monotonic behavior of diffusion:

(I) Fig. 17 shows that the function D(T')|p=const has a maximum and a
minimum if Fa < F < Fg. However, there exists a limiting value kg ~
0.8285 (see also Fig. 16). For k < kg the maximum and the saddle point of
the surface D(T, F') disappear, while D(T')| p=const i$ @ monotonic function
of temperature, the latter property being independent of bias. There also
exists a limiting tilting force Fo =~ 1.1292: if F' > F(, the dependence
D(T')| p=const is monotonic for arbitrary k. The situation is summarized in
Fig. 18, where one sees that the (k, F')-space is divided into two domains
where the analytical properties of the diffusion coefficient as a function of
temperature are qualitatively different.

(IT) Contrary to the dependence D(T")|F=const, the function D(F)|7—const
has a maximum for all values of the asymmetry parameter k.

As one can see in Figs. 16 and 17 the suppression of the diffusion as a
function of the temperature is the larger the closer the asymmetry coefficient
k and tilting force F' to unity; the effect is maximal, if both conditions are
fulfilled. This means that the counterintuitive phenomenon that increasing
noises decreases diffusion, relies on the large ratio of relaxation to escape
time. However, we remark that the nonmonotonic behavior of D(T") persists
in the case of a piecewise linear potential also for tilts slightly above the
critical value when there is no potential minima.

One can also observe in Fig. 17 that for the potentials with k > kg
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Figure 18: The phase-diagram in the (k, F')-plane representing the regions
corresponding to the different analytical properties of the diffusion coeffi-
cient as a function of temperature: the dependence D(7') is nonmonotonic
in the region I, whereas it is monotonic in the region II.

the maximal value of D(F") as a function of temperature passes through a
minimum, i.e., the amplification of diffusion by bias at lower noise intensity
can be larger than at higher temperature.

Let us discuss the amplification of diffusion by bias in terms of probabil-
ity distribution (3.22). Figure 19 represents (in terms of the dimensionless
parameters) the probability distributions characteristic of various diffusion
levels depending on the tilting force F. Figure 19-a illustrates the situation,
where particles are mainly localized around the minima of the potential and
transport is strongly suppressed. Diffusion is essentially weaker in compar-
ison with free diffusion: D/T ~ 107%. The probability distribution shown
in Fig. 19-b corresponds to the case where the diffusion is approximately
maximal (D/T = 3.5) for the chosen values of temperature and asymmetry
coefficient. In this case the regions with a large probability are separated by
the domains where the probability is much smaller, however, large enough
to allow the entrance of a sufficient number of particles into these domains.
As a result, a channel of hopping-like transport is formed, leading to the en-
hancement of the ratio D(F')/Dy. The further increase of the tilting force
F' makes the probability distribution still more homogeneous, as seen in
Fig. 19-c, and the diffusion approaches the free diffusion limit (D/T = 1.3
for the parameter values used in Fig. 19-¢). Consequently, the amplified
diffusion in the tilted periodic potential is characterized by the specific in-
homogeneous probability distribution with spatially alternating domains of
high and low probability. The occurrence of a maximum in the of depen-
dence D(T') can be understood in a similar way.
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Figure 19: Probability density P(x) for the temperature 77 = 0.01 and
asymmetry parameter k = 0.5: (a) F'=0.8; (b) FF =1.1; (¢c) F = 3.

3.5.5 Relation between diffusion and directed motion

With regard to the simultaneous enhancement of diffusion and current,
caused by the force F, with respect to an untilted system, the relation
between D and v is of interest. One can expect that such a relationship
reflects some intrinsic features of the mutual influence between diffusion
and current driven by the tilt merely at lower temperatures, when the initial
suppression of both components of Brownian transport by periodic potential
is stronger.

The comparative plot of D and Pe versus F is presented in Figs. 20 and
21. One can see that the function Pe(F') has a point of inflection which
turns into a wide plateau at lower temperatures. For values of F', from zero
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Figure 20: Comparison between the Péclet factor Pe and diffusion coefficient
D as a function of tilting force F' for various temperatures at fixed k = 0.5.
Solid lines: 5 x Pe, dashed lines: log,o[D(F')/D(0)]. Curves 1: T = 0.01,
curves 2: T = 0.03, curves 3: T' = 0.09.

30

20

10 7

0" 02 04 ofeF 08 1 12

Figure 21: Comparison between the Péclet factor Pe and diffusion coefficient
D as a function of tilting force F' for k = 0.1 (dashed lines) and k£ = 0.9
(solid lines) at fixed T' = 0.01. Curves 1: log;o[D(F')/D(0)], curves 2: 5x Pe.
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Figure 22: Péclet factor log;y(Pe) vs temperature log,(7") for various values
of the potential asymmetry coefficient k£ at F' = 0.95 (curves 1-5) and F' =
1.05 (curve 6). (1) k=0.1, (2) k=0.5, (3) £ =0.9, (4) k = 0.95, curves 5,
6: k= 0.99.

up to the end of the plateau, the behavior of Pe(F') is described with great
accuracy by Eq. (3.78). As the temperature grows, the plateau gradually
reduces until disappears and the Péclet factor becomes monotonically in-
creasing. We emphasize that the domain where Pe = 2 coincides with the
domain where the increase of the diffusion coefficient as a consequence of
the tilting is the most rapid. Consequently, in the region of parameters,
where the substantial enhancement of diffusion (and also current) occurs,
directed transport and diffusion are closely synchronized. As mentioned,
the stabilization of the Péclet factor at the value Pe = 2 is a characteristic
feature of Poissonian process [54] such as the Poisson enzymes in kinesin
kinetics [118-120]. The location of the end of this region at larger values
of F' is quite insensitive to the shape of the periodic potential, as seen in
Fig. 21, and is located approximately at critical tilt F¢,.

In Fig. 22 the curves of the Péclet factor versus temperature for var-
ious values of k and F' are depicted. The function Pe(7T") passes through
a maximum (curves 1-5) for F' < F;, which is also present slightly above
the critical tilt (curve 6). With a further increase of F', the maximum of
Pe(T) disappears. From Fig. 22 one can also see that the optimal level of
Brownian transport, determined by the maximal value of the Péclet num-
ber, is sensitive to the shape of periodic potential: at F' < Fi, the optimal
level of transport rises with an increase in k. At the same time, the larger
values of k£ make a minimum of D(T'), which follows a maximum of D(T)

o6



0 01 02 T 04 05 06

Figure 23: Diffusion coefficient, current, and Péclet factor vs temperature
T for k= 0.95, F =0.95: (1) 30 x D; (2) 2 x v; (3) Pe.

at a higher value of temperature, deeper (the effect can be anticipated in
Fig. 16). Figure 23 shows that the enhancement of the Péclet number for
a certain temperature is associated with the suppression of diffusion by the
same factor (collate also Figs. 22 and 16).

3.6 Transport in potentials with two minima per period
3.6.1 Analytic computations

The analytical results for the diffusion coefficient, current and Péclet fac-
tor in a piecewise linear potential with two minima per period, defined
by Eq. (3.43) with (3.44), are obtained similarly to the calculations for
the simple sawtooth potential. In the case of the double-hump potential,
in Eqs. (3.47)-(3.49) the quantities Z and Y now have the form (see also
Fig. 8),

k1 ko k 1
Z = /da;H_a(a:) —|—/d;1:H_b(a:)+/da:H_c(aj)+/dajH_d(;r),
0 k1 k2 k
(3.90)
k1 ko
Y = [ do Hiolo) By (a) + [ do Hofo) B (0)
0 1
k kl
+ / dz Hi.(z) H? (z) + / de Hyg(z) H? 4(). (3.91)
ko k
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Here

_ k k
Haa(z) = Dg e T un @ { [ dyeun) 4 [ dyerun®)

x k1

k 1 z+1
+ f dy eq:ucl(y) + fdy e:Fudl(y) + f dy e:':Ua2(y):| ,
k2 k 1

_F(1+1) k2 k
Hib(l‘) _ D0_1€ 2T (1—k) eiubl(x) |:f dy eTub1 (y) + f dy e:Fucl(y)
T k
1 k1+1 z+1 ’
+ f dy eq:udl(y) + f dy eq:UaQ(y) —+ f dy e:FubQ(y):|
k 1

k11 (3.92)

—F(1£1) k L
Hic(‘r) — Dalem 6:I:ucl (z) |:f dy eTuct (y) + f dy eTud1 ()
T k
ki+1 ko+1 x+1
+ f dy e:':ua2(y) + f dy eq:ubg(y) + f dy eiFuc2(y)] ,

1 k1+1 ko+1
—F(1£1) 1 ki+1
Hid(l') = Do_lem eiudl (I) |:f dy e:':udl(y) _|_ f dy e:':an(y)
1
ko+1 k+1 ; z+1
+ f dy eFunz(y) + f dy eFuc2(y) + f dy e:':“dQ(y):| .
ki1+1 ko+1 k+1

The explicit algebraic expressions for Z and Y in the case of a potential
with two minima per period are reported in Appendix A.

3.6.2 The case of zero bias

In the absence of bias (F' = 0) the diffusion coefficient is given by D = Z~1.
In the case of the sawtooth potential with two minima per period we can
write Z = Z1 4+ Z5 with

Z1 = 2T{96a Jap [COSh(l_TAl) - 1] + 9apB 98~ [cosh(AQ}Al) — 1}
+9y 96 | cosh (F2) — 1} + 9v6 Yo [cosh(%) — 1] } : (3.93)

Zo = 2T 9o Gvs [cosh(%) — 1] + 9sa 95~ [cosh(l_TA2) — 1} } .

The quantities g, with p,v = «, 3,7,6 (see Fig. 8), are defined as

1,
~ tanp  tanv

Juv (3.94)
The four terms in Z; correspond to the four potential barriers (in general
of different height) that the particle overcomes per period due to the dif-
fusive motion. The higher these barriers are compared to the temperature,
the larger is the factor Z; and the more suppressed is the diffusion. The

o8



7107

61071

-4
510 simple sawtooth

4107
31071

2107

0 0.2 0.4 06 08 1
AA

Figure 24: Diffusion coefficient D as a function of AA in the symmetric bi-
and metastable periodic potentials in the absence of the tilting force; the
temperature is 7' = 0.1.

coefficients g,,, g,» take into account the shape of the minimum as well as
the shape of the maximum of the potential associated with the correspond-
ing barrier. The two terms in Z5 take into account the differences of the
extrema from the minimum value A; = 0 and from the maximum value
Ay = 1.

For potentials with AA = Ay — A; = 1, the factor Zy vanishes, i.e.
Zy = 0. As correspondingly gsa 9as + 9as 98y + 98y 9vs + 96 9sa = 1, then
Z1 does not depend anymore on the values of the asymmetry parameters
k12 and k (see Fig. 8), and Z = Z; = 2T [cosh(T~!) — 1], like in the case
of the simple sawtooth potential [c.f. Eq. (3.61)]. However, in the following
we assume that AA < 1, and then Z5 < 0.

If we consider a Brownian particle moving in a bistable potential, that
is, A1 =0 but As # 1, then

21 = 2T gopys {gﬁy [cosh(M) — 1| + gsa [cosh(%) — 1} } ,

T
(3.95)
Zy = =2T'gp Ysa [cosh(l_ﬁA) -1
If instead As = 1 and Ay # 0 then the potential is metastable and
21 = 2T gapys {gag [cosh(%) — 1] + gy [cosh(%) — 1} } ,
(3.96)

Zo = =2T gog Gvs cosh(l_jéA) -1
In Egs. (3.95) and (3.96) gagys = 2 ,—a.54.5 tan~! pu.
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Figure 25: The enhancement and suppression of the diffusion coefficient,
compared to the simple sawtooth potential, due to the additional trap.
T =0.01; £k = 0.6, AA = 0.45. In the decreasing order of the maximal
values of D(F): (1) Fee = 1.5; (2) simple sawtooth potential; (3) Fre = 0.5;
(4) Fee = For = 1.

In the case of a symmetric metastable potential « = § and v = 4, for
the bistable one a = ¢ and 8 = =, and one can see that the quantities Z;
and Zs, and thus the diffusion coefficient, coincide for the same values of
AA for the two types of potentials. If the potentials are asymmetric then
the behavior of the diffusion coefficients D versus A A can be different. The
dependence of the diffusion coefficient in symmetric bi- and metastable po-
tentials versus the additional barrier height is illustrated in Fig. 24. In this
figure one can also see that it is possible to have a situation where the dif-
fusion in a potential with two minima per period is suppressed compared to
the case of a simple sawtooth potential, though from the condition Z; < 0
one could assume that an additional trap in general should promote diffu-
sion. Namely, if the value of AA is sufficiently small the effective potential
contains the segments where the deterministic force is approximately zero,
which causes the suppression of the diffusion. Comparable results for the
behaviour of D(AA) are found in Ref. [107] at a high friction regime. How-
ever, in Ref. [107] the motion is not completely overdamped yet and the
diffusion coefficient rises at the values AA — 0 which obviously is an iner-
tial effect. In the overdamped limit such a region is absent and the value of
diffusion coefficient at AA =0 is

D= 2{T [cosh(%) - 1} + sinh(%) + %}_1 : (3.97)
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Figure 26: Diffusion coefficient D(F') for different values of temperature.
Potential parameters: k1 = 0.4, ko = 0.5, k = 0.6, A; = 0.55, Ay = 1;
Foe=18.

3.6.3 The two-step enhancement of diffusion

Before proceeding with the discussion of the results, we first emphasize
that the general character of the transport process is, compared to the
corresponding simple sawtooth case, determined by the value of Fg,, and
thus for a fixed k by the differences AA and Ak. The values of single
parameters ki, ko, A1, Ao are of no importance, while the differences AA
and Ak are crucial, even if the values of Fi., determined by them, are the
same.

A double-hump potential gives a possibility to favor or suppress the
maximal value of the diffusion coefficient D(F'), compared to the case of
the simple sawtooth potential. The situation is illustrated in Fig. 25. In
the case Fee < Fg the maximal value of D(F') is decreased due to the
additional potential minima. The decrease is, at fixed k and A A, the largest
if Fe = F,. For F, > F, diffusion starts to increase. If Fi. is larger than
the value of the tilting force, which corresponds to the maximum of D(F)
in the case of the simple sawtooth potential, then the maximal value of
diffusion increases due to the extra trap (see also Ref. [121]).

Henceforth our main interest will be focused on the potentials with
F.. > F,., which provide new phenomena with respect to the case of the
simple periodic potentials. The case Fr. < Fg does not differ much from
the case of the simple sawtooth potential, if ' — F,. However, we remark
that in biological systems the potentials, for which F., < F,,, often play a
role [111].

In Fig. 26 we have plotted the diffusion coefficient versus tilting force
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Figure 27: Diffusion coefficient log;,[D(F)] for different noise intensities.
Solid lines: The potential parameters are the same as in Fig. 3; (1) T' =
0.005; (2) T'=0.01; (3) T' = 0.03. Dashed lines: Diffusion coefficients for
the simple sawtooth potential with asymmetry parameter £ = 0.6 at the
same temperatures.

at different values of temperature, for a potential for which F,, > F.; 5. As
can be seen, at lower noise intensities, the maximal value of the diffusion
coefficient D(F') can be larger than at higher noise intensities (compare
curves 2, 3 and 4 with each other, or 1 with 4, or 2 with 5). At low and
high values of temperature the situation is back to usual (compare curves 1
with 2, and 4 with 5). As one can see in Fig. 17 the analogous situation is
observable for the simple sawtooth potential in the case k > kg. However,
the additional potential maximum per period with F, > F¢, allows one to
obtain the effect also for the potentials with asymmetry parameter k < kg.
The general behavior of the diffusion coefficient D(T, F') is the same as one
can see in Fig. 17, for the potential with one minimum per period.

Figure 27 represents the dependence D(F') in the case of the same po-
tential as used in Fig. 26, but in a logarithmic scale. In this plot one can
distinguish two growth rates (slopes) for the diffusion coefficient (see also
Fig. 29). The two rates are the more different, the lower the noise intensity,
and associate with the two Poissonian processes (the latter fact will be dis-
cussed in more detail in next section). Thereby the Poissonian process in
the first region coincides with the one which takes place in the corresponding
simple sawtooth potential. The picture for the current is similar.

The presence of two potential barriers may lead one to think that there
can be two maxima of the diffusion coefficient wversus tilting force, but in

51f not marked otherwise in the figure caption, we henceforth calculate all the graphics
for the same values of potential parameters: k1 = 0.4, k2 = 0.5, £k = 0.6, A1 = 0.55,
Ay =1; Foe = 1.8.
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Figure 28: The existence of two maxima for diffusion coefficient vs tilting
force F' for different noise intensities: (1): 7" = 0.0095; (2): 7' = 0.01; (3):
T = 0.0105. The potential parameters are: k; = 0.79, ko = 0.8, k = 0.81,
Aq = 0.888, A = 1; the corresponding periodic potential is also depicted.

practice such a situation is difficult to obtain. Nevertheless, for a certain
potential shape it is indeed the case (see Fig. 28).

