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1. INTRODUCTION 

Viruses are widespread intracellular parasites that are well-known and often 
encountered life-forms, which, at the same time, remain mysterious and abstruse 
infectious agents. Viruses infect all types of organisms, including animals, 
plants and microorganisms. Papillomaviruses represent a group of non-enveloped 
DNA viruses that infect basal epithelial cells of the host, where the viral genome 
is maintained as circular, double-stranded DNA within the cell nucleus. Over 
the years, hundreds of types of papillomaviruses have been discovered, which 
infect animals and humans and cause a wide spectrum of diseases. Some of 
these diseases have no clinically evident symptoms; some cause benign lesions 
such as genital warts and laryngeal papillomas; and the most dangerous types 
can cause malignant carcinomas. The most well-studied human cancers asso-
ciated with papillomaviruses are cervical cancer and head and neck cancers. 
These malignancies are caused by mucosal human papillomaviruses (HPVs), 
and as these cancers cause many deaths among the human population. Mole-
cular studies have also been focused mainly on this group of viruses, with less 
dangerous viruses receiving less attention. However, over the last few decades, 
there has been increasing interest in studying the other groups of PVs, including 
cutaneous papillomaviruses, which are now receiving a lot of attention. 
Cutaneous papillomaviruses infect the human cutaneous epithelium, and in most 
cases, these infections occur without symptoms. However, in some instances, 
when the patient is immunocompromised, these viruses can cause lesions and 
induce squamous cell carcinomas. The most prevalent virus types detected in 
skin cancer are HPV5 and HPV8. Through this study, we have tried to provide 
insight into the properties of these viruses, and we focused our attention on 
HPV5 and on the first part of the life cycle of this virus in cells. Papilloma-
viruses are known to produce approximately nine proteins, seven of which are 
expressed early, and two are expressed in late stages of infection. One of the 
most widely studied proteins over the years of papillomavirus research is the 
early protein E2, which is a key regulator of many viral life events. It is known 
that E2 has two truncated or spliced forms, namely, E2C and E8/E2, which are 
generated by alternative splicing.  

The first part of the thesis provides an overview of the papillomavirus life 
cycle and E2 protein structure and function and gives a general introduction to 
the NM1 protein. The research part gives deeper insight to papillomavirus 
transcription and E2 protein, where in our first paper, we present the HPV5 
transcription map with the newly identified E8 transcript. In the second paper, 
we describe a new nuclear matrix localization signal, which targets the BPV1 
E8/E2 protein to the nucleus and which appears to be the shortest nuclear matrix 
targeting signal known to date. We showed that the E8 peptide is essential and 
sufficient for the localization of proteins to the nuclear matrix. Due to advance-
ments in proteomics, over 200 cellular proteins have been identified as inter-
action partners of E2. These proteins belong to different protein groups such as 
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histone modifiers, splicing factors, replication and transcription factors, and 
chromatin remodelers. In the third paper, we present a new interaction partner 
of E2, NM1, which is the first myosin family member found to bind to a viral 
regulatory protein. We characterized this interaction and the role of NM1 in 
influencing viral replication.  
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2. LITERATURE REVIEW 

2.1. Papillomaviruses – an overview 

Papillomaviruses are a group of non-enveloped DNA tumour viruses that infect 
various animals from birds to mammals, including humans. Papillomaviruses 
usually cause benign tumours but can sometimes also cause malignancies. In 
1982, the first complete papillomavirus genome sequences were published, i.e., 
the genome sequences of bovine papillomavirus type 1 (BPV1) and human 
papillomavirus type 1a (1, 2). Since then, BPV1 has served as a useful genetic 
model for studying papillomaviruses (3) because C127 cells allow BPV1 genome 
replication upon transfection. The taxonomic classification of papillomavirus 
types is based on the nucleotide sequence of the L1 gene of the virus. Papilloma-
virus types belonging to different genera have less than 60% similarity within 
the L1 gene, and different species within the genus share 60–70% similarity. A 
novel type must have less than 90% similarity to any other type (4, 5).  

Papillomaviruses belong to the taxonomic family Papillomaviridae, which 
contains 49 genera, 116 species and several hundred types (International HPV 
Reference Center, http://www.hpvcenter.se/html/refclones.html). Human papil-
lomaviruses (HPV) comprise large and diverse genera of viruses, and new HPV 
types are frequently discovered. Over 200 types of human papillomaviruses, 
which are aetiological agents of a wide spectrum of diseases that range from 
mild asymptomatic infections to malignant carcinomas, have been identified to 
date (6). 

 There are five major known HPV genera, namely, Alpha-, Beta-, Gamma-, 
Mu- and Nupapillomavirus (4), with the most widely studied genera being Alpha- 
and Betapapillomavirus. Alpha-papillomaviruses (alpha-PVs) infect mucosal 
epithelial cells, which can lead to the induction of benign tumours. These 
viruses are divided into high-risk (HPV16, HPV18) and low-risk (HPV6, HPV11) 
categories depending on the ability of the viruses to cause cancerogenic growth. 
High-risk HPVs are known to be a common cause of cervical cancer, which is 
fourth most common cause of cancer worldwide. Beta-papillomaviruses infect 
the cutaneous epithelium and are mostly associated with asymptomatic infec-
tions. In some cases, such as individuals with immune disorders, these viruses 
cause lesions that can become cancerous after long-term infection. Beta-PVs 
have also been implicated in nonmelanoma skin cancer (7, 8); however, the 
exact molecular mechanisms of cancer development are still largely unknown. 
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2.2. Life cycle of papillomaviruses 

All papillomaviruses have a similar life cycle that is closely associated with 
differentiation of the host epithelium. The epithelium consists of a lower basal 
layer, where cells are mitotically active, and overlaid differentiated layers, 
which comprise non-dividing cells and are eventually shed from the surface of 
the epithelium. To initiate infection, papillomaviruses must gain access to the 
dividing basal cells, for which the viruses require microabrasions or wounds. 
After entry into the basal layer of the epithelium, viruses need to bind to cellular 
receptors to ensure viral entry into the cells. The HPV particle is composed pri-
marily of the major capsid protein L1, which co-assembles with the minor capsid 
protein L2 into the icosahedral capsid around chromatinized viral DNA (9).  

At the start of host cell infection, HPV virions first bind to the basement 
membrane, which is located under the epithelium and consists of fibrous 
connective tissue. In this extracellular matrix, the virions bind to heparan sulfate 
proteoglycans (HSPGs), laminin-5 or laminin-322, which are responsible for 
trapping viral particles (10–13). This initial attachment is dependent only on L1 
and is followed by a possible transfer to a secondary receptor on the cell 
membrane. Binding to HSPGs induces conformational changes in the virions, 
leading to exposure of the L1 epitope, which is then cleaved by kallikrein-8. 
This cleavage facilitates the externalization of the N-terminal part of the minor 
capsid protein L2 from the interior of the capsid by cyclophilins (14). This step 
is followed by furin-mediated cleavage of the L2 N-terminal proximal peptide 
to expose the RG-1 epitope (15). It is possible that conformational changes in 
L2 are necessary to expose a secondary binding site, which enables the virion to 
bind to secondary receptor complex for entry into the cell. The cell adhesion 
receptor alpha6-integrin has been suggested to be a secondary receptor that can 
mediate virion internalization or subsequent events during infection (16–18).  

Viral particles enter the cell by either caveolae or clathrin-mediated endo-
cytic pathways (19–21). At this stage, a majority of the L1 capsomers are re-
moved by cyclophilin B (22). Subviral particles are trafficked to the trans-Golgi 
network (23), which is followed by nuclear import of the viral genome, which 
occurs during mitosis by association of the viral genome with metaphase 
chromosomes (24). In the nucleus, the L2 transports the viral DNA to the 
subnuclear promyelocytic leukemia protein (PML) bodies, where several DNA 
viruses localize and initiate transcription (25). In the nucleus, the viral genome 
is amplified from 10 to 100 copies per cell, driving proliferation of the infected 
basal cell and leading to papilloma formation. Viral genomes replicate in nuclei 
as extrachromosomal elements. Viral genome amplification, late capsid protein 
synthesis and virion assembly occur in the upper, terminally differentiated cells 
of the epithelium. Papillomavirus infections are usually long-lived, and con-
tinually dividing basal cells serve as a reservoir of infected cells, which is also 
the source of malignant tumour growth (26).  
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2.3. Genome and proteins of papillomaviruses 

The genome of papillomaviruses consist of circular double-stranded DNA that 
is approximately 8000 bp long. The genome is divided into early and late 
regions depending on the timing of protein expression. The early region 
contains seven open reading frames, for the E1, E2, E4, E5, E6, E7 and E8 
proteins, which are expressed shortly after infection in the lower layers of the 
epithelium. The late region encodes capsid proteins L1 and L2, which are 
expressed in the upper, more differentiated layers of the epithelium. Viral RNA 
is transcribed from one strand and undergoes extensive alternative splicing. 
Upstream of the coding region lies the upstream regulatory region (URR), 
which does not encode any proteins but contains important cis-elements such as 
replication origin, promoters and binding sites for viral and cellular transcrip-
tion regulators (26) (Fig. 1).  

E1 is the primary replication initiator protein of papillomaviruses. An E2 
dimer helps load the E1 dimer onto the origin, after which the E2 dissociates 
from the complex. E1 assembles into double-hexameric ring helicase to unwind 
the DNA and to allow access to replication factors (27–29). Specific DNA 
binding is mediated by the DNA-binding domain, while nonspecific binding 
involves the E1 helicase domain. Initially, the interaction of E2 with the 
helicase domain of E1 blocks the nonspecific DNA-binding function, but after 
E2 dissociates, the nonspecific DNA-binding region interacts with the DNA 
sequences flanking the E1 binding site (30, 31). E1 interacts with many cellular 
replication factors, such as replication protein A, topoisomerase I, polymerase 
alpha primase and proliferating cell nuclear antigen (32–35). Overexpression of 
E1 can cause double-stranded DNA breaks and can activate DNA damage 
response, leading to cell cycle arrest in the S and G2 phases (36, 37). 

