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1. INTRODUCTION 
 
A number of basic processes in solids take place as electro-vibrational 
transitions associated with localized (impurity) centers. Examples are given by 
diffusion of defect atoms, interstitials, vacancies and self-trapped quasi-par-
ticles, photochemical reactions and electronic transitions. The latter transitions 
are responsible for the defect-induced absorption and emission of light. 

The shapes of the light absorption and emission spectra of optical centers in 
condensed matter as well as probability of other mentioned above transitions are 
determined by the interaction of valence electrons with nuclear vibrations. Due 
to the collective origin of vibrations a large number of the normal modes, 
including those of the phonon continuum, give a contribution to the spectrum. 
In the so-called basic model, when only the linear electron-phonon interaction is 
considered, all normal modes contribute independently, which allows one to 
find the spectrum for any number of normal modes. The calculation can be 
performed by applying standard methods of local vibrational dynamics. This 
model works well for vast number of systems, allowing one to explain the main 
features of the spectra. Thus it was successful for explanation of Shpol’skii 
effect [116, 117] and, in general, quasi-linear spectra [108]. 

One of the first publications of optical spectra is 1950 paper of Huang and 
Rhys [59] with quantum-mechanical calculations of the optical absorption in F-
centers1, where they considered the linear interaction of the electron with 
longitudinal optical phonons of a single frequency, resulted in a discrete 
spectrum due to multi-phonon transitions. Two years later, Lax [79] generalized 
the Huang-Rhys work to all phonon modes. He also introduced the moments of 
the absorption (and emission) band, which can be used to determine the values 
of theoretical parameters from experimental band shapes. In 1953, O’Rourke 
[97] presented a new approach to the problem of absorption of light by trapped 
electrons, the method based upon the use of the Slater sum for an oscillator 
(density matrix). By an assumption that the optical electronic transition 
accompanies a small change in the lattice vibration frequencies, he showed that 
absorption maximum shifts with temperature. In 1963, Perlin [105] published 
the review where he put together the early results of quantum-mechanical 
theory of vibronic transitions. 

If the change of spring constants in the transition is important, then one 
needs to consider the quadratic electron-phonon interaction which causes the 
mixing (rotation) of modes (Duschinsky [20] rotation). In the case of small 
molecules, where the number of the contributing modes is small, the problem 
can be explicitly solved by applying the method proposed in 1954 by Kubo and 
Toyozawa [77]. Formally the method applies the adiabatic and harmonic 
approximations; otherwise it is universal, the theory does not depend on a 
concrete model of a center being investigated, however, the equations are not 

                                                 
1  an electron trapped in a single negative ion (anion) vacancy 
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applicable directly to the systems with large number of vibrational degrees of 
freedom, since one does not know the practically working algorithms allowing 
to calculate huge number matrix elements of the high-order matrixes contained 
in the theory. At present as far as we know, there exist applications of this 
method to the case of two vibronically active modes, - the only non-trivial case, 
when the method appeared to be really efficient.  

In condensed matter, however, one has to consider the mixing of huge 
(Avogadro number) N of normal modes (phonons), which strongly complicates 
the solution of the problem. This model enables one to explain, in particular, the 
temperature shift and broadening of the zero-phonon line (ZPL). The latter 
effect is of practical importance for application of doped crystals with narrow 
and intense ZPLs in crystalline lasers and in optical memory devices. It is also 
of principal importance in the phenomena like photon echo, tunnel and other 
transitions. The chemical feature of the quadratic vibronic coupling, i.e. the 
change of the atomic bonds during electronic transition, is essential in 
consideration of photochemical and other reactions. Very important role plays 
the quadratic vibronic coupling also in diffusion and other processes where the 
hopping motion is involved: the braking and reconstitution of atomic bonds at a 
hopping have strong effect on the temperature dependence of the process [39]. 

 In the case of a weak quadratic interaction with phonons the problem can 
be solved by applying the time-ordering and cumulant expansion method. Note 
in this connection the contributions of McCumber [91] and Krivoglaz [75], 
where the first two cumulants have been considered, which have allowed to 
describe the temperature shift and temperature broadening of the zero-phonon 
line (ZPL). A few higher-order cumulants have been calculated by Hsu and 
Skinner [57, 58]. An important contribution to the problem has been given by 
Levenson [80], who has found the large time asymptotic of the Fourier 
transform with consideration of all cumulants (this asymptotic describes ZPL). 
Some useful properties of this solution have been established by Osad’ko [99]. 
A new approach has been developed by Hizhnyakov [50], based on algebraic 
relations between the Fourier transform of the spectrum and the Fourier-
amplitudes of one- and two-phonon transitions. This method was successfully 
used for description of ZPLs in the case of arbitrary quadratic coupling with 
resonant (pseudolocal) modes [51]. 

In many cases, however, especially if one is interested in electronic process 
which involves, p and d electronic states in centers of small radius, the quadratic 
part of the vibronic interaction is not weak. This especially holds for 
photochemical reactions. Also diffusion of such defects as vacancies and 
interstitials is accompanied by strong local change of chemical bonds which 
correspond to strong quadratic coupling. For a long time there was a shortage of 
practically working methods which allowed one to perform calculations of 
vibronic transitions in these cases. Recently the situation has changed: in [VI] it 
was found that, if the interaction is not weak then the problem still can be 
solved by applying the method based on the path integrals and Hubbard [63] 
and Stratonovich [121] identity, which allows one to perform numerical 
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calculations of the spectral shapes with taking into account arbitrary changes of 
atomic bonds in crystal at the electronic transition. Some results of calculation 
by this method are given below and in our publications. However, as far as we 
know no analytical solutions have been found for the cases when the change of 
the local phonon dynamics at the transition is not small. Below we present one 
such a solution.  

Note that our consideration is done for the case when electronic states are 
non-degenerate. If it not so, then one needs to take into account the Jahn-Teller 
effect. This effect often demands consideration of non-adiabatic effects, which 
may be very strong (in this connection, see e.g. the book of Perlin and 
Tsukerblat [104], where these effects are discussed). At present there exist 
numerical methods (based on the diagonalization of the vibronic Hamiltonian 
presented in the space of electronic and harmonic oscillators levels), which 
allow one to describe these effects supposing that the number of active 
vibrational mode is small. Recently in Institute of Physics, University of Tartu 
an investigation of strong non-adiabatic effects in optical spectra in case of 
phonon continuum given by an optical phonon band was performed; however 
the obtained results are not yet published. Note that zero-phonon lines in case of 
strong Jahn-Teller effect and strong psedo-Jahn-Teller effect in the final 
electronic state was studied in author’s publications [VII,VIII] and by others. 

The general plan of this work is as follows. In Sec. 2 the general theory of 
absorption line shapes is considered. The description of lattice dynamics in the 
presence of defect is given within a notion of normal modes. A thorough 
derivation of line-shape function is given with account of mode-mixing effects. 

In Sec. 3 we discuss the influence of mode mixing on optical electronic-
vibrational spectra of impurity centers. We provide model calculations for the 
case of two-mode mixing with various mixing parameters. Computer 
simulations of optical line shapes are based on common method of spectral 
estimation in time-domain with a subsequent Fourier analysis. We use Kubo-
Toyozawa method of generating function (to account the mode mixing) and the 
density-matrix method by O’Rourke.  

In Sec. 4, we apply the formal method of Fourier amplitudes for the special 
case of transitions between electronic states with different local lattice dynamics 
(in this connection see [III] and [V]). In particular, we consider the transition to 
the vicinity of a flat minimum of the potential energy in the configurational 
coordinate space. The method takes into account the phonon continuum and 
describes the behavior of zero-phonon line and phonon sideband. 

Section 5 is a generalization of quadratic vibronic interaction theory to the 
case of interaction picture representation. Using operator calculus, a numerical 
framework is developed which enables to calculate high-accuracy absorption 
line shapes by finite discretization techniques. This method (see [IV], [VI]) is 
used to calculate the spectra of multiphonon transitions caused by quadratic 
vibronic coupling with phonon continuum.  
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2. GENERAL THEORY OF ABSORPTION 
LINE SHAPES IN ADIABATIC 

APPROXIMATION 
 

2.1. Formulating of the Problem and Basic 
Assumptions 

 
We consider the optical absorption and emission spectra arising from electronic 
transition between non-degenerate electronic states of an interacting defect-
lattice system.  

In the adiabatic approximation the electrons follow the motion of the nuclei 
adiabatically2, so the motion of electrons and nuclei is treated separately. Thus, 
different Hamiltonians are used to describe phonons in different electronic 
states. 

The shape of the absorption band3 is determined by 

 ( )2( ) Av ( ) ,ab ab b aI E a M b E E Eα β α
β

α β δ= − −∑ R  (2.1) 

where Avα stands for a thermal average4 over the initial vibrational states, Σβ for 
a sum over final vibrational states, aα| 〉 and bβ| 〉  are the vibrational wave 
functions for the ground (a) and excited (b) electronic states, 

( )aba M bα β〈 | | 〉R  is the matrix element of the dipole moment electric 
operator between the electronic wave functions for the initial (a) and final (b) 
electronic states of impurity, 

 ( ) ( ) ( ) ( ) ,ab a ab ba M b M dα βα β ψ ψ∗= ∫R R R R R  (2.2) 

 ( )( ) ( , ) ( , ) ,ab a i biM e dϕ ϕ∗= ∑∫R r R r r R r  (2.3) 

The wave functions φ and ψ are the usual Born-Oppenheimer functions for the 
electrons and lattice, (R,r) are abbreviations for the nuclear and electronic 
coordinates. In general, dipole matrix element is a function of the nuclear 
coordinates. However, it suffices for many purposes to regard it as a constant 
(the Condon approximation5), for simplicity one can normalize it to unity. It 
                                                 
2  in other words, electronic states adjusts adiabatically to the slowly varying positions 
of nuclei 
3  some authors call it the (normalized) “shape function” and its Fourier transform – 
“characteristic function”. 
4  an average in canonical ensemble 
5  in Condon approximation, the probability of the optical transition is independent on 
vibronic coordinate 
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should be mentioned that if the symmetry-restricted transitions take place, this 
particular approximation is not sufficient, since the element of transition matrix 
vanishes. To obtain non-zero transition matrix, non-Condon corrections must be 
applied. In present work we consider the symmetry-allowed transitions only.  

