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1. INTRODUCTION

1.1. Literature review

In recent years, researchers have been attracted by nanomaterials due to their
exceptional properties and unavoidable roles in modern science and technology.
These exceptional characteristics distinguish nanomaterials from their bulk coun-
terparts. Nanomaterials consist of a larger surface volume ratio than macro-
materials. An increase in surface volume ratio increases the number of surface
atoms. These surface atoms have unsatisfied bonds that make nanomaterials more
reactive than their bulk counterparts (see Li and Wang [45], Li et al. [49]). That
is why, nanomaterials possess some strange and vital characteristics such as high
strength, high stiffness, and excellent thermal and electrical conductivities (see
Abid et al. [1]).

During the application, the nanomaterials are subjected to various forces such
as compression, tension, and vibration. In order to overcome the adverse effects
of these forces, effective modeling is essential. Several techniques are involved to
investigate the behavior of nano-structure such as molecular dynamics simulation,
and numerical methods. Among them, the numerical technique is cost-effective,
easy to handle, and a widely accepted technique among researchers (Pham et al.
[61]). However, the existing continuum theory is not adequate for numerical anal-
ysis because it cannot incorporate the small-scale effect (Adhikari et al. [2], Ah-
madi [4]). Researchers introduce the gradient theories of continuum mechanics to
analyze the nano-devices and to encounter the size effect (Faghidian [21]). Basi-
cally, there are two types of gradient theories such as the strain and the stress gra-
dient theories of elasticity that are engaged to analyze nanomaterials (Faghidian
[22], Karami and Janghorban [40]). Generally, the stress gradient theory is pro-
posed on the basis of an integro-differential equation whose solution is difficult.
That is why Eringen (see Eringen [18]) proposed equivalent differential nonlocal
elasticity theory which has been widely accepted to analyze nanomaterials.

Research on nanobeams has started in the recent decade. Researchers have
engaged in this research profoundly to explore the behavior of nanobeams. Here,
the contributions of some authors studying nanobeams are presented briefly. First
of all, the nonlocal Euler–Bernoulli beam was investigated by Eltaher et al. [16]
using the finite element method. They presented the efficiency of the model to an-
alyze nanobars, nanotubes, and nanobeams. In another paper, Eltaher et al. [17]
described the coupling effects of the nonlocal parameter and surface energy on
vibration analysis of nanobeams. They revealed that the surface properties had
significant effects on the fundamental frequency in nano and micro-structures.
In addition, free vibration of the nonlocal beam was presented by Ke and Wang
[41]. They described the effects of electric potential, magnetic potential, and tem-
perature rise. Their results revealed that the electric and magnetic loadings had
significant effects on the natural frequency of nanobeams. After that, Simsek [70]
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analyzed the free vibration of nanobeams with large amplitude. He examined
the effect of the nonlocal parameter on the nonlinear frequency ratio. His model
produced a larger nonlinear frequency ratio than the classical (local) beam model.

Ahmadvand and Asadi [5], Chinka et al. [11], Kala [38], Kumar and Singh
[42], Rosa and Lippiello [67], Sushobhan and Khazanovich [75] studied the crack
as a newly generated surface that partially separated the intact body or structure.
During the formation of a crack, the surface area is created in the material in a
thermodynamically irreversible manner. The crack is created due to environmen-
tal corrosion, operational condition, inappropriate loading, etc. Natural frequency
is significantly affected by crack location and cracks severity (Eroglu and Tufekci
[19]). The mode shape of the vibration of nanomaterials is significantly changed
by the presence of cracks (Hossain and Lellep [34], Song et al. [72], Wu et al.
[78]).

After analyzing the nanobeam, several authors showed their interest in cracked
nanobeams. First of all, Hashemi et al. [23] explored the dynamic behavior
of thin and thick cracked nanobeams with surface effects. Their results illus-
trated that the surface effects on natural frequencies depended on the length of
nanobeams. On the other hand, the effects of cracks on natural vibration did
not depend on the length of nanobeams. In addition, the longitudinal vibration
of cracked nanobeams was scrutinized by Hsu [37]. This analysis showed that
the increase of nonlocal parameters decreased the effect of cracks on the natural
frequency. Similarly, Roostai and Haghpanahi [66] considered the vibration of
nanobeams with multiple cracks. They observed the effects of crack locations
and parameters on the vibration of nanobeams. After that, Hasheminejad et al.
[24] explained the dynamic behavior of cracked nanobeams with surface effects.
Moreover, Aria et al. [6] demonstrated the vibration of cracked nanobeams on
elastic matrix. They observed the effects of crack severity, crack location, and
temperature on the natural frequency of nanobeams. Moreover, Bahrami [8] ap-
plied a wave-based method to analyze cracked nanobeams. It was shown in [8]
that the natural frequency decreased with the increase of the nonlocal parameter.
Whereas, in a cantilever beam, the natural frequency increased with the increase
of the nonlocal parameter. The free vibration of multi-cracked and stepped nonlo-
cal nanobeams was studied by Loghmani and Yazdi [51]. They observed that the
crack had no impact on frequency when it was located at the inflection points of
the mode shape.

The advanced manufacturing process overcomes the difficulties to fabricate the
non-prismatic beams consisting of complex cross-sections (Ece et al. [15], Yan et
al. [79], Zhang et al. [81]). Stepped (see Lellep and Lenbaum [43], Lellep and
Lenbaum [44]), tapered, sandwich (see Barkanov [9]) and axially graded beams
(Li et al. [48], Mamaghani et al. [55], Rajasekaran and Khaniki [64]) are the
forms for optimal design to improve the performance of structures (Karami and
Janghorban [40]). Due to the reasonable choice of dimension, the stepped beam
is economical because it provides a larger cross-section along the critical segment
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instead of all over the span. Stepped beams under vibration load face complex
excitation that may be the cause of failure. It is essential to develop a reliable
model to study stepped beams under vibration (Afefy et al. [3], Ni and Hua [59],
Šalinić et al. [68], Su et al. [73], Surla et al. [74]). In addition, a tapered beam is
preferable to the designer because of its cost-effective and material-saving proper-
ties (see Chockalingam et al. [12], Chockalingam et al. [13], Prasad and Banerjee
[62], Rajasekaran and Khaniki [63], Wan et al. [77]). There is no abrupt change
in cross-section or geometric properties as well as there is no stress concentration
or fatigue failure. Moreover, an axially graded beam (Datta [14], Li et al. [47],
Šalinić et al. [68], Zhang et al. [82]) is a type of composite where the material
properties differ smoothly from one end to another end for eliminating the stress
concentration at any specific cross-section. The axially functionally graded ma-
terial is one of the exceptional innovations of recent science and technology that
satisfies the growing demand for advanced materials having exceptional proper-
ties for high-quality design.

Solution techniques are essential for proper analysis. Some solution techniques
have been presented in this study where these techniques are rare in the exist-
ing literature to analyze the nano-structures. The homotopy perturbation method,
power series, and Maclaurin series are used in this research. First of all, the homo-
topy perturbation method developed by He (see He [25-27]) is a useful technique
for analyzing nonlinear problems. It is the combination of homotopy analysis and
perturbation technique where it overcomes the limitations of the conventional per-
turbation method. In addition, the power series solution technique (see Soltani et
al. [71]) is also used for analyzing the differential equations. Basically, the power
series is an infinite series. Any polynomial can be expressed as a power series
around a certain point. Moreover, the Maclaurin series is a semi-analytical tech-
nique based on the Taylor series. Generally, the Maclaurin series is a special form
of the Taylor series where the derivatives are calculated at the initial position. All
these above techniques have been successfully employed during this analysis.

1.2. Aim of the dissertation

The aim of the dissertation is to analyze the dynamic behavior of nanobeams with
different physical and geometrical properties using semi-analytical and numerical
techniques. Euler-Bernoulli beam theory and Eringen’s nonlocal theory of elas-
ticity are applied to derive the governing equations of nanobeams. Cracks, steps,
and taper ratios are considered as geometric irregularities. On the other hand,
axially graded material, and surrounding temperature are considered as physical
properties.

The significant feature of this analysis is the solution techniques. Several tech-
niques such as homotopy perturbation method, power series, and Maclaurin series
are employed in this analysis. These techniques are rare to analyze the nanoma-
terial. These techniques have been employed effectively in this analysis and ob-
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tained results are compared with the results of other researchers in the existing
literature.

1.3. Structure of the dissertation

The dissertation is organized as follows. Section 1 contains the literature re-
view for the nanobeam with different physical and geometrical properties. In
section 2, some essential theories, different physical and geometrical properties,
and some numerical techniques are presented briefly. In section 3, the effects of
rotatory inertia on the natural frequency of nanobeams with steps and cracks are
presented. The exact solution technique and homotopy perturbation method are
applied for this analysis. In section 4, the dynamic behavior of cracked tapered
double nanobeams is analyzed using the Maclaurin series solution technique. In
section 5, the transverse vibration of tapered nanobeams with elastic supports is
demonstrated. The homotopy perturbation method is used to solve this problem.
In section 6, the analysis of the natural frequency of axially graded multi-cracked
nanobeams in a thermal environment is presented. The power series solution tech-
nique is applied for this analysis. Finally, concluding remarks are presented at the
end of the dissertation.
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2. GOVERNING EQUATIONS AND ASSUMPTIONS

2.1. Nonlocal theory

Accurate analysis is essential for nanomaterials to utilize their exceptional proper-
ties effectively. However, the conventional continuum theory is unable to compute
the mechanical behavior of nano-scale materials because it cannot incorporate the
size effects of nanomaterials. To overcome the limitations of the existing con-
tinuum theory, Eringen [18] proposed the nonlocal theory of elasticity based on
assumptions that the stress at a point depends on the strain of all points of the
continuum rather than on that point only. According to the assumption, the stress-
strain relationship (see Atanasov and Stojanovic [7], Cardoso [10], Malik and Das
[54], Martin and Salehian [57]) for a three-dimensional isotropic elastic solid can
be expressed as

σi j(x) =
∫

V
fc(| x− x′ |,τ)ti j(x′)dV (x′), (2.1)

where
ti j(x′) = ψεrr(x′)δi j +2φεi j(x′). (2.2)

Here ψ and φ represent Lame’s constants. Here ti j(x′) and εi j(x′) are the classi-
cal stress tensor and linear strain tensor at any point x′ in the body, respectively.
According to the Hooke’s law, the stress-strain relationship can be expressed as

ti j =Ci jklεkl, (2.3)

where Ci jkl denotes the elastic constants. In equation (2.1), fc(| x− x′ |,τ) rep-
resents the nonlocal modulus to indicate the nonlocal effects into the constitutive
equation for the reference point x and source point x′, respectively. Here, | x′− x |
represents the Euclidean distance and τ can be presented as

τ =
e0a0

l
. (2.4)

Here τ is a constant that indicates the ratio of internal and external characteristic
lengths of the nanomaterial, where e0 is the material constant. According to the
theory of nonlocal elasticity, the integral constitutive relations can be transformed
into the equivalent differential equation by substituting the kernel fc(| x′− x |,τ)
as below

(1− (e0a0)
2
∆

2)σkl = tkl. (2.5)

In (2.5), ∆2 denotes the Laplacian operator, σkl , tkl are the nonlocal and classical
stress, respectively. The nonlocal theory depends on the internal characteristic
length a0. When a0 becomes zero, the nonlocal constitutive relationship trans-
forms into the classical theory of elasticity. In the one dimensional case, the non-
local stress-strain relationship can be presented as

σ(x)− (e0a0)
2 ∂ 2σ(x)

∂x2 = Eε(x), (2.6)

12



where σ(x) and ε(x) represent the stress and strain along the x-axis, E is the mod-
ulus of the elasticity. Therefore, the nonlocal elasticity theory can be presented in
terms of bending moment M, as follows

M− (e0a0)
2 ∂ 2M

∂x2 = EI(−∂ 2W
∂x2 ), (2.7)

where W is the deflection of the beam, I indicates the area moment of inertia.
According to the nonlocal theory, the equation (2.7) represents the relationship
between the bending moment and the deflection.