The E2 protein is the main regulator of the intracellular life cycle of the 
papillomavirus genome and is required for replication initiation, transcription 
regulation and viral genome maintenance during cell division. E2 acts in con-
cert with E1 to bind to the origin and initiate viral replication (27, 38, 39). The 
E2 protein is more thoroughly discussed in the next chapter. 

The E4 protein is usually expressed as an E1˄E4 splicing product and is 
synthesized in the upper layers of the papillomavirus infection site. The E4 ORF 
is located within the E2 gene, and the spliced product includes the E1 initiation 
codon (40, 41). The E4 protein is detected during the late stages of infection 
when vegetative replication begins. This protein interferes with the cell cycle 
and is important for genome amplification and viral release (42). It has been 
shown that the cellular cysteine protease calpain cleaves the E1˄E4 protein, and 
the resulting C-terminal fragments can form amyloid-like fibres that disrupt 
keratin networks, which may help the virus release its particles and exit the cell 
(43, 41). 
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Figure 1. Schematic representation of the papillomavirus genome. The early and late 
open reading frames are indicated as grey arrows and marked as E1-E8 and L1-L2, 
respectively. The upstream regulatory region (URR) is shown as a black line. 
 
 
E5 is a small transmembrane hydrophobic protein that promotes proliferation of 
infected basal cells by inducing and activating growth factor receptors (44). 
BPV1 E5 is localized largely to the membranes of the endoplasmic reticulum 
and Golgi apparatus and functions as a dimer (45, 46). BPV1 E5 does not have 
intrinsic enzymatic activity but rather induces transformation of the cells by 
activating the platelet-derived growth factor beta-receptor tyrosine kinase in a 
ligand-independent fashion (47–49). HPV16 and HPV6 E5 also localize to 
intracellular membranes, including membranes of the Golgi apparatus, endo-
plasmic reticulum and nucleus (50, 51), and bind to the epidermal growth factor 
(52, 53). 

The E5 protein protects host cells from apoptosis via two main pathways: 
inhibition of death-receptor-mediated apoptosis and ER-stress-induced apop-
tosis (54). The first pathway involves downregulation of the Fas receptor and 
inhibition of TRAIL-mediated apoptosis by hindering the formation of the 
death-inducing signalling complex activated by TRAIL (55). The second 
method involves suppression of three main proteins in the ER stress pathway, 
namely, COX-2, XBP-1 and IRE1a, which is demonstrated by HPV16 E5 and is 
beneficial to viral replication and persistence (56). E5 also inhibits acidification 
of the Golgi apparatus, influencing growth receptor activation and trafficking 
(57–59), and downregulates surface expression of major histocompatibility 
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complex class I molecules, helping the virus evade the host immune system (60, 
61). 

The E6 and E7 proteins also induce cellular proliferation and delay differen-
tiation of the host cells, which prolongs the S-phase and enables viral genome 
replication. These proteins are powerful oncoproteins (62). The E6 protein, 
aided by E6AP, binds to the p53 protein and prevents p53 from inducing apop-
tosis by targeting p53 for degradation via the ubiquitin-proteasome pathway. 
This prevents growth arrest and apoptosis of abnormal cells, which leads to 
genetic instability and tumourigenesis (63). In addition, E6 is capable of inhi-
biting p53-independent apoptosis by binding to different apoptotic signalling 
pathway proteins (64–67). The E7 protein is a major HPV oncoprotein, and E7 
expression in high-risk HPVs is necessary for viral pathogenesis and cellular 
transformation. The main target of E7 is the antiapoptotic retinoblastoma pro-
tein pRB and pRB-associated proteins, p107 and p130 (68). The HPV-16 E7 
oncoprotein induces p53-dependent and p53-independent apoptosis, but this 
oncoprotein may also inhibit apoptosis and cytokine-mediated cell death, 
depending on the cell and viral types (69, 70). Similar to E5, the oncoproteins 
E6 and E7 are also important for immune evasion and act by downregulating 
interferon responsive genes and surface expression of MHC (major histo-
compatibility complex) Class I proteins (71, 72). Transcription of E6/E7 is 
regulated by E2, which serves as either an activator or a repressor of transcrip-
tion, depending on the context of the E2 binding sites within the promoter 
region (73, 74). 

L1 and L2 are papillomavirus capsid proteins and form an icosahedral struc-
ture with a 55–60-nm diameter. L1 is the major capsid protein and can assemble 
into virus-like particles (75, 76). L2, the minor capsid protein, is important for 
packaging the viral genome into the capsid during the late phase of infection 
(77, 78). At early stages of infection, L2 helps transport the viral DNA to the 
nucleus to establish permissive infection (25). 
 
 

2.4. Papillomavirus E2 protein 

All papillomaviruses encode the E2 protein, which is the master regulator of the 
viral life cycle. E2 is a multifunctional protein that is involved in many aspects 
of the viral life cycle, such as as replication, transcription and maintenance of 
the viral genome during cell division. E2 is expressed at the early and inter-
mediate stages of viral infection. 
  
 

2.4.1. E2 structure 

The full-length E2 protein consists of a conserved N-terminal domain named the 
transactivation domain (TAD), which is approximately 200 amino acids long, 
and a C-terminal domain named the DNA-binding and dimerization domain 
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(DBD), which is approximately 100 amino acids long. The two domains are 
connected by a flexible sequence called a hinge (Fig. 2). The crystal structure of 
the TA domain has been solved for BPV1, HPV11, HPV16 and HPV18, and this 
domain has been shown to form a cashew-shaped structure. The N-terminal 
region of this domain is composed of three alpha helices in a bundle, and the  
C-terminal region is composed of anti-parallel beta sheets (79). Between the 
two regions there is a two-turn helix called a fulcrum (80). The TA domain is 
involved in transcriptional activation and repression and in replication. Residues 
R37 and I73 are important in transcription regulation and are located on the 
convex side of the domain, and the E39 residue, which is involved in replication 
and E1 interaction, is located on the opposite, concave side of the domain. The 
TA domain has also been implicated in self-interaction (BPV1, HPV16) and is 
important in the looping of DNA through the widely spaced E2 binding sites 
(81–83). 

E2 binds DNA via the DNA-binding domain. The DNA-binding domain 
forms a dimeric beta-barrel structure that positions two DNA-recognition alpha 
helices in contact with the consensus binding site (84). The first DNA-binding 
domain structure was solved for BPV1 E2 in 1992, and since then, the 
structures of several homologous DNA-binding domains have been solved, such 
as those of HPV6, HPV16, HPV18 and HPV31 (85–89).  

The E2 consensus binding sites are located mainly in the URR, and the sites 
with the highest affinity have the sequence ACCG(N)4CGGT (90, 91). E2 also 
uses non-consensus binding sites with lower affinity (92), such as AAC(N)6GGT 
or AAC(N)6GTT in BPV1, and binds to these various binding sites with 
affinities that differ over 300-fold (91). The number and sequence of E2-binding 
sites vary between genera, for example, BPV1 contains 17 E2-binding sites, but 
HPV18 contains four conserved E2-binding sites. E2 forms a highly stable 
dimer via the DBD domain; the dimer contains a hydrophobic core with 
numerous packed side chains (93, 84).  
 

 
Figure 2. Schematic representation of E2 and truncated forms of E2. The trans-
activation domain (TAD) is represented as light grey boxes; the DNA-binding and 
dimerization domain (DBD) is represented as dark grey boxes; and the two are 
connected by the hinge region. E8 is shown as a black box. 
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The E2 hinge region lies between N- and C-terminal domains and varies among 
the papillomavirus genera by length and sequence; the hinge sequence is not 
well conserved (94, 95). The E2 hinge is unstructured and forms a flexible link 
between the TA and DBD domains (96). The hinge region contains auxiliary 
elements that are conserved only among related viruses within genera. For 
example, in the BPV1 E2 hinge, a short sequence is phosphorylated by CK2, 
which induces proteasomal degradation of the E2 (97, 98). In alpha-PVs, a 
highly conserved KRXR motif promotes nuclear localization and association of 
E2 with the nuclear matrix (99, 100). In beta-PVs, a highly conserved RXXS 
motif in the hinge is phosphorylated by PKA, which promotes binding to 
mitotic chromosomes and stabilizes E2 (101–103). 
 
 

2.4.2. Truncated forms of E2 

In addition to full-length E2 protein, all papillomaviruses have the potential to 
encode shorter forms of E2 (Fig. 2). One E2 isoform called E8˄E2 consists of an 
11–13 amino acids long peptide encoded by an alternative reading frame of the 
E1 region fused to the DBD domain of E2. The E8 promoter is tightly regulated 
by cellular proteins that bind to conserved elements. In addition, this promoter 
is positively regulated by viral E1 and E2 proteins and negatively regulated by 
the E8˄E2 protein, which implies that E8˄E2 transcription is autoregulated in an 
E8-domain-dependent manner (104).  

E8˄E2 is encoded by a spliced RNA transcript, and the start codon and splice 
donor and acceptor sites are highly conserved among HPVs. The E8˄E2 protein 
is a strong negative regulator of viral genome replication and downregulates the 
expression of HPV transcripts (105–108). These transcripts have been described 
for cottontail rabbit PV and HPV1, 5, 11, 16, 18, 31 and 33 (109–114, 105, 115). 
Recently, it has been found that the repressive function of E8˄E2 is mediated by 
an E8-dependent interaction with NCOR/SMRT complexes, which, in addition 
to inhibiting transcription, are also involved in controlling the replication of 
HPV origins (116). The E8 peptide domain is rich in basic and hydrophobic 
residues and has been shown to associate with cellular proteins such as histone 
deacetylases, histone methyl transferase, nuclear coreceptor 1, chromodomain-
helicase DNA-binding protein, and NCOR/SMRT repressor complexes (117–
119). 