Vibrational and electronic wave functions satisfy the following equations: 

 [ ]( ) ( ) ( ),N i i i iT V Eγ γ γψ ψ+ =R R R  (2.4) 

 [ ]( , ) ( , ) ( ) ( , ),E i i i iT U Vϕ ϕ+ =r R r R R r R  (2.5) 

where TN is the nuclear kinetic-energy operator, TE is the electronic kinetic-
energy operator, Vi(R) is the adiabatic potential in which the nuclei move, Ui 

(r,R) stands for all terms in Hamiltonian except the nuclear and electronic 
kinetic energies, Eiγ is the energy eigenvalue (the vibrational part) of the 
adiabatic Hamiltonian [10,69] and iγ stands for either aα or bβ.  

The adiabatic potential Va(R) for the ground state can be expanded in a 
Taylor series about the equilibrium position of nuclear displacements. The 
dynamics obviously are not affected by the constant term of the expansion, 
which thus can be discarded. Small displacements about the equilibrium 
position do not alter the potential energy to the first order, so that the linear term 
must be identically zero. If we retain the quadratic term neglecting all others, 
we are dealing with the harmonic approximation. Equation (2.4) for the initial 
state may be written 

2 2

2
1( ) ( ) ( ),

2 2a a nn n n a a a
nn nn

H V u u E
m uα α α αψ ψ ψ′ ′

′

⎡ ⎤∂
≡ − + =⎢ ⎥∂⎣ ⎦
∑ ∑R R Rh

 (2.6) 

or, introducing mass-dependent6 (generalized) coordinates 1 2
n nq m u=  and the 

dynamical matrix with the elements 1 2( )nn n n nnW m m V−
′ ′ ′= , the initial-state 

Hamiltonian yields 

 
2 2

2
1 .

2 2a nn n n
n nnn

H W q q
q ′ ′

′

∂
= − +

∂∑ ∑h
 (2.7) 

Potential energy is thus the quadratic form in generalized coordinates. This 
form is diagonalizable with the orthogonal7 transformation  

 n in i
i

q e x=∑ , (2.8) 

                                                 
6  or “mass-weighted” 
7  a transformation which transforms the sum of the squares of one set of coordinates 
into the sum of the other set is called an orthogonal transformation 
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where x  is the normal coordinate, n is the number of degrees of freedom of the 
system, and ie  is the normal mode eigenvector8, which satisfy the conditions of 
orthonormality and completeness: 

 ,in in nn in i n ii
i n

e e e eδ δ′ ′ ′ ′= =∑ ∑ . (2.9) 

One can also prove the inverse transformation, i in nnx e q= ∑ . Exploiting 

orthogonality, 

( )2 2

, ,
,n ik i jk j ik jk i j ij i j n

n k i j i j k i j n
q e x e x e e x x x x xδ⎛ ⎞= = = =⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑    (2.10) 

( )
2 2 2 2

2 2
, ,

ji
ik jk ij

i k j k i j i jn k i j i j k i j nn n

xx e e
x q x q x x x xq x

δ
∂⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ,  (2.11) 

one can express initial-state Hamiltonian as a collection of normal modes, that 
is 

 
2 2

2 2
2

1 .
2 2a n n

n nn
H x

x
ω∂

= − +
∂∑ ∑h

 (2.12) 

Here ωn are the frequencies of normal modes, that is the solutions of the 
eigenvalue problem 

 2 2or T
nn in i n i ii i i i ii

nn
W e e ω δ ω δ′ ′ ′ ′ ′ ′
′

= =∑ e We . (2.13) 

The adiabatic potential in the final state differs from that in the initial state. 
Thus, we may expand the Hamiltonian for the final state (b) in the normal mode 
coordinates for the initial state 

 ,b aH H V= +  (2.14) 

where interaction Hamiltonian can be written in generalized coordinates as 

 0 0
1 1 ,
2 2

T
n n nn n n

n nn
V a q b q q V aq q bqω ′ ′

′
= + + ≡ + +∑ ∑h  (2.15) 

or, according to (2.8), in normal coordinates as 

 0
1 ,
2i i ii i i

i ii
V a x b x xω ′ ′

′
= + +∑ ∑h  (2.16) 

                                                 
8  Other definitions used are the displacement vector or the polarization vector. It 
should be noted that within the harmonic approximation the displacement vector is 
independent of the mode amplitude. 
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 ; .i n in ii nn in i n
n nn

a a e b b e e′ ′ ′ ′
′

= =∑ ∑  (2.17) 

Here ω0 is the frequency of a pure electronic transition, a, b are vector and 
tensor parameters of the electron-phonon interaction (the phenomenological 
constants) and q is the configurational coordinate vector depending on the 
normal coordinates as follows: 

 ( )1 2 0 2 0,j j k k k k k
j k k

q e x e y y e y q= = − = −∑ ∑ ∑  (2.18) 

The excited-state Hamiltonian is also composed of N normal modes, but with 
different coordinate, momenta and displacements, 

 
2 2

2 2
02

1 ,
2 2b k k

k kk
H y

y
ω∂

= − + Ω +
∂∑ ∑h

 (2.19) 

the exact expression for 0ω  will be given further in the text. Here we have fully 
neglected anharmonic effects. If these effects are small then anharmonic 
corrections can be found by applying temperature-ordered expansion. Small 
anharmonic effects, which result in broadening and shift of vibronic lines in the 
spectra have been considered by Krivoglaz [75], Hizhnyakov [52], and also by 
Lubchenko [83]. 
 
 

2.2. Mode Mixing 
 
One can establish the correspondence between coordinates of vibrational modes 
in initial and final states. The final-state normal coordinates can be regarded as 
transformed initial-state coordinates; mathematically this can be accomplished 
by an orthogonal transformation (rotation in a space of normal coordinates)  

 00

0 0

0

0

( )
, ,

( )

k jk k j jk kj j

j jk k k jk k jk k

ky S x x S y

x S y y y x

x y x y
x y xS

⎧ == + ≡ +

=

+⎧⎪
⎨ ⎨ = −− ≡ − ⎩⎪⎩

∑ ∑
∑ ∑

S
S

 (2.20) 

where x0, y0 are the vectors of relative displacements of corresponding 
coordinates and S is the orthogonal Duschinsky rotation [20] matrix with the 
elements [55] 

 ( ) 12 2
1 2 ,jk j k k jS be e ω

−
= Ω −  (2.21) 

1 je  and 2ke  are the components of the vector q in the space of normal 
coordinates, which satisfy the conditions 
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 2 2
2 1 1 2, 1k jk j j k

j j k
e S e e e= = =∑ ∑ ∑ . (2.22) 

Inserting (2.21) into (2.22) yields  

 
2
1 2

1 2 2
j k

jk j
j j k j

e e
S e b

ω
=

Ω −∑ ∑ . (2.23) 

Hence it follows that 

 
2 2
1 12

2 2 2 2 .j k

j kk j k j

e e b
ω ω

−= =
Ω − Ω −∑ ∑  (2.24) 

Relative displacements can be written as the functions of electron-phonon 
interaction parameters: 

 ( ) 2 2
0 0 1 0 2, .j j j k k kx a bq e y aeω− −= − = Ω  (2.25) 

 
 

2.3. Normal Modes as Harmonic Oscillators 
 
To gain insight into the properties of solids that are due to lattice vibrations, the 
quantum mechanics of harmonic oscillators has to be recalled. Imposing the 
requirement of square integrability9, the eigenvalues of Hamiltonian are 
expressed in terms of the Hermite polynomials. Written in normal coordinates 
(hereafter we use atomic units 1ee m= = =h ), the eigenfunctions normalized 
to unity are 

 ( ) ( ) ( ) 21 21 4 1 2 2( ) 2 ! ,n x
n nx n H x e ωψ ω π ω

− −=  (2.26) 

and the energy eigenvalue of the state of quantum number n is 

 ( )1 2 .n nε ω= +  (2.27) 

The wavefunction of the ground state is a Gaussian of finite width, 

 ( )
21 4 2

0( ) .xx e ωψ ω π −=  (2.28) 

The solution of the eigenvalue problem is determined in terms of the Hermitian 
operators of position and momentum, which satisfy canonical commutation 
relations. An easier alternative is offered by writing the Hamiltonian in terms of 
the non-Hermitian operator 

                                                 
9  the wavefunction vanishes sufficiently rapidly at infinity 
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 ( ) ( )1 2 12a x ipω ω−= +  (2.29) 

and its adjoint. Using the new operators, x and p are expressed as 

 ( ) ( )1 2 † 1 2 †(2 ) , (2 ) .dx a a p i a a
dx

ω ω− −= + ≡ − = −  (2.30) 

Making use of the canonical commutation relation between position and 
momentum operators, it is immediately established that †[ , ] 1a a = .  