2.2. Euler-Bernoulli theory

Euler-Bernoulli beam theory is widely used in research and engineering. This
theory considers axial and flexural deformation, while the shear deformation is
neglected. According to the Euler-Bernoulli’s theory, the displacement fields can
be expressed as (Malik et al. [53], Yin et al. [80])

U1(x,z, t) =U(x, t)− z
∂W (x, t)

∂x
,

U2(x,z, t) = 0,

U3(x,z, t) =W (x, t),

(2.8)

where U1, U2, U3 express the deflection in x, y and z axis respectively, t indicates
the time, W (x, t) and U(x, t) define the transverse and axial deflection, respec-
tively. One can write the axial strain as

εxx =
∂U
∂x

− z
∂ 2W
∂x2 . (2.9)

Considering the axial load N and moment M, the Euler-Bernoulli equation for
vibration can be presented as

∂ 2M
∂x2 +

∂

∂x
(N

∂W
∂x

)−m0
∂ 2W
∂ t2 = 0, (2.10)

where m0 = ρA is the mass per unit length.

2.2.1. Transform functions

Basically, the equation of motion is a partial differential equation. Therefore,
this partial differential equation can be transformed into an ordinary differential
equation using the following function

W (x, t) = W̄ (x)eiωct , (2.11)

here ωc is the dimensional frequency.
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2.2.2. Non-dimensional parameters

For dimensionless analysis, non-dimensional parameters are essential. Some of
the dimensionless parameters are included as follows

ξ =
x
L
, w =

W̄
L
, µ =

e0a0

L
, n =

NL4

EI
, ω

2 = ω̄
4 = ωc

2L4 Aρ

EI
, (2.12)

where ρ is the density of the material, L represents the length of the beam, A
stands for the area of the section, I is the moment of inertia of this section, N
denotes the axial load and ωc is the dimensional frequency of natural vibration.

2.2.3. Boundary conditions

To solve the Euler-Bernoulli equation, the required boundary conditions in terms
of deflection (W ) and moment (M) can be written as follows

for simply supported ends (SS)

W (0) = 0, M(0) = 0, W (L) = 0, M(L) = 0, (2.13)

for clamped ends (CC)

W (0) = 0, W ′(0) = 0, W (L) = 0, W ′(L) = 0, (2.14)

in the case of clamped at the left and simply supported at the right ends (CS)

W (0) = 0, W ′(0) = 0, W (L) = 0, M(L) = 0, (2.15)

for cantilever beams (CF)

W (0) = 0, W ′(0) = 0, M(L) = 0, M′(L) = µ
2
ω

2W ′(L). (2.16)

2.3. Modeling of cracks

The basic theory for elastic cracks was established in 1921 by Griffith. According
to his theory, crack propagation will occur if the energy is sufficient to provide
all the energy that is required for crack growth. The mechanical properties of
open and stable cracks can be analyzed using the classical local stiffness model.
According to the model, the beam is separated into two sub-beams for each crack
at the crack position. The stiffness of the rotational spring depends on strain
energy release rate as well as the crack depth. The strain energy S of the cracked
beam in terms of axial force and bending moment can be expressed as

S =
1
2

∫ L

0

(
N

∂U
∂x

+M
∂ 2W
∂x2

)
dx+∆sc. (2.17)
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Due to the presence of a crack, the beam has additional strain energy to the ro-
tational spring. Strain energy is caused by the bending moment and axial stress.
The change of strain energy (Roostai and Haghpanahi [66]) can be presented as

∆sc =
1
2

M∆θ +
1
2

N∆u, (2.18)

where ∆θ indicates the rotational angle because of the spring and ∆u represents
the axial displacement at the location of the crack. Therefore, these can be ex-
pressed as

∆θ = KMM
∂ 2W
∂x2 +KMN

∂U
∂x

,

∆u = KNN
∂U
∂x

+KNM
∂ 2W
∂x2 ,

(2.19)

where KMM, KMN , KNN , KNM are the flexibility constants. When the beam is
subjected to transverse vibration, longitudinal displacement ∆u and the flexibil-
ity constants KMN , KNN , KNM are small which can be neglected. Therefore, the
discontinuity at the location of the crack can be expressed as

∆θ =
KMM

L
∂ 2W (x)

∂x2 |x=a, (2.20)

where KMM
L can be replaced by K as

∆θ = K
∂ 2W (x)

∂x2 |x=a, (2.21)

here K is the crack severity. The crack severity depends on the crack depth and
rotational spring stiffness. It can be expressed as follows

K =
EI
L

1
κs
. (2.22)

Here κs is the spring stiffness. It can be written as

κs =
EI
h

1
C(s)

, (2.23)

here s = c
h is the ratio of crack depth (c) and beam height (h). In (2.23), C(s) is the

local compliance that can be computed from the strain energy density function as

C(s) = 5.346(1.86s2 −3.95s3 +16.375s4 −37.226s5 +76.81s6

−126.9s7 +172s8 −143.97s9 +66.56s10).
(2.24)

The crack severity can be written according to equations (2.22) and (2.23) as

K =
h
L

C(s). (2.25)
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Crack severity doesn’t depend on the modulus of elasticity and density of the
beam. Therefore, crack severity K is constant over the length of the axially graded
beam. Another way, it can be presented (see Hsu [37]) as

K =
6(1−ν2)h

EI
f (s), (2.26)

where
f (s) =

∫ s

0
πsF2(s)ds, (2.27)

and ν is the Poisson ratio. The factor F can be defined by trigonometric or alge-
braic functions (see Tada [76]) as

F(s) =

√
2

πs
tan

(
πs
2

)0.923+0.199[1− sin
(

πs
2

)
]4

cos( πs
2 )

, (2.28)

and
F(s) = 1.93−3.07s+14.53s2 −25.11s3 +25.8s4, (2.29)

where
s =

c
h
. (2.30)

Intermediate conditions for steps and cracks are as follows

wi(xi) = wi+1(xi),

w′′
i (xi) = w′′

i+1(xi),

w′
i+1(xi)−w′

i(xi) = Kw′′
i (xi),

w′′′
i (xi)+ψiw′

i(xi) = w′′′
i+1(xi)+ψi+1w′

i+1(xi),

(2.31)

where ψ = ω2µ2.

2.4. Tapered beams

Tapered beams offer us an optimized design by saving material consumption. In
this dissertation, the beam is tapered along the x-axis where the width of the beam
is varying exponentially from one end to another end. The variable quantities such
as width, area, moment of inertia can be expressed as (see Hossain and Lellep [32],
Kalkowski et al. [39], Mahmoud [52])

b(x) = b0eα
x
L ,

A(x) = A0eα
x
L ,

I(x) = I0eα
x
L ,

(2.32)

where α is the taper ratio of the beam, it indicates the variation of width along the
x-axis and b0, A0, I0 are the width, area, moment of inertia at x = 0, respectively.
The area and area moment of inertia are also varying with the width of the beam.
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2.5. Axially graded beams

An axially graded beam is a non-homogeneous beam. It is also a type of compos-
ite (Li and Liu [46]) that can avoid the point of stress concentration. It distributes
stress gradually from one end to another end. Along the cross-section, material
properties are constant. It is assumed that the modulus of elasticity E and density
ρ are varying along the length exponentially (Mamaghani et al. [55]). These can
be expressed as

E(x) = E0eλ
x
L , ρ(x) = ρ0eλ

x
L , (2.33)

where E0 and ρ0 are the modulus of elasticity and density at the point x = 0, λ is
the coefficient of non-homogeneity.

2.6. Thermal loading

The thermal load is the result of temperature change which is induced by the
contraction and expansion of the material. This load acts as an axial load on the
beam element. Thermal load can be expressed as

N =−EAαtθ , (2.34)

where αt is the coefficient of thermal expansion, θ is the temperature change and
A stands for the area of the cross-section. According to the theory of Zarzycki
1982 and Kittel 1983, the coefficient of thermal expansion can be presented as

αt =
γGρcv

3E
, (2.35)

where γG is the Grüneisen constant and cv stands for the specific heat of the ma-
terial. Here, αt depends on density and modulus of elasticity. Here, in the axi-
ally graded beam, both of these parameters are varying equally along the x-axis.
Therefore, αt is constant over the length.

2.7. Homotopy perturbation method

The homotopy perturbation method is a very useful technique to analyze linear
and nonlinear problems. He (see He [25-27]) proposed this method in 1998. The
homotopy perturbation method is the combination of the perturbation method and
homotopy method. In this method, small parameters are not essential. An early
approximation can be selected freely with possible unknown constants. Finally,
the obtained approximations are valid for small parameters as well as very large
parameters. Applying the homotopy perturbation method for solving nonlinear
differential equations, one can consider the following nonlinear differential equa-
tion

D(w)− f (r) = 0 (r ∈ Ω), (2.36)
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and boundary conditions can be described as follows

B(w,
∂w
∂ξ

) = 0 (r ∈ Γ), (2.37)

where D is a general differential operator, B is a boundary operator, f (r) is a
known analytical function, Γ is the boundary of the solution domain (Ω), and ∂w

∂ξ

denotes differential along the outward normal to Γ. Basically, the operator D can
be divided into two parts, a linear part L and a nonlinear one N. Therefore, the
equation (2.36) can be written as follows

L(w)+N(w)− f (r) = 0. (2.38)

In cases where the nonlinear equation (2.38) includes no small parameter, one can
construct the following homotopy equation

H(w,P) = L(w)+P[N(w)− f (r)] = 0. (2.39)

In the equation (2.39), P ∈ [0,1] is the embedded parameter and w0 is the first ap-
proximation that satisfies the boundary condition. One may assume that solution
of the equation (2.39) can be written as a power series of P, as given below

w = w0 +Pw1 +P2w2 + ... . (2.40)

Considering P = 1, equation (2.40) can be written as

w = w0 +w1 +w2 + ... . (2.41)

Using the given fourth order differential governing equation (nano elements), one
can calculate the first term of the series as follows

w0 = B0 +B1ξ +
1
2

B2ξ
2 +

1
6

B3ξ
3, (2.42)

here, B0, ..., B3 are constant coefficients of the series. Similarly, one can calcu-
late the other terms (w1,w2, ...,wn) of the series. Therefore, using the boundary
conditions, the series solution can be transformed into matrix form as follows

[M]


B0
B1
B2
B3

= 0. (2.43)

Solving this linear algebraic equation, one can get the non-trivial solution for the
governing equation.
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2.8. Maclaurin series

Maclaurin series is a special case of a Taylor series around x0 = 0. This series
represents the approximate solution of a function f (x). Therefore, this series can
be expressed as

f (x) =
∞

∑
n=0

f (n)(0)
n!

xn = f (0)+ f ′(0)x+
f ′′(0)

2!
x2 + ...+

f (k)(0)
k!

xk + ..., (2.44)

it can be considered as follows

f (0) =C0,

f ′(0) =C1,

f ′′(0) =C2,

f ′′′(0) =C3.