Another short E2 isoform is found in BPV1 and is called E2C or E2-TR. This 
isoform is transcribed from the internal promoter P3080 in the BPV1 genome, 
which lies in E2 ORF TA domain (120, 109). The truncated E2 repressor proteins 
can regulate genome copy number and limit runaway replication. Mutations that 
eliminate E2C expression in BPV1 can boost replication (121, 122), which is 
explained by the fact that the E2C protein contains the DNA-binding and 
dimerization domain of E2 and can inhibit the activity of full-length E2 protein 
by competing for E2-binding sites or by forming heterodimers (123, 120, 124). 
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In BPV1-infected cells, the three different E2 isoforms, E2, E2C and E8˄E2, 
are expressed in a ratio of 1:10:3 (125), implying that most full-length E2 pro-
teins are present in the cells as heterodimers, which support transcription and 
replication but not viral genome partitioning (124, 126).  
 
 

2.4.3. E2 stability 

The half-life of full-length E2 is 40 min, and the shorter forms of E2, E2-TR 
and E8˄E2, have half-lives of 10 min and 15 min, respectively (125). The main 
target for proteasomal degradation is the N-terminal region of E2, and 
association of the N-terminus with cellular or viral proteins stabilizes E2 and 
prolongs the life of this protein (127). The main cellular interaction partners of 
the N-terminal region of E2, Brd4 and Tax1BP1, stabilize E2 by preventing 
association of the E3 ubiquitin ligase cullin-3 with E2 (128, 129). The E2 TA 
domain interacts with Skp2, which is part of the Skp1/Cullin1/F-box Skp2 
ubiquitin ligase complex, in a Brd4-independent manner, which degrades E2 at 
the end of G1 phase (130), thereby enabling the expression of the viral onco-
genes E6/E7 and cell transformation by HPV. Association of E2 with viral E1 
and E1/E4 also increases E2 stability (131, 132).  

BPV1 E2 has two major phosphorylation sites, serines 298 and 301, and a 
minor phosphorylation site, serine 235 (133). In the cellular environment, the 
phosphorylation is carried out by casein kinase II and results in conformational 
switching and rapid turnover of E2 by the ubiquitin-proteasome pathway (133). 
HPV8 E2 is phosphorylated on residue 253 by PKA during the S phase, and this 
phosphorylation increases protein stability and promotes the binding of E2 to 
host chromatin (103). 
 
 

2.4.4. E2 functions 

2.4.4.1 Transcription 

The E2 protein is the main regulator of papillomavirus transcription (120, 109). 
The E2 protein regulates transcription by binding to cognate binding sites and 
recruiting cellular factors to the viral genomes, which function as transcription 
activators or repressors. E2 binding can sterically hinder the binding of cellular 
transcription regulators such as Sp1 and TBP (134–136). E2 can activate or 
repress transcription in a dose-dependent manner (137, 138). The shorter forms 
of E2 act as repressors by competing with E2 for binding sites, recruiting 
repressor complexes and forming heterodimers (120, 117). In HPV-associated 
cancers, E2 is often disrupted, which causes reduction in E2-mediated repression 
and increased expression of the E6 and E7 oncogenes (139, 140). Restoration of 
E2 function in HPV-positive cervical cancer cell lines leads to cellular senescence 
(141). High levels of E2 cause read-through at the early polyadenylation signal 
into the late region of the HPV genome, inducing the expression of L1 and L2 
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mRNAs (142). It is possible, that E2 disruption acts in a similar manner to over-
expression of E2 as both of these processes turn off the expression of oncogenes 
E6 and E7 and induce the expression of late genes. Expression of E2 inhibits 
cell growth in both HPV-positive and HPV-negative cells. In HPV-positive cells, 
E2 represses the early viral promoter and downregulates E6 and E7. Most HPV 
positive cancer cells are dependent on viral oncogenes for sustained growth and 
depletion of E6 and E7 inhibits cell propagation (143, 141). In HPV-negative 
cells, E2 induces apoptosis via p53-dependent and independent pathways and 
by interacting with caspase 8 (144, 145), which may be relevant the promotion 
of cell differentiation. As has been shown, keratinocytes that survive E2 expres-
sion develop phenotypes that are typical of terminally differentiated cells, 
suggesting that E2 may use this feature to promote viral function late in the life 
cycle (146).  
 
 

2.4.4.2. Initiation of viral DNA replication 

E2 participates in the initiation of viral DNA replication by loading the E1 
helicase onto the replication origin, which contains at least an E1 binding site, 
an A/T-rich region and one E2 binding site (38, 147). After loading, E1 is con-
verted to a double-hexameric replicative helicase upon oligomerization to unwind 
the dsDNA, and E2 is displaced from the origin (29). The E1 loads the cellular 
replication complex at the replication forks to initiate replication, and E1-
binding specificity at HPV origins is determined by the E2 protein (148).  

Viral DNA replication occurs in transient replication centres, and the 
formation of these centres is dependent on E2 (36, 37). These replication centres 
contain DNA damage response factors, which are characteristic to replication 
stress and might be important in the recruitment of cellular repair proteins to 
help synthesize new viral DNA (149, 37). 

E2 is also required for vegetative viral DNA replication. In undifferentiated 
cells, most E2-encoding mRNAs are transcribed from the early promoter of the 
viral genome, but as cells differentiate in the mid-layers of the epithelium, the late 
promoter of the viral genome is used for transcription (150, 151). During viral 
DNA amplification, the transactivating function of E2 is not necessary, but the 
replication function is required (152). 
 
 

2.4.4.3. Genome maintenance 

To maintain the viral genome as an independent, episomal element, the genome 
needs be preserved and divided uniformly among daughter cells during mitosis. 
The E2 protein anchors the viral genome to the host mitotic chromosomes to 
ensure that the genome is not lost during partitioning by binding via the DBD 
region to E2-binding sites on the viral genome and via the TA domain to chromo-
somal protein(s) at the other end (153, 154). In addition to one E2-binding site, 
which was enough for minimal origin replication, genome maintenance requires 
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additional E2 binding sites, for example, BPV1 requires at least eight E2 binding 
sites in cis to the origin (155). Heterodimers of E2, which are formed by 
combining long and short forms of E2, can support replication but are defective 
in genome partitioning (124, 126).  

The E2 proteins from different PV genera bind to different chromosomal 
regions of host cells. Alpha-PV E2 is not tightly bound to chromosomes during 
the cell cycle and is mostly found at pericentromeric regions of mitotic chromo-
somes (156). The proposed targets of alpha-PV E2 on chromosomes are Brd4, 
mitotic spindle, ChlR1 and TopBP1 (157, 158, 156, 159, 160). Beta-PV E2s 
also bind primarily to pericentromeric regions that overlap with the loci of the 
ribosomal rRNA genes (161, 101). The beta-PV E2 proteins require only the E2 
DBD domain and a short phosphorylated peptide from the hinge region to bind 
to chromosomes, and the possible interaction partner of these proteins is Brd4 
(102, 103). E2 proteins from delta-PVs bind as punctate foci all over the arms 
of mitotic chromosomes (153, 161). BPV1 and HPV1 E2 proteins bind with 
high affinity to Brd4 via the TA domain, and several other cellular proteins, such 
as ChlR1 and Mklp2, can be important E2-tethering partners (162–164). 

 
 

2.4.4.4. Apoptosis 

Several HPV proteins are associated with apoptotic cell death. The E5 protein 
protects cells from apoptosis by inhibition of death-receptor-mediated apoptosis 
and ER-stress-induced apoptosis (54). The oncoprotein E6 inhibits apoptosis by 
binding to and accelerating the degradation of several proteins that are important 
in apoptotic signalling, including caspase-8 and p53 (165), which in turn prevents 
growth arrest and apoptosis of abnormal cells, leading to genetic instability and 
tumourigenesis (166). Oncoprotein E7 is involved in both apoptosis activation 
and inhibition (70). The E2 protein is able to induce apoptosis by downregu-
lating the transcription of E6/E7 mRNA and by binding with p53. The E2 
protein from HPV16 can induce apoptosis in HPV-transformed and in non-
HPV-transformed cells (167, 168), while the E2 proteins from low-risk HPVs 
fail to do so (167). HPV16 E2 appears to use at least two pathways to induce 
apoptosis. One pathway involves the binding of E2 to p53, which can occur in 
both HPV-transformed and non-HPV-transformed cells. The second pathway 
requires the binding of E2 to the viral genome, and this can only occur in HPV-
transformed cells (167). It has been shown that HPV16 E2 interacts with c-FLIP, 
a key regulator of apoptotic cell death, and activates the apoptotic signalling 
factors caspase-8 and caspase-3. It has been suggested that HPV16 E2 abrogates 
the apoptosis-inhibitory function of c-FLIP, leaving cells hypersensitive to 
apoptotic signals (168). HPV18 E2 has been shown to bind to procaspase-8, 
which also leads to caspase-8 activation and subsequent cell death (169). Low-
risk HPV E2 proteins remain nuclear, but high-risk HPV E2 proteins are present 
in both nucleus and cytoplasm. Data indicate that induction of apoptosis is 
caused by accumulation of E2 in the cellular cytoplasm following caspase-8 
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activation. It is speculated that disruption of the E2 gene during viral genome 
integration in cervical carcinoma makes it possible for cells to avoid E2-induced 
apoptosis, thus allowing the initiation of carcinogenesis (170). 
 
 

2.4.5. Interaction partners of E2 

E2 is the master regulator of the viral life cycle and functions by binding to the 
viral genome and recruiting a large number of cellular proteins to carry out its 
different functions. E2 interacts with a wide range of cellular proteins, including 
transcription regulators, replication factors, RNA-processing proteins, chromatin 
modifiers, cell cycle regulators and apoptosis-promoting proteins. There have 
been two major proteomic studies about the interaction partners of E2. One study 
was by Caroline Demeret’s group in France, who mapped the virus-host protein 
interactions of the E2 proteins from 12 different HPV genotypes using yeast two-
hybrid screenings and a cell-based interaction assay for validation of identified 
partners (171). The other work was by Alison McBride’s group in the USA, who 
used tandem affinity purification followed by mass spectrometric analyses to 
identify the major host proteins interacting with 11 HPV types (172). Using dif-
ferent approaches, more than 200 cellular proteins have been identified as nuclear 
interaction partners of PV E2 proteins (171, 172) (Table 1).  

