
UNIVERSITY OF TARTU
Institute of Computer Science

Software Engineering Curriculum

Stepan Bolotnikov

Development of a Course on
Collaboration Tools in Software

Engineering

Master’s Thesis (30 ECTS)

Supervisor: Marlon Dumas, PhD

Tartu 2018

Development of a Course on Collaboration Tools in Software Engi-
neering

Abstract:
This thesis describes the creation and delivery of a new course in the Institute of

Computer Science of the University of Tartu, titled Collaboration Tools in Software
Engineering. The course aims to familiarise bachelor’s students with the concepts of
Version Control Systems (VCS), Git distributed VCS, issue tracking systems and related
collaboration tools, and Continuous Integration (CI). Learning objectives and didactic
considerations that shaped the design of the course are explained. Materials that were
created for the course and topics that were covered are explained in greater detail. A
set of evaluation criteria for the course are presented, the results of the evaluation are
analysed and improvements for a potential future iteration of the course are proposed.

Keywords:
Version Control System, Git, issue tracking, GitHub, Continuous Integration, teaching

CERCS: P170 Computer science, numerical analysis, systems, control

Kursus "Koostöövahendid tarkvaraarenduses"
Lühikokkuvõte:

Selles lõputöös on kirjeldatud uue kursuse, Koostöövahendid tarkvaraarenduses,
loomise ja õpetamise protsessi Tartu Ülikooli Arvutiteaduse Instituudi jaoks. Kursuse
eesmärgiks on tutvustada bakalaureuseõppe tudengitele versioonihaldustarkvara (Version
Control System, VCS), Git hajutatud versioonihaldustarkvara, ülesannete haldamist (is-
sue tracking) ja pidevat integratsiooni (Continuous Integration, CI). Seletatakse kursuse
õpiväljundeid ja muid kursuse vormingut põhjustanud tegureid ning kirjeldatakse kur-
suse jaoks loodud materjale, nagu loenguslaidid, videoloengud ja praktikumijuhendid,
ning kursuse jooksul käsitletud teemasid. Lõpus on välja toodud kursuse hindamiseks
loodud ja kasutatud materjalid, analüüsitud nende tulemeid ja tehtud ettepanekud kursuse
võimalike tulevaste toimumiste jaoks.

Võtmesõnad:
versioonihaldustarkvara, Git, GitHub, pidev integratsioon, Continuous Integration, õpeta-
mine

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimiste-
ooria)

2

Contents
1 Introduction 5

2 Course design 7
2.1 Learning objectives . 7
2.2 Related work . 9

2.2.1 Existing courses in the University of Tartu 9
2.2.2 Learning materials available online 11

2.3 Schedule . 13
2.4 Didactic considerations . 13
2.5 Grading scheme . 14

3 Course materials 16
3.1 Types of materials created . 16

3.1.1 Lecture slides . 17
3.1.2 Lecture videos . 17
3.1.3 Practice session guidelines . 17
3.1.4 Quizzes . 18
3.1.5 Exam . 18

3.2 Topics . 19
3.2.1 Introduction, history of Version Control Systems 20
3.2.2 Introduction to Git . 20
3.2.3 Working with repository history 22
3.2.4 Branching . 23
3.2.5 Troubleshooting . 23
3.2.6 Project collaboration in GitHub 25
3.2.7 Git hooks and Continuous Integration 25
3.2.8 Guest lecture, preparation for exam 26

4 Results and course evaluation 28
4.1 Course evaluation criteria . 28
4.2 Analysis of feedback . 29

4.2.1 Quizzes . 30
4.2.2 Feedback questionnaire . 37

4.3 Ideas for improvement . 40

5 Conclusion 44

References 48

3

Appendix 49
I. Quizzes . 49
II. Licence . 65

4

1 Introduction
Software Engineering is a wide field that incorporates many scientific and technical
fields that deal with the systematic application of engineering to the development of
computer software. Software development, in turn, consists of various disciplines and
skills, including documenting, testing and programming.

Modern software development projects often involve groups of professionals collabo-
rating on the same set of requirements, documentation, and source code. Thus, tools and
formal practices facilitating collaboration must be put in place [Mar09]. Knowledge of
the various types of tools and common best practices is equally important when working
with large enterprises and academic projects, including group projects that are parts
of several mandatory courses for Computer Science, Software Engineering, and other
curricula in the University of Tartu.

Important collaboration tools in Software Engineering include Version Control Sys-
tems (VCS) and issue tracking tools. In fact, the usage of both is recommended and
sometimes even required in several courses involving the development of software
projects in groups. However, these courses focus on other aspects of software develop-
ment and only touch upon the topic of collaboration tools briefly and courses specialising
in such tools do not exist in the University of Tartu. This results in students having
insufficient knowledge of the working principles, usage, and best practices of the re-
quired collaboration tools, which leads to conflicts, confusion, and lowered efficiency in
collaboration and intra-team communication as well as decreased quality of the resulting
software.

In order to improve the situation, it was decided to create a new course, targeting
second-year bachelor’s students of the Computer Science curriculum and aiming to
present them with an overview of VCS, familiarise them with the usage and best practices
of the Git distributed VCS [SC], issue tracking systems, and Continuous Integration (CI).
The resulting course was named Collaboration Tools in Software Engineering, assigned
the course code LTAT.05.009 in the Tartu University Study Information System, and
designed with the European Credit Transfer and Accumulation System (ECTS) score
of 3 ECTS in mind [Col]. The course was taught during the spring semester of 2017/18
academic year and was attended by 24 students.

This thesis provides an overview of the work that went into the development and
delivery of the course as well as the evaluation criteria and final assessment of the quality
of the materials and the course itself.

The rest of this thesis is structured as follows: Section 2 describes the process of
course design. The learning objectives and requirements set for the course are discussed.
Courses related to the topic, both existing courses in the various curricula in the University
of Tartu as well as available open online classes and tutorials are considered. The teaching
practices, the structure of the lessons, course schedule and grading criteria of the newly
created course are described. Section 3 describes the various types of materials that were

5

created and the topics that were introduced in the course. Finally, Section 4 presents the
criteria for evaluating whether the materials described in Section 3 fill the requirements
set in Section 2. The results of the evaluation are analysed and improvements to the
course are proposed.

6

2 Course design
This section describes the process of the development of the course, its goals and structure.
Firstly, in Section 2.1, the learning objectives set for the course are described and the
motivation behind them is explained. In Section 2.2, related work, including other
courses existing in the University of Tartu and online open courses and tutorials are
considered and compared against the objectives and goals set for the new course. The
schedule of the course and the division of the course into separate topics are explained
in greater detail in Section 2.3, giving insight into the delivery process of the course
materials. Next, in Section 2.4, didactic considerations that influenced the development
of the course and structure of the sessions are explained. Lastly, the grading scheme of
the course is presented and explained in Section 2.5.

2.1 Learning objectives
The course created as part of this thesis is meant to teach the participants the working
principles, usage, and best practices of Version Control Systems (VCS) and related tools
that help software development teams shape the structure of the various information
related to projects and effectively manage collaboration between team members.

Collaboration, productivity and project management techniques and technologies are
all wide fields that could not be covered in full detail during one course; a narrowing of
topics was needed. For this purpose, it was decided that the course would focus on the
following topics:

History and motivations behind VCS Before beginning hands-on practical teaching
of the usage of a modern VCS, it was decided that the participants should be given insight
into the idea of VCS: why such systems are necessary, how they have emerged as a
mandatory part of the software development process and how they have developed over
time.

Working principles and usage of Git distributed VCS Over time, many VCS have
been developed. For the purpose of giving the participants of the course the practical
skills and knowledge that would assist them with collaboration in modern software
development teams, it was decided to cover a popular modern VCS in greater detail. A
state of the industry survey by RhodeCode Inc. [Rho] shows that Git is by far the most
popular VCS, so Git was chosen as the main technology to be covered in the course.

Project management and collaboration tools in GitHub Just as with VCS, a great
number of software projects focusing on collaboration and project management have
been created. It was decided to use a platform that allowed hosting of source code

7

repositories as well as an integrated suite of collaboration and project management tools,
including issue tracking and Continuous Integration (CI) systems. The choice of Git
as the VCS to be introduced further narrowed the selection of platform. A report by
flow.ci [flo16] introduces and compares several repository management services in terms
of popularity, features, license, and pricing. Among them, GitHub [Gitd] is by far the
most popular for hosting open-source projects. It also provides the opportunity to host
private repositories and has a sufficient suite of collaboration features. Moreover, GitHub
allows the students of academic institutions access to the features otherwise reserved
for paying customers for free. Because of these reasons, GitHub was chosen as the
repository hosting and collaboration platform for the course.

A set of learning objectives was formulated based on the topics introduced above.
The course was designed in a way that a participant, upon successful completion of the
course, should be able to:

• Explain the purposes and benefits of VCS in software development

• Set up Git and create Git repositories, demonstrate knowledge of branching and
common branching models

• Efficiently use Git for source code version management in a team

• Solve common issues with Git, such as merge conflicts

• Understand the principles of issue tracking and how it is used in conjunction with
version control

• Be familiar with issue tracking, collaboration and project management tools pro-
vided by GitHub

• Have basic knowledge of the principles of CI

As the course focuses on collaboration tools and does not touch upon programming
and other activities associated with software development, no specific background knowl-
edge is required from the participants - it is just assumed that the students have basic
computer usage skills.

The course’s target demographic is second-year students of the bachelor’s curricu-
lum in Computer Science at the University of Tartu. By this moment in their studies,
the students should have accumulated basic knowledge of software development and
encountered some problems that arise when working in groups, but it is likely that they
have not yet participated in one of the large mandatory or elective courses that involve
the development of a software project in groups, for which the expertise acquired in this
course can be very helpful.

8

2.2 Related work
Because VCS and related collaboration tools are a mandatory part of modern software
development process, a great number of learning materials exist that reference the topic
in one way or another. Here, such materials are presented. First, in Section 2.2.1, existing
courses in the University of Tartu are presented, showing that the existing courses lack
in information on the subject. Then, in Section 2.2.2, online learning materials, such as
Massive Open Online Courses (MOOC) are considered and compared against the goals
and learning objectives described above.

2.2.1 Existing courses in the University of Tartu

While no other course focusing specifically on VCS and other collaboration tools exists
in the University of Tartu, a number of courses reference the subject in one way or
another; recommending, or sometimes even requiring the use of VCS. Below, some of
those courses are named and their connection to the topic is explained.

Web Application Development (code LTAT.05.004) [Web] is a course meant for
bachelor’s students of the Computer Science curriculum. It is part of the Software
Engineering elective module that is recommended for students who wish to continue
their studies in Computer Science master’s curriculum or work as a software developer
after graduation. The participants of the course are divided into teams of three people
and are tasked with the creation of a web application. It is expected that the teams use
Git for source code version management, but there is no separate guidance given on how
to use Git. The students are briefly introduced to some basic Git commands and are
provided links to online resources. The course is taught in Estonian.

