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Compartmentalized gene 
expression profiling of receptive 
endometrium reveals progesterone 
regulated ENPP3 is differentially 
expressed and secreted in 
glycosylated form
Nageswara Rao Boggavarapu1, Sujata Lalitkumar1, Vijay Joshua1, Sergo Kasvandik2,3,4, 
Andres Salumets2,3,4, Parameswaran Grace Lalitkumar1,* & Kristina Gemzell-Danielsson1,*

The complexity of endometrial receptivity at the molecular level needs to be explored in detail to 
improve the management of infertility. Here, differential expression of transcriptomes in receptive 
endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 
(ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and 
protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for 
human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but 
not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms 
its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial 
receptivity.

A significant cause of female infertility (10–15% globally) is the failure to establish a receptive endometrium, 
with the latter primarily driven by progesterone (P). Despite optimization of critical events in assisted repro-
ductive technology, pregnancy rates do not exceed 30%1. Important limitations are the lack of knowledge about 
the implantation process, including endometrial receptivity and lack of reliable diagnosis of receptivity. Recent 
advances in omics technology, either by a genomic or proteomic approach, has yielded many molecules regu-
lated during the receptive phase: integrins α​vβ​32, LIF, gp1303, nuclear pore proteins4, HB-EGF5, mucins6, heart 
and neural crest derivatives 27, homeobox genes8, Annexin A29, Annexin IV10, Calreticulum11, Stathmin 19, and 
Ezrin12, but no unequivocal receptivity marker is yet defined in humans.

Taking into consideration the dynamic nature of the endometrium, cellular and molecular signatures 
alter rapidly due to ovarian hormonal regulation in a given menstrual cycle13. Endometrial tissue sampling 
for identification of biomarkers in endometrial receptivity by microarray studies include divergent cohorts: 
normo-ovulatory women14–22, fertile donors23, fertile mid-secretory phase and infertile women24,25, natural and 
stimulated cycles16,26, and women with recurrent implantation failure or miscarriage27,28. The high degree of het-
erogenicity leads to difficulty in deriving conclusions for receptivity genes. Adding to this, the above studies were 
done using whole endometrial tissue, which constitutes diverse cell types in altered ratios with distinct genotypic 
and phenotypic expression, leading to different results.
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The antiprogestin mifepristone administered on cycle day LH +​ 2 has previously been used to study 
P-regulated endometrial receptivity29–31. Potentially, this approach could also be used to identify a possible bio-
marker for endometrial receptivity. To overcome confounding factors such as tissue variability and to minimize 
subject-to-subject variations, we selectively isolated the mid-secretory phase glandular epithelium and stroma 
from fertile and infertile women by laser capture microdissection (LCMD), followed by microarray. The results 
were reconfirmed by real time PCR and immunohistochemistry. From our findings, we report here a P-regulated 
molecule, Ectonucleotide Pyrophosphatase/ Phosphodiesterase 3 (ENPP3) that can serve as a potential biomarker 
for progesterone regulated endometrial receptivity. Expression of this glycoprotein was also quantified in uterine 
fluid with the possible aim to develop a non-invasive endometrial receptivity assay.

Results
LCMD and gene expression analysis.  The LCMD of approximately 200 cells yielded a minimum of 
500 pg of RNA that was taken for amplification. Microarray data analysis showed 32 genes out of 47 were up-reg-
ulated and 15 genes down-regulated in the epithelial compartment, whereas in the stromal compartment, 79 out 
of 85 genes were up-regulated and 6 down-regulated with mifepristone treatment (Supplementary Table 1). A 
higher number of significantly downregulated genes were observed in the glands in comparison to stroma with 
mifepristone treatment (Fig. 1).

