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Autonomy and Efficiency Trade-offs on an Ethereum-based Real Estate 

Application 

Abstract: 

Marketplaces in sharing economy have traditionally been organized as web applications 

running on top of centralized databases. The advent of blockchain technology brings new 

opportunities, with the promise of transforming the landscape with tamper-resilient storage 

and the potential of reduction in intermediaries. In this context, in this thesis we look at 

exploring the use of blockchain technologies in the domain of real estate rental process. 

More specifically, we designed a solution on top of Ethereum and implemented three con-

secutive prototypes to analyze the impact of moving data and processing to the blockchain. 

The results show a trade-off between efficacy versus efficiency when moving toward de-

centralization. 
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Autonoomsuse ja tõhususe kompromisside tuvastamine Ethereumi baasil 

arendatud kinnisvara rakenduses 

Lühikokkuvõte: 

Siiani on jagamismajanduse vahendusplatvorme arendatud tsentraliseeritud andmebaaside 

abil. Plokiahela esiletõus on aga ilmutanud uusi võimalusi, et muuta valdkonda võltsi-

miskindlaks ning vähendada vajadust vahendajate järele. Käesolevas töös uuritakse plokia-

hela kasutusvõimalusi kinnisvara rentimise protsessi näitel. Täpsemalt, töös disainitakse 

lahendus Ethereumi abil ning teostatakse kolm järjestikust prototüüpi, et analüüsida 

andmete ning arvutuste tõstmist plokiahelasse. Tulemused näitavad, et detsentraliseerimisel 

tuleb teha kompromisse teostatavuse ning tõhususe vahel. 
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1 Introduction 

1.1 Context 

In the world of business, a ledger is an essential tool for bookkeeping. A ledger is essentially 

a formatted medium to hold the business transactions such as debits and credits for summa-

rization purposes. For centuries, the tool has had a physical form as a paper notebook in 

which the records were simply concatenated. However, the technological evolution has now 

provided measures for ledgers to move to a digital medium for obvious benefits such as 

faster insertions and analysis. For example, a centralized database system with insert, update 

and read access could be considered an implementation of such digital medium. 

Lately, another implementation of a digital ledger - blockchain - has been trending1. This 

technology was first popularized as a backbone behind cryptocurrency Bitcoin in 2008 by 

Nakamoto [1]. It is a special type of ledger - a distributed one - which means that its data is 

shared, replicated and synchronized across multiple destinations using a specialized consen-

sus system. As one of the biggest benefits of the blockchain, the consensus mechanism guar-

antees that its records are not tampered once appended to the ledger [1]. Furthermore, tamper 

resilience has been identified as a potential enabler for collaborative process execution be-

tween trusted partners [2]. 

In addition to providing tamper protection in a distributed setup, blockchain has also allowed 

ledgers to expand its functionality towards a whole new dimension - scripting. In the context 

of ledger systems, script is just another format of a record which is designed to perform a 

certain task when initiated by other scripts or external actors. For example, in the case of 

Ethereum blockchain [3] and through the concept of smart contracts, flexible scripting pos-

sibilities are available through a specialized programming language for instructs such as 

conditional blocks, loops and also automated triggers to enforce complex business rules and 

promote automation [4]. 

While the blockchain may prove itself useful for financial services [5], it also shows poten-

tial benefits in other fields as an effective mean to track asset life cycle [6]. In this context, 

an asset could be tangible, such as an aftermarket plane part moving through a supply chain, 

or intangible, such as a purchase order on an e-commerce platform. Furthermore, centralized 

marketplace/sharing economy applications have been a de facto standard for real estate 

rental. Moreover, the business model in this sector consists of collecting intermediary fees 

from the transactions [7]. But, naturally, the ultimate goal of sharing economy is to move 

towards a peer-to-peer (P2P) model in which one can expect the role of an intermediary to 

be kept at minimum to reduce transactional costs for end-users. So, in this aspect, smart 

contract scripting may be able to move associated business logic from a centralized server 

to the blockchain. 

1.2 Research Goals and Methodology 

This work considers the domain of real estate rental as a case study to explore the use of 

blockchain technologies. In the scope of the study, 3 proof of concept prototypes are de-

signed and developed (Figure 1). The first prototype (variant 1) establishes a design baseline 

by including the blockchain into the platform providers system architecture as an internal 

service. Then, the research sets an objective of complete disintermediation by moving the 

internal blockchain service outside of the platform to be consumed directly by the external 

actors of the system. To move the service outside of the providers system, two iterations of 

                                                 
1 https://trends.google.com/trends/explore?date=all&q=blockchain [Accessed: 24-Nov-2018] 
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redesign are made with the purpose to decouple the blockchain intermediated process from 

outside dependencies and achieve complete autonomy. For this purpose, a strategy is fol-

lowed to first migrate the data (variant 2) and then port the operations (variant 3). In the 

accompanying service and design analysis of the prototypes, the paper focuses on the 

changes in the core components which are native and impactful to the applications of the 

domain such as geodetic real estate search functionality and other types of system data fil-

tering operations. In addition to the architectural changes, empirical implications to tamper 

resilience and privacy are noted.  Finally, the results are evaluated in terms of efficiency to 

find out how what are the trade-offs of between the autonomy-related design decisions and 

the efficiency of the system. 

 

In order to drive the representation and analysis of the prototypes to an effective contribu-

tion, the paper follows the design science (DS) research approach described by March et al. 

[8]. The DS research proposes to solve identified problems by using a framework of build-

ing, evaluating, theorizing and justifying (i.e. research activities) a set of effective artifacts 

(i.e. research outputs). Furthermore, the theory specifies four types of artifacts: 

1) Constructs - conceptualize the domain by providing vocabulary on the problem 

space (e.g. entity on a data model). 

2)  Models - describe associations between constructs and act as a medium to capture 

requirements (e.g. business process model) or a define a system design (e.g. service 

map). 

3) Methods - capture the steps necessary to perform a task on constructs and/or models 

(e.g. filtering algorithm on a data structure). 

4) Instantiations - realize the constructs, models and methods to demonstrate their fea-

sibility (e.g. prototype). [8] 

The activities and outputs of the DS research form a 16-cell framework, each of which is 

could be considered a viable research effort [8]. To explore the use of blockchain in the 

domain of real estate rental, this study aims to build the constructs, models and methods of 

the three instantiations (prototypes). To assist with choosing the relevant artifacts of the 

variants, the toolset of data-driven service design [9] is used as a heuristic to capture a ser-

vice map, state machine, domain and data models and the operation set. The created artifacts 

are thereafter empirically evaluated in terms of their differences to the previous iteration(s) 

on the roadmap (Figure 1) to derive insights for the next phase of development. Finally, the 

research instantiates the three prototypes to evaluate their performance in terms of efficiency 

to extract generalizable information about the implementations. 

The approach by March et al. [8] only concerns with solution design and evaluation [10] 

and does not deal with exploring the problem space. To include problem identification to 

the framework, an extension by Peffers et al. [11] is used which adds relevance cycle of 

environment [12] to the process (Figure 2). Furthermore, the problem space is captured us-

ing the artifacts proposed by the process-driven methods [13]. 

 

Figure 1. Design and development roadmap. 
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1.3 Document Organization 

The remaining of the paper is structured as follows. Firstly, chapter 2 introduces the foun-

dations of the study. Then, chapter 3 aligns with the steps of the DS research approach (Fig-

ure 2) by identifying the problems and derives objectives of a solution (steps 1 and 2) in 

section 3.1. Next, in sections 3.2, 3.3 and 3.4, the design and development of the three pro-

totypes is described (repeating step 3) with a brief analysis on their effects. Contribution is 

followed with chapter 4 which instantiates the prototypes for an evaluation (steps 4 and 5) 

and discussion. Finally, the paper finishes with concluding remarks and an outlook in chap-

ter 5. 

 

 

Figure 2. DS research methodology process model (adapted) [11]. 
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2 Background 

This chapter introduces a more detailed background of the concepts, tools and previous lit-

erature related to the study. 

2.1 Sharing Platforms 

Sharing economy is a social paradigm in which on-demand access to the resource is valued 

over ownership. In this economy, suppliers seek to make profit from their personal under-

utilized assets or resources by loaning or renting them consumers. The phenomenon is now-

adays largely driven by specialized online applications – sharing platforms – which are often 

domain-specific such as AirBnB2 for accommodation, Uber3 or BlaBlaCar4 for ridesharing 

or TransferWise5 for bank accounts for the sake of currency exchange. [14] 

While the term sharing may also cover business-to-consumer exchanges (such as traditional 

car rental) [15], most of these platforms allow exchanges to take place between individuals 

in a P2P fashion [16]. In this model, the P2P sharing platforms act as multi-sided platforms 

which bring together multiple groups of users and enable their interaction to facilitate the 

exchange [7]. For example, on a two-sided platform (Figure 3) such as Monestro6, the con-

sumer is a person in need for financial resource (borrower) and the supplier a person with 

available money (lender). 

 

To facilitate the exchange, the P2P sharing platform must conform to perform some general 

tasks. First, it must be able to collect potential offers from suppliers. Secondly, it enlists 

these offers to consumers. Now, if the consumer finds an interesting asset, the platform must 

provide the means for the stakeholders to establish a personal contact. Finally, and most 

importantly, the platform must enforce the rules of the game. Meaning that the transaction 

follows some set rules that all parties agree upon. [17] 

In their tasks, these sharing platforms also need to be profitable. Business is said to have a 

sustainable model in case it creates, delivers and captures value that benefit themselves as 

well as its’ stakeholders such as investors, customers, suppliers [18]. Now, Bocken et al. 

[19] have found that creating value from waste is an archetype of a sustainable business 

                                                 
2 https://www.airbnb.com [Accessed: 19-May-2018] 
3 https://www.uber.com [Accessed: 19-May-2018] 
4 https://www.blablacar.com [Accessed: 19-May-2018] 
5 https://transferwise.com [Accessed: 19-May-2018] 
6 https://www.monestro.com [Accessed: 19-May-2018] 

 

Figure 3. Two-sided market (adapted) [16]. 

 

https://www.airbnb.com/
https://www.uber.com/
https://www.blablacar.com/
https://transferwise.com/
https://www.monestro.com/
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model. As P2P sharing platforms mediates what is waste to one party (in the form of under-

utilised resource) to another one as a useful asset, it could be argued that P2P sharing plat-

forms have sustainability embedded in their core [16]. 

2.2 Blockchain 

In a nutshell, blockchain is a system which provides trust without a centralized authority so 

that interested parties can share data without trusting each other. Technically, it is a distrib-

uted transactional database/ledger which is enforcing a set of rules to make sure that the 

committed transactions (i.e. records inside a block) as well as the blocks including them are 

valid. In order to do so, blockchains employ a network of nodes which communicate with 

each other in a P2P manner to serve different tasks: 

1) Validating and relaying transactions sent to the network. 

2) Mine blocks consisting of transactions by solving cryptographic puzzles as proof-

of-work. As an incentive to do so, a prize is included to the worker which is a com-

bination of a calculated transaction cost and a static reward [3]. 

3) Propagating and validating mined blocks. 

