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Chapter 1

Introduction

1.1 Purpose

The purpose of this thesis is to study the Morita theory of structures such
as non-unital rings or semigroups in settings of varying generality. Our goal
is to prove Morita style theorems that would apply to at least these two
examples and at a level of generality that seems most appropriate for the
given result.

1.2 Overview

The tensor product structure on the bimodules between unital rings plays a
central role in Morita theory of rings. It is therefore no surprise that Morita
theory seems to have a natural home in the bicategory of rings and bimodules,
which has the tensor product of bimodules as composition. Several results
about the Morita theory of unital rings are simple consequences of the fact
that the notion of Morita equivalence coincides with the notion of equivalence
of rings as objects of the bicategory of bimodules.

Since non-unital rings and bimodules do not form a bicategory, the same
approach does not directly work. While one can restrict attention to certain
types of rings and bimodules, which do form a bicategory, it is worth trying
to generalize the non-unital case to a more general setting. We do this by
slightly relaxing the notion of a bicategory, by allowing the units of the
composition to be lax. Various kinds of lax versions of bicategories and
monoidal categories have been defined and studied in the past. They have
differing structural maps that are chosen to be non-invertible and differing
direction for the structural maps. From our perspective, the most notable
might be the paper [5] by A. Burroni, where he defined pseudocategories
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which are essentially bicategories where the invertibility of all structural maps
is omitted. The unitors in the case of pseudocategories go in the opposite
direction compared to us.

For our purposes, we only want to relax the invertibility of the unitors
and not the associators. When the associators are not invertible, Morita
theory related matters are greatly complicated and it becomes very hard to
prove anything general that would be useful in the applications that are our
main motivations.

In lax-unital categories, we will study right wide Morita contexts, which
were defined for bicategories by El Kaoutit in [8]. It is difficult to prove
things for lax-unital bicategories in general. We usually want the unitors to
be at least epimorphic. We will study the relationship between a lax-unital
bicategory and its local full lax-unital subbicategory determined by the 1-
cells for which the unitors are suitably good epimorphisms or isomorphisms.
We will do so by constructing adjunction between the hom-categories of the
respective lax-unital bicategories. We will also study how right wide Morita
contexts act with respect to these constructions. We will call the 1-cells with
invertible unitors firm and the 1-cells with unitors belong to a fixed class of
epimorphisms unitary. This is motivated by usage in the case of non-unital
rings and modules. The term ’firm’ originates from Quillen, who took to
calling such modules firm in [27], although the concept does not originate
from him. Modules with this property seem to have been first introduced by
Taylor in [32].

The strongest assumptions we will put on the lax-unital bicategory will
be that the epimorphic and monomorphic 2-cells of each morphism category
form an orthogonal factorization system and that the functor of tensoring
with a 1-cell always has a right adjoint. This property of that right adjoint
always existing is usually called the closedness of the bicategory. Under
these assumptions we will prove that when there exists a right wide Morita
context between two 1-cells with epimorphic maps, then we can construct an
equivalence of categories between certain hom-categories.

After that we will explore our main method of constructing lax-unital
bicategories. This will be the construction of the lax-unital bicategory of
bimodules between semigroup objects in a monoidal category. We will show
that this construction indeed results in a lax-unital category and study un-
der what assumptions on the monoidal category are the prerequisites of the
results of the preceding section, on lax-unital bicategories, satisfied. We will
prove an Eilenberg-Watts theorem for firm bimodules between firm semi-
group objects in a monoidal category. This proof is based on the work of
Bodo Pareigis in his series of papers on the Morita theory of monoid objects
in a monoidal category [23], [24], [25], where he proved a similar result in the
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unital case.

1.3 On notation

We note the following things about our notation for bicategories:

e we will write the composition of 1-cells of a (lax-unital) bicategory from
left to right and the composition of 2-cells from right to left,

e as is customary, we will usually omit the subscripts from the natural
2-cells apr,n,1, Ly and 7y,

e we will write By for the collection of objects of a (lax-unital) bicategory
B,

e we will often denote the composition of 2-cells f, g in B(A, B) by fog,

e sometimes, especially when talking about the semigroups and modules,
we will write 4Bp instead of B(A, B) for the hom-categories of B and
use the tensor sign for the 1-cell composition to separate it from the
abstract notion.

Below, £ will denote a suitably nice class of epimorphic 2-cells of B. The
condition that this class should satisfy vary from section to section, but it
should always satisfy at least the conditions given in section [2.4]

When talking about semigroups in a monoidal category V', we will also
extend the notation £ to a class of epimorphisms in V), since in the context
of that section, a morphism between modules will belong to £ if and only if
it will belong to £ as a morphism of V.
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Lax-unital bicategories and
Morita contexts

2.1 Lax-unital bicategories

In this section we will introduce Lax-unital bicategories as a slight general-
ization of the familiar notion of a bicategory. The contents of this section is
based on the author’s first paper [2§]. Bicategories in some sense capture the
abstract aspects of an associative tensor product with units. A typical ex-
ample, and a one to which we will often refer, is the bicategory of bimodules
over unital rings along with their tensor product. Bicategories were intro-
duced by Jean Bénabou in 1967 in his seminal paper [2]. The notion of a
bicategory generalizes (strict) 2-categories, which are essentially bicategories
where all structural 2-cells are identities. In some sense, the two notions
are equivalent, in that any bicategory is biequivalent to a strict 2-category.
Bicategories however are often somewhat more natural to use, because one
does not always want to ”strictify” the naturally occurring examples of bi-
categories.