Now, if the Brownian particle is in a simple sawtooth potential with a
positive asymmetry (k > 0.5) and there is a very small constant force influ-
encing the system, then the diffusion is suppressed respect to the case F' = 0
(see Sec. 3.5.3 but also Ref. [117]). The same is valid for potentials with
two minima per period if at least one of the potential minima is asymmetric
to the right, this means k; > ka/2 or/and k > (1 — k2)/2. Furthermore,
for a certain type of potential shape one can observe the suppression of
diffusion also at the larger tilting forces giving rise to a double-maximum
in the diffusion coefficient D(F), as demonstrated in Fig. 28. In fact, as-
tonishing is not the suppression of the diffusion coefficient, but its increase
after the decrease. To obtain such a double-enhancement the slope of the
additional potential barrier must be much bigger compared to the one of
the main barrier, and the height of the barrier must be relatively small
(AA = 10T, T =~ 1072). The decrease of the diffusion coefficient versus
tilting force takes first of all place due to the disappearance of the main
potential barrier. For F' = 1 particles can be in the region of free diffusion
or trapped in the additional potential minimum. In that case for every
value of F', which is very slightly larger than the previous value, we can
consider the situation to be equal to the one of tilting force close to zero,
whereas the actual external force is small compared to the critical force at
which the potential has no minima anymore. Thus as an additional effect
the diffusion is decreased similarly to the suppression which takes place at
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Figure 29: The comparison of the diffusion coefficient D and Péclet number
Pe as the functions of tilting force F'. Dashed line: simple sawtooth poten-
tial; solid line: double-hump potential with k; = 0.3, ko = 0.38, k£ = 0.65,
AA =04. Temperature 7" = 0.01.

small values of the tilting, as discussed in Sec. 3.5.3. Further the diffusion
coefficient increases due to the enhancement of diffusion as it takes place
also in the simple potentials, and due to the delocalization process as the
effective barrier height gets smaller. Since the value of the tilting is actu-
ally not zero, but is very large, and the height of the potential barrier is
small compared to the temperature, then the diffusion decreases to the free
diffusion level already before exceeding the critical tilting.

For most of the potentials with 8 > 4, however, the diffusion coeffi-
cient D(F') does not have two maxima, but the enhancement of diffusion
is characterized by two regions related to the two potential minima (see
Fig. 27).

3.6.4 Relation between diffusion and current

In the case of a simple sawtooth potential we showed that at low tempera-
tures and for a subcritical tilt, i.e., for F' < F;, the Péclet number stabilizes
at the value Pe(F') = 2. In this parameter region, where the enhancement
of diffusion is most rapid, the particles are mainly localized around the po-
tential minima and transport can be described with great accuracy by the
Poissonian hopping process.
Now, for the potentials with two minima per period for which G > 4,
there exists a threshold value of the tilting force
(1-AA)(1—-k)

Fy = .
0 1—k—Ak (3.98)
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Figure 30: The appearance of the minimum in the randomness parameter
r(F), i.e., the maximum in the Péclet number, in the region of the crossover.
The curves represent the randomness parameter, diffusion coefficient and
current vs tilting force at 7' = 0.01: (1) 10 x (r—3); (2) In(2D); (3) In((z));
The dashed line corresponds to the randomness value » = 1 (Poissonian
process).

at which the main potential barrier becomes smaller than the additional
barrier. If F' < Fy, particles are mainly localized near the primary traps,
whereas if F' > Fy, near the extra traps. As a result the enhancement
of diffusion wversus tilting force is realized through two different Poissonian
processes. As seen in Fig. 29, the two regions of the enhancement of diffusion
correspond to these different Poisson processes. Thereby the Poissonian
process in the first region coincides with the one which takes place in the
corresponding simple sawtooth potential.

In the region of crossover between the two regimes of the enhancement
of diffusion, the Péclet number passes through a sharp maximum with the
characteristic value Pe = 4. Thus, in a certain region of the tilting force a
small variation of the potential has an influence on the character of transport
(cf. Ref. [122]). The observed enhancement of the Péclet number appears
in the region, where the growth regime of diffusion and current changes,
whereas the increase of diffusion slows down compared to the increase of
current (see Fig. 30). In this case the average populations of the primary
traps and the extra traps are close to one another and the possibility of the
localization of Brownian particles near the minima of both types is consid-
erable, leading to the relative suppression of diffusion. The suppression is
the largest if both of the potential traps are switched on with equal weights.
Such a doubling of the effective number of the localization centers in the
region of Poissonian process gives a qualitative explanation for the universal
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Figure 31: Randomness parameter r vs tilting force F for different noise
intensities: (1) T'=0.01; (2) T'=0.03; (3) 7' = 0.06.

value of Péclet number Pe = 4.

For the existence of the extremum in the Péclet number versus tilt, the
condition F.e > 1 must be satisfied. The tilting force Fy has a physical
meaning only if the latter inequality is fulfilled, having the value in the
range 0 < Fy < 1. This circumstance follows 7 from Eq. (3.98) together
with Eq. (3.40) for Fg, which lead to the relation

Ak

(1-Fp) = 17— Ak (Fee — 1) (3.99)
(see also Ref. [121]). If F,, < 1, the Péclet number Pe(F') does not have
a maximum ®. On the other hand, if Fy < 1 is sufficiently close to unity,
the peak of Péclet number merges into the region where the motion can no
longer be described as the Poissonian process and Pe(F') increases mono-
tonically. In particular, such a case is actual for the potentials for which
the diffusion coefficient D(F') possesses two maxima.

With the rise of temperature the peak of the Péclet number disappears.
We have illustrated the situation in Fig. 31 for the randomness parameter.
At higher temperature the posterior part of the plateau of randomness pa-
rameter diminishes and the minimum broadens, and finally the randomness
decreases and the Péclet number increases monotonically.

In the case of the simple sawtooth potential we observed the possibility
to obtain the existence of a maximum in the Péclet number versus tem-

"Note that for Fee > 1 the condition Ak < 1 — k must be always fulfilled as one can
see from Eq. (3.40).

8The inequality Fe < 1 is valid always if Ak > 1 — k (see Eq. (3.40)) and then one
can see from Eq. (3.98) that Fo < 0. However, condition Fee < 1 can be satisfied also for
Ak < 1 — k which yield on the basis of Eq. (3.99) Fy > 1.
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Figure 32: Diffusion coefficient D and In(Pe) vs temperature 7" for different
values of tilting force F: (1) F = 0.7; (2) F = 0.8; (3) F = 1.1; (4)
F=1.75.

perature (cf. Ref. [99]), in connection with the minimum in the diffusion
coefficient, for increasing noise intensity. In Ref. [117] it is pointed out
that for a homogeneous system the Péclet number can show a maximum,
although neither the diffusion coefficient nor the average current density
shows an extremum. The present model allows us to observe for different
tilts both the phenomena as one can see in Fig. 32 (the situation is actually
valid also for the simple sawtooth potential, however, in Fig. 22 it is intri-
cate to understand). Furthermore, as one can see in Fig. 33, in the region
of static external force, where Pe(F") exhibits a maximum (minimum in the
randomness factor), the Péclet number temperature 7" has two maxima, and
is extremely sensitive to the noise intensity.

3.7 Summary

In this chapter we carried out a comprehensive investigation of the over-
damped Brownian motion in tilted periodic potentials with one and two
minima per period in the presence of thermal noise. We did this for piece-
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Figure 33: The existence of two maxima in the Péclet number Pe vs tem-
perature T'.

wise linear potentials, which can be considered as a first approximation to
potentials of arbitrary shapes. We derived explicit algebraic expressions
for the diffusion coefficient, particle current, and Péclet number, and ana-
lyzed their dependencies on temperature, tilting force, and the shape of the
potentials.

We demonstrated that piecewise linear potentials show all effects charac-
teristic of tilted periodic potentials. Furthermore, merely varying the poten-
tial shape allows one also to reproduce all phenomena occurring in systems
with spatially periodic temperature and inhomogenous dissipation [39,117].
The transport properties of particles in the potentials with two minima per
period were shown to exhibit in certain parameter regions new and quali-
tatively different features.

We showed that large values of the asymmetry parameter k in the direc-
tion of bias F' favor the amplification of diffusion in comparison with free
thermal diffusion. In the case of potentials with two minima per period the
enhancement of diffusion is characterized by two regions, while for certain
values of the potential parameters, the effective diffusion coefficient D(F)
can have two maxima. The necessary and sufficient conditions for the non-
monotonic behavior of the diffusion coefficient as a function of temperature
were established in the case of a simple sawtooth potential.

We showed that the potential shape has a great influence also on the
Péclet number (randomness of Brownian transport) in a certain region of
temperature. However, at low temperatures and subcritical tilts the Péclet
number was demonstrated to have the value characteristic of a Poissonian
process practically independent of the potential shape. The domain, where
the Péclet factor exhibits the plateau, coincides with the domain where
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the enhancement of diffusion coefficient is maximal. Consequently, in the
region of parameters where substantial enhancement of diffusion occurs,
current and diffusion are exactly synchronized. In the case of double-hump
potentials the enhancement of diffusion is related to two different Poissonian
processes, while in the region of crossover at low temperature a rise of the
Péclet factor takes place. For the values of the tilting, corresponding to the
enhancement of Pe(F'), the Péclet number versus noise intensity has two
maxima.

In conclusion, we demonstrated that transport processes in periodic po-
tentials are extremely sensitive to the value of noise intensity and bias, and
that also the shape of the periodic potential has a significant influence in
determining the character of stochastic transport.
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4 Diffusion of dimers in a washboard potential

4.1 Motivation

One particular example of Brownian motion on a periodic substrate is the
diffusion of atoms and molecules on crystal surfaces [19-23,123|. This mech-
anism is of both conceptual and technological interest [124, 125], being
relevant to heterogeneous nucleation, catalysis, surface coating, thin-film
growth, etc. Individual atoms diffusing on a surface can eventually meet
and form dimers or trimers. For example, on a semiconductor Si(100) or
Ge(100) surface, most of the deposited Si or Ge atoms form dimers. Atoms
adsorbed on metal surfaces may also form closely packed islands that dif-
fuse as a whole [126-136]. This raises the issue of the role of the internal
degrees of freedom on the transport of extended objects through micro- and
submicro-devices.

One of the most important problems in modern nanotechnology is how
to manipulate small particles in order to perform a preassigned operation.
For instance, the mobility and diffusivity of atoms adsorbed onto crystal
surfaces can be controlled by applying deterministic forces [137,138]. A
direct manipulation method consists in applying a constant (“direct current”
or dc) local electric field by means of a scanning tunnel microscope tip
[139-141]. A selected adatom or admolecule with nonzero charge will then
move in the direction of the electric force; neutral particles will be forced
into a region of a stronger field due to induced polarization [142,143]. This
problem can be modeled as a Brownian motion on a tilted periodic two-
dimensional substrate.

In this part of the work we study the transport of a dimer confined
on a periodic substrate with a focus on the effects of the internal degrees
of freedom on its mobility and diffusivity. For simplicity, we restrict our
analysis to substrates in two or higher dimensions, which can be effectively
reduced to one-dimensional systems. In the simple case of a dimer driven
by a constant force oriented along a symmetry axis of a two-dimensional
substrate, one wants to characterize the stationary transport in the force
direction, whereas transverse diffusion is not affected by the bias. Of course,
the results presented in this chapter apply well also to a variety of physical
and biological systems, where the particle dynamics is naturally constrained
to (quasi) one-dimensional substrates. Examples of current interest include
colloids [144,145] or cold atoms [146,147| in optical traps, superconducting
vortices in lithographed tracks [148,149], ion-channels [150], cell membranes
[151], artificial and natural nanopores [152-155], molecular motors [73-75,
114,115,156-159], as well as dislocation dynamics [160-162].
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4.2 Model

A monomer moving on a one-dimensional periodic substrate with potential
Uo(z) = Up(z + L) under the influence of an external dc bias F' and at
finite temperature 7' can be described by the Langevin equation (3.1), where
1n = my is assumed, with v being a damping constant. For a symmetric
dimer consisting of two interacting Brownian particles the corresponding
Langevin equations have the form

mjlz_%llﬂﬂﬁJrF—n:tl +&1(1), (4.1)
mi2:_%12ﬂ62)+F—17$2+§2(t)' |

Here &(t), i = 1,2, are two independent zero-mean stochastic processes
with autocorrelation function

(&) = 2nkpT 85 0(t — 1) . (4.2)
Note that the interparticle interaction is incorporated in the substrate po-
tential function,

U(xl,xg) = Uo(m'l) + Uo(xg) + % (xg — T — a0)2 . (4.3)

That is, we assume the interaction between the two dimer particles to be
harmonic with coupling constant K and equilibrium distance ag. The sim-
plest choice for the periodic substrate potential is [54]

Up(x) = Ag cos(kx) , (4.4)

with k = 2rL~L.
The Langevin equations for a monomer and a dimer can be conveniently
rescaled. By introducing suitable space, energy, and time units,

A=kt e= Ay, T =1/A2m/e, (4.5)

we define the dimensionless quantities:

T = 33')\_1 s f/ = L)\_l 5 ag = aO)\_l )
T=kgTe ', F=Mel, K=NKe!, (4.6)
P=tr7',  A=nqr, ) = A&

No particle can be trapped by the potential (4.4) under any circumstances
for tilting larger than the critical value Fy, = 1 (in rescaled units). In the
following we drop the tilde altogether and only use dimensionless units.

After rescaling, the Langevin equation (3.1) for a monomer moving in
the potential (4.4) we obtain,

I=sinx+ F —~& 4+ £(t), (4.7)
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where the autocorrelation function of the rescaled noise is (£(t)&(t')) =
29T 6(t — t'). Analogously, the coupled Langevin equations (4.1) for a
symmetric harmonic dimer in the same substrate potential become [see
Eq. (4.3)],

& =sinzy + F + K(zg — 21 — ag) —y&1 + &1(1)
T =sinxg + F — K(x9 — 21 — ag) — yig + &(t),

with (§(t) & (') = 29T 6;56(t — t').

The dimensionless Langevin equations (4.7) for a monomer and (4.8)
for a dimer have been integrated numerically as explained in the next sec-
tion [163]. Individual stochastic trajectories were simulated for different
time lengths ¢,.x and time steps At, so as to ensure appropriate numerical
accuracy. Average quantities have been obtained as ensemble averages over
10* trajectories; transients effects have been estimated and subtracted.

(4.8)

4.3 Numerical simulation of Langevin equation with addi-
tive noise

We consider the dimensionless underdamped Langevin equation (4.7), which
can be written also as

T=wv, (4.9a)
o= f(t) +£(), (4.9b)

where f(t) = f(z) — yv is the sum of the periodic force f(x) = sinz + F
and friction force.

We next introduce a discrete time ¢, = kAt, Kk = 0,1,2,..., and inte-
grate the Langevin equation (4.9b) from tj to txy1 = tx + At; as a result
we obtain,

oty + At) = v(ty) + / S / T et (4.10)

173 ty

We have to keep here in mind that even for a single realization of the white
noise term, the function is highly irregular, not differentiable, and nothing
but a series of delta-functions spread all over the real axis. Assuming that
f(t) is a continuous function, we can approximately write,

tp+At
/ F)dt ~ f(t, + At/2) At (4.11)

tg

Denoting the second integral on the right hand side of Eq. (4.10) by ¢ (t)
Eq. (4.10) becomes,

vt + At) = v(ty) + f(te + At/2)At + E(t). (4.12)
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Concerning the quantity £(t) we can write (see the previous section),

. tet+At

o= [ emnar=o, (4.13)

o ' ti+At tj+At

Eeoden = [ at [T ewewnar =0 it k£, (414)

(EtEM)) = 29TAL if k=j. (4.15)
Thus,

V(@) = V2 TVAL. (4.16)

Introducing the Gaussian variable U(tk) with zero average value and unit
normalized correlation, i.e.,

(U(t)) =0, (4.17)
(U(ti)U(t))) = Okj (4.18)

we can rewrite the stochastic term & (tx) in the following way,

E(tr) = V2TVALU (1) (4.19)
The Langevin equation that one simulates, reads (see also Ref. [164]),

oty + AL = v(ty) + fty + At/2) At + /29TVALU (t);  (4.20)

for the exctraction of the values of the random variable U(ty), various meth-
ods are known [165].
By integrating Eq. (4.9a) between t;, — At/2 and t; + At/2, one obtains

w(ty + At/2) = 2ty — ALJ2) + v(ty) At. (4.21)

This equation, together with Eq. (4.20), allows one to compute the time
evolution of the system with error (At)3/2. In the absence of noise and
dissipation, Eqs. (4.20) and (4.21) represent the Verlet algorithm, which is
precise to order (At)2. In the presence of noise and dissipation the fact that
the force is computed at time ¢, + At/2 implies that both the position and
velocity should be computed at time ¢, + At/2, while only the position is
known for this time — the velocity is computed at t;. However, the error
done in replacing v(tj, + At/2) with v(t;) is of order (At)?, which is smaller
than the leading order (At)®2? due to the noise term [see Eq. (4.20)].
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4.4 Results: Mobility and diffusion

When considering a pair of interacting Brownian particles, it is natural to
study the motion of their center of mass

1
X =5 (@1 +a2). (4.22)
The average position of the center of mass is,
1
(X) = 3 ((z1) + (22)) , (4.23)

and the mean square displacement,

(0X7) = (X?) - (X)?
1 2 1 2

= L {8a) + 7 (0B + 5 (m1a) — (on) () (424)

For the following discussion we also introduce the relative coordinate Y,
Y = Tro — T, (4.25)

representing the dimer size. The quantity Y can in principle also become
negative. However, this happens only when the dimer oscillations around
the equilibrium position become very large. In the range of parameters that
we have adopted, we have verified that Y remains positive even for small
values of the elastic constant K, where one recovers the monomer limit. In
fact, the distance Y can become negative if both monomers fall into the
same valley. In our simulations, the dimer length (at rest) varies in the
range ag € [L,2L]. Thus, the monomers start out in different potential
valleys and are observed to stay so for all the times (i.e., configurations
with Y < 0 do not occur).
The dimensionless Langevin equations (4.8) can be rewritten as a Langevin

equation for the center of mass coordinate X and one for the dimer length
Y, that is,

X =cos(Y/2)sinX + F —yX +Q(t)/V2, (4.26a)

Y = 2cos Xsin (Y/2) — 2K(Y — ag) — 7Y +v2q(t). (4.26b)

Note that the two noises Q(t) = [€1(t) + &(¢)]/V2 and q(t) = [&a(t) —
€1(1)]/V/2 are uncorrelated and have the same statistics as &; 2(¢), namely,

(a(t)) = (Q(t)) = 0 and
(a()q(t)) =(QQ(H)) = HTo(t = 1. (4.27)

In the absence of a substrate potential the mobility of both a monomer and
a dimer is pg = y~!. Correspondingly, the free diffusion coefficient for a
monomer, Do(T) = Ty~ 1, is twice as large as that for a dimer, Do(T/2).
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Figure 34: Mobility (a) and diffusion coefficient (b) versus the dimer length
ag for different values of the tilting force F. Simulation parameters: cou-
pling constant K = 1.5, temperature 7' = 0.1, and v = 1. D, is the free
diffusion coefficient of the dimer, Dy, = Dy(7'/2), see text.