Most importantly, as a result of mining, propagation and validation mechanisms, a consen-

sus is achieved when enough of the nodes have validated the block. Consensus, in turn, 

determines which transactions and blocks to persist in the chain as well as their order. Fur-

thermore, the validation mechanism uses hashing based validation rules (e.g. a Merkle tree 

[20]) to make sure that the history (previous blocks) have not been changed and by that, 

providing tamper protection of the setup [3].  

The transactions inside a blockchain are initiated by actors who are represented as addresses. 

These addresses are closely related to asymmetric cryptography. More specifically, a private 

key is used to cryptographically sign and public key to target and validate the transactions. 

As each transaction is signed by the initiator, it is trivial for the nodes to verify whether the 

associated address has necessary balance (e.g. Bitcoin or Ether) to pay for the costs as well 

as the transfer itself. [3] 

Multiple implications of blockchain could be identified, for example: 

1) Blockchain could be considered transparent in terms of the included transactions. 

For example, if the blockchain is public (e.g. Bitcoin), everyone is able to see and 

verify which transactions have taken place (and do this with no cost), further en-

hancing the trust-factor. However, if privacy of the data is an issue, there are also 

means to deploy a private blockchain to protect sensitive data [21]. 

2) It is transparent about its inner-workings as the associated software systems are man-

aged in an open-source manner [3], [21], [22]. This further eliminates the possibility 

of fraudulence. 

3) Blockchain typically improves read availability of a system. However, due to the 

technical overhead of consensus mechanisms, write availability is actually low. Fur-

thermore, the transaction commit time is effected by chosen gas price and network 

delay causing out-of-order transactions. [23] 

Undeniably, static-record blockchain has technical implications which could disrupt book-

keeping industries such as finance as the success of Bitcoin has already proven. However, 

their records remain to be static which means that it is not possible to include dynamic busi-

ness rules in the system. To expand the abilities of a blockchain to include programmatic 

execution logic, a notion of smart contracts is used. 
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2.3 Smart Contracts 

The idea of smart contracts is not new in the scientific field and was coined already in 1996 

by Szabo [24] who then summarized them as a set of digital promises complemented with 

protocols to follow. Among requirements of such constructs, he enlists four objectives of 

common contract design: 

1) Observability – stakeholders must be able access the performance of a contract. 

2) Verifiability – an ability to prove that a contract has been performed or breached. 

3) Privity – access and control of the contract should only be distributed as much as it 

needed to perform the contract. 

4) Enforceability – power to execute the terms and protocol of the contract. 

The gist behind smart contracts is to include business logic which must be followed to drive 

a state transition. For example, a conceptual smart contract of a collection fund could look 

like this: "[person] deposits an [amount] to be released to an [account] on a [date]". This 

smart contract could then be utilized by, say, Alice to automatically give Bob $10 000 if the 

date is 01.01.2020. This kind of invocation is called contract execution. 

However, at the time of 1996 [24], smart contracts could not have been implemented due to 

technological limitations. Now, blockchain is starting to prove itself capable for the matter 

[3], [22]. More specifically, in the context of blockchain, smart contracts are introduced as 

special records written as a program code which could then be deployed and manipulated 

using transactions. They make it possible to write blockchain applications (called distributed 

applications or dapps). However, naturally, programming such contracts should follow 

strict rules in order for the blockchain to keep its trustlessness. 

2.4 Ethereum 

One of such platforms that implements programming of smart contracts in the trusted envi-

ronment of blockchain is Ethereum [3]. Smart contracts could be written, deployed and used 

in either the public or a private Ethereum blockchain [25]. What makes Ethereum platform 

special, is its popularity which could, for example, be characterized by the number of active 

nodes (223197). As the Ethereum platform was launched only in 2014, the growing number 

of nodes as well as its open-source nature8 could be considered a sign of trust and reliability. 

Good reputation, built-in incentives, self-enforcing protocols and verifiability of transac-

tions of Ethereum – qualities required for enforceability [24] – all contribute to make it a 

viable candidate at the time to target distributed application logic. Additionally, from the 

technical perspective, the high number of nodes also acts as a measure that helps to mitigate 

a potential security threat which would realize if a malicious party operates more than half 

of the nodes on the network which would help him manipulate with the consensus [1]. 

Workflow 

The contracts in Ethereum are written using a specific programming language called Solid-

ity. While the syntax and capability of the language is actively evolving, it provides neces-

sary instructs to write smart contracts which could be used to capture more complex data 

structures as well as, for example, do looping and branching for advanced scripting. [4] 

Solidity smart contracts are targeted to be executed on Ethereum Virtual Machine (EVM) 

which is a Turing-complete, isolated runtime environment with no access to network, 

                                                 
7 https://ethernodes.org/network/1 [Accessed: 24-Nov-2017 01:03] 
8 https://github.com/ethereum [Accessed: 19-May-2018] 

https://ethernodes.org/network/1
https://github.com/ethereum
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filesystem, other processes or any information which is outside of the blockchain or trans-

action [3]. An implementation of EVM is included in client node implementations (e.g. Geth 

[25]) to evaluate calls (read-only invocations) and transactions (invocations which change 

the state of the network). For user interactions, client nodes expose a JSON RPC API (Ja-

vaScript Object Notation Remote Procedure Call Application Programming Interface) [26]. 

A simplified workflow through RPC calls with a smart contract on Ethereum could be de-

scribed as follows: 

1) An EVM-compiled smart contract is deployed. This means that a transaction with a 

payload of contract bytecode and initialization parameters is sent to the pool of pend-

ing transactions managed by network nodes. As an output, a transaction hash is re-

turned which could be used to check its status in regards with the next step. [26] 

2) The miners take the transaction with the contract, validate it and run the initialization 

block to instantiate an initial state. If the transaction has been confirmed enough 

times in the network (i.e. it has been in enough blocks), a transaction receipt is issued 

and the contract will now have an artifact with an associated address and an appli-

cation binary interface (ABI) [3], [26]. Similarly to external accounts managed by 

key pairs, the contract address has an associated balance and they are handled 

equally by the EVM [3]. 

3) The instantiated contract at a specific address could be invoked by calling the de-

fined methods using the ABI. Again, if the message modifies the state of the net-

work, the miners will run the code and upon it has been mined, the state of the con-

tract is updated. If the ABI call does not modify the state (i.e. it is read-only), there 

is no need to propagate anything into a network and the call could be immediately 

served within a single node, free of charges. 

In a development environment, the management of RPC calls and different invocation 

callbacks could be supported by frameworks such as web3js9 and/or Truffle10. In addition 

to providing higher level language abstraction over the ABI invocations, Truffle also pro-

vides streamlined measures for contract compilation, linking and testing purposes. 

Fee System 

Deploying a smart contract or invoking a transactional write method requires resources from 

the Ethereum network to make changes to the ledger. To compensate the miners, a fee sys-

tem is in place. A fee is measured in an internal currency tokens called Ether and it is reduced 

from the balance of the sending address when a transaction is mined. However, as Ether is 

also has a (non-fixed) value with fiat currencies11, an internal notion of gas is introduced to 

disjoint the transaction execution cost/metering from fiat value. Therefore, the relation be-

tween transaction fee and an execution value could be represented with the following for-

mula: 

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 (𝐸𝑡ℎ𝑒𝑟) =  𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 (𝑔𝑎𝑠) ∗  𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 (
𝐸𝑡ℎ𝑒𝑟

𝑔𝑎𝑠
) , (2.1) 

where execution cost is the amount of gas that the miner uses to execute the transaction and 

gas price a parameter which sets a ratio to translate gas to Ether. [3] 

When deploying a smart contract or sending a transaction, the invoker must consider multi-

ple parameters, such as gas price [23]. For finding an optimal value to get a transaction 

                                                 
9 https://github.com/ethereum/web3.js/ [Accessed: 19-May-2018] 
10 http://truffleframework.com/ [Accessed: 19-May-2018] 
11 https://www.coindesk.com/ethereum-price/ [Accessed: 19-May-2018] 

https://github.com/ethereum/web3.js/
http://truffleframework.com/
https://www.coindesk.com/ethereum-price/
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chosen and mined within the pool of all pending transactions, the services of a client node 

could be used to reveal a median gas price the from last block12. However, using higher than 

median gas price helps to get the transaction mined faster as they are more profitable for 

miners [3], [23]. 

The sender must also set the amount of gas available for transaction execution. Moreover, 

to get a record successfully mined with optimal cost, this parameter should be between cer-

tain range. The lower bound of the range is the execution cost of the transaction. Similarly 

to gas price, an estimation of how much gas is required to execute a transaction could be 

retrieved from a client node13 which is capable of doing a dry run of an execution without 

adding it to the blockchain [26]. If the realized cost of a transaction execution is lower than 

the set limit, the remaining of the gas is refunded [3]. However, if the realized gas consump-

tion exceeds the amount set by transactor, a node throws an Out of gas exception at 

which point a transaction would be reverted (if not specifically coded otherwise) but a fee 

of the specified limit is not refunded [3]. On the other hand, there is also an upper boundary 

for transaction execution as EVM is specified to be quasi-Turing complete to limit the com-

putations [3]. The upper boundary is in place so that the system could not be clogged with, 

for example, infinite loops. In practice, an upper boundary of block gas limit should be 

considered. To validate that the required gas for a transaction does not exceed the upper 

boundary, the client node could be queried to check the gas limit of the latest block14. 

The basis for metering of transaction execution gas is a pricing table which includes all 

possible executable atomic operation defined in EVM. For example, a base fee of 21000 gas 

must be paid for each transaction or 32000 when creating a contract. In addition to a flat fee 

of 32000, 200 gas per byte must also be paid for contract bytecode storage. Writing to con-

tract storage could also be considered one of the most impactful operations: 20000 gas must 

be paid when setting 32-byte value in storage from zero to non-zero using opcode of SSTORE 

or 5000 for the same operation when modifying a previously set value. On the other hand, 

each execution of AND, OR, MLOAD and MSTORE operations have a flat cost of 3 gas. The cost for 

EVM memory usage (always expanded in 32-byte words) is linear until 724B after which it 

grows substantially faster. [3] 

2.5 Application of the Blockchain Technology 

The following is a review on the scientific literature which study applying blockchain on a 

broader scope of domain. The purpose of the review is to give an overview to the current 

state of the art. 

Spielman [27] evaluates the applicability of blockchain for land registry as a recorder of 

deeds. The proposed system implements the concept of Smart property originally proposed 

by Szabo15 through coins which represent real estate. To transfer ownership, the represent-

ing coin is transferred from one account to another. As one of the benefits, Spielman brings 

out that the smart property is able to collect verifiable signatures throughout the life cycle 

of the transfers and trace the ownership history. The author also proposes a hybrid model of 

the application to save data to a centralized database and maintain a hash of the data on-

chain for verification purposes. 