The most widely studied partner of E2 from many PV genera is the chro-
matin adaptor protein Brd4, which is the major binding factor for delta-, lambda-, 
kappa-, mu- and tau-PV E2 proteins. Interestingly, alpha-PV E2 was shown to 
bind to Brd4 with low affinity and did do not stabilize the interaction of Brd4 with 
chromatin (173, 156). Beta-PV HPV8 E2 binds to Brd4 in vitro, but binds to the 
rDNA loci on acrocentric chromosomes in a Brd4-independent manner (156, 
101). Interaction between E2 and Brd4 is important in several E2-dependent 
processes, such as transcription activation (174) and transcription repression 
(175), and in replication (163, 176). In addition to Brd4, other proteins involved 
in transcriptional regulation were identified, for example, TBP, MGA and TP53 
(171). E2 also interacts with histone modifiers such as the acetyl transferases 
INO80 and p400; deacetyltransferases NCOR1/HDAC; demethylase KDM1B; 
and methylases WDR5 and WHSC (172). An additional chromosomal protein 
group that interacts with E2 is the chromosomal maintenance proteins SMC5 
and SMC6, which have been implicated in chromosome replication, segregation 
and repair, roles that are associated with the functions of E2 in the viral life cycle.  

Beta-PV HPV8 has been shown to colocalize with splicing speckles (99, 
102), and consistent with this finding, HPV8 E2 has been shown to co-precipitate 
with mRNA-processing proteins such as SRPK1/SRPK2 (serine/arginine-rich 
protein-specific kinase), EFTUD2 (elongation factor Tu GTP-binding-domain-
containing protein 2) and EIF4A3 (eukaryotic initiation factor 4A-III) (172). 
Several E2 proteins were found to interact with PCBP1, a protein that is 
involved in the inhibition of translation of the late mRNA encoding the L2 capsid 
protein (171). E2 binds to the protein C1QBP, which interacts with splicing 
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factors and binds to many viral proteins, such as EBNA1, adenovirus core 
protein V, and herpesvirus IE63. C1QBP has structural and functional similarities 
to the histone chaperones NAP-1 and nucleophosmin, which are both interaction 
partners of E2 (177, 171).  

Many E2 targets are involved in ubiquitination. Given that E2 are ubiquiti-
nated and degraded by the proteasome, some of these interactions probably 
mediate E2 degradation. However, the binding of E2 to ubiquitin ligases could 
have a functional impact by altering the degradation of the natural targets of the 
ligases (171, 127). These ligases include ubiquitin ligases of the HECT domain 
family (HUWE1, WWP2) as well as substrate adaptors of cullin-based ubiquitin 
ligase complexes (BTBD1, SPOP, CDC20, CDH1) (171).  
 
Table 1. Cellular protein groups interacting with PV E2 proteins (171, 172) 

Category Examples of E2 interaction partners 

Nuclear matrix MATR3, HNRNPU, HNRNPA1 

PTM CSNK2A1, SRPK1/2, BAZ1B 

DNA replication/repair RFC2-5, ATAD5, WICH (BAZ1B, SMARCA5) 

Transcription regulation BNC2, YY1, TBP, MGA, p53 

RNA processing Spliceosome factors, C1QBP, PCBP1 

Apoptosis p53, CASP8, TAX1BP1 

Ubiquitination HUWE1, WWP2, BTBD1 

Histone acetylase INO80, P400, TRRAP 

Histone deacetylase NCOR1, HDAC, SAP18 

Histone demethylase KDM1B 

Histone methyltransferase WDR5, WHSC, PRMT5 

Intracellular trafficking VPS52, clathrin, RAB3IP 

Chromatin binding BRD4, Polycomb 

Chromatin remodelling SWI/SNF, NuRD, WICH (BAZ1B, SMARCA5), 
INO80, EP400, TRRAP 

  
Many E2 interaction partners are Brd4-binding factors, and Brd4 likely 
mediates the association of these factors with E2. For example, replication 
factor C (RFC) proteins consist of five subunits, and Brd4 is shown to directly 
bind with the largest subunit, ATAD5, of this complex (178–180).  

Apoptosis regulation is a common function of viral proteins because mani-
pulation of cell-death-associated pathways is often a key process in viral 
infection. Apoptosis is generally prevented in early phases of viral infection to 
allow viral replication, and induction of apoptosis occurs when viral particles are 
produced. E2 proteins target both positive and negative regulators of apoptosis 
such as p53, CASP8 and TAX1BP1 (171). 

Muller and colleagues have shown that E2 interacts with proteins involved in 
intracellular trafficking. VPS52 is involved in trafficking between the Golgi 
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apparatus and endosomes; clathrin light chain A (CLTA) participates in HPV 
entry pathways as do the Rab-family proteins (RAB3IP), molecular motors 
(KIF20A), and endosomal/lysosomal trafficking factors (VPS39) (171). 

Recently, many studies have shown that E2 interacts with proteins that are 
part of chromatin remodelling complexes, which contain multiple proteins and 
modify chromatin via ATP-dependent catalytic subunits. These complexes 
activate or repress gene expression; regulate RNA polymerase I-, II-, and III-
mediated transcription; maintain chromatin structure; and regulate DNA repli-
cation and repair (181). It has been shown that viral DNA is also packed into 
nucleosomes like host DNA, and interactions between viral and chromatin re-
modelling proteins enable the modulation of viral transcription and replication 
(182, 183). According to many researchers, HPV E2 interacts with the SWI/SNF 
chromatin remodelling complex proteins. For example, HPV8 from the beta-
papillomavirus group binds to several chromatin remodelling complex proteins, 
including SMARCA4 (BRG1), SMARCB1 (SNF5), WSTF and INO80D (172). 
BPV1 E2 was also shown to interact with several chromatin remodelling 
proteins (172). Alpha-PV HPV18 E2 interacts with the SMARCB1 (SNF5) pro-
tein (184), and it has been demonstrated that SMARCB1 and SMARCA4 
enhance HPV18 E2-dependent transcription activation and replication (182). 
Alpha-PV HPV16 E2 interacts with the SMARCA2 (Brm) protein from the 
SWI/SNF complex via its N-terminal domain (185), and HPV16 E7 binds to 
another protein from this complex, named Brg1, to control the cell cycle (186). 
Another major viral replication protein, HPV E1, also associates with 
SMARCB1 (184), making it plausible that viral E1 engages these enzymes during 
the S phase to help drive viral replication. E2 also binds to papillomavirus 
proteins such as helicase E1, minor capsid protein L2 (25, 187), E7 (188), E6 
(189) and E1˄E4 (131).  
 
 

2.5. Papillomavirus replication and transcription 

Papillomavirus transcription and replication is closely associated with the three 
phases of the viral life cycle, where the first and second phase occur in basal 
cells in the bottom layer of the epithelium, and the third phase occurs in the 
differentiated cells in the upper layer of the epithelium. The first replication 
phase is called initial amplificational replication, where the viral genome copy 
number increases to establish infection in dividing cells. The major viral 
proteins in this phase are the early proteins E1 and E2, which are sufficient for 
initiation and elongation of replication (27, 190). The minimal replication origin 
in the long control region (LCR) contains an E1-binding site and an E2-binding 
site (27, 147). Dimerized E1 and E2 bind cooperatively to their binding sites, 
forming a pre-replication complex (191). After binding, E2 dissociates from the 
complex, and E1 forms a double-hexameric ring helicase, which is an ATP-
dependent process (192). This initial binding requires site-specific binding of 
E1, which is provided by the DBD domain. However, after E2 dissociates, the 
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non-specific binding enables the helicase domain to freely bind to the A/T-rich 
region flanking E1 BS (30). Single-stranded DNA is threaded through the E1 
hexamer as the hexamer rotates down the DNA (193). The E1 helicase interacts 
with many cellular replication factors that are needed for viral DNA synthesis. 
The major cellular replication factors are replication protein A, which stabilizes 
single-stranded DNA; topoisomerase I, which relieves torsional stress; and 
cellular DNA polymerase alpha-primase, which primes replication (32, 34). 
During initial replication, papillomaviruses use both bi-directional theta repli-
cation and recombinational replication (194). 

The second replication phase of PVs is stable maintenance replication, during 
which viral genomes are maintained as extrachromosomal elements in infected 
basal cells at a constant copy number to sustain infection. The genome copy 
number in this phase is up to 200 copies per cell. In stable replication, E2 
exhibits its distinct function in genome maintenance; E2 partitions genomes 
between daughter cells by binding to the viral genome via its DBD domain and 
to the chromosome via its TAD domain (153). For this function, the genome 
needs multiple E2-binding sites in cis to the origin, and the minimal origin 
region is not sufficient (155). Generally, it is believed that both initiation and 
maintenance of replication require viral proteins E1 and E2, as has been 
demonstrated in BPV1 (195). However, some studies state that E1 is not 
required for maintenance of replication and is substituted by cellular proteins 
(196, 197). However, the need for E1 may be dependent on cell type, differen-
tiation state and initial load of viral DNA. 

Amplificational replication occurs in differentiated keratinocytes when these 
cells move upwards in the epidermal layer. At this stage, viral genomes are 
amplified up to five times followed by packing of the DNA into virions and 
release from the cells. In the cells, along with the amplification of genomes, 
elevated levels of E1 and E2 are detected (97). During differentiation, the cellular 
environment changes, and virus begins to express its late genes. At this stage, 
rolling circle replication, which enables rapid synthesis of viral DNA, might be 
prevalent (198, 194). 