4.4.1 The role of the dimer length

At variance with a monomer, a dimer has two degrees of freedom. This
affects its diffusion dynamics [166] to the point that its diffusion coefficient
D can develop a non-monotonic dependence on the dimer parameters. For
instance, dimer transport strongly depends on the ratio between the period
L of the substrate and the natural length ag of the dimer [160,167,168].
In the absence of an external force, F' = 0, at low temperature the diffu-
sion coefficient of a rigid dimer decreases monotonically on raising the dimer
length ag from L/2 to L. This can be well understood from Eq. (4.26a).
In the limit K = oo the dimer length is exactly ¥ = ag and the force
cos (Y/2) sin (X) acting on X (t), see Eq. (4.26a), corresponds to a periodic
potential with amplitude |cos (Y/2)|. For ag = L/2 = 7 this quantity is
zero and the dimer center of mass undergoes free diffusion. For a9 = L = 27
the periodic potential amplitude is maximum, |cos(Y/2)| = 1; as discussed
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Figure 35: In the case of a rigid dimer, it is obvious that in the absence of an
external bias the dimer with ag = L/2 diffuses much easier than the dimer
with ap = L; in fact, the dimer with agp = L/2 undergoe free diffusion.
Similarly, in the presence of an external bias (F' < F;) the dimer with
ap = L/2 is much more mobil compared to the dimer with ag = L. See also
Fig. 34 and text.

in Sec. 3.3, diffusion in a periodic potential is known to be suppressed com-
pared to free diffusion [89,94,95|. Therefore, the maxima and minima of
D versus ag coincide with the minima and the maxima of the modulating
factor |cos(ag/2)|, respectively. This conclusion applies also to the case
of finite elastic constants as long as (Y (¢)) = ag, that is for rigid dimers,
K > 1, at low temperatures, 7' < 1 (see also Fig. 35). (For the opposite
limit of weak dimers, K < 1, see Sec. 4.4.2.)

In the presence of a subthreshold external force, F' < F,, the diffusion
coefficient D is a nonmonotonic function of the dimer length ag, as shown
in Fig. 34(b). The numerical results in Fig. 34 have been obtained by simu-
lating a relatively rigid, K = 1.5, and moderately damped, v = 1, dimer. In
the case of a strong to moderately damped monomer in a washboard poten-
tial, the curves D(F,T') are known to develop a peak around F,, where the
barrier height of the tilted periodic potential vanishes [103]|. Analogously,
in the case of a dimer, D attains a maximum for dimer lengths such that
the effective pinning force also vanishes, i.e., for ag equal to the distances
between maxima and minima of the washboard potential, see Fig. 36. In
the case of a driven rigid dimer with F' < F, = 1, this takes place for equi-
librium lengths aF = (L/2)[1 + (2/7)arcsin(F)]. Note that af are given
mod(L) and ag +ay = L.

Figure 34(a) demonstrates that the mobility is smallest for commensu-
rate dimers with ap = L and the largest for ap = L/2 (see also Fig. 35 and
Ref. [160]). The smaller the applied constant force, the smaller is the ag
range around ag = L/2, where the mobility of the dimer is significantly dif-
ferent from zero. For large enough tilting the dimer is considerably mobile,
no matter what is the value of ag. For F' — oo the mobility 4 — po and the
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Figure 36: Dimer configurations corresponding to zero pinning force and
maximum diffusion coefficient; see also Fig. 34 and text.

effective diffusion coefficient D — Do, = Do(T'/2). We remark that the ag
dependences of p and D shown in Fig. 34 are given mod(L) [160]. In fact,
the system dynamics, as given by Egs. (4.8), is invariant under the change
ag — ap + L and ©1 — x1 — L (or @9 — a9 + L).

4.4.2 Monomer-like regimes

We now study the diffusion and mobility of a dimer versus the bias F.
The general behavior of a dimer recalls that of a monomer, namely, both
the transition of the rescaled mobility from 0 to pg and the corresponding
enhancement of the diffusion coefficient above its free diffusion value still
occur as the tilting force is increased past the depinning threshold. The
monomer dynamics is a useful benchmark to check the accuracy of our sim-
ulations for the dimer diffusion. Indeed, in the limit K — 0, Eq. (4.24) boils
down to (§X?2) = (§x2)/2, with 1 obeying the monomer Langevin equation
(4.7) with temperature T'. It follows that for a weak dimer, K < 1, the
ratio D /Dy, is closely reproduced by the analytical curve D(F,T)/Dy(T)
obtained from Eq. (4.7) describing the monomer. This argument applies to
both commensurate, Fig. 37, and incommensurate dimers, Fig. 38(b).

Rigid dimers also behave like monomers. In the limit K — oo, the so-
lution of Eq. (4.26b) is Y (t) = Y = ap and Eq. (4.26a) is then equivalent
to the monomer Langevin equation (4.7) with temperature 7/2 and sub-
strate amplitude (critical tilt) | cos(ag/2)|. Accordingly, for commensurate
dimers with ag equal to an integer multiple of the substrate constant L, the
ratio D /D is reproduced by the curve D(F,T/2)/Dy(T/2) obtained for a
monomer on a tilted cosine potential with amplitude |cos(ag/2)| = 1 and
temperature 7/2 (see Fig. 37).

Note that for large values of damping the monomer curve can also be
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Figure 37: Diffusion coefficient D wvs the tilting force F' for a dimer length
ap/L = 1 and different coupling constants K; T' = 0.1 and v = 1. The
corresponding curves for monomers of temperature 7' (lower solid curve)
and 7'/2 (higher solid curve) are drawn for a comparison (see text).

computed analytically through the Cox formula [97-100] (see Sec. 3.3). The
data in Fig. 37 confirm that for increasingly large K the depinning threshold
approaches Fr, = 1 from below, as the effective critical tilt (|cos(/2)|)
tends to unity. Not surprisingly, for the commensurate dimer of Fig. 37,
the mobility curve coincides with the monomer mobility p(F,T") in the weak
coupling limit, and with the monomer mobility at half the temperature T,
w(F,T/2), in the strong coupling limit; both limiting curves are closely
approximated by the Stratonovich formula (not shown).

For K — oo incommensurate dimers behave like monomers moving on
a tilted cosine potential with amplitude |cos(ag/2)| < 1 and temperature
T/2 (see also Fig. 39 for a finite coupling). When ag is equal to a half-
integer multiple of the substrate constant L, the amplitude of the effective
substrate acting on the dimer coordinate X vanishes, |cos(ap/2)| = 0, and
the dimer diffusion becomes insensitive to the substrate, with mobility ug
and diffusion coefficient Dy(7'/2).

Figures 38 and 39 indicate that for a finite K the dimers exhibit a
much more complicated behavior, which will be discussed in the forthcoming
section.

4.4.3 The dependence on the coupling strength

The problem of a dimer diffusing in a washboard potential has been studied
in fact in many papers, but due to the large parameter space, important
effects went unnoticed. In Ref. [169] it was found that for a commensurate
dimer, D(F,T') had two maxima as a function of the tilting force F', whereas
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Figure 38: Mobility (a) and diffusion coefficient (b) vs the tilting force F for
an equilibrium distance ag/L = 1.5 and for different values of the coupling
constant K; T'= 0.1 and v = 1. In both panels the results are compared
with the corresponding monomer curves (see text).

incommensurate dimer behaved more like a monomer, with diffusion coeffi-
cient D showing only one peak. However, as shown in Fig. 38(b), one can
observe two F-maxima also in the diffusion coefficient of a noncommensu-
rate dimer; correspondingly, the mobility curve p wversus F' develops the
nonmonotonic behavior displayed in Fig. 38(a). More remarkably, for the
same temperature and damping constant of Fig. 38, commensurate dimers
presented a single peaked diffusion coefficient and monotonic mobility as
functions of the tilt (see Figs. 37 and 39). However, for different simulation
parameters (like those in Ref. [169]) two-peaked D curves were detected for
commensurate dimers, as well. Thus, a doubly peaked diffusion coefficient
is no signature of the dimer-substrate commensuration: the coupling con-
stant (Fig. 38), damping constant (Fig. 40), and the temperature also play
a significant role [see Eqgs. (4.29) and (4.30)].

To investigate the origin of the two competing diffusion mechanisms
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Figure 39: Mobility (a) and diffusion coefficient (b) vs the tilting force F'
for a coupling constant K = 1.5 and for different values of the equilibrium
distance ag. T and + have the same values as in Figs. 38 and 37.

shown in Fig. 38, we address in detail the case of a dimer with length
ag equal to half-integer multiple of the substrate constant L. For a finite
coupling strength K, on setting Y (t) = ag + 9(t), the coupled Langevin
equations (4.26) read,

X = —sin(¢/2)sinX + F —yX +Q(t)/V2, (4.28a)

¥ = 2cos (10/2) cos X — 2K — v + V2q(2). (4.28b)

If the dimer is sufficiently rigid and the tilting force F' weak, then v (t) is
small and mostly controlled by thermal noise. From Eq. (4.28b), on neglect-
ing the substrate force with respect to the dimer coupling, energy equipar-
tition yields (12(t)) = TK~'. Moreover, the force term sin (1//2) sin X in
Eq. (4.28a) can be treated as resulting from a randomly flashing cosine po-
tential with amplitude 2(|sin [¢/(¢)/2]|) = |[¢)|. This can be regarded as an
instance of the “parametric resonance” approach pursued by the authors of
Ref. [167] in the limit 7" = 0. On assuming a Gaussian distribution for ),
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Figure 40: Mobility (a) and diffusion coefficient (b) vs the tilting force F'
for ag/L = 1.5 and different values of damping constant ~; 7' = 0.1 and
K = 0.3. Two-peaked diffusion curves are clearly distinguishable for v <1,
only.

a corresponding ~-independent effective critical tilt can thus be estimated,
namely,

Py~ [(2/m) (P (O))]? = /2T /7K . (4.29)

As pointed out in the end of Sec. 3.3, for large to intermediate values of
damping, the critical tilt Fi, coincides with the effective dimer depinning
threshold Fj;. For K > 0.2, Eq. (4.29) locates rather accurately the first
F-peak of the simulated diffusion coefficient reported in Fig. 38(b).

For F' > Fj both the dimer mobility and the diffusion coefficient tend
towards their free particle values, unless an internal resonance sets in. In-
deed, driven by a strong force F, the dimer center of mass acquires an
almost constant speed Fy~!. On inserting X (t) ~ Ft/v into its right-hand
side, Eq. (4.28b) becomes the Langevin equation of a Brownian oscillator
subjected to a harmonic force with angular frequency Q = Fy~1. Ac-
cordingly, the internal degree of freedom of the dimer, represented by the
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coordinate Y, resonates for Fy~! approaching /2K — +2/2 (parametric
resonance [167,169-171]), thus leading to a threshold-like enhancement of
the dimer diffusion [103]. Our argument can be refined further by noticing
that at resonance the processes X (¢) and 1 (t) synchronize their phases, so
that the substrate force in Eq. (4.28a) does not average out any more. In
the presence of synchronization, (sin(¢/2)sin X) ~ 1/2, which amounts
to replacing F with F' — 1/2. In conclusion, for relatively large damping
constants, namely 1 <y < 2V K, a resonance diffusion F peak is expected

for
1 2
F2z§+’m/2K—%, (4.30)

in reasonable agreement with the simulation results of Fig. 38(b) for v = 1.
Correspondingly, the mobility curves describe a two-step transition from
the locked to the running state.

For weak dimers, K < (v/2)?, the two peaks of the diffusion coeffi-
cient tend to merge, as shown in Fig. 38(b), and in the limit K — 0 a
monomer dynamics is recovered (see Sec. 4.4.2). Equivalently, incommen-
surate dimers with v > 2v/K must be regarded as overdamped as far as their
internal coordinate Y is concerned; therefore, their diffusion coefficients are
characterized by one maximum located around the y-independent depinning
threshold Fy in Eq. (4.29); see Fig. 40(b). When ~ decreases, both diffusion
peaks shift towards smaller values of F. The explanation is simple: the
resonance threshold F5 tends almost linearly to 1/2; in the underdamped
regime, the depinning threshold Fj is proportional to v = nm~! as it obeys
law (3.37) with Fi, given by the effective critical tilt F of Eq. (4.29). This
estimate for Fy in the underdamped limit is consistent with the anticipated
locked-to-running transition thresholds exhibited by the mobility curves of
Fig. 40(a) with v < 0.3.

Going back to the dynamics of the damped incommensurate dimer of
Fig. 38, we remark that on increasing K the resonance diffusion peaks, in
addition to shifting to higher F' (directly proportional to v/K), flatten out
on top of the plateau D = Dy(T'/2); as the depinning peaks move to lower
F (inversely proportional to v/K), for K — oo the diffusion coefficient
eventually tends to Dy(7'/2), as anticipated in the previous sections.

The argument presented here can be easily generalized to the case of
commensurate dimers, or to any equilibrium length; the ensuing proper-
ties of commensurate versus noncommensurate dimers and the different
monomer limits of the dimer dynamics have been anticipated, respectively,
in Secs. 4.4.1 and 4.4.2.
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4.5 Conclusion

In this part of the work we studied a system consisting of two harmonically
interacting Brownian particles diffusing in a one-dimensional washboard
potential. We found that the average current and the diffusion coefficient
of such a dimer exhibit a complicated non-monotonic behavior as a function
of the driving force and the ratio of the dimer length to substrate constant.
In the limits of the weak (K — 0) and strong (K — oo) coupling constant
the expected monomer dynamics was recovered. Moreover, we studied in
detail the dimer transport for different coupling strengths and damping
constants. We concluded that the appearance of the second resonant peak
of the diffusion coefficient versus the driving force is not related to the dimer
length-to-substrate constant ratio, but rather to the damping-to-coupling
constant ratio; the diffusion coefficient D(F') possesses two peaks only for
relatively low damping values.

Finally, we recall that a simple one-dimesional model is not always a vi-
able tool to analyze transport in two or higher dimensions: such a modeling
makes sense for highly symmetric substrates, only. There exist irreducible
two- and three-dimensional devices where particles are driven on an asym-
metric potential landscape by an ac or dc driving force perpendicularly to
the symmetry axis of the potential. Such a geometry has recently attracted
broad interest [172-175] in the context of separation of macromolecules,
DNA, or even cells, because it is capable of inducing a transverse drift as
a function of the drive and of the particle geometry: as a consequence, dif-
ferent objects can be separated depending on their center of mass diffusion
coefficient [176]. While the motivations of the present study apply to this
class of devices, too, it is clear that their characterization must take into
account the dimensionality of the system at hand. Dimensional reduction
is limited by the spatial symmetry of the substrate and the particles.
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5 Anomalous diffusion: Basic concepts

5.1 General introduction

If the mean square displacement of the Brownian particle does not grow
linearly in time, as is the case for the normal Brownian motion, but slower
or faster, one then talks about anomalous diffusion. The benchmark of
anomalous diffusion is thus the occurrence of a mean-square displacement of
the form (6r2(t)) ~ t® (t — oo), where a # 1. Depending on the anomalous
diffusion exponent «, the motion can either be subdiffusive, 0 < @ < 1, or
superdiffusive, a > 1.

Anomalous diffusion has been known since Richardson’s treatise on tur-
bulent diffusion in 1926 [177|. Within transport theory it has been studied
since the late 1960s. In particular, its theoretical investigation was insti-
gated by Scher and Montroll in their description of dispersive transport in
amorphous semiconductors [178], a system where the traditional methods
proved to fail. The predictions of their continuous time random walk ap-
proach were very distinct from its Brownian counterpart and were shown
to explain a variety of physical quantities and phenomena in numerous ex-
perimental realizations.

Today, the list of systems displaying anomalous dynamical behavior is
quite extensive. Examples for subdiffusive transport encompass phenomena
such as charge-carrier transport in amorphous semiconductors, glasses, nu-
clear magnetic resonance, diffusion in percolative and porous systems, trans-
port on fractal geometries, and dynamics of a bead in a polymeric network,
as well as protein conformational dynamics, DNA unzipping [6, 179-182].
Superdiffusion or Lévy statistics are observed besides the Richardson turbu-
lent diffusion in special domains of rotating flows, in collective slip diffusion
on solid surfaces, in layered velocity fields, in bulk-surface exchange con-
trolled dynamics in porous glasses, in the transport of micelle systems and
in heterogeneous rocks, in quantum optics, single molecule spectroscopy, in
the transport in turbulent plasma, bacterial motion, movement of spider
monkeys (see Ref. [6,179] and references therein). Anomalous diffusion is
relevant to many other problems in physics and chemistry, in particular in
electrochemistry, in geophysics and environmental physics, in biology and
microbiology, in medicine, in finance and economics, in econophysics; it is
characteristic to most of complex systems. The anomalous character of the
transport in different systems is caused by very different mechanisms (see
e.g. Ref. [5]).