While there are many interesting examples of bicategories besides the
bicategory of bimodules over unital rings, we will very rarely be using bi-
categories other than that. One of the main reasons is that Morita theory
originates from this context and it will be the main motivating example for
everything in this thesis. The bicategory of bimodules has also been an im-
portant example of a bicategory since the beginning and it was noticed early
on that the Morita equivalence of rings is the same as the equivalence of rings
as objects of the bicategory of bimodules. Since then, several aspects of the
Morita theory of rings have been generalized and studied in the bicategorical
setting. For example the Eilenberg-Watts theorem by Niels Johnson in his

11
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thesis [I1] and Morita contexts by El Kaoutit in [g].

Bicategories are a nice context to define and prove results about various
notions. One of these notions is the notion of a right wide Morita context
which was introduced by L. El Kaoutit in his paper [§ in 2008. These
generalize Morita contexts that are familiar to us from the Morita theory of
rings with an identity. The definition of a Morita context for unital rings
also makes sense for rings without an identity. Morita contexts are useful
and serve a similar purpose in both cases.

While the theory of Morita contexts and the Morita equivalence of rings
without an identity element is very similar to the one of rings with an identity
and it might seem that the bicategorical approach to Morita theory would
work well in this case, we are hindered by the fact that non-unital rings
and bimodules do not actually form a bicategory. The tensor product of
bimodules between non-unital rings is associative and coherent, it even has
nice candidates for unit modules, but unfortunately, it actually does not in
general have a unit for the tensor product and hence does not give us a
bicategory.

Since one would still like to abstract the Morita theory, one approach
would be to simply forget about tensor units altogether and use semibicat-
egories, or “bicategories without unit 1-cells”. It turns out however that the
unit elements were quite useful for defining certain notions and the lack of
these makes the developement of a good general theory difficult. Examining
the situation more closely one can notice that the tensor product of bimodules
between non-unital rings does have what might be called laz units, meaning
a distinguished bimodule for each ring, such that there is a coherent natural
transformation between the functors of tensoring with that module and the
unit functor. In the case of a bicategory this natural transformation would
be invertible, making these disinguished bimodules the unit bimodules, but a
lot of definitions make sense even when these natural trasformations, called
unitors, are not invertible.

With that motivation, we define lax-unital bicategories as “bicategories
with non-invertible unitors” and study how well we can generalize the Morita
theory of non-unital rings to this context.

2.2 Definition

A bicategory B is essentially an abstract composition structure

B(A, B) x B(B,C) — B(A,C)
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on a family of categories indexed by some class, along with some more struc-
tural data that determines its properties. For the bicategory of bimodules
over unital rings, the composition functor is simply the tensor product func-
tor

- —: RMOdT X TMOdS — RMOds, (RMTaTNS') — R(M ®T N)S

Now we will give the exact definition of a laz-unital bicategory. Note
that it will resemble the definition of a category quite closely, except sets are
replaced by categories and properties are replaced by some distinguished 2-
cells satisfying coherence conditions. For that reason structures of this type
are sometimes called “higher categories”.

Definition 1 (Lax-unital bicategory). A laz-unital bicategory B is given by
the following data:

e a collection By, which will be the collection of objects of B,

e for each pair of objects A, B € By, a category B(A, B), the objects and
morphisms of which are called the 1-cells and 2-cells of B respectively,

e for each triple of objects A, B,C € By, a composition functor
B(A,B) x B(B,C) — B(A,C),

taking a pair of composable 1-cells (M, N) to a 1-cell denoted by M N
and a pair of composable 2-cells (f, g) to a 2-cell denoted by fg,

e for each object A € By, a distinguished 1-cell I, € V(A, A), called the
lax unit of A; we will occasionally just call these 1-cells units,

e for each quadruple of objects A, B,C, D € By a collection of 2-cells
AM,N,L: (MN)L — M(NL)

natural in M € B(A, B), N € B(B,C), L € B(C, D), called the asso-
ciators,

e for each pair of objects A, B € By, two collections of 2-cells
lMZ M — M, ry: MIg — M

natural in M € B(A, B), called the left and right unitors respectively.
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The morphisms ays n 1 are required to be invertible, but the morphisms Iy,
and 7y are not. The natural morphisms ay; n z, {ar and 73, need to be such
that the diagrams

(MN)L)K 25 (MN)(LK)
am,N,L1K /]W(N(LK))a (Mf)N\
1yan, LK e
(M(NL))KamM((NL)K) M(IN) o MN
commute and the diagrams
(MN)I (IM)N .
aM,N,I l "MN ar,M,N l MEN lr
II_— =1
M(NI) MN, I(MN) MN, -
1prN N rr
commute.

When [ and r are invertible, this structure is called a bicategory.

Remark 1. While it might be considered bad form to have the notion of
bicategory be a special case of the notion of laz-unital bicategory, it does seem
to be the most natural name for the concept, since a laz bicategory would
be one where additionally even the structural 2-cells a would not need to be
invertible. There are also unbiased notions of a lax bicategory, for example
the one in Leinster’s [21]. Our notion of a lax-unital bicategory can actually
be seen as a special case of the unbiased lax bicategory of [21], but that
observation is not that helpful for our cause.