Figure 1.  Heatmaps for hierarchical clustering of significant genes. Genes regulated by progesterone 
in endometrial glandular (G, left panel) and stromal (S, right panel) compartments shown by heatmaps. 
Gene expression was studied in the receptive endometrium (C) in a non-treated cycle and non-receptive 
endometrium (T) with the treatment of progesterone receptor antagonist mifepristone. Each woman in the 
study acted as their own control.
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Biological and molecular pathway analysis.  The 132 significantly regulated (up or down) genes were 
analyzed for upstream regulators, canonical pathways, and biological networks. The leading five canonical path-
ways obtained were NRF2-mediated oxidative stress response, ovarian cancer signaling, superoxide radicals 
dismutation, prostate cancer signaling, and glioblastoma multiforme signaling, respectively. Ingenuity Pathway 
Analysis (IPA) predicts activation or inhibition of upstream regulators that may be responsible for gene expres-
sion changes observed in the experimental dataset, which aids in understanding the biological activities occurring 
in the tissues or cells. In the current dataset, transcription factor Chromobox Homolog 5 (CBX5) was predicted to 
be inhibited with an unbiased Z score of −​2.236 and upstream regulator molecules. Colony stimulating factor 2 
(CSF2) and early B cell factor 1 (EBF1) were predicted to be activated with a Z scores of 2.43 and 2.0, respectively.

Validation of microarray by real-time PCR.  Real-time PCR analysis was in line with the microarray 
study, as 13 and 11 differentially expressed genes respectively from the stromal and epithelial compartments 
were corroborated in both methods (supplementary Table 2). Secreted frizzled-related protein 4 (SFRP4) was 
up regulated by 8.76 fold (p =​ 0.013) in the stroma compartment and by 16.25 fold (p =​ ​0.0001) in the epithelial 
compartment. Carboxypeptidase M (CPM) was up-regulated by 29 fold (p =​ 0.005) in the stromal compartment, 
while Ubiquitin-Conjugating Enzyme E2E 2 (UBE2E2) was up-regulated by 7 fold (p =​ 0.024) in the epithelial 
compartment. MT1G is down-regulated by 7 fold (p =​ 0.008) in stromal and 519 fold (p =​ 0.005) in epithelial 
compartments and MT2A was down-regulated by 3 fold (p =​ 0.031) in stromal and by 7 fold (p =​ 0.03) in epi-
thelial compartments. ENPP3 was significantly down-regulated in both the stromal (−​55.93 fold; p =​ 0.015) and 
epithelial (−​9.46 fold; p =​ 0.035) compartments (Figs 2 and 3).

Immunohistochemical analysis.  Based on the literature review, microarray expression levels, and 
availability of antibodies, we studied the protein expression of stanniocalcin 1 (STC1); Cathepsin C (CTSC); 
Secrteoglobin family 2A member2 (SCGB2A2); SWI/SNF related matrix associated actin-dependent regulator of 
chromatin subfamily a member 1 (SMARCA1); high-mobility group nucleosome binding domain 5 (HMGN5); 
and B-cell CLL/lymphoma 11A (zinc finger protein) (BCL11A). Immunodetection of ENPP3 was observed in all 
the tissues from healthy fertile women and differed significantly between the groups. The findings were in line 
with the microarray results (Fig. 4A–C).

Expression of ENPP3 in endometrium.  Microarray analysis showed down-regulation of ENPP3 by 
59 fold in the epithelial compartment (p =​ 0.04) with P inhibition. Immunohistochemical analysis for ENPP3 
showed expression specific to the apical surface of the epithelial compartment and glandular secretions, but 
was very scanty in the treatment group. The mean immunoreactive score (IRS ±​ SD) for the control group was 
8.8 ±​ 4.41 and the treatment group was very low 0.42 ±​ 1.13 (p =​ 0.0007). Interestingly, the protein expression for 
ENPP3 was not seen in stroma in either group, although mRNA expression was seen in both groups as studied 
by western blot and immunohistochemistry. ENPP3 showed a cyclical expression highest in the mid-secretory 
phase and lowest in the proliferative phase with mean IRS ±​ SD scores respectively in proliferative, mid and 
late-secretory phases were 1.97 ±​ 2.21, 10.25 ±​ 3.88, and 7.12 ±​ 3.83, respectively. Higher expression of ENPP3 
was observed in P dominant mid-secretory phase on comparing with the proliferative phase (p =​ 0.0001). There 
was no significant difference between mid- and late-secretory phases (Fig. 4D).