Anomalous diffusion in the presence or absence of an external velocity
or force field has been modeled in numerous ways, including [6]

(1) continuous time random walk models;
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fractional integro-differential equations;
fractal Brownian motion;

generalized diffusion equations;

generalized Langevin equations;

(2)

(3)

(4)

(5) Langevin equations;
(6)

(7) generalized master equations;
(

8) generalized thermostatistics.

In the following sections we give a short overview of the continuous time
random walk model and fractional Fokker-Planck equation.

5.2 Continuous time random walk

As discussed in Sec. 2.6, Einstein’s explanation of diffusion and Pearson’s
random walk are both based on the same two assumptions, namely, the ex-
istence of a mean free path and of a mean time. However, these assumptions
do not hold always; one such example is the transport of charge carriers in
amorphous semiconductors when exposed to an electric field.

Sixty years after Pearson, in 1965, Montroll and Weiss introduced the
theory of continuous time random walks [183,184]. It was applied to trans-
port in semiconductors in works by Scher and Lax [185], and Scher and
Montroll [178]. Due to its historical importance and vivid clarity we recall
here the definition of the continuous time random walk as given by Scher
and Montroll [178]:

In our model we postulate our material to be divided into a reg-
ular lattice of equivalent cells, with each cell containing many
randomly distributed localized sites available for hopping carri-
ers. Carrier transport is a succession of carrier hops from one
localized site to another and finally from one cell to another.
We define the hopping time to be the time interval between the
moment of arrival of a carrier into one cell and the moment of
arrival into the next cell into which it lands. The random distri-
bution of sites and hence the disorder of an amorphous material
is incorporated into a hopping-time distribution function (7).

The appropriate distribution v (7), leading to the agreement with the ex-
periments, was shown to possess the power-law form, ¥ (7) oc 7717% with
a € (0,1). For this range of the fractional exponent « all the moments of
the distribution ¥ (7) diverge and the corresponding process has no char-
acteristic timescale, thus exhibiting the phenomenon of aging. As a result,
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the process undergoes subdiffusion [5,6,180], i.e., the mean square displace-
ment grows in the absence of an external force slower than linearly in time,
(6r2(t) ~t* (0 <a<1,t— 00).

More in general, the continuous time random walk model is based on the
idea that the waiting time 7 elapsing between two successive jumps as well
as the length A of a given jump are drawn from a probability distribution
function ¢(\, 7), which is referred to as the jump probability distribution [6].
From ¢(A, 7) the jump length distribution

/ d(\, 7)d (5.1)

and the waiting time distribution

— /0 T o)A (5.2)

can be deduced. If the jump length and waiting time are independent ran-
dom variables then the jump distribution factorizes, i.e., p(A, 7) = (1) (N).
If the jump length and waiting time are coupled (Lévy walks) then ¢p(A, 7) =
p(A|T)Y(T) or ¢p(A,7) = p(T|A)p(A), ie., in a given time span the walker
can only travel a maximum distance.

Different types of continuous time random walk processes can be distin-
guished on the basis of the characteristic waiting time

T:/ W) rdr (5.3)
0
and the jump length variance

A? = / ©(\) A2 dA (5.4)

being finite or diverging [6]. Let us consider the case of the decoupled
jump distribution. If both the characteristic waiting time 7 and the jump
length variance A? are finite, the long time limit corresponds to normal
Brownian motion. If the characteristic waiting time 7 diverges but the jump
length variance A? is finite, in the long time limit the motion is subdiffusive;
the process is non-Markovian. In the opposite case, i.e., the jump length
variance A? diverges but the characteristic waiting time 7 is finite, then
one has a Lévy flight (superdiffusion). In the case both the characteristic
waiting time 7 and the jump length variance A? diverge, the competition
between long rests and long jumps takes place. In general the long jumps
and long waiting times introduce a “memory” in the system, i.e., the walker’s
behavior will be dominated by the largest jumps or longest waiting times.

As a conclusion, continuous time random walk models are a versatile
framework for the description of anomalous diffusion. In the following we
focus on the subdiffusive regime.
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5.3 Memory produced by the long rests

Following the general picture of the continuous time random walk model
we introduce, as in the case of the random walk presented in Sec. 2.6,
a one-dimensional lattice {x; = Az} with a lattice period Az and i =
0,£1,+£2,... However, now a particle at site ¢ hops to one of the nearest-
neighbor sites 7 &+ 1 only after a random residence time 7; the probability
for it is qz-i; qzr +¢; = 1. The random time 7 is extracted from a res-
idence time distribution v (7), which has the power-law form. Therefore,
the jump length variance A? is finite but the characteristic waiting time 7
diverges in our problem, i.e., the system is subdiffusive, as indicated in the
previous section; due to the infinite mean waiting time 7 our problem is
non-Markovian, i.e., it has a memory. Such a continuous time random walk
is described by a generalized master equation for the site populations P;(t),
reading [184]

/ (K, (t = )P () + K (= ) P ()
Kf(t— )+K(p4ﬂHWﬁ&Q (5.5)

where K (t) is the kernel. In the integral in Eq. (5.5), the kernel functions
K7, (t—t) represent the (positive) relative contributions to the time varia-
tion OP;(t)/0t due to the particles visiting sites i+ 1 at some previous times
t', 0 <t < t, waiting there a time interval 7 =t — ¢/, and then jumping to
site i at time ¢. Instead, the term with K (t — ') represents the (negative)
contribution due to the particles jumping from site ¢, where they arrived at
some previous time t’, to one of the neighboring sites 7 &1 at time ¢. The
Laplace-transform of the kernel Kzi (t) is related to the Laplace-transform
of the residence time distribution ;(7) via

RH(s) = qils_ﬁ( ()) (5.6)

Let us remind that the Laplace transform f(s) of a function f(t) is a func-
tional transformation commonly used in the solution of differential equa-
tions and is defined as

L) = f(s) = /0 T ety (5.7)

it is said to exist if the integral (5.7) is convergent, i.e., the function f(t)
does not grow at a higher rate than the rate at which the exponential term
e~ 5t decreases.
A possible choice for the residence time distributions is the Mittag-
Leffler distribution,
d

il1) = = Eal=(ni7)%], (5:8)
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with the survival probability F, given by the Mittag-Leffler function,

B9 = ey 5.9

the quantity v; is the time-scaling parameter at site ¢ and I'(x) is the Gamma
function. In this case one obtains,

Kif(s) =qfves'™. (5.10)

The corresponding generalized master equation can be recast as a fractional
master equation [186], reading

OF;(t)
ot

here the quantities gl-i = qiiu-o‘ will be referred to as fractional forward

= 0D} [, Pica(t) + 9731 Pra(t) — (g7 + 977) Pi(t)] (5.11)

(2
and backward rates. Using the normalization condition for the splitting

probabilities qii one obtains that
N1
vi = (g +g7)"° (5.12)

(remember that for random walk v; = g + g;, see Sec. 2.6), and

9

_ . (5.13)
9 +9;

4q;

in terms of the fractional rates. The symbol D}~ in Eq. (5.11) stands for
the integro-differential operator of the Riemann-Liouville fractional deriva-
tive acting on a generic function of time x(t) as [6, 180, 187]

e L0t X()
oD} X“)‘@E/odtm‘ (5.14)

By use of the Laplace-transform method one can show that the fractional
master equation (5.11) can be brought into the form [18§]

DYP(t) = g~y Pima(t) + g4 Prra(t) = (97 +9;7) Bi(t), (5.15)

where the symbol DY on the left hand side denotes the Caputo fractional
derivative [187],

DO (#) = ﬁ /0 dt’ﬁ% (). (5.16)

Equation (5.15) is formally very similar to the master equation (2.22) de-
scribing the random walk, with the difference that instead of the normal
time derivative 0/0t we have a fractional derivative (5.16).
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5.4 Fractional calculus

The calculus of fractional integrals and derivatives is almost as old as calcu-
lus itself. However, about 300 years had to pass before what is now known as
fractional calculus was slowly accepted as a practical instrument in physics:
until about 15 years ago expressions involving fractional derivatives and in-
tegrals were pretty much restricted to the realm of mathematics, but over
the past decade or two, many physicists have discovered that a number of
systems, particularly those exhibiting anomalously slow diffusion, are use-
fully described by fractional calculus [180].

In the previous section we saw already that the fractional master equa-
tion (5.15) describing the subdiffusive system with long waiting times is
not very different from the master equation (2.22) describing systems with
normal diffusion. In the following we will see that a similar correspondence
exists also between the diffusion equations: fractional equations generalize
the equations known from the theory of normal diffusion by taking into ac-
count memory effects such as the stretching of polymers under external fields
and the occupation of deep traps by charge carriers in amorphous semicon-
ductors. Such generalized equations allow physicists to describe complex
systems with anomalous behavior in much the same way as simpler systems
undergoing normal diffusion.

One way to formally introduce fractional derivatives proceeds from the
repeated differentiation of an integral power:

m!

dTL

— =", 5.17

dzn (m —mn)! (5.17)
For an arbitrary power u, repeated differentiation gives,

d" . T+

den ™ T(u—n+1)

ah (5.18)

with Gamma functions replacing the factorials. The simplest interpretation
of the Gamma function is that it is the generalization of the factorial for
all real numbers, I'(x + 1) = pI'(x). The Gamma functions allow for a
generalization to an arbitrary order of differentiation c,

d* ,  T(u+1)

dee”  T(p—a+1)

i (5.19)

The latter equation corresponds to the Riemann-Liouville derivative [180];
it is sufficient for handling functions that can be expanded in Taylor series.

A more general way to introduce fractional derivatives uses the fact that
the n-th derivative is an operation inverse to an n-fold repeated integration:

/a:v/ayl' : ./ayn_lf(yn) dyp ...dy; = ﬁ /ax(l’—y)n_lf(y) dy. (5.20)
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Clearly, the equality is satisfied at x = a, and it is not difficult to see it-
eratively that the derivatives of both sides of the equality are equal. A
generalization of the latter expression allows one to define a fractional inte-
gral of arbitrary order « via

xX
Dr @) = o [ @0 @y, 2z (5.21)
L(a) Jq
A fractional derivative of an arbitrary order is defined through fractional in-
tegration and successive ordinary differentiation. The a-th fractional deriva-
tive is
po = L pa-n (5.22)

“TE T dgn T '
If one deals with fractional time derivatives, one sets in general a = 0, in
effect choosing ¢ = 0 as the beginning of the system’s time evolution. In
particular, in generalized master and diffusion equations, a central role has
the operator

A d -
D™= —oD;*. 5.23
0 dt t ( )
The practical use of fractional calculus is underlined by the fact that,
under Laplace transform, the operator ¢D; * has the simple form

L{D;f(t)} = s *L{f (1)} (5.24)

The most famous definitions of fractional calculus are the Riemann-Liouville
definition and Grunwald-Letnikov definition that is convenient for the nu-
merical calculations. The other definitions are for the most part variations
on the themes of these two. However, it is important to keep in mind that
the Caputo fractional derivative may provide genuine technical advantages.

5.5 Fractional Fokker-Planck equation

In Sec. 5.3 we saw that the continuous time random walk with a constant
step size and the Mittag-Leffler distribution for the residence times can
be described by the fractional master equation (5.15), or equivalently by
Eq. (5.11). Using the fractional master equation (5.15) with the Caputo
fractional derivative it is easy to see that in the very same way as in the
case of normal Brownian motion (see Sec. 2.7) one can derive the fractional
Fokker-Planck equation [6,189,190],

9 J@) o P(a,t); (5.25)

DEP(x,t) = |- o
* ((L’, ) 633 na K 6332




the latter equation can be rewritten also as

0 - 0 f(x) 0?
—P(x,t) = oD} ™ | — 5 Ka 75
Ot(’) 0= 8$na+a8x2
Here k. denotes the anomalous diffusion coefficient with physical dimen-
sion [m?s~?]. The quantity 7, denotes the generalized friction coefficient

possessing the dimension [kgs®~2]; it is related to k4 through

P(z,t). (5.26)

Naka = ksT', (527)

thus constituting a generalized Einstein relation. The anomalous current
and the anomalous diffusion coefficient are defined through fractional rates
by the relations Az(g;” —g;) = F;yn; ! and (Az)?(gf + g;)/2 = Ka, having
the same form as the corresponding relations for normal Brownian diffusion,
determined through the corresponding escape rates (see Sec. 2.7). Equations
(5.25) and (5.26) describe subdiffusive processes for 0 < a < 1 and reduce
to the ordinary Fokker-Planck equation when oo = 1.

Let us mention here that taking also non-local jump statistics into ac-
count, i.e., assuming that both 7 and A? are infinite, one recovers the
fractional Fokker-Planck equation in the following form,

91
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_P(xat)ZODtl_a dx n
o

ot
here V# = 0F/0|z|* is the Riesz fractional derivative and the physical
dimension of the fractional diffusion coefficient xh is [m#s™*]; 0 < p <
2. The occurrence of the operator Oﬁtl_a is induced by the heavy-tailed
waiting times between successive jumps, whereas V# is related to the heavy-
tailed distributions of the jump lengths. Equation (5.28) thus describes the
competition between subdiffusion and Lévy flights. For =2 Eq. (5.26) is
recovered.

For Markovian Lévy flights, i.e., o« = 1, Eq. (5.28) becomes,
0 0 f(x)

- p —

+REVE| P(2,1); (5.28)

— P P 2
5a o HE V| P, (5.29)

the physical dimension of the fractional diffusion coefficient x# being [m* s1].

It should be noted that the Lévy noise affects only the diffusive term.

5.6 Numerical simulation of the fractional Fokker-Planck
equation through the underlying continuous time ran-
dom walk

5.6.1 Numerical algorithm for the continuous time random walk
The fractional Fokker-Planck equation represents the continuous limit of a

continuous time random walk with the Mittag-Leffler residence time density.
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Therefore, it is proper to investigate the fractional Fokker-Planck equation
through the underlying continuous time random walk.

Studying the continuous time random walk in a one-dimensional po-
tential U(x), we consider an ensemble of N particles moving on a lattice
{z; = iAx}, with a lattice period Ax; i = 0,£1,£2,... The state of the
n-th particle is defined through its current position 2™ and the time ¢
at which it will perform the next jump to a nearest-neighbor site. The n-
th particle of the ensemble starts from the initial position (™ (¢y) = a:(()n).
After a residence time 7 extracted from the probability density ;(7), the
particle jumps from site ¢ to site ¢ + 1 or ¢ — 1 with probability qf or q; ,
respectively, obeying the normalization condition q;r +¢q; = 1. Correspond-
ingly, the space coordinate and the time are updated, (™ — z(™ 4+ Az and
t) — (") 4 7 Reiterating this procedure, the full random trajectory of
the random walker can be computed (see Fig. 41 and also Sec. 5.3).

In order to perform the numerical simulation, one needs to evaluate the
quantities qz-i and v; and extract the waiting times 7. To extract the random
numbers distributed according to the Mittag-Leffler distribution (5.8) the
most convenient way is to use the following inversion formula [191] (see also
Refs. [192-196]),

r— —u g {a [%0‘”)) - cos(om)} l/a} : (5.30)

tan(amb

a,b € (0,1) are independent uniform random numbers. The quantities q;t
and v; can be expressed in terms of the fractional transition rates gii as
given by Eqs. (5.13) and (5.12). However, we still do not know what g
really are.

To find gl?t we have to discretise the fractional Fokker-Planck equation.
The fractional Fokker-Planck equation (5.25) can be written in the following
form,

o 0 Ulz) O U
DYP(z,t) = Ko {e {e P(x,t)] } . (5.31)

Discretising the latter equation according to Eq. (2.24) we obtain,

K
DY P — @ —ﬁ[U(x—Am/Q)—U(x—Ax)]P _A
P PGt) = o (e (z — A1)
+ €_ﬁ[U(w+Aw/2)_U(x+Aw)]P(.I‘—I—Aaj‘,t)

o—BlU(a+A2/2)~U (@) +€—6[U(I—Aw/2)—U(r)l} p(x’t)}  (532)

Comparing the latter equation with the fractional master equation (5.15)
we see that

9; = [ka/(Ax)? exp[=B(Uiz12 — Ui)l; (5.33)
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Ui = U(iAz) and Ui/ = U(iAz + Az/2). The fractional rates (5.33)
satisfy the Boltzmann relation, g;" /g7 = exp[B8(U;—1 — U;)]. For a = 1
ko — Dy and we obtain the transition rates for random walk discussed in
Sec. 2.6.

The fractional rates may also be chosen as

97 = [Fa/(A2)* exp[—f(Uiz1 — Ui) /2] (5.34)

An appropriate discretisation step Ax has to satisfy the condition |3(U;+1 —
Ui)| < 1; under this condition one can also safely replace 3(Ut1/2 — U;)
with 8(U;+1 — U;)/2 without a violation of the detailed balance condition.
Furthermore, the condition U”(z)Az < 2U’(x) must be fulfilled, in order
to ensure the smoothness of the potential. In the limit Az — 0 this so
constructed, limiting continuous time random walk is described by the frac-
tional Fokker-Planck equation (5.25), or equivalently through Eq. (5.26).

In the case of a confining potential it is sufficient to compute the splitting
probabilities qii and the time scale parameters v; only once over a finite x-
region at the beginning of the simulation. In the case of a periodic or
washboard potential, the quantities qz-i and v; can be computed only for
the first period. In the latter case, while the total potential U(x) is not
periodic, the potential differences appearing in the fractional rates can be
rewritten as

U(x; + Ax) — U(z;) = Up(x; = Ax) — Up(x;) F FAx, (5.35)

and are therefore periodic functions of z;.