                                                 
12 https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gasprice [Accessed: 19-May-2018] 
13 https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethestimategas [Accessed: 19-May-2018] 
14 https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbynumber [Accessed: 19-May-2018] 
15http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwint 

erschool2006/szabo.best.vwh.net/idea.html [Accessed: 19-May-2018] 

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gasprice
https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethestimategas
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbynumber
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwint%20erschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwint%20erschool2006/szabo.best.vwh.net/idea.html
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Eberhardt and Tai [28] find that the expensive storage and computational power of the 

Ethereum platform may negatively impact performance and scalability of the implementa-

tion. Moreover, they also claim that often the technical limitations of the Ethereum platform 

do not allow an application to fully operate on the chain. For example, the very core of the 

blockchain operation such as transaction validation, consensus establishment and smart con-

tract execution may create too big of an overhead and takes considerable amount of time. 

So, based on the identified efficiency and technical issues, they explore how to move oper-

ations off-chain without losing the benefits of the Ethereum blockchain. 

Eberhardt and Tai make an example of an Ethereum blockchain chess game which persists 

the game state in a smart contract. While the blockchain application removes the intermedi-

ary to make the game logic require no explicit trust, it is found that the algorithm of checking 

the check mate condition is too complex for on-chain transactions. So, it is learned that 

highly complex computations such as chess end-game checks should be done on the client 

side and/or as rare as possible on the chain, using an initiation of an actor. [28] 

Eberhardt and Tai also implement a marketplace to enable intermediation between providers 

and consumers of service APIs using cryptocurrency for payments. In the system, service 

providers are able to expose their API descriptions for discovery and consumers could buy 

access to them. In this case, it turns out that the necessary API descriptions are too big for 

efficient storage on the blockchain. On the subject, they also find that it is not possible to 

use a reference to off-chain data because this would defeat the purpose of decentralization. 

Secondly, the marketplace implementation introduces an issue of privacy when consumers 

need to prove their purchased access by sending a private token to the blockchain for vali-

dation. All in all, they learn that there is a necessity for optimization schemas to store data 

off-chain in a trustless and privacy-preserving manner. In addition, they call out to develop 

techniques to use off-chain computations on private data and then use smart contracts only 

for output validation to preserve privacy. [28] 

To show how the study relates to the existing literature, the next chapter presents the con-

tribution of the study. 
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3 Contribution 

This chapter encapsulates the contribution of the research by describing the requirements 

for a real estate rental service (3.1) and the design of three prototypes (3.2, 3.3, 3.4). The 

structure of each section includes both results and short passage to the next section in the 

form of discussion on the built artifacts. 

The results of problem identification and developing a baseline prototype is a collaborative 

effort with Kopylash [29]. 

3.1 Problem Identification 

The problem is identified by studying the domain of the real estate rental. The case is studied 

through a 7 top-down manual interviews with a CEO of an industry partner who currently 

operates a business of real estate rental based on a centralized web application. The duration 

of the interviews varied from 60 to 120 minutes and the calls were being recorded for anal-

ysis. This section summarizes the information gathered through the interviews to present an 

intermediate-level description of the service under study. Based on the information gath-

ered, the objectives of a solution are derived in the following subsection of analysis. 

3.1.1 Service and Actors 

From the domain perspective of the business case, a support for the process of real estate 

rental expected (Figure 4). There are three (external) actors interacting with the service: a 

landlord, a tenant and a moderator. Landlords represent the supply side of the market with 

a real estate to be rented through the platform. Tenants, on the other hand, act as the demand 

side: they interact with the ultimate goal to rent real estate. Lastly, the moderator is an actor 

who interacts with the system on behalf of the platform manager to add business value by 

accepting and rejecting property enlistment applications based on manual checks made off-

system. 

 

3.1.2 Business Process 

The value chain of a real estate rental platform is based on four intermediation activities 

between landlords and tenants (Figure 5). The platform allows users to enlist a property 

which would then appear in the application. The intermediation service then continues by 

allowing tenants to make bids on an enlistment to implicate an interest and for a landlord to 

 

Figure 4. Service map of a real estate rental platform. 

 

 

Figure 5. Real estate rental platform value chain. 
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respond to the offers. Finally, the intermediator also allows the stakeholders to construct and 

exchange tenancy contracts. 

  

From the perspective of the actors, the value chain expands to a main business process con-

sisting of 6 steps starting with the event of user being signed up and finishing when the 

rental activites have been completed (Figure 6). Next, the details of each step and flows of 

the main process are elaborated on. 

Enlist Property 

Firstly, an enlistment must be posted to the marketplace by a landlord (Figure 7). This en-

listment contains data about the landlord as well as the real estate property, including: land-

lord name; street name; house, floor, apartment, zip code numbers; geographical location of 

the property. 

 

Figure 6. Main process of real estate rental. 
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After the enlistment has been posted, it is processed for eligibility by a service provider to 

make sure that the landlord is the rightful owner of the property and that it is actually him 

(or someone authorized) making the enlistment request. Additionally, the moderator may 

do more tasks such as ensure that the images attached to the enlistment application are of 

acceptable quality. If approved, the enlistment is made public in the application. 

Manage Enlistment Inquiries 

After the enlistment is approved to the platform, the tenant is able to find it through a listing 

or a search query (Figure 8). If the tenant finds an interesting property, he may chat with the 

landlord or visit the property to gather more information about the suitability. From the 

perspective of a landlord, he needs to be on the other end of these requests: answer to all of 

the questions as well as host visits to property. 

 

Figure 7. Enlisting a property. 
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Agree on an Offer 

After the tenant finds a suitable property, he sends an offer for a rental payment to indicate 

interest towards the property (Figure 9). The offers are only visible to the owner of the en-

listments and hidden from other tenants. To proceed, the landlord must accept the offer. It 

is also possible for a tenant to cancel an offer while it is pending. If the offer is rejected or 

cancelled and the tenant may submit a new one. From the perspective of a landlord, there 

may be multiple offers from different tenants to choose from at a given point of time. Also, 

there is no restriction for him to accept more than one offer. 

 

Figure 8. Managing enlistment inquiries. 
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Establish a Tenancy Agreement 

When an offer is accepted, the parties have to agree on the conditions of the rental by estab-

lishing a tenancy agreement (Figure 10). This is a feedback loop, similar to agreeing on an 

offer. But this time, the loop is initiated by the landlord by issuing a contract draft which 

includes data from the enlistment in a contract template document. As the official contract 

includes new (legal) details, the tenant may reject the contract draft to either propose adding, 

removing or editing the conditions. Additionally, the landlord is able to withdraw the con-

tract draft while it is in review to make changes. The loop finishes when both parties agree 

on a contract which is indicated by an agreement from the tenant. 

At this point, both parties may still back out of moving further with each other in the rental 

process by cancelling the offer. If a cancellation action is pursued, process flow moves back 

to agreeing on an offer (Figure 6). 

 

Figure 9. Agree on an offer. 
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Sign the Agreement 

Next, the parties sign the agreement to make the contract legitimate (Figure 11). As a prac-

tice, landlord as the contract issuer is the first to sign, followed by the tenant. Similarly to 

agreeing on a contract, both parties have the freedom to back out to one of the previous 

phases of the process by either cancelling on an established contract draft to start building a 

new one or reset the interaction altogether by pulling back the offer (this also cancels the 

agreement). Cancelling the offer or the tenancy agreement is possible up until the point 

where tenant has signed the agreement . 

As an additional business rule, no more offers could be sent after the landlord has signed an 

agreement and it is not possible for him to sign more than one tenancy agreement for an 

enlistment at the time. This constraint is in place to avoid spam behaviour which can be 

originated by the landlord (double spending) or tenant. On the one hand, it makes the land-

lord to choose wisely as upon signing he will be committed to the contract and essentially 

locks the enlistment for potentially better offers. On the other hand, it suggests the tenant to 

act upon signing request quickly as the landlord may cancel at any time. 

 

Figure 10. Establish a tenancy agreement. 
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Receive First Month Rent 

To finish off the intermediation, the system also waits for a notification about the successful 

start of the tenancy agreement contract by requiring a confirmation about the receival of the 

first month rent. No additional rules apply here as this is only a business task to track that 

the intermediated contract is in action. 

3.1.3 Exclusions 

It must be noted that the captured process of real estate rental excludes some details to sim-

plify the scope of the research: 

1) There is only one tenant signing the agreement while in reality, there may be multi-

ple. 

2) It should be possible for a landlord to withdraw an enlistment at any time and modify 

its details (by possibly triggering the moderator review loop again). 

3) It should be possible for a landlord to cancel the enlistment from the moderator re-

view. 

4) Based on the specific business model of an intermediator, additional steps are usu-

ally in place to collect service fees (e.g. by either paying per enlistment, by enlist-

ment listing time or a cut from the first month rent payment). 

3.1.4 Operations 

From the captured business process of real estate rental, a list of provided atomic operations 

have been identified. An overview of such operations could be found from Table 1 where 

they are organized by their nature (write or read) and the underlying resource. 

 

Figure 11. Sign the agreement. 
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3.1.5 Analysis 

It is interpreted from the captured business process that the interactions between the land-

lords and the tenants and the role of the intermediator resembles of a two-sided market 

model [16].  What is more, the role of the real estate rental service provider aligns with the 

description of a platform which in the form of landlords and tenants has two distinct group 

of users who are both subject for revenue generation [7]. In the context of marketplaces, the 

discovered business model also captures the resource (i.e. real estate property) which is sub-

ject to sharing (i.e. renting). 

Therefore, the objectives of the solution follow the principles of sharing economy and the 

main goal is business disintermediation to reduce overhead costs. As next, a system is de-

scribed which provides the discovered process and uses a blockchain in its architecture.  

3.2 Baseline Design and Development 

This chapter describes a baseline design of a real estate rental system which introduces 

Ethereum platform to the architecture of the solution. The design of the prototype is de-

scribed through a series of signposts moving from the high-level service artifacts to a lower-

level interface design. In addition, the study focuses on the key components of the applica-

tion which have high impact on the system or which procedures change with consecutive 

prototypes and therefore provide input for efficiency evaluation. Therefore, for key compo-

nents, a step-by-step operation drill-throughs are provided.  

Table 1. Provided operations of real estate rental management service. 

Resource Write operations Read operations 

Enlistment 

- Submit 

- Review (approve or reject) 

- Retrieve one 

- Filter by reviewed 

- Filter by landlord 

- Filter by tenant (as the bidder) 

- Filter by geographical proximity for 

a given location and a search radius 

Offer 

- Send 

- Review (approve or reject) 

- Cancel 

- Retrieve one for a given enlistment 

- Retrieve all for a given enlistment 

Agreement 

- Submit 

- Review (confirm or reject) 

- Cancel 

- Landlord sign 

- Tenant sign 

- Receive first month rent 

- Retrieve one for an enlistment 
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3.2.1 Service Map 

From actor involvement point of view, the real estate rental business process analysis reveals 

that the last and only value adding manual activity carried out by the platform operator (i.e. 

moderator) is auditing the property enlistments. Based on this observation, the services of a 

real estate rental platform could be abstracted in an alternative value chain, consisting of 

two segments: Enlistment review and Enlistment to contract (Figure 12). The first of the two 

segments encapsulates the subprocess involving a landlord and a moderator going through 

the motions to publish the enlistment. On the other hand, the rest of the business process in 

Enlistment to contract completion now only includes activities carried out by tenants and 

landlords. 