(2.45)

Similarly, using the given governing equation f 4(0), f 5(0), ..., f n(0) can be pre-
sented by the constants (C0,C1, ...,C3), then the solution becomes

f (x) =C0 +C1x+C2
x2

2
+C3

x3

6
+ ... . (2.46)

Using the boundary conditions, solution (2.46) can be transformed into matrix
form as follows

[M]


C0
C1
C2
C3

= 0. (2.47)

Solving the equation (2.47), one can find the non-trivial solution.

2.9. Power series

The power series solution (Soltani et al. [71]) is a semi-analytical technique. In
this technique, a power series is considered as a solution of the function. There-
fore, the differential equation transforms into an algebraic equation. Linear and
nonlinear differential equations can be solved using the power series solution tech-
nique. Let us consider a series for the deflection of the beam as

w =
∞

∑
k=0

Akξ
k, (2.48)
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here, Ak represent the constant coefficients of the series. Similarly, derivatives of
deflection can be written as

dw
dξ

=
∞

∑
k=1

kAkξ
k−1,

d2w
dξ 2 =

∞

∑
k=2

k(k−1)Akξ
k−2,

d3w
dξ 3 =

∞

∑
k=3

k(k−1)(k−2)Akξ
k−3,

d4w
dξ 4 =

∞

∑
k=4

k(k−1)(k−2)(k−3)Akξ
k−4.

(2.49)

Using the governing equation, it is needed to make a recursive relationship be-
tween coefficients as follows

Ak+4 = g1Ak+3 +g2Ak+2 +g3Ak+1 +g4Ak, (2.50)

here, g1, ..., g4 are the constants come from the given governing equation. Apply-
ing this relationship, one can calculate A4,A5,A6, ...,An in terms of A0,A1, ...,A3.
Therefore, one can write the series solution as follows

w = A0 +A1ξ +A2ξ
2 +A3ξ

3 + ... . (2.51)

Using the boundary conditions, this series solution can be transformed into matrix
form as below

[M]


A0
A1
A2
A3

= 0. (2.52)

Solving this equation, one can get the non-trivial solution.
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3. THE EFFECT OF ROTATORY INERTIA ON THE
NATURAL FREQUENCY OF CRACKED AND

STEPPED NANOBEAMS

In this section, the effect of rotatory inertia is considered in the analysis of the
dynamic behavior of the cracked and stepped nanobeams. Usually, in the Euler-
Bernoulli beam theory, the effect of rotatory inertia is ignored. Here, it is taken
into account. In this section, the Euler-Bernoulli beam theory combined with
rotatory inertia is solved using two techniques such as the exact solution method
in Hossain and Lellep [28, 29] and the homotopy perturbation method in Hossain
and Lellep [33].

3.1. Formulation of the problem

A schematic shape of a stepped and cracked nanobeams is illustrated in Figure
1. It is assumed that the origin of the coordinate system is placed at the left
corner point of the nanobeam. The axis of the beam coincides with the x-axis
and the height of the beam along the z-axis. The nanobeam with length L and
rectangular cross-section of width b is considered. The density of the material ρ

is constant throughout the beam and the axial load N is also applied uniformly
over the nanobeam. The crack and step are placed at the same location at x = a of

Figure 1. Geometry of the cracked and stepped nanobeam
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the beam. So, there is a discontinuity at that location with different heights

h =

{
h0, x ∈ (0,a)
h1, x ∈ (a,L)

. (3.1)

The crack is treated as a stable crack whose depth is c (s is the ratio of crack depth
and beam height).

3.2. Mathematical model

The equilibrium equation for the Euler–Bernoulli beam theory with rotatory iner-
tia can be written as (see Reddy [65])

∂ 2M
∂x2 +N

∂ 2W
∂x2 = I0

∂ 2W
∂ t2 − Ir

∂ 4W
∂x2∂ t2 , (3.2)

in which I0 presents the second moment of area and E is the modulus of elasticity.
N denotes the axial force that is considered constant throughout the beam. Ir

represents the rotatory inertia as Ir = ρ
∫ h/2
−h/2 z2dA, ρ is the density of the material

and t is the time. Applying the nonlocal theory (2.7) and Euler-Bernoulli beam
theory (3.2), the governing equation for nanobeams can be written as

EI
∂ 4W
∂x4 − (e0a)2

(
−N

∂ 4W
∂x4 + I0

∂ 4W
∂x2∂ t2 − Ir

∂ 6W
∂x4∂ t2

)
−N

∂ 2W
∂x2 + I0

∂ 2W
∂ t2 − Ir

∂ 4W
∂x2∂ t2 = 0.

(3.3)

Using the transformation (2.11) and non-dimensional parameters (2.12), the equa-
tion (3.3) can be simplified as follows

(
1+µ

2n−µ
2r0ω

2
0
) d4w

dξ 4 +
(
µ

2
ω

2
0 −n+ r0ω

2
0
) d2w

dξ 2 −ω
2
0 w = 0, (3.4)

where

I0 = ρ, r0 =
1
12

(
h0

L

)2

, γ =
h1

h0
, ω1 = γω0.

Here, r0 indicate the effect of rotatory inertia, γ is the step heights ratio, h0, h1
are the height of the two segments, respectively. ω0, ω1 are the dimensionless
frequency for two different segments of the beam. Considering the two segments
of the beam, the equation (3.4) can be written as follows

d4w
dξ 4 +

β0

α0

d2w
dξ 2 −

ω2
0

α0
w = 0, for ξ ∈ (0,a) , (3.5)

and
d4w
dξ 4 +

β1

α1

d2w
dξ 2 − ω2

1
α1

w = 0, for ξ ∈ (a,1) , (3.6)
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where
α0 = 1+µ

2n−µ
2r0ω

2
0 , β0 = µ

2
ω

2
0 −n+ r0ω

2
0 ,

and
α1 = 1+µ

2n−µ
2r1ω

2
1 , β1 = µ

2
ω

2
1 −n+ r1ω

2
1 .

3.3. Solution

Using the basic principle of the homotopy perturbation method (HPM), we can
write the governing equation for x ∈ (0,a) as

(1−P)
(

d4w
dξ 4 − d4w0

dξ 4

)
+P

(
d4w
dξ 4 +

β0

α0

d2w
dξ 2 −

ω2
0

α0
w
)
= 0, (3.7)

for x ∈ (a,L) as

(1−P)
(

d4w
dξ 4 − d4w0

dξ 4

)
+P

(
d4w
dξ 4 +

β1

α1

d2w
dξ 2 − ω2

1
α1

w
)
= 0, (3.8)

here, P is the perturbation constant. We consider the initial approximations (w0)
for two different segments as follows

w0 = A0 +ξ A1 +
1
2

ξ
2A2 +

1
6

ξ
3A3, x ∈ (0,a) (3.9)

and
w0 = A4 +ξ A5 +

1
2

ξ
2A6 +

1
6

ξ
3A7, x ∈ (a,1), (3.10)

here, A0, ...,A7 are constants. Using the initial approximation, one can calculate
the other terms (w1,w2,w3, ...,wn) of the governing equations. Using the bound-
ary and intermediate conditions, eight algebraic equations are formed with eight
unknowns. These equations can be presented in a matrix form as

[
M(ω0)

]


A0
A2
A3
...
A6
A7

= 0. (3.11)

Here, M is the coefficient matrix. Solving the determinant of the matrix, one can
find the nontrivial solution. The real value of ω0 represents the natural frequency
of nanobeams. This problem is solved using the exact solution technique (see
Hossain and Lellep [28-31], Motaghiana et al. [58]). The results of both tech-
niques are compared favorably.
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Table 1. The frequency of nanobeams for different values of the nonlocal parameter

SS CS CC
µ Mode HPM Exact HPM Exact HPM Exact

0 1 9.981445 9.869384 15.51445 15.41723 22.51406 22.37353
0 2 39.80859 39.47705 50.22031 49.96533 61.95312 61.67138
0 3 90.64375 88.82519 107.1218 104.2412 125.6960 120.9042

0.5 1 5.406738 5.300292 7.942382 7.784423 11.21069 10.99121
0.5 2 12.21386 11.97485 14.98398 14.68701 24.80932 24.33398
0.5 3 18.803 71 18.43798 21.68398 21.25610 31.07802 30.48632

Table 2. The frequency of nanobeams for different values of length to height ratio

SS CS CC
L/h Mode HPM Exact HPM Exact HPM Exact

100 1 9.607031 9.411523 14.88769 14.58496 21.50297 21.06894
100 2 33.81835 33.26757 42.24589 41.48828 51.34238 50.434 17
100 3 65.35546 63.53564 74.71484 73.15234 84.91113 83.19316
20 1 9.511230 9.321679 14.55371 14.27050 20.55322 20.17104
20 2 30.44335 30.03339 36.18554 35.70507 41.46464 40.974 80
20 3 47.87109 47.13593 51.24609 50.73046 54.23222 53.77070

3.4. Results and discussion

In this section, the dynamic behavior of stepped and cracked nanobeams is solved
by the homotopy perturbation method (HPM) and the exact solution method. At
first, the accuracy of the analysis is measured by comparing the results of HPM
with the results of the exact solution technique. Then, the effect of nonlocal pa-
rameter, step and crack location, and crack depth on natural frequency are pre-
sented for different boundary conditions such as simply supported (SS), clamped
simply (CS), and fully clamped (CC). The results of the calculation are described
in Tables 1, 2 and Figures 2–5.

Table 1 presents the natural frequency for different support systems. Different
modes of frequency and different values of the nonlocal parameter are also con-
sidered. It is clear from this table that the natural frequency decreases rapidly with
the increase of the nonlocal parameter. Table 2 illustrates the effect of rotatory in-
ertia on the natural frequency of nanobeams under different support systems. It is
clearly described that natural frequency decreases with the decrease of the length
to height ratio. Thus the effect of rotatory inertia can be ignored in a slender beam.

Figures 2, and 3 describe the effect of crack depth on the natural frequency
of nanobeams for different modes of frequency and different boundary conditions
such as fully clamped (CC), and clamped simply (CS). It can be seen from these
graphs that natural frequency decreases with the increase of crack depth. In the
first mode, when the crack depth is more than 0.4 then rotatory inertia has no
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Figure 2. Frequency versus crack depth in first mode

Figure 3. Frequency versus crack depth in second mode

Figure 4. Frequency versus height to length ratio in first mode
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Figure 5. Frequency versus height to length ratio in second mode

effect. On the other hand, rotatory inertia is more significant in the second mode
than in the first mode of frequency.