To perform the numerical measurements and compute the average (Y (t))
of a quantity Y (t) = Y (x(¢)), one can introduce a time lattice {t, = mAt*},
where m = 0,1,..., M, and At* is a constant time interval between two
consecutive measurements. For the computation of the average (Y (¢)), there
are at least two different strategies, which we discuss here. Both methods
can be illustrated through Fig. 41.

The first possibility is as follows: each trajectory z(™)(t) is separately
evolved with time, until the final time ¢gya is reached, t™ > tgo.1. As this
n-th trajectory reaches a measurement time ¢}, (represented with dashed
lines in Fig. 41), i.e., t™ > t* | the quantity Y, = V(z(™(¢%)) will be
computed using the coordinates corresponding to the events marked with
full-circles in Fig. 41. The value Yn(f) will be saved in a storage variable
Youm (th,) = >, V™. After evolving all the NV trajectories, the average is
finally computed by normalization, (Y (¢}))) = Yaum(t),)/N.

The second possibility is to evolve the whole ensemble until the times of
all the trajectories ¢(™ (at which the particles will perform the next jump)
exceed the fixed chosen measurement time ¢7,. We mark these events in
Fig. 41 with full-circles. Then, all the corresponding positions z(™ and
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Figure 41: Sketch of the numerical algorithm: After a random waiting time
7 the particle jumps from the current position z(™ to the position (™ + Az
or ™ — Az. The process is reiterated until ¢ > tg,.. The numerical
measurements are performed after constant time intervals at times ¢7,. The
full-circles represent the events that are used for the computation of the
physical quantities.

times ¢ will be saved and the average (Y) at the fixed time t* will be
computed. The procedure is reiterated to evolve the system until the final
time tgpa)-

Which of the two methods is to be preferred depends on the prob-
lem studied and the available computational resources. For example, the
method in which the whole ensemble is evolved in time, allows one to save
the system configuration (and therefore to stop and also restart the time
evolution) and compute the average quantities after each measurement time
ty.. Furthermore, evolving the whole system together allows one to simulate
a set of IV particles interacting with each other.

Let us also notice that the general scheme presented here for the con-
tinuous time random walk is valid also for &« = 1 as for this value of the
fractional exponent the Mittag-Leffler distribution for the residence times
becomes exponential for which normal diffusion is recovered. Also one can
apply the presented procedure for the random walk discussed in Sec. 2.6.
In this case, instead of assuming a residence time distribution one can also
just assume that the jumps are performed at each time-step.

Finally, it is important to keep in mind that in the case of anomalously
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slow diffusion the time and ensemble averages are not equal (not even for
the stationary state); the phenomenon is called ergodicity breaking [197].

5.6.2 Mittag-Leffler versus Pareto

As pointed out in the previous section, to extract the random number dis-
tributed according to the Mittag-Leffler distribution (5.8), Eq. (5.30) can
be used. However, also different methods may be used, described in this
section and exploited to obtain the numerical results presented in chapters
6 and 7 7.

According to the Tauberian theorems [184], for every 0 < o < 1 the long
time behavior of the system is determined solely by the tail of the residence
time distribution [198]. Therefore, any other distribution with the same
asymptotic form S, (v47) ~ 1/T'(1 — o) (47)* could be used in place of the
Mittag-Leffler distribution (5.8). In fact, also the conditions S, (0) = 1 and
Sa(z — 00) = 0 must be satisfied, and the function S, (v;7) has to decrease
monotonically with 7.

The Mittag-Leffler function E,(—¢&), defined by Eq. (5.9), can be nu-
merically computed at & < &y through the sum

~_ (9"
E, (=& ~ _— .
(-9 Zf(l—i—ah) (5.36)
h=0
while at values of £ > £ its asymptotic expansion can be used,

K

Eo(=¢) = — Z

k=1

"

0=l (5.37)

with suitable values of H, K, and &.
A suitable choice for an approximate description is a Pareto probability
density, defined by

il(r) = —%Pa(w) , (5.38)

with the survival probability

1
[1+T(1— a)oyr]*

Po(viT) = (5.39)

In the simulations of the continuous time random walk we have usually
employed the Pareto distribution y = P, (v;7). It is convenient numerically

9While performing the numerical simulations, we were not aware of the inversion
formula (5.30).
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because it can be readily inverted to provide a random residence time 7
[165],

_ -1 y~te—1

T = l/Z W N (540)

y is a uniform random number in (0, 1).

We have numerically verified the equivalence of the Mittag-Leffler and
the Pareto distribution in the computation of the asymptotic quantities.
However, the difference in the behavior of the Mittag-Leffler and the Pareto
residence time distribution in the limit o — 1 has to be noticed: namely,
for a = 1 the Mittag-Leffler distribution transforms into the exponential
function, Fy(—v;7) = exp(—v;7), while the Pareto distribution remains of
a power-law type, leading to normal and anomalous diffusion, respectively.
For this reason, when studying numerically fractional diffusion with @ — 1
the Mittag-Leffler probability distribution should be used preferably.

As the Tauberian theorems ensure the equivalence of the Mittag-Leffler
and the Pareto distributions only in the asymptotic limit ¢ — oo, it is
to be expected that at finite times ¢ the two choices for the probability
densities provide different results. The difference increases as the parameter
« approaches the value o = 1 (see also Ref. [199)]).

5.6.3 Summary

In this section the numerical algorithm for the simulation of fractional
Fokker-Planck dynamics has been detailed via the underlying continuous
time random walk. Here we provide the core scheme of the time evolution
algorithm used in the simulations. The core of the program is the following
one:

For every measurement time t,, = mAt*, where m = 1,..., M, the loop
over trajectories is performed:

e For every trajectory n, where n = 1,..., N, the following procedure
is performed:

¢ While the next jumping time is smaller than the next measure-
ment time, ¢ < mAt*, the following steps are reiterated:

— From Eq. (5.12) with (5.34) the time scale parameter v;
at the current position ¢ is computed. A random wait-
ing time 7 is extracted from the residence time distribu-
tion, see Sec. 5.6.2, and the next jumping time is computed,
) ) 7

— From Egs. (5.13) the probabilities qii to perform the jump
from site ¢ to site 7 £ 1 are computed. A uniform random
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number between 0 and 1 is extracted to determine whether
the particle jumps to the right or left and the new position
of the particle is then computed, (™ — z(™ + Az,

o The coordinate z(™ and the next jumping time ¢(™ are stored.

e Statistical averages at time t,,, = mAt* are computed using the stored
coordinates {z(™}.

The application of this algorithm deserves to be commented on in greater
detail. First, the effect of the replacement of the Mittag-Leffler by the
Pareto distribution does not affect the anomalous transport properties in
the asymptotic limit. However, given the finite time available for doing
simulations a difference can still be present if the parameter o assumes
values close to one, i.e., close to the limit of normal diffusion. Here, the
use of the Mittag-Leffler distribution, that precisely matches the fractional
Fokker-Planck description, is used preferably. Otherwise, one must increase
the overall time of simulations to arrive at convergent results. In order
to study the fractional diffusion problem on the whole time scale, the use
of the Mittag-Lefller probability density is thus unavoidable. Second, the
weak ergodicity breaking [197] makes it impossible to obtain the averaged
quantities with single time-averages over a single particle trajectory; this
will be discussed more in detail in the forthcoming chapter.
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6 Anomalously slow diffusion on periodic substrates

6.1 Motivation and general model

As detailed in Sec. 1, thermal diffusion of Brownian particles under the
action of a spatially periodic force presents an active field of research, be-
ing relevant for various applications in condensed matter physics, chemi-
cal physics, nanotechnology, and molecular biology [7-11]. At the same
time many biological and condensed matter systems are advantageously de-
scribed as particles moving along a disordered substrate. Depending on the
statistical properties of the potential, the long-time limit of the process can
be quite different from that in a washboard potential [5,35]. It has been
shown that the heterogeneity of the substrate potential may lead to anoma-
lous dynamics [5,36,38,200]. In particular, over a range of forces around
the stall force subdiffusion is observed [35].

Given the importance of the subdiffusion and the motion in periodic
potentials in various applications [6, 156,201], in this chapter we address
the physics of the effect of the combined action of a periodic force and a
random substrate.

6.2 Biased continuous time random walk

Before proceeding with the anomalous transport under the influence a spa-
tially periodic force, let us recall the results for the biased motion. The
anomalous diffusion that is biased by a constant external force F is a well
established phenomenon found in many different systems. For the biased
continuous time random walk the fractional rates become site-independent,
g;r =gt and g; =g, as Ujz1 — U; = FFAz. Using the Laplace transform
one finds the solution of the fractional master equation (5.15) for the mean
particle position and for the mean square displacement [202],

() = {2(0)) + % - 6.1)
_ (Az)* (T +97) o
(ba2(0) = (pa2(0)) + BT ET )
2 1

T(2a+1) T2(a+1) (A2)? (g* —g7)" . (6.2)

The solutions of the corresponding fractional Fokker-Planck equation are in
the same form of the ones for the fractional master equation; i.e.,
F t

(w(t) = (@(0)) + -~ TatD)’ (6.3)
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The fractional current is defined and numerically computed as
t)) — (x(0
Vo = Tl +1) lim &) = @O (6.5)
t—o00 te

Therefore, in the case of the biased continuous time random walk v, =
Fn,t. With respect to the case of normal diffusion the expression for the
mean square displacement contains besides a thermal contribution propor-
tional to t* also a ballistic-like term proportional to t2*. As a consequence,
a value a < 1 does not necessarily imply subdiffusive behavior. In fact, in
the presence of bias for 0.5 < a < 1 superdiffusion takes place.

For a finite bias F, the ballistic term in Eq. (6.2) equals zero only in
the case a = 1, for which normal Brownian motion is recovered. From
Egs. (6.1), (6.2) one obtains then a generalized nonlinear Einstein relation,
which is nonlinear in force and valid for a finite space step A,

(922 (t)) — (62°(0))
(z(t)) = (=(0))

In the limit ' — 0, Eq. (6.6) yields the well-known Einstein relation
(@ =1), ka/pa(0) = 371, between the thermal diffusion coefficient

[(622(2)) — (62 (0))]r=0

= Az coth(F[Az/2). (6.6)

w=T(a+1) 1 7
fo =T(a+1) lim 20 (67)
and the linear mobility uo(F = 0),

_ Va _ . (e(t) — (2(0)

The same Einstein relation is valid also between the submobility and the
subdiffusion coefficient for any o < 1 [203], as the ballistic term in the mean
square displacement (6.2), (6.4) vanishes for F' = 0; in the absence of bias
the mean square displacement grows in time as t¢,

2Ky

(62%(1)) = (02*(0)) + Ti+a)

e (6.9)

However, a relation analogous to the generalized nonlinear Einstein re-
lation (6.6) ceases to be valid for v < 1 for any finite F', as the mean square
displacement becomes dominated by the ballistic contribution in the long
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time limit. Instead, from Egs. (6.1), (6.2) or (6.3), (6.4) one obtains the
following asymptotic scaling relation,
(62%(t)) 2% (a+1)

AG®? T T@arl) & (6.10)

This result no longer contains the fractional transition rates and holds true
independent of the strength of the bias F' and the temperature 1. The
relation (6.10) was first obtained in Refs. [178,204] for a continuous time
random walker exposed to a constant force.

6.3 Fractional current in washboard potentials

Considering the transport processes with anomalously slow relaxation in a
tilted periodic potential (3.2) then departing from the fractional Fokker-
Planck equation (5.25) one finds in the very same way as in Sec. 3.3 for the
normal diffusion that the probability flux J,(z,t) reaches asymptotically
the stationary current value, i.e.,

Di(a(t)) = Lo = va (6.11)

the anomalous current v, in a washboard potential is given in closed form
by [199,205]

B Lk, (1 — e‘ﬁFL)
B fOL da e—BU(z) f;+L eBUE) dg!

The latter formula represents the anomalous counterpart of the current
in washboard potential known for normal diffusion and reduces to the
Stratonovich formula (3.25) for v = 1[92,93|. As the derivation of Eq. (6.12)
is analogous to the derivation of (3.25), we do not repeat it here, but refer
to Sec. 3.3 and Ref. [199].

From Eq. (6.11) one sees that the mean particle position follows as

(6.12)

Va

ta

((t)) = (z(0)) + va T (6.13)

l+a)’
with v, given by Eq. (6.12). Comparing Egs. (6.13) and (6.3) we see that the
expressions for the mean particle position in the constant force field and in
the tilted periodic potential have the same form, with different expressions
for the current.

We have tested the validity of the generalized Stratonovich formula
(6.12) obtained theoretically, through the simulation of the fractional con-
tinuous time random walk in different periodic potentials:

(i) the symmetric cosine potential

Us(x) = cos(2mz /L) ; (6.14)
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Figure 42: Dimensionless subcurrent v, (F')/(Fer/Na) and nonlinear mobil-
ity p1a(F') ne for the case of the cosine substrate potential (6.14) (depicted
in the inset) vs F/F.. Numerical values corresponding to different tem-
peratures 7" and fractional exponents « € [0.1,1] (symbols) fit the analytic
predictions from Eq. (6.12) (continuous lines).

(ii) the symmetric double-hump periodic potential
UZ(x) = [cos(2mx/L) + cos(4mx/L)]/2; (6.15)

(iii) the asymmetric (i.e. no reflection symmetry holds), ratchet-like peri-
odic potential

Ud(x) = [3sin(2rx/L) + sin(4mz/L)] /5. (6.16)

The potentials (6.14), (6.15), and (6.16) are depicted in the insets of Figs. 42,
43, and 44 respectively. The potentials as well as the thermal energy kg7,
are measured in units of the potential amplitude A. For the sake of sim-
plicity, the same symbol T is used in the following to represent the rescaled
thermal energy.
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Figure 43: Same as in Fig. 42, for the double hump potential (6.15).

In the numerical simulations we have used the Pareto probability den-
sity (5.38) for 0 < a < 0.8 and the Mittag-Leffler density (5.8) for 0.8 <
a < 1 (see the discussion in Sec. 5.6.2). For a = 1 corresponding to a
normal Brownian process we have employed the exponential residence time
probability density

d

Yi(T) = 1 exp(—v;T). (6.17)
As a space step we used Az = 0.001, measured in units of the space period
L. The time unit was set as 7, = (7oL%/A)Y/*. For the ensemble average
10* trajectories were employed, each one starting from the same initial
condition z(ty) = xg. The tilting force is measured in units of the critical
tilt Fi;. In the case of the asymmetric ratchet potential the positive critical
tilt is used.

We present in Figs. 42, 43, and 44 the numerical results for the scaled
fractional current v, (F')/(Fer/na) and the corresponding scaled nonlinear
mobility, i.e., po(F)Na, With ve(F) and pe(F) defined through Eq. (6.5)
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Figure 44: Same as in Fig. 42, for the ratchet potential (6.16). Here, due
to the asymmetry, also negative tilting is studied.

and Eq. (6.8). The subcurrent is measured in units of Fg,/n,, i.e., the
subcurrent of a particle under the action of a constant bias F' = F,, the
mobility is in units of the free mobility 1. Without loss of generality we
have chosen F' > 0 for the symmetric substrate potentials (6.14) and (6.15).
In the case of the ratchet-like potential (6.16) also the results for negative
values of the tilting force F' are depicted.

We have computed the fractional current and mobility for various values
of v in the interval [0.1,1]. Remarkably, they do not depend on the value of
the fractional exponent « [see also Eq. (6.12)]. For a given temperature T,
all numerical values of vy, (F')/(Fer /o) and pio (F') 1o (depicted with symbols
in Figs. 42, 43, and 44), coincide with the theoretical curves resulting from
Eq. (6.12) (continuous lines).

The regime of linear response at low temperatures is numerically not
accessible. In this parameter regime the corresponding escape times gov-
erning the transport become far too large [11] and particles are effectively
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Figure 45: Universal scaling: asymptotic values of the ratio (§22(t))/(z(t))?
as a function of the parameter o for anomalous diffusion. All the points
corresponding to the same « but different values of tilting force F', tem-
perature T', and shapes of substrate potential, match the function given in
Eq. (6.10) (solid line) within the statistical errors. We use three different
temperatures: 7' = 0.01 with the bias F' ranging between 0.9 — 2.0; cor-
respondingly, T' = 0.1,F = 0.7 — 2.0 and T = 0.5, F = 0.4 — 2.0. The
open triangles correspond to the cosine potential (6.14), the filled squares
to the double-hump potential (6.15) and the open circles to the asymmetric
ratchet potential (6.16).

trapped in the potential minima. At values of the tilting force F' close to
critical at which the minima disappear, the particles become capable to
escape from the potential wells and the current is enhanced. The higher
the temperature, the smaller is the tilting required to allow the particles
to escape (compare the curves corresponding to different temperatures T’
in Figs. 42, 43, and 44). At higher values of the temperature 7' the lin-
ear response regime is numerically observable. For tilting forces F' > F,
or for T' > 1 the dynamics approaches the behavior of a free continuous
time random walk that is exposed to a constant bias [37,204,205]| (see also
discussion in Sec. 3.3).