ENPP3 protein expression in uterine fluid and whole endometrial tissue lysates.  The uterine 
lavages from fertile women and the same women treated with a single dose of 200 mg of mifepristone on LH +​ 2 
were collected on LH +​ 6/7 and tested for ENPP3 protein expression by the western blotting technique. A strong 
band was observed around 165 kd indicating glycosylated ENPP3, and showed a significant downregulation in 
P-inhibited group (AUC - control 17.85: mifepristone treatment: 9.47; p =​ 0.002) with a similar pattern to that of 
tissue ENPP3 (AUC -control 18.98: mifepristone treatment 11.94; p =​ 0.002). The expression of ENPP3 in endo-
metrial tissue lysate was more abundant than in uterine fluid (Fig. 5).

Evaluation of ENPP3 as glycoprotein.  The predicted molecular weight of ENPP3 is around 100 kd, but 
Western blot analysis showed a band at 165 kd, leading us to further investigate its glycosylation. We tested uterine 
fluid and endometrial tissue lysates after digesting with Peptide-N-Glycosidase F (PNGase F), which cleaves the 
glycoaminidase link between asparagine and N-acetylglucosamines. We observed a shift from 165 kD to 110 kD 
in the deglycosylated samples, confirming that ENPP3 is N-Glycosylated in the uterine fluid and endometria of 
healthy fertile women (Fig. 6).

In vitro functional assay.  Embryo attachment was studied in a previously-described three-dimensional 
endometrial cell culture model to study human implantation process in vitro32, and showed that 7 out of 10 
blastocysts attached to the endometrial construct in the control group. In controls, a very good expression level 
of ENPP3 was seen as studied by real-time PCR. Exposure to mifepristone (0.5 μ​M) led to significant (p =​ 0.004; 
fisher’s exact test) down-regulation of ENPP3, with none of the embryos attached to the in vitro endometrial 
construct (p =​ 0.004, Fig. 7).

Analysis of uterine fluid of receptive and non-receptive phase with nano-ESI-LC/MS/MS.  We 
identified and quantified the expression of ENPP3 protein with 35 ENPP3 specific peptides obtaining 53.4% 
sequence coverage in the mass-spectrometry of uterine fluid. Based on total normalized protein intensities, 
ENPP3 protein was observed to be upregulated (mean fold change +​ 35.0, p =​ 0.003) during P dominant LH +​ 8, 
on comparing with early secretory phase (LH +​ 2) of the natural menstrual cycle (Fig. 8).
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Discussion
Our study systematically shows that ENPP3, a N-glycosylated protein regulated by P, is compartmentalized in 
endometrial glands as well as uterine secretions during the receptive phase. The regulation of ENPP3 by pro-
gesterone and the role in implantation process was tested using an in vitro human embryo implantation model, 
where exposure to a P receptor inhibitor inhibited human embryo attachment and thus the embryo implantation 
process along with the downregulation of ENPP3 expression. As the expression of ENPP3 in the endometrium 
correlated to that in uterine fluid, we propose that analysis of ENPP3 in uterine fluid may be used as a potential 
marker in non-invasive test for P regulated endometrial receptivity. Before the use in a clinical setup, we need 
to validate the data from women with recurrent implantation failure (RIF). This will demand a large number of 
samples to derive statistical significance to adjust for different factors contributing to RIF.

There are several studies conducted to identify endometrial transcriptome with array technology to explore 
endometrial receptivity markers with the aim of translating them to clinical use, mainly for diagnosis20,26,33,34. 
None of the above studies, including the studies that compared the mRNA as well as protein profiling between 
early (LH +​ 2) and mid (LH +​ 7 or 8) luteal phase have reported the expression of ENPP335–37. Here, for the first 
time we report that ENPP3 is highly expressed during progesterone dominant mid-luteal phase (LH +​ 8) com-
pared with early luteal phase (LH +​ 2), when the level of P is less. Interestingly, a very recent study conducted to 