Figures 4, and 5 describe the effect of the height to length ratio on the natural
frequency of nanobeams for different modes of frequency and different boundary
conditions such as fully clamped (CC), and clamped simply (CS). It is clear from
these graphs that natural frequency decreases with the increase of the height to
length ratio. In the second mode of frequency, the natural frequency decreases
more rapidly than in the first mode of frequency.
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4. FREE VIBRATION ANALYSIS OF THE TAPERED
CRACKED DOUBLE NANOBEAMS USING

MACLAURIN SERIES

In this section, the Maclaurin series technique is applied to analyze the vibration
of the cracked tapered double nanobeams according to the paper by Hossain and
Lellep [35].

4.1. Physical description

A schematic shape of a double nanobeam (see Li et al. [50]) consists of two
parallel nanobeams connected to each other by distributed vertical Winkler-type
springs. The two nanobeams are referred to as the upper beam and the lower
beam. Nanobeams are assumed to be slender and satisfy the Euler-Bernoulli beam
theory. The origin of the coordinate system (x, y, z) is considered to be at the left
endpoint of the beam. Both nanobeams are assumed to be made of the same
material. Therefore, physical and geometrical properties are considered to be the
same for both beams. A crack is considered as a defect on the upper beam.

Figure 6. A cracked tapered double nanobeam

4.1.1. Governing equations

A double beam consists of two beams with identical material and geometric prop-
erties. Combining the classical beam theory (2.10) and the nonlocal theory of

27



elasticity (2.7), coupled equations for the double nanobeam can be written as

∂ 2

∂x2

(
EI(x)

∂ 2W1

∂x2

)
+ρA(x)

∂ 2W1

∂ t2 − (e0a0)
2 ∂ 2

∂x2

(
ρA(x)

∂ 2W1

∂ t2

)
+Ks

b(x)
b0

(W1 −W2)− (e0a0)
2Ks

∂ 2

∂x2
b(x)
b0

(W1 −W2) = 0,

∂ 2

∂x2

(
EI(x)

∂ 2W2

∂x2

)
+ρA(x)

∂ 2W2

∂ t2 − (e0a0)
2 ∂ 2

∂x2

(
ρA(x)

∂ 2W2

∂ t2

)
+Ks

b(x)
b0

(W2 −W1)− (e0a0)
2Ks

∂ 2

∂x2
b(x)
b0

(W2 −W1) = 0,

(4.1)

where W1 and W2 are the deflection of upper and lower beams in the double
nanobeam, respectively. Ks is the spring constant. Both beams in the double
beam are tapered along the x-axis. Applying geometric properties of the tapered
beam (2.32), the equation (4.1) can be expressed as

∂ 2

∂x2

(
EI0e

αx
L

∂ 2W1

∂x2

)
+ρA0e

αx
L

∂ 2W1

∂ t2 − (e0a0)
2 ∂ 2

∂x2

(
ρA0e

αx
L

∂ 2W1

∂ t2

)
+Ks

b0

b0
e

αx
L (W1 −W2)− (e0a0)

2Ks
∂ 2

∂x2
b0

b0
e

αx
L (W1 −W2) = 0,

∂ 2

∂x2

(
EI0e

αx
L

∂ 2W2

∂x2

)
+ρA0e

αx
L

∂ 2W2

∂ t2 − (e0a0)
2 ∂ 2

∂x2

(
ρA0e

αx
L

∂ 2W2

∂ t2

)
+Ks

b0

b0
e

αx
L (W2 −W1)− (e0a0)

2Ks
∂ 2

∂x2
b0

b0
e

αx
L (W2 −W1) = 0,

(4.2)

where α is the tapered ratio. These partial differential equations can be trans-
formed into ordinary differential equations using the transformation (2.11) and
dimensionless parameters (2.12). Therefore, the equation (4.2) can be presented
as

d4w1

dξ 4 +2α
d3w1

dξ 3 +(µ2
ω

2 − ksµ
2 +α

2)
d2w1

dξ 2 +(2αµ
2
ω

2 −2αksµ
2)

dw1

dx

+(α2
µ

2
ω

2 −α
2ksµ

2 −ω
2 + ks)w1 +µ

2ks
d2w2

dx2

+2µ
2ksα

dw2

dx
+(α2ksµ

2 − ks)w2 = 0,

d4w2

dξ 4 +2α
d3w2

dξ 3 +(µ2
ω

2 − ksµ
2 +α

2)
d2w2

dξ 2 +(2αµ
2
ω

2 −2αksµ
2)

dw2

dx

+(α2
µ

2
ω

2 −α
2ksµ

2 −ω
2 + ks)w2 +µ

2ks
d2w1

dx2

+2µ
2ksα

dw1

dx
+(α2ksµ

2 − ks)w1 = 0,

(4.3)

here, w1, w2 are the dimensionless deflection of upper and lower beams, ks =
KsL4

EI
is the dimensionless spring constant. These equations (4.3) are the governing
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equations of the double nanobeam in simplified form. These equations can be
solved numerically.

4.2. Solution technique

Deformations of a double nanobeam are presented by coupled differential equa-
tions (4.3). These governing equations can be presented as follows

d4w1

dξ 4 =−2α
d3w1

dξ 3 − (µ2
ω

2 − ksµ
2 +α

2)
d2w1

dξ 2

−(2αµ
2
ω

2 −2αksµ
2)

dw1

dξ
− (α2

µ
2
ω

2 −α
2ksµ

2

−ω
2 + ks)w1 −µ

2ks
d2w2

dξ 2 −2µ
2ksα

dw2

dξ
− (α2ksµ

2 − ks)w2,

d4w2

dξ 4 =−2α
d3w2

dξ 3 − (µ2
ω

2 − ksµ
2 +α

2)
d2w2

dξ 2

−(2αµ
2
ω

2 −2αksµ
2)

dw2

dξ
− (α2

µ
2
ω

2 −α
2ksµ

2

−ω
2 + ks)w2 −µ

2ks
d2w1

dξ 2 −2µ
2ksα

dw1

dξ
− (α2ksµ

2 − ks)w1.

(4.4)

Differentiating the equations (4.4), one can express as

d5w1

dξ 5 =−2α
d4w1

dξ 4 − (µ2
ω

2 − ksµ
2 +α

2)
d3w1

dξ 3

−(2αµ
2
ω

2 −2αksµ
2)

d2w1

dξ 2 − (α2
µ

2
ω

2 −α
2ksµ

2 −ω
2 + ks)

w1

dξ

−µ
2ks

d3w2

dξ 3 −2µ
2ksα

d2w2

dξ 2 − (α2ksµ
2 − ks)

dw2

dξ
,

d5w2

dξ 5 =−2α
d4w2

dξ 4 − (µ2
ω

2 − ksµ
2 +α

2)
d3w2

dξ 3

−(2αµ
2
ω

2 −2αksµ
2)

d2w2

dξ 2 − (α2
µ

2
ω

2 −α
2ksµ

2 −ω
2 + ks)

w2

dξ

−µ
2ks

d3w1

dξ 3 −2µ
2ksα

d2w1

dξ 2 − (α2ksµ
2 − ks)

dw1

dξ
.

(4.5)
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Substituting d4w1
dξ 4 and d4w2

dξ 4 in the equations (4.5), one can express as

d5w1

dξ 5 = (−µ
2
ω

2 + ksµ
2 +3α

2)
d3w1

dξ 3 +2α
3 d2w1

dξ 2

+(3α
2
µ

2
ω

2 −3α
2ksµ

2 +ω
2 − ks)

dw1

dξ
−2α(−α

2
µ

2
ω

2 +α
2ksµ

2

+ω
2 − ks)w1 − ksµ

2 d3w2

dξ 3 +(3α
2ksµ

2 + ks)
dw2

dξ
+2αks(α

2
µ

2 −1)w2,

d5w2

dξ 5 = (−µ
2
ω

2 + ksµ
2 +3α

2)
d3w2

dξ 3 +2α
3 d2w2

dξ 2

+(3α
2
µ

2
ω

2 −3α
2ksµ

2 +ω
2 − ks)

dw2

dξ
−2α(−α

2
µ

2
ω

2 +α
2ksµ

2

+ω
2 − ks)w2 − ksµ

2 d3w1

dξ 3 +(3α
2ksµ

2 + ks)
dw1

dξ
+2αks(α

2
µ

2 −1)w1.

(4.6)

Similarly, one can calculate d6w1
dξ 6 , d6w2

dξ 6 , d7w1
dξ 7 , d7w2

dξ 7 , ..., upto nth order derivative.
Let us consider the values of derivatives at zero as follows

w1(0) = c0, w2(0) = d0,

dw1

dξ
(0) = c1,

dw2

dξ
(0) = d1,

d2w1

dξ 2 (0) = c2,
d2w2

dξ 2 (0) = d2,

d3w1

dξ 3 (0) = c3,
d3w2

dξ 3 (0) = d3.

(4.7)
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Using the equations (4.7), higher derivatives at zero can be expressed as

d4w1

dξ 4 (0) = (−α
2
µ

2
ω

2 +α
2ksµ

2 +ω
2 − ks)c0

+(−2αµ
2
ω

2 +2αksµ
2)c1 +(−µ

2
ω

2 + ksµ
2 −α

2)c2 +(−2α)c3

+(−α
2ksµ

2 + ks)d0 +(−2αksµ
2)d1 +(−ksµ

2)d2,

d4w2

dξ 4 (0) = (−α
2
µ

2
ω

2 +α
2ksµ

2 +ω
2 − ks)d0

+(−2αµ
2
ω

2 +2αksµ
2)d1 +(−µ

2
ω

2 + ksµ
2 −α

2)d2 +(−2α)d3

+(−α
2ksµ

2 + ks)c0 +(−2αksµ
2)c1 +(−ksµ

2)c2,

d5w1

dξ 5 (0) = (2α
3
µ

2
ω

2 −2α
3ksµ

2 −2αω
2 +2αks)c0 +(3α

2
µ

2
ω

2

−3α
2ksµ

2 +ω
2 − ks)c1 +2α

3c2 +(−µ
2
ω

2 + ksµ
2 +3α

2)c3

+(2α
3ksµ

2 −2αks)d0 +(3α
2ksµ

2 + ks)d1 − ksµ
2d3,

d5w2

dξ 5 (0) = (2α
3
µ

2
ω

2 −2α
3ksµ

2 −2αω
2 +2αks)d0 +(3α

2
µ

2
ω

2

−3α
2ksµ

2 +ω
2 − ks)d1 +2α

3d2 +(−µ
2
ω

2 + ksµ
2 +3α

2)d3

+(2α
3ksµ

2 −2αks)c0 +(3α
2ksµ

2 + ks)c1 − ksµ
2c3.

(4.8)

Using the equations (4.7, 4.8), one can present an approximate solution according
to the Maclaurin series as follows

w1(ξ ) = c0 + c1ξ +
1
2

c2ξ
2 +

1
6

c3ξ
3

+
1

24
(−α

2
µ

2
ω

2c0 +α
2ksµ

2c0 −α
2ksµ

2d0 + ...)ξ 4

+
1

120
(2α

3
µ

2
ω

2c0 −2α
3ksµ

2c0 +2α
3ksµ

2d0 + ...)ξ 5 + ...,

w2(ξ ) = d0 +d1ξ +
1
2

d2ξ
2 +

1
6

d3ξ
3

+
1

24
(−α

2
µ

2
ω

2d0 +α
2ksµ

2d0 −α
2ksµ

2c0 + ...)ξ 4

+
1

120
(2α

3
µ

2
ω

2d0 −2α
3ksµ

2d0 +2α
3ksµ

2c0 + ...)ξ 5 + ... .