Software Project (code LTAT.05.005) [Sofb] is a course meant for bachelor’s students
of the Computer Science curriculum and is also part of the Software Engineering elective
module. During this course, students collaborate to create a software project. Usage of
VCS, wiki, issue tracker and continuous integration is mandatory, but is not taught in
this course - students are expected to find the information on these topics by themselves
or ask for help during coaching sessions. The course is taught in English.

Mobile Application Development (code MTAT.03.262) [Mob] is a course meant for
bachelor’s students of the Computer Science curriculum. It is part of the elective courses
module, in which students can pick courses that interest them from a given list. The
course includes a number of individual homework and home assignments involving the
development of an application for the Android smartphone operating system and some
of them require the usage of Git for source code version management and application
deployment. Assignment guidelines include a short introductory guide with some basic
Git commands, but the topic of Git is not expanded upon. Students are assumed to either
be familiar with it already or be ready to learn it by themselves. The course is taught in
English.

9

Object-oriented Programming (code LTAT.03.003) [Obj] is a course meant for bache-
lor’s students of the Computer Science curriculum. It is part of the mandatory module
Basics of Programming and is generally taught in the second semester of the first year of
the curriculum. The course includes individual and group homework, in which students
are introduced to the concepts of object-oriented programming in the Java programming
language. It is suggested that students should use Git for collaboration and source code
version control. Some external materials on Git are provided, but it is considered more
of a bonus and is not further elaborated upon. The course is taught in Estonian.

Automata, Languages, and Compilers (code LTAT.03.006) [Aut] is a course meant for
bachelor’s students of the Computer Science curriculum and is also part of the mandatory
module Basics of Programming. A Git repository is used to provide students with
exercises and it is suggested that they use their own repositories for keeping track of their
progress, but this is not considered as part of the learning objectives of the course and is
not further developed upon. The course is taught in Estonian.

Software Engineering (code LTAT.05.003) [Sofa] is a course meant for bachelor’s
students of the Computer Science curriculum and is part of the mandatory Software
Development module. Students are divided into groups of three people and tasked with
the modelling, planning, and development of a software system. Usage of a VCS is
required and a short introduction, including links to external self-study materials, is
provided, but in general, the students are assumed to acquire the knowledge of the topic
by themselves. The course is taught in English.

Agile Software Development (code MTAT.03.295) [Agi] is a course meant for mas-
ter’s students of the Software Engineering curriculum. It is part of the mandatory base
module. The course introduces the basics of the agile software development method-
ology. The course includes homework that has to be done in pairs and a project that is
developed in groups of four people. Usage of VCS is expected with Git being implied
as the preferred system and students are provided with external study materials, but are
expected to learn about VCS by themselves. The course is taught in English.

Enterprise System Integration (code MTAT.03.229) [Ent] is a course meant for
master’s students of the Software Engineering curriculum. It is part of the Enterprise
Software speciality module. The course introduces principles and methods of software
architecture in an enterprise environment, with an emphasis on the design, management,
and integration of enterprise information systems. Git is extensively used throughout the
course for source code version management, continuous integration and deployment. A
short introduction to the basic Git commands is given, but this topic is not focused upon.
The course is taught in English.

In conclusion, there is a big number of courses currently taught at the University of
Tartu that briefly touch upon the topics covered in the Collaboration Tools in Software
Engineering course. Many courses involve group projects, for which the usage of
VCS is recommended or even required, but none of the courses teach the techniques

10

and best practices of VCS in detail. Students are usually just provided with a very
brief introduction into the basic commands or links to external self-study materials.
Having dedicated teaching of the subject in the classroom would allow the students to
get feedback and answers to confusing parts from the instructors in a more interactive
manner and to improve the general knowledge of the subject.

2.2.2 Learning materials available online

The internet contains a large amount of MOOC, tutorials, articles, books, and other
learning materials on every imaginable topic, including VCS, issue tracking, and other
related collaboration tools. Below, a number of such materials are named and explained.
The materials are compared against the set goals and learning objectives decided for the
course developed in this thesis.

The online education platform Udacity has a course titled How to Use Git and
Github [Uda]. It introduces the participants to the basics of version control, using
Git and GitHub as examples. Through three lessons, participants are taught to create
new Git repositories, commit data to them, navigate repositories’ commit histories, and
collaborate on projects in GitHub. The latter part of the course focuses on creation, review,
and merging of pull requests, only touching on issue tracking and other collaboration
tools provided by GitHub on a superficial level. The course is available online for free at
any time.

Another online education platform, OpenClassrooms, has a similar course, titled
Manage Your Code with Git and GitHub [Ope]. It is divided into three parts. The
first part introduces the participants to the fundamentals of VCS and Git. Installing
Git, making commits and navigating commit history is taught. The second part aims to
teach participants how to store Git repositories in GitHub. Collaboration - the last part
of the course - focuses on using Git and GitHub for collaboration. This part includes
information on branching in Git, tracing changes in Git repositories and contributing
to open-source projects via pull requests in GitHub. The course does not include any
information on issue tracking and the other collaboration tools provided by GitHub. It is
available online for free at any time.

Udemy has a course titled Learning Git - A Beginners Git Course From Infinite
Skills [Inf]. The course teaches basics of Git and social collaboration via GitHub in 41
video lectures over 3.5 hours. The topics covered include cloning existing repositories
with the SourceTree software and Git command line, making commits, navigating the
commit history, branching, GitHub accounts, and creating and merging pull requests in
GitHub. Some of the topics, such as commit history, are touched upon at a superficial
level and some important topics, such as repository creation, are completely absent.
Moreover, the course doesn’t go into detail with the collaboration tools provided by
GitHub, such as issue tracking. The course is available online for a one-time payment of
C48.99.

11

Coursera has a course titled Version Control with Git [Atlb]. Basic Git usage,
including creating repositories, committing, navigating and rewriting history, and merging
are covered in the course. Git usage through the Git command line and SourceTree
software is introduced and collaborating on Git projects is covered, using the source code
hosting service BitBucket as an example. The course does not introduce the participants
to GitHub and does not focus on other collaboration tools. It is available online for
free with the option of a one-time payment of C39 for access to graded quizzes and a
certificate of the passing of the course.

Codecademy has a course titled Learn Git [Cod]. Creating repositories, making
commits, navigating commit history, branching and Git remotes are covered in the course.
Repository hosting platforms, such as GitHub, are not introduced and other collaboration
tools are not touched upon. The course is available online for free. Subscribers of the
Codecademy Pro service get access to additional quizzes and exercises for the price of
C19.99 per month.

The repository hosting service GitLab has an extensive set of learning materials called
GitLab University [Gite]. GitLab University contains links to slides, articles, videos, and
MOOC that cover a wide array of topics from basic Git usage to collaboration practices
and tools in GitLab. Because the material is sourced from different sources, authors, and
websites, it greatly varies in style and quality and can not be considered one cohesive
learning material. All of the materials are available for free.

GitHub, in turn, has their own set of learning materials called GitHub Guides [Gitc].
These also cover a wide array of topics but are mainly focused on the social and collabo-
rative aspects of the GitHub platform, going especially into detail about issue tracking
capabilities. GitHub Guides does not go into very fine detail when it comes to Git
and SCM, instead suggesting people to look to the official Git handbook for further
information.

A version of the Pro Git book by Scott Chacon and Ben Straub [CS14] is available
online for free on the official Git website. The book covers the usage of Git in great detail,
starting from basic commands all the way through internal tools. It also touches upon
GitHub as a social collaboration platform but doesn’t focus on the other collaboration
tools.

A ZenHub book, Better Software & Stronger Teams [BP16], is available online for
free. The book covers the topics of collaboration tools and practices as well as project
management with GitHub and ZenHub - an agile project management software that
deeply integrates into GitHub. The book is focused on the project management aspect
and doesn’t touch upon the usage of Git itself.

In conclusion, while many materials, both free and commercial, are readily available
online, no one material could be found that fulfilled all the learning objectives set above.
The topics could be covered by combining several different courses or books, but this
would result in great variation in quality, detail and teaching style.

12

2.3 Schedule
The course was designed with the European Credit Transfer and Accumulation System
(ECTS) score of 3 ECTS in mind. In Estonia, one ECTS credit point is considered to be
26 hours of work completed by the student [RVPV09] via in-class lectures and practice
sessions, tests, exams, and independent work, including preparation and study for tests
and exams. Thus, the total workload expected of a participant of a three ECTS course is
78 hours.

The course was divided into eight in-class sessions happening every second Friday
of the semester. Each session was four hours long and consisted of the lecture part and
the practice part.

The learning objectives and materials to be covered were divided between the sessions
and are explained below. For each session, the week of the semester, the date and the
topic of the session are given.

• Week 2 (February 23rd, 2018): Introduction, History of VCS

• Week 4 (March 9th, 2018): Introduction to Git

• Week 6 (March 23rd, 2018): Repository history

• Week 8 (April 6th, 2018): Branching

• Week 10 (April 20th, 2018): Troubleshooting

• Week 12 (May 4th, 2018): Project collaboration on GitHub

• Week 14 (May 18th, 2018): Git hooks and Continuous Integration

• Week 16 (June 1st, 2018): Guest lecture on Mercurial VCS by Toomas Laasik and
preparation for the exam

The course concluded with an exam. Two exam dates were decided: June 4th and
June 8th. A detailed description of the material covered in each session and of the exam
is provided in Section 3.

2.4 Didactic considerations
The course consists of eight in-class sessions, each four hours long. The sessions were
divided into two equal parts - lecture and practice. During the lecture part, the instructor
introduced the students to the material to be covered that week. According to the needs
of the particular topic, the theoretical background, historical information, and specific
tools, software systems, and commands were introduced.

13

During the practical part, the participants were presented with a set of hands-on
exercises on the same topic as that week’s lecture, which illustrate the real-world applica-
tions of the tools and commands introduced. Students were instructed to complete the
exercises independently and submit the results for checking by the next session at the
latest. The practice session was held in class with the presence of the instructor so that
students could receive help, guidance and further clarifications as needed.

All of the lecture materials and practical exercises were prepared and presented by
Stepan Bolotnikov with advice and guidance from Marlon Dumas, PhD. The exception
to the usual pattern is the last session. During the lecture part of the eighth session,
a guest lecture was given by Toomas Laasik. Mr. Laasik introduced the participants
to Mercurial [BLP] - a distributed VCS that can be considered an alternative and a
competition to Git. Work principle, repository hosting services, basic commands and
typical workflow of a software team using Mercurial for source code version control
were presented and illustrated with examples. The practice part of the last lecture was
reserved for a recap of the course, preparation for the exam, and discussion. The main
practical skills that the students should have acquired during the course were recalled,
example exam tasks were presented and students were free to ask questions about the
topics that were covered in the course.

2.5 Grading scheme
A non-differentiated final assessment scheme was used for the course. This means that
instead of getting a letter grade, participants could only be assessed in one of the three
categories: pass, fail, or not present.