 

Originating from the actor involvement driven process split between Enlistment review and 

Enlistment to contract completion, the Real Estate Rental Management Service (Figure 4) 

is divided into two corresponding subservices: an externally accessible Enlistment Review 

Service (ERevS) and a required internal Rental Intermediation Service (RIS) (Figure 13). 

Both, ERevS and RIS are responsible for the execution/progress of their respective subpro-

cesses. Additionally, there is also a difference in the underlying implementational technol-

ogies of the services: RIS runs on an Ethereum distributed ledger node [25] while the ERevS 

is chosen to be implemented using a NodeJS16 server application coupled with a relational 

PostgreSQL17 database system18. 

 

                                                 
16 https://nodejs.org/en [Accessed: 03-May-2018] 
17 https://www.postgresql.org [Accessed: 03-May-2018] 
18 Other implementational technologies may be used in place of NodeJS and PostgreSQL. NodeJS was pre-

ferred due to the JavaScript language compliance with widely accepted web3js library.  

 

Figure 12. Abstract value chain of a real estate rental service. 

 

 

Figure 13. Service map of the baseline architecture. 

 

 

https://nodejs.org/en
https://www.postgresql.org/


23 

 

3.2.2 Resource State Transitions 

Three core assets could be identified from the discovered business process: an enlistment, 

an offer and a tenancy agreement. When the process moves forward, the respective asset 

states change in a predictable manner through a set of possible events defined at each step. 

So, by considering business process execution as a series of state transitions on the under-

lying assets, one could determine the progress by examining their collective state. 

Based on the states identified from the business process, a corresponding life cycle - pre-

sented as a state machine - and a coupled event interface have been designed19 (see Figures 

14-16). At its root, the state machine has two orthogonal regions to represent the parallel 

life cycles of the resources which are managed off-chain (enlistment) or in the smart contract 

(offer and agreement). When an enlistment is accepted, the state machine enters the nested 

smart contract state as this is the spot where the process execution control flow moves on-

chain. Next, offer life cycle starts when it is submitted. Subsequently, agreement waits for 

offer to reach state “Accepted” and a first submission of the contract draft by a landlord. 

Only when the agreement is accepted, signed and started, the state machine finishes. The 

state machine is also complemented with business logic to enforce the flow of the real estate 

rental process. For example, it contains enlistment locking and offer cancelling procedure 

which propagates the event to also cancel the agreement (see 3.1.2). 

 

                                                 
19 For presentational purposes, the state machine is only conceptual since the initial transitions must not have  

triggers. 

 

Figure 14. Real estate rental life cycle state machine. 
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Figure 15. Offer life cycle state machine. 

 

 

 

Figure 16. Agreement life cycle state machine. 
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3.2.3 Data Model 

Based on the asset state transitions identified and views required to assist the actors to fetch 

relevant information to move the business process forward, the service components imple-

ment the application based on the conceptual application class model of the system (Figure 

17).  

 

However, from the moment the blockchain is included the application, a distributed system 

is created. From this point of view, it is required to understand which subsystem owns what 

information and how it can be modified and retrieved. 

The process execution starts in ERevS (hereinafter referred to as off-chain component) as 

all the submitted details of the created enlistment20 is persisted in a centralized database 

where it is assigned an unique ID. A moderator is able to query all enlistments from the 

database which are in review and may either approve to reject them (Table 1). If the enlist-

ment is approved, one smart contract instance called Enlistment is deployed to Ethereum 

blockchain and its reference is attached to the object model in the (centralized) database. At 

this point, the control flow of the business process execution moves to RIS (hereinafter re-

ferred to as on-chain component). 

                                                 
20 Uploading photos are managed off-system. The data model persists hyperlink references to the photo re-

source. 

 

Figure 17. Application class model (conceptual). 
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Until the enlistment is not approved, all the data is owned and could be queried and modified 

through the centralized database system in ERevS. However, after the smart contract in-

stance gets deployed and it takes over the process execution control flow, the data is split 

into two systems (Figure 18). In order to be autonomous in its write operations, the smart 

contains and manages all the data it requires to move the process execution forward and 

apply business logic. This means that objects of offers and tenancy agreements reside on the 

blockchain. However, together with the data required for operational autonomity, the En-

listment smart contract also deploys some identifying decorational data (i.e. intersection of 

EnlistmentOffChain and EnlistmentOnChain models) which has been verified by the mod-

erator and would benefit from tamper resilient nature of the blockchain. This creates a ver-

tical partition of the attributes of enlistment with the ownership of the ported data being 

transferred to the blockchain. Proceedingly, after data migration, the off-chain copy of the 

data could be considered dead. 

 

3.2.4 Interface Design and Key Operations 

The ownership of the data shapes how resources and their collections are accessed and mod-

ified in the system. As the service is divided between two subservices, there is also a division 

of operations. Due to the fact that all external actor interactions are served through ERevS, 

the former also directly inherits the set of provided operations of a single service system 

(Table 1). However, in its operation, it relies on the required operations RIS (Table 2). In 

the next subsections, the interface and relevant operations of each service are dissected. 

 

Figure 18. Data model (variant 1). 
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Interface and Operations of the Rental Intermediation Service 

RIS is implemented as smart contract (Enlistment) which is designed to be operating on the 

Ethereum node. Enlistment smart contract implements the data model (Figure 18) through 

the use of Solidity structs21 and mappings22. The constructed structs represent the entities in 

the data model23. The members of the structs are of elementary types: strings, unsigned 

integers, booleans and addresses. In addition to the data of the assets, the smart contract also 

holds stateful data which it needs to enforce the enclosed business logic. These values in-

clude statuses of the offers and agreement drafts which are implemented as enums in the 

source code. On the other hand, mappings are chosen to be utilized to store associations 

between entities. Using the email address of the tenant as the key of the mapping, the data 

structure gives a natural guarantee that there is only one offer or tenancy agreement in pro-

gress for a single tenant of the given enlistment. 

The smart contract also implements business logic for its part of the process. For this reason, 

first and foremost, the smart contract enforces the sequencing of the tasks in the business 

process. This logic is implemented into a script utilizing function modifiers24 on the methods 

which take the process into the next stage (e.g. all write functions of Table 2).  Modifiers 

inject code to the beginning of the function and, so, offer a declarative way to include checks 

and throw exceptions before moving on to serve a user transaction. For example, the func-

tion for the action of cancelling an offer is annotated with 3 modifiers (Code block 1): 

                                                 
21 http://solidity.readthedocs.io/en/v0.4.19/types.html#structs [Accessed: 19-May-2018] 
22 http://solidity.readthedocs.io/en/v0.4.19/types.html#mappings [Accessed: 19-May-2018] 
23 In the implementation, values of owner and locked are not actually part of the Enlistment struct but stored 

as separate contract variables 
24 http://solidity.readthedocs.io/en/v0.4.19/contracts.html#function-modifiers [Accessed: 19-May-2018] 

Table 2. Required operations from the RIS (variant 1). 

Resource Write operations Read operations 

Enlistment 

- Deploy smart contract (imple-

mented by the underlying 

Ethereum software) 

- Retrieve one 

Offer 

- Send 

- Review (approve or reject) 

- Cancel 

- Retrieve one for a given enlistment 

 

Agreement 

- Submit 

- Review (confirm or reject) 

- Cancel 

- Landlord sign 

- Tenant sign 

- Receive first month rent 

- Retrieve one for a given enlistment 

 

http://solidity.readthedocs.io/en/v0.4.19/types.html#structs
http://solidity.readthedocs.io/en/v0.4.19/types.html#mappings
http://solidity.readthedocs.io/en/v0.4.19/contracts.html#function-modifiers
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1) ownerOnly() is used to implement access control to write transactions based on the 

owner property set to the address which deployed the smart contract. The value of 

owner is set in the constructor function when the contract is first initialized. 

2) offerExists(tenantEmail) ensures that the tenant actually has made an offer to the 

enlistment. For this purpose, the modifier turns to the respective association mapping 

with the tenant email and checks whether the mapped offer is initialized. 

3) finally, offerCancellable(tenantEmail) ensures that the tenant is allowed to cancel 

his/her offer at the given phase of the business process execution as depicted on 

Figure 15. 

 

As one of the requirements of the business logic, the system must also ensure that landlord 

is able to have only one signed tenancy agreement at the time. For this reason, a simple 

boolean flag variable of locked is used which value is modified and validated when required 

by the process (Figure 17). 

Interface and Operations of the Enlistment Review Service 

Based on the business relevant operations identified in the service analysis (Table 1) and 

resource associations established by the application class model (Figure 17), a resource 

model is designed which reveals the structure of the underlying resources (Figure 19). 

function cancelOffer(string tenantEmail) payable public 

        ownerOnly() 

        offerExists(tenantEmail) 

        offerCancellable(tenantEmail) 

    { 

        tenantOfferMap[tenantEmail].status = OfferStatus.CANCELLED; 

        if (tenantAgreementMap[tenantEmail].status != AgreementStatus.UNINITIAL-

IZED) { 

            tenantAgreementMap[tenantEmail].status = AgreementStatus.CANCELLED; 

        } 

        locked = false; 

    } 

Code block 1. Smart contract function for cancelling an offer. 
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The exposed API of ERevS expects the primary key database reference of the enlistment 

entity (ID) which it then maps to on-chain reference (i.e. Ethereum address) if necessary for 

the request. For example, to retrieve an approved enlistment, an HTTP GET request of 

/enlistments/:id would need to be called which, in turn: 

1) retrieves the referenced object from the relational database; 

2) calls Enlistment smart contract function to retrieve the model from the blockchain 

using the associated address from the previous step; 

3) merges the two objects and returns the result. 

On the other hand, ERevS is also an access point to resources of RIS which owns and mana-

ges child entities of an enlistment: offers and tenancy agreements. For this reason, it requires 

the on-chain identifier for its subresource requests. That is, to review a tenancy agreement, 

an HTTP POST request to /enlistments/:id/agreements/:tenantEmail/review would be 

called. As a response, the procedure mapped to the API endpoint will: 

1) retrieve the object referenced with an ID from the relational database; 

2) calls Enlistment smart contract function to review the agreement with the parameters 

of tenant and review resolution; 

3) await for the transaction to be mined and then send response. 

Analogous procedure as previously described is used for all application actions which re-

quire a write transaction to be transmitted to the blockchain, i.e. operations of offers and 

tenancy agreements in Table 1. 

In the proposed design, ERevS is also responsible for managing the collection of the enlist-

ments. This makes the service a natural choice for all filtering operations. As a result, the 

service provides for the type of filtering operations: 

 

Figure 19. Enlistment Review Service resource model. 
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1. Finding either all published or unpublished enlistments. For this action, a simple 

filter query to the centralized database is sufficient which includes an enlistment 

item when its status is approved. 

2. Retrieving enlistments by landlord email. A simple SELECT query is sent to the rela-

tional database which retrieves all enlistments based on the input parameter of land-

lord email. 

3. Retrieving enlistments by offer tenant email. The query expects iterating through 2 

levels of entities: enlistments and offers. To simplify the procedure, the data of the 

enlistment offer authors is mirrored off-chain. So, to retrieve enlistments by tenant 

email, the filtering is done off-chain by running a SELECT query over all enlistments 

which include the input tenant email in the helper array of offer authors (Figure 18). 