Figure 2.  Progesterone regulated genes in endometrial stroma. Tukey plots of significant genes of stromal 
compartment as analyzed by real time PCR. Progesterone inhibition upregulated CPM and SFRP4 and down 
regulated MT1G, MT2A and ENPP3.
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decipher the transcriptome profile of endometrium of RIF patients showed 303 predictive genes and ENPP5, a 
molecule that belong to ectonucleotide pyrophosphatase family38. Though, these reported data are of potential 
value to identify and develop array based predictive methods39,40, the functional role of these molecules still 
remains to be explored and for most of the transcripts, we do not know if they are further transcribed into their 
protein. In this study, we show the expression of ENPP3 both, at mRNA and protein level in the endometrium 
and also try to demonstrate its possible role in the process of human embryo implantation with the best available 
in vitro model to study human embryo implantation process. It will be important to further explore the molecular 
mechanism of ENPP3 in endometrial receptivity and implantation, particularly in female infertility.

Currently, endometrial receptivity array34,39 (ERA) claims to be a superior and more accurate method for 
endometrial receptivity evaluation compared to endometrial histological dating using Noyes criteria41. However, 
advanced technology with quality-controlled central laboratories are required for this analyses42. A recently 
developed method based on the expression of integrins43 (E-tegrity test®) may have potential but needs fur-
ther clinical studies. It should be noted that both methods are invasive as an endometrial biopsy is required for 
analysis. The high impact of P on the expression of ENPP3 in the uterine fluid of a receptive endometrium, as 
reported in this study, is promising and supports its possible use in a receptivity test during the effectual cycle of 

Figure 3.  Tukey plot for progesterone regulated genes in endometrial glands. Endometrial epithelial 
compartment showed down regulation of MT2A, MT1and ENPP3 with the inhibition of P by mifepristone. 
Gene expression for SFRP4 and UBE2E2 was significantly upregulated with the inhibition of progesterone.
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embryo transfer. Collection of uterine fluid though requires insertion of flexible catheter into the uterine cavity, 
it does not cause injury to endometrium. More importantly, sampling of uterine fluid in an embryo transfer cycle 
does not reduce the implantation or pregnancy rate44. Hence, we propose that ENPP3 could be used as a marker 
for a non-invasive test of uterine fluid for progesterone regulated endometrial function. Such tests are not only 
important in identifying receptive endometrium before starting expensive fertility treatment, but also useful in 
personalized embryo transfer, that has given the possibility for some women with RIF to conceive45.

The novelty of this study compared with that of earlier reports lies in the fact that, we studied the gene expres-
sion of major cell types from a cohort of proven fertile women who were their own controls, minimizing the possi-
ble wide variations seen in idiopathic infertility. Secondly, stroma and glands in both receptive and non-receptive 
endometrium were isolated by laser capture microdissection, ruling out the possible global gene expression of 
different genes seen when using the whole endometrium. Most of the previously-published microarray-based 
gene expression studies were carried out using whole endometrial tissue14,15,20,21,23,46,47, giving the cumulative 
gene expression effect of all various cell types in the endometrium. We used microarray, a powerful technique to 
screen vast number of possible genes that are differently expressed. The expression of ENPP3 at transcriptome 
level was confirmed with a more sensitive and specific method, real time PCR. Further we looked into the expres-
sion and distribution of ENPP3 at protein level by Immunohistochemistry. As the expression level of ENPP3 was 
drastically downregulated with P inhibition, we looked for its expression in the uterine fluid, with the intention 
of further exploring the possibility of identifying a marker that could be used to develop a less invasive method. 
For this, we used one of the recently introduced sensitive and rapid method Wes48,49, that is suitable to analyse low 
level of protein in very small sample volume as only a very small quantity of protein and uterine fluid could be 
sampled from women. To study the expression of ENPP3 in receptive and non-receptive phase of the menstrual 
cycle, we used yet another highly sensitive label free protein analytic technology, nano-ESI-LC/MS/MS50. In the 
past, there are no reports on the functional role of the reported markers on endometrial receptivity as studies in 
humans are impossible due to ethical reasons. Here, we verified the functional role of ENPP3 in endometrial cells 
using a previously-described, well-established in vitro model for embryo attachment32.