In order to get a passing grade, the participant had to fulfil two conditions: actively
participate in at least six out of eight sessions and get a mark of "satisfactory" or "good"
on the exam. Active participation in this context means that it is not sufficient for the
student to just be present at the session; they are expected to participate in the practical
part of the session and submit their result to the instructor by the next session at the latest.

The exam covered all of the practical topics introduced in the course and consisted of
hands-on tasks. It was open-book, but individual. Students were allowed to use course
materials and other online resources, but communication and collaboration on the tasks
were forbidden and was grounds for immediate assignment of a failing grade. The exam
resulted in the grade of "poor", "satisfactory", or "good" and in order to pass the exam,
the students had to get either "satisfactory" or "good". "Good" grade was assigned to
students who were able to complete all of the tasks in the scenario presented in the exam
guidelines with no mistakes. "Satisfactory" was assigned to students who were able to
follow the scenario but made non-critical mistakes, such as failing to consistently follow
naming conventions or having a messy commit history. "Poor" was assigned to students
who were unable to follow the scenario to the end or made big mistakes, such as failing
to use Git branches or committing wrong results. A more detailed description of the

14

exam is provided in Section 3.
A final mark of "not present" was assigned to students who failed to register for an

exam or did not show up for the exam session they registered to.

15

3 Course materials
A number of study materials were created for the course. The materials helped to guide
the in-class activities and helped the students review or study independently in case they
missed a session. The materials can also be used in the future as a base for creation and
delivery of a similar course.

In this section, the materials created for the course are explained in greater detail.
Firstly, a comprehensive list of the types of materials created is presented and elaborated
upon. Later, each week of the course is described in terms of the particular topic and
material to be covered.

3.1 Types of materials created
Several different kinds of materials were created for the course. First of all, a central
material repository was needed in order to grant the course participants easy access
to all information. For this purpose, a course website was created in the Institute of
Computer Science courses environment [Bol]. Institute of Computer Science courses is
a web-based platform using the PmWiki [Yot] content management system for creation
of websites for the courses being taught in the Institute of Computer Science of the
University of Tartu. It is widely used by the majority of courses in the institute and the
students are familiar with it.

PmWiki allows the creation of interlinked pages containing richly formatted text,
images, multimedia, and other information. For this course, a website was created that
contained the organisational information, contact details of the instructor, guidelines of
the practice sessions and examinations, and links to lecture slides, lecture videos, course
evaluation quizzes, and external resources.

It was also decided that there needs to be a communication platform that could be
used by the instructor to relay announcements about the course to students and by the
students to submit their practice session results, get feedback on them, ask questions,
and hold discussions about the course and its contents with the instructor and their peers.
Presently, it is common for courses in the Institute of Computer Science of the University
of Tartu to have an instant messaging platform set up for these purposes. For example,
the course Automata, Languages, and Compilers uses the Fleep messaging software and
courses Software Engineering and Software Testing use the Slack messaging software.

As Slack seemed to be the most common option and thus can be assumed to be the
most familiar to students, it was decided to set up a Slack workspace for the course. The
information about the Slack workspace was provided to the students via lecture slides
and course website. In the majority of the practice sessions, the students were asked
to submit the link to the final result to the instructor in Slack. This is also where they
received the feedback on their submissions.

16

3.1.1 Lecture slides

The first half of each session was reserved for a lecture. Depending on the particular topic,
the lectures included information about the theoretical background, tools, techniques, and
technologies, or historical facts. A set of slides was created for each lecture in order to
enforce a structure and flow of information throughout the session and assist the students
with revision outside of the classroom.

The slides were created with the Google Slides [Goo] software, with some addi-
tional formatting done with Microsoft Powerpoint. Before each lecture, the slides were
converted to the Portable Document Format (PDF) and uploaded to the course website,
where they could be downloaded and viewed by the students.

3.1.2 Lecture videos

Because the classroom where the lectures were being held was equipped with a webcam
and a microphone, it was decided to make a video recording of every lecture and upload
it to the University of Tartu Panopto platform [Pan]. Panopto is an online video recording
and content management software in use by the University of Tartu for sharing and
management of video lectures.

Lecture recordings done with the Panopto software include screen and slide recording
in addition to webcam video and voice. This allows for the creation of rich multimedia
recordings that let the viewers navigate the videos by slides and chapters, see the slide
that the instructor is talking about and see on-screen demonstrations.

The lecture recordings give additional insight into the course delivery procedure after
the fact. This gives students additional context and richer experience when reviewing
lecture topics or studying the material of a missed lecture independently. It also provides
additional context to the lecturer for reviewing their own performance during the lecture
and noticing ways to improve in future lectures or in the next iteration of the course.
Lastly, the lecture recordings can be used to transform Collaboration Tools in Software
Engineering into an online course.

The recording was uploaded to the University of Tartu Panopto service after every
lecture and when ready, the link to the video was added to the course website.

3.1.3 Practice session guidelines

The second half of each session was reserved for the practice session. During this part,
the students were supposed to individually and independently complete a set of hands-on
exercises that were connected to the themes that were introduced in the lecture.

A page on the course website was created for every practice session and a link to the
page was added to the list of lessons before the practice session. The page contained a
list of exercises, guidelines, and explanations about that week’s practice session.

17

Some practice sessions involved the creation of a Git repository, in which case no
additional material was given. However, some practice sessions required the students to
work on an existing repository. In the latter case, a link to the repository hosted in GitHub
was also provided. If students needed to be able to work on that repository directly - as
opposed to making a copy of the repository and working with the copy - students were
granted collaboration access to the repository before the practice session.

Active participation in practice sessions was one of the two main requirements to get
a passing grade for the course. Active participation is defined as the students completing
the tasks of the practice sessions and submitting them to the instructor for checking. If
the students made mistakes in their solutions, they were not marked as absent or asked to
re-do the tasks. Instead, they were simply given feedback on their submission through
the course’s Slack workspace and asked to review the parts of the lecture that they did
not fully understand.

3.1.4 Quizzes

For each session, except for the first and the last, a quiz was prepared and the students
were asked to complete it. The quizzes consisted of multiple choice questions about
the topics covered in that week’s lecture and practice session and served two purposes.
Firstly, the quizzes were to be used as self-evaluation so that students could check if
they understood that week’s learning goals and see what parts they would need to review.
Secondly, the results of the quizzes were used as feedback and were used in the evaluation
of the course to identify what topics students found to be the hardest and delivery of what
topics should be improved upon in potential future iterations of the course. The analysis
of the feedback to the course is presented in Section 4.

The quizzes were created using the SurveyMonkey [Sur] online survey platform.
The free version of SurveyMonkey allows creating unlimited surveys with up to 10
questions, share them with the respondents, collect and effectively analyse answers. A
new survey was created for each session and the link to it was added to the practice
session guidelines.

3.1.5 Exam

Two exam dates were planned for the course: on the 4th and the 8th of June. Initially,
later dates were considered, but an earlier date was settled for. This was due to the fact
that there were several third-year bachelor’s students attending the course and in order to
graduate that semester, they needed to get all marks by the 5th of June at the latest.

The exam was designed to be completed individually over the course of approximately
1.5 hours [Bol18]. It consisted of practical tasks that covered all of the topics introduced
in the practical sessions throughout the course.

18

A Git repository was created for the exam and hosted on GitHub. The repository
included some sample code, commits, issues and pull requests. The students were tasked
with picking an unassigned issue, fixing it, doing some exercises with the history of the
repository and submitting their changes as a pull request. As the last step, they were
required to pick one of the pull requests previously created by the instructor, conduct a
code review, and decide whether the pull request was to be accepted or rejected. Because
the goal of the exam was to demonstrate the students’ knowledge of Git, not software
development, the issues created for the exam repository did not rely on prior knowledge
of any programming language and were mostly simple changes of one row in the existing
files.

It was possible to get a mark of "poor", "satisfactory" or "good" for the exam. "Good"
was awarded to students who were able to follow the scenario of the exam and did not
make any mistakes with the tools and techniques covered by the course. "Satisfactory"
was awarded to those who were able to follow the scenario but made minor mistakes,
such as not following the naming convention set for branches or failing to make commits
at regular times, resulting in messy commit history in their submission. If the student
was unable to follow the scenario or made major mistakes that suggested that the student
did not acquire the skills and knowledge covered in the course, they were graded with
"poor".

A grade of "satisfactory" or "good" on the exam was one of the two main prerequisites
to passing the course, with the other one being active participation in at least six out of
eight practice sessions. If the student got a "poor" grade for the exam, they received a
mark of "failed" for the whole course. If a student did not register to either of the two
exam sessions or failed to attend the session they were registered for, they received a
mark of "not present" for the whole course.

3.2 Topics
The creation of the materials for the course combined materials from several distinct
sources by different authors into one comprehensive set of learning resources that covered
all of the topics outlined in the learning objectives of the course.

The working principles and usage techniques of the Git distributed Version Control
System (VCS) was mostly sourced from Pro Git [CS14] and the official Git documen-
tation [Gita]. Some additional information, especially regarding industry standard best
practices, was sourced from articles by companies and individuals involved with the
development and maintenance of VCS and VCS repository hosting services.

The information about issue tracking, Continuous Integration (CI), and other collab-
oration tools was mostly sourced from Better Software & Stronger Teams [CS14] and
GitHub Guides [Gitc]. The source materials used in a lecture are listed on the last slide
of each lecture’s slides.

19

Below, the contents of each week of the course - the themes covered in the lecture
and the tasks solved during the practice session - are explained.

3.2.1 Introduction, history of Version Control Systems

The first week of the course was focused on covering two topics: introduction to the
course and introduction to VCS. First, the organisation of the course was explained.
The students were familiarised with the lecturer and the structure, schedule, learning
objectives, and evaluation criteria of the course.

Later, introduction to VCS was given. The need for VCS-like software in modern
software development processes was explained. The lecture materials covered the earliest
known VCS and illustrated the development of the technology through time, dividing it
into three commonly recognised generations: local VCS, central VCS, and distributed
VCS [dAS09]. For each generation, the working principles and differences from the
previous generations were explained, the most well known VCS of that generation were
named and a short example of usage was given. As the last topic of the lecture, Git was
introduced. A short history of Git’s development was presented, as well as its unique
features and its main advantages over other contemporary VCS.

The practice session of that week introduced the students to Git and GitHub. The
students were tasked with downloading and installing Git on their computers, registering
a GitHub account, creating their first repository, and adding a file to it - this kind of a
short introduction is also often given in the other courses where students are expected to
use a VCS. This served as an introduction to the platforms and technologies that were
used throughout the course. When the practice session was done, students were asked
to send the link to their repository to the instructor via the course’s Slack workspace in
order to be counted as an active participant of the practice session.

