
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Indrek Värva

Autonomy and Efficiency Trade-offs on an
Ethereum-based Real Estate Application

Master’s Thesis (30 ECTS)

Supervisor(s): Luciano García-Bañuelos, PhD

Tartu 2018

2

Autonomy and Efficiency Trade-offs on an Ethereum-based Real Estate

Application

Abstract:

Marketplaces in sharing economy have traditionally been organized as web applications

running on top of centralized databases. The advent of blockchain technology brings new

opportunities, with the promise of transforming the landscape with tamper-resilient storage

and the potential of reduction in intermediaries. In this context, in this thesis we look at

exploring the use of blockchain technologies in the domain of real estate rental process.

More specifically, we designed a solution on top of Ethereum and implemented three con-

secutive prototypes to analyze the impact of moving data and processing to the blockchain.

The results show a trade-off between efficacy versus efficiency when moving toward de-

centralization.

Keywords:

Blockchain case study, smart contract design, disintermediation

CERCS: P170, Computer science, numerical analysis, systems, control

Autonoomsuse ja tõhususe kompromisside tuvastamine Ethereumi baasil

arendatud kinnisvara rakenduses

Lühikokkuvõte:

Siiani on jagamismajanduse vahendusplatvorme arendatud tsentraliseeritud andmebaaside

abil. Plokiahela esiletõus on aga ilmutanud uusi võimalusi, et muuta valdkonda võltsi-

miskindlaks ning vähendada vajadust vahendajate järele. Käesolevas töös uuritakse plokia-

hela kasutusvõimalusi kinnisvara rentimise protsessi näitel. Täpsemalt, töös disainitakse

lahendus Ethereumi abil ning teostatakse kolm järjestikust prototüüpi, et analüüsida

andmete ning arvutuste tõstmist plokiahelasse. Tulemused näitavad, et detsentraliseerimisel

tuleb teha kompromisse teostatavuse ning tõhususe vahel.

Võtmesõnad:

Räsiahela juhtumiuuring, nutilepingu disain, vahendajatest vabanemine

CERCS: P170, Computer science, numerical analysis, systems, control

3

Table of Contents

1 Introduction ... 5

1.1 Context ... 5

1.2 Research Goals and Methodology .. 5

1.3 Document Organization .. 7

2 Background ... 8

2.1 Sharing Platforms ... 8

2.2 Blockchain .. 9

2.3 Smart Contracts .. 10

2.4 Ethereum ... 10

2.5 Application of the Blockchain Technology .. 12

3 Contribution .. 14

3.1 Problem Identification .. 14

3.1.1 Service and Actors .. 14

3.1.2 Business Process ... 14

3.1.3 Exclusions ... 20

3.1.4 Operations ... 20

3.1.5 Analysis .. 21

3.2 Baseline Design and Development ... 21

3.2.1 Service Map .. 22

3.2.2 Resource State Transitions .. 23

3.2.3 Data Model ... 25

3.2.4 Interface Design and Key Operations ... 26

3.2.5 Analysis .. 30

3.3 Migrating Data to the Blockchain .. 32

3.3.1 Service Map .. 32

3.3.2 Data Model ... 32

3.3.3 Interface Design and Key Operations ... 33

3.3.4 Analysis .. 36

3.4 Porting Operations to the Blockchain ... 37

3.4.1 Service Map .. 37

3.4.2 Data Model ... 37

3.4.3 Interface Design and Key Operations Drill-through ... 38

3.4.4 Analysis .. 40

4 Evaluation and Discussion .. 42

4

4.1 Quantitative Analysis ... 42

4.2 Scenario .. 42

4.3 Results .. 43

4.4 Discussion ... 50

5 Conclusion ... 54

6 References ... 55

I. License ... 58

5

1 Introduction

1.1 Context

In the world of business, a ledger is an essential tool for bookkeeping. A ledger is essentially

a formatted medium to hold the business transactions such as debits and credits for summa-

rization purposes. For centuries, the tool has had a physical form as a paper notebook in

which the records were simply concatenated. However, the technological evolution has now

provided measures for ledgers to move to a digital medium for obvious benefits such as

faster insertions and analysis. For example, a centralized database system with insert, update

and read access could be considered an implementation of such digital medium.

Lately, another implementation of a digital ledger - blockchain - has been trending1. This

technology was first popularized as a backbone behind cryptocurrency Bitcoin in 2008 by

Nakamoto [1]. It is a special type of ledger - a distributed one - which means that its data is

shared, replicated and synchronized across multiple destinations using a specialized consen-

sus system. As one of the biggest benefits of the blockchain, the consensus mechanism guar-

antees that its records are not tampered once appended to the ledger [1]. Furthermore, tamper

resilience has been identified as a potential enabler for collaborative process execution be-

tween trusted partners [2].

In addition to providing tamper protection in a distributed setup, blockchain has also allowed

ledgers to expand its functionality towards a whole new dimension - scripting. In the context

of ledger systems, script is just another format of a record which is designed to perform a

certain task when initiated by other scripts or external actors. For example, in the case of

Ethereum blockchain [3] and through the concept of smart contracts, flexible scripting pos-

sibilities are available through a specialized programming language for instructs such as

conditional blocks, loops and also automated triggers to enforce complex business rules and

promote automation [4].

While the blockchain may prove itself useful for financial services [5], it also shows poten-

tial benefits in other fields as an effective mean to track asset life cycle [6]. In this context,

an asset could be tangible, such as an aftermarket plane part moving through a supply chain,

or intangible, such as a purchase order on an e-commerce platform. Furthermore, centralized

marketplace/sharing economy applications have been a de facto standard for real estate

rental. Moreover, the business model in this sector consists of collecting intermediary fees

from the transactions [7]. But, naturally, the ultimate goal of sharing economy is to move

towards a peer-to-peer (P2P) model in which one can expect the role of an intermediary to

be kept at minimum to reduce transactional costs for end-users. So, in this aspect, smart

contract scripting may be able to move associated business logic from a centralized server

to the blockchain.

1.2 Research Goals and Methodology

This work considers the domain of real estate rental as a case study to explore the use of

blockchain technologies. In the scope of the study, 3 proof of concept prototypes are de-

signed and developed (Figure 1). The first prototype (variant 1) establishes a design baseline

by including the blockchain into the platform providers system architecture as an internal

service. Then, the research sets an objective of complete disintermediation by moving the

internal blockchain service outside of the platform to be consumed directly by the external

actors of the system. To move the service outside of the providers system, two iterations of

1 https://trends.google.com/trends/explore?date=all&q=blockchain [Accessed: 24-Nov-2018]

6

redesign are made with the purpose to decouple the blockchain intermediated process from

outside dependencies and achieve complete autonomy. For this purpose, a strategy is fol-

lowed to first migrate the data (variant 2) and then port the operations (variant 3). In the

accompanying service and design analysis of the prototypes, the paper focuses on the

changes in the core components which are native and impactful to the applications of the

domain such as geodetic real estate search functionality and other types of system data fil-

tering operations. In addition to the architectural changes, empirical implications to tamper

resilience and privacy are noted. Finally, the results are evaluated in terms of efficiency to

find out how what are the trade-offs of between the autonomy-related design decisions and

the efficiency of the system.

In order to drive the representation and analysis of the prototypes to an effective contribu-

tion, the paper follows the design science (DS) research approach described by March et al.

[8]. The DS research proposes to solve identified problems by using a framework of build-

ing, evaluating, theorizing and justifying (i.e. research activities) a set of effective artifacts

(i.e. research outputs). Furthermore, the theory specifies four types of artifacts:

1) Constructs - conceptualize the domain by providing vocabulary on the problem

space (e.g. entity on a data model).

2) Models - describe associations between constructs and act as a medium to capture

requirements (e.g. business process model) or a define a system design (e.g. service

map).

3) Methods - capture the steps necessary to perform a task on constructs and/or models

(e.g. filtering algorithm on a data structure).

4) Instantiations - realize the constructs, models and methods to demonstrate their fea-

sibility (e.g. prototype). [8]

The activities and outputs of the DS research form a 16-cell framework, each of which is

could be considered a viable research effort [8]. To explore the use of blockchain in the

domain of real estate rental, this study aims to build the constructs, models and methods of

the three instantiations (prototypes). To assist with choosing the relevant artifacts of the

variants, the toolset of data-driven service design [9] is used as a heuristic to capture a ser-

vice map, state machine, domain and data models and the operation set. The created artifacts

are thereafter empirically evaluated in terms of their differences to the previous iteration(s)

on the roadmap (Figure 1) to derive insights for the next phase of development. Finally, the

research instantiates the three prototypes to evaluate their performance in terms of efficiency

to extract generalizable information about the implementations.

The approach by March et al. [8] only concerns with solution design and evaluation [10]

and does not deal with exploring the problem space. To include problem identification to

the framework, an extension by Peffers et al. [11] is used which adds relevance cycle of

environment [12] to the process (Figure 2). Furthermore, the problem space is captured us-

ing the artifacts proposed by the process-driven methods [13].

Figure 1. Design and development roadmap.

7

1.3 Document Organization

The remaining of the paper is structured as follows. Firstly, chapter 2 introduces the foun-

dations of the study. Then, chapter 3 aligns with the steps of the DS research approach (Fig-

ure 2) by identifying the problems and derives objectives of a solution (steps 1 and 2) in

section 3.1. Next, in sections 3.2, 3.3 and 3.4, the design and development of the three pro-

totypes is described (repeating step 3) with a brief analysis on their effects. Contribution is

followed with chapter 4 which instantiates the prototypes for an evaluation (steps 4 and 5)

and discussion. Finally, the paper finishes with concluding remarks and an outlook in chap-

ter 5.

Figure 2. DS research methodology process model (adapted) [11].

8

2 Background

This chapter introduces a more detailed background of the concepts, tools and previous lit-

erature related to the study.

2.1 Sharing Platforms

Sharing economy is a social paradigm in which on-demand access to the resource is valued

over ownership. In this economy, suppliers seek to make profit from their personal under-

utilized assets or resources by loaning or renting them consumers. The phenomenon is now-

adays largely driven by specialized online applications – sharing platforms – which are often

domain-specific such as AirBnB2 for accommodation, Uber3 or BlaBlaCar4 for ridesharing

or TransferWise5 for bank accounts for the sake of currency exchange. [14]

While the term sharing may also cover business-to-consumer exchanges (such as traditional

car rental) [15], most of these platforms allow exchanges to take place between individuals

in a P2P fashion [16]. In this model, the P2P sharing platforms act as multi-sided platforms

which bring together multiple groups of users and enable their interaction to facilitate the

exchange [7]. For example, on a two-sided platform (Figure 3) such as Monestro6, the con-

sumer is a person in need for financial resource (borrower) and the supplier a person with

available money (lender).

To facilitate the exchange, the P2P sharing platform must conform to perform some general

tasks. First, it must be able to collect potential offers from suppliers. Secondly, it enlists

these offers to consumers. Now, if the consumer finds an interesting asset, the platform must

provide the means for the stakeholders to establish a personal contact. Finally, and most

importantly, the platform must enforce the rules of the game. Meaning that the transaction

follows some set rules that all parties agree upon. [17]

In their tasks, these sharing platforms also need to be profitable. Business is said to have a

sustainable model in case it creates, delivers and captures value that benefit themselves as

well as its’ stakeholders such as investors, customers, suppliers [18]. Now, Bocken et al.

[19] have found that creating value from waste is an archetype of a sustainable business

2 https://www.airbnb.com [Accessed: 19-May-2018]
3 https://www.uber.com [Accessed: 19-May-2018]
4 https://www.blablacar.com [Accessed: 19-May-2018]
5 https://transferwise.com [Accessed: 19-May-2018]
6 https://www.monestro.com [Accessed: 19-May-2018]

Figure 3. Two-sided market (adapted) [16].

https://www.airbnb.com/
https://www.uber.com/
https://www.blablacar.com/
https://transferwise.com/
https://www.monestro.com/

9

model. As P2P sharing platforms mediates what is waste to one party (in the form of under-

utilised resource) to another one as a useful asset, it could be argued that P2P sharing plat-

forms have sustainability embedded in their core [16].