HPV replication is also associated with genomic instability. When HPV is 
integrated into the host cell chromosome, the papillomavirus episomes that 
express physiological levels of viral replication proteins can induce genomic 
instability in the host cell DNA (199). E1- and E2-dependent DNA replication 
from the integrated HPV origin follows the “onion skin”-type replication mode 
and generates a heterogeneous population of replication intermediates, which in 
turn integrate into host cell DNA and are processed by the activated cellular 
DNA repair/recombination machinery. This process results in cross-chromo-
somal translocation and can lead to the development of HPV-associated cancer 
(199). It has been shown that high-risk, but not low-risk, HPV E2 proteins pro-
mote a mitotic block, which is often followed by metaphase-specific apoptosis, 
independent of the viral oncogenes E6 and E7. High-risk HPV E2-expressing 
cells also exhibit polyploidy, chromosomal mis-segregation and centrosome 
amplification, leading to genomic instability (200). 
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2.6. Nuclear myosin 1 

Myosins are crucial and specific cellular proteins that have the unique ability to 
transform free chemical energy from ATP into mechanical movement. By 
phylogenetic analysis, myosins have been grouped into 15 distinct classes (201). 
The best known myosins are those from class II, also called conventional myosins 
because this was the only class of myosins known for over 60 years (202). 
Myosin II has a two-headed structure; the dimerized tail of this myosin forms 
filaments; and this myosin is found mostly in muscles but also in the cytoplasm 
of cells. Unconventional myosins are less well known and are classified into 
several groups. One of these myosins are myosins from class I, which were 
discovered next and became known as monomeric, non-processive and slow-
rate molecules (203). Myosin 1c was the first single-headed myosin isolated 
from mammals (203, 204). The human MYOIC gene encodes three isoforms: 
(I) myosin 1c isoform C is the classical 1063 amino acid myosin and was first 
detected only in the cytoplasm but was later also detected in the nucleus (204, 
205); (II) myosin 1c isoform B, also known as nuclear myosin 1 (NM1), 
includes 16 additional amino acids at its N-terminus (206, 207); and (III) the 
newest myosin 1c isoform is isoform A, which includes 35 additional amino 
acids at its N-terminus and is found in the cell nucleus (208). Nuclear myosin 1 
was discovered fortuitously when testing affinity-purified polyclonal antibodies 
against adrenal myosin 1. This antibody was also seen to stain a 120-kDa nuclear 
protein that was shown to have ATPase activity and could bind ATP, actin and 
calmodulin, which all indicated that this protein belonged to the class of uncon-
ventional myosins (206). A mass spectrometric analysis performed to identify 
the new immunopurified protein showed that this protein was highly homo-
logous to the previously identified cytoplasmic Myo1c protein. Since it was the 
only nuclear myosin known at the time, it was named nuclear myosin 1 (207).  
 
 

2.6.1. Structure of nuclear myosin 1  

Myosins constitute a large superfamily of proteins that share a common domain 
structure and have been shown to interact with actin, hydrolyse ATP and 
produce movement in all cases examined to date. Similar to all myosins, nuclear 
myosin 1 is composed of three functional subdomains:  
(1)  The motor domain, which interacts with actin, binds ATP and has a unique 

16-residue amino-terminal extension. The structures of the motor domains 
of the myosin family are relatively conserved with the exception of several 
surface loops and the amino terminus (206, 202) (Fig. 3). 

(2)  The neck domain, located between the head and tail, contains three IQ 
motifs that bind calmodulin (206). The IQ motif is a helical structure that 
has a consensus sequence of IQXXXRGXXXR, and this motif is located in 
the neck region of all myosins that bind light chains and calmodulin (209). 
The number of IQ motifs present in the neck domains of different myosins 
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can vary between zero and six (202). The nuclear localization signal (NLS) 
of NM1 lies in the second IQ motif, and the nuclear import mechanism 
involves importins (210).  

(3)  The tail domain, which is too short to self-aggregate into filaments. 
However, the NM1 tail domain does contain regions such as a positively 
charged domain and pleckstrin homology domain (PH) that bind various 
molecules such as DNA (211) and acidic phospholipids. The latter allows 
NM1 to bind actin with its head domain, and acidic phospholipids bind to 
the PH domain in the tail region, thus fulfilling the class I myosin 
functions, i.e., linking membranes and membrane-coated vesicles to actin-
rich structures such as cytoskeletons (212, 213). 

 
The tail domains are the most diverse domains in myosin proteins and vary 
widely in length and sequence. The tail contains often functional motifs, such as 
SH3 domains, GAP domains, FERM domains, and pleckstrin homology (PH) 
domains. In addition, the tails of many myosins contain coiled-coil-forming 
sequences, which allow the molecules to dimerize and produce two-headed 
molecules (202). 

 
Figure 3. Schematic representation of the nuclear myosin 1 structure. Shown are the 
motor and tail domains connected with IQ motifs. ATP- and actin-binding sites are 
marked with lines, as are the nuclear localization signal (NLS) and pleckstrin homology 
(PH) domain. 
 
 

2.6.2. Nuclear myosin 1 functions 

Myosins are actin-based motors that are known or hypothesized to play funda-
mental roles in many forms of eukaryotic motility, such as cell crawling, cyto-
kinesis, phagocytosis, growth cone extension, maintenance of cell shape, and 
organelle/particle trafficking (214).  

NM1 is an unconventional myosin that works with actin and other nuclear 
components to regulate different steps in the gene expression pathway (215–
217) and affects chromosome repositioning (218). Using specific antibodies 
generated against its N-terminal epitope, NM1 can be detected predominantly in 
the nuclei, nucleoli and at the plasma membranes of interphase cells (206, 219, 
220). NM1 plays important roles in DNA transcription, RNA maturation, 
chromatin remodelling and cell motility. 

During transcription, NM1 associates with chromatin and localizes to both 
nuclear and nucleolar transcription sites in an RNA-dependent manner (219–
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221). At the rRNA gene promoter, the interaction between the chromatin-bound 
NM1 and RNA polymerase I (Pol I)-associated actin is required for transcription 
activation (221). The interaction of NM1 with Pol I is indirect and is mediated 
by TIF-1A, a transcription factor phosphorylated by growth-associated kinases 
(222). The NM1-TIF-1A interaction suggests that NM1 plays a role in the 
growth-dependent regulation of rDNA transcription (223). NM1 is also 
necessary for forming the first phosphodiester bond during transcription initiation, 
and purified NM1 stimulates transcription by RNA polymerase II (224).  

During RNA maturation, NM1 associates with rRNA in the nucleolus (219), 
is loaded onto nascent preribosomal subunits and accompanies export-compe-
tent ribosomal subunits to the nuclear pore basket (225).  

NM1 plays an important role in chromatin remodelling, where NM1 is part 
of a multiprotein assembly, B-WICH, that contains the WICH chromatin re-
modelling complex with the subunit WSTF and the ATPase SNF2h (226–228). 
On the rDNA, WSTF bookmarks the position of the chromatin remodelling 
complex, while NM1 interacts with SNF2h to stabilize B-WICH, leading to 
recruitment of the HAT PCAF for H3K9 acetylation (221). NM1 has therefore 
been proposed to link Pol I with the rDNA via direct interactions with the Pol  
I-associated actin and chromatin, respectively. Since this mechanism depends 
on myosin ATPase activity, and the catalytic activity of NM1 is required for Pol 
I transcription, NM1 is likely to function as an actin-based motor that activates 
transcription by providing a permissive chromatin state for rapid Pol I tran-
scription activation (223, 221, 229). It has been demonstrated that B-WICH 
along with NM1 activates RNA pol III transcription (230). 

Recently, it has been shown by Almuzzaini and colleagues that NM1, SNF2h 
and WSTF are enriched at active class II promoters, where NM1 specifically 
maintains hypophosphorylated Pol II levels and modulates B-WICH assembly, 
including SNF2h recruitment for local chromatin remodelling. They demon-
strated that this process leads to the recruitment of the HAT PCAF and the 
HMT Set1/Ash2 for H3K9 acetylation and H3K4 trimethylation, respectively 
(231). 

The motor function of nuclear myosin is crucial for cell motility and for 
functional compartmentalization of the nucleus. NM1 links the cell plasma 
membrane to the adjacent cytoskeleton and regulates the plasma membrane 
tension, which determines cell shape and influences processes such as cell 
motility, spreading, endocytosis and exocytosis (232). The nuclear centre of the 
cell includes early replicating chromosomes, whereas the periphery contains 
late-replicating heterochromatic chromosomal regions (233). It has been shown 
that the movement of an engineered chromosome locus is an active process 
powered by actin and NM1, and overexpression of mutated NM1 that lacks motor 
activity inhibits this effect (234). Several studies have demonstrated that 
chromosome repositioning requires an NM1-containing motor complex (235, 
236, 218). 
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3. OBJECTIVES OF THE STUDY 

Beta-papillomaviruses are a group of viruses that have been studied much less 
thoroughly than alpha-papillomaviruses, which have received most of the scien-
tific spotlight. The main reasons why beta-PVs have remained overshadowed by 
alpha-PVs are the absence of a suitable model system for studying replication of 
beta-PV genomes, the transient nature of beta-PV infections in humans; and 
their unclear association with carcinogenesis in humans. Beta-PV research has 
been mostly limited to medical studies about viral loads and types in humans, 
but molecular mechanisms are understudied due to the challenges in this area. 

The general objective of this study was to provide a more thorough mole-
cular biological characterization of beta-papillomavirus HPV5 and to expand 
the knowledge about main regulatory protein of papillomaviruses, E2, which 
plays key roles in all viral life events. The specific objectives of this study were 
as follows: 
1) To identify and characterize the HPV5 transcription start sites and poly-

adenylation cleavage sites in the early region of the viral genome, to identify 
the HPV5 E8 transcript, and to demonstrate the function of this protein in 
genome replication (I). 

2) To identify the BPV1 E8/E2 nuclear targeting signal and demonstrate its 
function in protein localization inside the cell (II). 