Remark 2. While in the definition above the definition of a lax-unital bi-
category differs from that of a bicategory in only the invertibility of r and [,
the last three diagrams are usually not included in the definition of a bicat-
egory, since their commutativity follows from the first two when r and [ are
invertible.

Remark 3. We note that one could also define some kind of bicategory with
lax units, where the direction of the structural 2-cells » and [ is different.
Our choice of direction is derived from our main example: the bicategory
of the bimodules over non-unital rings. If the direction of both r and [ was
reversed in all definitions, the structure we get is in a sense dual to a lax-unital
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bicategory, and so we call it an oplaz-unital bicategory. Therefore, the usual
duality on a bicategory that reverses all 2-cells, when applied to a lax-unital
bicategory, results in an oplax-unital bicategory. In other words, everything
we define and prove for lax-unital bicategories will have a corresponding dual
for oplax-unital bicategories.

Remark 4. Compared to the last remark one could also imagine a structure
where the direction of only one of the natural structural 2-cells, [ and r, is
reversed. Such a situation for monoidal categories was studied by Kornél
Szlachdnyi in [29]. We note that in his case, the associators a were not in-
vertible. Since he called such structures skew-monoidal categories, we would
suggest calling the bicategorical structures where the unitors r and [ go in
opposite directions skew-unital bicategories.

Example 1. Our motivating example of a lax-unital bicategory is the fol-
lowing one, denoted by Mod.

e The objects of Mod are the associative rings which do not have neces-

sarily an identity element.

e For rings R, S € Mody, Mod(R, S) =: gModg is the category of R-S-
bimodules and bimodule homomorphisms.

e The composition functor pModg x sMody is given by
(rRMs, sNt) = r(M ®s N)r,
(f,9) = feg
e The associators r((M ®g N) @1 L)y — r(M ®g (N & L))y are given
by
(mMen)@r—»me (n® ).

It is well known and easy to show that such maps are natural isomor-
phisms making the necessary diagrams commute.

e If R, S € Mody and g Mg is an R-S-bimodule then Ir = g Ry, Is = §Sg
and the unitors are given by
Iy R(R®r M)s — rMg, r®@m — rm,
ryv R(M ®gS)s — rRMg, m® s — ms.
These homomorphisms of bimodules are natural in M, but not nec-

essarily invertible, injective or surjective. It can be verified that the
required diagrams commute. In particular, obviously (g = 7g.

A non-additive analogue of this is the lax-unital bicategory of semigroups,
where 1-cells are biacts and 2-cells are biact homomorphisms.
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2.3 Coherence

The reason why three additional diagrams are included in the definition of
a lax-unital bicategory is because we want the analogue of the bicategorical
coherence theorem to hold. That is to say, we want any two 2-cells that are
the results of composing the 2-cells [, r, a and 1 in various ways to coincide
whenever their domains are formally the same and codomains are formally
the same. The bicategorical version of the result, when originally proven [22],
included the additional three diagrams in our definition. It was later shown
by Kelly [I3] that these diagrams were redundant in the bicategorical case.

One can check that MacLane’s proof [22] of the coherence theorem works
for lax-unital bicategories. Additionally one can check that Kelly’s proof
[13] of the redundancy of the last three diagrams holds when the composi-
tion functor of the lax-unital bicategory preserves epimorphic 2-cells and the
unitors [ and r are epimorphisms.

2.4 Unitarity

Until the end of this thesis, £ will denote a class of epimorphic 2-cells of the
lax-unital bicategory B under discussion. We will require £ to satisfy:

E1. £ is closed under the vertical composition of 2-cells,
E2. all invertible 2-cells belong to &,
E3. if fog and g are in £ then so is f,

E4. £ is closed under the horizontal composition of 2-cells.

The last condition means that 1-cell composition functor of B maps mem-
bers of £ into &£, in other words if f: M — N is a 2-cell in £, then the
horizontal composites f1 and 1f are also in £.

The main example for the class £ is the class of all epimorphic 2-cells in
the case of non-unital rings and also in the case of semigroups. It is well
known that the epimorphisms between bimodules or biacts are precisely the
surjective homomorphisms, and it is easy to verify that conditions E1-E4 are
satisfied for them. The reason we have a class £ instead of just epimorphisms
is because while in Set and Ab epimorphisms are surjective, this is not always
the case. The class £ is meant to model, if needed, some stronger kind of
epimorphism, for example surjective morphisms, which are often what we
want &€ to be.

Motivated by [I] in the case of rings and for example [20] in the case of
semigroups, we will make the following definition
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Definition 2. We will call a 1-cell M of a lax-unital bicategory B left (right)
unitary if the left (right) unitor of M belongs to £ and we call M unitary if
it is both left and right unitary.

We will call an object A of a lax-unital bicategory B (left/right) unitary
if its unit 1-cell I is (left/right) unitary.

We note that in the case of semigroups in Set, semigroups that are unitary
in our sense are usually called factorizable semigroups and in the case of
semigroups in Ab they are called idempotent rings. Therefore unitarity does
not actually imply that the semigroup object has an identity element.

If B is a lax-unital bicategory we let BY denote the full lax-unital sub-
bicategory of B determined by the unitary objects. Additionally, let LUB,
RUB and UB be the lax-unital locally full subbicategories determined by left
unitary, right unitary and unitary objects and 1-cells of B respectively. The
fact that the collection of 1-cells of RUB is closed under composition can be
seen from the following diagram, which commutes by coherence:

(MN)I - M(NI)

\ J 1N
TMN

MN.