According to (2.20), the normal coordinates can be expressed as 

 1 2 † 1 2 †
0(2 ) ( ) (2 ) ( ),j j j j j jk k k kkx a a x c A Aω − −= + = − + Ω +∑  (2.31) 

 1 2 † 1 2 †
0(2 ) ( ) (2 ) ( ),k k k k k jk j k kj

y A A y c a aω− −= Ω + = + +∑  (2.32) 

where 

( ) ( ) ( )1 21 2 †
0( 2) 1 2 ,j j j jk j k j k k j k kk

a x c A Aω ω ω ω− ⎡ ⎤= − + Ω +Ω + −Ω⎣ ⎦∑  (2.33) 

( ) ( ) ( )1 21 2 †
0( 2) 1 2 ,k k k jk j k j k j k j jk

A y c a aω ω ω− ⎡ ⎤= Ω + Ω +Ω + Ω −⎣ ⎦∑ (2.34) 

and corresponding (adjoint) raising operators are obtained by Hermitian 
conjugation. These equations take into account the mixing of the normal 
coordinates when the electronic transition occurs. Then Hamiltonians of the 
initial and final states acquire the form 

 ( )† 1 2 ,a j j jjH a aω= +∑  (2.35) 

 ( )†
0 1 2 ,b k k kkH A Aω= + Ω +∑  (2.36) 

where †,a a  (and their alter-egos for the excited state) are the annihilation and 
creation operators. The corresponding formalism is known as secondary 
quantization. 
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2.4. Fourier Analysis of Optical Spectra 
 
Introducing the integral (spectral) representation of Dirac’s delta function 

 
1( ) ,

2
i te dtωδ ω

π

∞

−∞

= ∫  

and replacing energies by the corresponding Hamiltonian operators Ha and Hb in 
order to permit the closure sum over final vibrational states, the expression for 
the absorption function (2.1) reduces to  

 ( )01( ) ( ) ,
2

i t
ab abI e g t dtω ωω

π

∞
− −

−∞

= ∫  (2.37) 

with characteristic function 

( ) Av Av .b a b aiH t iH t iH t iH t
abg t a b b e e a a e e aα αβ

α β β α α α− −= =∑   (2.38) 

One can perform the Boltzmann averaging by inserting an exponential factor 
/aH kTe− , and the previous expression written in terms of traces becomes 

 / /( ) .b a a aiH t H t H kT H kT
abg t Tr e e e Tr e− − −⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦  (2.39) 

Hereafter we omit subscripts for simplicity and make a replacement for distinct 
electronic states. Thus our concern is to calculate the spectral function 

 ( )0 01( ) ( ) ,
2

i t tI e g t dtω ω γω
π

∞
− − −

−∞

= ∫  (2.40) 

where  

 2 1( ) Av iH t iH tg t e e−⎡ ⎤= ⎣ ⎦ , (2.41) 

H2 stands for the excited state Hamiltonian, H1 for the ground state 
Hamiltonian, and we introduced the damping factor γ0 for the natural line width 
( 1

02τ γ=  is radiation lifetime). 
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3. EFFECTS OF MODE MIXING:  
A DENSITY MATRIX APPROACH 

 
In this chapter we apply a formal density matrix framework to a selected 
problem of the optical spectroscopy of solids (with impurities); namely, 
influence of the mode mixing on electronic-vibrational spectra with arbitrary 
electron-lattice coupling parameters. We consider exact account of two-mode 
mixing in the case of zero temperature as well as finite temperatures.  
 
 

3.1. Slater Sum of Harmonic Oscillators 
 
From Eq.(2.41) it follows that the characteristic function is the average of two 
exponential operators. Statistical average (with Boltzmann factor, for the single 
state n) can be written by the means of traces algebra as follows: 

( )2 1 2 1 2 1 1

2

1

( 1 )1

Av

n

itH itH itH itH itH itH H kT
n

it kT EitH
n

e e Tr e e Z n e e e n

Z n e n e

ρ− − − −−

− +−

⎡ ⎤ = = =⎣ ⎦

=

∑
∑

 (3.1) 

When the adiabatic and Condon approximations are made and the system is 
described by normal modes with Hamiltonian (2.12), the characteristic function 
reads 

1
1

2

, 1 1

1

( 1 2) ( ) ( 1 2)( )

,

j j j

N
j j j j jj j j

N N

j j
m n j j n

N

j
j

n it m n ng t e bm an e

g

βω ω βω=

−
⎡ ⎤⎣ ⎦

= =

=

− + − − − +⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

∑∑ ∏ ∏∑

∏

 (3.2) 

where 

 

2( 1 2) ( 1 2)1

,

1 ( , ; ) ( , ; ),

j j j j

j j

m n
j j j j

m n

j j j j j j j

g Z e bm an

Z dxdx x x x x

µω λω

ρ µω ρ λω

− + − +−

−

= =

′ ′ ′=

∑

∫∫
 (3.3) 

 1( ) , , ,kT it itβ µ λ β−= = − = +  (3.4) 

and off-diagonal generalization of the Slater sum ( , ; )x xρ β′  has been used, 
namely 

1 2
2 2( , ; ) exp ( ) tanh ( ) coth .

2 sinh( ) 4 2 2
x x x x x xω ω ηω ηωρ ηω

π ηω
⎧ ⎫⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′= − + + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎩ ⎭

 (3.5) 
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Depending on context, the last expression can define the canonical density 
matrix or the Feynman propagator. In expressions above, the partition function 
yields 

 ( )
1( 1 2)1

/2
1 2sinh 2 .

j
j j

j
j

n
j j

n

eZ e
e

βω
βω

βω βω
−−− +−

−
−⎛ ⎞= = =

⎜ ⎟
⎝ ⎠
∑  (3.6) 

 
 
3.2. Absorption Spectrum of Two Vibrational Modes 
 
Consider the system described by two normal coordinates. Then Hamiltonians 
of the system in the initial (1) and final (2) states is given by quadratic forms in 
the normal coordinates 

 
2 2

2 2 2 2
1 2

1 1

1 1,
2 2n n n n

n n
H T x H T yω

= =

= + = + Ω∑ ∑ , (3.7) 

where T is the kinetic energy of the nuclear motion, (x,y) are normal mode 
coordinates and (ω,Ω) are the frequencies corresponding to the normal modes. 
The normal coordinates are related by the orthogonal transformation (which is a 
simple coordinate rotation in a plane plus arbitrary linear shift): 

2
011 1

0 0
2 2 02 1

cos sin
, ,

sin cos k nk n k
n

yy x
y S x y y x y

y x y
ϕ ϕ
ϕ ϕ =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= + = + = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ S . (3.8) 

Here φ is the rotation angle (mixing parameter) and y0, x0 are the linear 
translation vectors. In order to decouple the normal coordinates, one should 
diagonalize the rotation matrix. By orthogonality ( 1T −=S S ), it follows that 

 1 1
0 0

Tx y y y x− −= − ≡ +S S S , (3.9) 

 0 0 0 0
Tx y y x= − ⇔ = −S S . (3.10) 

One can introduce a shorter notation for used hyperbolic functions, such as 

sinh( ), cosh( ), sinh( ), cosh( ),j j j j j j j js c S Cλω λω µ µ= = = Ω = Ω  (3.11) 

and recall the identity 

 
1sinh cosh 1tanh coth .

2 cosh 1 sinh 2
z z z z

z z

−− ⎛ ⎞= = ≡ ⎜ ⎟
+ ⎝ ⎠

 (3.12) 

At this point, the preparation process is complete and one can proceed the direct 
calculation. The single-coordinate characteristic function (3.3) reads 
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 ( ) ( )
( ) ( )2 22 2

1

1 21

2 /22 /2

( , ; ) ( , ; )

sinh 2

j j j j j j jj j j j j j j

j j j j j j j j j j

j j j j j

j j
x x c x x sy y C y y S

g Z dx dx y y x x

S s

dx dx e e
ω

ρ µ ρ λω

π βω ω

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− + −′ ′− + − Ω′ ′

′ ′ ′= Ω =

= Ω ×

′×

∫∫

∫∫

 (3.13) 

Making use of coordinate transformation (3.8), excited-state coordinates (y) can 
be written as the functions of the ground-state coordinates (x). In such a case the 
two-mode characteristic function is a quadratic form in y-coordinates. 
Introducing a new set of variables, one can transform the quadratic form in 
(3.13) into a form in which there is no cross-product terms10. Changing the basis 
with a new coordinate system, 

 ( ) ( ) ( ) ( )1 2 1 22 , 2 , 1,2,j j j j j jz x x z x x j− −′ ′ ′= + = − =  (3.14) 

the quadratic form in the exponential of the characteristic function becomes 
decoupled in primed and unprimed normal mode coordinates. It follows that 

( ) ( ) ( ) 2 1 2 1
1 01 1 1 2 02 2 2

1 2
2 1 2 1 21 1

1 22 2
1 2 1 2

( 1) ( 1)