3) To characterize a new interaction partner of papillomavirus E2 protein, iden-
tified as NM1, and demonstrate the role of NM1 in viral replication and 
transcription (III). 
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4. MATERIALS AND METHODS 

For characterization of the HPV5 transcription map, we used U2OS cells to 
generate HPV5 mRNA and analysed this mRNA by the rapid amplification of 
cDNA ends (RACE) method. According to Geimanen and colleagues (237), 
U2OS has proved to be a useful cell line for studying different papillomaviruses, 
including the beta-papillomaviruses HPV5 and HPV8. U2OS cells, derived from 
human bone osteosarcoma, is highly chromosomally altered, moderately dif-
ferentiated and expresses wild-type pRb and p53 proteins. U2OS cells can be 
transfected with high efficiency and enable the study of viral genome repli-
cation in transient and stable phases but also support viral genome amplification, 
which is characteristic to the late phase of the viral life cycle. The transcription 
map of HPV18 is very similar in U2OS cells and in infected raft cultures (238, 
151), which proves that the U2OS cell line is highly compatible for studying 
different phases of the papillomavirus life cycle. 

For identification of the early promoter regions and polyadenylation cleavage 
sites of HPV5, we used the RNA-ligase-mediated rapid amplification of cDNA 
ends method (RLM-RACE), which allows the amplification of cDNA only from 
full-length, capped mRNA, omitting incomplete messages that lack 5’ ends 
(Ambion FirstChoice RLM-RACE Kit, Thermo Fisher Scientific, Waltham, 
MA). A major limitation of traditional 5’ RACE is that there is no selection for 
the amplification of fragments corresponding to the actual 5’ ends of mRNA 
because all cDNAs are acceptable templates in the reaction. Additionally, the 
PCR step selects the most efficient amplicons, which can be the smallest, 
favouring the amplification of products with sizes lower than the full-length 
product, producing a heterogeneous population of amplified products. Briefly, 
the RLM-RACE procedure is as follows: RNA is first treated with calf intesti-
nal alkaline phosphatase (CIP) to remove free 5’ phosphates from molecules 
such as ribosomal RNA, fragmented mRNA, tRNA, and contaminating DNA, 
all of which can interfere with the determination of the real 5’ ends of intact 
mRNA, which have a cap structure that protects the mRNA from CIP treatment. 
The RNA is then treated with tobacco acid pyrophosphatase (TAP) to remove 
the cap structure from the full-length mRNA, leaving a 5’ monophosphate. RNA 
adapter oligonucleotide is ligated to the RNA population using T4 RNA ligase. 
The adapter cannot be ligated to dephosphorylated RNA because these mole-
cules lack the 5’ phosphate necessary for ligation, which ensures that only true 
5’ ends of transcripts are amplified. During ligation, a majority of the full-
length, decapped mRNA acquires the adapter sequence. A randomly primed 
reverse transcription reaction and nested PCR then amplifies the 5’ end of a 
specific transcript.  

In the characterization of HPV5 transcripts (I) and in the identification of 
nuclear myosin as an E2-binding partner (III), we used HPV minicircle genomes 
for transfection of U2OS cells (239). Traditionally, viral genomes are inserted 
into bacterial plasmids, and to produce a complete viral genome the genome has 
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to be cut out from the plasmid and religated before transfection into the cells. 
Instead of using this time-consuming procedure to generate the circular HPV 
genome, we used an arabinose-inducible bacterial recombination system, where 
the ΦC31 integrase produces minicircle genomes, and the SceI endonuclease 
destroys the plasmid backbone, ensuring that only minicircle DNA is produced, 
without plasmid contamination. 

A complete overview of methods used in this study are described in the 
appropriate sections of each publication.  
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5. RESULTS AND DISCUSSION 

5.1. Characterization of the HPV 5 transcription map  
in U2OS cells (Ref. I) 

By 1960, it was already thought that HPV infections can cause cutaneous warts, 
although the multiplicity of the HPV types was not yet fully understood. Harald 
zur Hausen was the first to propose a role for HPV in the development of 
cervical cancer, for which he received a Nobel Prize in 2008. Due to the work 
of many researchers, the critical role of HPV in the development of different 
types of cancer was established, and it has now been found that approximately 
4,8% of new cancers develop due to HPV infections. These estimates are based 
on the carcinogenic potentials of the high-risk HPV types from the genus 
Alphapapillomavirus, which infect only mucosal epithelia and do not cause 
keratinocyte carcinomas (KCs). Keratinocyte carcinomas (basal and squamous 
cell carcinomas) are the most common cancers among Caucasian populations. 
The main factors causing KCs are solar UV radiation, chemicals, Rontgen 
radiation, smoking and immunosuppressive medication; however, there is 
growing evidence that HPVs the genus Betapapillomavirus act as co-factors in 
the development of UV-induced KCs, especially in immunosuppressed patients. 
Therefore, all research that helps reveal the molecular biology of beta-PVs is 
necessary for understanding the mechanisms of viral infection that lead to 
carcinogenesis. 

In our study, we focused on the characterization of the transcription map of 
the beta-papillomavirus HPV5. Only one study has been published about HPV5 
differentiation-dependent transcription; Haller et al. (240) identified multiple 
HPV5 transcripts from EV patients via in situ hybridization. The main obstacle 
in beta-papillomavirus research has been the lack of suitable model systems that 
can enable the study of viral gene transcription and viral genome replication. 
We found that the human osteosarcoma cell line U2OS is suitable for studying 
both alpha- and beta-papillomaviruses, supporting viral genome replication and 
transcription in transient and stable replication modes. For this study, we used a 
bacterial recombination system to generate covalently closed circular HPV5 
genome minicircles, cloning the whole viral genome into the appropriate vector, 
pMC.BESPX. This vector facilitates the production of the viral genome as a 
supercoiled miniplasmid, containing only a minimal portion (92 bp) of non-viral 
sequences located in the HPV5 L2 gene. Although we successfully generated 
the HPV5 and HPV8 positive subclones in the U2OS cell line and confirmed 
the episomal status of the viral genomes, we did not see amplification of beta-
papillomavirus genomes after cultivation in subconfluent conditions; viral DNA 
amplification under these conditions in alpha-papillomaviruses HPV16 and 
HPV18 has been observed. The lack of beta-PV genome amplification in con-
fluent U2OS cells might reflect the absence of certain critical factors required 
for the amplification of the HPV5 and HPV8 genomes in U2OS cells. It is also 
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possible that beta-PV does not enter a strong amplification phase, which is 
plausible given the asymptomatic nature and ubiquity of beta-PV infections. 

First, we established that HPV5 genome replication is dependent on E1 and 
E2 expression, which was confirmed by transient replication analysis of the 
HPV5 wild-type (wt) genome and E1- or E2-defective genomes in U2OS cells. 
To precisely demonstrate that the HPV5 genome cannot replicate without the 
E1 and E2 proteins, we generated two mutant genomes encoding truncated E1 
and truncated E2 by inserting stop codons into the corresponding ORFs, 
resulting in frameshifts in the coding sequences of the replication proteins. 
Episomal DNA analysis of the replication of mutated viral genomes showed 
that the E1- and E2-defective genomes failed to replicate in U2OS cells, while 
the wt HPV5 genome replicated well, showing an increase in replication signal 
over the 5-day period (Ref. I, Fig. 1A). This result was also confirmed by a 
complementation assay, where co-transfection of both mutated genomes resulted 
in restoration of the replication signal. The overall result of this assay was 
expected because E1 and E2 are the main initial replication factors across PV 
genera, as demonstrated in 1991 by Ustav and colleagues in a BPV1 model 
system (27).  

After successfully establishing U2OS subclones carrying an episomal HPV5 
genome, our next aim was to characterize the HPV5 mRNA products. Many HPV 
types, such as HPV1, 11, 16, 18, 31 and 33, express negative regulators of viral 
genome replication, that is, splicing products of the E8 and E2 genes. Using 
5´RACE analysis of transiently expressed HPV5 transcripts, we identified 
HPV5 E8 ORF at nt 1328 to 1359 in the E1 gene. After mutation of the E8 start 
codon, we observed an increase in the replication signal, which was approxi-
mately 100 times higher than that of the wt genome (Ref. I, Fig. 2A), which 
proves that E8^E2C is an important repressor of HPV5 gene expression. 
Sequencing of E8-containing transcripts revealed two E8-ORF-containing 
transcripts, E8^E1C and E8^E2C. Replication analysis indicated that E8^E1C 
did not affect HPV5 E8 replication, and only E8^E2C had a strong effect on 
viral genome replication, where co-transfection with E8^E2C successfully 
reduced HPV5 E8 replication. 

Our main aim was to map the HPV5 transcription start sites. For this pur-
pose, we used the 5´RACE technique, using total RNA extracted from U2OS 
cells transfected with the HPV5 genome or HPV5 subclone no. 15. We success-
fully identified four HPV5 early promoter regions with transcription start sites 
(TSSs) at nucleotides 184/191, 460, 840, and 1254 and the HPV late promoter 
with a TSS at nt 7640. The early TSS at 184/191, upstream of the E6 ORF, is 
analogous to other PV promoter regions such as HPV8 P175 and HPV16 P97. 
We noticed that transcripts starting at this TSS all begin from the same 
nucleotide, which is unlike alpha-PVs, where broad heterogeneity of TSSs is 
common. We believe that the reason behind this observation may be the more 
complex and variable environment of the mucosal epithelia, where alpha-PVs 
propagate.  
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A second early promoter within the E7 ORF represents a larger region, in 
which the TSSs range from nt 811 to 888. The heterogenous promoter region in 
the E7 ORF is found also in alpha-PVs. We found a new promoter in the E1 
ORF, P1254, which is the start site for transcripts of repressor protein and 
truncated E1. A similar promoter region, P1193, is located in the HPV18 genome 
(151). The HPV5 late promoter was mapped to nt 7640, which is similar to the 
HPV8 late promoter P7535. 
 