6.4 Universal scaling

In Sec. 6.2 we saw that for the anomalously slow diffusion in constant force
field, in the long time limit the asymptotic scaling relation (6.10) holds. We
now show that the relation in (6.10) is valid also for anomalous transport
in tilted periodic potentials. We prove this by mapping the dynamics onto
an equivalent continuous time random walk, i.e., we consider a discrete
state reduction of the continuous diffusion process z(t): to this aim, we
introduce a lattice with sites {Z; = jL}, located at the minima of the
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periodic part of the potential, and study the residence time distribution
1/3]- (1) for the hopping process between sites {Z;}. For such a system, the
ratio qj / 4 = exp(BF L) equals that of the constant force case, due to the
choice Az = L. Furthermore, the analogy between the solutions (6.1) and
(6.13), both exhibiting an asymptotic power law oc ¢, implies the same
form 1b; (1) oc 1/714 for 7 — oo. In fact, for ¢;(1) ~ ar;®/T(1 - a)r'te,
with some suitable scaling coefficients ;, the corresponding kernels of the
generalized master equation obey K ]i(s) = (jj[ s s17% in the limit s — 0.
Therefore, by making use of Tauberian theorems for the Laplace-transform
[184], it follows that the asymptotic solution (¢ — oo) is of the form (6.1),
(6.2), being determined only by the asymptotic power law behavior of the
residence time distribution [198], despite the fact that the values of the new
fractional forward and backward rates §* depend on the chosen shape for
the periodic potential. Because the result in (6.10) is independent of §*,
the scaling relation thus still holds true. It is universal in the sense that it
holds independently of the detailed shape of the tilted periodic potential,
the temperature T and the bias strength F.

The universal scaling in tilted periodic potentials is illustrated with
Fig. 45, in which the asymptotic ratio (622(t))/(z(t))? is plotted versus the
fractional exponent « for the periodic potentials (6.14)-(6.16). For a given «
various data are presented, corresponding to different potential shapes and
values of F' and T'. As one can deduce, these points overlap, demonstrating
that the ratio is independent of bias and temperature, as well as the specific
shape of the substrate potential Up(x). At the same time, the data fit very
well with the analytical expression (6.10) (continuous line).

6.5 Fractional diffusion in periodic potentials

From Eq. (6.12) we see that the anomalous current in a periodic potential
(no external bias) is zero and (z(t)) = (z(0)). As discussed in the previous
section, the mean square displacement in a tilted periodic potential is of
the form (6.2), or equivalently (6.4). Then, in the absence of the tilting it
is of the form (6.9) with the difference that instead of the free fractional

di(ﬁf}l)sion coefficient k., we have the effective fractional diffusion coefficient
€

2 2 2’@(18&) a
(0x*(t)) = (0x=(0)) + mt (6.18)

(see also Ref. [206]). The latter equation defines the effective fractional

diffusion coefficient Ii((f D in a periodic potential,

(022 (t)) — (52%(0))
2t

e =T(a+1) Jlim (6.19)
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Figure 46: (a) Effective anomalous diffusion coefficient /@((f )in a periodic

potential vs the re-scaled temperature kT A~'. The quantity /i((f ) s re-

scaled by the corresponding free fractional diffusion coefficient k,. The
theoretical curves obtained from equation (6.20) (lines) are compared to
the numerical results (symbols). The different periodic potentials used are
given by Eqgs. (6.21)-(6.23). For each potential and at given temperature
the numerical points are computed for some values of o within the interval
a € [0.1,0.9]. (b) A comparison among the different periodic potentials

used for the numerics, see in (6.21)-(6.23): (1) the cosine potential Uél)(az);

2) the double hump potential U@ () — 2a1 —1); (3) the ratchet potential
0
(3)
Uy ().

The analytical expression for the effective fractional diffusion coefficient
/@((f ) in a periodic potential can be derived using the fact that the Ein-
stein relation (3.28) is valid also for the anomalous transport if ¥ — 0,
as discussed in Sec. 6.2. Thus, following the same procedure as for nor-
mal diffusion (see Sec. 3.3), taking into account that the fractional current
Uy 18 given by (6.12), one obtains the following expression for the effective

fractional diffusion coefficient in a periodic potential,

(eff) _ Fa
KM = — a - (6.20)
g‘e_/@UO(w)de g‘eﬁUO(xl)de

The latter result generalizes the Lifson-Jackson formula (3.31) to the sub-

diffusive motion in periodic potentials; it reduces for a« = 1 to Eq. (3.31).
The behavior of equation (6.20) versus re-scaled temperature kg7 A"

is illustrated in Fig. 46(a) for the following periodic potentials, depicted in

Fig. 46(b):

(i) a cosine potential

Uél)(a:) = Acos(2rx/L), (6.21)
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Figure 47: The time evolutions of the probability densities characterizing
the anomalous and normal diffusion processes in the periodic cosine poten-
tial (6.21). The dot-dashed line at z = 0 (left figure) represents the initial
conditions at t = 0, P(x,0) = d6(x — Xo). The re-scaled temperature is
kT A~' = 0.5 and the fractional exponent is @ = 0.5. The anomalous
probability density P(z,t) cannot be distinguished from that of the nor-
mal case, P(z,t"), once the time has been re-scaled according to Eq. (6.24).
Similar results are obtained for other values of o € (0,1) (not depicted).

(ii) a double-hump potential
U(g2) (x) = Aay[cos(2mz /L) 4 cos(4dmx/L)], (6.22)

with the coefficient a1 = 16/25, and
(iii) a ratchet potential

Uég) (x) = Alagsin(2rx/L) + as sin(4nz/L)], (6.23)

with az = 85/(21v/21), a3 = 25/(21v/21). The coefficients aj, a2, as
are chosen such that the potentials (6.21)-(6.23) have the same amplitude
A. The theoretical curves are confirmed by numerical results, depicted in
Fig. 46(a) with symbols. The anomalous diffusion coefficient is computed
numerically as defined by Eq. (6.19). As the ratio et /Ko < 1, one can con-
clude that, analogously to the normal case, the effect of any one-dimensional
non-biased periodic field is to suppress the macroscopic anomalous diffusion
coefficient compared to the value in the absence of force [89] (see Sec. 3.3).
Furthermore, it is to be noticed that the ratio /@((f ) /Ko does not depend
on the fractional exponent « [see Eq. (6.20)] and moreover, the shape of
the periodic potential Uy(x) has only a small influence, as one can see by
comparing the theoretical curves in Fig. 46(a) [c.f. Eq. (3.61) and Sec. 3.6.2].

6.6 Probability densities

In Sec. 6.5 it was demonstrated that the effective fractional diffusion coef-
ficient in a periodic potential is of the same form as the the Lifson-Jackson
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Figure 48: The different small-time evolutions of the normal (left) and
anomalous (right) reduced probability densities P(z,t) and P(z,t') defined
by Eq. (3.7), in the cosine potential (6.21). Curve labels (1), (2), (3) and
(4) represent increasing values of re-scaled time ¢’ = 0.01,0.02,0.04,0.11 for
the anomalous case and of time ¢ for the normal case, related to ¢ through
Eq. (6.24). The solid line represents the theoretical stationary solution.
The re-scaled temperature is kgT'A~! = 0.5 and a = 0.5 for the anomalous
process, as in Fig. 47.

formula for normal diffusion. In Sec. 6.3 it was shown that the anomalous
current in a washboard potential is of the same form as the Stratonvich
formula describing normal stationary current. These results represent fur-
ther elements of the formal analogy between fractional and normal diffu-
sion besides the formal similarity between the Fokker-Planck and fractional
Fokker-Planck equations. However, this formal analogy masks some basic
physical differences. For this reason we investigate and discuss here the
time-dependent probability density in configuration space as well as the
density of the current variable.

We notice that in the absence of a bias, all the odd moments of the prob-
ability density are identically zero both for normal and fractional diffusion.
As for the second moment, upon introducing the re-scaled time

p (/7))
t = m, (6.24)

[we remind that 7, = (1o.L%/A)Y*] it follows from Eq. (6.18) that the mean
square displacement (in units of L?) formally coincides with that of the
normal diffusion case, [(§22(t')) — (622(0))]/L? = 2T'+', independently of
the fractional exponent ¢, wherein 77 = kT A~', with A the potential
amplitude, is the re-scaled temperature. The study of the time evolution of
the probability density is illustrated with the example in Fig. 47 choosing the
times ¢ for the anomalous diffusion process and the corresponding times t’
for normal diffusion, so that they satisfy Eq. (6.24): the probability densities
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Figure 49: The time evolutions of the probability densities characterizing
the normal (above) and anomalous (below) diffusion processes in a tilted
cosine potential U(x) = Acos(2mz/L) — Fx. The re-scaled temperature is
kT A~' = 0.5 and the fractional exponent is o = 0.5, as in figure 47. The
tilting force is F' = 0.1 x Fy,, where F., = 2r AL~ is the re-scaled critical
bias, corresponding to the disappearance of potential minima. Times ¢ and
t" are related through Eq. (6.24). For sufficiently small times the probability
densities of the normal and anomalous processes are very similar. However,
at larger times (in the long time limit) the maximum of the density for
normal diffusion moves with the directed current. In contrast, the mean
square displacement of an ensemble of particles undergoing fractional dif-
fusion is dominated by the ballistic contribution and the typical stretched
spreading in the direction of bias is observed, while leaving the maximum
of the density near the origin.

for anomalous diffusion (continuous lines) and normal diffusion (dashed
lines) processes are barely distinguishable from each other for sufficiently
long evolution times.

In clear contrast, however, appreciable differences between the normal
diffusion coordinate density P(z,t") and the anomalous coordinate density
P(z,t) emerge for small times. This is best detectable by comparing the
reduced probability densities (3.7), mapped onto a single spatial period, as
done in Fig. 48. In the normal case (Fig. 48 left) the two initial maxima
at = 0 and zL~" = 1, due to the initial conditions P(z,0) = §(x),
move toward the center and finally merge into the asymptotic stationary
density (3.17) (solid line). On the other hand, in the anomalous case the two
initial maxima gradually disappear, while a new peak grows at zL~' = 0.5
and evolves into the stationary density Py (z) given by Eq. (3.17) as for the
normal diffusion process: remarkably, in fractional diffusion, the probability
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Figure 50: Normalized theoretical stationary, reduced probability density
Py(z) for F/Fy =1, T = 0.1, and o = 0.5, computed from Eq. (3.22)
(continuous line) and corresponding numerical data (circles): — left y-axis.
Also the underlying potential U(z) = cos(z) — Fx is depicted: — right
y-axis.

density reaches the same stationary density as in the case of normal diffusion
[6].

Moreover, as soon as the process is biased by an external finite force,
F #£ 0, a qualitative difference arises in the time evolutions of the probability
densities of the anomalous and the normal processes in the long time limit as
well, see also Ref. [199]. This is true even for small values of F' in the linear
response regime, as one can defer from Fig. 49. All this indicates a profound
difference between a fractal diffusion dynamics that is based on the fractal
Brownian motion introduced by Mandelbrot and van Ness [207] and the
fractional diffusion based on the continuous time random walk [183]. The
time evolution of the density of an ensemble of particles undergoing normal
diffusion can be interpreted as a superposition of a translational motion
and a spreading of the initially localized density. In this case one observes
the global maximum of the probability density moving in the direction of
the external bias [Fig. 49 top|]. Instead, in the anomalous case, only an
asymmetrical spreading of the initial density takes place, resulting in a long
tail in the direction of the bias [178,204]. The global maximum of the
density remains close, however, to its initial position [Fig. 49 bottom| [199].
This intriguing behavior is related to the presence of a ballistic contribution
proportional to ¢2% in the mean square displacement [see Eq. (6.2) and the
discussion in Sec. 6.4]. We remark that for a close to one and for small
values of external bias F', at small times the term o t* can prevail over the
ballistic term. However, in the long-time limit the ballistic term takes over
and always dominates. The latter remark may be relevant for experimental
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Figure 51: The time evolution for normal (above) and anomalous (below)
diffusion of the reduced probability density P(m,t) within the first period
x € [0, L) defined according to Eq. (3.7). In this example, the potential is
U(z) = cos(z) — Fz, with F/F, = 1, the temperature is " = 0.1, and the
anomalous diffusion process corresponds to & = 0.5. The curve labels 1,
2, 3, and 4, correspond to increasing values of time; the solid line (theory)

represents the stationary solution Py (z) defined by Eq. (3.22).

studies. In addition, it provides a crucial test that allows one to distinguish
between fractal and fractional Brownian motion on a practical level.

The probability density P(x,t) associated with a normal diffusion pro-
cess in a washboard potential cannot relax towards a stationary, asymp-
totic density, due to the open-boundary nature of the system. However,
the reduced asymptotic space probability density (3.7), a periodic function
by definition, does relax to the asymptotic stationary density (3.22). As
mentioned, in fractional diffusion, the probability density reaches the same
stationary density of the normal diffusion: the corresponding proof follows
along the same lines of reasoning leading to the asymptotic fractional cur-
rent v, (F') which is formally equivalent to the Stratonovich formula valid
in normal diffusion (see Secs. 3.3 and 6.3 and Ref. [199]). This result is
depicted in Fig. 50, for the case of diffusion taking place in a tilted cosine
potential.
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Figure 52: Anomalous (dashed line) and normal (continuous line) prob-
ability densities of the (sub)velocity, computed according to Eq. (6.25) at
t = 1000 in rescaled time units. The potential, tilt, temperature and « value
are the same as in Fig. 51. The arrows point to the corresponding y-axes.
Despite the very different shapes, the two probability densities possess the
same average value as given by the (fractional) Stratonovich formula (6.12),
indicated with the vertical dotted line.

Even if the stationary probability density (depicted with continuous lines
in Figs. 50 and 51) is the same, the relaxation to this stationary density is,
however, very distinct for normal and anomalous diffusion, respectively, as
shown in Fig. 51. In the case of normal diffusion, at any time instant ¢, the
density has only one maximum, which moves from the initial position (z =
0) toward its asymptotic position x = 2. At the same time it undergoes a
spreading process towards the stationary density. As more particles reach
the area around x = 2/, the peak begins to grow, eventually spreading again
to relax to the stationary solution Py (x) (Fig. 51 top). In clear contrast,
for a case with anomalous diffusion the initial probability density undergoes
a spreading in the direction of the bias. While the initial maximum of the
density remains at x = 0, a second maximum emerges at r ~ z’, which
continues to grow in weight as the density approaches the stationary shape
P, (z) (Fig. 51 bottom).

Finally, let us also investigate the probability densities of the velocities
characterizing normal and anomalously slow transport in washboard po-
tentials. For a particular trajectory realization (™) (t), the corresponding
(sub)velocity reads:

o =T(a+1) [ - 2f” | 72, (6.25)
where n € 1,...,N and xgn) = (™ (ty). This (sub)velocity is a random
variable and one can study the corresponding probability density. One
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observes a spreading of the velocities corresponding to the broad spreading
in space discussed above. The probability density for the velocity is depicted
in Fig. 52 for a periodic substrate cosine potential, for F/F,, =1, T = 0.1,
and o = 0.5. While the probability density for this velocity variable for
normal diffusion (note the continuous line, right y-axis) possesses a Gaussian
shape, in the anomalous case this probability density (see dashed line, left
y-axis) assumes a very broad shape which falls off exponentially. Notably,
however, the two densities have the same average, given by the Stratonovich
formula, and indicated by the vertical dotted line in Fig. 52.

6.7 Conclusion

In the field of anomalous transport the main attention thus far has focused
on the motion under the action of a constant or linear external force. Within
the work presented in this chapter, we have investigated anomalously slow
diffusion under the influence of spatially periodic forces.

The Stratonovich solution for the stationary current in a tilted peri-
odic potential has been generalized to the case of subdiffusive transport.
Moreover, we have proven that there exists a universal scaling law (6.10)
— relating the mean square displacement and the mean particle position in
washboard potentials — that does not involve the exact form of the peri-
odic potential, the applied bias F', and the temperature T'. This universal
scaling was verified by numerical simulations.

As pointed out in Sec. 5.6.1, the weak ergodicity breaking [197| makes
it impossible to obtain the averaged value of anomalous current with a
single time-average over a single particle trajectory. Here occurs a profound
difference with the case of normal diffusion. Such a time-averaged quantity
is itself randomly distributed, as shown by the broad density in Fig. 52. In
clear contrast to the situation with normal diffusion, for anomalous diffusion
the current probability density is very broad and with a peak at the zero.
Nevertheless, the average value of the current agrees very well with the
theoretical Stratonovich value, as given by Eq. (6.12). These results in turn
are close in spirit to recent work by Bel and Barkai on the weak ergodicity
breaking for a spatially confined fractional diffusion [197].

Furthermore, we generalized the celebrated Lifson-Jackson result for
normal diffusion in a periodic potential [89,94,95|, to the case of anoma-
lously slow diffusion. As a consequence, we found that, like in the case
with normal diffusion, the effective anomalous diffusion becomes always
suppressed over the bare value.

Our results may find ample applications in diverse areas where anoma-
lous diffusion occurs; typical examples are superionic conductors [208] or
Josephson junction dynamics [11,209], when the role of disorder may change
the normal diffusion into anomalous one.
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In addition, we compared the time evolution for normal diffusion with
anomalous, fractional diffusion. In doing so, we found that in a periodic
potential, after a proper re-scaling of time, the corresponding asymptotic
densities P(x,t) for the coordinate = match each other. Distinct differences
occur, however, at small evolution times. This time evolution of the den-
sities drastically changes upon the application of a finite bias F'. Now, the
long time evolution between normal diffusion and anomalous diffusion be-
comes markedly distinct as well: while the maximum of the biased normal
diffusion moves with the normal, directed current, the anomalous case is
dominated by a ballistic diffusion that leaves the maximum of the density
around the origin. Moreover, this characteristic difference can be put to
work to discriminate between fractional and fractal Brownian diffusion.
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7 Diffusion processes with anomalously slow relax-
ation in alternating fields

7.1 Motivation and set up of the problem

Normal Brownian motion occurring on potential landscapes that vary in
time is known to exhibit a multifaceted collection of interesting phenomena,
such as Brownian motors, anomalous nonlinear response behaviors, and
stochastic resonance [7,115,156,210,211], to name a few. Therefore, it is
tempting to ask, whether an explicit time dependent force entails a similarly
versatile scenario also in the case of anomalously slow relaxation processes.
This issue is in fact contained already in the first works on the motion of
charge carriers in semiconductors [37], and has been the subject of some
further investigations ever since, see e.g. the works [212-216], but never
really has attracted proper attention on its fundamental level. Ultraslow
relaxation in time dependent external potential fields thus still constitutes
a challenge that is far from trivial.