4. Filtering enlistments based on geographical proximity. The filter allows to run 

search queries in ERevS based on the input WGS 84 [30] latitude, longitude and 

search radius parameters. The search is implemented on a database service level us-

ing a PostGIS25 spatial database extender for PostgreSQL. The underlying procedure 

sends a SELECT query to the database, utilizing ST_Distance_Sphere26 function of the 

PostGIS library to filter on enlistments for which the calculated distance is smaller 

than the one specified in the input parameters. 

In addition to the procedures dissected above, due to the vertical split of the enlistment at-

tributes between multiple services, a round trip to ERevS is required in order to merge the 

data of all the filtered elements. 

3.2.5 Analysis 

The established system provides all the necessary operations for the real estate rental pro-

cess. The results also show how Ethereum is introduced to the system and what is its role. 

Moreover, the basis of the blockchain integration proves to be the artifacts generated in the 

problem identification phase. In more detail, a subprocess is identified which only includes 

the intermediation between a landlord and a tenant. The identified subprocess is thereupon 

extracted from the main business process and abstracted to a dedicated service for an exe-

cution using a smart contract. 

In the proposed architecture, blockchain is added as an internal service which is inaccessible 

to external actors. From the functional aspect, this means that as opposed to features of 

standard decentralized applications, end users do not need to own a cryptocurrency wallet 

to use the service. The associated transaction costs must be paid by the platform operator. 

Moreover, the only noticable changes to external actors should be non-functional. Next, the 

perceived changes on tamper resilience, availability and privacy are noted. 

Tamper Resilience, Availability and Privacy 

In a fully centralized architecture, there is a risk of data tampering as there may be people 

in the production line or with malicious intent who have credentials and/or direct access to 

the database. Inherently, this kind of access opens the application to a potential security 

threat as the person may be able to change the data for fraudulent purposes. However, by 

introducing blockchain to the architecture of the system under research, the risk of data 

tampering is mitigated with the underlying properties of Ethereum block validation mecha-

nisms [3]. 

                                                 
25 https://postgis.net/ [Accessed: 19-May-2018] 
26 https://postgis.net/docs/manual-1.4/ST_Distance_Sphere.html [Accessed: 19-May-2018] 

https://postgis.net/
https://postgis.net/docs/manual-1.4/ST_Distance_Sphere.html
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However, with the proposed service design, there is still a single point of entry to the system 

(ERevS) which may be subject to issues such as down-time and data loss. As a result, it 

could be concluded that the exposed service of the variant does not benefit from higher read 

availability usually associated with decentralized applications [23]. However, an increase 

of availability is perceived for the internal service running on smart contract. 

What is more, the data model of the smart contract exposes a threat to the privacy of the 

users. Namely, the current design exposes private information of the actors such as their 

email addresses to a (public) blockchain where it could be easily queried or decoded. How-

ever, the purpose of an email address in the established design is crucial: it is the unique 

identifier which identifies actors on-chain (based on the hypothetical user model data gath-

ered off-chain). The email addresses are also used as association keys between on-chain 

resources. So, trade-offs in privacy should be noted as a limitation of the design. 

As an alternative to email addresses, an internal off-chain ID could be considered to refer-

ence identities on-chain. This, however, would again lose the autonomy of the on-chain 

process by losing data completeness as also identified by Eberhardt and Tai [28]. Mean-

while, a viable solution may emerge when the on-chain service is made externally available 

in the next phases of the research. If the on-chain service is exposed externally, identities of 

Ethereum accounts could be considered for the place of email addresses. However, as also 

found by Spielman [27], using on-chain identities may have legal limitations which need 

evaluation in future studies. In contrast, an implementation of the subprocess on a fully 

centralized architecture with a user management system could be trivially designed such 

that it does not expose the email address or any other person identifying information. In 

such system, the data could live in a database with no public access and the users may be 

assigned with internal IDs which make it possible to uniquely identify them in association 

with their data. Therefore, in summary, using references to off-chain resources is found to 

be imcompatible to improve privacy. 

Key Components 

In terms of the key components of the system, four operations of filtering are identified 

based to their perceived complexity level. The operations are: retrieving all unpublished or 

published enlistments; filtering by enlistments by landlord; filtering enlistments by tenant; 

filtering enlistments based on the geodetic distance. However, in the context of the baseline 

prototype, the key components are all implemented off-chain where their impact on the ef-

ficiency is considered negligible for the study. Nevertheless, their neglibility in the current 

design is notable because complexity of these components is expected to change in the next 

phases of the study. 

Autonomy 

In summary, we have identified core data and process perspective for a simplified system 

which provides all the necessary operations for the real estate rental process. The analysis 

has also allowed us to identify where blockchain technology can be used. 

However, it could be observed that the baseline variant does not make the sharing economy 

part of rental intermediation more decentralized. Namely, the service which allows P2P in-

teractions through a smart contract cannot operate and be accessed without the assist ERevS 

which plays the role of an intermediator. Therefore, the baseline design iteration is a starting 

point to make the decentralized service more independent and is subject to be moved outside 

of the platform providers system, as described in the next sections. 
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3.3 Migrating Data to the Blockchain 

In the baseline design, ERevS is managing the collection of resources. For this reason, it is 

also fit for filtering enlistments which are managed by RIS. What is more, in addition to 

collection management, the details of the property enlistments are split between two ser-

vices. 

This section describes the design of a system which moves all required data for managing 

the real estate rental intermediation into the blockchain. The system builds on top of the 

baseline variant and in terms of the established design analysis framework, only the dimen-

sions of significant change are described. 

3.3.1 Service Map 

To move the management of resource collection of reviewed enlistments out of ERevS, an-

other required service is added next to RIS with the name of Enlistment Registry Service 

(ERegS). RIS and ERegS are included in an abstract Enlistment Rental Service which is 

served in an Ethereum node (Figure 20). 

 

3.3.2 Data Model 

With the inclusion of another service, the data is now managed between 3 stores (Figure 

21). Equivalently to the baseline variant, an instance of Enlistment smart contract is de-

ployed to Ethereum distributed ledger once moderator approves it. However, now, in addi-

tion to the baseline procedure, the blockchain address of the deployed Enlistment instance 

is added to Enlistment Registry smart contract. 

To migrate all enlistment data on-chain, the constructor of the Enlistment smart contract 

accepts details which were previously managed in ERevS. To persist enlistment location on 

the blockchain, a representation of geohash [31] is used. In its inner workings, geohashing 

divides the sphere of the Earth into a hierarchical grid and allows encoding of spatial latitude 

and longitude values into a arbitrary-length string of  Base32 characters: the longer the 

string, more precision for the location. For the nature of the resources represented by the 

location, a 9-character length is used which at the worst case provides a rectangular cell with 

the precision of ≈ 4.77 𝑚 ×  4.77 𝑚 on the Equator according to Veness [32]. On the other 

 

Figure 20. Service map (variant 2). 
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hand, as other migrated details of the enlistment only serve a decorative purpose and never 

need on-chain processing, they are persisted as a JSON-encoded string. As the final change, 

an internal helper array of offer authors is migrated which allow for iteration over Solidity 

mappings. 

 

3.3.3 Interface Design and Key Operations 

The root service is divided between three subservices (Figure 20) and because of this, an-

other split of operations is implied. As the external actors are still served through ERevS, its 

operation set remains unchanged (Table 1). However, in its operation, it now relies on the 

required operations of ERegS (Table 3) and RIS (Table 4). Proceedingly, in the following 

subsections, the anatomy of the interfaces and impactful functions of the services is pre-

sented. 

 

Figure 21. Data model (variant 2). 
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Interface and Operations of the Enlistment Registry Service 

EregS is implemented as a smart contract called Enlistment Registry operating in Ethereum 

client node. The registry smart contract is a singleton instance, meaning that it is deployed 

once and the resulting reference is hard-coded in the consuming services. 

The Enlistment Registry implements its corresponding data model from Figure 21 through 

two top-level storage variables: owner and enlistments. Similarly to the Enlistment smart 

contract, owner is utilized as to enforce access to its deployer (i.e. the platform provider). 

Variable of  enlistments, however, references an append-only array of Enlistment instance 

addresses. 

In addition to the trivial implementations of adding an enlistment to the registry and retriev-

ing the underlying array, the contract also exposes 2 functions for operations which were an 

implicit burden of the off-chain service in the baseline design: 

1) Retrieving enlistments with mapped data for geosearch. The invocation of this 

method (Code block 2) loops over all enlistment addresses in the registry and for 

each of them, makes an inter-contract call to retrieve a geohash. As a result, it returns 

two arrays of fixed length of the size of the registry: one of which contains all ad-

dresses and the other one the corresponding geohashes. The output of this function 

is input to run filtering computations off-chain. 

2) Retrieving enlistments for offer author filtering. The anatomy of this function is sim-

ilar to the previous one with the difference that instead of retrieving a geohash, an 

intra-contract returns the number of offers for an enlistment. 

Table 3. Required operations from Enlistment Registry Service (variant 2). 

Resource Write operations Read operations 

Enlistment 

- Add - Retrieve all 

- Retrieve with mapped data for ge-

osearch 

- Retrieve with mapped data for offer 

author filtering 

 

Table 4. Required operations from Rental Intermediation Service (variant 2). 

Resource Write operations Read operations 

Enlistment 

Same as baseline 

Same as baseline 

Offer 

- Retrieve one for a given enlistment 

- Retrieve the number of offers 

- Retrieve offer by its index in the 

helper array 

Agreement Same as baseline 
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Interface and Operations of the Rental Intermediation Service 

When compared to the ABI of RIS of baseline variant, the operational changes are minor: 

the smart contract is updated to return the migrated data and exposes a new function to return 

the length of the helper array of offerAuthors as required by ERegS. 

Interface and Operations of the Enlistment Review Service 

Migrating data does not change the state transitions or resource hierarchy of the baseline 

variant. However, as ERevS no longer owns the collection of approved enlistments, the API 

explicitly expects an on-chain reference of an enlistment for all write and read queries once 

it is approved by a moderator. For example, to cancel an offer, HTTP POST request to end-

point /enlistments/:enlistmentContractAddress/offers/:tenantEmail/cancel needs to 

be called. 

Changes to the data governance also modify the collection-related procedures of ERevS: 

1) Finding either all published or unpublished enlistments. While unpublished enlist-

ments are still retrieved from the relational database, the published ones are collected 

by requesting all addresses from ERegS. 

2) Retrieving enlistments by offer tenant email. The underlying procedure is now as 

follows: 

a. A function of Enlistment Registry is called to retrieve the collection of on-

chain enlistment identifiers and their corresponding number of offers. 

b. For all enlistments, all offers are retrieved one-by-one by accessing them 

through the index in the tenant email helper array of the Enlistment smart 

contract. 

c. The filtering is done by checking if the provided tenant email is in the array 

of enlistment offers. 