(4.9)

The equations (4.9) include eight constants (c0, ...,c3,d0, ...,d3). In order to elim-
inate these constants and find the natural frequency, one can use the boundary
conditions (2.13-2.16). Let us consider boundary conditions for the simply sup-
ported double nanobeam. Now, the equations (4.9) can be transformed into matrix
form as follows  1 ... 0

... ... ...
1
2 ks − 1

3 aks + ... ... 1+ 1
6 ksµ

2 − ...

c0
...
d3

= 0. (4.10)
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Solving the equation (4.10), one can find the natural frequency of the double
nanobeam.

4.2.1. Cracked double nanobeams

A crack divides the double nanobeam into two double nanobeams. Therefore, the
crack divides the double nanobeam into four segments. Four series solutions are
needed to study the cracked double nanobeam. There are sixteen constants in the
four series. Additional conditions are

Figure 7. Modeling of the crack

for upper layer
w′

1 +K1w′′
1 −w′

3 = 0, (4.11)

and for lower layer
w′

2 +K2w′′
2 −w′

4 = 0. (4.12)

If a single crack is at the upper beam then crack severity is needed to consider
K for the upper beam and the lower beam crack severity will be zero. A similar
condition is applicable when the crack is only at the lower beam. When cracks are
at both upper and lower beams then crack severities K1, K2 are needed to consider
for the upper and lower beams, respectively.

4.3. Results and discussion

In this section, numerical analysis is performed to express the effects of some pa-
rameters on the dynamic behavior of cracked tapered double nanobeam systems
using tables and graphs. Here, different boundary conditions such as simply sup-
ported (SS), fully clamped (CC), clamped simply (CS), and clamped free (CF) are
considered.

4.3.1. Validation and verification

In this section, obtained results are verified by comparing the results with the re-
sults of other researchers in the literature. Table 3 describes the natural frequency
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of the simply supported double nanobeam where beams are considered as iden-
tical beams having rectangular cross-sections. It is seen from this table that the
present results are closely matched with the results of the reference paper (Sari et
al. [69]).
Table 3. Verification of frequency for various values of the spring constant and nonlocal
parameter

ks µ References ω1 ω2 ω3

100 0.2 Sari et al. [69] 8.3569 16.4267 24.5823
Present 8.3569 16.4267 24.5839

0.4 Sari et al. [69] 6.1456 14.5951 15.4197
Present 6.1459 14.5947 15.4189

500 0.2 Sari et al. [69] 8.3569 24.5823 32.7084
Present 8.3573 24.5839 32.7089

0.4 Sari et al. [69] 6.1456 14.5951 22.7743
Present 6.1469 14.5888 22.2324

Table 4. Frequency of the simply supported double nanobeam for various values of the
taper ratio, nonlocal parameter and crack severity

α µ K ω1 ω2 ω3 ω4 ω5 ω6

2 0 0 9.4868 22.1347 39.8554 44.5898 89.4140 91.6015
0.3 8.7846 21.8222 35.5332 43.1601 85.6328 90.7578

0.2 0 8.1079 21.5800 24.9785 31.9980 41.9726 46.2382
0.3 7.4868 20.3457 22.8457 30.0605 40.2851 45.3164

0 0 0 9.8701 22.3027 39.4804 44.2539 88.8203 91.0546
0.3 9.2837 22.0214 34.5019 42.7460 83.7734 90.1484

0.2 0 8.3569 21.6738 24.5839 31.6894 41.6211 46.1757
0.3 7.8217 20.0761 22.5332 29.7129 39.7929 45.1758

4.3.2. Effects of crack locations

The location of the crack is very significant as like as crack severity. In a simply
supported beam crack at the support does not influence the natural frequency.
Figures 8 and 9 describe the effect of crack location on the natural frequency
for the simply supported nanobeam. In this section, nonlocal parameter, spring
constant, and taper ratio are considered µ = 0.1, ks = 200, α = 0, respectively.
At some specific locations, an increase in crack severity decreases the natural
frequency.

4.3.3. Mode shape analysis

Mode shape is a significant measure to predict the dynamic behavior of structural
elements. Basically, the mode shape describes the transverse displacement from
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Figure 8. Frequency versus crack location with different values of crack severity (SS,
first mode)

Figure 9. Frequency versus crack location with different values of crack severity (SS,
second mode)

Figure 10. Mode shape of the double nanobeam for different values of taper ratio (first
mode, SS)
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Table 5. Frequency of the double tapered nanobeam for different values of taper ratio and
boundary conditions

α = 2 α = 0

BC ω1 ω2 ω3 ω1 ω2 ω3

SS SS 9.0767 16.8037 33.8652 9.4155 16.9893 33.4277
CC CC 21.7480 25.9433 51.7539 21.1074 25.4082 50.9805
CC SS 12.6416 24.3926 35.2363 12.7959 23.8808 34.8027
CF CF 1.9510 14.2764 17.7314 3.5315 14.5771 20.6777
CS CS 12.6611 18.9814 40.7461 14.5986 20.3262 41.7929

Table 6. Frequency of the simply supported double nanobeam for various values of the
spring constant and crack severity

K ks ω1 ω2 ω3 ω4 ω5 ω6

0 50 9.3306 13.6767 33.5371 34.9941 64.7695 65.5586
250 9.3306 24.2285 33.5371 40.3086 64.7773 68.5273
2000 9.3306 33.5371 63.9804 64.6914 71.6523 89.8672

0.3 50 8.6177 13.2471 28.4707 34.3574 60.8086 65.1914
250 8.7075 23.7558 29.8223 38.5176 61.6679 67.3164
2000 8.7827 30.5293 60.9258 63.9648 69.8008 87.9766

the neutral axis during vibration. Figures 10, and 11 illustrate the mode shapes
for simply supported nanobeams with various values of taper ratio. A crack is
considered only at the upper beam and the lower beam is fully intact. Crack
severity K = 0.3, crack location a = 0.25, spring constant ks = 200, nonlocal
parameter µ = 0.1 are considered, respectively. It is seen from these figures that
mode shapes are influenced by the taper ratio. This influence increases at a higher
mode of frequency. A crack at the upper beam affects the mode shape of the upper
beam as well as the lower beam significantly.

4.3.4. Parametric effects

Parametric analysis is essential to comprehend the dynamic behavior of the dou-
ble nanobeam properly. Natural frequency is influenced by the spring constant,
nonlocal parameter, taper ratio, crack severity, and boundary conditions signifi-
cantly. Table 4 describes the frequency of the simply supported double nanobeam
for several values of the taper ratio, nonlocal parameter, and crack severity. A
crack is considered at the location of a = 0.25 and spring constant ks = 200 is
considered. In a simply supported beam, frequency is higher in the rectangular
beam than in the tapered beam. Table 5 illustrates the frequency of the double
tapered nanobeam for different boundary conditions and taper ratios. The beam
is considered intact where K = 0 and µ = 0.1. In clamped beam, frequency is
higher in the tapered beam than in the rectangular beam. Table 6 represents the
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Figure 11. Mode shape of the double nanobeam for different values of taper ratio (second
mode, SS)

frequency of the simply supported double nanobeam for various spring constants
and crack severities where α = 1, µ = 0.1, and a = 0.25 are considered. Fre-
quency increases for the increase of the spring constant. Whereas, the first mode
of frequency is less effective than the higher mode of frequency for the increase
of the spring constant.
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5. TRANSVERSE VIBRATION OF TAPERED
NANOBEAMS WITH ELASTIC SUPPORTS

A solution technique based on the homotopy perturbation method is proposed to
analyze the dynamic behavior of the tapered nanobeam with elastic supports (see
Hossain and Lellep [32]).

5.1. Problem description

A schematic shape of a linearly elastic, isotropic, tapered nanobeam subjected to
transverse vibration is illustrated in Figure 12.

Figure 12. (a) A tapered nanobeam with elastic supports, (b) Tapered cross-section

Let the origin of the coordinate system be placed at the left end of the nanobeam.
The beam axis coincides with the x-axis and the height of the beam is parallel to
the z-axis. The nanobeam with length L and variable-width b(x) are considered.
The modulus of elasticity E and the density of the beam ρ are uniform throughout
the beam. Translational and rotational flexible supports are used at both ends of
the beam. Our intention is to find the effects of the taper ratio and the nonlocal
parameter on the natural vibration of nanobeams.

5.2. Mathematical model

Combining the equations (2.7), and (2.10) and eliminating axial force N, the bend-
ing moment M for the nonlocal beam model can be expressed as

M =−(e0a)2(−ρA(x)
∂ 2W
∂ t2 )−EI(x)

∂ 2W
∂x2 . (5.1)

Similarly, from the equation (5.1), the shear force Q for the nonlocal beam model
can be presented as

Q =−(e0a)2 ∂

∂x
(−ρA(x)

∂ 2W
∂ t2 )− ∂

∂x
(EI(x)

∂ 2W
∂x2 ). (5.2)
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Combining equations (5.1), and (2.10), the governing equation of the nonlocal
tapered beam can be presented as

∂ 2

∂x2 (EI(x)
∂ 2W
∂x2 )+(e0a)2 ∂ 2

∂x2 (−ρA(x)
∂ 2W
∂ t2 )+ρA(x)

∂ 2W
∂ t2 = 0. (5.3)

Substituting the values of I(x) and A(x) from equations (2.32), one can present
(5.3) as

EI0
∂ 2

∂x2 (e
αx
L

∂ 2W
∂x2 )− (e0a)2

ρA0
∂ 2

∂x2 (e
αx
L

∂ 2W
∂ t2 )+ρA0e

αx
L

∂ 2W
∂ t2 = 0. (5.4)

Applying the dimensionless parameters (2.12) and transformation function (2.11),
equation (5.4) can be written as

d2

dξ 2 (e
αξ d2w

dξ 2 )+µ
2
ω

2 d2

dξ 2 (e
αξ w)−ω

2eαξ w = 0. (5.5)

Simplifying the equation (5.5), one can rewrite it as follows

d4w
dξ 4 +2α

d3w
dξ 3 +(α2+µ

2
ω

2)
d2w
dξ 2 +2αµ

2
ω

2 dw
dξ

+(µ2
ω

2
α

2−ω
2)w= 0. (5.6)

Equation (5.6) is the simplified form of the governing equation. It is difficult to
find the exact solution of this equation. However, it can be solved by the approxi-
mation technique.