A widely used approach to study subdiffusive processes is based on the
fractional Fokker-Planck equation [6, 189,190, 205]. For time independent
forces the fractional Fokker-Planck equation (5.26) can be rigorously derived
from continuous time random walk theory [6,189,190,205|.

In this chapter we show that the fractional Fokker-Planck equation in
the form of (5.25), (5.26) is not correct in the case of a time dependent force
f(x,t). Furthermore, we argue that this fractional Fokker-Planck equation,
when generalized ad hoc to a time dependent force, does not correspond to
a physical stochastic process.

In different context, the study of a subdiffusive dynamics in the case of
a purely time dependent force f(t) has given rise to a fractional Fokker-
Planck equation which differs from Eq. (5.26) [216]. Here, we derive an
equation of similar form for the class of dichotomously alternating force
fields f(z,t) = f(x)&(t) with £(t) = £1, varying in space and time. In the
case of a Mittag-Lefler residence time distribution it reads,

) 9 flat) 82

—P(x,t) = “or m +/€aw

o oD, " P(x,1). (7.1)

Below, we prove this form in terms of continuous time random walk theory
and additionally validate its correctness via the comparison of the analytical
solutions of this so modified fractional Fokker-Planck equation (7.1) for a
rectangular time-varying periodic force f(x,t) = f(t) = {(t)F (F = const.)
with the numerical simulations of the underlying continuous time random
walk. Our main point is, however, that the reasoning provided in proving
(7.1) forces us to scrutinize the physical validity of this so modified fractional
Fokker-Planck equation (7.1) already beyond a dichotomous driving f(¢).
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7.2 Anomalously slow processes in time dependent force
fields

It is well known that neither a non-Markovian Fokker-Planck equation nor
its solution with the initial condition P(x,t) = d(x — xg) [i.e. the two-
event conditional probability P(x,t|z¢)| can fully define the non-Markovian
stochastic process [69]. This is due to the fact that all non-Markovian
processes, such as a continuous time random walk with a non-exponential
waiting time distribution, lack per definition the factorization property,
which would allow to express all the higher-order (multi-event) probabil-
ity density functions in terms of the first two ones. Because a continuous
time random walk is at the root of the fractional Fokker-Planck equation
(5.26) [6,189,190,205], in order to generalize the latter to the time depen-
dent forces, one again starts from continuous time random walk theory.
However, the usual scheme of merely replacing a time independent force
f(x) in Eq. (5.26) in an ad hoc manner with a time dependent force f(t) is
not adequate. The reason is that the underlying continuous time random
walk possesses a residence time distribution with an infinite mean. Thus,
any regular driving with a large but finite period is nonadiabatic. This very
circumstance lies at the heart of the overall incorrectness of Eq. (5.26) for
time dependent force fields.

In terms of a renewal description, a continuous time random walk is a
semi-Markovian process, meaning that the sojourn times spent on the lo-
calization sites are independently distributed. Like in the previous chapter,
we consider a one-dimensional continuous time random walk on a lattice
{z; =iAz} (i = 0,£1,£2,..., Az = const.). After a time 7 drawn from
the residence time distribution v;(7), the particle at site ¢ jumps with the
probability qfc to one of the nearest neighbor sites. The external force field
f(x) specifies both ;(7) and ¢i°, see Eqs. (5.34), (5.12), (5.8), and (5.13).
Modulating the force f(z) in time, q;t assume obviously a time-dependence
and F (7t) = ¢ (t + 7)i(t + 7,t) become conditioned on the entrance
time ¢ for the site i [217|. For a Markovian continuous time random walk
with time dependent rates gi(t) it is known that

Yi(t+71,t) = gi(t + 7) exp [— /tHT gi(t')dt’} , (7.2)

with g;(t) = g (t) + g; (t) and ¢ (t) = g¥(t)/gi(t). For a driven non-
Markovian continuous time random walk, however, a relation similar to
Eq. (7.2) is lacking. As a result, the use of a fractional Fokker-Planck
equation when generalized to the time dependent case of a time-varying
force field remains moot. The usual scheme of the derivation of the gen-
eralized fractional Fokker-Planck equation from the underlying continuous
time random walk can be used only if v;(7) remains unmodified by the
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time dependent fields, i.e., if only the jump probabilities qii (t) change. We
consequently find that o (7]t) = ¢ (t + 7);(7). Thus, the residence time
distribution );(7) remains unaffected only in the case of a dichotomous
flashing force f(z,t) = f(x)&(t), where £(t) = +1 is a general dichotomic
function of time ¢ which can change periodically or also stochastically. Then,
GE(t) = explf (2)€(t) A /2] {explf () Az /2] + expl—f (2) Ax/2]}. We as-
sume that f(x) is continuous. Then, the modified fractional Fokker-Planck
equation (7.1) can be derived rigorously in the continuous space limit. The
derivation precisely follows the same reasoning as detailed in Sec. 2.7 (see
also Ref. [205]), while taking v;(7) as the Mittag-Leffler distribution. It
must be emphasized that for other driving forms £(t), e.g., for a sinusoidal
driving F'sin(wt), this outlined derivation becomes flawed because ;(7) is
affected by such time-varying fields, as unveiled already with Eq. (7.2). We
remark also that due to the weak ergodicity breaking [197,199] also the
modified fractional Fokker-Planck equation (7.1) describes the dynamics of
an ensemble of particles rather than the dynamics of an individual particle.

7.3 Rectangular driving force
7.3.1 Average particle position

We consider the subdiffusive dynamics in the presence of a dichotomous
force, i.e., the absolute value of the force is fixed but the direction of the
force flips periodically in time,

f(t):{+F for nryg <t <(n+mr)m

—F for (n+r)ngp<t<(n+1l)m (7.3)

Here 19 is the period of the time dependent force and n = 0,1,2... The
quantity € (0,1) determines the value of the average force: (f(t)), =
F(2r —1). For r = 0.5 the average bias is zero.

Let us begin by finding the recurrence relation for the moments (z"(t)).
Assuming in Eq. (7.1) the force of the form f(¢t) = F&(t) and multiplying
both sides of Eq. (7.1) by 2™ and integrating over the z-coordinate one
obtains,

+onln — Dka oDy “ (2" 2(1)), (7.4)

with vq = F/ns (n > 1). For n =1 the last term on the right hand side of
Eq. (7.4) is absent,

dz(t)) _ va

i = () O (7.5)
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Figure 53: Average particle position (z(t)) for » = 0.5 and various values of
the fractional exponent «: symbols represent the numerical results for the
continuous time random walk obtained by averaging over 10° trajectories,
while continuous lines represent the analytical solution (7.6) of the modified
fractional Fokker-Planck equation (7.1). The time-period of the force is
70 = 1 and Fy/(1ay/ka) = 1 is used in numerical simulations.

Upon integrating Eq. (7.5) in time, the solution for the average particle
position reads:

@) =4 + ‘r?aa—%) , N1y <t < (N +r)m0, 76)
oy — ek, (N+r)m <t <(N+ 1,
where
N-1
Vo (N79)® Va TS
—_ 0)) — 2 a o 1)¢
, 20,7 o
Ty xN—I_I‘(a—I—l)( +7r)%; (7.7)

N counts the number of time periods passed.

The analytical solution (7.6) for the mean particle position (z(¢)) from
the modified fractional Fokker-Planck equation (7.1) is compared with the
numerical solutions of the continuous time random walk in Fig. 53 for r =
0.5 (the average bias is zero) and different values of the fractional exponent
«; in Fig. 54 the comparison is presented for o« = 0.5 and different values
of r. The good agreement between our analytical and numerical results
confirms that Eq. (7.1) is a correct method to describe the continuous time
random walk driven by a rectangular time-dependent force. Furthermore,
the results depicted in Figs. 53 and 54 exhibit the phenomenon of the “death
of linear response” of the fractional kinetics to time-dependent fields in
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Figure 54: Average particle position (x(t)) for various values of the pa-
rameter r and anomalous exponent «: Symbols represent the numerical
results for the continuous time random walk obtained by averaging over 10°
trajectories (for 7 = 0.5 over 10° trajectories), while continuous lines repre-
sent the analytical solution (7.6) of the modified fractional Fokker-Planck
equation (7.1). The time-period of the force is 79 = 1, fractional exponent
a = 0.5, and Fy/(Na/ka) = 1 is used in numerical simulations.

the limit ¢ — oo, reported also in Refs. [214,216] Y. As a result, in the
absence of an average bias, in the long-time limit the mean particle position
approaches a constant value, rather than being oscillatory,

(x(00)) = va75b(a) /T (a + 1), (7.8)

where b(a) = > 07 [2(n + 1/2)* — n® — (n + 1)?], with the amplitude
of the oscillations decaying to zero as 1/t17%, see Eq. (7.5); for a = 1
(normal diffusion) the particle position assumes the oscillating motion also
when ¢ — oo. The function b(a) describes the initial field phase effect
which the system remembers forever when a < 1. It changes monotonously
from b(0) = 1 to b(1) = 0. The averaged traveled distance (z(oc0)) scales
as 70" = (2m/wp)®, where wy is the corresponding angular frequency. This
“death of linear response” to time periodic fields is also in agreement with the
results for a driven non-Markovian two state system [218] in the formal limit
of infinite mean residence times. Notably, this feature is overcome when
one introduces a cutoff of the residence times distributions at long times
(yielding a finite first moment), as used already in the pioneering work [185].

10The “death of linear response” is not observed when applying the time dependent
force (7.3) to the traditional fractional Fokker-Planck equation (5.26). In this case, the
solution of the fractional Fokker-Planck equation and of the continuous time random
walk do not agree (see also Ref. [213]).
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Figure 55: The analytical solution (7.6) for average particle position (z(t))
obtained from the modified fractional Fokker-Planck equation (7.1) is pre-
sented for various values of the parameter r (various values of the average
bias) and anomalous exponent . The time-period of the force is 79 = 1,
however in the long time limit the same asymptotical value is obtained for
any value of 7.

In this case, the subdiffusive behavior emerges as a transient, crossover
behavior to asymptotically normal diffusion. Then, linear response theory
based on the fluctuation-dissipation theorem becomes applicable [185].

In Fig. 55 the solution (7.6) for the average particle position is presented
in the long time limit for various values of a and r. The figure demonstrates
that in the presence of an average bias the mean particle position grows as
t®, whereas in the absence of the bias (r = 0.5) (x(t))/t* decays to zero.

7.3.2 Mean square displacement

Let us now study the mean square displacement defined by Eq. (2.12). For
n = 2 one obtains from Eq. (7.4),

d(@?())
dt

2Kq

- te=L, (7.9)

=20, &(1) obtl_a<x(t)> +

In order to find the analytical solution for the mean square displacement,
we use the Laplace-transform method and the Fourier series expansion for

£(t) =&t + o),

§t)= > faexp(inwot), (7.10)

n=—oo
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Figure 56: Scaled effective fractional diffusion coefficient /-eﬁfﬁ) vs frac-

tional exponent « for different driving periods 7. The average bias is
zero (r = 0.5). The analytical prediction (7.14) (continuous lines) is
compared with the numerical results (symbols) obtained from the con-
tinuous time random walk by averaging over 10° trajectories. For 7y >
2 exp[—% In g(a)|a=0] ~ 8.818 the effective fractional diffusion coefficient

ke () exhibits a maximum.

where
fn = 1 /TO £(t) exp(—inwot)dt = [1 — exp(—inr2n)]/(in7). (7.11)
70 Jo

Applying them to Eq. (7.9) and assuming ((0)) = 0 and (22(0)) = 0 we
obtain (see Appendix B),

22— 1), 2K g,

@O = T P et
va(2r — > sin [(« — 4nr)w
+ %{qusm(m/z)_; It nlfa ) /2]}ta
v2 cos(ar . cos(nr2mw
i{;gr—m C(2+a)—2%] . (7.12)
n=1

For r = 0.5 (average zero bias) the first and third term in the latter
equation are equal to zero. Furthermore, in the long time limit the average
particle position (z(c0)) is a finite constant. The asymptotic behavior of
the mean square displacement is thus proportional to t“ as in the force free
case, however, characterized by an effective fractional diffusion coefficient

mﬁf ) instead of the free fractional diffusion coefficient Ka, 1.€.,

(022(t)) = 26t/ T(1 + ) for t— oo (7.13)
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Figure 57: The mean square displacement calculated form the numerical
simulation of the continuous time random walk for various values of the
average bias. Fractional exponent a = 0.5 and driving period 75 = 1.

[c.f. Egs. (6.9) and (6.18)]. The effective diffusion coefficient is,

2
k) = kg + % C(a+2) <1 - 20[%) cos(am/2)
= Ko+ g(@) F2/(3w§); (7.14)
here
gla) = (2/7)¢(2 + )[4 — 27 cos(ma/2) (7.15)

is a function decaying from ¢(0) = 1 towards g(1) = 0 and ((x) is the
Riemann’s zeta-function. The driving-induced part of the effective subdif-
fusion coefficient is directly proportional to the square of driving amplitude
and inversely proportional to wf. For slowly oscillating force fields this
leads to a profound enhancement of subdiffusion compared with the force
free case: an optimal value of the fractional exponent « exists, at which
the driving-induced part of the effective fractional diffusion coefficient pos-
sesses a maximum (see Fig. 56). For a = 1 the free diffusion coefficient
is recovered, this is true also in the presence of an average bias, i.e., for
r # 0.5.

In the case of the anomalously slow diffusion, when r # 0.5 (finite aver-
age bias) we obtain as an approximate result for (z(¢))? (see Appendix C),

CvR(2r—1)? 5, 202(2r—1)
(e(t)* = T2(a + 1) ; T(a)(a + 1)

O (t1)2 5 (7.16)
here 9,,(t1) is a function of a parameter t; € (0,t) (see Appendix C).

The results (7.12) and (7.16) indicate that in the presence of a rectan-
gular time dependent force with a finite bias the general behaviour of the
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mean square displacement is similar to the case of a constant force, i.e.,
the mean square displacement consists of terms proportional to t* and t2®
[c.f. Eq. (6.4)]. In fact, for the term proportional to t>* in the mean square
displacement (5z:2(t)) one obtains the coefficient [see Eqgs. (7.12), (7.16)]

[F(2r —1))? 2 1

n2 r2a+1) T%a+1)]’

where F(2r — 1) = (f(t))r, is the average force. This coefficient is exactly
the same as in the case of a constant bias of the value F'(2r — 1).

The theoretical result that the mean square displacement in the case of a
rectangular force with a finite average bias behaves in the long time limit as
(622%(t)) o< t2* is confirmed by the numerical simulations of the continuous
time random walk presented in Fig. 57. Furthermore, similarly to the case
of a constant bias, or of a washboard potential, the asymptotic scaling
relation (6.10) (see also Fig. 45) holds (r # 0.5, (f(t))r, # 0) between the
mean square displacement and average particle position. We have validated
this relation numerically.

7.4 Resumé and discussion

In this part of the work we discussed the dynamics of anomalously slow pro-
cesses in time-varying potential landscapes within the continuous time ran-
dom walk and fractional Fokker-Planck equation descriptions. We demon-
strated that the common form of the fractional Fokker-Planck equation
given by Eq. (5.26) is not valid for time dependent forces; it does not corre-
spond to the underlying continuous time random walk modulated by an ex-
ternal time dependent force field. A modified form of the fractional Fokker-
Planck equation, Eq. (7.1), is derived for dichotomously alternating fields.
As an exactly solvable example we studied a periodic rectangular force and
successfully tested the analytical results via numerical simulations of the
underlying time-modulated continuous time random walk. We showed that
in the absence of the average bias the average particle position reaches a
constant value whereas the mean square displacement grows as t*. We also
demonstrated that a symmetric dichotomous force with average zero bias
enhances the diffusion in respect to the free case, differently of the cae of
normal diffusion. Furthermore, it was found that for sufficiently slow driv-
ing the effective fractional diffusion coeflicient /@((f ) exhibits a maximum
versus the fractional exponent «. In the presence of the average bias, in the
long time limit the average particle position was shown to grow as t* and
the mean square displacement as t2“.

Our study, however, is not able to validate the correctness of the mod-
ified fractional Fokker-Planck equation (7.1) when extended ad hoc to an
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arbitrary time dependent potential landscape different from the dichoto-
mous case. A way out of the dilemma consists in relying on models of
driven subdiffusion which either are based on the generalized Langevin dy-
namics [219,220] or on fractal Brownian motion. The challenge of modeling
subdiffusion in a time-varying potential landscape thus necessitates plenty
of further enlightening research.
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8 Summary

In the present thesis we investigated normal and anomalously slow diffusion
under the influence of forces periodic in space and diffusion with anoma-
lously slow relaxation under the influence of forces changing in time, fo-
cusing on one-dimensional models. The motivation for such studies comes
from condensed matter phyics, materials science, chemical physics, nan-
otechnology, and molecular biology. Furthermore, as the direct observation
of cellular flows and the operation of biology inspired nanodevices are be-
coming experimentally more and more accessible, understanding particle
diffusion in a one-dimensional system has been recognized to be a key issue
in transport control.

Concerning the processes undergoing normal diffusion, the transport of
Brownian particles on periodic substrates with one and two minima per
period in the presence and in the absence of an external applied bias was
studied. We used piecewise linear potentials which allowed us to derive
the analytical expressions for the current and diffusion coefficient. It was
demonstrated that transport processes in periodic substrates are very sen-
sitive to the value of noise intensity and bias. Furthermore, it was shown
that also the shape of the periodic potential has a significant influence in
determining the stochastic transport. In particular, large values of the
asymmetry parameter k in the direction of bias F' favor the amplification of
diffusion by means of tilted potential and temperature in comparison with
free thermal diffusion. Moreover, in the case of a double-humped potential,
the effective diffusion coefficient D(F) can have two maxima.