In a similar fashion, one can show that the LUB is closed with respect to the
composition of 1-cells and therefore the same for UB follows.

It is entirely possible that given a lax-unital bicategory, all of the lax-
unital subbicategories that we listed are empty, meaning that there are no
unitary objects. However in the examples that we are interested in, there
always exists at least one unitary object. In the lax-unital bicategory of
bimodules between semigroup objects in a monoidal category, the unit semi-
group on the unit object of the monoidal category always has invertible
unitors, which means that the unitors must belong to €.

For 1-cells between unitary objects, there is an easy way of making them
unitary. We simply compose the given 1-cell with the unit 1-cell on the side
that we want to unitarize. Indeed, since given a 1-cell M: A — B, the
following diagram commutes by coherence

(MI)I

IS

M(IT) —— MI,

Inprr
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the right unitor of M1 is in &£ if the lax unit of B is unitary. Indeed, by
the assumptions on the collection &, if r; belongs to £, then 1,,7; must also
belong to £.

Therefore for each pair of unitary objects A, B of B, we have a functor

—1: BY(A, B) = RUB(A, B)

that acts by composing with [ on the right and turns 1-cells into right unitary
1-cells. Of course we also have functors

I—:BY(A,B) — LUB(A,B) and (I-)I: BY(A, B) — UB(A, B),

which have similar effect. Because of coherence the functor (I—)I, which is
the composition of /— and —1I, is isomorphic to the functor I(—1), which is
the composition of —I and I—.

Unitary objects have a certain closure property with respect to so called
“E-images”.

Proposition 1. Suppose that M and N are 1-cells of a laz-unital bicategory
B such that there exists a 2-cell e: M — N belonging to £. Then whenever
M is (left/right) unitary, N will also be (left/right) unitary.

Proof. Let us suppose that M is right unitary and write out the naturality
diagram of the right unitor for e: M — N:

MI —%  NT
M JI J/TN
M N.

Every 2-cell in the diagram except for r); belongs to £ by assumption. There-
fore by using the property E3 of £, we get that ry must also belong to &,
making N right unitary. [

2.5 Firmness

The unitarity of a bicategory is often not enough to prove what we want. One
of strongest things that we can require of the unitors is their invertibility.
Indeed, if all the unitors of a lax-unital bicategory are invertible, we are
dealing with a bicategory. Following [27], we will call the property of a 1-cell
having invertible unitors, firmness. We can make a definition analogous to
the unitary case
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Definition 3. We will call a 1-cell M of a lax-unital bicategory B left (right)
firm if the left (right) unitor of M is invertible and we call M firm if it is
both left and right firm.

We will call an object A of a lax-unital bicategory B (left/right) firm if
its unit 1-cell I is (left/right) firm.

So we can see that when a lax-unital bicategory is such that all of its
objects and 1-cells a firm, we get something familiar.

Proposition 2. When all the objects and 1-cells of a laz-unital bicategory
are firm, it is a bicategory.

Again, following suit from the unitary case, if B is a lax-unital bicategory,
BF will denote the the full lax-unital subbicategory of B determined by the
firm objects and we let LFB, RFB and F'B denote the lax-unital locally
full subbicategories determined by left firm, right firm and firm objects and
1-cells respectively. As we noted, FB, since all of its unitors are invertible,
is a bicategory.

As in the unitary case, the listed lax-unital subbicategories could all be
empty, but in the example of bimodules between semigroup objects in a
monoidal category, the unit semigroup will always be firm.

Note that when for 1-cells between firm objects, we can turn them into
firm 1-cells just as in the case with unitary modules. Because of the same
digram

(MDI

TMI
a

M(II) —— MI,

1mrr
when A and B are firm objects of B, we have the functors
I—: BY(A,B) —» LFB(A,B), —I:B"(A,B)— RFB(A,B)

and
(I-)I: BY(A, B) — FB(A, B).

In this case however these functor have slightly better properties.

Proposition 3. All of the functors listed above are right adjoint to the in-
clusion functors. Therefore the hom-categories determined by the firm 1-cells
are coreflective subcategories of the full hom-categories.
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This fact is very useful in transfering data and properties between B
and FB.

To give a concrete description of these adjunctions, it suffices if we provide
the unit and the counit. The adjunction

—I

/_\
BF(A,B) T RFB(A,B)
\_/

inclusion

has 74: AI — A as its counit and r;': A — AI as its unit. The fact that
they satify the triangle identities is easily checkable using coherence. The
units and counits of the other adjunctions are analogous.

This can be seen as a consequence of the idempotence of the functor —14
for a firm object A. To be more precise, we have the following notion of
idempotence for a functor:

Definition 4. An endofunctor F' on a category C along with a natural map
§a: A — F(A), with {pay = F(€a): F(A) — F(F(A)) invertible is called
an idempotent pointed endofunctor on C. The dual notion is called an
idempotent copointed endofunctor.

This definition and the proof of next Lemma below about (co)reflective
subcategories can be found in Section 5.1 of [7]. We note that idempotent
(co)pointed endofunctors are in a sense a concept equivalent to idempotent
(co)monads. For idempotent monads see for example Proposition 4.2.3 of
[4]. The condition {pay = F(£a) for a pointed endofunctor is called well-
pointedness and is actually implied by the idempotence condition of §r(a)
and F'(€4) being invertible (Lemma 4.1.2. of [12]).