5.2.1. Elastic boundary conditions

Elastic boundaries are modeled with the help of the flexible springs. In this paper,
two types of spring boundary conditions are used. These are the rotational spring
and translational spring. Rotational spring resists the moment at the boundary. On
the other hand, translational spring resists shear at the boundary. The boundary
conditions for the flexible supports are

T0W = Q, R0
∂W
∂x

=−M, at x = 0, (5.7)

and

TLW =−Q, RL
∂W
∂x

= M, at x = L, (5.8)

where T0, TL represent spring constants for translational spring and R0, RL repre-
sent spring constants for rotational spring at the point x= 0 and x=L, respectively.
For the translational spring, from equations (5.7), and (5.2), it can be written as

T0W = (e0a)2 ∂

∂x
(ρA(x)

∂ 2W
∂ t2 )− ∂

∂x
(EI(x)

∂ 2W
∂x2 ). (5.9)
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Using the transformation (2.11) and dimensionless variable (2.12), the equation
(5.9) can be written as

T0L3

EI0
w =−µ

2
ω

2eαξ (
∂w
∂ξ

+αw)− eαξ (
∂ 3w
∂ξ 3 +α

∂ 2w
∂ξ 2 ). (5.10)

The equation (5.10) can be presented as follows

t0w =−µ
2
ω

2eαξ (
∂w
∂ξ

+αw)− eαξ (
∂ 3w
∂ξ 3 +α

∂ 2w
∂ξ 2 ). (5.11)

where t0 = T0L3

EI0
is the dimensionless translational spring constant. If the origin

of coordinates is the left boundary of the beam, the boundary condition can be
written as follows

t0w =−µ
2
ω

2(
∂w
∂ξ

+αw)− (
∂ 3w
∂ξ 3 +α

∂ 2w
∂ξ 2 ). (5.12)

Similarly for the rotational spring, according to the equations (5.7), and (5.1), it
can be written as

R0
∂W
∂x

=−(e0a)2
ρA(x)

∂ 2W
∂ t2 +EI(x)

∂ 2W
∂x2 . (5.13)

Using the transformation (2.11) and dimensionless variable (2.12), the equation
(5.13) can be simplified as

r0
∂w
∂ξ

= eαξ
µ

2
ω

2w+ eαξ ∂ 2w
∂ξ 2 . (5.14)

where r0 =
R0L
EI0

is the dimensionless rotational spring constant. At the left corner
of the beam, where ξ = 0, the equation (5.14) can be written as

r0
∂w
∂ξ

= µ
2
ω

2w+
∂ 2w
∂ξ 2 . (5.15)

In a similar way, from the equation (5.15), one can find the other two boundary
conditions at ξ = 1 for translational and rotational springs as follows

tLw = µ
2
ω

2eα(αw+
∂w
∂ξ

)+ eα(α
∂ 2w
∂ξ 2 +

∂ 3w
∂ξ 3 ), (5.16)

and

rL
∂w
∂ξ

=−µ
2
ω

2eαw+ eα ∂ 2w
∂ξ 2 . (5.17)
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The required four boundary conditions for the connected springs at both ends of
the beam can be presented as
at ξ = 0,

t0w+µ
2
ω

2(
∂w
∂ξ

+αw)+(
∂ 3w
∂ξ 3 +α

∂ 2w
∂ξ 2 ) = 0,

r0
∂w
∂ξ

−µ
2
ω

2w− ∂ 2w
∂ξ 2 = 0,

(5.18)

and at ξ = 1,

tLw−µ
2
ω

2eα(αw+
∂w
∂ξ

)− eα(α
∂ 2w
∂ξ 2 +

∂ 3w
∂ξ 3 ) = 0,

rL
∂w
∂ξ

+µ
2
ω

2eαw+ eα ∂ 2w
∂ξ 2 = 0.

(5.19)

5.3. Solution of the problem

This problem can be solved using the homotopy perturbation method. Applying
the basic rules of the homotopy perturbation method (2.39), the governing equa-
tion (5.6) of the problem can be written as

d4w
dξ 4 +P[2α

d3w
dξ 3 +(α2 +µ

2
ω

2)
d2w
dξ 2

+2αµ
2
ω

2 dw
dξ

+ω
2(µ2

α
2 −1)w] = 0.

(5.20)

Considering the solution (2.40) of the equation (5.20), the coefficient of the power
of P can be written as

P0 → d4

dξ 4 w0(ξ ) = 0,

P1 → d4

dξ 4 w1(ξ )+2α(
d3

dξ 3 w0(ξ ))+(ξ 2 +µ
2
ω

2)(
d2

dξ 2 w0(ξ ))

+2αµ
2
ω

2(
d

dξ
w0(ξ ))+(µ2

ω
2
α

2 −ω
2)w0 = 0,

P2 → d4

dξ 4 w2(ξ )+2α(
d3

dξ 3 w1(ξ ))+(α2 +µ
2
ω

2)(
d2

dξ 2 w1(ξ )

+2αµ
2
ω

2(
d

dξ
w1(ξ ))+(µ2

ω
2
α

2 −ω
2)w1 = 0.

(5.21)

The solution of the equation (5.21) is presented as follows

w0 = A0 +A1ξ +A2
ξ 2

2
+A3

ξ 3

6
. (5.22)
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The remaining terms of the series can be calculated as

wi =−2αL−1(
d3

dξ 3 wi−1)− (α2 +µ
2
ω

2)L−1(
d2

dξ 2 wi−1)−

2αµ
2
ω

2L−1(
d

dξ
wi−1)− (µ2

ω
2
α

2 −ω
2)L−1(wi−1),

(5.23)

where i = 1,2,3, ...,n and L−1 =
∫ ∫ ∫ ∫

dξ dξ dξ dξ . Using the equation (5.23),
one can calculate the following terms as below
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24
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ω
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ω
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ω
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ω
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ω
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ω
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ω
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ω
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(5.24)

and

w2 = (− 1
60

αω
2
ξ

5 − 1
720

µ
2
ω

2
ξ

6 − 1
720

α
2
ω

2
ξ

6 + ....)A0
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360
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2
ξ
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ω
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ω
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ω
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8 + .....)A2
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10080
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4
ω

4
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2
ω

4
ξ

9 + ......)A3.

(5.25)

Here, w0,w1,w2 present three terms of the series. The accuracy of this calculation
depends on the number of terms. For achieving good accuracy, 40 terms of this
series have been calculated. Applying the boundary conditions (5.18, 5.19) or any
set of (2.13-2.16), w series can be presented in matrix form as below

[M(ω)][A] = 0. (5.26)

The natural frequency of the nanobeam is calculated from the equation (5.26).

5.4. Results and discussion

In this section, the efficiency of the homotopy perturbation method for solving
the transverse vibration problems of tapered nanobeams with elastic supports is
demonstrated. This study can be described by the following steps. First of all,
the results of the present paper are examined and compared with the results of
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published papers in the literature. Secondly, frequency in different modes of the
presented model is illustrated in tabular form for rigid boundary supports. Thirdly,
frequency ratio versus taper ratio for different supports are presented graphically.
Finally, the mode shapes of the nanobeam are presented for different values of the
taper ratio.

Figure 13. Frequency ratio versus taper ratio (first mode, SS)

Figure 14. Frequency ratio versus taper ratio (first mode, CC)

In Table 7, obtained frequencies of the present tapered nanobeam are also com-
pared with the frequencies of a regular nanobeam. For this comparison, taper ratio
α = 0 is considered in the present study. Obtained results show good agreement
with the results of Phadikar and Pradhan [60]. On the other hand, in Table 8,
the natural frequencies of tapered nanobeams obtained in the present study are
compared with the natural frequencies of the tapered macro beam. For this com-
parison, the nonlocal parameter µ = 0 is considered. The results obtained in the
present study show very good agreement with the results of Mao and Pietrzko
[56]. Table 9 describes the natural frequency of tapered nanobeams with differ-
ent rigid supports. It is clear from this table that frequency decreases with the
increase of the nonlocal parameter. On the other hand, the effect of taper ratio on
the frequency depends on the end support system.
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Figure 15. Mode shape for different taper ratios (SS, first mode)

Figure 16. Mode shape for different taper ratios (CC, first mode)

Table 7. Data comparision with the regular (uniform) nanobeam

Boundary Method δ µ frequency (ω)

1 2 3
SS [60] 0 1 2.9936 6.2061 9.3796

Present 0 1 2.9934 6.2055 9.3725
CC [60] 0 1 6.0574 8.9011 12.4822

Present 0 1 6.0561 8.8950 12.4521
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Table 8. Data comparision with the macro tapered beam

Boundary Method δ µ frequency (ω)

SS 1 2 3 4
[56] 0 0 9.86960 39.47841 88.82643 157.9136

Present 0 0 9.87011 39.48046 88.82031 157.9218
[56] -1 0 9.77291 39.57036 88.97052 158.0841

Present -1 0 9.77246 39.57421 88.97656 158.0781
[56] -2 0 9.48725 39.85231 89.40520 158.5968

Present -2 0 9.48681 39.85546 89.39843 158.6093

Table 9. Natural frequency of the tapered nanobeam with different rigid supports

SS CC
µ α 1 2 3 1 2 3
0 0 9.87011 39.4804 88.8203 22.3722 61.6718 120.898
1 0 2.99340 6.20556 9.37255 6.05615 8.89501 12.4521
2 0 1.55126 3.13183 4.70585 3.11230 4.48164 6.26835
0 -1 9.77324 39.5675 88.9765 22.5103 61.8607 121.109
1 -1 2.99013 6.21035 9.37421 6.20361 8.79931 12.6028
2 -1 1.55087 3.13261 4.70585 3.19345 4.42382 6.37382
0 -2 9.48671 39.8530 89.3984 22.9366 62.4199 121.725
1 -2 2.97988 6.22773 9.37734 6.79335 8.34355 12.8320
2 -2 1.54931 3.13496 4.70664 3.55449 4.12416 6.48007
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Figures 13, and 14 illustrate frequency ratio versus taper ratio for different
values of the nonlocal parameter at simply supported and clamped nanobeams.
The frequency ratio is calculated from the frequency of the tapered beam and the
frequency of the regular beam for three different values of the nonlocal parameter.
The frequency ratio shows different patterns for different support systems. It is
clear that the sign of taper ratio is not effective in the case of simply supported
and clamped nanobeams.

Figures 15, and 16 illustrate the shape mode of simply supported and fully
clamped tapered nanobeams, respectively. It is clear from these figures that the
increase in the value of the taper ratio increases the variation of the mode shape.
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6. NATURAL VIBRATION OF AXIALLY GRADED
MULTI CRACKED NANOBEAMS IN THERMAL

ENVIRONMENT USING POWER SERIES

In this section, a numerical investigation of the dynamic characteristics of axially
graded multi cracked nanobeams in a thermal environment is demonstrated by
applying the power series solution technique (see Hossain and Lellep [36]).

6.1. Description of the problem

The geometry of an axially graded multi-cracked nanobeam is illustrated in Figure
17. The left endpoint of the beam is located at the origin of the coordinate system.
The neutral axis of the beam overlaps with the x-axis and the height of the beam
is placed along the z-axis. Here, L, b, h describe the length, width and height of
the beam, respectively. Multiple open cracks are considered at the distance of ai

to an from the left endpoint. The material of the beam is axially graded along the
x-axis. E and ρ are the elasticity and density varying exponentially from one end
to another end. The objective of this analysis is to examine the natural vibration
of the axially graded multi cracked nanobeam.