3) Retrieving enlistments by landlord email. To retrieve enlistments by landlord email: 

a. The array of all enlistment addresses is retrieved from the Enlistment Regis-

try smart contract. 

b. Using enlistment references, each of their landlord email is retrieved from 

RIS. 

c. Filtering is done by checking if the input landlord email matches the ones 

retrieved from the previous step. 

4) Filtering enlistments based on geographical proximity. 

a. Similarly to the first step of the two previous operations, Enlistment block-

chain addresses and their geohashes are retrieved from EregS. 

b. Filtering is done by: 

function getEnlistmentsForGeosearch() view public returns (address[], bytes9[]) 

{ 

  bytes9[] memory geohashes = new bytes9[](enlistments.length); 

  for (uint i = 0; i < enlistments.length; i++) { 

    Enlistment enlistmentContractInstance = Enlistment(enlistments[i]); 

    geohashes[i] = enlistmentContractInstance.getGeohash(); 

  } 

  return (enlistments, geohashes); 

} 

Code block 2. Data retrieval operation from an on-chain registry. 
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i. decoding the geohash to latitude/longitude representation of float 

datatype; 

ii. calculating the distance between the input location and the enlistment 

using a JavaScript implementation of Haversine formula [33] and 

comparing it to the search radius input. 

Similarly to the baseline variant, for each matching enlistment in the filter, an additional call 

must be made to retrieve the actual data to be presented in the API request output view. 

3.3.4 Analysis 

The results show that the data which need migration are atomic resource attributes of enlist-

ments and collection data structures. To adapt the migrated atomic resource attributes, the 

data model of the enlistment smart contract is appropriately modified to accept the new 

details as a geohash and JSON-encoded collection of attributes.  

While the migrated location data of the enlistment is perceived necessary for the operation 

of future variants (i.e. for location-based filtering), the inclusion of purely decorative infor-

mation could be considered debatable. In more detail, the migrated attributes of enlistment 

(except location) serve no other purpose nor add more value other than to reach the goal of 

complete decoupling. The concern of high data storage costs aligns with the findings of 

Eberhardt and Tai [28] who also describe a setup in which the amount of data grew so big 

that it was not reasonable to store the values on-chain. However, Eberhardt and Tai [28] do 

not provide any proof or examples about how big is the overhead. As such, the effect on the 

added data storage overhead could be considered a limitation on the design which needs to 

be evaluated in terms of efficiency and alternatives. 

In terms of collection data structure migration, a new smart contract is added to the system 

to serve the purpose of a lightweight registry. What is found significant, is that to ensure 

that the enlistment was really reviewed, the append operation is initiated from the ERevS. 

Alternatively, a chained operation could be considered which automatically adds the enlist-

ment to the registry in the constructor of Enlistment smart contract. Although such alterna-

tive would add automation to the system by replacing two consecutive transactions with 

one, it opens up the system for spam in public blockchain. The potential attack on chained 

registry addition approach trivial: the attacker would be able access the contract bytecode 

by inspecting the transactions and then use it to instantiate a new enlistment without going 

through a review process. So, to give the provider of ERevS ensurance that only they are 

able to manage the registry, two separate transactions are preferred over a chained one. 

Key Components 

The data migration, especially moving to an on-chain registry approach considerably 

changes the anatomy and perceived efficiency of the key operations. Whereas in the baseline 

system only one request to RIS per match in the filter was necessary, the current variant adds 

another layer(s) of requests just to retrieve the migrated data from the on-chain service for 

the operations. Furthermore, this per-resource data retrieval strategy may have negative im-

pact on the performance of the operations and is subject for closer inspection during evalu-

ation. 

Autonomy 

The changes to baseline system design migrated all rental intermediation related data to the 

service actually managing the underlying process. This results in a gain in autonomy but the 

empirical analysis also finds potential loss in efficiency. However, migrating data alone is 

not enough to achieve autonomy for the on-chain services because the filtering computations 



37 

 

are still done off-chain. Because of this, the objective for the next prototype is to port oper-

ations. 

3.4 Porting Operations to the Blockchain 

The previous results show how to integrate blockchain and, thus, gain in autonomy. In more 

detail, it is shown how to extract a peer intermediation subprocess from a business process 

model of a real estate sharing platform and design it as a separate internal service. Then, it 

is found that in order to decouple from the platform manager to enable autonomous P2P 

process execution on-chain, the internal service needs to move outside of the providers sys-

tem. Moreover, for the autonomy to happen, the required data has been migrated from off-

chain datastores to on-chain storage. 

This chapter describes the service design to move the processing involved with the inter-

mediation process. The design builds on top of the previous results. 

3.4.1 Service Map 

To port the operations of filtering enlistments by geographical proximity, an internal de-

pendency to a service of Geodistance is added to ERegS. Although the operations of the 

added service could also be implemented as embedded, the explicit decoupling separates its 

standard mathematical operation (see 3.4.3) from the business domain of the application. 

3.4.2 Data Model 

There is only one change to the data model to adapt to the underlying operation of geosearch: 

geohash format [31] for persisting enlistment location is replaced by WGS 84 [30] coordi-

nates encoded as 32-bit signed integers (Figure 22). The signed integer stores 6 decimal 

places of a latitude/longitude degree which, based on widest sphere of the Earth (𝑅 =
 6378137 m)27, guarantees more than enough precision to locate real estate: 

𝑅 ×  2 ×  𝜋

360° ×  106
≈ 0.111 (𝑚). (3.1) 

                                                 
27 http://epsg.io/7030-ellipsoid [Accessed: 19-May-2018] 

http://epsg.io/7030-ellipsoid
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3.4.3 Interface Design and Key Operations Drill-through 

Regarding changes to the interface of the services, there are 3 external read operations to be 

migrated from ERevS (Table 1) to ERegS: filtering by landlord, by offer tenant and by geo-

graphical proximity (Table 5). Proceedingly, the operation set of RIS needs to cater the needs 

of ERegS for it to do the filtering. For this purpose, RIS now provides the attributes of land-

lord and location of the enlistment as well as a function to check whether a given tenant has 

made an offer (Table 6). On the other hand, the sole operation of Geodistance Service is to 

calculate distance between two locations. Next, each of the interfaces and significant oper-

ations are elaborated on. 

 

Figure 22. Data model (variant 3) 
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Interface and Operations of the Geodistance Service 

The Geodistance Service is implemented as Solidity library28 and it exposes one operation: 

calculating geographic distance between two sets of coordinates. As performance is im-

portant for on-chain computations and the distances set by the domain are expected to be 

relatively small on the global scale, it is chosen to implement the operation using Euclidean 

distance on an equirectangular projection of the Earth (also known as Equirectangular ap-

proximation). 

To calculate the trigonometric function of cosine, GeoDistance library is dependent on an-

other library: Trigonometry. In its operation, the library divides a circle to 16384 angle units 

and uses a lookup table on the first quadrant of sine together with linear interpolation.29 

Interface and Operations of Enlistment Registry Service 

Implementation of filtering functions are now migrated to the interface of ERegS: 

                                                 
28https://github.com/vindrek/blockchain-real-estate/blob/enlistment-filtering-on-chain/ethereum/cont-

racts/GeoDistance.sol [Accessed: 19-May-2018] 
29 https://github.com/Sikorkaio/sikorka/blob/master/contracts/trigonometry.sol [Accessed: 19-May-2018] 

Table 5. Required operations from Enlistment Registry Service (variant 3). 

Resource Write operations Read operations 

Enlistment Same as variant 2 

- Retrieve all 

- Filter by landlord 

- Filter by tenant (as the bidder) 

- Filter by geographical proximity for 

given location and search radius 

 

Table 6. Required operations from Rental Intermediation Service (variant 3). 

Resource Write operations Read operations 

Enlistment 

Same as variant 2 

- Retrieve one 

- Retrieve landlord email 

- Retrieve location 

- Check whether a given tenant has 

made an offer 

Offer 

- Retrieve one for a given enlistment 

- Retrieve offer by its index in the 

helper array 

Agreement Same as variant 2 

 

https://github.com/vindrek/blockchain-real-estate/blob/enlistment-filtering-on-chain/ethereum/contracts/GeoDistance.sol
https://github.com/vindrek/blockchain-real-estate/blob/enlistment-filtering-on-chain/ethereum/contracts/GeoDistance.sol
https://github.com/Sikorkaio/sikorka/blob/master/contracts/trigonometry.sol
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1) Retrieving enlistments by landlord email. The filtering procedure iterates over the 

registry and by inter-contract call to RIS retrieves a Keccak-256 hash of the landlord 

email30 to be compared with the hashed value of the input. 

2) Retrieving enlistments by offer tenant email. Again, the registry is iterated and filter 

is applied by inter-contract call to Enlistment which checks whether a given tenant 

has made an offer. 

3) Filtering enlistments based on geographical proximity. 

a. By inter-contract call to Enlistment, the coordinates of an enlistment is re-

trieved. 

b. A deployed Geodistance library instance calculates the distance between the 

location of the input and enlistments using equirectangular approximation 

method. 

c. Filter is applied by comparing the calculated distance and the search radius 

provided. 

All the filtering operations of ERegS output a 256-bit integer which bitset maps the indices 

of the matching enlistment in the registry array. Meaning, for each matching enlistment, 

another call is required to retrieve the blockchain address of the Enlistment smart contract 

instance which would then be used to make another call to get the actual data of the enlist-

ment. 

3.4.4 Analysis 

The results reveal that the operations which need to be ported to the smart contracts for more 

autonomy are related to collection management and do the procedure of filtering resources. 

The study identifies such enlistment filtering operations and describes a functionally equiv-

alent implementation using smart contracts. 

Key Components 

Results show that the key component of location-based filtering implementation poses lim-

itations to the service. Namely, the design uses equirectangular projection as the basis for 

geodetic distance calculation. The reason behind such decision is that equirectangular ap-

proximation works well with the processing-limited nature of EVM because it is trivial to 

compute. For example, equirectangular projection only requires one square root and trigo-

nometric function call31: 

 
where 𝑟 is the radius of the sphere, 𝜑 is the latitude and 𝜆 the longitude. On the other hand, 

an implementation of Haversine formula requires 6 trigonometric function calls and a 1 

square root: 

                                                 
30 Due to the limitations of EVM and/or Solidity v0.4.19, returning strings of arbitrary-length in external 

functions is not possible. For this reason, a 32-byte hash of landlord email must be used, instead. 
31 Implementation is modified to use the length of 1 degree on the Equator instead of spherical radius to operate 

on degrees throughout the algorithm instead of radians which would need conversion. 

𝑑 =  𝑟 ×  √((𝜆2 − 𝜆1)  × cos (
𝜑1 + 𝜑2

2
))

2

+ (𝜑2 − 𝜑1)2, (3.2) 
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Moreover, the implications of using Spherical Law of Cosines require 6 trigonometric func-

tion calls: 

 

However, the equirectangular projection introduces significant distortions with a reflecting 

accuracy error depending on the bearing, latitude and distance [34]–[36]. Similarly, to the 

current study, Esenbuğa et al. also compromise accuracy for efficiency when choosing 

equirectangular approximation [36]. What is more, while evaluating different geodetic dis-

tance algorithms for province assignment of cities in Turkey, Esenbuğa et al. show that the 

maximum relative percentage error of the equirectangular approximation on their data is 

only 0.2323% (𝑠 = 0.0650%, 𝑥̅  =  0.1396%) [36]. So, the low error and compliance for 

inter-city measurements implies that the method should be potent for intra-city purposes. 