2.2 Blockchain

In a nutshell, blockchain is a system which provides trust without a centralized authority so

that interested parties can share data without trusting each other. Technically, it is a distrib-

uted transactional database/ledger which is enforcing a set of rules to make sure that the

committed transactions (i.e. records inside a block) as well as the blocks including them are

valid. In order to do so, blockchains employ a network of nodes which communicate with

each other in a P2P manner to serve different tasks:

1) Validating and relaying transactions sent to the network.

2) Mine blocks consisting of transactions by solving cryptographic puzzles as proof-

of-work. As an incentive to do so, a prize is included to the worker which is a com-

bination of a calculated transaction cost and a static reward [3].

3) Propagating and validating mined blocks.

Most importantly, as a result of mining, propagation and validation mechanisms, a consen-

sus is achieved when enough of the nodes have validated the block. Consensus, in turn,

determines which transactions and blocks to persist in the chain as well as their order. Fur-

thermore, the validation mechanism uses hashing based validation rules (e.g. a Merkle tree

[20]) to make sure that the history (previous blocks) have not been changed and by that,

providing tamper protection of the setup [3].

The transactions inside a blockchain are initiated by actors who are represented as addresses.

These addresses are closely related to asymmetric cryptography. More specifically, a private

key is used to cryptographically sign and public key to target and validate the transactions.

As each transaction is signed by the initiator, it is trivial for the nodes to verify whether the

associated address has necessary balance (e.g. Bitcoin or Ether) to pay for the costs as well

as the transfer itself. [3]

Multiple implications of blockchain could be identified, for example:

1) Blockchain could be considered transparent in terms of the included transactions.

For example, if the blockchain is public (e.g. Bitcoin), everyone is able to see and

verify which transactions have taken place (and do this with no cost), further en-

hancing the trust-factor. However, if privacy of the data is an issue, there are also

means to deploy a private blockchain to protect sensitive data [21].

2) It is transparent about its inner-workings as the associated software systems are man-

aged in an open-source manner [3], [21], [22]. This further eliminates the possibility

of fraudulence.

3) Blockchain typically improves read availability of a system. However, due to the

technical overhead of consensus mechanisms, write availability is actually low. Fur-

thermore, the transaction commit time is effected by chosen gas price and network

delay causing out-of-order transactions. [23]

Undeniably, static-record blockchain has technical implications which could disrupt book-

keeping industries such as finance as the success of Bitcoin has already proven. However,

their records remain to be static which means that it is not possible to include dynamic busi-

ness rules in the system. To expand the abilities of a blockchain to include programmatic

execution logic, a notion of smart contracts is used.

10

2.3 Smart Contracts

The idea of smart contracts is not new in the scientific field and was coined already in 1996

by Szabo [24] who then summarized them as a set of digital promises complemented with

protocols to follow. Among requirements of such constructs, he enlists four objectives of

common contract design:

1) Observability – stakeholders must be able access the performance of a contract.

2) Verifiability – an ability to prove that a contract has been performed or breached.

3) Privity – access and control of the contract should only be distributed as much as it

needed to perform the contract.

4) Enforceability – power to execute the terms and protocol of the contract.

The gist behind smart contracts is to include business logic which must be followed to drive

a state transition. For example, a conceptual smart contract of a collection fund could look

like this: "[person] deposits an [amount] to be released to an [account] on a [date]". This

smart contract could then be utilized by, say, Alice to automatically give Bob $10 000 if the

date is 01.01.2020. This kind of invocation is called contract execution.

However, at the time of 1996 [24], smart contracts could not have been implemented due to

technological limitations. Now, blockchain is starting to prove itself capable for the matter

[3], [22]. More specifically, in the context of blockchain, smart contracts are introduced as

special records written as a program code which could then be deployed and manipulated

using transactions. They make it possible to write blockchain applications (called distributed

applications or dapps). However, naturally, programming such contracts should follow

strict rules in order for the blockchain to keep its trustlessness.

2.4 Ethereum

One of such platforms that implements programming of smart contracts in the trusted envi-

ronment of blockchain is Ethereum [3]. Smart contracts could be written, deployed and used

in either the public or a private Ethereum blockchain [25]. What makes Ethereum platform

special, is its popularity which could, for example, be characterized by the number of active

nodes (223197). As the Ethereum platform was launched only in 2014, the growing number

of nodes as well as its open-source nature8 could be considered a sign of trust and reliability.

Good reputation, built-in incentives, self-enforcing protocols and verifiability of transac-

tions of Ethereum – qualities required for enforceability [24] – all contribute to make it a

viable candidate at the time to target distributed application logic. Additionally, from the

technical perspective, the high number of nodes also acts as a measure that helps to mitigate

a potential security threat which would realize if a malicious party operates more than half

of the nodes on the network which would help him manipulate with the consensus [1].

Workflow

The contracts in Ethereum are written using a specific programming language called Solid-

ity. While the syntax and capability of the language is actively evolving, it provides neces-

sary instructs to write smart contracts which could be used to capture more complex data

structures as well as, for example, do looping and branching for advanced scripting. [4]

Solidity smart contracts are targeted to be executed on Ethereum Virtual Machine (EVM)

which is a Turing-complete, isolated runtime environment with no access to network,

7 https://ethernodes.org/network/1 [Accessed: 24-Nov-2017 01:03]
8 https://github.com/ethereum [Accessed: 19-May-2018]

https://ethernodes.org/network/1
https://github.com/ethereum

11

filesystem, other processes or any information which is outside of the blockchain or trans-

action [3]. An implementation of EVM is included in client node implementations (e.g. Geth

[25]) to evaluate calls (read-only invocations) and transactions (invocations which change

the state of the network). For user interactions, client nodes expose a JSON RPC API (Ja-

vaScript Object Notation Remote Procedure Call Application Programming Interface) [26].

A simplified workflow through RPC calls with a smart contract on Ethereum could be de-

scribed as follows:

1) An EVM-compiled smart contract is deployed. This means that a transaction with a

payload of contract bytecode and initialization parameters is sent to the pool of pend-

ing transactions managed by network nodes. As an output, a transaction hash is re-

turned which could be used to check its status in regards with the next step. [26]

2) The miners take the transaction with the contract, validate it and run the initialization

block to instantiate an initial state. If the transaction has been confirmed enough

times in the network (i.e. it has been in enough blocks), a transaction receipt is issued

and the contract will now have an artifact with an associated address and an appli-

cation binary interface (ABI) [3], [26]. Similarly to external accounts managed by

key pairs, the contract address has an associated balance and they are handled

equally by the EVM [3].

3) The instantiated contract at a specific address could be invoked by calling the de-

fined methods using the ABI. Again, if the message modifies the state of the net-

work, the miners will run the code and upon it has been mined, the state of the con-

tract is updated. If the ABI call does not modify the state (i.e. it is read-only), there

is no need to propagate anything into a network and the call could be immediately

served within a single node, free of charges.

In a development environment, the management of RPC calls and different invocation

callbacks could be supported by frameworks such as web3js9 and/or Truffle10. In addition

to providing higher level language abstraction over the ABI invocations, Truffle also pro-

vides streamlined measures for contract compilation, linking and testing purposes.

Fee System

Deploying a smart contract or invoking a transactional write method requires resources from

the Ethereum network to make changes to the ledger. To compensate the miners, a fee sys-

tem is in place. A fee is measured in an internal currency tokens called Ether and it is reduced

from the balance of the sending address when a transaction is mined. However, as Ether is

also has a (non-fixed) value with fiat currencies11, an internal notion of gas is introduced to

disjoint the transaction execution cost/metering from fiat value. Therefore, the relation be-

tween transaction fee and an execution value could be represented with the following for-

mula:

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 (𝐸𝑡ℎ𝑒𝑟) = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 (𝑔𝑎𝑠) ∗ 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 (
𝐸𝑡ℎ𝑒𝑟

𝑔𝑎𝑠
) , (2.1)

where execution cost is the amount of gas that the miner uses to execute the transaction and

gas price a parameter which sets a ratio to translate gas to Ether. [3]

When deploying a smart contract or sending a transaction, the invoker must consider multi-

ple parameters, such as gas price [23]. For finding an optimal value to get a transaction

9 https://github.com/ethereum/web3.js/ [Accessed: 19-May-2018]
10 http://truffleframework.com/ [Accessed: 19-May-2018]
11 https://www.coindesk.com/ethereum-price/ [Accessed: 19-May-2018]

https://github.com/ethereum/web3.js/
http://truffleframework.com/
https://www.coindesk.com/ethereum-price/

12

chosen and mined within the pool of all pending transactions, the services of a client node

could be used to reveal a median gas price the from last block12. However, using higher than

median gas price helps to get the transaction mined faster as they are more profitable for

miners [3], [23].

The sender must also set the amount of gas available for transaction execution. Moreover,

to get a record successfully mined with optimal cost, this parameter should be between cer-

tain range. The lower bound of the range is the execution cost of the transaction. Similarly

to gas price, an estimation of how much gas is required to execute a transaction could be

retrieved from a client node13 which is capable of doing a dry run of an execution without

adding it to the blockchain [26]. If the realized cost of a transaction execution is lower than

the set limit, the remaining of the gas is refunded [3]. However, if the realized gas consump-

tion exceeds the amount set by transactor, a node throws an Out of gas exception at

which point a transaction would be reverted (if not specifically coded otherwise) but a fee

of the specified limit is not refunded [3]. On the other hand, there is also an upper boundary

for transaction execution as EVM is specified to be quasi-Turing complete to limit the com-

putations [3]. The upper boundary is in place so that the system could not be clogged with,

for example, infinite loops. In practice, an upper boundary of block gas limit should be

considered. To validate that the required gas for a transaction does not exceed the upper

boundary, the client node could be queried to check the gas limit of the latest block14.

The basis for metering of transaction execution gas is a pricing table which includes all

possible executable atomic operation defined in EVM. For example, a base fee of 21000 gas

must be paid for each transaction or 32000 when creating a contract. In addition to a flat fee

of 32000, 200 gas per byte must also be paid for contract bytecode storage. Writing to con-

tract storage could also be considered one of the most impactful operations: 20000 gas must

be paid when setting 32-byte value in storage from zero to non-zero using opcode of SSTORE

or 5000 for the same operation when modifying a previously set value. On the other hand,

each execution of AND, OR, MLOAD and MSTORE operations have a flat cost of 3 gas. The cost for

EVM memory usage (always expanded in 32-byte words) is linear until 724B after which it

grows substantially faster. [3]

2.5 Application of the Blockchain Technology

The following is a review on the scientific literature which study applying blockchain on a

broader scope of domain. The purpose of the review is to give an overview to the current

state of the art.

Spielman [27] evaluates the applicability of blockchain for land registry as a recorder of

deeds. The proposed system implements the concept of Smart property originally proposed

by Szabo15 through coins which represent real estate. To transfer ownership, the represent-

ing coin is transferred from one account to another. As one of the benefits, Spielman brings

out that the smart property is able to collect verifiable signatures throughout the life cycle

of the transfers and trace the ownership history. The author also proposes a hybrid model of

the application to save data to a centralized database and maintain a hash of the data on-

chain for verification purposes.