The materials for this week were sourced mainly from Pro Git [CS14], Version Con-
trol by Example [Sin11], and an article [San10] by Pablo Santos from Códice Software, a
company developing the Plastic SCM distributed VCS. The example of usage of Source
Code Control System was taken from Programming Utilities Guide [Sun97] and the
example of usage of Subversion was taken from the Apache Subversion documenta-
tion [Apa].

3.2.2 Introduction to Git

The second week of the course was mainly focused on introducing the basic usage of Git
in greater detail. Commands relating to the configuration of Git, creation and cloning
of Git repositories, checking changesets in and out of the repository, and synchronising
remote repositories were presented and explained. Students had already used some of the
commands, such as git clone, git add, and git push, in the previous practice session,

20

but during this week’s lecture they learned in greater detail what those commands are
used for and exactly what happens when they are invoked.

The first topic of the lecture was Git configuration. The git config command
and types, syntax, and location of the files holding Git configuration parameters were
explained. As an example of what Git configuration is often used for, the concept of Git
aliases was introduced and the creation of aliases was demonstrated.

During the previous practice session, the students used the git clone command
to download a remote Git repository into their computer. This time, the differences
between the git clone and git init commands and the process behind each was
explained. The application of "bare" repositories, common scenarios for creating a
repository to be synchronised between two machines, and usage of remote repositories
and the git remote tool were also explained.

The last part of the lecture was focused on the most common and essential Git
commands in detail. The life-cycle of a file in a Git repository and the staging area
specifically were explained. The commands for staging and resetting changes, checking
changes in and out of the repository, removing files from the repository, and getting
newer data to and from remote repositories were introduced. The usage of a .gitignore
file in Git repositories was also demonstrated.

In the previous practice session, it became apparent that a number of course partici-
pants were not sufficiently familiar with the Unix command line. Because the main tool
for Git usage in the course is Git Bash, which mimics the working principle and com-
mands of a Unix command line, it was decided to start this week’s practice session with
a short reminder of the basic Unix command line tools for navigating and manipulating
the file system. The pwd, ls, cd, mv, cp, rm, and rmdir commands were introduced.

The rest of the practice session consisted of practical exercises that required the
students to use all of the techniques and commands that were introduced in the lecture.
The students were instructed to create a repository, make changes to the configuration of
their local Git installation, set up a .gitignore file, make some changes to the files in
the repository, and synchronise the changes with the remote repository hosted on GitHub.
In order to be counted as an active participant in the session, the students had to send the
instructor a link to the GitHub repository at the end of the session.

The materials for this week were largely sourced from Pro Git [CS14].
This was the first week where students were asked to complete a quiz after the

practice session. The quiz was meant to be used for self-evaluation and as feedback to the
instructor. Another objective of the quizzes is to highlight the topics that were difficult
for the students, which is information that will be useful for improving the materials
in a potential future iteration of the course. The results and analysis of the quizzes is
presented in Section 4.

21

3.2.3 Working with repository history

The third week of the course was focused on the tools for browsing and modifying the
commit history of a Git repository. The way commits are held and managed in a Git
repository was explained. In addition, the git log and git show commands for viewing
the commit log were introduced and changing existing commits via the git rebase
command and the --amend argument of the git commit command was explained.

Firstly, the structure of Git commits was explained. The students were demonstrated
what information is contained in a commit and how commits are uniquely identified
by their Secure Hash Algorithm 1 (SHA-1) hash digest. The working principle of the
SHA-1 algorithm was explained briefly, but the main focus was on the way SHA-1 is
used by Git to ensure data integrity, not the cryptographic and security applications of
the algorithm, so its implementation was not further elaborated upon.

The git log tool was introduced for displaying information about the commit history
of a Git repository. Different arguments for filtering commits to be displayed and the
format in which the data can be output were demonstrated. Examples of a commit log of
a real Git repository were used to illustrate the usage of the command and its arguments.
The usage of the git show command for viewing information about one commit was
explained. Some external tools for browsing the commit history of a repository, including
the tools provided by the GitHub web interface, were demonstrated.

The usage of the git checkout command for reverting the working tree of the
repository to a previously committed state was demonstrated, including the way to
restore a file that had previously been deleted.

Lastly, the git rebase and the --amend argument of the git commit command
were introduced. Examples were used to show how the git rebase command can be
used to modify the commit history of a Git repository by changing the content or order of
commits and deleting commits. The usage of the --amend argument of the git commit
command for changing the latest commit in a repository was demonstrated. The dangers
of changing commits that had already been synchronised with remote repositories were
explained.

The previous practice session showed that several students had problems with un-
derstanding the differences between a normal repository and a "bare" repository. At the
beginning of this week’s session, the differences were explained again and demonstrated
with examples.

The rest of the practice session of this week consisted of a set of practical tasks that
the students were tasked with solving by using the commands and techniques introduced
in the lecture. A Git repository with several commits was created and hosted on GitHub.
The students were introduced to the practice of forking repositories to copy repositories
to their own GitHub account.

The students were then given several questions and tasks that could be solved by using
the commands that were introduced in the lecture. The tasks included navigating the

22

commit history of the repository, restoring a previously deleted file, and modifying history
with the git rebase command. After solving all the tasks, the students were required
to send a link to their repository to the instructor via the course’s Slack workspace and
answer a self-evaluation quiz that was created for this session.

The materials for this week were largely sourced from Pro Git [CS14].

3.2.4 Branching

In this week’s lecture, the concept of branches in VCS and the specifics of branches
in Git were explained. The commands for manipulating branches were introduced:
git branch for viewing, creating, and deleting; git checkout for switching the active
branch; git merge for merging two histories together.

The usage of the git log command that was introduced in the previous lecture was
revisited and expanded upon by introducing new arguments that can be used to view the
history of a Git repository that has multiple branches. The concept of Git aliases was
also revisited and its application was demonstrated through the creation of a short and
easy to remember alias to an otherwise long and elaborate command.

The students were then introduced to the branch workflow and explained what
branches are used for. The different kinds and naming conventions of branches that are
used in popular Git branching workflows were explained with the example of a successful
branching model introduced by Vincent Driessen [Dri10].

Lastly, viewing and switching branches in the GitHub web interface were demon-
strated and the students were provided with additional reading materials about alternative
Git branching models.

In this week’s practice session, the students were tasked with using the tools that
were introduced in the lecture for manipulating branches in an existing repository. A
Git repository with several commits and branches was created and hosted on GitHub.
The students were instructed to fork it, answer some questions about the branches in
the repository, create, merge, and delete branches. Upon completion, the students were
required to send the link to their Git repository to the instructor via the course’s Slack
workspace and fill the self-evaluation quiz.

The materials for this week were largely sourced from Pro Git [CS14] and A Suc-
cessful Branching Model [Dri10].

3.2.5 Troubleshooting

The session of the fifth week focused on two main themes. Firstly, the lecture expanded
on the topic of branching that was introduced in the previous lecture by explaining what
may cause merge conflicts in a Git repository and what steps need to be taken to solve
merge conflicts. Secondly, the git blame and git bisect commands were introduced
and their application to debugging code by tracing the origin or changes was explained.

23

First, the content of the last lecture was briefly revisited by going through a scenario
where the history of a Git repository branches out and the branches eventually merge with
no conflicts. Then, a modified scenario was presented to demonstrate a merge conflict.
The differences between the two and the origins of merge conflicts were explained. The
steps that can be taken to abort the merging process, or to begin to solve a merge conflict
were then presented. Conflict resolution markers were introduced and the procedure of
manually solving a merge conflict was demonstrated. In addition to that, tools for solving
merge conflicts that are part of the IntelliJ IDEA Integrated Development Environment
(IDE) were demonstrated to show how merge conflicts can be solved by using tools
commonly provided by IDEs. IntelliJ IDEA was chosen as an example because it is
a popular and fully-featured IDE that is also being recommended and used in many
programming-related courses in the Institute of Computer Science of the University of
Tartu, so it should be familiar to the students.

Because a Git repository has the information about when, by whom, and how the
code was changed, Git was proposed as a helpful tool for debugging. For this purpose,
the git blame command was introduced for tracing changes made to a file that is being
tracked by a Git repository. Arguments of the command that allow limiting the output
were explained and usage of the command through the tools integrated into IntelliJ IDEA
was shown.

Lastly, the git bisect command was introduced for doing a binary search through
the history of a Git repository. A scenario that illustrated the application of the command
was described.

Instead of having each student making a copy of a repository, this time all students
were granted collaborator access to the repository that was created for the practice session.
Each student then added a directory and a text file to the repository. The students were
tasked with answering some questions about the commit history of the repository and
origin of changes in code files present in the repository. The answers to the questions
could be found by using the git blame command that was introduced in the lecture. The
repository contained an image file. The students were asked to use the git bisect tool
to find the first commit in which the colour of the image had changed. Then, the students
were to simulate a scenario that resulted in a merge conflict and resolve that conflict.
Lastly, the students were to add their name to a text file. As everyone was working in
the same repository and the names were added to the same file, for some students that
resulted in a merge conflict that they were then supposed to resolve.

After all mentioned tasks were completed, the students were instructed to push the
changes that they made to the remote repository and fill the self-evaluation quiz.

The materials for this week were mostly sourced from Pro Git [CS14] and IntelliJ
IDEA help website [Jet].

24

3.2.6 Project collaboration in GitHub

This week’s lecture focused on collaboration tools other than Git. The concept of issue
tracking was introduced and collaboration and project management tools provided by the
GitHub platform were explained.

Firstly, the need for issue tracking software and consistent usage thereof was ex-
plained. The common attributes of issue tracking systems were presented and the
different kinds of issue tracking solutions were demonstrated and exemplified with spe-
cific products. They were compared in terms of flexibility, features, and integrations into
code repositories.

The GitHub platform was used as an example of a collaboration and project man-
agement platform. The features of the issue tracking system that is part of GitHub’s
web platform were explained. The application of GitHub’s project boards to organising
issues was demonstrated. The concept of pull requests was introduced and applied to
the collaboration workflow that is being used on GitHub and other modern repository
hosting services. Lastly, creating pages in GitHub wiki was demonstrated.

For this week’s practice session, a repository with some code was created and hosted
on GitHub. A number of issues were created using the GitHub issue tracker of this
repository. Students were granted collaborator access to the repository. The students
were to pick an issue that had not been assigned to anyone, assign it to themselves, make
the changes necessary to fix the issue, and open a new pull request with their changes.
They were then to request another student to conduct code review of their work and
in turn review someone else’s work. At the same time, the students were to reflect the
status of their issue in a project board of the repository and document their actions in a
new wiki page they had created for themselves. This scenario took the students through
the whole suite of collaboration and project management tools offered by the GitHub
platform.

Finally, the students were also to fill the self-evaluation quiz.
The materials for this week were mostly sourced from the GitHub website [Gitb],

GitHub Guides [Gitc] and Better Software & Stronger Teams [BP16].

3.2.7 Git hooks and Continuous Integration

In the seventh lecture of the course, the concept of Continuous Integration (CI) was
introduced and Git hooks were explained as a way to automate tasks with Git.