1 1
2 2

sinh sinh

T T

y C S y C Sg t e
S S s s

d e d e

ωωπ βω βω
− −

− +

− −Ω − −Ω −

− + − ′ ′

⎛ ⎞Ω Ω
= ×⎜ ⎟

⎝ ⎠

′×∫ ∫
z A z b z A z

z z

   (3.15) 

with 
2 1 2 1 1

11 1 1 1 2 2 2 1 1 1
2 1 2 1 1

11 12 22 1 1 1 2 2 2 2 2 2
1

21 22 12 1 1 1
1

21 2 2 2

cos ( 1) sin ( 1) ( 1)

sin ( 1) cos ( 1) ( 1)
,

sin 2 ( 1)

sin 2 ( 1)

a C S C S c s

a a a C S C S c s
a a a C S

a C S

ϕ ϕ ω

ϕ ϕ ω

ϕ

ϕ

− − −

− − −

−

−

⎧ = Ω +Ω +
⎪

= Ω +Ω +⎛ ⎞ ⎪
= ⎨⎜ ⎟

= Ω⎝ ⎠ ⎪
⎪ = −Ω⎩

Am

m m m

m m m

m

m

, (3.16) 

 ( )
( )

1 1
1 1 01 1 1 2 02 2 21

1 1
2 2 1 01 1 1 2 02 2 2

2 cos ( 1) sin ( 1)
, where

2 sin ( 1) cos ( 1)

b y C S y C Sb
b b y C S y C S

ϕ ϕ

ϕ ϕ

− −

− −

⎧ = Ω − −Ω −⎛ ⎞ ⎪= ⎨⎜ ⎟
= Ω − +Ω −⎝ ⎠ ⎪⎩

b , (3.17) 

and y0 defined in (3.10). Integrals in (3.15) are well-known Gaussian integrals, 

( ) ( )
11 1 1

1 2 1 22 2 22 det , 2 det
T T T

d e e d eπ π
−
− ′ ′− + −− −

− +′= =∫ ∫
z Az b b A b z Az

z A z A . (3.18) 

One can use the following rule for calculating an inverse matrix, 

 
2 2

1 22 1 12 21 1 2 11 2

11 22 12 21

( ) .T a b a a b b a b
a a a a

− − + +
=

−
b A b  (3.19) 

                                                 
10  known as canonical form 
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Thus, in case of averaging over Boltzmann’s ensemble and two-mode mixing, 
the characteristic function equals 

 
( ) ( ) ( )

( )
11 2 1 2 1

1 01 1 1 2 02 2 22

1 2 1 1
1 22 21 2 1 2

1 2
1 2 1 2

( 1) ( 1)

sinh sinh
4

det det

.
T y C S y C S

g t
S S s s

e e

βω βωω ω

−
−

− −

− +

− −Ω − −Ω −

⎛ ⎞Ω Ω
= ×⎜ ⎟

⎝ ⎠

× b A b

A A  (3.20) 

 
 

3.3. Low Temperature Limit 
One may consider the special case of Boltzmann’s averaging over canonical 
ensemble, when all the phonons are in the ground state (the case of T=0). The 
characteristic function (3.2) yields  

 
2 2

/2
0 0 00

1 1
( ) ( ) ( ) ( , ; ) ,jit

j j j j j j j jT
j j

g t dy dy e x x y y gω ψ ψ ρ µ− ∗
=

= =

′ ′ ′= Ω =∏ ∏∫∫  (3.21) 

where 0( )xψ  is the harmonic oscillator eigenfunction for the ground state, 
defined in (2.28), and integration is performed over excited-state coordinates 
(y). Using definitions above,  

 ( )2 22 2
1 2

/21
0

2 /2( ) /2 .
2

j j j j j j j jj j jitj j
j j j

j

y y C y y Sx xg e dy dy e e
S

ω ωω
π

⎡ ⎤
−− ⎢ ⎥⎣ ⎦

− + − Ω′ ′− + ′⎛ ⎞Ω
′= ⎜ ⎟⎜ ⎟

⎝ ⎠
∫∫  (3.22) 

Unwrapping x’s in terms of y’s and introducing coordinate transformation 

 ( ) ( ) ( ) ( )1 2 1 22 , 2 , 1,2,j j j j j jz y y z y y j− −′ ′ ′= + = − =  (3.23) 

one has decoupled quadratic form in the exponent of characteristic function, 
namely 

2 2
1 01 2 021 2

1 2
( )( )/22 1 2 1 2

0
1 2

1 1
2 2( )

4

T T
x xit

Tg t e e d e d e
S S

ω ωω ωω ωπ − +− +− +−
=

− + −⎛ ⎞Ω Ω ′= ⎜ ⎟
⎝ ⎠

∫ ∫
z A z b z A z

z z ,  (3.24) 

where11 

                                                 
11  note that matrices defined here are different from those have been used concerning 
the finite temperatures 
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2 2 1
11 1 2 1 1 1

2 2 1
11 12 22 1 2 2 2 2

21 22 12 2

21 1

cos sin ( 1)

sin cos ( 1), where
sin 2
sin 2

a C S
a a a C S
a a a

a

ω ϕ ω ϕ

ω ϕ ω ϕ
ω ϕ
ω ϕ

−

−

⎧ = + +Ω
⎪

⎛ ⎞ ⎪ = + +Ω= ⎨⎜ ⎟
=⎝ ⎠ ⎪

⎪ = −⎩

Am

m

m , (3.25) 

 ( )
( )

1 1 01 2 021

2 2 1 01 2 02

2 cos sin
, where

2 sin cos

b x xb
b b x x

ω ϕ ω ϕ

ω ϕ ω ϕ

⎧ = − +⎛ ⎞ ⎪= ⎨⎜ ⎟
= − − +⎝ ⎠ ⎪⎩

b . (3.26) 

In case of zero temperature and two-mode mixing, the characteristic function 
equals 

1 2 2
1 01 2 021 2

1
2

1 2
( )( )/21 2 1 2

0
1 2

( ) 2 .
det det

T x xit
Tg t e e e

S S
ω ωω ωω ω −

− − +− +
=

− +

−⎛ ⎞Ω Ω
= ⎜ ⎟

⎝ ⎠

b A b

A A
  (3.27) 

 
 

3.4. Numerical Study of Duschinsky  
Rotation Effects 

 
The effects of mode mixing can be illustrated by direct calculation of the line 
shape functions defined in (2.40). For the given parameters, characteristic 
functions have been calculated with subsequent Fourier transform. One can 
easily see that even in the case of zero temperature the mixing parameter 
significantly affects the optical spectra. On Figure 3.1 the dependence of the 
absorption line-shape on the sign an absolute value of mixing parameter is 
given12, when frequency shift is relatively small. Further investigation of the 
detailed structure of the spectra shows that depending on the Duschinsky 
rotation angle, resulted spectra may contain whether single-, multi-phonon, or 
even phononless transitions with a given (excited-state) frequency. In other 
words, the structure of the spectrum is defined by a linear combination of 
vibrational frequencies of the excited state. 
 

                                                 
12  In present thesis, the X-axis represents dimensionless frequencies; the Y-axis 
represents spectral intensity (also dimensionless). In some cases of multiple plots in the 
figure, X-values should be treated as relative frequencies rather than absolute. 
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Figure 3.1 Absorption line shape dependence on the value of Duschinsky rotation angle  
(ω1=1.0, Ω1=1.38, ω2=0.9, Ω2=0.93, φ=−45º/0/45º, x0=(5.0,3.0)). Lower set  
of images illustrates the detailed structure of corresponding curves.  
 
The structure of the line shapes is also affected by the linear translation para-
meter. If the normal coordinates are not shifted from equilibrium site (the 
corresponding translation vector has zero length), the corresponding frequency 
does not manifest in the spectrum.  

There is plenty of line shape one can obtain by setting different interaction 
parameters. In the case when there is no frequency change in the transition, the 
line-shape is essentially non-Gaussian (see Fig 3.2a) due to the presence of 
mode mixing. 

Rising temperature remarkably affects both spectral lines and spectrum 
width. The higher the temperature, the more likely become transitions with 
annihilation of phonons. The number of lines rapidly grows and so does their 
density. High enough temperature populates anti-Stokes region of spectrum as 
well. The mode mixing also affects essentially the absorption and fluorescence 
profiles. A strong mixing remarkably violates the mirror symmetry of these 
spectra (see Fig 3.2b). 
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Figure 3.2 Simulated optical spectra: (a) case of pure mode mixing (ω1= Ω1=3.0, ω2= 
Ω2=1.0, φ=−45º, x0=(5.0,2.0)); (b) symmetry violation by the mode mixing (ω1=1.0, 
Ω1=1.38, ω2=0.9, Ω2=0.93, φ=45º, x0=(5.0,3.0). 
 
The framework presented in this section is applicable when standard spectral 
methods do not give desirable results. However, it is limited to the cases of a 
small number of vibrational coordinates. There is plenty of models where one 
has to deal with the whole continuum of modes, like impurity centre of small 
radii, molecules trapped in liquid helium droplets and many others. To do so, 
one needs another theory, more suitable for description of such cases. An 
attempt to extend the framework is provided in the next section. 
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4. LOCAL PHONON DYNAMICS:  
THE METHOD OF FOURIER AMPLITUDES 

 
4.1. Approximation of Soft Dynamics 

 
One can obtain an analytical solution also in the case the vibronic transition 
takes place between states with different local phonon dynamics and with strong 
mixing of modes of phonon continuum. Here we have in mind the case (studied 
in [III]) when phonon dynamics in the final state is changed so strongly that the 
mean phonon frequencies in this state become much smaller than in the initial 
state and the main contribution to the spectrum is due to the continuum of the 
low-frequency pseudo-local vibration which exists in the final state but does not 
appear in the initial state. The main attention is paid to the shape of the phonon 
sideband of the zero-phonon line. Only the zero temperature case is considered.  