12 https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gasprice [Accessed: 19-May-2018]
13 https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethestimategas [Accessed: 19-May-2018]
14 https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbynumber [Accessed: 19-May-2018]
15http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwint

erschool2006/szabo.best.vwh.net/idea.html [Accessed: 19-May-2018]

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gasprice
https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethestimategas
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbynumber
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwint%20erschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwint%20erschool2006/szabo.best.vwh.net/idea.html

13

Eberhardt and Tai [28] find that the expensive storage and computational power of the

Ethereum platform may negatively impact performance and scalability of the implementa-

tion. Moreover, they also claim that often the technical limitations of the Ethereum platform

do not allow an application to fully operate on the chain. For example, the very core of the

blockchain operation such as transaction validation, consensus establishment and smart con-

tract execution may create too big of an overhead and takes considerable amount of time.

So, based on the identified efficiency and technical issues, they explore how to move oper-

ations off-chain without losing the benefits of the Ethereum blockchain.

Eberhardt and Tai make an example of an Ethereum blockchain chess game which persists

the game state in a smart contract. While the blockchain application removes the intermedi-

ary to make the game logic require no explicit trust, it is found that the algorithm of checking

the check mate condition is too complex for on-chain transactions. So, it is learned that

highly complex computations such as chess end-game checks should be done on the client

side and/or as rare as possible on the chain, using an initiation of an actor. [28]

Eberhardt and Tai also implement a marketplace to enable intermediation between providers

and consumers of service APIs using cryptocurrency for payments. In the system, service

providers are able to expose their API descriptions for discovery and consumers could buy

access to them. In this case, it turns out that the necessary API descriptions are too big for

efficient storage on the blockchain. On the subject, they also find that it is not possible to

use a reference to off-chain data because this would defeat the purpose of decentralization.

Secondly, the marketplace implementation introduces an issue of privacy when consumers

need to prove their purchased access by sending a private token to the blockchain for vali-

dation. All in all, they learn that there is a necessity for optimization schemas to store data

off-chain in a trustless and privacy-preserving manner. In addition, they call out to develop

techniques to use off-chain computations on private data and then use smart contracts only

for output validation to preserve privacy. [28]

To show how the study relates to the existing literature, the next chapter presents the con-

tribution of the study.

14

3 Contribution

This chapter encapsulates the contribution of the research by describing the requirements

for a real estate rental service (3.1) and the design of three prototypes (3.2, 3.3, 3.4). The

structure of each section includes both results and short passage to the next section in the

form of discussion on the built artifacts.

The results of problem identification and developing a baseline prototype is a collaborative

effort with Kopylash [29].

3.1 Problem Identification

The problem is identified by studying the domain of the real estate rental. The case is studied

through a 7 top-down manual interviews with a CEO of an industry partner who currently

operates a business of real estate rental based on a centralized web application. The duration

of the interviews varied from 60 to 120 minutes and the calls were being recorded for anal-

ysis. This section summarizes the information gathered through the interviews to present an

intermediate-level description of the service under study. Based on the information gath-

ered, the objectives of a solution are derived in the following subsection of analysis.

3.1.1 Service and Actors

From the domain perspective of the business case, a support for the process of real estate

rental expected (Figure 4). There are three (external) actors interacting with the service: a

landlord, a tenant and a moderator. Landlords represent the supply side of the market with

a real estate to be rented through the platform. Tenants, on the other hand, act as the demand

side: they interact with the ultimate goal to rent real estate. Lastly, the moderator is an actor

who interacts with the system on behalf of the platform manager to add business value by

accepting and rejecting property enlistment applications based on manual checks made off-

system.

3.1.2 Business Process

The value chain of a real estate rental platform is based on four intermediation activities

between landlords and tenants (Figure 5). The platform allows users to enlist a property

which would then appear in the application. The intermediation service then continues by

allowing tenants to make bids on an enlistment to implicate an interest and for a landlord to

Figure 4. Service map of a real estate rental platform.

Figure 5. Real estate rental platform value chain.

15

respond to the offers. Finally, the intermediator also allows the stakeholders to construct and

exchange tenancy contracts.

From the perspective of the actors, the value chain expands to a main business process con-

sisting of 6 steps starting with the event of user being signed up and finishing when the

rental activites have been completed (Figure 6). Next, the details of each step and flows of

the main process are elaborated on.

Enlist Property

Firstly, an enlistment must be posted to the marketplace by a landlord (Figure 7). This en-

listment contains data about the landlord as well as the real estate property, including: land-

lord name; street name; house, floor, apartment, zip code numbers; geographical location of

the property.

Figure 6. Main process of real estate rental.

16

After the enlistment has been posted, it is processed for eligibility by a service provider to

make sure that the landlord is the rightful owner of the property and that it is actually him

(or someone authorized) making the enlistment request. Additionally, the moderator may

do more tasks such as ensure that the images attached to the enlistment application are of

acceptable quality. If approved, the enlistment is made public in the application.

Manage Enlistment Inquiries

After the enlistment is approved to the platform, the tenant is able to find it through a listing

or a search query (Figure 8). If the tenant finds an interesting property, he may chat with the

landlord or visit the property to gather more information about the suitability. From the

perspective of a landlord, he needs to be on the other end of these requests: answer to all of

the questions as well as host visits to property.

Figure 7. Enlisting a property.

17

Agree on an Offer

After the tenant finds a suitable property, he sends an offer for a rental payment to indicate

interest towards the property (Figure 9). The offers are only visible to the owner of the en-

listments and hidden from other tenants. To proceed, the landlord must accept the offer. It

is also possible for a tenant to cancel an offer while it is pending. If the offer is rejected or

cancelled and the tenant may submit a new one. From the perspective of a landlord, there

may be multiple offers from different tenants to choose from at a given point of time. Also,

there is no restriction for him to accept more than one offer.

Figure 8. Managing enlistment inquiries.

18

Establish a Tenancy Agreement

When an offer is accepted, the parties have to agree on the conditions of the rental by estab-

lishing a tenancy agreement (Figure 10). This is a feedback loop, similar to agreeing on an

offer. But this time, the loop is initiated by the landlord by issuing a contract draft which

includes data from the enlistment in a contract template document. As the official contract

includes new (legal) details, the tenant may reject the contract draft to either propose adding,

removing or editing the conditions. Additionally, the landlord is able to withdraw the con-

tract draft while it is in review to make changes. The loop finishes when both parties agree

on a contract which is indicated by an agreement from the tenant.

At this point, both parties may still back out of moving further with each other in the rental

process by cancelling the offer. If a cancellation action is pursued, process flow moves back

to agreeing on an offer (Figure 6).

Figure 9. Agree on an offer.

19

Sign the Agreement

Next, the parties sign the agreement to make the contract legitimate (Figure 11). As a prac-

tice, landlord as the contract issuer is the first to sign, followed by the tenant. Similarly to

agreeing on a contract, both parties have the freedom to back out to one of the previous

phases of the process by either cancelling on an established contract draft to start building a

new one or reset the interaction altogether by pulling back the offer (this also cancels the

agreement). Cancelling the offer or the tenancy agreement is possible up until the point

where tenant has signed the agreement .

As an additional business rule, no more offers could be sent after the landlord has signed an

agreement and it is not possible for him to sign more than one tenancy agreement for an

enlistment at the time. This constraint is in place to avoid spam behaviour which can be

originated by the landlord (double spending) or tenant. On the one hand, it makes the land-

lord to choose wisely as upon signing he will be committed to the contract and essentially

locks the enlistment for potentially better offers. On the other hand, it suggests the tenant to

act upon signing request quickly as the landlord may cancel at any time.

Figure 10. Establish a tenancy agreement.

20

Receive First Month Rent

To finish off the intermediation, the system also waits for a notification about the successful

start of the tenancy agreement contract by requiring a confirmation about the receival of the

first month rent. No additional rules apply here as this is only a business task to track that

the intermediated contract is in action.

3.1.3 Exclusions

It must be noted that the captured process of real estate rental excludes some details to sim-

plify the scope of the research:

1) There is only one tenant signing the agreement while in reality, there may be multi-

ple.

2) It should be possible for a landlord to withdraw an enlistment at any time and modify

its details (by possibly triggering the moderator review loop again).

3) It should be possible for a landlord to cancel the enlistment from the moderator re-

view.

4) Based on the specific business model of an intermediator, additional steps are usu-

ally in place to collect service fees (e.g. by either paying per enlistment, by enlist-

ment listing time or a cut from the first month rent payment).

3.1.4 Operations

From the captured business process of real estate rental, a list of provided atomic operations

have been identified. An overview of such operations could be found from Table 1 where

they are organized by their nature (write or read) and the underlying resource.

Figure 11. Sign the agreement.

21

3.1.5 Analysis

It is interpreted from the captured business process that the interactions between the land-

lords and the tenants and the role of the intermediator resembles of a two-sided market

model [16]. What is more, the role of the real estate rental service provider aligns with the

description of a platform which in the form of landlords and tenants has two distinct group

of users who are both subject for revenue generation [7]. In the context of marketplaces, the

discovered business model also captures the resource (i.e. real estate property) which is sub-

ject to sharing (i.e. renting).

Therefore, the objectives of the solution follow the principles of sharing economy and the

main goal is business disintermediation to reduce overhead costs. As next, a system is de-

scribed which provides the discovered process and uses a blockchain in its architecture.

3.2 Baseline Design and Development

This chapter describes a baseline design of a real estate rental system which introduces

Ethereum platform to the architecture of the solution. The design of the prototype is de-

scribed through a series of signposts moving from the high-level service artifacts to a lower-

level interface design. In addition, the study focuses on the key components of the applica-

tion which have high impact on the system or which procedures change with consecutive

prototypes and therefore provide input for efficiency evaluation. Therefore, for key compo-

nents, a step-by-step operation drill-throughs are provided.

Table 1. Provided operations of real estate rental management service.

Resource Write operations Read operations

Enlistment

- Submit

- Review (approve or reject)

- Retrieve one

- Filter by reviewed

- Filter by landlord

- Filter by tenant (as the bidder)

- Filter by geographical proximity for

a given location and a search radius

Offer

- Send

- Review (approve or reject)

- Cancel

- Retrieve one for a given enlistment

- Retrieve all for a given enlistment

Agreement

- Submit

- Review (confirm or reject)

- Cancel

- Landlord sign

- Tenant sign

- Receive first month rent

- Retrieve one for an enlistment

22

3.2.1 Service Map

From actor involvement point of view, the real estate rental business process analysis reveals

that the last and only value adding manual activity carried out by the platform operator (i.e.

moderator) is auditing the property enlistments. Based on this observation, the services of a

real estate rental platform could be abstracted in an alternative value chain, consisting of

two segments: Enlistment review and Enlistment to contract (Figure 12). The first of the two

segments encapsulates the subprocess involving a landlord and a moderator going through

the motions to publish the enlistment. On the other hand, the rest of the business process in

Enlistment to contract completion now only includes activities carried out by tenants and

landlords.

Originating from the actor involvement driven process split between Enlistment review and

Enlistment to contract completion, the Real Estate Rental Management Service (Figure 4)

is divided into two corresponding subservices: an externally accessible Enlistment Review

Service (ERevS) and a required internal Rental Intermediation Service (RIS) (Figure 13).

Both, ERevS and RIS are responsible for the execution/progress of their respective subpro-

cesses. Additionally, there is also a difference in the underlying implementational technol-

ogies of the services: RIS runs on an Ethereum distributed ledger node [25] while the ERevS

is chosen to be implemented using a NodeJS16 server application coupled with a relational

PostgreSQL17 database system18.

16 https://nodejs.org/en [Accessed: 03-May-2018]
17 https://www.postgresql.org [Accessed: 03-May-2018]
18 Other implementational technologies may be used in place of NodeJS and PostgreSQL. NodeJS was pre-

ferred due to the JavaScript language compliance with widely accepted web3js library.

Figure 12. Abstract value chain of a real estate rental service.