We also investigated the diffusion of dimers consisting of two harmoni-
cally interacting Brownian monomers in a washboard potential, comparing
the results with that of a single monomer. We studied the dimer trans-
port for different coupling strengths and damping constants and found that
the average current and the diffusion coefficient of such a dimer exhibit a
complicated non-monotonic behavior as a function of the driving force and
the ratio of the dimer length to substrate constant. We concluded that the
appearance of the second resonant peak of the diffusion coefficient versus
the driving force is not related to the dimer length-to-substrate constant
ratio, but rather to the damping-to-coupling constant ratio; the diffusion
coefficient D(F') possesses two peaks only for relatively low damping values.

Concerning the anomalously slow diffusion in periodic substrates, the
Lifson-Jackson result for the diffusion coefficient in a periodic potential
and the Stratonovich solution for the stationary current in a washboard
potential were generalized to the case of anomalous transport. Moreover,
it was proven that the relation between the mean square displacement and
the mean particle position in a tilted periodic potential is the same as in the
case of a constant bias. The differences between normal and anomalously
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slow transport processes in a periodic substrate were discussed by means
of the probability distributions. Namely, in the absence of the bias, at
small times the densities P(x,t) for the position z were found to behave in
different ways, whereas in the long time limit, after a proper re-scaling of
time, the asymptotic densities P(z,t) were found to match. However, in the
presence of a finite bias the different behaviors of the probability densities
P(z,t) of normal and anomalous diffusion were found to occur also in the
long time limit: while the maximum of the biased normal diffusion moves
with the normal, directed current, the anomalous case is dominated by a
ballistic diffusion that leaves the maximum of the density around the origin
(memory effect). Furthermore, the distributions P(vq,t) for the velocity vq
were found to be distinctively different for & = 1 and « # 1, corresponding
respectively to normal and anomalous diffusion, even though having the
same averages, given by the (generalized) Stratonovich formula. While the
probability density for the normal diffusion possesses a Gaussian shape, in
the anomalous case it assumes a very broad shape falling off exponentially.

Finally, the dynamics of anomalously slow processes in time-varying po-
tential landscapes were discussed within the continuous time random walk
and fractional Fokker-Planck equation descriptions. It was demonstrated
that the common form of the fractional Fokker-Planck equation is not valid
for time-dependent forces. A modified form of the fractional Fokker-Planck
equation was derived, valid, however, for dichotomously alternating fields
only. As an exactly solvable example, a periodic rectangular force was stud-
ied; the behavior of the transport was found to be very different compared
to the case of normal transport processes. Namely, instead of assuming an
oscillatory motion, in the absence of the average bias the mean particle po-
sition reaches a constant value; the mean square displacement grows as t“.
Differently from the normal diffusion case, the fractional diffusion coefficient
becomes enhanced compared to the free fractional diffusion coefficient. In
the presence of the average bias, in the long time limit the average particle
position was shown to grow as t* and the mean square displacement as 2.

An original numerical algorithm was derived to simulate the fractional
Fokker-Planck equation and the modified fractional Fokker-Planck equation
through the underlying continuous time random walk dynamics. All the
analytical results concerning the anomalously slow processes were tested
through numerical simulations.
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Summary in Estonian

Kéesolevas doktorit6os on uuritud normaalset ning anomaalselt aeglast di-
fusiooni ruumis perioodilistes jouvéiljades ning anomaalselt aeglase relak-
satsiooniga difusiooniprotsesse ajas muutuvates jouvéljades. Vaadeldud on
iithedimensionaalseid siisteeme. Uuritud probleemid on olulised kondensee-
ritud aine fiiiisikas, materjaliteaduses, keemilises fiilisikas, nanotehnoloogias
ning molekulaarbioloogias.

Seoses normaalse difusiooniga on uuritud Browni osakeste transporti
perioodilistel struktuuridel (ithe ning kahe miinimumiga perioodi kohta)
valise rakendatud konstantse jou olemasolul ning puudumisel. Kasutatud
on tiikati lineaarseid potentsiaale, mis voimaldasid tuletada tépsed ana-
lititilised valemid voolu ning difusioonikoefitsiendi jaoks. On néidatud,
et transport perioodilistel struktuuridel on viga tundlik miira intensiiv-
suse ning rakendatud konstantse jou vaartuse suhtes. Samuti omab olulist
rolli perioodilise potentsiaali kuju. Selle astimeetria kallutava jou F' suunas
soodustab difusiooni véimendamist kallutatud perioodilistel potentsiaali-
del. Perioodi kohta kahte miinimumi omavate potentsiaalide korral voib
difusioonikoefitsient D(F') omada kahte maksimumi.

Doktorit66s on uuritud ka kahest harmooniliselt interakteeruvast Browni
osakesest koosnevate dimeeride difusiooni kallutatud perioodilistel potent-
siaalidel, vorreldes tulemusi monomeeri jaoks saadutega. Dimeeride trans-
porti on uuritud erinevate interaktsioonikonstandi vééartuste korral ning on
leitud, et seda iseloomustavad keskmine vool ning difusioonikoefitsient kui
kallutava jou ning dimeeri pikkuse ja substraadi konstandi suhte funkt-
sioonid omavad keerukat mittemonotoonset iseloomu. Kokkuvottes voib
Oelda, et teise resonantse difusioonikoefitsiendi maksimumi ilmnemine ver-
sus kallutav joud ei ole seotud dimeeri pikkuse ja substraadi konstandi
suhtega, nagu leitud eelnevalt artiklis [169], vaid pigem sumbuvuse ja inter-
aktsiooni tugevuse suhtega; difusioonikoefitsient D(F') omab kahte maksi-
mumi iiksnes suhtelielt vaikeste sumbuvusteguri vaartuste korral.

Uurides anomaalselt aeglast difusiooni perioodilistel substraatidel on lei-
tud, et Lifson-Jacksoni tulemus difusioonikoefitsiendi jaoks perioodilistel
potentsiaalidel ning Stratonovichi tulemus statsionaarse voolu jaoks kallu-
tatud perioodilistel potentsiaalidel on iildistatavad ka anomaalse transpordi
juhule. Lisaks sellele on toestatud, et dispersiooni ja osakese keskmise koor-
dinaadi vahel kehtib kallutatud perioodilistel potentsiaalidel sama seos nagu
konstantse jouvilja korral. Uurides toendosusjaotusi on kirjeldatud erine-
vusi normaalse ning anomaalselt aeglase transpordi vahel. Kallutuse puu-
dumisel kdituvad jaotused P(z,t) koordinaadi x jaoks lithemas ajaskaalas
erinevalt, pikemas ajaskaalas aga, parast sobivat aja skaleeringut, nad tihti-
vad. Kallutuse olemasolul leiti normaalset ning anomaalset difusiooni kirjel-
davad toendosusjaotused P(x,t) kidituvat erinevalt ka pikemas ajaskaalas:

127



normaalse difusiooni korral konstantses jouvéljas liigub toendosusjaotuse
maksimum jouvektori suunas, kuna aga anomaalse transpordi puhul on
domineerivaks ballistiline difusioon ning toen#osusjaotuse maksimum on
madratud algtingimusega (stisteemil on mélu). Jaotused P(vq,t) kiiruse v,
jaoks leiti olevat oluliselt erinevad ov = 1 (normaalne difusioon) ning a # 1
(subdifusioon) korral, vaatamata sellele, et nendel juhtudel langevad kiiruse
keskvéartused kokku, olles méaaratud (iildistatud) Stratonovichi valemiga.
Normaalse difusiooni korral on tonédosustihedus P(vq,t) antud Gaussi jao-
tusega; anomaalse difusiooni korral on P(v,,t) kuju oluliselt laiem, ka-
hanedes kiiruse kasvades eksponentsiaalselt.

Viimasena on uuritud anomaalselt aeglast difusiooni ajas muutvates
jouvaljades ajas pideva uitliikumise ning fraktsionaalse Fokker-Plancki vor-
randi formalismis. On néidatud, et fraktsionaalse Fokker-Plancki vorrandi
tavaparane kuju ei ole sobiv kirjeldamaks subdifusiooni ajast soltuvatel po-
tentsiaalidel. Tuletatud on modifitseeritud fraktsionaalne Fokker-Plancki
vorrand, mis on kehtiv siiski vaid dihotoomselt muutuvate véaljade korral.
Téapselt lahenduva néitena on uuritud ajas tiikati konstantset perioodilist
joudu. Leiti, et transport osutub siin olevat véigagi erinev vorreldes nor-
maalse difusiooniga: keskmise jou puudumisel ei ole liikumine ostsilleeruv,
nagu normaalsel juhul, vaid osakese keskmine koordinaat omandab astimp-
tootiliselt konstantse vaartuse; dispersioon kasvab ajas nagu t“. Erinevalt
normaalse difusiooni juhust, saab fraktsionaalne difusioon voimendatud vor-
reldes vaba fraktsionaalse difusiooniga. Keskmise jou olemasolul kasvab
osakese keskmine koordinaat nagu t® ning dispersioon nagu t2<.

Tuletatud on ka algupdrane numbriline algoriitm simuleerimaks fraktsio-
naalset Fokker-Plancki vorrandit ning modifitseeritud Fokker-Plancki vor-
randit ajas pideva uitliikumise diinaamika kaudu. Koik analiititilised tule-
mused anomaalselt aeglase difusiooni jaoks on kontrollitud numbriliste si-
mulatsioonide abil.
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Appendixes

A Analytical results for piecewise linear potentials
with two maxima per period

The analytical results for the diffusion coefficient, current and Péclet factor
are given by Egs. (3.47)-(3.49). Performing the integrations in Egs. (3.92)
one obtains after cumbersome calculations the algebraic expressions for the
quantities Z and Y, given by Egs. (3.90) and (3.91), in the case of the
sawtooth potential with two maxima per period:

1 T
Z = g <klgab_k2gbc+kgcd—g> +Esl(1—)\1)

T T T
+3 S2(1 = A2) —253(1—>\3)+ES4(1—)\4)7 (A1)

. 1 1 1 1 1 1 1
_ 3
Y—(p0|:k’1<—3+b—3> k‘ <b3+ >—|—k‘< +d3) $:|

+ Tpd [( am (251 + S1) + (bﬂmﬁx;s?)

- (1;3A3) (255 + S%) + ((17)\4)(254+)\4154)}

er{ s st o] <15 - o)
=X e aSh+ 22 (14 29)| + a dA ) 2 [54—2—d(1+x4)}}

k Ak k—k 1-k%
+ 2¢pg {;1 A1 S8 — s So S84 + ! A3 S3 .95 — 7 Sy S&} . (A2)
Here
1 1 1 1 1 1 1 1
Yab E""ga gbc—g‘i‘E, gcd—Z‘i‘E, gad—a+g, (AB)
[ Fk 1-A FAEk AA
A = exp| — 71 ) = 1] , Ay = eXp[T(1 T ] ,
e[S F] e,
As = exp| T + H| zo = exp| Bt _1=]
)\7 = exp _?((11_12,2)) - 1_TA2:| )
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Sl = —Gab + gbc)\g_l - gcd)\5_1 + gad)‘gl ’

Si = gab)\ﬁ_l - gbc)\7_1 + gcd)\zl — Yad »

S2 = —Yab (1 - 900) + gbc)\g_1 - gcd)\5_1 + gad)‘ﬁ_l )

S5 = Gab — Gve A2 (1 — ©0) + ged A5 (1 — ©0) — gad A6 (1 — o), (A5)
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B Calculation of (z*(t)) for the anomalously slow
transport under the influence of a rectangular
driving force

Using the property £{df(t)/dt} = sL{f(t)} — f(0) and assuming the initial

conditions (z(t)) = 0 and (z2(t)) = 0 we obtain from Eq. (7.9),

2I§Ja 27}04 ~l—a

L{{z*t)} = o1 T, £lE@ oDy (a(t))} (B.1)

Considering that

S

~l—a

L{oD, (x()} = s'7"L{(x(t))} = s L{d(x(t))/dt},

one obtains,

CLE) oDl ) = 3 Lcs_m{dw”}. (B.2)

(s —inwg)® dt

n=—oo

Using Eq. (7.5), it follows,

zs_mwo{d@(t»}:va i [ Jm . (B.3)

dt = [s—dwo(n +m)|*
Inserting (B.2) and (B.3) into Eq. (B.1) we obtain,
2K 02 & f ad f
L{(z?t)) = 2 4 T — i .
Gzl sotl + s = (s —inwy)® m_z_:oo [s — iwp(n + m)]@
(B.4)
Let us separate in Eq. (B.4) the terms m = 0 and n = 0,
2K 2022 202 f) ~— f
2 _ (e} 0 m
LU = 57+ Zart + it 2 G iman)e
m=—o00
m#0
2’03 > fn = fm
2o LA LS— . (B.5
* s n:z—:oo (s — inwp)™ ZOO [s — two(n + m)]* (B:5)
n#0

131



In the long time limit, i.e., in the limit s — 0, in the double sum only terms
with m = —n contribute, giving thus,

Ll = ey 2fs | 2afo gn I

gatl g20+1 wgzsa—i-l (_Zm)a
m=—o0
m##0
2va 5~ Al
) B.6
wgzsa—i-l ;OO (_,L'n)a ( )
n#0
Let us compute the sums. Considering that
= Jm - Im Jfom
Z (—im)® - Z (—im)® + (im)® |’
m=—oo m=1
m##0

and replacing here f,,, from (7.11), one obtains,
[o.¢] o

Z fm _2 {C(l + ) sin (ar/2) — Z sin an—llﬁirzr)w/ﬂ} .

(—im)® w

m;;go =1
(B.7)
Analogously,
= fal? 4 cos(nr2m)
Z (—iny = cos(am/2) [C(2+ o) Z Tra (B.8)

Replacing these sums into Eq. (B.6) and considering that fo = 2r — 1, we
get,

202(2r — 1) 2k
2 _ [} a
L{(z=(1))} = g20+1 + a1

v2(2r — 2. sin[(a — 4mr)7
+74 a(2r = 1) {C(l + a) sin (am/2) — Z ( dmr)m /2] }
m=1

Tw§satl mlta
83 > cos(nr2r)
+7r2w8‘§0‘+1 cos(am/2) [C(2+ «) — Z — e | - (B.9)
n=1

Taking here the inverse Laplace transform one obtains the expression for

(x2(t)) [Eq.(7.12)].
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C Calculation of (z(t))? for the anomalously slow
transport under the influence of a rectangular
driving force

Using Eq. (7.5), the quantity (x(¢))2 can be written in the following way,

t/

t
dt’

tl) tla—l g(t”) tl/a—l dt” . (Cl)

(x(t

Exploiting the property E{fo Ndt'} = s7LL{f(t)} and denoting t' = t,
t" =t', we can write,

£ {a(®)?} = Ff( - { ot [y ar) (©2)
Z fm Ls— znwo{ 0‘_1/0 exp(zmwot/)t""—ldt/} )

n=—oo m=—0oQ

For o = 1 the latter equation gives,

(e e} [ee]

203 fn fm
—< _— _ C.3
s = s—inwg m;oo s —iwp(n +m) (C.3)

L{{x()*} =

Comparing this result with Eq. (B.4) we see that L{(0z%())} = 2kqas~2,
and thus (022(t)) = 2kq4t, as it should be for normal Brownian motion.

For 0 < o < 1 the integral fot exp(imwot’) #'“~1 dt’ in Eq. (C.2) diverges
at t = 0. Let us divide this integral into two parts. Then

t 131
/ exp(imwot’) 't dt' = / exp(imwot’) 't dt’
0 0

exp(imwot) t**

t
—1—/ exp(imwot’) 'L At = xu(7) + .
t1 1MW

a—1

t
, / exp(imwot’) t'*2 dt/ (C.4)
imwo

(0 < t1 < t), where

t1
)—imwo/ exp(imwot ) t'*dt’ .
0
(C.5)

1 1
t1) = t§ exp(imwot -
(1) = ¢ expliment) (£ - L

The integral fg Y exp(imwot’) t'* dt’ does not diverge.
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Let us separate in Eq. (C.2) the terms m = 0 and n = 0. In the long
time limit, the contribution from fttl exp(imwot’)t'*~2dt’ is negligible and
we can write,

v2 f2 « v2 « > n
,C{<:L’(t)>2}— afO F(Q +1) afOP(Q +1) Z ( f

520+ T2(q 4 1) s T2(a+1) £~ (s—inwy)?

n#0
202 fo
O;a—i-l Z mem tl
"0
202foT(2a—1)
+ afO ( - ) Z : fm e
swo  I%(a) = im(s —imwo)*®
m#0
02 &
(t1)
* I'(a)s Z (s — inwo)™ Z Jmxm(t)
n=-—00 =
n#0 m;éO
202 T (200 — 1) > fm
s el Sk . C.6
* wos TI?(«) n:z_:oo In m;m im[s — iwp(n + m)]?e—1 (C-6)
n#0 m##0

In the long time limit, i.e., in the limit s — 0, in the double sum only terms
with m = —n contribute. The contribution from the last term in the latter
equation is proportional to 1/s?®, which for o < 1 is always smaller than
the one arising from 1/s%T!. Thus, in the long time limit we can neglect
all the other terms except the first and third in the last equation, and we
obtain,

2(2r — 120 (2a + 1 2(2r —1) &
£ife)?y = & D FE(;“L; + ZQH > fmxm(ty). (C7)
e

Taking here the inverse Laplace transform one obtains the expression for
(2(t))? [Eq.(7.16)].
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