The solution is based on the phonon operator transformation method 
introduced by Hizhnyakov [50]. This method allows one to obtain exact 
equation for one and two-phonon Fourier amplitudes of the vibronic transition. 
Note that these amplitudes determine the entire Fourier transform of the 
vibronic transition. Previously this method was used for investigation of the 
effect of mode mixing in the resonant Raman scattering. In the present work it 
shown that the set of N-equations (N ~ Avogadro's number) for the one and 
two-phonon amplitudes in the case of the vibronic transition between states with 
hard and soft phonon dynamics can be reduced to a few closed equations that 
can be solved explicitly. 

One of the reasons for the theoretical investigation of the effect of the soft 
phonon dynamics in optical spectra is a strong sensitivity of latter in the vicinity 
of the pure electronic transition on the vibronic interaction with low-frequency 
phonons. An enhancement of the vibronic interaction results in increase of this 
part of the optical spectrum. There exist some experimental facts, where such an 
enhancement was actually observed. We have in mind here the so called λ-
shaped spectra, where one does not see the zero-phonon line at all; instead one 
observes jump-like appearance of the spectral intensity of the type 

0( ) ( )Fθ ω ω ω− , where ω0 is the resonant frequency, θ is the Heaviside step 
function and ( )F ω  smoothly decreases with ω. Such spectra have been 
observed e.g. in glasses [73] and in droplets of superfluid 4He with Na2 and Na3 
complexes attached to the surface of the droplet [86]. 

Another reason is the importance of this problem for understanding the role 
of the lattice fluctuations in the phase transitions. Indeed, one of the commonly 
accepted models of the second order phase transitions supposes the existence of 
the soft phonon mode(s), the frequency(es) of which gets to zero (or almost to 
zero) at the phase transition. Thereat the transition often takes place as a series 
of the mesoscopic phase transitions near defects. Some of these transitions can 
occur at low temperatures. Applying of already rather moderate hydrostatic 
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pressure to these crystals allows one to change essentially the transition 
temperature, sometimes to shift the temperature even to T ≤ 0. In this case the 
pressure allows one to substantially reduce the local elastic springs in crystals. 
For the problem under consideration it is significant that the local softening of 
the lattice near the optical center may take place first for one of the electronic 
states of the center, and then also for another state (at higher pressure). This 
allows one to carry out the experimental investigation of the system with 
different optical transitions between electronic states with soft phonon 
dynamics.  

Besides the optical spectra, the problem of quadratic vibronic interaction is 
also important for chemical reactions and diffusion. Thus, for example, a 
vacancy causes strong local softening of the lattice, as a result a low-frequency 
quasilocal mode(s) appears. In a simple cubic lattice this mode has Eg 
symmetry, in bcc lattice the symmetry is T1g. Therefore the vacancy jump can 
be described as a vibronic transition determined by the soft phonon dynamics 
[39]. 
 
 

4.2. Debye’s Model 
 
The Debye theory approximates the frequency distribution by using the low 
frequency distribution for all frequencies, cutting it off at a value chosen to give 
the correct total number of frequencies. This model gives a correct description 
of the phonon spectrum in the low-frequency limit, when the initial state is free 
of quasi-local vibrations. It is supposed here that due to strong quadratic 
vibronic coupling leading to the reduction of local elastic springs, in the final 
(excited) state such vibrations take place, and one should consider another 
model having the phonon density peak. 

In Debye model of acoustic continuum modes the configurational coordinate 
is of the order of ω, that is a difference in displacements of configurational 
coordinates. The corresponding density of states ~ ω2, since it always contains 
squared coordinate (from correlation function)  

Let us denote ρi(ω) the local density of states (LDOS), which corresponds to 
the configurational coordinate q (index i stands for either initial (1) or final (2) 
electronic state): 

 ( ) ( )2 1,2.i ij ijj
e iρ ω δ ω ω= − =∑  (4.1) 

Considering low-frequency part of phonon spectrum, one can introduce the 
approximation 4( ) Aρ ω ω∝ . Here an additional ω2-factor arises from the 
definition of configurational coordinate as the displacement of adjacent atoms. 
The normalization constant is obtained from the definition of Debye cutoff 
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frequency, which we normalize to unity. Thus, in the initial state, ( ) 4
1 5ρ ω ω=  

and normalization yields  

 
1 4

10 0
( ) 5 1.D d d

ω
ρ ω ω ω ω= =∫ ∫  (4.2) 

We can use integral instead of sum, 

 
12 1 1

1 10
( ) 5 4j jj

e dω ρ ω ω ω− −= =∑ ∫  (4.3) 

From the well-known relation between the local density of states and Green’s 
function (see Maradudin et al. [88]),  

 ( ) ( )12 Im ,Gρ ω ωπ ω−=  (4.4) 

one can calculate the excited-state LDOS using the Green’s function method. 
For the ground state, the dynamical Green’s function in the spectral 
representation yields 

 
( )1 3

2 31
1 2 2

0

1 1( ) 5 ln .
3 2 1 2

dG iρ ω ω ω ω πω ω ω
ωω ω

⎡ ⎤′ ′ +
= = − + − −⎢ ⎥′ −− ⎣ ⎦
∫  (4.5) 

The excited-state Green’s function follows from the Dyson equation, 

( ) ( )( ) 21 1
2 1 1 1 1 1(1 ) 1 1 Re Im 1G G bG b b G i G bGω −− − ⎡ ⎤≡ − = − + − − −⎣ ⎦  (4.6) 
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Figure 4.1. Imaginary part of Green's function. Drawing (a) corresponds to non-
perturbed Green’s function (for the initial state); drawing (b) stands for the final-state 
Green’s function with the following values of quadratic vibronic interaction parameter: 
1 – b=–0.01, 2 – b=–0.1, 3 – b=–0.3, 4 – b=–0.4, 5 – b=–0.5 
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Imaginary parts of Green’s functions are presented in Figure 4.1. One can see 
that in the case of small 0b b− , where 0 0.6b = − , the low-frequency peak 
(called pseudo-local mode) appears in the 2ImG -distribution. By inserting the 
imaginary part of (4.5) into (4.6) and (4.4), one gets 

 

12 2 6
4 2 3

2
5 1 1( ) ln ,
9 2 1 4

ω π ωρ ω ω α ω ω
ω

−
⎛ ⎞+⎡ ⎤= + − +⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

 (4.7) 

where ( ) ( )15 1 3bα −= + . This density function (4.7) is not normalized, but 
still acceptable in Debye’s model for the case of small frequencies. 
In present approach the difference of Green's functions in initial and final 
electronic states is the origin of the mirror symmetry violation between the 
emission and the absorption spectra. 
 
 

4.3. Derivation of Phonon Amplitudes 
 
At zero temperature (T=0) all particles occupy the ground state (of lowest 
energy). One can define the state of lowest energy by 1 0 0H =  and normalize 

it to 0 0 1= . Then 2 1 2itH itH itHe e e= and characteristic function (2.41) 
acquires the form 

 ( ) 20 0itHg t e= .  (4.8) 

Taking a derivative of g with respect to time,  

 
( ) 2 2 2 21

0 0 2

0 0 1 2

0 0 0 0 0 0
.

itH itH itHig t e V g a e q b e q
g a g bg

ω
ω

′− = = + + =

≡ + +
 (4.9) 

Introducing phonon operators, configurational coordinates (2.18) are linear 
functions in normal coordinates (2.32), that is functions of creation and 
annihilation operators. Using properties of ladder operators  

 † † † † †0 0, 0 0, ( )( ) 0 ,j j j j j j jj j ja a a a a a a aδ′ ′ ′ ′= = + + = +  (4.10) 

one gets 

 2 21 2 †
1 10 0 (2 ) 0 0itH itH

j j jj
g e q e e aω −≡ = ∑ , (4.11) 

2 22 2 1 1 2 † †1 1 1
2 1 1 12 4 4 ( ) .0 0 0 0itH itH

j j j j j j j jj jj
g e q e g e e e a aω ω ω− −

′ ′ ′′
≡ = +∑ ∑  (4.12) 
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In order to calculate terms g1 and g2 (we refer them as phonon amplitudes), one 
can introduce the following time-dependent function 

 2
2 0( ) , ( ), (0),kitn

n k k n n n nkt e e tϕ ϕ ϕ ϕ ϕΩ−≡ Ω ≡ ≡∑  (4.13) 

to express the solution of Eq. (4.8) in terms of few integrable functions. To 
accommodate the mode mixing, we first express phonon amplitudes in the 
excited-state phonon operators and then isolate the solution by recalling the 
ground-state phonon operators. 
 