Figure 13. Service map of the baseline architecture.

https://nodejs.org/en
https://www.postgresql.org/

23

3.2.2 Resource State Transitions

Three core assets could be identified from the discovered business process: an enlistment,

an offer and a tenancy agreement. When the process moves forward, the respective asset

states change in a predictable manner through a set of possible events defined at each step.

So, by considering business process execution as a series of state transitions on the under-

lying assets, one could determine the progress by examining their collective state.

Based on the states identified from the business process, a corresponding life cycle - pre-

sented as a state machine - and a coupled event interface have been designed19 (see Figures

14-16). At its root, the state machine has two orthogonal regions to represent the parallel

life cycles of the resources which are managed off-chain (enlistment) or in the smart contract

(offer and agreement). When an enlistment is accepted, the state machine enters the nested

smart contract state as this is the spot where the process execution control flow moves on-

chain. Next, offer life cycle starts when it is submitted. Subsequently, agreement waits for

offer to reach state “Accepted” and a first submission of the contract draft by a landlord.

Only when the agreement is accepted, signed and started, the state machine finishes. The

state machine is also complemented with business logic to enforce the flow of the real estate

rental process. For example, it contains enlistment locking and offer cancelling procedure

which propagates the event to also cancel the agreement (see 3.1.2).

19 For presentational purposes, the state machine is only conceptual since the initial transitions must not have

triggers.

Figure 14. Real estate rental life cycle state machine.

24

Figure 15. Offer life cycle state machine.

Figure 16. Agreement life cycle state machine.

25

3.2.3 Data Model

Based on the asset state transitions identified and views required to assist the actors to fetch

relevant information to move the business process forward, the service components imple-

ment the application based on the conceptual application class model of the system (Figure

17).

However, from the moment the blockchain is included the application, a distributed system

is created. From this point of view, it is required to understand which subsystem owns what

information and how it can be modified and retrieved.

The process execution starts in ERevS (hereinafter referred to as off-chain component) as

all the submitted details of the created enlistment20 is persisted in a centralized database

where it is assigned an unique ID. A moderator is able to query all enlistments from the

database which are in review and may either approve to reject them (Table 1). If the enlist-

ment is approved, one smart contract instance called Enlistment is deployed to Ethereum

blockchain and its reference is attached to the object model in the (centralized) database. At

this point, the control flow of the business process execution moves to RIS (hereinafter re-

ferred to as on-chain component).

20 Uploading photos are managed off-system. The data model persists hyperlink references to the photo re-

source.

Figure 17. Application class model (conceptual).

26

Until the enlistment is not approved, all the data is owned and could be queried and modified

through the centralized database system in ERevS. However, after the smart contract in-

stance gets deployed and it takes over the process execution control flow, the data is split

into two systems (Figure 18). In order to be autonomous in its write operations, the smart

contains and manages all the data it requires to move the process execution forward and

apply business logic. This means that objects of offers and tenancy agreements reside on the

blockchain. However, together with the data required for operational autonomity, the En-

listment smart contract also deploys some identifying decorational data (i.e. intersection of

EnlistmentOffChain and EnlistmentOnChain models) which has been verified by the mod-

erator and would benefit from tamper resilient nature of the blockchain. This creates a ver-

tical partition of the attributes of enlistment with the ownership of the ported data being

transferred to the blockchain. Proceedingly, after data migration, the off-chain copy of the

data could be considered dead.

3.2.4 Interface Design and Key Operations

The ownership of the data shapes how resources and their collections are accessed and mod-

ified in the system. As the service is divided between two subservices, there is also a division

of operations. Due to the fact that all external actor interactions are served through ERevS,

the former also directly inherits the set of provided operations of a single service system

(Table 1). However, in its operation, it relies on the required operations RIS (Table 2). In

the next subsections, the interface and relevant operations of each service are dissected.

Figure 18. Data model (variant 1).

27

Interface and Operations of the Rental Intermediation Service

RIS is implemented as smart contract (Enlistment) which is designed to be operating on the

Ethereum node. Enlistment smart contract implements the data model (Figure 18) through

the use of Solidity structs21 and mappings22. The constructed structs represent the entities in

the data model23. The members of the structs are of elementary types: strings, unsigned

integers, booleans and addresses. In addition to the data of the assets, the smart contract also

holds stateful data which it needs to enforce the enclosed business logic. These values in-

clude statuses of the offers and agreement drafts which are implemented as enums in the

source code. On the other hand, mappings are chosen to be utilized to store associations

between entities. Using the email address of the tenant as the key of the mapping, the data

structure gives a natural guarantee that there is only one offer or tenancy agreement in pro-

gress for a single tenant of the given enlistment.

The smart contract also implements business logic for its part of the process. For this reason,

first and foremost, the smart contract enforces the sequencing of the tasks in the business

process. This logic is implemented into a script utilizing function modifiers24 on the methods

which take the process into the next stage (e.g. all write functions of Table 2). Modifiers

inject code to the beginning of the function and, so, offer a declarative way to include checks

and throw exceptions before moving on to serve a user transaction. For example, the func-

tion for the action of cancelling an offer is annotated with 3 modifiers (Code block 1):

21 http://solidity.readthedocs.io/en/v0.4.19/types.html#structs [Accessed: 19-May-2018]
22 http://solidity.readthedocs.io/en/v0.4.19/types.html#mappings [Accessed: 19-May-2018]
23 In the implementation, values of owner and locked are not actually part of the Enlistment struct but stored

as separate contract variables
24 http://solidity.readthedocs.io/en/v0.4.19/contracts.html#function-modifiers [Accessed: 19-May-2018]

Table 2. Required operations from the RIS (variant 1).

Resource Write operations Read operations

Enlistment

- Deploy smart contract (imple-

mented by the underlying

Ethereum software)

- Retrieve one

Offer

- Send

- Review (approve or reject)

- Cancel

- Retrieve one for a given enlistment

Agreement

- Submit

- Review (confirm or reject)

- Cancel

- Landlord sign

- Tenant sign

- Receive first month rent

- Retrieve one for a given enlistment

http://solidity.readthedocs.io/en/v0.4.19/types.html#structs
http://solidity.readthedocs.io/en/v0.4.19/types.html#mappings
http://solidity.readthedocs.io/en/v0.4.19/contracts.html#function-modifiers

28

1) ownerOnly() is used to implement access control to write transactions based on the

owner property set to the address which deployed the smart contract. The value of

owner is set in the constructor function when the contract is first initialized.

2) offerExists(tenantEmail) ensures that the tenant actually has made an offer to the

enlistment. For this purpose, the modifier turns to the respective association mapping

with the tenant email and checks whether the mapped offer is initialized.

3) finally, offerCancellable(tenantEmail) ensures that the tenant is allowed to cancel

his/her offer at the given phase of the business process execution as depicted on

Figure 15.

As one of the requirements of the business logic, the system must also ensure that landlord

is able to have only one signed tenancy agreement at the time. For this reason, a simple

boolean flag variable of locked is used which value is modified and validated when required

by the process (Figure 17).

Interface and Operations of the Enlistment Review Service

Based on the business relevant operations identified in the service analysis (Table 1) and

resource associations established by the application class model (Figure 17), a resource

model is designed which reveals the structure of the underlying resources (Figure 19).

function cancelOffer(string tenantEmail) payable public

 ownerOnly()

 offerExists(tenantEmail)

 offerCancellable(tenantEmail)

 {

 tenantOfferMap[tenantEmail].status = OfferStatus.CANCELLED;

 if (tenantAgreementMap[tenantEmail].status != AgreementStatus.UNINITIAL-

IZED) {

 tenantAgreementMap[tenantEmail].status = AgreementStatus.CANCELLED;

 }

 locked = false;

 }

Code block 1. Smart contract function for cancelling an offer.

29

The exposed API of ERevS expects the primary key database reference of the enlistment

entity (ID) which it then maps to on-chain reference (i.e. Ethereum address) if necessary for

the request. For example, to retrieve an approved enlistment, an HTTP GET request of

/enlistments/:id would need to be called which, in turn:

1) retrieves the referenced object from the relational database;

2) calls Enlistment smart contract function to retrieve the model from the blockchain

using the associated address from the previous step;

3) merges the two objects and returns the result.

On the other hand, ERevS is also an access point to resources of RIS which owns and mana-

ges child entities of an enlistment: offers and tenancy agreements. For this reason, it requires

the on-chain identifier for its subresource requests. That is, to review a tenancy agreement,

an HTTP POST request to /enlistments/:id/agreements/:tenantEmail/review would be

called. As a response, the procedure mapped to the API endpoint will:

1) retrieve the object referenced with an ID from the relational database;

2) calls Enlistment smart contract function to review the agreement with the parameters

of tenant and review resolution;

3) await for the transaction to be mined and then send response.

Analogous procedure as previously described is used for all application actions which re-

quire a write transaction to be transmitted to the blockchain, i.e. operations of offers and

tenancy agreements in Table 1.

In the proposed design, ERevS is also responsible for managing the collection of the enlist-

ments. This makes the service a natural choice for all filtering operations. As a result, the

service provides for the type of filtering operations:

Figure 19. Enlistment Review Service resource model.

30

1. Finding either all published or unpublished enlistments. For this action, a simple

filter query to the centralized database is sufficient which includes an enlistment

item when its status is approved.

2. Retrieving enlistments by landlord email. A simple SELECT query is sent to the rela-

tional database which retrieves all enlistments based on the input parameter of land-

lord email.

3. Retrieving enlistments by offer tenant email. The query expects iterating through 2

levels of entities: enlistments and offers. To simplify the procedure, the data of the

enlistment offer authors is mirrored off-chain. So, to retrieve enlistments by tenant

email, the filtering is done off-chain by running a SELECT query over all enlistments

which include the input tenant email in the helper array of offer authors (Figure 18).

4. Filtering enlistments based on geographical proximity. The filter allows to run

search queries in ERevS based on the input WGS 84 [30] latitude, longitude and

search radius parameters. The search is implemented on a database service level us-

ing a PostGIS25 spatial database extender for PostgreSQL. The underlying procedure

sends a SELECT query to the database, utilizing ST_Distance_Sphere26 function of the

PostGIS library to filter on enlistments for which the calculated distance is smaller

than the one specified in the input parameters.

In addition to the procedures dissected above, due to the vertical split of the enlistment at-

tributes between multiple services, a round trip to ERevS is required in order to merge the

data of all the filtered elements.

3.2.5 Analysis

The established system provides all the necessary operations for the real estate rental pro-

cess. The results also show how Ethereum is introduced to the system and what is its role.

Moreover, the basis of the blockchain integration proves to be the artifacts generated in the

problem identification phase. In more detail, a subprocess is identified which only includes

the intermediation between a landlord and a tenant. The identified subprocess is thereupon

extracted from the main business process and abstracted to a dedicated service for an exe-

cution using a smart contract.

In the proposed architecture, blockchain is added as an internal service which is inaccessible

to external actors. From the functional aspect, this means that as opposed to features of

standard decentralized applications, end users do not need to own a cryptocurrency wallet

to use the service. The associated transaction costs must be paid by the platform operator.

Moreover, the only noticable changes to external actors should be non-functional. Next, the

perceived changes on tamper resilience, availability and privacy are noted.

Tamper Resilience, Availability and Privacy

In a fully centralized architecture, there is a risk of data tampering as there may be people

in the production line or with malicious intent who have credentials and/or direct access to

the database. Inherently, this kind of access opens the application to a potential security

threat as the person may be able to change the data for fraudulent purposes. However, by

introducing blockchain to the architecture of the system under research, the risk of data

tampering is mitigated with the underlying properties of Ethereum block validation mecha-

nisms [3].