Figure 4.  Regulation of ENPP3 by progesterone. The expression of ENPP3 was observed very specifically 
in the apical border of glands in P dominant mid-luteal phase as studied by immunohistochemistry (A,C,D) 
in women without mifepristone treatment (control). Downregulation of ENPP3 was observed in endometrial 
glands with the suppression of progesterone action by mifepristone treatment (B,C). In endometrium of women 
without mifepristone treatment, high level of ENPP3 was observed during P upregulated secretory phase, on 
comparing with proliferative phase of the menstrual cycle. Scale bar indicates 50 μ​m.
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The regulation of ENPP3 in endometrial cells is intriguing, as the transcription was downregulated to an 
extent of 55 times in stromal compartments in non-receptive endometria, but without any detectable levels in 
protein. This was studied using two different antibodies, both by immunohistochemistry and Western immu-
noblot. Moreover, the mRNA expression of ENPP3 was more than double in the stromal compartment when 
compared with the glandular compartment. This high level of mRNA with no protein expression in the stromal 
compartment for ENPP3 not only reflects post-translational mechanisms at the protein level, but may have a sig-
nificant biological role, which needs to be studied extensively. In endometrial epithelial cells, ENPP3 is regulated 
by P, as high levels were observed in the secretory phase of the menstrual cycle in comparison to the proliferative 
phase. However, we do not see a statistical significance between mid and late secretory phases, though there is a 
decrease in their mean values. This could be that the threshold level of P required to produce ENPP3 is less and 
though P is downregulated in the late secretory phase, still a basal level of P exists and this may be enough to pro-
duce significant level of ENPP3 that is observed in late luteal phase. In the endometrium, there are reports that 
ENPP3 is expressed in the epithelial glands as seen by quantitative mass spectrometry analysis in premenopausal 
women51.

We tried to characterize ENPP3, found in the endometrium and uterine fluid. For ENPP3, an immunoblot 
band is expected around the molecular weight of 100 kd. Surprisingly, a higher molecular weight band around 
165 kd was observed, which on further investigation was found to be the glycosylated form present in the uterine 
fluid samples. We confirmed that this high molecular weight band is the glycosylated form of ENPP3, as treat-
ment of receptive endometrial uterine fluid samples with N-Glycanase resulted in a loss of the immunoblot band 

Figure 5.  Expression of ENPP3 in endometrium and uterine fluid. Western blot analysis of ENPP3 in 
receptive phase endometrial tissue lysates (A,B) and uterine fluid (C,D) by Wes showed good expression levels 
of ENPP3 in control samples (lanes 2–7). Antiprogestin treatment (A,C): lanes 8–13) showed no detectable 
levels of ENPP3, both in endometrial tissue and uterine fluid, confirming the regulation of ENPP3 protein by 
progesterone. (B,D) show semiquantitative analysis of immunodetectable ENPP3 by Wes, expressed in log2 
AUC (area under the curve). Lane 1: protein molecular weight marker.
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at 165 kd and its presence at 100 kd. The expression of ENPP3 in the uterine fluid and endometrial tissue during 
the receptive phase of the menstrual cycle from proven fertile women had a similar pattern to the glycosylated 
ENPP3 form. The presence of ENPP3 in glandular secretions as exosomes has been reported earlier as it is present 
in human parotid glandular secretions encapsulated in exosomes52.

ENPP3 is one of the newly described molecules and thus less studied. The expression of ENPP3 in general is 
mainly reported in basophil and mast cells53. ENPP3 is a type II transmembrane protein and lacks the di-leucine 
that is characteristic of membrane proteins54. This is in line with our observation of the endometrium, as ENPP3 is 
seen only in the apical surface of epithelial cells. The only ENPP family of protein reported in human endometrium 
is ENPP5, a type I transmembrane protein and there are no report on its function38. It would be interesting to study 
the biological function of ENPP3, especially in relation to its expression and understanding in cases of RIF. One of 
the challenges in deriving a statistical significance to show the role of ENPP3 in RIF at endometrial level, we may 
require a large number of samples, as wide range of molecules may contribute individually or collectively to RIF.

Figure 6.  N-glycosylated ENPP3 in human endometrium. Deglycosylation of uterine fluid showed a shift 
of band from 165 kD to a single band at 110 kD, meaning that ENPP3 in the uterine fluid is present in its 
glycosylated form. The glycosylated (lanes 2–7) form of ENPP3 showed a band at 165 kD and the deglycosylated 
(lanes 8–13) form had a single band at 110 kD.