Figure 17. (a) An axially graded multi-cracked nanobeam, (b) Cross-section of the beam

6.2. Mathematical model

6.2.1. Derivation of the governing equation

In this paper, the beam is axially graded and also subjected to thermal load. There-
fore, the material properties such as elasticity and density (2.33) are varying along
the x-axis. Similarly, the thermal load (2.34) is also varying with the elasticity as
an axial load. Considering these variations, and combination of equations (2.7)
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and (2.10) can be expressed as

∂ 2

∂x2 (E(x)I
∂ 2W
∂x2 )− (e0a)2 ∂ 2

∂x2 [ρ(x)A
∂ 2W
∂ t2 − ∂

∂x
(N(x)

∂W
∂x

)]

− ∂

∂x
(N(x)

∂W
∂x

)+ρ(x)A
∂ 2W
∂ t2 = 0.

(6.1)

Using the transformation (2.11) and non-dimensional parameters (2.12) and ap-
plying the axially graded material properties (2.33), the equation (6.1) can be
expressed as

(λ 2 d2w
dξ 2 +2λ

d3w
dξ 3 +

d4w
dξ 4 )+µ

2
ω

2(λ 2w+2λ
dw
dξ

+
d2w
dξ 2 )

−µ
2n(λ 3 dw

dξ
+3λ

2 d2w
dξ 2 +3λ

d3w
dξ 3 +

d4w
dξ 4 )+n(

dw
dξ

+
d2w
dξ 2 )−ω

2w = 0,
(6.2)

here, λ is the parameter of non-homogeneity, n indicates the dimensionless ther-
mal load. Therefore, the equation (6.2) can be presented in a simplified form as

d4w
dξ 4 +β1

d3w
dξ 3 +β2

d2w
dξ 2 +β3

dw
dξ

+β4w = 0, (6.3)

where

β1 =
2λ −2λ µ2n

1−µ2n
, β2 =

λ 2 +µ2ω2 −3µ2nλ 2 +n
1−µ2n

,

β3 =
2µ2ω2λ −µ2nλ 3 +n

1−µ2n
, β4 =

µ2ω2λ 2 −ω2

1−µ2n
.

In this nanobeam, multiple cracks are considered where n number of cracks sep-
arate the beam into n+ 1 segments. Finally, the governing equations for n+ 1
number of segments can be expressed as

d4wi

dξ 4 +β1
d3wi

dξ 3 +β2
d2wi

dξ 2 +β3
dwi

dξ
+β4wi = 0, (6.4)

where i = 1,2,3, ...,n+ 1. These equations (6.4) represent the set of governing
equations considering the n + 1 segments that are separated at the location of
cracks a j, where j = 1,2, ...,n. One can solve these equations (6.4) by applying in-
between conditions (2.31) at the crack locations and any one set of end conditions
(2.13-2.16) for the boundary supports.

6.3. Power series solution

The power series solution technique is very useful to solve linear and nonlinear
problems. The governing equation can be solved using the power series solu-
tion technique. Using the rules of power series (2.48-2.50), one can replace the
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derivatives of deflection in the governing equation (6.4). Therefore, simplifying
the equation can be written as

Ak+4 =− β1

(k+4)
Ak+3 −

β2

(k+4)(k+3)
Ak+2

− β3

(k+4)(k+3)(k+2)
Ak+1 −

β4

(k+4)(k+3)(k+2)(k+1)
Ak,

(6.5)

here, Ak+4, Ak+3, ..., Ak are the power series coefficients. Using the above relation
in the equation (6.5), one can calculate the series coefficients as follows

A4 =−1
4

β1A3 −
1
12

β2A2 −
1

24
β3A1 −

1
24

β4A0,
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1
20

(β 2
1 −β2)A3 +

1
60

(β1β2 −β3)A2

+
1

120
(β1β3 −β4)A1 +

1
120

β1β4A0,

A6 =− 1
120

(β 3
1 −2β1β2 +β3)A3 −

1
360

(β 2
1 β2 −β1β3 −β

2
2 +β4)A2

− 1
720

(β 2
1 β3 −β1β4 −β2β3)A1 −

1
720

(β 2
1 β4 −β2β4)A0.

(6.6)

Applying the series coefficients, the solution for each segment of the beam can be
written as

wi = Ai,0 +Ai,1ξ +Ai,2ξ
2 +Ai,3ξ

3 +
∞

∑
k=4

Ai,kξ
k, (6.7)

where i = 1,2, ...,n+ 1. Using the simply-supported boundary conditions (2.13)
and intermediate conditions for the crack (2.31), one can eliminate constant coef-
ficients (Ai,k ) and solve these equations to form a matrix as follows

m1,1 ... ... m1,4(n+1)
... ... ... ...
... ... ... ...

m4(n+1),1 ... ... m4(n+1),4(n+1)




A1,0
...
...

A(n+1),3

= 0, (6.8)

here, m1,1, ..., m4(n+1),4(n+1) indicate the elements of the matrix. The value of
natural frequency for the multi-cracked nanobeam can be determined by solving
the above matrix equation (6.8). In this section, single, double, and triple cracked
nanobeams are analyzed.

6.4. Numerical results and discussion

In this section, parametric analysis is performed to scrutinize their impacts on the
natural frequency of the axially graded multi cracked nanobeam in a thermal en-
vironment. First of all, the efficiency of the solution technique is examined by
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Figure 18. Frequency ratio versus crack position (SS, first mode)

Figure 19. Frequency ratio versus crack position (SS, second mode)

comparing the obtained results with the results of relevant papers in the existing
literature. In addition, the influences of crack position on the various modes of
natural frequency for several values of the gradient parameter are studied and pre-
sented graphically. Moreover, the effects of temperature, non-homogeneity, and
the nonlocal parameter on the natural frequency are presented in tabular forms. Fi-
nally, the mode shapes are depicted to investigate the axially graded multi cracked
nanobeam and to study the effects of crack severity on the transverse deflection.

6.4.1. Comparison of results

In this section, the outcomes of the study are compared with the outcomes of some
benchmark research in the existing literature. This comparison is performed by
investigating the effects of nonlocal parameter (µ), thermal load (n), and crack
severity on different modes of the natural frequency. In Table 10, the first mode
of natural frequency (square root) for simply supported nanobeams is presented.
The effect of cracks is not considered as well as the beam is considered uniform
and homogeneous in this section of calculation. Different values of nonlocal pa-
rameter (µ) and thermal load (n) are considered. It is understandable from this
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Figure 20. Mode shape for different values gradient parameter (first mode, SS)

Figure 21. Mode shape for different values gradient parameter (second mode, SS)
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tabular data that the natural frequency decreases with the increase of the nonlocal
parameter. Therefore, the natural frequency increases for the decrease of temper-
ature. Outcomes are verified by the results of Esen et al. [20] and Aria et al. [6].
In Table 11, different modes of natural frequency for a double cracked beam with
different values of the nonlocal parameter and crack severity are studied. Two
cracks in the beam are located at a1 = 0.3 and a2 = 0.7, respectively. It is obvious
from this tabular data that frequency decreases with the increase of the nonlocal
parameter. Values of frequency are also influenced by the crack severity. This
table data are also compared with the results of Roostai and Haghpanahi [66].
This comparison shows a close match among these results. Similarly, in Table 12,
different modes of natural frequency (square root) for the simply supported single
cracked nanobeam are demonstrated. Non-homogeneity of nanobeams is ignored
in this section of calculation. Different values of crack positions (a), crack sever-
ity (K), nonlocal parameter (µ) are also considered. It is comprehensible from
this tabular data that the natural frequency decreases with the increase of crack
severity. Frequency shows the lower value at the crack position of a = 0.5 than
a = 0.25. This table data also match with the results of Esen et al. [20] and Aria
et al. [6]. These evaluations show a good agreement between current data and the
data of other researchers.

6.4.2. Effect of crack locations

The location of the crack is also crucial as like as the crack severity for analyzing
the cracked beam. In Figures 18, 19, first modes of frequency for simply sup-
ported nanobeams are demonstrated. Thermal load is ignored in this section of
the calculation. The frequency ratio is calculated by the frequency at any point
with non-homogeneity and the frequency at the initial point without considering
non-homogeneity. In this section, nonlocal parameter µ = 0.1 and crack severity
K = 0.35 are applied. It is evident from these figures that in the case of sim-
ply supported and the first mode of frequency, the frequency ratio slightly de-
creases for the presence of non-homogeneity. However, in other cases, frequency
increases with the presence of non-homogeneity. It is very important in these
curves that the frequency ratio is not affected by the positive or negative sign of
non-homogeneity. The effect of crack location is also influenced by the end sup-
port systems.

6.4.3. Frequency for axially graded intact and cracked nanobeams
under thermal load

In this section, Tables 13, and 14 represent the effect of temperature on the nat-
ural frequency for axially graded intact or cracked nanobeams, respectively. In-
teractions between temperature, non-homogeneity, nonlocal parameter, end sup-
ports, and different modes of frequency of intact and cracked nanobeams are very
diverse. Table 13 represents the relationship between the nonlocal parameter,
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Table 10. Natural frequency (square root) for varying nonlocal parameter, thermal load
and different end supports

SS µ = 0 µ = 0.1
n Present [20] [6] Present [20] [6]

2 2.9688 2.9672 2.9680 2.8815 2.8810 2.8800
1 3.0589 3.0575 3.0563 2.9793 2.9791 2.9787
0 3.1416 3.1416 3.1415 3.0684 3.0683 3.0680
-1 3.2184 3.2173 3.2180 3.1505 3.1504 3.1501
-2 3.2901 3.2896 3.2894 3.2268 3.2266 3.2262

Table 11. Natural frequency for the double cracked beam with different values of nonlocal
parameter and crack severity

SS
K=0.0325 K=0.075

µ Mode [66] Present [66] Present

0 1 9.474 9.475 9.023 9.023
2 37.335 37.338 34.986 34.986
3 88.313 86.383 87.741 85.883

1 1 2.873 2.873 2.732 2.732
2 5.858 5.858 5.46 5.459
3 9.313 9.313 9.236 9.236

thermal load, and non-homogeneity in absence of cracks. In this section, three
different values of the nonlocal parameter, thermal load from -2 to 2 and non-
homogeneity -2 to 2 are considered. It is very clear that the frequency decreases
for the increase of the nonlocal parameter. On the other hand, frequency increases
with the decrease of temperature. Table 14 represents the relationship between
the nonlocal parameter, thermal load and non-homogeneity in the presence of a
crack. In this section, different values of nonlocal parameter, thermal load and
non-homogeneity are considered as in Table 13. In addition, a crack is consid-
ered at crack location a = 0.25 with the crack severity K = 0.35. The relationship
between thermal load, non-homogeneity, and natural frequency becomes more
changeable in the presence of cracks for various modes of frequency. In Table 15,
the natural frequency for a triple cracked beam with several values of the nonlocal
parameter and crack severity is demonstrated. Three specific cracks are consid-
ered at the position of a1 = 0.3, a2 = 0.5, a3 = 0.7, respectively. The effects
of non-homogeneity and temperature are not considered. It is understandable in
this tabular data that the frequency decreases with the increase of the value of the
nonlocal parameter and crack severity.
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Table 12. Natural frequency (square root) for the simply supported cracked nanobeam in
different mode with varying nonlocal parameter

a K mode µ = 0.0 µ = 0.2
Present [20] [6] Present [20] [6]