25 https://postgis.net/ [Accessed: 19-May-2018]
26 https://postgis.net/docs/manual-1.4/ST_Distance_Sphere.html [Accessed: 19-May-2018]

https://postgis.net/
https://postgis.net/docs/manual-1.4/ST_Distance_Sphere.html

31

However, with the proposed service design, there is still a single point of entry to the system

(ERevS) which may be subject to issues such as down-time and data loss. As a result, it

could be concluded that the exposed service of the variant does not benefit from higher read

availability usually associated with decentralized applications [23]. However, an increase

of availability is perceived for the internal service running on smart contract.

What is more, the data model of the smart contract exposes a threat to the privacy of the

users. Namely, the current design exposes private information of the actors such as their

email addresses to a (public) blockchain where it could be easily queried or decoded. How-

ever, the purpose of an email address in the established design is crucial: it is the unique

identifier which identifies actors on-chain (based on the hypothetical user model data gath-

ered off-chain). The email addresses are also used as association keys between on-chain

resources. So, trade-offs in privacy should be noted as a limitation of the design.

As an alternative to email addresses, an internal off-chain ID could be considered to refer-

ence identities on-chain. This, however, would again lose the autonomy of the on-chain

process by losing data completeness as also identified by Eberhardt and Tai [28]. Mean-

while, a viable solution may emerge when the on-chain service is made externally available

in the next phases of the research. If the on-chain service is exposed externally, identities of

Ethereum accounts could be considered for the place of email addresses. However, as also

found by Spielman [27], using on-chain identities may have legal limitations which need

evaluation in future studies. In contrast, an implementation of the subprocess on a fully

centralized architecture with a user management system could be trivially designed such

that it does not expose the email address or any other person identifying information. In

such system, the data could live in a database with no public access and the users may be

assigned with internal IDs which make it possible to uniquely identify them in association

with their data. Therefore, in summary, using references to off-chain resources is found to

be imcompatible to improve privacy.

Key Components

In terms of the key components of the system, four operations of filtering are identified

based to their perceived complexity level. The operations are: retrieving all unpublished or

published enlistments; filtering by enlistments by landlord; filtering enlistments by tenant;

filtering enlistments based on the geodetic distance. However, in the context of the baseline

prototype, the key components are all implemented off-chain where their impact on the ef-

ficiency is considered negligible for the study. Nevertheless, their neglibility in the current

design is notable because complexity of these components is expected to change in the next

phases of the study.

Autonomy

In summary, we have identified core data and process perspective for a simplified system

which provides all the necessary operations for the real estate rental process. The analysis

has also allowed us to identify where blockchain technology can be used.

However, it could be observed that the baseline variant does not make the sharing economy

part of rental intermediation more decentralized. Namely, the service which allows P2P in-

teractions through a smart contract cannot operate and be accessed without the assist ERevS

which plays the role of an intermediator. Therefore, the baseline design iteration is a starting

point to make the decentralized service more independent and is subject to be moved outside

of the platform providers system, as described in the next sections.

32

3.3 Migrating Data to the Blockchain

In the baseline design, ERevS is managing the collection of resources. For this reason, it is

also fit for filtering enlistments which are managed by RIS. What is more, in addition to

collection management, the details of the property enlistments are split between two ser-

vices.

This section describes the design of a system which moves all required data for managing

the real estate rental intermediation into the blockchain. The system builds on top of the

baseline variant and in terms of the established design analysis framework, only the dimen-

sions of significant change are described.

3.3.1 Service Map

To move the management of resource collection of reviewed enlistments out of ERevS, an-

other required service is added next to RIS with the name of Enlistment Registry Service

(ERegS). RIS and ERegS are included in an abstract Enlistment Rental Service which is

served in an Ethereum node (Figure 20).

3.3.2 Data Model

With the inclusion of another service, the data is now managed between 3 stores (Figure

21). Equivalently to the baseline variant, an instance of Enlistment smart contract is de-

ployed to Ethereum distributed ledger once moderator approves it. However, now, in addi-

tion to the baseline procedure, the blockchain address of the deployed Enlistment instance

is added to Enlistment Registry smart contract.

To migrate all enlistment data on-chain, the constructor of the Enlistment smart contract

accepts details which were previously managed in ERevS. To persist enlistment location on

the blockchain, a representation of geohash [31] is used. In its inner workings, geohashing

divides the sphere of the Earth into a hierarchical grid and allows encoding of spatial latitude

and longitude values into a arbitrary-length string of Base32 characters: the longer the

string, more precision for the location. For the nature of the resources represented by the

location, a 9-character length is used which at the worst case provides a rectangular cell with

the precision of ≈ 4.77 𝑚 × 4.77 𝑚 on the Equator according to Veness [32]. On the other

Figure 20. Service map (variant 2).

33

hand, as other migrated details of the enlistment only serve a decorative purpose and never

need on-chain processing, they are persisted as a JSON-encoded string. As the final change,

an internal helper array of offer authors is migrated which allow for iteration over Solidity

mappings.

3.3.3 Interface Design and Key Operations

The root service is divided between three subservices (Figure 20) and because of this, an-

other split of operations is implied. As the external actors are still served through ERevS, its

operation set remains unchanged (Table 1). However, in its operation, it now relies on the

required operations of ERegS (Table 3) and RIS (Table 4). Proceedingly, in the following

subsections, the anatomy of the interfaces and impactful functions of the services is pre-

sented.

Figure 21. Data model (variant 2).

34

Interface and Operations of the Enlistment Registry Service

EregS is implemented as a smart contract called Enlistment Registry operating in Ethereum

client node. The registry smart contract is a singleton instance, meaning that it is deployed

once and the resulting reference is hard-coded in the consuming services.

The Enlistment Registry implements its corresponding data model from Figure 21 through

two top-level storage variables: owner and enlistments. Similarly to the Enlistment smart

contract, owner is utilized as to enforce access to its deployer (i.e. the platform provider).

Variable of enlistments, however, references an append-only array of Enlistment instance

addresses.

In addition to the trivial implementations of adding an enlistment to the registry and retriev-

ing the underlying array, the contract also exposes 2 functions for operations which were an

implicit burden of the off-chain service in the baseline design:

1) Retrieving enlistments with mapped data for geosearch. The invocation of this

method (Code block 2) loops over all enlistment addresses in the registry and for

each of them, makes an inter-contract call to retrieve a geohash. As a result, it returns

two arrays of fixed length of the size of the registry: one of which contains all ad-

dresses and the other one the corresponding geohashes. The output of this function

is input to run filtering computations off-chain.

2) Retrieving enlistments for offer author filtering. The anatomy of this function is sim-

ilar to the previous one with the difference that instead of retrieving a geohash, an

intra-contract returns the number of offers for an enlistment.

Table 3. Required operations from Enlistment Registry Service (variant 2).

Resource Write operations Read operations

Enlistment

- Add - Retrieve all

- Retrieve with mapped data for ge-

osearch

- Retrieve with mapped data for offer

author filtering

Table 4. Required operations from Rental Intermediation Service (variant 2).

Resource Write operations Read operations

Enlistment

Same as baseline

Same as baseline

Offer

- Retrieve one for a given enlistment

- Retrieve the number of offers

- Retrieve offer by its index in the

helper array

Agreement Same as baseline

35

Interface and Operations of the Rental Intermediation Service

When compared to the ABI of RIS of baseline variant, the operational changes are minor:

the smart contract is updated to return the migrated data and exposes a new function to return

the length of the helper array of offerAuthors as required by ERegS.

Interface and Operations of the Enlistment Review Service

Migrating data does not change the state transitions or resource hierarchy of the baseline

variant. However, as ERevS no longer owns the collection of approved enlistments, the API

explicitly expects an on-chain reference of an enlistment for all write and read queries once

it is approved by a moderator. For example, to cancel an offer, HTTP POST request to end-

point /enlistments/:enlistmentContractAddress/offers/:tenantEmail/cancel needs to

be called.

Changes to the data governance also modify the collection-related procedures of ERevS:

1) Finding either all published or unpublished enlistments. While unpublished enlist-

ments are still retrieved from the relational database, the published ones are collected

by requesting all addresses from ERegS.

2) Retrieving enlistments by offer tenant email. The underlying procedure is now as

follows:

a. A function of Enlistment Registry is called to retrieve the collection of on-

chain enlistment identifiers and their corresponding number of offers.

b. For all enlistments, all offers are retrieved one-by-one by accessing them

through the index in the tenant email helper array of the Enlistment smart

contract.

c. The filtering is done by checking if the provided tenant email is in the array

of enlistment offers.

3) Retrieving enlistments by landlord email. To retrieve enlistments by landlord email:

a. The array of all enlistment addresses is retrieved from the Enlistment Regis-

try smart contract.

b. Using enlistment references, each of their landlord email is retrieved from

RIS.

c. Filtering is done by checking if the input landlord email matches the ones

retrieved from the previous step.

4) Filtering enlistments based on geographical proximity.

a. Similarly to the first step of the two previous operations, Enlistment block-

chain addresses and their geohashes are retrieved from EregS.

b. Filtering is done by:

function getEnlistmentsForGeosearch() view public returns (address[], bytes9[])

{

 bytes9[] memory geohashes = new bytes9[](enlistments.length);

 for (uint i = 0; i < enlistments.length; i++) {

 Enlistment enlistmentContractInstance = Enlistment(enlistments[i]);

 geohashes[i] = enlistmentContractInstance.getGeohash();

 }

 return (enlistments, geohashes);

}

Code block 2. Data retrieval operation from an on-chain registry.

36

i. decoding the geohash to latitude/longitude representation of float

datatype;

ii. calculating the distance between the input location and the enlistment

using a JavaScript implementation of Haversine formula [33] and

comparing it to the search radius input.

Similarly to the baseline variant, for each matching enlistment in the filter, an additional call

must be made to retrieve the actual data to be presented in the API request output view.

3.3.4 Analysis

The results show that the data which need migration are atomic resource attributes of enlist-

ments and collection data structures. To adapt the migrated atomic resource attributes, the

data model of the enlistment smart contract is appropriately modified to accept the new

details as a geohash and JSON-encoded collection of attributes.

While the migrated location data of the enlistment is perceived necessary for the operation

of future variants (i.e. for location-based filtering), the inclusion of purely decorative infor-

mation could be considered debatable. In more detail, the migrated attributes of enlistment

(except location) serve no other purpose nor add more value other than to reach the goal of

complete decoupling. The concern of high data storage costs aligns with the findings of

Eberhardt and Tai [28] who also describe a setup in which the amount of data grew so big

that it was not reasonable to store the values on-chain. However, Eberhardt and Tai [28] do

not provide any proof or examples about how big is the overhead. As such, the effect on the

added data storage overhead could be considered a limitation on the design which needs to

be evaluated in terms of efficiency and alternatives.

In terms of collection data structure migration, a new smart contract is added to the system

to serve the purpose of a lightweight registry. What is found significant, is that to ensure

that the enlistment was really reviewed, the append operation is initiated from the ERevS.

Alternatively, a chained operation could be considered which automatically adds the enlist-

ment to the registry in the constructor of Enlistment smart contract. Although such alterna-

tive would add automation to the system by replacing two consecutive transactions with

one, it opens up the system for spam in public blockchain. The potential attack on chained

registry addition approach trivial: the attacker would be able access the contract bytecode

by inspecting the transactions and then use it to instantiate a new enlistment without going

through a review process. So, to give the provider of ERevS ensurance that only they are

able to manage the registry, two separate transactions are preferred over a chained one.

Key Components

The data migration, especially moving to an on-chain registry approach considerably

changes the anatomy and perceived efficiency of the key operations. Whereas in the baseline

system only one request to RIS per match in the filter was necessary, the current variant adds

another layer(s) of requests just to retrieve the migrated data from the on-chain service for

the operations. Furthermore, this per-resource data retrieval strategy may have negative im-

pact on the performance of the operations and is subject for closer inspection during evalu-

ation.