If k is a natural transformation between functors with domain C, we say
that an object A of C is fixed by k when k4 is invertible. Let Fix(C, k) denote
the full subcategory of C induced by the objects fixed by k. Clearly it is a
replete subcategory of C. We then have the following lemma, the proof of
which is trivial.

Lemma 1. If (F,§) is an idempotent (co)pointed endofunctor on C, then
Fix(C, &) is a (co)reflective subcategory of C with (co)reflection given by the
corestriction of F' to Fix(C,&). The adjunction unit in the copointed case is
given by €1 A — F(A).

The abovementioned corestriction will be denoted by F|"*(¢:9). Note that
when we think of F' as a monad, then the above lemma is essentially about
the free-forgetful adjunction of the Eilenberg-Moore category Fix(C, &) of F.
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Note that if we take F to be the functor —I: BY (A, B) — B (A, B) and
€ to be r in the last lemma, then it does produce RFB(A, B) as a coreflective
subcategory of BY (A, B),

2.6 Right wide Morita contexts

The definition of a right wide Morita context in a lax-unital bicategory is
quite similar to the definition of an adjoint pair in a bicategory, the difference
being the direction of one of maps. Even diagrams that need to commute are
the same up to the direction of maps. In that sense, one can think of right
wide Morita contexts as a skew version of an adjoint pair.

Right wide Morita contexts were first defined in [§] by El Kaoutit in the
context of bicategories. However it is easy to see, that while the definition
includes unitors, it does not require the unitors to be invertible. Indeed,
this observation was one the main motivations for studying Morita theory in
lax-unital bicategories.

Definition 5 (Right wide Morita context). Let A and B be objects in a lax-
unital bicategory B. A right wide Morita context from A to B is a quadruple
['=(P,Q,0,¢), with 1-cells

P:A—-B, @Q:B—A

and 2-cells
0: PQ— 14, ¢:QP—Ip,

such that the following two diagrams commute

QPQ) == QI P(QP) —2 PI
~ O
@ Q: a P.
T e
(@QP)Q —~ 1@ (PQ)P —— IP

When 0 and ¢ are invertible, we will call I' an adjoint equivalence and call it
firm when P and @ are firm. If [' is a firm adjoint equivalence, we will call
I' a Morita equivalence. When P and () are unitary 1-cells and the 2-cells 6
and ¢ belong to &£, we will call I' an £-Morita context.
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We can think of the maps 6 and ¢ in the last definition as mixed mul-
tiplication maps and of the two commutative diagrams in the definition as
mixed associativity laws for these multiplication maps.

As we noted, an adjoint pair in a bicategory differs from the definition
we just gave in that one of the arrows is going in the opposite direction, so
the definition of an adjoint pair also makes sense in a lax-unital bicategory.
This means that when 6 and ¢ in the last definition are invertible, this data
does actually give us an adjoint pair between the same objects in the obvious
way. Since an adjoint pair where the corresponding 2-cells are isomorphisms
is called an adjoint equivalence, it is somewhat justified that we instead call
a wide Morita context with # and ¢ invertible an adjoint equivalence.

If we reverse the direction of both of the 2-cells # and ¢ in the definition
of a right wide Morita context, the commutativity of the diagrams in the
definition starts to make less sense. To get something sensible out of that,
we would also need to reverse the direction of the structural 2-cells r and [
(or at least one of them), which would mean that a left wide Morita context
wants to live in a oplax-unital bicategory (or skew-unital, if needed).

Remark 5. Pécsi in [26] noticed, that right wide Morita contexts, as just
defined, can be viewed as normalized lax functors from Iso, the category with
two objects and precisely one morphism between any two objects, into the
bicategory B. The consequences of this observation were later studied by
Lack [I8]. The definition of a lax functor will be recalled in section [2.10}

2.7 The lax-unital bicategory of right wide
Morita contexts

It was observed by El Kaoutit in [8] that the right wide Morita contexts in a
bicategory B form themselves a bicategory RC(B). Going over El Kaoutit’s
proof that they actually form a bicategory, one can easily observe that the
only place where it was required that the unitors r and [ be invertible was to
show that the unitors of the bicategory of right wide Morita contexts were
invertible. Therefore we have the following

Proposition 4. When B is a lax-unital bicategory, there exists a lax-unital
bicategory RC(B) of right wide Morita context in B.

Since the proof of that fact transfers essentially unchanged and is some-
what lengthy and routine, we will not reproduce it here. We will however
list how the operations of the lax-unital bicategory RC(B) are defined.
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Obviously the objects of the bicategory of right wide Morita contexts in
B are the same as the objects of B and the 1-cells are the right wide Morita
contexts between these objects. First there needs to be a notion of morphism
between parallel right wide Morita contexts. This will define the 2-cells of
the bicategory. If I'y = (P, Q1,01, 1) and I'y = (P, Q2, 02, ¢2) are a parallel
pair of right wide Morita contexts from A to B, then a morphism of from
['; to I'y consists of two 2-cells p: P, — P, and ¢: )1 — ()2 making the
diagrams

Pq ap

P

PyQs Q1P

I 1

Q2P

commute.

The vertical composition of these 2-cells is defined in the natural way,
simply composing the respective components of the 2-cell. This definition
makes it obvious that the components of the identity morphism of I' =
(P,Q,0,¢) should be the the identity morphims of P and Q.