Figure 7.  Embryo attachment and ENPP3 expression. Human embryo attached to the in vitro three-
dimensional cell culture model with progesterone exposure (A). None of the 8 embryos in the anti-progestin 
treated group, where ENPP3 was significantly down regulated had attached. In the control group, 7 out of 
10 blastocysts attached (B) to the construct, with very good expression of ENPP3 in the three-dimensional 
endometrial cell culture system.
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The ENPP3 ectoenzyme is involved in extracellular nucleotide hydrolysis and possesses both ATPase and 
ATP pyrophosphatase activity. It cleaves a variety of phosphodiester and phosphosulfate bonds including 
deoxynucleotides, nucleotide sugars, and NAD55–57. Recently it was shown that ENPP3 regulates the glycos-
yltransferase activity, which facilitates the glycosylation of many proteins by inhibiting an intrinsic factor for 
N-acetylglucosaminyltransferase GnT-IX (GnT-Vb) in murine neuroblastoma Neuro 2a cells58. Interestingly, the 
work of Korekane et al. shows that ENPP3 can either increase or decrease the activity of glycans59, and gly-
cans are present both in the endometrium and uterine secretions, having an important role in the regulation 
of endometrial receptivity. The expression of Le(Y) oligosaccharide during the receptive period is known to be 
down-regulated by the inhibition of early luteal phase P by mifepristone in monkey endometria60. It is also known 
that the expression of MUC16 disappears from the endometrium at the time of embryo implantation, coinciding 
with the period of ENPP3 expression61. We do not know the specific glycans regulated by ENPP3 in the endo-
metrium, but this is worth further exploring with regard to its regulation in different gynaecological conditions.

Based on our results we conclude that ENPP3 could be used as a molecular marker for progesterone action 
at the endometrial level in women. With further studies, this may be used to develop a less invasive method to 
screen women seeking IVF for endometrial receptivity using uterine fluid, before the planned embryo transfer. 
On the other hand, it may also be possible to develop an inhibitor or molecule that could alter the function of 
ENPP3 so it can be used for fertility control. For this, the first step may be to screen the molecular libraries to 
identify a potent inhibitor. A detailed study to understand the physiological function of this molecule in the 
endometrium and uterine fluid is essential.

Methods
Ethical permissions.  All experiments were carried out in accordance with the approved guidelines. The 
experimental protocols including tissue sampling were approved by Karolinska University Hospital and the 
regional ethics committee (EPN), Stockholm, Sweden. The Ethical Committee from University of Tartu had 
approved the permission to collect and perform analysis of uterine fluid collected at their center. Informed and 
written consent was obtained from all the volunteers participated in the study and the documents were filed as 
per institutional documentation guidelines.

Endometrial biopsies.  Endometrial biopsies were collected from proven healthy fertile women (n =​ 9) 
aged 22–37 years from the upper part of the endometrial cavity with a Pipelle aspirator (Prodimed, Neuilly en 
Thelle, France). These women were free from any gynaecological disorders and were not taking any hormonal 
contraception or had any intrauterine devices for a minimum of three months before the biopsy. All the subjects 
self-examined LH peak in urine samples collected twice a day from approximately cycle day 10 to LH +​ 2 by 
using a rapid self-test (Clearplan, Searle Unipath Ltd., Bedford, UK). Biopsies were obtained from each woman 
on cycle day LH +​ 7 in a control cycle and thereafter in a treatment cycle. In the treatment cycle, women received 
a single dose of 200 mg mifepristone on LH +​ 2. Each biopsy was divided into two portions, with one fixed in 4% 
paraformaldehyde for immunohistochemistry and the other snap frozen in liquid nitrogen for laser microdis-
section and RNA extraction. Endometrial samples from healthy women (n =​ 27) were also obtained during the 
proliferative, mid-secretory, and late-secretory phases of the menstrual cycle, with nine endometrial samples for 
each group.