0.5 0 1 3.1416 3.1413 3.1409 2.8908 2.8907 2.8907
2 6.2833 6.2830 6.2818 4.9582 4.9580 4.9578

0.35 1 2.7496 2.7493 2.7489 2.5232 2.5232 2.5232
2 6.2833 6.2825 6.2819 4.9582 4.9580 4.9578

0.25 0 1 3.1416 3.1416 3.1409 2.8908 2.8908 2.8908
2 6.2833 6.2825 6.2818 4.9582 4.9580 4.9580

0.35 1 2.9072 2.9068 2.9064 2.6646 2.6645 2.6645
2 5.6491 5.6486 5.6484 4.4168 4.4169 4.4168

Table 13. Frequency for several values of nonlocal parameter, thermal load and nonho-
mogeneity without crack

SS K = 0
µ = 0 µ = 0.2

n λ 1 2 3 1 2 3

-2 -2 10.3271 40.7773 90.3672 8.9497 26.4121 43.9336
0 10.8252 40.4648 89.8203 9.4653 26.1387 43.7070
2 10.5127 40.8320 90.3984 9.1021 26.4551 43.9570

0 -2 9.48682 39.8555 89.3984 8.1079 24.9785 41.9179
0 9.87012 39.4805 88.8203 8.3569 24.5839 41.6289
2 9.48682 39.8555 89.3984 8.1079 24.9785 41.9179

2 -2 8.58057 38.9004 88.4297 7.1704 23.4550 39.8008
0 8.81396 38.4668 87.8203 7.0796 22.9199 39.4336
2 8.33545 38.8496 88.3984 6.9741 23.4082 39.7773

6.4.4. Mode shape illustration

Mode shape is one of the important characteristics that explain the vibration of
structural components. It describes the transverse displacement from the beam
axis during vibration. It is a significant measure that explains the pattern of vi-
bration. In this section, the effects of non-homogeneity on the mode shape of
cracked nanobeams are illustrated. In order to understand the dynamic behavior
of cracked nanobeams, mode shape analysis is necessary. In Figures (20, 21), dif-
ferent mode shapes of nanobeams are demonstrated where the location of crack
a = 0.25L, value of the nonlocal parameter µ = 0.1, and crack severity K = 0.35
are considered. In this section of calculation, thermal load n = 1 is considered.
Different values of non-homogeneity λ = 2, λ = 0 and λ = −2 are applied. It
is comprehensible from these figures that mode shapes of cracked nanobeam are
considerably changed by the non-homogeneity. Variation changes with the change
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Table 14. Frequency for several values of nonlocal parameter, thermal load and nonho-
mogeneity with crack

SS K = 0.35,a = 0.25
µ = 0 µ = 0.2

n λ 1 2 3 1 2 3

-2 -2 9.1362 32.1699 82.4297 7.7495 20.2324 40.2070
0 9.2583 32.7246 83.3203 7.9887 20.5723 40.1445
2 8.6909 33.9824 85.3359 7.4907 21.3496 40.6367

0 -2 8.4341 31.4004 81.5078 7.0942 19.2588 38.4238
0 8.4517 31.9121 82.3828 7.1001 19.5088 38.3457
2 7.8081 33.1894 84.3984 6.6812 20.3730 38.9394

2 -2 7.6694 30.6113 80.5859 6.3442 18.2119 36.5410
0 7.5503 31.0762 81.4297 6.0474 18.3486 36.4394
2 6.7993 32.3809 83.4765 5.7388 19.3057 37.1426

Table 15. Natural frequency for the triple cracked nanobeam with several values of non-
local parameter and crack severity

SS K=0.0325 K=0.075
µ 1 2 3 1 2 3

0 9.203 37.338 83.977 8.506 34.986 80.523
0.5 4.941 11.306 17.692 4.563 10.542 16.655
1 2.79 5.858 8.992 2.576 5.459 8.459

CC
0 21.708 58.508 107.492 21.037 55.223 102.602

0.5 10.622 16.247 22.545 10.229 15.138 20.393
1 5.846 8.363 11.522 5.622 7.786 10.405

of the value of non-homogeneity. This variation also increases in the higher mode
of frequency.
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7. CONCLUDING REMARKS

In this study, the dynamic behavior of nanobeams considering various physical
and geometrical properties has been analyzed. Conventional continuum theory
and Eringen’s nonlocal theory of elasticity have been used to simulate the prob-
lem. Several physical properties such as axially graded material and temperature
have been considered. In an axially graded beam, material properties such as
modulus of elasticity and density vary from one end to another end exponentially.
The effect of temperature has been considered uniformly over the beam where the
thermal load is accumulated with the mechanical load. Similarly, several geomet-
rical properties such as varying cross-sections and cracks have been considered.
The width of the beam is changing exponentially from one end to another end.
Single and multiple cracks have been considered where cracks are simulated with
the help of the rotational spring model. In this study, a double nanobeam has
been analyzed where both beams are connected to each other by the Winkler-type
spring model.

The most significant part of this analysis is employing several numerical tech-
niques that are rare in the analyses of the nano-material. These techniques are the
homotopy perturbation method, power series solution technique, and Maclaurin
series solution technique. These techniques have been successfully applied and
the obtained results have been verified with the results of existing literature.

In this study, the frequency of nanobeams decreases with the increase of crack
depth. Frequency is affected by the crack location. The effect of crack location
is also influenced by the end support systems. In the case of double nanobeams,
natural frequency increases if the spring constant increases. The first mode of
frequency is less influenced than the higher mode of frequency for the increase
of spring constants. In the case of taper and non-homogeneous beams, frequency
is affected by the taper ratio and non-homogeneity. The effects of taper ratio and
non-homogeneity increase with the increase of the mode of frequency. However,
the frequency is not affected by the sign (negative or positive) of the taper ratio
and non-homogeneity in simply supported and fully clamped nanobeams. The
effect of elastic supports is influenced by the nonlocal parameter and taper ratio.
Nonlocal parameter reduces the stiffness of elastic supports. An increase in ther-
mal load decreases frequency. Macrobeams and nanobeams both are similarly
affected by the crack severity, taper ratio, non-homogeneity, and temperature.

In this study, a convenient way to depict the mode shape diagram of nanobeams
has been presented. Therefore, the dynamic behavior of nanobeams has been illus-
trated with the aid of the mode shape diagram. It is evident from this analysis that
the mode shape of nanobeams is significantly affected by the nonlocal parame-
ter, taper ratio, non-homogeneity, crack severity, and the influence of temperature.
Nonetheless, crack is one of the influential factors in changing the mode shape.
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Summary

In this dissertation, an analysis of the dynamic behavior of nanobeams with dif-
ferent physical and geometrical properties using several numerical techniques is
presented. Euler-Bernoulli beam theory and nonlocal theory of elasticity are used
to simulate the nanobeam.

Nanobeams are considered with some special requirements such as tapered,
axially graded, and double beams. First of all, in a tapered beam, the width of the
beam is varying exponentially along the x-axis from one end to another end. The
properties of the tapered beam are to reduce material consumption and provide
the cross-sectional area according to the moment distribution. Secondly, in an
axially graded beam, material properties such as elasticity and density are vary-
ing exponentially from one end to another end. The axially graded beam can be
considered as a non-homogeneous as well as a composite beam. In this beam, the
material properties can be distributed according to the requirement. The axially
graded beam overcomes the limitation of conventional composite. Finally, in a
double beam, two identical nanobeams are connected by a Winkler-type spring
layer. Double beams are used for absorbing the vibration. It reduces deflection
and vibration. The double beam is modeled by the coupled differential governing
equations.

Some adverse effects such as cracks and the influence of the temperature are
considered. Cracks are common defects in nanostructures. Single and multiple
cracks are considered in this analysis. According to the model, the crack is re-
placed by a rotational spring where the crack divides the beam into two segments
that are connected to each other by the spring at the crack position. Cracks re-
duce the overall stiffness of the beam. The effect of temperature is significant for
the vibration of nanobeams. The thermal load is compatible with the mechanical
load where the thermal load is modeled as an axial load. It reduces the natural
frequency.

The main objective of this research is to find suitable techniques for a reliable,
cost-effective design that is able to fulfill the desired requirements. That is why
the important feature of this research is to apply numerical techniques for solving
these problems. Three different approximation techniques such as homotopy per-
turbation technique, power series method, and Maclaurin series method are used
for solving these problems. These techniques are useful for solving linear and
non-linear differential equations. However, these techniques are rare to analyze
the nano-material. These techniques are applied effectively to scrutinize the model
of nanobeams. Obtained results are verified with the results of other researchers in
the existing literature. This analysis can be used to design nano-electromechanical
devices effectively.
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Käesolevas väitekirjas uuritakse nanomaterjalist valmistatud talade omavõnku-
misi mitmesuguste kinnitusviiside korral. Väitekirjas on välja töötatud meetodid
nanotalade omavõnkesageduse määramiseks astmelise nanotala jaoks erinevate
kinnitustingimuste korral; kusjuures astmete nurkades asuvad stabiilsed praod või
prao-tüüpi defektid. Prao mõju võnkesagedusele modelleeritakse nn kaalutu vään-
devedru meetodil. Selle meetodi kohaselt tuleb reaalne astmega tala asendada
kahest elemendist koosneva süsteemiga, kus elemendid on omavahel ühendatud
väändevedruga, mille jäikus on pöördvõrdeline pinge intensiivsuse koefitsiendiga
prao tipu juures. Kuna pinge intensiivsuse koefitsiendi väärtused on leitavad kat-
aloogidest, siis see meetod võimaldab omavahel siduda nanotala omavõnkesage-
duse ning prao pikkuse ja laiuse.

Väitekiri koosneb sissejuhatusest, viiest peatükist ning kirjanduse loetelust,
mis sisaldab 82 nimetust. Sissejuhatus kujutab endast esimest peatükki. Teises
peatükis on toodud põhivõrrandid ning põhieeldused. Esimesed kaks peatükki on
referatiivsed, ülejäänutes esitatakse originaalseid tulemusi. Kolmandas peatükis

arvestamine on kohustuslik. See süsteem on lahendatav ka muutujate eraldamise
teel. Neljandas peatükis lahendatakse põhivõrrandite süsteem numbriliselt. Näi-
datakse muuhulgas, et süsteemi saab hõlpsasti lahendada Maclaurini rea abil. Vi-
ies peatükk on pühendatud nanotalade võnkumise uurimisele juhul, kui nanotala
on kinnitatud elastsete tugede abil st. toed ei ole jäigad.

Kuuendas peatükis uuritakse pragudega nanotalade võnkumisi arvestades ter-
milisi mõjutusi st. temperatuuripingeid. Väitekirjas saadud tulemusi on võrrel-
dud erijuhtudel kirjandusest leitavate tulemustega ning veendutud, et väitekirjas
esitatud tulemused on heas kooskõlas teiste uurijate poolt saadud tulemustega.
Väitekirjas saadud tulemuste põhjal on avaldatud koos juhendajaga 10 teadusar-
tiklit.
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SUMMARY IN ESTONIAN

esitatakse nanotalade võnkumise võrrandid, mis arvestavad tala elementide pöörde-
inertsi. Need on Euler-Bernoulli võrrandite üldistuseks juhule, kui pöördeinertsii
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