 

Figure 4. Schematic representation of HPV5 transcripts mapped in U2OS cells. The 
HPV5 genome is shown on top with ORFs (open boxes), start codons (numbers above), 
promoters (arrows for single sites and brackets for regions) and PA cleavage sites 
(CSs). For details, see (Ref. I). 
  
 
We also wanted to map early polyadenylation cleavage sites (PA CSs) for early 
mRNAs, which are important in the maturation of pre-mRNAs. Upon analysis 
of 39 clones obtained by the 3’RACE technique, we identified early mRNA 
cleavage sites at nts 4457 and 4475, which are located at the beginning of the 
L2 ORF. In HPV11, an analogous CS is located before the L2 ORF (241), but 
in HPV18, an early PA CS is also located at the beginning of the L2 ORF (151). 
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Analysis of the HPV5 transcript splice sites revealed the main splice acceptor 
sites to be at nts 2676 and 3322. These sites were identical to those identified 
from the data obtained from EV patients with HPV5-positive skin lesions. 
Altogether, we identified 14 different HPV5 mRNA species from U2OS cells 
harbouring the HPV5 genome (Ref. I, Fig. 4), which is much more than has 
been identified in previous work (240). 

A complete transcription map of the viral genome is a basic tool that provides 
the means to perform a variety of studies on the current virus. The online 
papillomavirus episteme database (http://pave.niaid.nih.gov) currently contains 
transcription maps for eleven papillomaviruses. Considering that more than 150 
HPV types have been identified to date, eleven transcription maps does not 
seem like much; however, the most important viruses associated with carcino-
genesis, such as HPV11, 16, and 18, and HPV5 and 8 are included in this data-
base. Given the advancements in current methodologies, there are now detailed 
protocols available for the construction of papillomavirus transcription maps 
based on recently published studies, which have used methods such as 5’ and 
3’RACE to map transcription start sites and polyadenylation cleavage sites, 
primer walking RT-PCR to study the splicing junction of RACE products, and 
RNase protection assay and primer extension methods. 
 
 

5.2. Identification of the nuclear matrix targeting  
sequence (NMTS) of the BPV1 E8/E2 protein (Ref. II)  

Modern proteomic tools have provided much new information about proteins 
and protein isoforms. Protein isoforms can have different localization and 
functions in the cell compared to the full-length protein. Understanding the 
importance of alternative splicing and the complexity of protein localization 
signals helps us understand the biological functions of these proteins in the 
complex cellular network.  

The main regulatory protein of papillomaviruses, E2, has two isoforms, E2C 
and E8/E2, that are generated by alternative splicing. We used biochemical 
fractionation to study three E2 isoform localizations in the cell (Ref. II, Fig. 2). 
Biochemical fractionation included the treatment of transfected cells with 
different buffers containing increasing concentrations of NaCl and supplemented 
with nucleases such as DNase or RNase. Each time new buffer was added, the 
proteins that were solubilized under the conditions used and the proteins that 
stayed in the insoluble cellular fraction with the cellular matrix and other 
insoluble compartments were collected separately and analysed by SDS-PAGE 
and by immunoblotting with specific antibodies. This method enables the sepa-
ration of cytoplasmic proteins from nuclear proteins using a mild buffer with a 
low concentration of the non-ionic detergent Triton-X100 and physiological 
concentrations of NaCl, which permeabilizes the cellular and nuclear membranes 
and releases soluble proteins, which are not strongly bound to the matrix struc-
tures. Upon treatment with the next buffer, containing a higher NaCl concent-
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ration, we could solubilize the proteins that had higher affinity for the matrix. 
The nuclease DNase destroys DNA and releases proteins bound to chromatin, 
such as histones, while RNase degrades RNA, and all proteins bound to RNA 
are released into the soluble fraction. By this method, we established that all 
three forms of E2 have different subnuclear localizations. The truncated E2 
isoform E2C was extracted from nuclear structures with mild buffer conditions; 
and E2 was extracted with 0,4 M NaCl buffer; but E8/E2 remained bound to 
nuclear structures after treatment with 0,4 M NaCl, RNase, DNase and 
2 M NaCl. We refer to the insoluble fraction of the isolated cell nuclei, which is 
resistant to salt and nuclease treatment, as the nuclear matrix. Further experi-
ments with the proteins where the E8 peptide was added as a linker or was 
deleted showed that the E8 peptide is essential and sufficient for localization of 
the proteins to the nuclear matrix (Fig. 5). Mutational analysis of the E8 peptide 
helped identify the critical residue for nuclear matrix localization, i.e., the 
conserved lysine residue at position 2. The mutated E8 K2A was no longer 
retained in the nuclear matrix but was easily extracted from cells by mild treat-
ment with CSK buffer.  
 

 

Figure 5. The E8 part of the E8/E2 protein is required for targeting the protein to the 
nuclear matrix. Western blot of biochemical fractions from CHO and Cos7 cells are 
shown. Sol, CSK soluble fraction; 0.4, CSK soluble fraction with 0,4 M NaCl; P, CSK 
insoluble fraction containing nuclear matrix proteins. For details, see (Ref. II). 
 
 
We wanted to further establish the nature of E8 localization in the nuclear 
matrix. Data obtained by biochemical fractionation are indirect and can imply 
that E8 and the E8 mutant K2A localize into different subnuclear compartments 
or that the mutant K2A has weaker affinity for the same nuclear compartment to 
which wild-type E8 is attached. We used a FRET assay to determine whether 
E8 and E8K2A localize close to each other or far apart. The FRET assay enables 
the measurement of the proximity of a donor-acceptor pair of fluorescence 
proteins in living cells. Notably, fixation of the cells is not necessary as fixation 
may alter the structure of the cell compartments and the data may not be 
reflective of the actual situation. Our experiments showed that expression of E8 
together with E8 K2A resulted in a much weaker FRET signal than expression 
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of E8-E8 proteins, which demonstrates that E8 and its mutant have different 
spatial localizations in live cells (Ref. II, Fig. 6).  

Overall, we successfully characterized the localization of the papillomavirus 
E8/E2 repressor protein in the cell and identified the determinants of loca-
lization. According to nuclear matrix database (www.rostlab.org/db/NMPdb), 
E8 is the shortest nuclear matrix targeting signal identified to date. Similar 
localization signals have been described for NF-90 and other proteins, which 
indicates that we have just started to understand the complex world of protein 
trafficking in subcellular compartments. We do not yet know the biological 
significance of the strong attachment of E8 to nuclear matrix compartments. 
This phenomenon could be associated with the important repressor functions of 
E8; therefore, when the cell divides, E8 is still present in each cell to control 
viral genome protein expression. We have shown that in HPV5 and HPV18, E8 
has a strong influence on the expression levels of some mRNAs and sub-
sequently controls viral genome replication. It would also be interesting to 
identify the interaction partners of E8 in the nuclear matrix and to determine 
whether this localization increases E8 stability. Resent studies in the field of 
virology have provided insight into the life of viruses in cellular systems and 
indicated how these two systems are very closely entangled, forming a unified 
balanced network where everything is connected.  
 
 

5.3. Identification of the new interaction partner, NM1,  
of the papillomavirus E2 protein and of the role of NM1  

in viral replication (Ref. III) 

E2 is the master regulator of the life cycle of papillomaviruses, affecting all the 
main viral life events. Proteins that form strong or weak complexes with E2 to 
modify, help or restrict the various functions of E2 have always received a lot of 
interest. There are many published studies about the identification of cellular 
targets of the papillomavirus E2 protein, including chromatin binders, modifiers 
and remodelers; RNA-processing proteins; and replication and transcription 
factors. In this study, we identified a new interaction partner of the papilloma-
virus E2 protein, namely, nuclear myosin 1c (NM1), which is a known chro-
matin remodeler and is part of the B-WICH complex. NM1 is the first myosin 
that has been identified in the cell nucleus (206). Mass-spectrometric analysis of 
this protein showed that it was highly homologous to the myosin Myo1c, which 
was the first single-headed myosin isolated from mammals. It was later disco-
vered that the ratios between Myo1c and NM1 in the nucleus and cytoplasm are 
roughly equal, and both isoforms are mutually redundant during transcription 
(205). NM1 associates with RNA polymerases I, II and III and is required for 
transcription, nuclear transport and chromatin relocation (207, 222, 230).  

By performing an immunoprecipitation assay, we showed that the BPV-1 E2 
protein co-precipitated with three proteins, which were later identified by mass-
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spectrometry as myosin 9, nuclear myosin 1c and beta-actin (Ref. III, Fig. 1). 
By washing the immunoprecipitated material with washing buffers containing 
increasing concentrations of NaCl, we demonstrated that the E2 protein affinity 
towards myosin 9 was weaker than that towards NM1. In the immunoprecipi-
tation assays, the beta-actin signal was generally weak, and we hypothesized 
that beta-actin was a myosin partner but was not directly bound to E2. We 
wanted to characterize the interaction between E2 and NM1 more closely and 
generated truncated E2 and NM1 protein mutants in which only the N-terminal 
or C-terminal regions were expressed. Using an immunoprecipitation assay, we 
established that both E2 and NM1 interact through their N-terminal regions. 
Myosins use ATP to generate a motive force, which changes the myosin confor-
mation. We found that addition of ATP to immunoprecipitated complexes causes 
NM1 to loose its interaction with E2. We concluded that ATP binding and 
hydrolysis cause conformational changes in full-length NM1 that lead to lower 
affinity for E2, as non-hydrolysable γATP and ADP released considerably less 
NM1 into the supernatant from the NM1-E2 complex. BPV1 E2 has been cha-
racterized thoroughly by creating alanine-scanning mutants, and this has revealed 
critical residues for replication, transcription and genome maintenance function. 
Previous studies have demonstrated that the E2 double mutant R37A/I73A 
supports E1- and E2-dependent BPV replication initiation, but the transcription 
activation ability of this mutant is impaired, and the mutant is unable to bind 
mitotic chromosomes or the Brd4 protein. We found that the binding of E2 
R37A/I73A to NM1 was weaker that of wtE2 or the E2 mutants E39A and 
R68A, which could be due to conformational changes or because the structural 
determinants of E2 are also involved in the binding to Brd4 and NM1 (Ref. III, 
Fig. 2).  