In order to confirm the protein expression of ENPP3 during the receptive phase, 6 endometrial biopsies from 
control and treatment cycle (200 mg mifepristone on LH +​ 2) were collected during LH +​ 6 to LH +​ 9 from healthy 
women and were snap frozen in liquid nitrogen till further use. For in vitro functional assay by three-dimensional 
cell cultures, endometrial biopsies were collected from proven fertile women (n =​ 30) on LH +​ 4, followed by 
isolation of stromal and epithelial cells by well-established protocols as previously described62.

Figure 8.  Expression of ENPP3 in the uterine fluid of receptive and non-receptive phase. Tukey plot for the 
expression of ENPP3 quantified by nano-ESI-LC/MS in uterine fluids from early secretory phase (LH +​ 2) and 
mid-secretory phase (LH +​ 8) of the same set of women. A significant upregulation of ENPP3 (p =​ 0.0032) was 
observed in P dominant, receptive phase (LH +​ 8) on comparison with non-receptive phase (LH +​ 2).
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Endometrial cell isolation.  Briefly, the tissue was minced into 1 ×​ 1 mm in Ham F10 (Life Technologies, 
Sweden) and incubated with pancreatin-trypsin EDTA (0.05 g/ml of trypsin-EDTA solution) for 30 minutes at 
4 °C followed by digestion with Collagenase 4 (125 IU/ml, Worthington Biochemical, Lakewood NJ) and DNAse 
(40 μ​g/ml final concentration, Sigma, Sweden) and filtered through a 40-micron mesh cell strainer that allowed 
stromal cells to pass through and epithelial glands to remain in the strainer. Epithelial glands were digested with 
collagenase 3 (45 IU/ml, Worthington Biochemical, Lakewood, NJ) and DNAse and filtrated through a 40-micron 
mesh cell strainer. Stromal and epithelial cells were then separated in a recovery cell culture medium (Life 
Technologies) and preserved in liquid nitrogen until thawed for the endometrial co-culture.

Blastocysts.  The embryos/blastocysts (n =​ 18) for this study were acquired through standard in vitro ferti-
lization (IVF) or intracytoplasmic sperm injection (ICSI). The embryos used in this study were of at least grade 
3BB (Gardner’s classification) and clinically valid for embryo transfer.

Three-dimensional endometrial cell cultures.  Endometrial cell cultures were conducted as described 
by Lalitkumar et al.63. After five days of culturing, one group of cultures was treated with mifepristone concentra-
tion (Sigma Aldrich) of 0.5 μ​M (n =​ 8) and control group was treated with only the vehicle ethanol (n =​ 10). One 
embryo was added to each culture on the same day that mifepristone treatment started. The culture medium was 
changed every two days under light microscope, and cultures were examined for attachment of the embryos. On 
day five after embryo introduction, attachment rates were noted after mechanical testing by shaking the cultures 
and washing them with PBS twice. Before termination of cultures, any attached or non-attached embryos were 
removed. After termination, the cultures were detached from the cell inserts and dissolved in 1 ml of Trizol rea-
gent (Invitrogen) and stored at −​80 °C prior to RNA extraction.

Uterine fluid.  Uterine fluid was collected from proven fertile women on LH +​ 7 with or without mifepristone 
treatment. Two ml of injection grade water (Gibco) was infused into the uterine cavity using a modified feeding 
catheter (Nutrisafe 2, Fr-L.75 cm, Vycon Value Life, Ecouen, France) fixed to a 10 ml syringe. With the help of 
the syringe, about 1 ml was sucked back along with the uterine lavage, and centrifuged at 200 g for 10 minutes to 
remove any cells or cell debris. The supernatant was lyophilized and reconstituted in 50 μ​l sterile water and taken 
for further analysis.

In another set of fertile women (n =​ 6; University of Tartu, Estonia), uterine fluid was collected in the same 
cycle, during early secretory phase (LH +​ 2) and progesterone dominant mid-secretory (LH +​ 8) phase to per-
form label-free proteomic analysis for ENPP3 expression.