Next we need a way to compose the 1-cells. Let A, B and C' be objects of
B, let I'y = (P, Q1,01,¢1) be a right wide Morita context from A to B and
let I'y = (P2, Q2,0s, ¢2) be a right wide Morita context from B to C. Then
we define the composite context I'1I's from A to C' to be

[Ty = (PP, Q2Q1, 01 % 05,00 % 1),
where the 2-cells 0, * 0, and ¢, x ¢ are defined as the following composites:

a 1

(P1P2)(Q2Q1) Pi(B(Qa@1) — " P(PQ2) Q1)
I . P T P (1Qy)
and
(QQ1)(P1P2) —— Qa(Qu(PiPy) —— Qu((Q1 P P)
¢2*¢1h hl(%l)
I Q2P Q2(1 ).

¢2
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The lax unit 1-cell in RC(B) on an object A is the right Wide morita context
(Ia,La,rr,l;). We will call this the unit context on A. The fact that it is
a right wide Morita context follows from coherence. Of course r; and [;
are equal. The horizontal composition is defined componentwise. For more
details, one can consult [§].

2.8 DMorita equivalence

In the case of unital rings, Morita equivalence has many different equivalent
formulations. Here are some of the conditions of interest to us that are
equivalent to Morita equivalence in the case of unital rings S and T

1. there exists a Morita context with surjective § and ¢ from S to T,
2. there exists a Morita context with bijective 6 and ¢ from S to T,

3. there exist an S-T-bimodule P and a T-S-bimodule () such that

PRO=S,and QP=T,

4. the categories of right S-modules and right 7-modules are equivalent

MOdS ~ MOdT .

However even in the case of rings without identity these conditions are not
all equivalent for arbitrary rings S and T'. See for example [9]. For now, we
will only care about the first three conditions in that list. For objects A and
B of a lax-unital bicategory these conditions become

1. there exists a right wide Morita context from A to B with 6 and ¢
belonging to &,

2. there exists an adjoint equivalence from A to B,
3. there exists an invertible 1-cell from A to B,
4. the categories B(X, A) and B(X, B) are equivalent for some objects X.

First let us examine how these conditions relate to each other when B is
a bicategory. The second and third conditions are equivalent, because one
states the equivalence of the objects A and B and the other their adjoint
equivalence. It is well known that in a bicategory these two notions coincide.
See for example Proposition 1.1. of [§].
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The first and fourth follow from the other two. The first trivially and the
equivalence of categories in the fourth can be thought of as the image under
the bicategorical Yoneda embedding of the equivalences in the middle two.

In general the first condition does not imply the others. Theorem [1| that
is proved below will tell us that under the assumption of the first condition,
6 and ¢ will be monomorphisms. Whether monomorphisms belonging to £€
will be invertible will depend on the bicategory and the objects A and B.

The fourth condition by itself will not in general imply the others, but
using the Yoneda lemma for bicategories, we can get an inverse implication
by putting additional conditions on the equivalence in condition four. See
for example Johnson’s [11].

We defined firm objects A and B of a lax-unital bicategory to be Morita
equivalent when there exists an adjoint equivalence from A to B, with P and
Q@ firm. By what was mentioned above, this is a well behaved notion, since
it lives in the bicategory FB.

For arbitrary objects of a lax-unital bicategory, in general none of these
condition will be equivalent, so it is not obvious how it would be best to define
Morita equivalence in such a case. The trouble with the first three conditions
is that they do not in general actually define an equivalence relation. The
fourth one leads to a theory that is not very desirable, which for the case of
non-unital rings was noted in [9].

In the case of non-unital rings it was discovered that for a fruitful Morita
theory, one should either limit their attention to some smaller class of rings,
or in the case of the fourth condition, to a smaller class of modules (see [9]).
This has also turned out to be the case for the Morita theory of semigroups,
where several different classes of semigroups and acts have been considered,
for example [20] studied semigroups with local units and closed acts, which
are actually the same as firm acts in our sense. In the generalizing the aspects
of that theory to lax-unital bicategories, we do the same. The unitary/firm
1-cells and objects as defined above, make it easier to develop a Morita theory.

It might be worth mentioning that the mere existence of a right wide
Morita context between some two objects can be seen as kind of a lax notion
of equivalence for general objects of a lax-unital bicategory.

2.9 £-Morita contexts

Now we will examine some properties of £-Morita contexts. First we observe
that they do determine an equivalence relation between the unitary objects
of a lax-unital bicategory.
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Definition 6. If there exists an £-Morita context between objects A and B of
a lax-unital bicategory, we will say that the objects A and B are £-equivalent.

We note that if we translate this definition into the semigroup-theoretical
context, we get the notion of strong Morita equivalence of semigroups [31].

The only thing stopping £-equivalence from being an equivalence relation
on all objects of an lax-unital bicategory is the potential lack of reflexivity.

Proposition 5. The relation of £-equivalence is a transitive and symmetric
relation on the objects of a lax-unital bicategory.