I. Derivation of g1. 
Let us first calculate matrix elements containing single-phonon operators. From 
(4.11), (4.10), (2.31) and (2.20), it follows that  
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∑
∑

  (4.14) 

Using (2.34) and (2.21) 
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∑

∑

 (4.15) 

Inserting (4.15) into (4.14), expanding 2
0 0 2k k ky a e −= Ω , using definition for 

(4.13) and the soft dynamics approximation 1 1( )k j jω ω− −Ω + ≈ , one gets 
immediately 

 
[ ] [ ]{ }

2

1 2 2 0 1 1 1

1 1 2 †
1 1

1 ( ) (0) ( ) (0) ,
2

(2 ) 0 0 ,itH
j j j jj

g t a g t bg

g e e a

ϕ ϕ ϕ ϕ

ω ω− −

≅ − + +

≡∑

%

%
 (4.16) 

where 1g%  resembles 1g  in (4.11) except an additional jω  factor in deno-

minator. In a case of 1g%  one has to calculate sums 1
1 j jk jj

e S ω−∑  in contrast to 

1 2j jk kj e S e=∑  for 1g . This can be accomplished by explicitly calculating 

principal value of corresponding integral (see remark below). 
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 Remark: Calculation of spectral poles. 
An essential part of soft dynamics approximation is calculation of the sums 
containing ground-state frequencies and resolvent 2 2 1( )k jω −Ω − . In the case of 
non-zero parameter of quadratic vibronic interaction, two discrete sets of 
frequencies appear below Debye cut-off, whilst the excited-state frequencies are 
set out between the ground-state frequencies. As far as frequencies do not 
coincide, the sum does not contain any pole unlike the integral. Thus one needs 
to calculate a principal value of the integral to account all terms in the sum.  
Let us denote F(ω) the function of ground-state frequencies. Then 

 ( )
21

1 1
2 2 2 2

0

( ) ( )
,j j j

k k
j k j k

F e F e
F d

i
ω ω

β ω
ω ω επ

= Ω +℘
Ω − Ω − −∑ ∫  (4.17) 

where 0ε →  and its sign is determined by the requirement of imaginary part 
of integral in (4.17) to be negative. The first term is contribution of spectral 
poles ( )j kω = Ω  and parameter kβ  is defined by the condition (2.24), which 

corresponds to the case of ( ) ( ) ( ) 1j kF F Fω ω= Ω = = . Thus  

 
2 1 2
1 11

2 2 2 2
0

( ) ,j
k

j k j k

e e d bωβ ω
ω ω

−= +℘ ≡
Ω − Ω −∑ ∫  (4.18) 

and since the local density of states (in present model) is 
( ) 2 4

1 1 ( ) 5eρ ω ω ω= = , the parameter kβ  becomes 
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⎛ ⎞= −℘ = + ℘ + =⎜ ⎟+Ω −ΩΩ − ⎝ ⎠

= + Ω

∫ ∫  (4.19) 

{end of remark}  
From (2.21), (2.22) 

 ( )
2

1 1
2 2 2 .j jk j

k
jj j j k j

e S e
e b

ω ω ω
=

Ω −
∑ ∑  (4.20) 

On the other hand, using (4.17) one gets (in accordance with notation in the 
previous remark, 1( )F ω ω−= ) 

 ( )
1 2 1

1 1 2 1
1 2 2 2

0

( )1 Re ( ) .j jk k
k k

j kj k

e S e eb b G e b dω ω ω
ω ω

−
−= − Ω + ℘

Ω Ω −∑ ∫  (4.21) 

Principal value integral yields 
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ω ω
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Hence it follows that 
3 2

1 2 22 2
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5 1 1 1 5ln 1 ln .
5 3 2 1 2 1

j jk k k k k k
k k

j k kj k

e S be be
bω
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∑    (4.23) 

Assuming in approximation that excited-state frequencies are negligibly small 
quantities, one can neglect such frequencies and their powers, 

 1 25 1 1 .
5 3 2

j jk k k

j kj

e S be
bω

Ω⎛ ⎞≈ + −⎜ ⎟Ω ⎝ ⎠∑  (4.24) 

Near critical point, 0 3 5b b≈ = −  and 1
1 23 2j jk j kj

e S eω− ≈∑ . Using this 

result, one can obtain expression for 1g% . It follows that 

 [ ] [ ]{ }1 2 20 0 1 10 1
3 .
4

g a g bgϕ ϕ ϕ ϕ≅ − + +% %  (4.25) 

Taking into account both (4.25) and (4.16), the single-phonon amplitude in the 
case of 0.6b ≈ −  yields 
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 (4.26) 

 
II. Derivation of g2. 
One can obtain the expression for the two-phonon amplitude in the same 
manner as the single-phonon one. Taking the same steps and using (4.12) and 
(4.3) , one gets 
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4.4. Calculation of Spectra: Numerical Study 
 
The spectra have been calculated using the following expression  

 ( ) ( )1 .
2

i t tG g t e dtω γω
π

∞
− −

−∞

= ∫  (4.28) 

Characteristic function is found as a solution of differential equation 

 ( )0 1 2( ) ( )g t i K K g tω′ = + + , (4.29) 

where function D(t) yields from (4.9), (4.26)–(4.27). One can chose the zero-
point energy to be the origin of our coordinate system by taking 0ω = . Then 

 [ ]1 2( ) exp ( ) ( ) ,
t

o

g t i K K dτ τ τ
⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭
∫  (4.30) 

where φ-functions (4.13) are evaluated by integrating over frequencies. Taking 
into account that 2

2 2( ) ( )e ω ρ ω=  and explicit definition (4.7), one gets 

 
1

2

0

( )( ) ,it
n nt e dωρ ωϕ ω

ω
= ∫  (4.31) 

We performed numerical calculation of optical transitions spectra to the 
electronic state characterized by soft dynamics in the final state for the different 
values of coupling parameters. Two series of the calculations of spectra are 
presented: the series for fixed value of the linear coupling parameter a but 
slightly different values of the parameter b of quadratic vibronic coupling, all 
close to b0, and the series for fixed value of the parameter b of the quadratic 
vibronic interaction but different values of the linear interaction parameter a. 
On Figure 4.2a one can see the dependence of calculated spectral function on 
vector (linear) parameter of vibronic interaction. Calculated line-shape obtains 
the specific λ–shaped profile and ZPL disappears with rising of the interaction 
parameter. Another effect which is clearly demonstrated by presented results is 
a strong enhancement of the effect of linear coupling with decreasing of the 
mean frequency of vibrations in the final state. This effect is especially becomes 
apparent on Figure 4.2b: the total width of the spectrum only slightly changes 
with α while the mean frequency of phonons (the frequency of the pseudolocal 
mode) rapidly decreases with α. Besides, the formation of the Gaussian shape is 
also an evidence of multiphonon transitions: the larger is the mean number of 
contributing phonons the closer is the shape of the spectrum to the Gaussian.  
However, one can easily recognize this effect also in Figure 4.2a: for small  
|b-b0| (small mean frequency in the final state in our model) one obtains the 
Gaussian shape of the spectrum already for a = 0.5. This means that the 
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spectrum is determined by multiphonon transitions. In case of small |b| (large α, 
since b~1/α) one gets the spectrum consisting of the intensive zero-phonon line 
and weak phonon wing, mostly given by the one-phonon transitions. 
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Figure 4.2 The dependence of the line shape on the linear (a) and quadratic (b) coupling 
parameters. The parameter α is defined as 1(5 ) 1 3.bα −= +  
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5. ELECTRON-LATTICE COUPLING: A 
PATH INTEGRAL APPROACH 

 
The results of quantum-mechanical calculations can always be expressed by the 
trace of multiple operator products. The elementary procedure for calculating a 
trace is to calculate a matrix representation for each factor, and then calculate 
the multiple sums over products of matrix elements. This procedure can be 
significantly simplified by working out a formal solution of a problem by 
introducing some useful operator techniques [25]. 

The starting point of this method is the following Gaussian integral formula 

 
2 21 2 2A x xAe e dxπ

∞
− − −

−∞

= ∫  (5.1) 

The linearization of the operator A2 in the exponential is accomplished with the 
use of a one-dimensional Gaussian average. This procedure was used by 
Stratonovich and Hubbard in their study of strongly-correlated electronic 
systems; then A was taken to be a quadratic operator in the number of particles 
and A2 contained altogether four creation and destruction operators. In 
following, we apply this procedure to the case when A is a linear boson 
operator. Then one can apply the Lax method to reduce the problem to the 
calculation of the determinants of matrices, the elements of which are given by 
the pair correlation functions of the contributing configurational coordinates. 
For the numerical calculation we apply here a modified Debye model. 
 
 

5.1. Application of Stratonovich-Hubbard Method to 
Quadratic Vibronic Coupling 

 
Our task is to calculate the Fourier transform of the spectral function (2.41) – 
the average of the product of two exponential operators13. The calculation is still 
restricted with harmonic and Condon approximations, and the interaction 
Hamiltonian (2.15) is quadratic in configurational coordinates. Omitting the 
constant term, the vibronic interaction can be written in diagonal form, 

 ( )21 1
2 2 ,T

n n nn
V aq q bq a q bq= + = +∑  (5.2) 

where configurational coordinates qn are mutually orthogonal. Taking into 
account that the symmetry of H is not lower than the symmetry of V, every qn 

                                                 
13  In this section we use angular brackets for the quantum-statistical averaging, i.e. 

[...] ...Av ≡ . 
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belongs to one of the representations (or to one of the rows of the same 
representation) of H. Below we only consider the coordinates with essential 
contribution to the quadratic vibronic coupling (other coordinates can be treated 
separately by perturbation theory). This consideration is justified for the centers 
of a small radius, where a strong vibronic coupling comes from the 
symmetrized combinations of relative displacements of the center (with 
adjacent atoms). In the centers of a high symmetry (usually) only one qn of a 
particular symmetry essentially contributes to the particular row of the given 
representation. Then the contributions of different coordinates are independent 
of each other and the characteristic function factorizes into the n-product of 
single-coordinate characteristic functions. In the case of more than one qn the 
generalization is available, that includes all the contributing coordinates [53]. 