The analysis on determining the exact latitude value where the real estate search radius dis-

tance is longer acceptable is left open for future studies to specify. 

Another design limitation is that the maximum capacity of enlistments in the current variant 

is 256 enlistments. This limitation is set by the filtering operations which uses bitset tech-

nique and returns an unsigned integer to represent the matches. However, the maximum 

unsigned integer size currently supported by Solidity is 256 bits. To scale up, the procedure 

has to be adjusted to return an array of such integers. 

Autonomy 

As a result of the migrating intermediation related data and operations on-chain, the former 

is now capable of managing both read and write operations of rental intermediation between 

landlords and tenants. From the domain segregation point of view, this design reduces the 

responsibility of the off-chain service (which is plays the role of an intermediatior) to serve 

tasks that it is designed to do: review enlistments. Once an enlistment is approved, the re-

view service simply forwards requests to smart contracts without enforcing any business-

logic itself. 

𝑑 = 2𝑟 × sin−1 (√sin2
𝜑2 − 𝜑1

2
+ cos 𝜑1 cos 𝜑2 sin2

𝜆2 − 𝜆1

2
) . (3.3) 

 

 

 
𝑑 =  𝑟 ×  cos−1(sin 𝜑1 × sin 𝜑2 + cos 𝜑1 × cos 𝜑2 × cos(𝜆2 − 𝜆1)) . (3.4) 
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4 Evaluation and Discussion 

In the scope of the study, 3 progressive variants of a real estate rental system are described. 

While the supported process and the externally available operations of the different variants 

remain the same, they differ from internal aspects. This chapter assesses and analyses the 

qualities of the variants. 

4.1 Quantitative Analysis 

The quantitative analysis focuses on the performance observed during the execution of smart 

contracts by the EVM. On the other hand, the efficiency of smart contract operations are 

measured by observing gas consumption as the execution cost of the message calls to a 

contract address. While the measurement value of gas does not express the computational 

complexity directly, it does so in a non-direct way by producing a fair cost for the transactor 

to compensate for the code execution. The fairness of gas calculation is guaranteed by op-

eration costs and polynomial cost functions (such as memory extension) as defined by the 

specification of EVM [3]. 

4.2 Scenario 

As a test scenario, a happy path of Enlistment to contract completion subprocess is used, 

complemented with read operations to hypothetically assist the actors with the execution. 

The execution is observed in the prototypes: baseline (variant 1), data migration (variant 2) 

and operation migration (variant 3). As described in the subsections of interface design 

(3.2.4, 3.3.3, 3.4.3), the implementation includes a total of 4 smart contracts: Enlistment, 

EnlistmentRegistry and libraries of GeoDistance and Trigonometry. In the analysis, Enlist-

mentRegistry, GeoDistance and Trigonometry contracts are also referred to as singleton con-

tracts because they are only required to be deployed once for the operation of the system (as 

opposed to multi-instance nature of Enlistment which is deployed each time an enlistment 

is approved into the system).  

The scenario is divided into the following steps: 

1) An enlistment is deployed and added to the public registry (write). 

2) Tenant retrieves all published enlistments (read). 

3) Tenant runs a geographic approximity search (read). 

4) Tenant requests the enlistment data (read). 

5) Tenant places an offer (write). 

6) Landlord queries for his enlistments (read). 

7) Landlord queries all offers for an enlistment (read). 

8) Landlord retrieves one offer (read). 

9) Landlord accepts the offer (write). 

10) Landlord issues a tenancy agreement (write). 

11) Tenant queries for the enlistments that he has bid on (read). 

12) Tenant retrieves a tenancy agreement (read). 

13) Tenant accepts the tenancy agreement (write). 

14) Landlord signs the agreement (write). 

15) Tenant signs the agreement (write). 

16) Tenant sends the first month rent (write). 

The experiment measures: 

1) Gas usage of the steps and singleton contract deployment with the following strat-

egy: 
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a. Deployment cost is calculated by subtracting the balance of the account be-

fore and after the transaction. 

b. Ordinary transactions (i.e. write calls such as sending an offer) are measured 

by checking gas usage from the receipt. 

c. Read-only calls (e.g. geofiltering) are measured using the estimateGas 

method of web3js32. 

2) count of JSON RPC calls for each step; 

3) size of the deployed bytecode of the contracts retrieved from the truffle compilation 

asset file33. 

Moreover, the following should be considered when interpreting the results: 

• If a step requires multiple atomic subrequests (e.g. when retrieving all published 

enlistments), then the measured gas consumption and JSON RPC call count is the 

sum of the requests. 

• Each enlistment in the test run has an additional 3 offers from other tenants (includ-

ing the one being operated on). 

• The landlord in the scenario has no previous enlistments. 

• The tenant in the scenario has not placed any previous offers to any enlistment. 

• All the added enlistments except the one in the scenario are outside of the geosearch 

area. 

• A single step includes either only write or read operations but not both. 

4.3 Results 

In terms of singleton smart contract deployment gas consumption, variant 3 is the most de-

manding (Figure 23). Variant 3 deploys a total of 3 contracts with a total cost of 1187972 

gas. Meanwhile, variant 2 only requires 1 singleton contract (677559 gas) and variant 1 

operates without any singletons. The most significant impact to the cost of the singleton 

deployment is made by EnlistmentRegistry which proves to be ~14.3% higher for variant 

3 than it is for variant 2. 

                                                 
32 https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html#methods-mymethod-estimategas [Accessed: 

19-May-2018] 
33 https://www.npmjs.com/package/truffle-contract-schema [Accessed: 19-May-2018] 

https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html#methods-mymethod-estimategas
https://www.npmjs.com/package/truffle-contract-schema
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However, when aggregating and comparing all the contract deployment costs in the system, 

then it is evident that Enlistment deployment cost is the most impactful (Figure 24). The 

gas usage for baseline Enlistment deployment is 4574231 and it rises ~24.6% for the second 

variant. Noticable is also the difference between Enlistment deployment cost of the last 2 

variants (98501). 

 

The bytecode size of the contracts are given in Table 7 and it reveals that the largest bytecode 

size is for Enlistment contract of variant 2, followed by variants 3 and 1. 

 

Figure 23. Bar plot analysis for singleton smart contract deployment gas usage. 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Bar plot analysis for smart contract deployment gas usage. 
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An observation to the scenario execution with 𝑁 = 10 previous enlistments in the registry 

(Figure 25) reveals that the transactional gas usage of the write operations is by far the most 

expensive for step 1. The next most gas consuming step is step 10. In relation to step 1 and 

step 10, the cost of other write steps (5, 9, 13, 14, 16) could be considered negligible. 

 

By eliminating the enlistment deployment cost from step 1, an inter-variant perspective to 

progressive operation gas cost (Figure 26) reveals the similarities of the variants. There are 

two exceptions to otherwise similar behaviour: firstly, for step 5, the usage for baseline 

variant (113569) is slightly lower than for other variants (139877 and 139899 respectively) 

and secondly, baseline variant does not use any gas for step 1. 

Table 7. Size of the deployed smart contract bytecode. 

 Enlistment 

(bytes) 

EnlistmentRe-

gistry (bytes) 

Geodistance 

(bytes) 

Trigonometry 

(bytes) 

Baseline 16177 - - - 

Data migra-

tion 

18217 2270 - - 

Operation 

migration 

17808 2648 458 716 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Bar plot analysis for write steps gas usage for 10 previous enlistments in the re-

gistry. 
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Figure 27 shows that when the amount of enlistments grows, the transaction gas usage for 

the write steps remains the same. However, a closer look reveals one exception to this: for 

variants 2 and 3, step 1 is slightly more expensive when there are no previous enlistments 

in the registry (Table 8). 

 

 
Figure 26. Bar plot analysis for write steps gas usage for 10 previous enlistments in the re-

gistry (excluding Enlistment contract deployment). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Gas usage of write transactions for arbitrary number of enlistments (𝑁) in the 

registry. 
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The total mean cost for scenario write steps execution is the biggest for data migration var-

iant (6754396), followed by operation migration (6656319: 1.5% lower) and baseline 

(5554573: 21.6% lower). 

Request count for write operations is similarly constant as is their gas consumption (Figure 

28). However, it could be noticed that the first write step requires two requests to the smart 

contract while the others do one request. 

 

Figure 29 shows that read steps gas usage for 𝑁 = 10 previous enlistments in the registry 

vary. The data shows that the cost difference of steps 8 and 12 is negligible while steps 4 

and 7 are getting slightly more expensive with each variant. On the other hand, for steps 2 

and 3, the gas usage rises significantly with successive variants. Most significantly, the re-

sults reveal an anomaly for the behavior of data migration variant on steps 6 and 11 which 

Table 8. Gas usage for step 1 of different variants for arbitrary number of enlistments in 

the registry. 

 0 previous enlist-

ments (gas) 

1 previous enlist-

ment (gas) 

2 previous enlist-

ments (gas) 

Baseline 4574231 4574231 4574231 

Data migration 5762189 5747189 5747189 

Operation migration 5664030 5648966 5648966 

 

 

 

 

 

 

 

Figure 28. Request count for write operations for arbitrary number of enlistments (𝑁) in 

the registry. 
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are multiple times more expensive than their respective results on baseline and operation 

porting implementations. 

 

With growing number of enlistments (𝑁) before the execution of the scenario, gas usage for 

steps 4, 7, 8 and 12 remain constant for all variants, Figure 30 shows. The gas consumption 

also stays constant for the baseline variant in steps 3, 6 and 11. For steps 2, 3, 6 and 11, a 

linear growth could be recognized. For steps 6 and 11, data migration prototype has a sig-

nificantly steeper slope than the baseline and operation migration versions. On the other 

hand, the operation migration variant cost grows the fastest for steps 2 and 3. Table 9 gives 

an overview of the growth (slope of the line) and reveals that the gas usage grows the fastest 

for the data migration variant of step 11: 83860 per added enlistment in the registry. 

 

Figure 29. Bar plot analysis for write operation gas usage for 10 previous enlistments in 

the registry. 
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The total mean cost for scenario read steps execution is found to be the least for baseline 

variant (802811), followed by operation migration (1478994: 84.2% higher) and data mi-

gration variant (3151951: 292.6% higher). 

Figure 31 shows that the characteristics of read operation request counts resemble the affine 

or constant nature of their gas consumption counterparts (Figure 30) with an exception of 

step 3. In more detail, the gas usage for step 3 is linear but the request count remains cons-

tant. Also, for steps 4, 8 and 12 it could be noticed that the number of requests are the same 

for different variants but gas consumption differs: for all of them, the operation migration 

variant is the most expensive, followed by data migration and then baseline. 

 

Figure 30. Gas usage of read operations for arbitrary number of enlistments (𝑁) in the re-

gistry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Gas rise for an added enlistment for read steps. 