Proof. Let B be a lax-unital bicategory. First observe that the relation is
symmetric by definition. To see that it is transitive, let A, B and C be
objects of B, let I'y = (P, Q1,01, ¢1) be an £-Morita context from A to B
and let Ty = (P, Q2,0s,¢2) be an E-Morita context from B to C. Recall
that since right wide Morita contexts in B-form a lax-unital bicategory, we
can compose 'y and I'y with respect to its composition to get a right wide
Morita context

[Ty = (PP, Q2Q1, 01 % 02, 09 % 1)

from A to C'. Since the unitary 1-cells are closed with respect to composition,
PP, and Q2Q), are unitary. Now we just need 0, x 6y and ¢y * ¢; to belong
to £. Recall that 0; x 05 was defined as the composite

(PLP)(QsQ1) —— Pu(P(Q2Q1)) —— P((PxQ2)Q1)
01 * 05 1(621)
I PO Pl([Ql)-

61 1
Note that 0, % 05 is a composite 2-cells belonging to £, and therefore belongs
to & itself, making I';I'y an £-Morita context. O

We have however the following observation

Proposition 6. Let A and B be arbitrary objects of a lax-unital bicategory
and suppose that there exists an E-Morita context from A to B. Then A and
B are unitary.

Proof. Suppose that I' = (P,Q, 0, ¢) is an E-Morita context from A to B.
This means that P and ) are unitary, so PQ) and QP are also unitary.
Therefore 6 is a 2-cell belonging to £ from a unitary object to A. Therefore
by Proposition [I] the object A is also unitary. Similarly we get that B must
be unitary. O
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For unitary objects A we have a canonical choice of £-Morita context
from A to itself.

Proposition 7. The relation of £-equivalence is an equivalence relation pre-
cisely between the unitary objects of a lax-unital bicategory.

Proof. Compared to the last proposition we are just missing transitivity. For
any object A of B, let I' = (Ia,14,77,1l;), be the unit right wide Morita
context from A. This is an £-Morita context precisely when A is unitary.
This proves that £-equivalence is reflexive for unitary A. O

Lemma 2. Let (P,Q,0,¢) be a right wide Morita context in a laz-unital
bicategory B. Then the following diagrams commute

10 1¢

(PQ)(PQ) (PQ)I (Q@P)(QP) @P)I
01 ‘r d)lh T
1(PQ) PQ, 1(QP) QP.

l

Proof. In the diagram

T
(PQ)P)Q — . (1P
all
C(P@P)Q —2 (P1)Q
e | (11)e al o al
P((QJP)Q) P(IQ)
| e
(PQ)I S

all the parts commute either because of naturality, coherence or the axioms
of a right wide Morita context.

That proves that the first diagram in the lemma commutes. In a similar
way we can prove that the second diagram commutes. O
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The following fact is very easy to prove, but is actually quite useful in
may cases.

Theorem 1. Suppose that (P,Q,0,¢) is a right wide Morita context in a
laz-unital bicategory B, where either all left unitors or all right unitors are
epimorphisms. Then, if 0 (resp. ¢) is in &€, it is a monomorphism.

Proof. Suppose all left unitors are epimorphisms, the proof is similar if all
right unitors are epimorphisms. Also suppose that #: PQ) — [ is in £. We
will show that it is a monomorphism. Let u,v: X — P be such that
0 ou=0owv. If we apply the functor (PQ) - — to that equality, we get

(10) o (1u) = (16) o (10).

We have the diagram

(PQ)X == (PQ)(PQ)
X 1” I(PQ) (PQ)I
X - PO

v

which is commutative with respect to the upper (lower) morphisms of the
parallel pairs of 2-cells. The squares with horizontal morphisms 1u and hori-
zontal morphisms 1v commute because of the functoriality of the multiplica-
tion, while the lower squares commute because of naturality. The right part
of the diagram commutes because of Lemma [2] From that we get

uolo(fl)=volo(61),

which implies © = v, since [ and #1 are epimorphisms. Therefore 6 is a
monomorphism.
Similar arguments work for ¢. O

Therefore we have the following fact for £&-Morita contexts.

Corollary 1. Suppose that (P,Q,0,¢) is an E-Morita context in LUB or
RUB. Then, 6 and ¢ are monomorphic 2-cells in LUB or RUB respectively.
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One useful thing to notice is that there is no point in defining a weaker
version of £-equivalence where the 1-cells of the contexts are only required
to be unitary on one side.

Proposition 8. Let (P,Q, 0, ¢) be a right wide Morita context in a laz-unital
bicategory B with 6 and ¢ in E. Then P (resp. Q) is left unitary if and only
if P (resp. Q) is right unitary.

Proof. The proof becomes evident when we consider the properties of £ while
looking at the diagram

P(QP) —% PI

P.

N
7
(PQIP —— IP

]

In a similar fashion we can prove an analogous result for adjoint equiva-
lences.

Proposition 9. Let (P,Q,0,¢) be an adjoint equivalence in a laz-unital
bicategory B. Then P (resp. Q) is left firm if and only if P (resp. Q) is
right firm.

2.10 Lax functors

A notion of morphism between lax-unital bicategories that has multiple oc-
currences in different places of this thesis is the lax functor. A lax functor
is essentially a relaxed notion of a 2-functor. It need not preserve the unit
1-cells or the composition of 1-cells, but it instead has natural comparison
maps F(A)F(B) — F(AB) and I — F(I). This notion was introduced
along with the notion of a bicategory by Bénabou in [2], where he called
them morphisms of bicategories. One of the motivations of defining them
was that some categorical structures could viewed as lax functors between
specific bicategories. For example, he noticed that a monad is just a lax
functor from category with one object and one morphism to the bicategory
in which the monad lives.