Since ( ) ( )g t g t∗= − , one can consider positive times only, and using the 
interaction representation (facilitated by Feynman [26]) to “disentangle” 
excited-state operators contained in the exponential,  

 ( )2 1 1 1 1( )

0

exp ( ) , where
t

itH it H V itH itH itHe e T i V d e V t e Veτ τ+ −⎡ ⎤
≡ = =⎢ ⎥

⎢ ⎥⎣ ⎦
∫  (5.3) 

Presenting the integral as the sum of N →∞  terms, one divides the 
continuous-time evolution of the system in the final (excited) state into N 
discrete (infinitesimal) time steps. This gives in the N →∞  limit  

 1 1 1( )/( )

1 1
exp ( ) / , ,n

NN
itV t Nit H V itH itH

n n
n n

tne T itV t N e e e t
N

+

= =

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
∑ ∏  (5.4) 

where the time-ordering operator T rearranges the operators in the exponential, 
if necessary, such that the operators stand in such order that time increases from 
left to right.  

First we consider the case when the linear coupling is absent (a = 0). Then 

 
2 2 .itV N itbq Ne e=  (5.5) 

Following Hubbard [63], one can make use of identity 

 ( )
2 21 22 2e 2x u xue e duπ

∞
− −

−∞

= ∫  (5.6) 

to replace the quadratic coupling by the fluctuating linear coupling,  

( ) ( )
2 22 2lim e exp

2
n

it H bq u itHn
n nN n n

du e T itb N q t u e
π

∞+ / − /
−∞→∞

⎧ ⎫⎛ ⎞
= .⎨ ⎬⎜ ⎟

⎩ ⎭⎝ ⎠
∏ ∑∫  (5.7) 
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The following calculation of ( )F t  can be done by Lax method. Using the 
Bloch-DeDominicis theorem [7] of pair correlations, one gets the following 
equation 

 
2 21 2 2( ) (2 )

T
n

tb u Duu N
Q n

n
g t du e eπ

∞
−−

−∞

⎛ ⎞
= .⎜ ⎟⎜ ⎟
⎝ ⎠
∏ ∫  (5.8) 

Here14 T
nn n nn n

u Du D u u′ ′′,
= ∑  and ( ) ( )nn n nD i Tq t q t′ ′=  is the causal pair-

correlation function. The integration over all nu  can be easily done, 

 { }1
2( ) exp ln ( ) ( )Qg t I tb N D t= − | − | ,  (5.9) 

where D is a matrix with the elements ( )nn n nD D t t′ ′= | − |  and K  stands for 

the determinant of the matrix. The pair-correlation function ( )D t  is calculated 
by standard methods. 

Thus, the problem is reduced to the calculation of the determinant of the 
symmetric matrix, which has equal diagonal elements and, as a maximum,  
N–1 distinct non-diagonal elements. This task is much simpler than the problem 
of calculation of the corresponding matrix of 2N x 2N – order and its 
determinant in the case of Kubo and Toyozawa approach. In our case, the 
correlation matrix D(t) has only N distinct elements determined by the pair-
correlation function at the given time difference. 

One possible way to calculate the determinant is to diagonalize the quadratic 
form by means of the unitary transformation n kn kk

u S s= ∑ : 

 2

,
,nn n n k k

n n k
D u u D s′ ′
′

=∑ ∑  (5.10) 

where Dk are the elements of the diagonal matrix 1S DS− . Then the 
characteristic function yields 

 [ ]{ }1
2( ) exp ln 1 ( ) .Q kk

g t tb N D= − −∑  (5.11) 

In this connection, one should note that the problem of the diagonalization of 
the matrix D is equivalent to the problem of the calculation of the monoatomic 
chain spectrum with the long-range interaction. 

                                                 
14  one should distinguish similar notations for matrix transposition and operator 
ordering 
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In case of both linear and quadratic vibronic coupling ( 0, 0)a b≠ ≠ ,  

 
2( ) ( ) ( ) 2( )

1
,n n

N
it a N q t itbq t Nit H V itH

n
e e e e/ /+ −

=

=∏  (5.12) 

and using the above technique, one gets 

 ( ) ( ) ( )L Qg t g t g t= ,  (5.13) 

where gQ is determined by (5.9) and gL is the contribution of the linear coupling 
term, 

 ( )( )
2 2

1
2exp .

2L nn
nn

ia tg I tbD N D
N

−
′

′

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑  (5.14) 

The inverse matrix ( ) 1I tbD N −−  describes the renormalization of the linear 
interaction by the quadratic interaction.  

If the quadratic coupling is absent (b = 0), then 

 
2 2

21
22

0

( ) exp ( ) ( ) ,
2

t

nn
nn

ia tg t D a d d Tq q
N

τ τ τ τ′
′

⎧ ⎫
′ ′= = −⎨ ⎬

⎩ ⎭
∑ ∫ ∫  (5.15) 

that is the Lax equation for the logarithm of the Fourier transform of the 
spectrum. 

This method has been verified for compliance with an analytical solution in 
the case of two mixed modes [53], it is also applicable in the case of arbitrary 
number of the configurational coordinates of the same symmetry. The non-
Condon terms were taken into consideration in latest publications. 
 
 

5.2. Numerical: Modified Debye Model 
 
We applied this method for calculating the optical spectra for the case when the 
system is closed to the dynamical instability in the final electronic state(s) that 
results in significant softening of local acoustic phonons. One can use the 
(modified) Debye model, where the cut-off is replaced by the exponential 
dumping in the initial-state phonon DOS, 

 31
1 3( ) ( ),e ωρ ω ω θ ω−=%  (5.16) 

where ( )θ ω  is the Heaviside step-function, and phonon frequencies are in 
dimensionless units. This model is used because of the simple form of 
correlation function, which at zero temperature is given by  

 4( ) ( ) (0) ( ) .D t i q t q i t i −= = +  (5.17) 
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At the same time, this model gives a correct description of the low-frequency 
acoustic phonons giving the main contribution to the spectrum under given 
conditions.  

The characteristic function and its Fourier transform have been calculated in 
the case when the final state is close to dynamical instability. The calculation 
for sufficiently large number of time-steps enables one to obtain high-accuracy 
line shapes (see Figure 5.1). Since an abrupt cut-off of the characteristic 
function at large times results in the appearance of noise, the small damping 
factor was introduced to get rid of it. The values of vibronic interaction 
parameters have been chosen so that most of the features of soft dynamics 
would become visible. 
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Figure 5.1. Optical spectra in the case of the Debye model with a strong quadratic 
coupling. The parameter of the quadratic coupling b = –1.496 corresponds to the soft 
dynamics in the excited electronic state; the parameter of the linear vibronic coupling 
(a) varies from 0.03 to 0.2. The damping exponential factor with γ = 0.05 is used. The 
determinant and the inverse matrix calculated in 1024 time points with tMAX = 160. 
 
The quadratic vibronic coupling parameter chosen here (b = –1.496) is close to 
the critical value (bcr = –1.5) of the dynamical instability: for b < bcr the phonon 
LDOS of the final state contains imaginary frequencies distinctive for the 
dynamical instability in the final state. Purely quadratic vibronic coupling  
(a = 0) results in the long-wave pseudo-local mode appearance in the spectrum 
(the maxima of a = 0 curve). The line shape itself resembles an asymmetric 
lambda letter, and for 0a ≠  it has the Airy oscillations characteristic of a slow 
motion of a quantum particle after the transition. 
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6. RESULTS AND DISCUSSION 
 
In the present study, a theory of electronic transition with taking into account 
the quadratic vibronic interaction in multimode systems is developed. The most 
common approach is a method of generating function, facilitated by Kubo and 
Toyozawa. However, it has serious flaws; namely, it requires dealing with  
2N x 2N (this number arises from the contribution of N Avogadro modes) 
distinct complex matrices used to describe the characteristic function (Fourier 
transform of the spectral function). Since there is no efficient algorithm for 
calculating of such matrices, used methods vary from author to author. The 
researchers were forced to consider the simplest cases of a weak coupling 
(accompanied by simplified treatment of mode mixing effects) or to use the 
approximate method of cumulant expansion.  

If the coupling is not weak, then one can use the method of cumulants in 
calculation of the asymptotical behavior of characteristic function at large 
times; in this case one can sum up the contribution of all the cumulants [80]. 
This asymptotics describes the width and spectral position of ZPL. In attached 
publications one finds the consideration of ZPL in the optical spectra of 
impurity centers in the case when the optical transition takes place between 
non-degenerate and two-fold degenerate electronic E-states. In such systems the 
optical transition takes place to the vicinity of a flat minimum (or a flat potential 
barrier) in the space of configurational coordinates, where the density of states 
of low-frequency phonons is strongly enhanced. It was found that a strong Jahn-
Teller effect in the excited state of a trigonal center leads to the T 3– type 
dependence of the homogenous width of ZPL instead of usual T 7– dependence. 
The theoretical calculations of the position and width of a zero-phonon line 
(ZPL) are in agreement with experimental data. 

In this study the author re-examined some popular methods, providing 
whether improvements or new approaches to the problem. First, the case of 
two-mode mixing has been revisited. A slightly modified version of the density-
matrix method was developed, which takes into account both the rotation and 
distortion of potential energy surfaces due to the electronic transition. 
Numerical study showed an impact of the mode mixing on the calculated 
optical line shapes. In particular, mode mixing resulted in: 

 
1. non-monotonous distribution of the intensities of the spectral lines; 
2. strong dependence not only on the absolute value but also on the sign of 

the mixing parameter (the Duschinsky rotation angle);  
3. various internal structures of the line shapes due to phononless, single- 

and multi-phonon transitions. 
 