Firstly, the need for automating certain parts of the software development was
explained and CI as a service for automating testing and building of applications was
introduced. The typical features of a CI service were listed and the different ways of
setting up CI were presented. Git provides hooks - a way to launch scripts when certain
events in repository occur. Git hooks were proposed as a way of setting up CI.

The different types of events that can trigger Git hooks were presented. For each

25

hook, the triggering event and common applications were discussed. The technical
details of creating a Git hook were explained and an example Git hook was demonstrated.
An example setup of a CI system with Git hooks was presented.

Finally, some popular CI tools and the ways of setting up a CI service with a GitHub
repository were presented. Travis CI was used as an example.

This week’s practice session was mostly about setting up Travis CI with a GitHub
repository and creating a Git hook to demonstrate how they work. The students were to
create a new repository, add some example code, sign up for a Travis CI account, and set
up automated testing for the example code with Travis CI. An example automated test for
a script written in the Python language and an example Travis CI configuration file for
an application written in Python were given. The Python script had a small error, which
the students were meant to find and fix with the help of automated testing with CI. The
students were then to add an image to the readme file of the repository that displayed the
current state of the CI. Finally, the students were tasked with using the same test script to
create a pre-commit hook in their repository and inspect how it works.

After completing all the tasks, the students were required to send the link to their
repository to the instructor via the course’s Slack workspace and fill a self-evaluation
quiz.

Travis CI was chosen as the CI service for this practice session for several reasons.
Firstly, it is delivered as a Software as a Service (SaaS) and doesn’t need to be installed
and configured separately. Secondly, it is free for all open-source projects and thirdly, it
directly and seamlessly integrates with GitHub repositories.

The materials for this week were mostly sourced from Pro Git [CS14], the GitHub
website [Gitc], and Travis CI website [Tra].

3.2.8 Guest lecture, preparation for exam

For the last week of the course, a guest lecturer - Toomas Laasik (Interactive Fate
OÜ [Int]) - prepared and delivered a lecture about Mercurial. Mercurial is another
distributed VCS that can be considered an alternative and competition to Git [Tho08].
Mr. Laasik explained the main differences between Git and Mercurial, demonstrated the
usage of Mercurial and presented popular collaboration tools that can be used with it,
such as repository hosting services and issue tracking tools. The lecture was illustrated
with examples of real software projects that used Mercurial for source code management.
This topic was chosen to give the students a wider view of the state of the industry
regarding the usage of VCS and give an in-depth view into a serious alternative to Git by
an industry professional with years of experience working with teams that use Mercurial
as primary VCS.

The practice session of the last week was reserved for preparation for the exam. The
main techniques and tools that were covered in the course were revisited, example exam
exercises were solved and a discussion about the course in general was held, during

26

which the students were able to give feedback to the instructor and ask questions about
parts of the course that seemed vague or confusing or about related topics that were not
covered in the course.

27

4 Results and course evaluation
This section describes the process and materials that were used to evaluate the quality
of the course and judge the fit of the materials described in Section 3 to the objectives
described in Section 2. Results of the evaluation are analysed and conclusions are drawn,
identifying the weak points and suggesting improvements for potential future iterations
of the course.

4.1 Course evaluation criteria
Because the deadline for the submission of master’s theses was earlier than the end of the
semester, formal feedback that is usually collected by the University of Tartu at the end
of each semester and exam results were not available at the time of writing of this thesis.
Consequently, a set of quizzes and a final questionnaire were created to be used for the
purpose of the evaluation of this course. A quiz was created for each week of the course,
excluding the first and the last week. The first week was excluded due to the mostly
introductory nature of the lecture and the last week was excluded because it consisted of
a guest lecture and revision of the course materials in preparation for the exam.

The quizzes were made up of multiple choice questions about the materials covered
in the corresponding lecture. In addition to feedback for the course, the quizzes also
served as self-evaluation for the students. The full list of quizzes and the questions that
they consisted of is presented in Appendix I.

The final questionnaire consisted of questions that were meant to collect the students’
opinions and evaluations of the course. The questions were sourced from the Berkeley
Center for Teaching and Learning Course Evaluations Questions Bank [Uni]. Questions
were selected based on how they fitted the content and structure of the course. An
additional open-ended question was added. The questions were either open-ended, used
a scale from 1(lowest) to 5(highest), or used a five-level Likert-type scale to collect the
students’ attitudes towards the course. The questionnaire included just 14 questions,
which is less than the formal course feedback form that is used by the University of Tartu,
to avoid fatigue effect. The questions are presented in Table 1.

The free version of the SurveyMonkey platform, which was used for the weekly
quizzes, was not used to create the questionnaire because of its 10-question limit. Instead,
ProProfs [Pro] was used for the final questionnaire. ProProfs offers a similar service
and a subscription to the platform was available courtesy of Marlon Dumas, PhD, the
supervisor of this thesis.

The questionnaire was filled by the students at the end of the practice session of the
seventh week. Because the questionnaire was filled in class, it actually yielded more
data than could have otherwise been expected of the formal university feedback, as it is
optional and is filled by the students in their free time.

28

Table 1. The final course feedback questionnaire

Number Question Type
1 The instructor explained concepts clearly Likert-type
2 The instructor was helpful when I had difficulties or

questions
Likert-type

3 The instructor presented content in an organized man-
ner

Likert-type

4 The instructor provided clear constructive feedback Likert-type
5 The instructor encouraged student questions and par-

ticipation
Likert-type

6 How would you rate the overall effectiveness of the
instructor’s teaching?

1-5

7 The course was effectively organized Likert-type
8 The course instructions (including, manuals, handouts,

etc.) were clear
Likert-type

9 The course developed my abilities and skills for the
subject

Likert-type

10 The course developed my ability to apply theory to
practice

Likert-type

11 How satisfied were you with this course? 1-5
12 Please identify what you consider to be the strengths

of the course.
Open-ended

13 Please identify area(s) where you think the course
could be improved.

Open-ended

14 Please write any other comments or suggestions you
have regarding the instructor, the course, the materials,
etc

Open-ended

4.2 Analysis of feedback
Firstly, the quizzes are analysed. For each quiz, the overall completion rate and the aver-
age score are shown. The questions that received the most incorrect answers are looked
at in greater detail. The full set of data that was collected via the quizzes is included
with this thesis in Comma-Separated Values (CSV) files week_2_quiz_responses.csv
through week_7_quiz_responses.csv.

Secondly, the feedback questionnaire is analysed. The students’ overall satisfaction
with the course is inspected, problematic places are identified and suggestions are
considered. The full set of responses to the final questionnaire is included with this thesis
in the file feedback_questionnaire_responses.csv.

29

4.2.1 Quizzes

The second week covered the basic usage of Git and the quiz consisted of questions
about the tools that were introduced during that week’s session. The quiz was filled
by 13 students and had an average score of 66%. The distribution of score is shown in
Figure 1. Only one student got all answers right and no question was answered correctly
by everyone.

Figure 1. The distribution of scores in the quiz for the second week

The hardest question was question number one: "What is NOT one of the ways to
change Git configuration?". The question had five options:

1. Manually edit the /.gitconfig file;

2. Manually edit the .gitconfig file in the repository;

3. Manually edit the /etc/gitconfig file;

4. Use the "git config" command;

5. Manually edit the .git/configfile in the repository.

Out of them, the second one was correct and was chosen by five people, but options
number three, four, and five were also popular choices (two, two, and four people,
respectively). This suggests that the topic of different files that hold Git configuration
parameters remained confusing to the students. While they also received some wrong
answers, the other questions of this quiz had a much higher average score, as seen in
Figure 2.

30

Figure 2. The average score per question of the quiz of the second week

The third week covered the navigation and manipulation of the commit history of
a Git repository. The quiz was filled by 16 students and had an average score of 95%.
Score distribution was considerably better than in the second week (see Figure 3). Five
out of Eight questions were answered correctly by all students and 12 out of 16 students
answered all questions correctly.

Figure 3. The distribution of scores in the quiz for the third week

The most challenging question, with 3 students having answered it incorrectly, was
question four: "What command is used to change the last commit?". The correct
answer was "git commit --amend", but three students chose "git commit --rebase".
The git commit command doesn’t have a --rebase argument and the answer was

31

specifically designed to see if the students had paid attention and remembered the
difference between the --amend argument and the git rebase command, both of
which were introduced in the lecture. The feedback of one student suggested that they
would have wished to see a longer or more thorough demonstration of the usage of the
git rebase command. The average score per question can be seen in Figure 4.

Figure 4. The average score per question of the quiz of the third week

The fourth week of the course covered branching. The quiz was filled by 17 students
and had an average score of 84%. The distribution of score is shown in Figure 5. Two
students answered all the questions correctly and three questions were answered correctly
by everyone.

Figure 5. The distribution of scores in the quiz for the fourth week

32

The hardest question this time was question number seven: "How to sync branches
with a remote?". The correct answer was "Branches have to be synced explicitly", but
six out of 17 people chose "Branches are synced automatically when you use git pull
and git push". This is an important distinction in how Git handles local and remote
changes and evidently should have been stressed more in this week’s lecture. However,
submissions of this week’s practice session and later practice sessions have shown that
students had no problem with branching later on. The average score per question can be
seen in Figure 6.

Figure 6. The average score per question of the quiz of the fourth week

The fifth week covered merge conflicts and tracing changes in the code. It was filled
by 12 students and the average score was 83%. Two students answered all the questions
correctly and three questions were answered correctly by everyone. The distribution of
score is shown in Figure 7.

The hardest question was number eight: "What is git bisect tool used for?". Six
out of 12 students chose the correct answer: "Performing a binary search on the history
of a Git repository". Four students chose "Splitting a file into changes made in different
commits", one student chose "Splitting a file into changes made in different branches",
and one student chose "Performing a binary search on the contents of a file". The second
hardest question was number seven: "What command is used to annotate each line of
a file with what commit last affected it?". The correct answer was "git blame" and
as chosen by seven out of 12 students, but four students chose "git bisect" and one
student chose "git annotate". The git bisect command was introduced in the lecture
but can be considered an advanced Git tool and the results of those two questions suggest
that the students had problems understanding it, so perhaps a longer or more detailed
demonstration and explanation of the tool is needed. The average score per question is
shown in Figure 8.

33

Figure 7. The distribution of scores in the quiz for the fifth week

Figure 8. The average score per question of the quiz of the fifth week

The sixth week covered project collaboration tools provided by the GitHub platform.
The quiz was filled by 14 students and the average score was 87%. Three students
answered all the questions correctly and no question was answered correctly by everyone.
The distribution of the score can be seen in Figure 9.

The hardest question was number one: "Which of these is not part of GitHub’s project
management tools?". Multiple answers could have been chosen, the correct ones being
"Velocity calculator" and "Team chat". All students chose the former, but only nine out
of 14 students chose the latter. Additionally, one student chose "Wiki". In the case of this
question, it seems that most students simply did not notice that it was possible to choose
more than one correct answer. The average score per question can be seen in Figure 10.