Automated western blot.  A completely automated western blot was performed using Simple Wes (Protein 
Simple, San Jose, CA) as per the manufacturer’s instructions. Briefly, 2 μ​g of protein from the tissue lysates or 
uterine fluid was added to the standard fluorescent mastermix and loaded into corresponding wells of the pre-
filled Wes assay plate, along with antibody diluent (Protein Simple), anti-ENPP3 antibody (1:50 dilution Sigma 
LifeSciences, HPA043772), anti-rabbit secondary antibody (Protein Simple), and Streptavidin, followed by lumi-
nol peroxide mix. The imaging and analysis were done with compass software (Protein Simple).

Label-free proteomic analysis by Nano-ESI-LC/MS/MS.  The uterine fluids were separated into 
six fractions based on its molecular weight using SDS-PAGE (Invitrogen). Proteins were then reduced, alky-
lated and in-gel digested with dimethylated porcine trypsin (Sigma) followed by analysis with nano-ESI-LC/
MS/MS (Dionex Ultimate 3000 RSLC and Q Exactive MS/MS, Thermo Fisher Scientific at University of Tartu) 
using 2 h reversed phase gradients and a top-10 data-dependent acquisition method. The obtained label-free 
mass-spectrometric data were identified and quantified with MaxQuant software package64 (UniProtKB human 
reference proteome database, 2014 September version). Label-free data were normalized with the MaxLFQ algo-
rithm50 and compared with paired or unpaired two-tailed t-test.

Fluorescence-activated cell sorting (FACS).  Stromal cells were selectively isolated from the pool 
of endometrial cells by negative selection with FACS. Briefly, the cells were washed and stained for epithelial 
cells with EPCAM/CD326 for 30 minutes and were sorted using MoFLOW®​ XDP flow cell activated cell sorter 
(Beckman Coulter, USA).

Immunohistochemistry.  The 5 μ​m paraffin-embedded endometrial tissue samples were deparaffin-
ized using a 2100-retriever autoclave (Histolab, Gothenburg, Sweden) and antigen retrieval done with a Diva 
Decloaker (Biocare Medical, Concord, CA). After peroxidase quenching, the sections were incubated with 
Background Sniper (Biocare Medical) followed by incubation with the primary antibodies (Supplementary 
Table 3) overnight at 4 °C. The primary antibodies were diluted in the diluent DaVinci Green (Biocare Medical, 
Concord, CA). The biotin-free detecting system Rabbit/Mouse HRP polymer kit MACH 3TM (Biocare Medical, 
Concord, CA) was used for detection. The reaction was developed with the Betazoid DAB Chromogen kit 
(Biocare Medical, Concord, CA). The counterstained hematoxylin (Vector Laboratories, Inc., Burlingame, CA) 
sections were mounted using the xylene-based medium Pertex® (Histolab, Gothenburg, Sweden) and analyzed 
in a Zeiss Axiovert 200 M microscope (Zeiss, Göttingen, Germany)62. All the slides were blinded and scored by 
two independent observers. The semi-quantitative IRS-score65 was used to assess the percentage of the positive 
cells (PC) and the staining intensity (SI). On disparity between the two observers, a third independent observer 
analysed the blinded slides and the average score of the two closest results was taken for further analysis.

Deglycosylation.  Endometrial tissue lysates and uterine fluid samples were subjected to mild denaturation 
with 0.2% Rapigest SF Surfactant (Waters, 186001861) and DTT (5 mM) and the samples were denatured for 
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5 minutes at 95 °C. Iodoacetamide (15 mM final concentration) was added and incubated for 30 minutes in dark, 
and in-solution enzymatic digestion was done by incubation with 1 μ​l/sample PNGase F (Roche, 11365169001) 
for 2 hours at 37 °C and analyzed by Simple Wes.

Statistical analysis.  The paired T-test and SAM methods were performed to analyze microarray data by 
MultiExperiment Viewer. The Mann-Whitney U test was applied to compare immunohistochemical staining 
between the control and treatment groups. Based on the statistical assumptions, either an unpaired T-test or 
Mann Whitney test was performed for analyzing the real time PCR and western blot data. Fisher’s exact test 
was performed to analyze blastocyst attachment rate. All the statistical analysis was done with XLSTAT 2015 
(Addinsoft) and Prism 6 (GraphPad Software).
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