Second, a further development of method of Fourier-amplitudes was made. 
Corresponding framework was initially developed in 1986 by Hizhnyakov who 
used it considering resonant Raman scattering. This method is based on the 
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exact equations for the phonon-assisted transitions. In multimode systems with 
quadratic coupling there are N 2 of such equations, and method allows one to 
downscale this number to four in the case of soft final-state dynamics. Derived 
equations determine the first derivative of the Fourier transform of the spectral 
function. Calculations of the spectra for different coupling parameters were 
performed. The quadratic coupling parameters were chosen to correspond to the 
vicinity of the dynamical instability of the center in the final electronic state. 
The main results of the analysis are as follows: 
 

1. at sufficiently small linear coupling the spectrum resembles the lambda 
letter; 

2. softening of the phonon dynamics in the final state results in strong 
enhancement of vibronic coupling with low-frequency phonons; 

3. coupling with pseudo-local mode (PLM) of low-frequency and re-
markable linear coupling produces Gaussian line shape; 

4. at non-zero linear coupling and small frequency of contributing PLM, the 
width of the spectrum is mostly determined by the value of the linear 
coupling parameter and slightly depends on the actual frequency of PLM. 

 
Third, a rather new path-integral based method was applied considering the 
optical centers with essentially reduced force constants in the final state. It was 
initially proposed in 2006 by Hizhnyakov and Tehver. Benefits of this method 
are that it provides a recipe for calculating optical spectra with the arbitrary 
(linear and quadratic) coupling for the case of a few contributing con-
figurational coordinates. The latter assumption is usually a rule for the impurity 
centers of small radius. The disadvantage of the method is that it relies on 
lengthy computations that can be significantly accelerated by using distributed 
computing. The method utilizes the time-ordering expansion, the Hubbard-
Stratonovich transformation and the Bloch-DeDominicis theorem for pair-
correlations. Applying this method, it was found that 
 

1. calculated spectral shapes reveal a superstructure; 
2. peaks of it are disconnected with the frequency of PLM; 
3. origin of this new superstructure is the Airy oscillations. 

 
This-type oscillations have been observed in the hot luminescence of self-
trapped excitons in Xe crystals and, probably, in the superfluid 4He droplets, 
where they may result from the free-like motion of excited-state atom trapped 
on the surface of the droplet. Previously, Airy oscillations have been studied 
theoretically in the simple molecular systems having a few vibrational degrees 
of freedom. 

The results of this study open new possibilities for calculations of processes 
in solids with essential contribution of phonon-assisted transitions. 
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SUMMARY IN ESTONIAN 
 

Tugeva mittelineaarse vibrooninteraktsiooniga 
tahkiste elektronsiirete teooria 

 
Käesolevas töös on arendatud elektronsiirete teooriat paljumoodiliste süs-
teemide jaoks, arvestades ruutvibrooninteraktsiooni. Enamkasutatud lähenemis-
viisiks on siin genereetitava funktsiooni meetod, mida töötasid välja Toyozawa 
ja Kubo. Paraku on selle oluliseks puuduseks asjaolu, et siin tuleb käsitleda  
2N x 2N kompleksseid maatrikseid (see arv on seotud N Avogadro võnke-
moodide arvuga, mis osalevad protsessis), et kirjeldada karakteristlikku funkt-
siooni (spektraalfunktsiooni Fourier pööret). Kuna puudub efektiivne algoritm 
selliste maatriksite arvutamiseks, siis kasutatud meetodid varieeruvad koos 
autoritega. Uurijad olid sunnitud piirduma lihtsaimate, nõrga interaktsiooni 
juhtudega (millega kaasnes võnkemoodide segunemise efektide lihtsustatud 
käsitlus) või siis kasutama kumulatiivse reaksarenduse lähendusmeetodit.  

Kui vibrooninteraktsioon on nõrk, on võimalik kasutada kumulantide meeto-
dit arvutamaks karakteristliku funktsiooni asümptootilist käitumist suurtel 
aegadel. See asümptootika kirjeldab foononvaba joone laiust ja spektraalset asu-
kohta. Lisatud publikatsioonides on toodud foononvaba joone käsitlus lisandi-
tsentrite optilistes spektrites juhul, kui optilised siirded leiavad aset kõdumata ja 
kahekordselt kõdunud elektroonse E-seisundi vahel. Sellistes süsteemides toi-
muvad optilised üleminekud konfiguraatsioonkoordinaatide ruumis lameda 
miinimumi (või lameda potentsiaalbarjääri) lähedal, kus madalsageduslike 
foononite tihedus on tugevalt suurenenud. Leiti, et trigonaalsete tsentrite korral 
tugev Jahn-Telleri efekt ergastatud seisundis viib foononvaba joone homo-
geense laiuse T 3– sõltuvusele tavalise T 7– sõltuvuse asemel. Foononvaba joone 
asukoha ja laiuse arvutused on kooskõlas katseandmetega. 

Käesolevas dissertatsioonis on autor taaskasutanud enimtuntud meetodeid, 
viies sisse täiendusi või siis kasutades uusi lähenemisviise probleemile. Eel-
kõige on taaskäsitletud kahe moodi segunemisjuhtu. Selleks on arendatud veidi 
modifitseeritud tihedusmaatriksi meetodit, arvestades elektronsiirdel nii potent-
siaalenergia pindade rotatsiooni kui ka häiritust. Numbriline arvutus näitas 
moodide segunemise toimet joonte jaotusele optilistes spektrites. Sealhulgas, 
moodide segunemine tekitab 

 
1. joonte intensiivsuste ebaühtluse jaotuse; 
2. spektrite sõltuvuse oluliselt nii segunemisparameetri absoluutväärtusest 

kui selle märgist; 
3. spektri tugeva komplitseerumise temperatuuri tõustes. 

 
Teiseks, on edasi arendatud Fourier-amplituutide meetodit. Vastav skeem oli 
välja arendatud Hiznjakovi poolt (1986), kes kasutas seda resonantse Ramani 
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hajumise puhul. Meetod põhineb foononitega kaasatud siirete täpsetel võrran-
ditel. Ruutinteraktsiooniga paljumoodilistes süsteemides on selliseid võrrandeid 
N 2 tükki, kuid meetod võimaldab seda arvu vähendada neljani juhul, kui on tegu 
pehme dünaamikaga lõppseisundis. Tuletatud võrrandid määravad spektraal-
funktsiooni Fourier pöörde esimese tuletise. Viidi läbi spektri arvutusi inter-
aktsiooni parameetrite erinevate väärtuste korral. Ruutinteraktsiooni parameet-
rid valiti optilise tsentri lõppseisundi dünaamilise ebastabiilsuse läheduses. Saa-
dud tulemuste analüüs andis järgmist: 
 

1. piisavalt nõrga lineaarinteraktsiooni korral meenutab spekter oma kujult 
lambda-tähte; 

2. foonondünaamika pehmenemine lõppseisundis kutsub esile vibroon-
interaktsiooni tugevnemise madalsageduslike foononitega; 

3. madalsageduslik pseudolokaalne mood, mis tekib tugeva ruutinterakt-
siooni tõttu, ja märgatav lineaarne interaktsioon annavad joonele Gaussi 
kõvera kuju; 

4. viimasel juhul on spektri laius määratud lineaarse interaktsiooni para-
meetriga, sõltudes nõrgalt pseudolokaalse moodi aktuaalsest sagedusest. 

 
Kolmandaks, rakendati uut, rajaintegraalidel põhinevat meetodit käsitlemaks 
optilisi tsentreid kahanenud elastsuskonstantidega lõppseisundis. Meetod oli 
algselt pakutud Hiznjakovi ja Tehveri poolt 2006. aastal. See võimaldab 
arvutada optilisi spektreid meelevaldse (lineaarse ja ruut) vastastikmõju korral 
juhul, kui panustavate konfiguratsioonkoordinaatide arv on väike. Viimane eel-
dus on tavareegel väikese raadiusega lisanditsentrite korral. Meetodi puuduseks 
on, et see eeldab suuremahulisi arvutusi, mida saab aga märkimisväärselt kiiren-
dada paralleelarvutust kasutades. Teooria kasutab ajas korrastatud reaks-
arendust, Hubbard-Stratonovichi teisendust ning Bloch-DeDominicise teoreemi 
paariskorrelaatorite jaoks. Tulemuseks saadi: 
 

1. arvutatud joonekujud ilmutavad superstruktuuri; 
2. viimase maksimumid ei ole seotud pseudolokaalse moodi sagedusega; 
3. uue superstruktuuri teke on seotud Airy ostsillatsioonidega. 

 
Selliseid ostsillatsioone on vaadeldud autolokaliseeritud eksitonide kuumas 
luminestsentsis Xe kristallis ja – tõenäoliselt – ülivoolava 4He tilkades, kus nad 
võivad olla esile kutsutud tilga pinnal lõksustatud ergastatud aatomi peaaegu 
vabast liikumisest. Varem on Airy ostsillatsioone teoreetiliselt uuritud lihtsate 
molekulaarsüsteemide korral, millel on väike arv vabadusastmeid. 
Käesoleva uurimistöö tulemused avavad uusi võimalusi arvutuste läbiviimiseks 
tahkistes toimuvate protsesside jaoks, millest võtavad osa foononid. 
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