The seventh week of the course was the last week to have a quiz. It covered the topics

34

Figure 9. The distribution of scores in the quiz for the sixth week

Figure 10. The average score per question of the quiz of the sixth week

of Git hooks and Continuous Integration (CI). The quiz was filled by 14 students and the
average score was 94%. Four questions were answered correctly by all the students and
seven students answered correctly to all the questions (see Figure 11).

The most incorrect answers were given to question three: "Which is not a category
of Git hooks?". The correct answer, "Branching hooks", was chosen by 12 out of 14
students, one person chose "Receiving hooks", and one chose "Other client-side hooks".
However, it should be noted that there were only two incorrect responses, which is a
low number that does not suggest that the topic of the question was especially difficult.
Moreover, the categories were already mentioned explicitly several times during the
lecture. Another question with the same average score was question number eight: "How

35

can CI be used on GitHub?". It had five options and students could choose multiple
responses:

1. GitHub has their own CI tool;

2. With receiving (server-side) Git hooks;

3. With a CI application from GitHub Marketplace;

4. With GitHub Webhooks;

5. With a special script added to the GitHub repository.

Figure 11. The distribution of scores in the quiz for the seventh week

Out of those, options three and four were correct, but other options were also popular:
option two was chosen by eight out of 14 students. The results of this question suggest
that the students might have gotten confused by the different ways of setting up CI in
GitHub and with other repository hosting options and the different options should have
been explained in a more approachable way. In general, this quiz was answered quite
well and the average scores of different questions were quite similar (see Figure 12).
Several students mentioned in the feedback that they were glad that CI was explained
in the course, as they were curious about it and considered it a good introduction to
the technology that they would have to use in the Software Project course in the next
semester.

In conclusion, the quiz results show that the course was successful in enabling
students to achieve a good understanding and mastery of the knowledge and skills that
were covered in the lectures and practice sessions. Still, some of the mistakes were

36

Figure 12. The average score per question of the quiz of the seventh week

common enough to suggest that certain topics could have been handled better and their
presentation should be revised for a potential future iteration of the course. The following
topics seemed to have caused the most confusion:

• Different files holding Git configuration parameters and ways of changing the
configuration;

• The differences between the git rebase and git commit --amend commands;

• The lack of automatic propagation of changes (e.g. new branches) in Git;

• The usage of the git bisect command;

• Different ways of setting up CI.

4.2.2 Feedback questionnaire

The final course feedback questionnaire was created in order to collect the students’
opinion on the course. It was filled during the practice session of the seventh week of the
course, which was attended by 17 out of 24 students. The structure of the questionnaire
is presented in Table 1. The results of the questionnaire show that the students were
largely satisfied with the organization of the course (Figure 19), the presentation of
the materials (Figure 15), the help that they got from the instructor (Figure 14), and
the overall effectiveness of the instructor’s teaching (Figure 18). The clarity of the
explanations of the concepts (Figure 13), clarity of the instructions (Figure 20), and
feedback from the instructor (Figure 16) received lower grades but were still mostly
well-received. More students disagreed with the statement that the instructor encouraged

37

student question and participation (Figure 17), which is understandable since the practice
sessions were almost always individual and the lectures were mostly focused on the
instructor presenting the concepts, not discussion. Overall, the students were satisfied
with the course: 71% of the students gave the course a rating of five and the remaining
29% gave it a rating of four out of five (Figure 23). Over half of the students strongly
agreed that the course was useful in developing their knowledge and skills on the subject
(Figure 21) and their ability to apply theory to practice (Figure 22).

Figure 13. The distribution of evaluation of the statement "The instructor explained the
concepts clearly"

Figure 14. The distribution of evaluation of the statement "The instructor was helpful
when I had difficulties or questions"

38

Figure 15. The distribution of evaluation of the statement "The instructor presented
content in an organized manner"

Figure 16. The distribution of evaluation of the statement "The instructor provided clear
constructive feedback"

The questionnaire also had three open-ended questions, which asked the students to
identify the strengths and weaknesses of the course and leave general feedback. As the
strong points of the course, the clear organizational structure and the practicality of the
course stand out. As weak points, students answered that some concepts should have
been explained more clearly and that the overall structure of the course would be better
if it happened every week and so lasted half a semester, instead of having a session every
two weeks and lasting the full semester.

39

Figure 17. The distribution of evaluation of the statement "The instructor encouraged
student questions and participation"

Figure 18. The distribution of answers to the question "How would you rate the overall
effectiveness of the instructor’s teaching?"

4.3 Ideas for improvement
The results of the weekly quizzes suggest that some of the topics that were presented in
the course were somewhat confusing and should have been handled better. Below are
some observations on the difficult topics and ideas how their delivery can be improved.

The different files holding Git configuration parameters and the different ways of
changing the configuration were the most confusing part of the second week’s lecture.
The differences should be emphasised and explained more clearly. It is worth considering
to revise this part altogether and perhaps simplify it to cover only the global configuration,

40

Figure 19. The distribution of evaluation of the statement "The course was effectively
organized"

Figure 20. The distribution of evaluation of the statement "The course instructions
(including, manuals, handouts, etc.) were clear"

which is sufficient for the basic usage of Git.
The students confused the git rebase command with the git commit --amend

command. While the commands are similar in the way that they can both be used to over-
write commits, their usage is different and they should not be confused. Thus, a clearer
explanation is needed. Moreover, only one of the potential uses of the git rebase
command was demonstrated. During the lecture, it was suggested that rebasing already
pushed changes is harmful. In a future iteration, it might be beneficial to demonstrate and
explain the potential benefits of a more frequent use of the git rebase command for cre-

41

Figure 21. The distribution of evaluation of the statement "The course developed my
abilities and skills for the subject"

Figure 22. The distribution of evaluation of the statement "The course developed my
ability to apply theory to practice"

ating a cleaner commit history [Sia17] and as an alternative to merging of branches[Atla].
The quiz that focused on branching demonstrated that students were expecting

branches to be propagated to remote repositories automatically. While everyone seemed
to master branching later on through its use in practice sessions, it is important to
understand that local-first is an approach that Git uses almost in every part of the system,
i.e. all changes are only kept locally unless explicitly specified to be propagated to other
repositories by the user. This aspect should have been explained earlier in the course and
referenced throughout the semester.

Students showed confusion with the usage of the git bisect command. While it

42

Figure 23. The distribution of answers to the question "How satisfied were you with the
course?"

is a powerful tool, it might not be connected enough to the rest of the course to justify
covering it. In a future iteration, the importance of the tool and the way of presenting it
should be revised.

Lastly, students showed confusion between the various ways of setting up CI. The
structure of the lecture should be reconsidered, either providing a more direct and clear
explanation of the different ways or omitting some information for the sake of clarity.

Some additional ideas for future improvement came from the students’ answers to
the final course feedback questionnaire. Some students felt that the course would be
more efficient if lectures happened every week instead of once every two weeks. A few
also said that they expected more work or more complicated exercises and one student
explicitly suggested that the amount of work that was required for the course was less than
can be expected of a 3 ECTS course. Another weak point that was identified was that the
course wasn’t interactive or collaborative enough. Based on these observations, a future
iteration of the course could be redesigned to include one or more graded homework
assignments in addition to the in-class sessions. For example, the students could be
divided into groups and required to work together on the same repository throughout
the practical sessions of the course, applying new tools and skills to the same repository
every time. This would help reinforce the concepts that are covered in the lectures and
practice sessions in a more realistic setting and highlight the connection between the
presented concepts and inner-team collaboration as well as demonstrate the importance
of solving conflicts that arise from multiple people working with the same repository.

43

5 Conclusion
This thesis described the process of development and delivery of a new course in the
Institute of Computer Science of the University of Tartu. The course, titled Collaboration
Tools in Software Engineering, was designed with the European Credit Transfer and
Accumulation System (ECTS) score of 3 ECTS in mind and targeted the students of the
Computer Science bachelor’s curriculum. The course was taught in the spring semester
of the 2017/18 academic year and was attended by 24 students.

In Section 2, the learning objectives set for the course were explained. A number
of existing courses in the University of Tartu were inspected and demonstrated to refer
to or rely on the knowledge of the subject of this course, showing the need for the
course. Existing materials were reviewed and shown to not match the set learning
objectives. Didactic and design considerations, including schedule and grading scheme,
were explained.

A number of materials were created as part of this thesis. In Section 3, the materials
were explained in greater detail. The course materials include a set of presentation slide
decks for each lecture, video lectures, practice session guidelines, self-evaluation quizzes,
and an exam. For each week of the course, the topic was explained, giving detailed
insight into the concepts, techniques, and tools that were covered.

Lastly, in Section 4, the materials that were created and used to evaluate the course
were explained. The course was evaluated with weekly quizzes and a final feedback
questionnaire, which were filled by the students. The analysis of the evaluation of the
course shows that the course was useful to the students for getting to know the concepts
of Version Control Systems (VCS), issue tracking and collaboration, and Continuous
Integration (CI) and that students were mostly pleased with the organization and delivery
of the course. The strengths and weaknesses of the course that were highlighted by the
students are identified and discussed and improvements for a potential future iteration of
the course are proposed.

All of the materials that were created for the course can be accessed from the website
of the course in the courses environment of the Institute of Computer Science of the
University of Tartu at the following web address: https://courses.cs.ut.ee/2018/
cse.

44

https://courses.cs.ut.ee/2018/cse
https://courses.cs.ut.ee/2018/cse

References
[Agi] Õppeaine üldandmed: MTAT.03.295 Väle tarkvaraarendus.

https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1223429+
HTML+30816172006503896849+text/html. Online; accessed 09.05.2018.

[Apa] Apache Software Foundation. Subversion Basics. https://openoffice.
apache.org/svn-basics.html. Online; accessed 11.05.2018.

[Atla] Atlassian Corporation Plc. Merging vs. Rebasing. https://www.
atlassian.com/git/tutorials/merging-vs-rebasing. Online; ac-
cessed 19.05.2018.

[Atlb] Atlassian Corporation Plc. Version Control with Git | Coursera. https:
//www.coursera.org/learn/version-control-with-git. Online; ac-
cessed 09.05.2018.

[Aut] Õppeaine üldandmed: LTAT.03.006 Automaadid, keeled ja translaatorid.
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228865+
HTML+30816172006503896849+text/html. Online; accessed 09.05.2018.

[BLP] Arne Babenhauserheide, Steve Losh, and David Soria Parra. Mercurial SCM.
https://www.mercurial-scm.org/. Online; accessed 10.05.2018.

[Bol] Stepan Bolotnikov. Collaboration Tools is Software Engineering - Courses
- Institute of Computer Science. https://courses.cs.ut.ee/2018/cse/
spring. Online; accessed 10.05.2018.