Autonomy

The changes to baseline system design migrated all rental intermediation related data to the

service actually managing the underlying process. This results in a gain in autonomy but the

empirical analysis also finds potential loss in efficiency. However, migrating data alone is

not enough to achieve autonomy for the on-chain services because the filtering computations

37

are still done off-chain. Because of this, the objective for the next prototype is to port oper-

ations.

3.4 Porting Operations to the Blockchain

The previous results show how to integrate blockchain and, thus, gain in autonomy. In more

detail, it is shown how to extract a peer intermediation subprocess from a business process

model of a real estate sharing platform and design it as a separate internal service. Then, it

is found that in order to decouple from the platform manager to enable autonomous P2P

process execution on-chain, the internal service needs to move outside of the providers sys-

tem. Moreover, for the autonomy to happen, the required data has been migrated from off-

chain datastores to on-chain storage.

This chapter describes the service design to move the processing involved with the inter-

mediation process. The design builds on top of the previous results.

3.4.1 Service Map

To port the operations of filtering enlistments by geographical proximity, an internal de-

pendency to a service of Geodistance is added to ERegS. Although the operations of the

added service could also be implemented as embedded, the explicit decoupling separates its

standard mathematical operation (see 3.4.3) from the business domain of the application.

3.4.2 Data Model

There is only one change to the data model to adapt to the underlying operation of geosearch:

geohash format [31] for persisting enlistment location is replaced by WGS 84 [30] coordi-

nates encoded as 32-bit signed integers (Figure 22). The signed integer stores 6 decimal

places of a latitude/longitude degree which, based on widest sphere of the Earth (𝑅 =
 6378137 m)27, guarantees more than enough precision to locate real estate:

𝑅 × 2 × 𝜋

360° × 106
≈ 0.111 (𝑚). (3.1)

27 http://epsg.io/7030-ellipsoid [Accessed: 19-May-2018]

http://epsg.io/7030-ellipsoid

38

3.4.3 Interface Design and Key Operations Drill-through

Regarding changes to the interface of the services, there are 3 external read operations to be

migrated from ERevS (Table 1) to ERegS: filtering by landlord, by offer tenant and by geo-

graphical proximity (Table 5). Proceedingly, the operation set of RIS needs to cater the needs

of ERegS for it to do the filtering. For this purpose, RIS now provides the attributes of land-

lord and location of the enlistment as well as a function to check whether a given tenant has

made an offer (Table 6). On the other hand, the sole operation of Geodistance Service is to

calculate distance between two locations. Next, each of the interfaces and significant oper-

ations are elaborated on.

Figure 22. Data model (variant 3)

39

Interface and Operations of the Geodistance Service

The Geodistance Service is implemented as Solidity library28 and it exposes one operation:

calculating geographic distance between two sets of coordinates. As performance is im-

portant for on-chain computations and the distances set by the domain are expected to be

relatively small on the global scale, it is chosen to implement the operation using Euclidean

distance on an equirectangular projection of the Earth (also known as Equirectangular ap-

proximation).

To calculate the trigonometric function of cosine, GeoDistance library is dependent on an-

other library: Trigonometry. In its operation, the library divides a circle to 16384 angle units

and uses a lookup table on the first quadrant of sine together with linear interpolation.29

Interface and Operations of Enlistment Registry Service

Implementation of filtering functions are now migrated to the interface of ERegS:

28https://github.com/vindrek/blockchain-real-estate/blob/enlistment-filtering-on-chain/ethereum/cont-

racts/GeoDistance.sol [Accessed: 19-May-2018]
29 https://github.com/Sikorkaio/sikorka/blob/master/contracts/trigonometry.sol [Accessed: 19-May-2018]

Table 5. Required operations from Enlistment Registry Service (variant 3).

Resource Write operations Read operations

Enlistment Same as variant 2

- Retrieve all

- Filter by landlord

- Filter by tenant (as the bidder)

- Filter by geographical proximity for

given location and search radius

Table 6. Required operations from Rental Intermediation Service (variant 3).

Resource Write operations Read operations

Enlistment

Same as variant 2

- Retrieve one

- Retrieve landlord email

- Retrieve location

- Check whether a given tenant has

made an offer

Offer

- Retrieve one for a given enlistment

- Retrieve offer by its index in the

helper array

Agreement Same as variant 2

https://github.com/vindrek/blockchain-real-estate/blob/enlistment-filtering-on-chain/ethereum/contracts/GeoDistance.sol
https://github.com/vindrek/blockchain-real-estate/blob/enlistment-filtering-on-chain/ethereum/contracts/GeoDistance.sol
https://github.com/Sikorkaio/sikorka/blob/master/contracts/trigonometry.sol

40

1) Retrieving enlistments by landlord email. The filtering procedure iterates over the

registry and by inter-contract call to RIS retrieves a Keccak-256 hash of the landlord

email30 to be compared with the hashed value of the input.

2) Retrieving enlistments by offer tenant email. Again, the registry is iterated and filter

is applied by inter-contract call to Enlistment which checks whether a given tenant

has made an offer.

3) Filtering enlistments based on geographical proximity.

a. By inter-contract call to Enlistment, the coordinates of an enlistment is re-

trieved.

b. A deployed Geodistance library instance calculates the distance between the

location of the input and enlistments using equirectangular approximation

method.

c. Filter is applied by comparing the calculated distance and the search radius

provided.

All the filtering operations of ERegS output a 256-bit integer which bitset maps the indices

of the matching enlistment in the registry array. Meaning, for each matching enlistment,

another call is required to retrieve the blockchain address of the Enlistment smart contract

instance which would then be used to make another call to get the actual data of the enlist-

ment.

3.4.4 Analysis

The results reveal that the operations which need to be ported to the smart contracts for more

autonomy are related to collection management and do the procedure of filtering resources.

The study identifies such enlistment filtering operations and describes a functionally equiv-

alent implementation using smart contracts.

Key Components

Results show that the key component of location-based filtering implementation poses lim-

itations to the service. Namely, the design uses equirectangular projection as the basis for

geodetic distance calculation. The reason behind such decision is that equirectangular ap-

proximation works well with the processing-limited nature of EVM because it is trivial to

compute. For example, equirectangular projection only requires one square root and trigo-

nometric function call31:

where 𝑟 is the radius of the sphere, 𝜑 is the latitude and 𝜆 the longitude. On the other hand,

an implementation of Haversine formula requires 6 trigonometric function calls and a 1

square root:

30 Due to the limitations of EVM and/or Solidity v0.4.19, returning strings of arbitrary-length in external

functions is not possible. For this reason, a 32-byte hash of landlord email must be used, instead.
31 Implementation is modified to use the length of 1 degree on the Equator instead of spherical radius to operate

on degrees throughout the algorithm instead of radians which would need conversion.

𝑑 = 𝑟 × √((𝜆2 − 𝜆1) × cos (
𝜑1 + 𝜑2

2
))

2

+ (𝜑2 − 𝜑1)2, (3.2)

41

Moreover, the implications of using Spherical Law of Cosines require 6 trigonometric func-

tion calls:

However, the equirectangular projection introduces significant distortions with a reflecting

accuracy error depending on the bearing, latitude and distance [34]–[36]. Similarly, to the

current study, Esenbuğa et al. also compromise accuracy for efficiency when choosing

equirectangular approximation [36]. What is more, while evaluating different geodetic dis-

tance algorithms for province assignment of cities in Turkey, Esenbuğa et al. show that the

maximum relative percentage error of the equirectangular approximation on their data is

only 0.2323% (𝑠 = 0.0650%, 𝑥̅ = 0.1396%) [36]. So, the low error and compliance for

inter-city measurements implies that the method should be potent for intra-city purposes.

The analysis on determining the exact latitude value where the real estate search radius dis-

tance is longer acceptable is left open for future studies to specify.

Another design limitation is that the maximum capacity of enlistments in the current variant

is 256 enlistments. This limitation is set by the filtering operations which uses bitset tech-

nique and returns an unsigned integer to represent the matches. However, the maximum

unsigned integer size currently supported by Solidity is 256 bits. To scale up, the procedure

has to be adjusted to return an array of such integers.

Autonomy

As a result of the migrating intermediation related data and operations on-chain, the former

is now capable of managing both read and write operations of rental intermediation between

landlords and tenants. From the domain segregation point of view, this design reduces the

responsibility of the off-chain service (which is plays the role of an intermediatior) to serve

tasks that it is designed to do: review enlistments. Once an enlistment is approved, the re-

view service simply forwards requests to smart contracts without enforcing any business-

logic itself.

𝑑 = 2𝑟 × sin−1 (√sin2
𝜑2 − 𝜑1

2
+ cos 𝜑1 cos 𝜑2 sin2

𝜆2 − 𝜆1

2
) . (3.3)

𝑑 = 𝑟 × cos−1(sin 𝜑1 × sin 𝜑2 + cos 𝜑1 × cos 𝜑2 × cos(𝜆2 − 𝜆1)) . (3.4)

42

4 Evaluation and Discussion

In the scope of the study, 3 progressive variants of a real estate rental system are described.

While the supported process and the externally available operations of the different variants

remain the same, they differ from internal aspects. This chapter assesses and analyses the

qualities of the variants.

4.1 Quantitative Analysis

The quantitative analysis focuses on the performance observed during the execution of smart

contracts by the EVM. On the other hand, the efficiency of smart contract operations are

measured by observing gas consumption as the execution cost of the message calls to a

contract address. While the measurement value of gas does not express the computational

complexity directly, it does so in a non-direct way by producing a fair cost for the transactor

to compensate for the code execution. The fairness of gas calculation is guaranteed by op-

eration costs and polynomial cost functions (such as memory extension) as defined by the

specification of EVM [3].

4.2 Scenario

As a test scenario, a happy path of Enlistment to contract completion subprocess is used,

complemented with read operations to hypothetically assist the actors with the execution.

The execution is observed in the prototypes: baseline (variant 1), data migration (variant 2)

and operation migration (variant 3). As described in the subsections of interface design

(3.2.4, 3.3.3, 3.4.3), the implementation includes a total of 4 smart contracts: Enlistment,

EnlistmentRegistry and libraries of GeoDistance and Trigonometry. In the analysis, Enlist-

mentRegistry, GeoDistance and Trigonometry contracts are also referred to as singleton con-

tracts because they are only required to be deployed once for the operation of the system (as

opposed to multi-instance nature of Enlistment which is deployed each time an enlistment

is approved into the system).

The scenario is divided into the following steps:

1) An enlistment is deployed and added to the public registry (write).

2) Tenant retrieves all published enlistments (read).

3) Tenant runs a geographic approximity search (read).

4) Tenant requests the enlistment data (read).

5) Tenant places an offer (write).

6) Landlord queries for his enlistments (read).

7) Landlord queries all offers for an enlistment (read).

8) Landlord retrieves one offer (read).

9) Landlord accepts the offer (write).

10) Landlord issues a tenancy agreement (write).

11) Tenant queries for the enlistments that he has bid on (read).

12) Tenant retrieves a tenancy agreement (read).

13) Tenant accepts the tenancy agreement (write).

14) Landlord signs the agreement (write).

15) Tenant signs the agreement (write).

16) Tenant sends the first month rent (write).

The experiment measures:

1) Gas usage of the steps and singleton contract deployment with the following strat-

egy:

43

a. Deployment cost is calculated by subtracting the balance of the account be-

fore and after the transaction.

b. Ordinary transactions (i.e. write calls such as sending an offer) are measured

by checking gas usage from the receipt.

c. Read-only calls (e.g. geofiltering) are measured using the estimateGas

method of web3js32.

2) count of JSON RPC calls for each step;

3) size of the deployed bytecode of the contracts retrieved from the truffle compilation

asset file33.

Moreover, the following should be considered when interpreting the results:

• If a step requires multiple atomic subrequests (e.g. when retrieving all published

enlistments), then the measured gas consumption and JSON RPC call count is the

sum of the requests.