 Step 2 (gas) Step 3 (gas) Step 6 (gas) Step 11 (gas) 

Baseline 27144 0 0 0 

Data migration 36886 3417 36886 83860 

Operation mig-

ration 

38280 8654 3590 4063 
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By aggregating the mean gas usage for scenario read and write steps execution34, the results 

reveal that the most gas consuming variant is the data migration variant with a value of 

9906347 which is ~21.8% higher than the operation counterpart and ~55.8% higher than 

baseline. 

4.4 Discussion 

Given that the implementations build on top of each other by design and that the role of the 

on-chain service increases with successive variants, the evaluation expectedly proves the 

baseline version to be the most efficient. However, it is surprising that the least efficient 

variant is the second and not the third variant. Moreover, the second variant not only proves 

to be the most expensive for read but also write steps. 

Results show that the second variant is less efficient for write steps than the third one be-

cause of the first step in the scenario: deploying an enlistment and adding it to the registry. 

Because the operation of adding an enlistment to the registry is the same for both variants 

(3.3.2), the underlying reason should lie in the differences in the Enlistment smart contract. 

However, in terms of their data models, the third variant should even be less efficient than 

the second one. Namely, concerning data model, the only difference between the variants is 

that the second variant uses a single storage mapping to persist the location (geohash) while 

the third one uses two values of latitude and longitude (3.4.2). In summary, this means that 

the culprit of the remaining difference comes from the added bytecode storage fees (200 gas 

per byte [3]) as shown in Table 7. 

                                                 
34 Excluding singleton deployment gas because they are one-time expenditure. 

 

Figure 31. Request count for read transactions for arbitrary number of enlistments (𝑁) in 

the registry. 
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Meanwhile, variant 2 is shown to be cumulatively the most expensive for scenario read steps 

because of its execution cost of two operations: filtering enlistments by landlord and by a 

tenant. For the two operations, variant 2 proposes a similar anatomy: with the first call, the 

procedure retrieves an initial reference data from the on-chain registry and then access each 

resource one-by-one (or multiple levels of them in child resources are required) in order to 

do the filtering (3.3.3). However, such filtering strategy is creating request overhead as well 

as redundancy. The overhead appears because the strategy accesses resources one by one, 

creating a severe N + 1 query problem. As a sign of severity, the results show that the num-

ber of JSON RPC calls grows near 100 for 31 previous enlistments in the registry (Figure 

31). A solution to the N + 1 issue would be to retrieve all the data at once but such possibility 

is found to be currently limited by native incapability of EVM to return arrays of dynamic 

length and depth as well as complex data structures. Redundancy, however, is introduced 

by the interim nature of the data migration phase design: data is not being processed in its 

origin and in order to compensate for that, more information needs to be exchanged to 

achieve the desired result. To quantify the effect of high request count to quality of service, 

further studies should measure changes in response time. 

On the other hand, in comparison with variant 2, the filtering strategy of variant 3 fixes 

redundancy by doing the processing at the origin of the data (3.4.3). However, on-chain 

filtering only alleviates the request overhead by eliminating one level of N + 1 problem (or 

multiple if filtering child resources). In another words, if the test scenario were such that the 

landlord or tenant had other enlistments or offers or there were more than one match for 

geosearch, the slope of the gas usage and request count would increase for both data and 

operation migration variants. So, in conclusion, the paper finds that on-chain filtering strat-

egy is superior due to its ability to remove redundancy and the associated request overhead: 

filtering by landlord is nearly 7 times more efficient on-chain whereas by tenant it is more 

than 20 times35 (Table 9). 

While for other filtering operations the on-chain method outperforms off-chain, it is not the 

case for geosearch. Instead, the evaluation results shows that the gas consumption of ge-

osearch grows ~2.5 times slower off-chain in case of variant 2 (Table 9), making it more 

efficient. This is found to be a direct result of a computation-heavy nature of the operation 

to calculate distances between coordinates (3.4.3). Even though a lot of optimization tech-

niques were put into the implementation (e.g. sacrificing accuracy for performance by 

choosing a fast algorithm, using look-up tables for trigonometric functions, fixing the accu-

racy of the latitude and longitude angles), the operation would be better off done off-chain. 

Moreover, the evaluation brings forward the high impact of step 1 in relation to the other 

write transactions which contribute to an effective cost of the scenario. It turns out that the 

associated cost of the multi-instance Enlistment deployment and adding it to the registry is 

more than 7 times more expensive than any other write transaction for all variants. This kind 

of inefficiency hints that the proposed design of the on-chain service should be reconsidered. 

In more detail, to promote separation of concerns, the on-chain services currently uses an 

approach of two smart contracts: a multi-instance intermediation subprocess smart contract 

working together with a separated singleton managing registry (3.3.2). So, to increase effi-

ciency, the operations of the two smart contract could be merged. The feasibility and impli-

cations of the proposed single contract instance approach solution is left for future studies 

to discover. 

                                                 
35 Due to the limitations of EVM and the chosen implementation, the efficiency gain would decline depending 

on the number of matches. This is due to the fact that filtering result (bitset indices) must be mapped through 

another layer of requests to retrieve a reference to an enlistment. 
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In addition to the high deployment cost of the Enlistment smart contract, the experiment 

also reveals the significant impact of its on-chain data storage strategy. Namely, it could be 

seen that while the bytecode size of Enlistment in the first two variants only differs 12.6% 

(Table 7), the gas usage of its deployment spikes nearly twice as much. The difference be-

tween the bytecode size and deployment cost could be explained by the variants data model 

transformation (3.3.2, 3.4.2). In more detail, the Enlistment smart contract of the data mi-

gration variant adds three storage variables compared with the baseline. Out of the three 

added variables, two are initialized with the data passed through the smart contract in the 

constructor during the deployment phase: geohash and detailsJson of the model of enlist-

ment (the third, offerAuthors, is not valuated). Now, while the 9-byte geohash only initiates 

one SSTORE opcode of EVM [3], the detailsJson is a string of arbitrary length and a storage 

cost must be paid for each 32-byte chunk (or 32 characters of ASCII). Evidently, this kind 

of limitless storage strategy is not sustainable, especially with no maximum length guards 

in place. In the identified issue of high data storage cost, the results align with the work of 

Eberhardt and Tai [28]. 

What is more, building on the significance of the identified data storage cost, it would be 

beneficial to overlook the whole data model of the smart contracts. In a redesign, a leaner 

approach should be used to have the smart contract only include the data it needs for busi-

ness logic processing. For example, in addition to the decorative data of an enlistment (e.g. 

number of bedrooms), there should be no place for duplicate data (e.g. currently, the infor-

mation about landlord is both, on the contract and on the tenancy agreement). With gas 

usage effiency in mind, the data which is not necessary for the smart contract should seek 

other storage solutions. For example, the opportunities of content-addressed storage tech-

niques may be used [28], [37]. 

The results also identify a peculiarity of EVM which may have an impact for any Ethereum 

application. In more detail, the experiment reveals a spike in gas consumption when there 

are no previous enlistments in the on-chain registry: 15000 more for variant 2 and 15064 for 

variant 3 (Table 8). Such cost spike could be explained with the pricing strategy of EVM 

which states that SSTORE operation costs 20000 gas only when the variable value had not 

been initialized before but 5000 when it is being changed from a previous value [3]. In the 

context of case study and the to-be externally available intermediation service, this means 

that the landlord who is the first to get his/her enlistment added to the registry, must pay 

extra. 

Another identified low-level implication of EVM is that due to its stack size limitations, 

trivial function implementations may become non-trivial and require additional established 

data exchange protocols. For example, the results show that the design uses 4 JSON RPC 

calls to retrieve a single tenancy agreement (Figure 31). The reason behind such design is 

that due to a memory stack size of 16 [3], there could only be a limited number of local 

variables. So, as the accessible resource of tenancy agreement has a high number of mem-

bers to be served in the output, a Stack too deep, try removing local variables compi-

lation error appears36. To overcome the issue, a number of possible solutions may be con-

sidered. For example, the tenancy agreement accessor function is split into 4 smaller func-

tions. However, this approach creates request overhead. An another approach to tackle the 

stack limitation for high-count variables, is to group together variables or members of the 

same type to arrays, as it was designed for the constructor of the Enlistment smart contract. 

However, this approach does not work with strings of arbitrary length because this would 

                                                 
36 While the issue is partly brought forward by a debatable design decision to persist that much decorational 

data in the smart contract, the problem stands. 
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imply a dynamic two-dimensional array which is not supported37. So, to gain more effi-

ciency as well as flexibility for a high number of variables with arbitrary length, a solution 

which involves custom encoding for information exchange between off- and on-chain com-

ponents may be explored in the future studies. 

In summary, we evaluate the least efficient prototype to be the data migration variant and 

the most efficient to be baseline. To increase the sustainability by raising efficiency for write 

as well as read operations, the most significant optimization design decisions are found to 

concern the strategies of smart contract deployment and data storage.  

                                                 
37 http://solidity-doc-test.readthedocs.io/en/latest/frequently-asked-questions.html#can-a-contract-function-

accept-a-two-dimensional-array [Accessed: 19-May-2018] 

http://solidity-doc-test.readthedocs.io/en/latest/frequently-asked-questions.html#can-a-contract-function-accept-a-two-dimensional-array
http://solidity-doc-test.readthedocs.io/en/latest/frequently-asked-questions.html#can-a-contract-function-accept-a-two-dimensional-array
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5 Conclusion 

By building and analysing design artifacts, the paper shows how Ethereum blockchain can 

be used in implementing a process of real estate rental. To do so, it gradually moves an 

internal decentralized service of extracted peer intermediation subprocess to an autonomous 

external distributed application for disintermediation. In the scope of the study, 2 of the 3 

proposed service migration phases are successfully carried out. By utilizing smart contracts, 

the implemented system allows actors to submit, review and establish assets of real estate 

property enlistments, offers and tenancy agreements. 

In particular, the study shows the efficacy of Ethereum-enabled real estate rental but limited 

efficiency. By instantiating the internally-changing prototypes for evaluation, the paper pro-

vides a detailed quantitative analysis on the effect of smart contract design decisions. The 

results show that an increase in autonomy comes with a trade-off on efficiency. Moreover, 

the study warns application developers about the dramatic effect of multi-instance smart 

contract design and over-loading the on-chain storage with decorative data. Futhermore, the 

found evidence hints that service design in combination with the data querying limitations 

of EVM may negatively impact the quality of service by creating request overhead. There-

fore, while blockchain read operations are free of fees, it is suggested that no less consider-

ation should be put into their design decisions to find a balance between off-chain and on-

chain operations and keep the overhead at minimum. 

In future studies, we plan to design and develop the last phase of the service migration. The 

implementation raises some interesting areas for research such as migrating off-chain com-

putations in to the browser application of external actor, providing role-based access in 

smart contracts and collecting signatures on tenancy agreements using an Ethereum account. 

The source code for the prototypes and efficiency evaluation scripts could be found in the 

following Git repositories: 

1) https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V1 

2) https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V2 

3) https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V3  

The author of this thesis has received grant from IT Academy. 

https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V1
https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V2
https://github.com/vindrek/blockchain-real-estate/releases/tag/Thesis-V3
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