[Bol18] Stepan Bolotnikov. Exam | Collaboration Tools in Software Engineer-
ing. https://courses.cs.ut.ee/2018/cse/Main/Exam, 2018. Online;
accessed 20.05.2018.

[BP16] Matt Butler and Paige Paquette. Better Software & Stronger Teams. ZenHub,
2016.

[Cod] Codecademy Inc. Learn Git | Codecademy. https://www.codecademy.
com/learn/learn-git. Online; accessed 09.05.2018.

[Col] Õppeaine üldandmed: LTAT.05.009 Koostöövahendid tarkvaraarenduses.
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1229547+
HTML+30816172006503896849+text/html. Online; accessed 09.05.2018.

[CS14] Scott Chacon and Ben Straub. Pro git. Apress, 2014.

45

https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1223429+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1223429+HTML+30816172006503896849+text/html
https://openoffice.apache.org/svn-basics.html
https://openoffice.apache.org/svn-basics.html
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://www.coursera.org/learn/version-control-with-git
https://www.coursera.org/learn/version-control-with-git
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228865+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228865+HTML+30816172006503896849+text/html
https://www.mercurial-scm.org/
https://courses.cs.ut.ee/2018/cse/spring
https://courses.cs.ut.ee/2018/cse/spring
https://courses.cs.ut.ee/2018/cse/Main/Exam
https://www.codecademy.com/learn/learn-git
https://www.codecademy.com/learn/learn-git
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1229547+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1229547+HTML+30816172006503896849+text/html

[dAS09] Brian de Alwis and Jonathan Sillito. Why are software projects moving from
centralized to decentralized version control systems? 2009 ICSE Workshop
on Cooperative and Human Aspects on Software Engineering, pages 36–39,
2009.

[Dri10] Vincent Driessen. A successful Git branching model. http://nvie.com/
posts/a-successful-git-branching-model, 2010.

[Ent] Õppeaine üldandmed: MTAT.03.229 Ettevõttesüsteemide integreerim-
ine. https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1200832+
HTML+30816172006503896849+text/html. Online; accessed 09.05.2018.

[flo16] flow.ci. GitHub vs. Bitbucket vs. GitLab
vs. Coding. https://medium.com/flow-ci/
github-vs-bitbucket-vs-gitlab-vs-coding-7cf2b43888a1, Septem-
ber 2016. Online; accessed 09.05.2018.

[Gita] Git - Reference. https://git-scm.com/docs. Online; accessed.

[Gitb] GitHub Inc. Features · Project management. https://github.com/
features/project-management. Online; accessed 12.05.2018.

[Gitc] GitHub Inc. GitHub Guides. https://guides.github.com/. Online;
accessed 09.05.2018.

[Gitd] Github Inc. The world’s leading software development platform - GitHub.
https://github.com/. Online; accessed 09.05.2018.

[Gite] GitLab B.V. GitLab University | GitLab. https://docs.gitlab.com/ee/
university/. Online; accessed 09.05.2018.

[Goo] Google LLC. Google Slides - create and edit presentations online, for free.
https://www.google.com/slides/about/. Online; accessed 10.05.2018.

[Inf] Infinite Skills Inc. Learning Git - A Beginners Git Course From Infinite Skills
| Udemy. https://www.udemy.com/learning-git/. Online; accessed
09.05.2018.

[Int] Interactive Fate. http://www.interactivefate.com/. Online; acceessed
18.05.2018.

[Jet] JetBrains s.r.o. Version control with IDEA - Help | IntelliJ IDEA. https:
//www.jetbrains.com/help/idea/version-control-integration.
html. Online; accessed 12.05.2018.

46

http://nvie. com/posts/a-successful-git-branching-model
http://nvie. com/posts/a-successful-git-branching-model
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1200832+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1200832+HTML+30816172006503896849+text/html
https://medium.com/flow-ci/github-vs-bitbucket-vs-gitlab-vs-coding-7cf2b43888a1
https://medium.com/flow-ci/github-vs-bitbucket-vs-gitlab-vs-coding-7cf2b43888a1
https://git-scm.com/docs
https://github.com/features/project-management
https://github.com/features/project-management
https://guides.github.com/
https://github.com/
https://docs.gitlab.com/ee/university/
https://docs.gitlab.com/ee/university/
https://www.google.com/slides/about/
https://www.udemy.com/learning-git/
http://www.interactivefate.com/
https://www.jetbrains.com/help/idea/version-control-integration.html
https://www.jetbrains.com/help/idea/version-control-integration.html
https://www.jetbrains.com/help/idea/version-control-integration.html

[Mar09] Robert C Martin. Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009.

[Mob] Õppeaine üldandmed: MTAT.03.262 Mobiilirakenduste loomine.
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1211989+
HTML+30816172006503896849+text/html. Online; accessed 09..05.2018.

[Obj] Õppeaine üldandmed: LTAT.03.003 Objekt-orienteeritud programmeerim-
ine. https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228862+
HTML+30816172006503896849+text/html. Online; accessed 09.05.2018.

[Ope] OpenClassrooms. Manage your code with Git and GitHub
- OpenClassrooms. https://openclassrooms.com/courses/
manage-your-code-with-git-and-github. Online; accessed
09.05.2018.

[Pan] Collaboration Tools in Software Engineering (LTAT.09.005): Panopto.
https://panopto.ut.ee/Panopto/Pages/Sessions/List.aspx#
folderID=%226b0d2e71-2455-4315-bdec-6d5da75b8f9a%22&
folderSets=3. Online; accessed 10.05.2018.

[Pro] ProProfs. ProProfs - Knowledge Management Software. https://www.
proprofs.com/. Online; accessed 13.05.2018.

[Rho] RhodeCode Enterprise. Version Control Systems Popularity in 2016. https:
//rhodecode.com/insights/version-control-systems-2016. Online;
accessed 09.05.2018.

[RVPV09] Siret Rutiku, Aune Valk, Einike Pilli, and Kätlin Vanari. Õppekava aren-
damise juhendmaterjal, 2009.

[San10] Pablo Santos. The version control timeline. http://blog.plasticscm.
com/2010/11/version-control-timeline.html, November 2010. On-
line; accessed 11.05.2018.

[SC] Jason Long Scott Chacon. Git. https://git-scm.com/. Online; accessed
09.05.2018.

[Sia17] Adrien Siami. Editing your git history with rebase for cleaner pull requests.
https://drivy.engineering/git-rebase-edit-history/, April 2017.
Online; accessed 19.05.2018.

[Sin11] Eric Sink. Version control by example, volume 20011. Pyrenean Gold Press
Champaign, IL, 2011.

47

https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1211989+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1211989+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228862+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228862+HTML+30816172006503896849+text/html
https://openclassrooms.com/courses/manage-your-code-with-git-and-github
https://openclassrooms.com/courses/manage-your-code-with-git-and-github
https://panopto.ut.ee/Panopto/Pages/Sessions/List.aspx#folderID=%226b0d2e71-2455-4315-bdec-6d5da75b8f9a%22&folderSets=3
https://panopto.ut.ee/Panopto/Pages/Sessions/List.aspx#folderID=%226b0d2e71-2455-4315-bdec-6d5da75b8f9a%22&folderSets=3
https://panopto.ut.ee/Panopto/Pages/Sessions/List.aspx#folderID=%226b0d2e71-2455-4315-bdec-6d5da75b8f9a%22&folderSets=3
https://www.proprofs.com/
https://www.proprofs.com/
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016
http://blog.plasticscm.com/2010/11/version-control-timeline.html
http://blog.plasticscm.com/2010/11/version-control-timeline.html
https://git-scm.com/
https://drivy.engineering/git-rebase-edit-history/

[Sofa] Õppeaine üldandmed: LTAT.05.003 Tarkvaratehnika. https:
//www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228873+HTML+
30816172006503896849+text/html. Online; accessed 09.05.2018.

[Sofb] Õppeaine üldandmed: LTAT.05.005 Tarkvaraprojekt. https:
//www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228875+HTML+
30816172006503896849+text/html. Online; accessed 09.05.2018.

[Sun97] Sun Microsystems, Inc. Programming Utilities Guide. 1997. Online;
accessed 11.05.2018.

[Sur] SurveyMonkey. SurveyMonkey: The World’s Most Popular Online Survey
Tool. https://www.surveymonkey.com/dashboard/. Online; accessed
10.05.2018.

[Tho08] Patrick Thomson. Git vs. Mercurial: Please Relax. https:
//importantshock.wordpress.com/2008/08/07/git-vs-mercurial/,
2008.

[Tra] Travis CI, GmbH. Travis CI - Test and Deploy with Confidence. https:
//travis-ci.com/. Online; accessed 12.05.2018.

[Uda] Udacity Inc. How to Use Git and GitHub | Udacity. https://eu.udacity.
com/course/how-to-use-git-and-github--ud775. Online; accessed
09.05.2018.

[Uni] University of California, Berkeley. Course Evaluations Question Bank
| Center for Teaching & Learning. https://teaching.berkeley.edu/
course-evaluations-question-bank. Online; accessed 13.05.2018.

[Web] Õppeaine üldandmed: LTAT.05.004 Veebirakenduste loomine.
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228874+
HTML+30816172006503896849+text/html. Online; accessed 09.05.2018.

[Yot] Petko Yotov. PmWiki. https://www.pmwiki.org/. Online; accessed
10.05.2018.

48

https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228873+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228873+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228873+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228875+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228875+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228875+HTML+30816172006503896849+text/html
https://www.surveymonkey.com/dashboard/
https://importantshock.wordpress.com/2008/08/07/git-vs-mercurial/
https://importantshock.wordpress.com/2008/08/07/git-vs-mercurial/
https://travis-ci.com/
https://travis-ci.com/
https://eu.udacity.com/course/how-to-use-git-and-github--ud775
https://eu.udacity.com/course/how-to-use-git-and-github--ud775
https://teaching.berkeley.edu/course-evaluations-question-bank
https://teaching.berkeley.edu/course-evaluations-question-bank
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228874+HTML+30816172006503896849+text/html
https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1228874+HTML+30816172006503896849+text/html
https://www.pmwiki.org/

Appendix

I. Quizzes
Below, the quizzes that were created for course evaluation are presented. For each quiz,
questions are listed. Under each question, it’s type and a list of possible answers (where
applicable) are presented. Answers that are considered correct are highlighted in bold.

Week 2
1. What is NOT one of the ways to change Git configuration?

Question type: multiple choice.

1. Manually edit the /.gitconfig file

2. Manually edit the .gitconfig file in the repository

3. Manually edit the /etc/gitconfig file

4. Use the "git config" command

5. Manually edit the .git/config file in the repository

2. Which of these is used to create the internals of a .git directory in the current
directory?

Question type: multiple choice.

1. git clone --bare

2. git init

3. git init --bare

4. git add --bare

5. git create internals .

49

3. What is the correct form of the command to add a new remote repository?

Question type: multiple choice.