• Each enlistment in the test run has an additional 3 offers from other tenants (includ-

ing the one being operated on).

• The landlord in the scenario has no previous enlistments.

• The tenant in the scenario has not placed any previous offers to any enlistment.

• All the added enlistments except the one in the scenario are outside of the geosearch

area.

• A single step includes either only write or read operations but not both.

4.3 Results

In terms of singleton smart contract deployment gas consumption, variant 3 is the most de-

manding (Figure 23). Variant 3 deploys a total of 3 contracts with a total cost of 1187972

gas. Meanwhile, variant 2 only requires 1 singleton contract (677559 gas) and variant 1

operates without any singletons. The most significant impact to the cost of the singleton

deployment is made by EnlistmentRegistry which proves to be ~14.3% higher for variant

3 than it is for variant 2.

32 https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html#methods-mymethod-estimategas [Accessed:

19-May-2018]
33 https://www.npmjs.com/package/truffle-contract-schema [Accessed: 19-May-2018]

https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html#methods-mymethod-estimategas
https://www.npmjs.com/package/truffle-contract-schema

44

However, when aggregating and comparing all the contract deployment costs in the system,

then it is evident that Enlistment deployment cost is the most impactful (Figure 24). The

gas usage for baseline Enlistment deployment is 4574231 and it rises ~24.6% for the second

variant. Noticable is also the difference between Enlistment deployment cost of the last 2

variants (98501).

The bytecode size of the contracts are given in Table 7 and it reveals that the largest bytecode

size is for Enlistment contract of variant 2, followed by variants 3 and 1.

Figure 23. Bar plot analysis for singleton smart contract deployment gas usage.

Figure 24. Bar plot analysis for smart contract deployment gas usage.

45

An observation to the scenario execution with 𝑁 = 10 previous enlistments in the registry

(Figure 25) reveals that the transactional gas usage of the write operations is by far the most

expensive for step 1. The next most gas consuming step is step 10. In relation to step 1 and

step 10, the cost of other write steps (5, 9, 13, 14, 16) could be considered negligible.

By eliminating the enlistment deployment cost from step 1, an inter-variant perspective to

progressive operation gas cost (Figure 26) reveals the similarities of the variants. There are

two exceptions to otherwise similar behaviour: firstly, for step 5, the usage for baseline

variant (113569) is slightly lower than for other variants (139877 and 139899 respectively)

and secondly, baseline variant does not use any gas for step 1.

Table 7. Size of the deployed smart contract bytecode.

 Enlistment

(bytes)

EnlistmentRe-

gistry (bytes)

Geodistance

(bytes)

Trigonometry

(bytes)

Baseline 16177 - - -

Data migra-

tion

18217 2270 - -

Operation

migration

17808 2648 458 716

Figure 25. Bar plot analysis for write steps gas usage for 10 previous enlistments in the re-

gistry.

46

Figure 27 shows that when the amount of enlistments grows, the transaction gas usage for

the write steps remains the same. However, a closer look reveals one exception to this: for

variants 2 and 3, step 1 is slightly more expensive when there are no previous enlistments

in the registry (Table 8).

Figure 26. Bar plot analysis for write steps gas usage for 10 previous enlistments in the re-

gistry (excluding Enlistment contract deployment).

Figure 27. Gas usage of write transactions for arbitrary number of enlistments (𝑁) in the

registry.

47

The total mean cost for scenario write steps execution is the biggest for data migration var-

iant (6754396), followed by operation migration (6656319: 1.5% lower) and baseline

(5554573: 21.6% lower).

Request count for write operations is similarly constant as is their gas consumption (Figure

28). However, it could be noticed that the first write step requires two requests to the smart

contract while the others do one request.

Figure 29 shows that read steps gas usage for 𝑁 = 10 previous enlistments in the registry

vary. The data shows that the cost difference of steps 8 and 12 is negligible while steps 4

and 7 are getting slightly more expensive with each variant. On the other hand, for steps 2

and 3, the gas usage rises significantly with successive variants. Most significantly, the re-

sults reveal an anomaly for the behavior of data migration variant on steps 6 and 11 which

Table 8. Gas usage for step 1 of different variants for arbitrary number of enlistments in

the registry.

 0 previous enlist-

ments (gas)

1 previous enlist-

ment (gas)

2 previous enlist-

ments (gas)

Baseline 4574231 4574231 4574231

Data migration 5762189 5747189 5747189

Operation migration 5664030 5648966 5648966

Figure 28. Request count for write operations for arbitrary number of enlistments (𝑁) in

the registry.

48

are multiple times more expensive than their respective results on baseline and operation

porting implementations.

With growing number of enlistments (𝑁) before the execution of the scenario, gas usage for

steps 4, 7, 8 and 12 remain constant for all variants, Figure 30 shows. The gas consumption

also stays constant for the baseline variant in steps 3, 6 and 11. For steps 2, 3, 6 and 11, a

linear growth could be recognized. For steps 6 and 11, data migration prototype has a sig-

nificantly steeper slope than the baseline and operation migration versions. On the other

hand, the operation migration variant cost grows the fastest for steps 2 and 3. Table 9 gives

an overview of the growth (slope of the line) and reveals that the gas usage grows the fastest

for the data migration variant of step 11: 83860 per added enlistment in the registry.

Figure 29. Bar plot analysis for write operation gas usage for 10 previous enlistments in

the registry.

49

The total mean cost for scenario read steps execution is found to be the least for baseline

variant (802811), followed by operation migration (1478994: 84.2% higher) and data mi-

gration variant (3151951: 292.6% higher).

Figure 31 shows that the characteristics of read operation request counts resemble the affine

or constant nature of their gas consumption counterparts (Figure 30) with an exception of

step 3. In more detail, the gas usage for step 3 is linear but the request count remains cons-

tant. Also, for steps 4, 8 and 12 it could be noticed that the number of requests are the same

for different variants but gas consumption differs: for all of them, the operation migration

variant is the most expensive, followed by data migration and then baseline.

Figure 30. Gas usage of read operations for arbitrary number of enlistments (𝑁) in the re-

gistry.

Table 9. Gas rise for an added enlistment for read steps.

 Step 2 (gas) Step 3 (gas) Step 6 (gas) Step 11 (gas)

Baseline 27144 0 0 0

Data migration 36886 3417 36886 83860

Operation mig-

ration

38280 8654 3590 4063

50

By aggregating the mean gas usage for scenario read and write steps execution34, the results

reveal that the most gas consuming variant is the data migration variant with a value of

9906347 which is ~21.8% higher than the operation counterpart and ~55.8% higher than

baseline.

4.4 Discussion

Given that the implementations build on top of each other by design and that the role of the

on-chain service increases with successive variants, the evaluation expectedly proves the

baseline version to be the most efficient. However, it is surprising that the least efficient

variant is the second and not the third variant. Moreover, the second variant not only proves

to be the most expensive for read but also write steps.

Results show that the second variant is less efficient for write steps than the third one be-

cause of the first step in the scenario: deploying an enlistment and adding it to the registry.

Because the operation of adding an enlistment to the registry is the same for both variants

(3.3.2), the underlying reason should lie in the differences in the Enlistment smart contract.

However, in terms of their data models, the third variant should even be less efficient than

the second one. Namely, concerning data model, the only difference between the variants is

that the second variant uses a single storage mapping to persist the location (geohash) while

the third one uses two values of latitude and longitude (3.4.2). In summary, this means that

the culprit of the remaining difference comes from the added bytecode storage fees (200 gas

per byte [3]) as shown in Table 7.

34 Excluding singleton deployment gas because they are one-time expenditure.

Figure 31. Request count for read transactions for arbitrary number of enlistments (𝑁) in

the registry.

51

Meanwhile, variant 2 is shown to be cumulatively the most expensive for scenario read steps

because of its execution cost of two operations: filtering enlistments by landlord and by a

tenant. For the two operations, variant 2 proposes a similar anatomy: with the first call, the

procedure retrieves an initial reference data from the on-chain registry and then access each

resource one-by-one (or multiple levels of them in child resources are required) in order to

do the filtering (3.3.3). However, such filtering strategy is creating request overhead as well

as redundancy. The overhead appears because the strategy accesses resources one by one,

creating a severe N + 1 query problem. As a sign of severity, the results show that the num-

ber of JSON RPC calls grows near 100 for 31 previous enlistments in the registry (Figure

31). A solution to the N + 1 issue would be to retrieve all the data at once but such possibility

is found to be currently limited by native incapability of EVM to return arrays of dynamic

length and depth as well as complex data structures. Redundancy, however, is introduced

by the interim nature of the data migration phase design: data is not being processed in its

origin and in order to compensate for that, more information needs to be exchanged to

achieve the desired result. To quantify the effect of high request count to quality of service,

further studies should measure changes in response time.

On the other hand, in comparison with variant 2, the filtering strategy of variant 3 fixes

redundancy by doing the processing at the origin of the data (3.4.3). However, on-chain

filtering only alleviates the request overhead by eliminating one level of N + 1 problem (or

multiple if filtering child resources). In another words, if the test scenario were such that the

landlord or tenant had other enlistments or offers or there were more than one match for

geosearch, the slope of the gas usage and request count would increase for both data and

operation migration variants. So, in conclusion, the paper finds that on-chain filtering strat-

egy is superior due to its ability to remove redundancy and the associated request overhead:

filtering by landlord is nearly 7 times more efficient on-chain whereas by tenant it is more

than 20 times35 (Table 9).

While for other filtering operations the on-chain method outperforms off-chain, it is not the

case for geosearch. Instead, the evaluation results shows that the gas consumption of ge-

osearch grows ~2.5 times slower off-chain in case of variant 2 (Table 9), making it more

efficient. This is found to be a direct result of a computation-heavy nature of the operation

to calculate distances between coordinates (3.4.3). Even though a lot of optimization tech-

niques were put into the implementation (e.g. sacrificing accuracy for performance by

choosing a fast algorithm, using look-up tables for trigonometric functions, fixing the accu-

racy of the latitude and longitude angles), the operation would be better off done off-chain.

Moreover, the evaluation brings forward the high impact of step 1 in relation to the other

write transactions which contribute to an effective cost of the scenario. It turns out that the

associated cost of the multi-instance Enlistment deployment and adding it to the registry is

more than 7 times more expensive than any other write transaction for all variants. This kind

of inefficiency hints that the proposed design of the on-chain service should be reconsidered.

In more detail, to promote separation of concerns, the on-chain services currently uses an

approach of two smart contracts: a multi-instance intermediation subprocess smart contract

working together with a separated singleton managing registry (3.3.2). So, to increase effi-

ciency, the operations of the two smart contract could be merged. The feasibility and impli-

cations of the proposed single contract instance approach solution is left for future studies

to discover.

35 Due to the limitations of EVM and the chosen implementation, the efficiency gain would decline depending

on the number of matches. This is due to the fact that filtering result (bitset indices) must be mapped through

another layer of requests to retrieve a reference to an enlistment.

52

In addition to the high deployment cost of the Enlistment smart contract, the experiment

also reveals the significant impact of its on-chain data storage strategy. Namely, it could be

seen that while the bytecode size of Enlistment in the first two variants only differs 12.6%

(Table 7), the gas usage of its deployment spikes nearly twice as much. The difference be-

tween the bytecode size and deployment cost could be explained by the variants data model

transformation (3.3.2, 3.4.2). In more detail, the Enlistment smart contract of the data mi-

gration variant adds three storage variables compared with the baseline. Out of the three

added variables, two are initialized with the data passed through the smart contract in the

constructor during the deployment phase: geohash and detailsJson of the model of enlist-

ment (the third, offerAuthors, is not valuated). Now, while the 9-byte geohash only initiates

one SSTORE opcode of EVM [3], the detailsJson is a string of arbitrary length and a storage

cost must be paid for each 32-byte chunk (or 32 characters of ASCII). Evidently, this kind

of limitless storage strategy is not sustainable, especially with no maximum length guards

in place. In the identified issue of high data storage cost, the results align with the work of

Eberhardt and Tai [28].