The chromatin adapter protein Brd4 is the most well-studied interaction 
partner of E2, and it has been shown that the interaction between Brd4 and E2 is 
important in E2-dependent transcriptional activation and repression (156, 242). 
Brd4 might be involved in E2-dependent replication and is been shown to 
mediate BPV1 genome segregation to mitotic chromosomes (164). Brd4 interacts 
with E2 through its C-terminal domain (CTD), and this interaction increases E2 
stability in cells by preventing the association of E3 ubiquitin ligase with E2 
(129). In our experiments, when we transcribed proteins in vitro and subsequently 
used these proteins in immunoprecipitation assays, we observed that Brd4CTD 
co-immunoprecipitates with the E2-NM1 complex, but Brd4CTD and NM1 do 
not directly interact with one another (Ref. III, Fig. 3). The results of these 
experiments also confirmed that beta-actin and Brd4 CTD are not essential for 
the interaction of E2 with NM1. This finding was similarly illustrated by 
washing IP complexes with buffers of different ionic strengths; E2 appeared to 
be bind to NM1 with greater affinity than to Brd4CTD or beta-actin. 

Papillomavirus E2 proteins are not well conserved across genera; however, 
we wanted to test whether the interaction between E2 and NM1 is a unique 
feature of BPV1 or whether it also occurs with E2 proteins from other genera. 
For this experiment, we selected HPV5 E2 and HPV18 E2, which have 26% 
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and 25% identity to BPV1 E2 at the amino acid level. Our immunoprecipitation 
experiments showed that HPV5 and HPV18 bind effectively to full-length NM1 
and to Myo1C, which is another isoform. NM1 is part of the multiprotein 
complex B-WICH, which includes the transcription factor WSTF and the 
ATPase SNF2h. We demonstrated that BPV1 E2, HPV5 E2 and HPV18 E2 are 
present in the complex with NM1, WSTF and SNF2h, allowing us to conclude 
that the interaction of E2 with the chromatin remodelling complex B-WICH 
may be required to promote the transcription of viral genes by facilitating the 
generation of permissive DNA structures.  

The main function of E2 is the initiation of viral replication by binding to 
viral helicase E1 and to E2-binding sites in the viral promoter region to 
facilitate the unwinding of the viral DNA. We wanted to test whether NM1 can 
influence E2-dependent replication. For this purpose, we used NM1-directed 
siRNA to downregulate NM1 expression in the cells, which caused replication 
growth in BPV1 and HPV5 but not in HPV18 (Fig. 6). 
 

Figure 6. NM1 downregulation by siRNA enhances HPV5 replication but does not 
influence HPV18 replication. Southern blot analysis of U2OS cells transfected with 
siRNA and the HPV URR-containing plasmid together with the E1- and E2-constructs 
are shown. For details, see (Ref. III). 
  
 
We propose that the difference between HPV5 and HPV18 replication is 
dependent on the upstream regulatory regions of these viruses, which are type-
specific and contain different binding sites for cellular replication factors. The 
NM1 downregulation effect in BPV1 and HPV5 replication enhancement is 
probably caused by the availability of free E2, which increases when the NM1 
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level decreases, enhancing E2 functions. Transcription studies showed that 
NM1 downregulation has no significant effect on E2 transcription regulation.  

Currently, there are more than 200 known cellular interaction partners of E2, 
which were identified by proteomic analysis and the functions of most of which 
are unknown. We consider the interaction of NM1 with E2 to be very interesting 
as the functions of NM1 in chromatin remodelling and replication initiation are 
very intriguing. We have managed to shed a little light on the cooperation 
between the key viral regulator E2 and NM1. However, more interesting 
discoveries remain to be made in the future. In this study, we did not examine 
the interaction between myosin 9 and E2, which could also be very interesting 
and warrants further research. 
  



40 

6. CONCLUSIONS 

The cutaneous beta-papillomavirus HPV5 is much less well-studied than the 
strongly oncogenic mucosal papillomaviruses HPV16 and HPV18. We wanted 
to characterize HPV5 more thoroughly at the RNA level. At the same time, in 
our research group, the main regulatory protein of papillomaviruses, E2, has 
been the primary subject of research as it influences all the main viral life 
events. In this study we have achieved the following: 
1) We successfully characterized the HPV transcription map, including the early 

start sites and polyadenylation cleavage sites. We also identified the HPV5 
E8 transcript and demonstrated the role of this protein in genome replication. 

2) We identified the BPV1 E8/E2 nuclear targeting signal, and using different 
protein constructs, we showed that this signal localizes the proteins to the 
nucleus. 

3) We discovered a new E2 interaction partner, NM1, which influences BPV1 
and HPV5 replication but not HPV18 replication. However, the E2 protein 
of all the mentioned viruses interacts with NM1, which is part of the WICH 
chromatin remodelling complex. The exact role of NM1 in the viral life 
cycle remains to be determined in future studies. 
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SUMMARY IN ESTONIAN 

Papilloomiviiruse transkriptsiooni ja regulaatorvalgu E2 uurimine 

Papilloomiviirused on viiruste perekond, mis nakatab nii inimeste kui loomade 
epiteelrakke ja põhjustab papilloome ehk näsakasvajaid, mis võivad teatud 
tingimustes areneda halvaloomulisteks kasvajateks. Organismi nakatumiseks 
peab viirus sisenema aktiivselt paljunevatesse keratinotsüütide tüvirakkudesse. 
Edasine viiruse elutsükkel sõltub rakkude diferentseerumisest ja seetõttu saavad 
uued viiruse osakesed tekkida ainult naha ülemise kihi mittepaljunevates 
rakkudes, kust uued virionid vabanevad rakkude irdumisel. 

Inimese papilloomiviiruseid on teada üle 200 tüübi ja nad jagatakse kaheks 
grupiks nende koespetsiifilisuse alusel: limaskesti nakatavad papilloomiviirused 
ja naharakke nakatavad papilloomiviirused. Limaskesti nakatavad viirused jao-
tatakse omakorda kaheks grupiks nende vähitekke riski alusel, nimelt madala- ja 
kõrge riski papilloomiviirusteks. Tänaseks päevaks on selgunud, et enamik 
inimese emakakaelavähi juhtumitest on põhjustatud kõrge riski papilloomi-
viiruste poolt. Lisaks emakakaelavähile põhjustavad need viirused ka teisi ano-
genitaalseid ja suulimaskesta kasvajaid. Naha papilloomiviirused on siiani 
pälvinud vähem tähelepanu, sest nende võimalik seos nahakasvajatega on tul-
nud ilmsiks alles viimasel kümnendil. Meie keskendusime oma töös naha papil-
loomiviirusele HPV5, mida on viimasel ajal hakatud seostama nahakasvajate 
tekkega, aga mida on siiani ikkagi suhteliselt vähe uuritud. Meie töö tulemusena 
valmis HPV5 transkriptsiooni kaart, mille iseloomustamiseks me kasutasime 
inimese rakuliini U2OS. Varasemalt takerdusid paljud uurimistööd sobiva 
mudelsüsteemi puudumise taha, kuna rakkude diferentseerimine laboritingi-
mustes on keeruline, kuni meie laboris avastati HPV genoomi paljunemise jaoks 
sobiv rakuliin U2OS. U2OS on inimese sääreluu kasvajast pärinev rakuliin, mis 
sobib erinevate HPV genoomide replikatsiooni uurimiseks. Selle rakuliini abil 
õnnestus meil kirjeldada 14 erinevat viiruse mRNAd. Me kirjeldasime ka HPV5 
uut viirusvalgu E8 transkripti ja näitame selle represseerivat mõju viiruse DNA 
paljunemisele.  

Me keskendusime oma töös viirusvalgu E2 uurimisele, mis on põhiline 
viiruse elutsükli regulaator. E2 valgul on lisaks täispikale valgule veel kaks iso-
vormi, valgu C-terminaalset osa sisaldav E2C ja alternatiivse splaissinguga 
saadud E8/E2. Me uurisime E2 paiknemist rakus ja leidsime, et lühike E8 valgu 
järjestus on piisav selleks, et valk suunata raku tuuma. Meile teadaolevalt on see 
järjestus lühim tuuma suunav järjestus, mis on siiani teada. E2 valgu edasisel 
uurimisel keskendusime tema rakuliste partnervalkude otsimisele. Tänu pro-
teoomika arengule on siiani leitud üle 200 E2 partnervalgu, millest enamuse 
funktsioon viiruse elutsüklis on siiani teadmata. Meie leidsime uue E2-ga seon-
duva valgu, milleks on tuumamüosiin 1 (NM1), mis on esimene müosiini pere-
konda kuuluv E2 partnervalk. Müosiinide roll rakus on väga oluline, hõlmates 
kõike seda, mis on seotud raku liikumisega, fagotsütoosiga, raku kujuga ning 
organellide ja partiklite transpordiga. NM1 valk osaleb rakus DNA transkript-
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sioonis, RNA küpsemises ja kromatiini ümberkorraldamises. Lisaks on tal ka 
väga oluline roll raku motoorikas. Me näitasime, et E2 ja NM1 seostuvad oma-
vahel mõlema valgu esimeste osade kaudu ja see interaktsioon sõltub ATPst. 
E2-NM1 valgukompleks kuulub ka rakulisse WICH kompleksi, mis osaleb 
kromatiini ümberkorraldustes. Me leidsime, et NM1 mõjutab BPV1 ja HPV5 
viiruse DNA replikatsiooni, aga see mõju puudus HPV18 puhul.  

Kokkuvõtvalt võib öelda, et antud töö käigus kirjeldati põhjalikumalt naha 
papilloomiviiruse HPV5 elutsükli varasemat osa ja iseloomustati viiruse olulise 
regulaatorvalgu E2-e uusi aspekte. 
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