1. git remote add <name> <address>

2. git remote add <address> <name>

3. git remote add <address>

4. git remote <name> <address>

5. git config remote.<name> <address>

4. What does the command "git clone" do?

Question type: multiple choice.

1. Copies a file to a given location

2. Gets the latest state of the repository

3. Copies the entire repository

4. Stages a file for commit

5. Commits a snapshot of the current working tree to the repository

5. What is "git add" command NOT used for?

Question type: multiple choice.

1. Adding a previously untracked file to the repository

2. Adding a modified file to the staging area

3. Adding the contents of a directory to the staging area

4. Adding a file to the remote repository

5. Adding a part of a modified file to the staging area

50

6. What common feature of a modern VCS does Git NOT have?

Question type: multiple choice.

1. Explicit tracking of file movement

2. Branching capabilities

3. Distributed workflow

4. Multi-user support

5. Git has all these features

7. Which of these is a correct rule for a .gitignore file?

Question type: multiple choice.

1. .DS_Store

2. *.exe

3. images/**/*.svg

4. build/

5. All of these are correct

8. What is the difference between git reset and git rm commands?

Question type: multiple choice.

1. git rm is an alias for git reset

2. git rm removes files from tracking; git reset removes changes from the
staging area

3. git rm removes changes from the staging area; git reset removes files from
tracking

4. git rm removes files; git reset restarts Git

5. "Reset" is a SVN command, not a Git command

9. Any comments on the content and presentation of this lesson:

Question type: open-ended.

51

Week 3
1. What identifies a commit in Git?

Question type: multiple choice.

1. SHA-1 hash

2. MD5 hash

3. Commit number

4. Commit name

5. Secure title

2. Which one of these is NOT associated with a commit

Question type: multiple choice.

1. Commit hash

2. Author name

3. Commit time

4. Author IP address

5. Committer name

3. What command is used to view the full commit history?

Question type: multiple choice.

1. git commits

2. git history

3. git log

4. git show

5. git rebase

52

4. What command is used to change the last commit?

Question type: multiple choice.

1. git commit --redo

2. git commit --rebase

3. git commit --change

4. git commit --amend

5. git show

5. Which command produces the least output per commit?

Question type: multiple choice.

1. git log --pretty=fuller

2. git log --oneline

3. git log --pretty=full

4. git log

5. git log --pretty=medium

6. What command can be used to change commit history?

Question type: multiple choice.

1. git redo

2. git remake

3. git recommit

4. git checkin

5. git rebase

53

7. Which statement is true?

Question type: multiple choice.

1. You can’t overwrite commits in a remote repository because it’s impossible in Git

2. You shouldn’t overwrite commits in a remote repository because you might
overwrite other people’s work

3. You shouldn’t overwrite commits in a remote repository because it’s computation-
ally intensive

4. Overwriting commits in a remote repository is allowed and in many cases encour-
aged

5. Git saves the commits in a remote repository in a backup in case you need them
after overwriting them

8. How to restore a file that was previously deleted?

Question type: multiple choice.

1. git checkout <commit> <file>

2. git undelete <file> <commit>

3. git add <file>

4. git rebase <file>

5. git pull --deleted <file>

9. Any comments on the content and presentation of this lesson:

Question type: open-ended.

Week 4
1. What command is used to list existing branches?

Question type: multiple choice.

1. git branches

2. git list-branch

54

3. git branch

4. git tree

5. git log branches

2. What command is used to switch branches?

Question type: multiple choice.

1. git branch

2. git pull

3. git goto

4. git checkout

5. git tree

3. How does Git manage branches?

Question type: multiple choice.

1. Branches are separate directories

2. Branches are pointers to certain commits

3. Branches are separate repositories

4. Branches are special commits

5. Branches are special remotes

4. What is the best name for a topic branch?

Question type: multiple choice.

1. branch_12

2. login_page

3. feature/login_page

4. create_login_page

5. feature/12_login-page

55

5. What is the purpose of a release branch?

Question type: multiple choice.

1. To prepare a release and make last moment changes before merging into
master and releasing

2. To separate code of the version from past and future versions

3. To create feature branches from it for the development of that version

4. To keep an archive of releases

5. To share the release code to other collaborators

6. What are the acceptable ways of adding new code to the project (choose several)

Question type: multiple choice.

1. Make commits to master branch

2. Make commits to development branch

3. Make commits to a topic branch

4. Make commits to a hotfix branch

5. Make commits to a release branch

7. How to sync branches with a remote?

Question type: multiple choice.

1. Branches are synced automatically when you use git pull and git push

2. Branches have to be synced explicitly

8. Any comments on the content and presentation of this lesson:

Question type: open-ended.

56

Week 5
1. Which of the situations can result in a merge conflict? (choose several)

Question type: multiple choice.

1. Adding files

2. Making changes to different areas of the same file

3. Making changes to the same part of the same file

4. Changing different files

5. Changing whitespace in a file while someone else is working on it

2. What happens when Git encounters a merge conflict?

Question type: multiple choice.

1. Git denies merging the two branches

2. Git pauses merge and asks you to resolve conflicts

3. Git automatically resolves conflicts, accepting the latest changes

4. Git automatically resolves conflicts, accepting the largest changeset

5. Git automatically resolves conflicts, accepting all the changes

3. What command can be used to stop merge process?

Question type: multiple choice.

1. git merge stop

2. git merge reset

3. git merge abort

4. git merge --abort

5. git merge --stop

57

4. What happens to conflicted files?

Question type: multiple choice.

1. Git creates new files for "ours" and "theirs" versions

2. Git leaves files as they were before merge

3. Git adds conflict-resolution markers to the files

4. Git checks out files from the branch being merged

5. Git checks out files as they were when the history diverged

5. What information do conflict-resolution markers show with "conflictstyle=diff3"
option? (choose several)

Question type: multiple choice.

1. The changes that were made in the current branch

2. The changes that were made in the branch being merged

3. The file as it was before histories diverged

4. The file at the beginning of the repository

5. The changes that Git proposes for merge

6. What information do conflict-resolution markers show with "conflictstyle=merge"
option? (choose several)

Question type: multiple choice.

1. The changes that were made in the current branch

2. The changes that were made in the branch being merged

3. The file as it was before histories diverged

4. The file at the beginning of the repository

5. The changes that Git proposes for merge

58

7. What command is used to annotate each line of a file with what commit last
affected it?

Question type: multiple choice.

1. git annotate

2. git log-file

3. git bisect

4. git merge

5. git blame

8. What is the git bisect tool used for?

Question type: multiple choice.

1. Splitting a file into changes made in different commits

2. Splitting a file into changes made in different branches

3. Performing a binary search on the history of a Git repository

4. Performing a binary search on the contents of a file

5. Splitting a file into changes made by different authors

9. Any comments on the content and presentation of this lesson:

Question type: open-ended.

Week 6
1. Which of these is not part of GitHub’s project management tools? (select sev-
eral)

Question type: multiple choice.

1. Issue tracker

2. Project boards

3. Velocity calculator

4. Team chat

5. Wiki

59

2. Which of these is a valid user story?

Question type: multiple choice.

1. Upload button must open video upload dialog

2. Implement video uploading

3. Video uploading currently fails

4. As a content creator, I want to be able to upload a video to reach my audience

5. Users need a way to upload video

3. What are the three levels of project management solutions?

Question type: multiple choice.

1. integrated application; stand-alone repository hosting solution; mobile application

2. first-; second- and third-party applications

3. first-; second- and third-party applications

4. web application; desktop application; mobile application

5. All-in-one hosting and project management; Integration over existing solu-
tion; stand-alone application

4. Which of these are required data for an issue? (select multiple)

Question type: multiple choice.

1. ID number

2. Title

3. Description

4. Milestone

5. Assignee

60

5. How can you close an issue in GitHub? (choose several)

Question type: multiple choice.

1. On GitHub website

2. From a commit message

3. By merging a related pull request

4. By e-mail

5. From commited code

6. Which of these cannot be a card on GitHub project boards?

Question type: multiple choice.

1. Issue

2. File

3. Note

4. Pull request

7. What can you do as part of code review? (choose several)

Question type: multiple choice.

1. Approve changes

2. Leave comments without approving or disapproving

3. Disapprove changes

4. Comment on specific lines of code

5. Make changes to code

8. Any comments on the contents and presentation of this lesson

Question type: open-ended.

61

Week 7
1. What is Continuous Integration?

Question type: multiple choice.

1. The practice of writing automatic tests

2. Deploying the software every time a change is made

3. Automatic testing and building every time code is changed

4. Pushing to the remote every time a commit is made

5. Doing work in separate branches

2. What is Continuous Deployment?

Question type: multiple choice.

1. Pushing to the remote every time a commit is made

2. Making the latest stable version of software available at all times

3. Doing all work in master branch

4. Writing automatic tests

5. Having more than one remote in your Git repository

3. Which is not a category of Git hooks

Question type: multiple choice.

1. Commit hooks

2. Receiving hooks

3. Email workflow hooks

4. Other client-side hooks

5. Branching hooks

62

4. What language are Git hooks written in?

Question type: multiple choice.

1. C/C++

2. Java

3. Gitscript

4. bash

5. Any programming language

5. Where are Git hooks located?

Question type: multiple choice.

1. In the working directory

2. In the .git directory

3. In the .git/hooks directory

4. In the hooks directory of the working directory

5. In the .githooks file

6. Can you make a Git hook on the server that would not allow anyone to do a
git push to that remote?

Question type: multiple choice.

1. Yes

2. No

7. What is the correct filename of a "pre-commit" Git hook written in the Python
programming language?

Question type: multiple choice.

1. pre-commit-hook.py

2. pre-commit.hook

63

3. pre-commit.py

4. pre-commit

5. hook_pre-commit

8. How can CI be used on GitHub? (Choose several)

Question type: multiple choice.

1. GitHub has their own CI tool

2. With receiving (server-side) Git hooks

3. With a CI application from GitHub Marketplace

4. With GitHub Webhooks

5. With a special script added to the GitHub repository

9. Any comments on the contents and presentation of this lesson

Question type: open-ended.

64

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Stepan Bolotnikov,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Development of a Course on Collaboration Tools in Software Engineering
supervised by Marlon Dumas

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

65

	Introduction
	Course design
	Learning objectives
	Related work
	Existing courses in the University of Tartu
	Learning materials available online

	Schedule
	Didactic considerations
	Grading scheme

	Course materials
	Types of materials created
	Lecture slides
	Lecture videos
	Practice session guidelines
	Quizzes
	Exam

	Topics
	Introduction, history of Version Control Systems
	Introduction to Git
	Working with repository history
	Branching
	Troubleshooting
	Project collaboration in GitHub
	Git hooks and Continuous Integration
	Guest lecture, preparation for exam

	Results and course evaluation
	Course evaluation criteria
	Analysis of feedback
	Quizzes
	Feedback questionnaire

	Ideas for improvement

	Conclusion
	References
	Appendix
	I. Quizzes
	II. Licence