What is more, building on the significance of the identified data storage cost, it would be

beneficial to overlook the whole data model of the smart contracts. In a redesign, a leaner

approach should be used to have the smart contract only include the data it needs for busi-

ness logic processing. For example, in addition to the decorative data of an enlistment (e.g.

number of bedrooms), there should be no place for duplicate data (e.g. currently, the infor-

mation about landlord is both, on the contract and on the tenancy agreement). With gas

usage effiency in mind, the data which is not necessary for the smart contract should seek

other storage solutions. For example, the opportunities of content-addressed storage tech-

niques may be used [28], [37].

The results also identify a peculiarity of EVM which may have an impact for any Ethereum

application. In more detail, the experiment reveals a spike in gas consumption when there

are no previous enlistments in the on-chain registry: 15000 more for variant 2 and 15064 for

variant 3 (Table 8). Such cost spike could be explained with the pricing strategy of EVM

which states that SSTORE operation costs 20000 gas only when the variable value had not

been initialized before but 5000 when it is being changed from a previous value [3]. In the

context of case study and the to-be externally available intermediation service, this means

that the landlord who is the first to get his/her enlistment added to the registry, must pay

extra.

Another identified low-level implication of EVM is that due to its stack size limitations,

trivial function implementations may become non-trivial and require additional established

data exchange protocols. For example, the results show that the design uses 4 JSON RPC

calls to retrieve a single tenancy agreement (Figure 31). The reason behind such design is

that due to a memory stack size of 16 [3], there could only be a limited number of local

variables. So, as the accessible resource of tenancy agreement has a high number of mem-

bers to be served in the output, a Stack too deep, try removing local variables compi-

lation error appears36. To overcome the issue, a number of possible solutions may be con-

sidered. For example, the tenancy agreement accessor function is split into 4 smaller func-

tions. However, this approach creates request overhead. An another approach to tackle the

stack limitation for high-count variables, is to group together variables or members of the

same type to arrays, as it was designed for the constructor of the Enlistment smart contract.

However, this approach does not work with strings of arbitrary length because this would

36 While the issue is partly brought forward by a debatable design decision to persist that much decorational

data in the smart contract, the problem stands.

53

imply a dynamic two-dimensional array which is not supported37. So, to gain more effi-

ciency as well as flexibility for a high number of variables with arbitrary length, a solution

which involves custom encoding for information exchange between off- and on-chain com-

ponents may be explored in the future studies.

In summary, we evaluate the least efficient prototype to be the data migration variant and

the most efficient to be baseline. To increase the sustainability by raising efficiency for write

as well as read operations, the most significant optimization design decisions are found to

concern the strategies of smart contract deployment and data storage.

37 http://solidity-doc-test.readthedocs.io/en/latest/frequently-asked-questions.html#can-a-contract-function-

accept-a-two-dimensional-array [Accessed: 19-May-2018]

http://solidity-doc-test.readthedocs.io/en/latest/frequently-asked-questions.html#can-a-contract-function-accept-a-two-dimensional-array
http://solidity-doc-test.readthedocs.io/en/latest/frequently-asked-questions.html#can-a-contract-function-accept-a-two-dimensional-array

54

5 Conclusion

By building and analysing design artifacts, the paper shows how Ethereum blockchain can

be used in implementing a process of real estate rental. To do so, it gradually moves an

internal decentralized service of extracted peer intermediation subprocess to an autonomous

external distributed application for disintermediation. In the scope of the study, 2 of the 3

proposed service migration phases are successfully carried out. By utilizing smart contracts,

the implemented system allows actors to submit, review and establish assets of real estate

property enlistments, offers and tenancy agreements.

In particular, the study shows the efficacy of Ethereum-enabled real estate rental but limited

efficiency. By instantiating the internally-changing prototypes for evaluation, the paper pro-

vides a detailed quantitative analysis on the effect of smart contract design decisions. The

results show that an increase in autonomy comes with a trade-off on efficiency. Moreover,

the study warns application developers about the dramatic effect of multi-instance smart

contract design and over-loading the on-chain storage with decorative data. Futhermore, the

found evidence hints that service design in combination with the data querying limitations

of EVM may negatively impact the quality of service by creating request overhead. There-

fore, while blockchain read operations are free of fees, it is suggested that no less consider-

ation should be put into their design decisions to find a balance between off-chain and on-

chain operations and keep the overhead at minimum.

In future studies, we plan to design and develop the last phase of the service migration. The

implementation raises some interesting areas for research such as migrating off-chain com-

putations in to the browser application of external actor, providing role-based access in

smart contracts and collecting signatures on tenancy agreements using an Ethereum account.

The source code for the prototypes and efficiency evaluation scripts could be found in the

following Git repositories:

1) https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V1

2) https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V2

3) https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V3

The author of this thesis has received grant from IT Academy.

https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V1
https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V2
https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V3

55

6 References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.” p. 9, 2008.

[2] J. Mendling et al., “Blockchains for Business Process Management - Challenges and

Opportunities,” ACM Trans. Manag. Inf. Syst., vol. 9, no. 1, p. 4:1--4:16, 2018.

[3] G. Wood, “Ethereum: a secure decentralised generalised transaction ledger,”

Ethereum Proj. Yellow Pap., pp. 1–32, 2014.

[4] Ethereum Foundation, “Solidity — Solidity 0.4.19 documentation.” [Online].

Available: http://solidity.readthedocs.io/en/v0.4.19/. [Accessed: 10-Apr-2018].

[5] R. Beck, J. Stenum Czepluch, N. Lollike, and S. Malone, “Blockchain - The Gateway

to Trust-Free Cryptographic Transactions,” in Twenty-Fourth European Conference

on Information Systems (ECIS), Istanbul,Turkey, 2016, 2016, pp. 1–14.

[6] J. Mattila, “The Blockchain Phenomenon - The Disruptive Potential of Distributed

Consensus Architectures,” 2016.

[7] T. Eisenmann, G. Parker, and M. W. Van Alstyne, “Strategies for Two-Sided

Markets,” Harv. Bus. Rev., vol. 84, no. 10, p. 12, 2006.

[8] S. T. March and G. F. Smith, “Design and natural science research on information

technology,” Decis. Support Syst., vol. 15, pp. 251–266, 1995.

[9] P. Selonen, “From Requirements to a RESTful Web Service: Engineering Content

Oriented Web Services with REST,” in REST: From Research to Practice, New

York, NY: Springer New York, 2011, pp. 259–278.

[10] P. Offermann, O. Levina, M. Schönherr, and U. Bub, “Outline of a Design Science

Research Process,” in Proceedings of the 4th International Conference on Design

Science Research in Information Systems and Technology, 2009, p. 7:1--7:11.

[11] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A Design Science

Research Methodology for Information Systems Research,” J. Manag. Inf. Syst., vol.

24, no. 3, pp. 45–77, 2007.

[12] A. Hevner and S. Chatterjee, “Design Science Research in Information Systems,” in

Design Research in Information Systems: Theory and Practice, Boston, MA:

Springer US, 2010, pp. 9–22.

[13] T. Erl, Service-Oriented Architecture, Concepts, Technology, and Design. 2005.

[14] R. Botsman, “The Sharing Economy Lacks A Shared Definition | Fast Company,”

Fast Company. [Online]. Available: https://www.fastcompany.com/3022028/the-

sharing-economy-lacks-a-shared-definition. [Accessed: 23-Oct-2017].

[15] N. A. John, “Sharing and Web 2.0: The emergence of a keyword,” New Media Soc.,

vol. 15, no. 2, pp. 167–182, Mar. 2013.

[16] L. Piscicelli, G. D. Simone Ludden, and T. Cooper, “What makes a sustainable

business model successful? An empirical comparison of two peer-to-peer goods-

sharing platforms,” J. Clean. Prod., Aug. 2017.

[17] M. P. Wilhelms, K. Merfeld, and S. Henkel, “Yours, mine, and ours: A user-centric

analysis of opportunities and challenges in peer-to-peer asset sharing,” Business

Horizons, vol. 60, no. 6, Elsevier, pp. 771–781, 01-Nov-2017.

[18] F. Boons, C. Montalvo, J. Quist, and M. Wagner, “Sustainable innovation, business

56

models and economic performance: An overview,” Journal of Cleaner Production,

vol. 45. Elsevier, pp. 1–8, 01-Apr-2013.

[19] N. M. P. Bocken, S. W. Short, P. Rana, and S. Evans, “A literature and practice

review to develop sustainable business model archetypes,” Journal of Cleaner

Production, vol. 65. Elsevier, pp. 42–56, 15-Feb-2014.

[20] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,”

in A Conference on the Theory and Applications of Cryptographic Techniques on

Advances in Cryptology, 1988, pp. 369–378.

[21] G. Greenspan, “MultiChain Private Blockchain — White Paper,” 2015.

[22] V. Bharathan et al., “Hyperledger Architecture,” 2.

[23] I. Weber et al., “On Availability for Blockchain-Based Systems,” in 2017 IEEE 36th

Symposium on Reliable Distributed Systems (SRDS), 2017, pp. 64–73.

[24] N. Szabo, “Smart Contracts: Building Blocks for Digital Markets,” 1996. [Online].

Available:

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/

LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html. [Accessed: 26-

Nov-2017].

[25] Ethereum Foundation, “Geth · ethereum/go-ethereum Wiki.” [Online]. Available:

https://github.com/ethereum/go-ethereum/wiki/geth. [Accessed: 10-Apr-2018].

[26] Ethereum Foundation, “JSON RPC · ethereum/wiki Wiki.” [Online]. Available:

https://github.com/ethereum/wiki/wiki/JSON-RPC. [Accessed: 10-Apr-2018].

[27] A. Spielman, “Blockchain: digitally rebuilding the real estate industry,”

Massachusetts Institute of Technology, 2016.

[28] J. Eberhardt and S. Tai, “On or Off the Blockchain? Insights on Off-Chaining

Computation and Data,” pp. 3–15, Sep. 2017.

[29] V. Kopylash, “An Ethereum-based Real Estate Application with Tampering-resilient

Document Storage,” University of Tartu, 2018.

[30] NIMA, “Department of Defense World Geodetic System 1984,” St. Louis, 2000.

[31] G. Niemeyer, “Geohash.” 2008.

[32] C. Veness, “Geohash encoding/decoding.” [Online]. Available:

https://www.movable-type.co.uk/scripts/geohash.html. [Accessed: 07-May-2018].

[33] M. Kisanrao Nichat, N. RChopde, and M. K. Nichat, “Landmark Based Shortest Path

Detection By Using A* Algorithm and Haversine Formula,” Int. J. Innov. Res.

Comput. Commun. Eng., vol. 1, no. 2, p. 299, 2013.

[34] E. Schubert, A. Zimek, and H.-P. Kriegel, “Geodetic Distance Queries on R-Trees

for Indexing Geographic Data,” in Advances in Spatial and Temporal Databases,

2013, pp. 146–164.

[35] B. Jenny, B. Šavrič, N. D. Arnold, B. E. Marston, and C. A. Preppernau, “A Guide

to Selecting Map Projections for World and Hemisphere Maps.” pp. 213–228, 2017.

[36] Ö. G. Esenbuğa, A. Akoğuz, E. Çolak, B. Varol, and B. Erol, “Comparison of

Principal Geodetic Distance Calculation Methods for Automated Province

Assignment in Turkey.” Istanbul, 2016.

57

[37] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3).”

58

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Indrek Värva,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Autonomy and Efficiency Trade-offs on an Ethereum-based Real Estate Application,

supervised by Luciano García-Bañuelos,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