Definition 7. Let C and D be lax-unital bicategories. A lax functor F from
C to D consists of
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e for cach object A of C, an object F'(A) of D,

e for each pair A, B € Cy, a functor Fy p: C(A, B) — D(F(A), F(B)),
which we will refer to as the local part of the lax functor,

e natural comparison 2-cells @y n: F(M)F(N) — F(MN),

e comparison 2-cells ®%: Ipay — F(14).

The comparison 2-cells need to be such that the following diagrams commute:

(F(M)F(N))F(K) = F(M)(F(N)F(K))

F(MN)F(K) F(M)F(NK)
F((MN)K) ——— F(M(NK)),
F(M)Ipp) ——— F(M)F(Ig) IpayF(M) ik F(I4)F(M)
TF(M) l l P s lr(n) l l (38,
F(M) o F(MIp), F(M) e F(I4M).

Note that since a category can be seen as special case of a bicategory, the
preceding definition also gives us the notion of a lax functor from a category
into a lax-unital bicategory, which is sometimes useful.

We call a lax functor normal, when the comparison maps I — F([) are
identities and call it a pseudofunctor when the comparison maps

I —- F() and F(M)F(N)— F(MN)
are invertible.

As was noticed by Pécsi in [26], it is possible to describe right wide Morita
contexts in a bicategory B as normal lax functors from Iso to B, but of course
this also works for lax-unital bicategories. Here Iso denotes the category
with two objects and precisely one morphism between any two objects. This
means that Iso is the smallest category containing two isomorphic objects.
Clearly for any category C there is a bijection (of classes, possibly, or large
enough sets) between the isomorphisms of C and functors from Iso to C.
Since right wide Morita contexts are a lax version of this same concept, it
supports the view that a right wide Morita context are a kind of a lax notion
of isomorphism between objects of a lax-unital bicategory.
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2.11 Improving contexts

When dealing with a right wide Morita equivalence I' = (P, Q, 6, ¢), the
better properties P and () have, the easier it will be to work with I". For
example, when we were proving the transitivity of £-equivalence, we needed
the unitarity of P and Q.

In this section we will give a few results that allow us to improve right
wide Morita contexts, such as to give P and () better properties.

First of all we will show that we could have defined £-equivalence without
the requirement that P and () should be unitary in the £-Morita context.

Proposition 10. Let A and B be unitary objects of a lax-unital bicategory
B. LetT' = (P,Q,0,¢) be a right wide Morita context from A to B such that
0 and ¢ are in E. Then there exists an E-Morita context T" = (P, Q', ¢, ¢)
from A to B. Furthermore, if A and B are firm then P' and Q" will be right
firm and if @ and ¢ are invertible or if P and Q are left firm, P and Q" will
also be left firm.

Proof. We define the right wide Morita context I = (P, Q)’,6', ¢') by setting
P'= PI, ' = QI and defining #’ and ¢’ using the diagrams

(PI)(QI) — PQ (QI)(PI) — QP

PN

)

Now we will show that I is indeed a right wide Morita context. That
means the diagrams in the definition of a right wide Morita context have to
commute. We will only check that one of the diagrams commutes, since the
other one can be shown to commute in a similar way. We have the following
commutative diagram.
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(PI)(QI))(PI) - (PD((QI)(PI))
(A1 1(r1)
(PN)Q)(PI) : (PI)(Q(PI))
a~lo(la™t)
()1 (PQ)P)I (PI)(QP))I 1(ar)
(PQ)( PI) IP (PQP)I (PODI~ .  (PH(QP)
01 / \ m 1¢
I(PI) = (PI)I.

All the inner diagrams commute either by naturality, coherence or because
[' is a right wide Morita context. Therefore the outer rectangle commutes.
The composition of the left (right) edge of the outer rectangle is 6’1 (resp.
1¢"). Therefore the second diagram in the definition of a right wide Morita
context commutes.

Next let us check that " and ¢ are in £. We will check that for ¢’ since
the proof for ¢’ is similar. Let A be the coherent natural transformation
Ax: X(II) — X. Clearly Ay is in €. We have the following commutative
diagram, where ~ represent the various coherent combinations of associators.

(PQP)(Q(PQ)) 1oy N@QI)

(11)(16) //

(P(PQ))(QI)

N (1(p1)1 i
~ (P(QP)Q))I (PQ)I r
(1a)1 (1r)1
(P(Q(PQ))) 1w)(P(QI))] d
(PO)((PQ)(PQ)) 2 (PQ)((PQ)T) ~ (PQ)(I1) PQ
0(00) 6(11) ;
I(11) I.
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The diagram commutes since every small diagram in the interior commutes
either because of coherence, naturality or because I' is a right wide Morita
context. Once again we can use the property E3 of £ to deduce that the
right edge of the outer rectangle is in £, but the right edge is just ¢’.

Now we need to check that the unitors of P’ and @)’ are in £. For the
right unitors this is follows from Section [2.4] since P’ = PI and Q' = QI and
since P and @ are 1-cells between unitary objects. Since we P’ and @)’ are
part of a right wide Morita context with 1-cells in £, Proposition [§ implies
that the left unitors of P’ and @’ must also be in £.

In the firm case, the proof is analogous. We just need to add that when
P and @ are left firm then from diagrams

I(PI) 1(QI)

l lpr \[ lQI
a !t a!

(IP)I PI. (IQ)I —— QI

lpl] lQll

we can see that Pl and QI will also be left firm. O

Essentially the last proposition allows us to transfer right Wide Morita
contexts with 6 and ¢ in & from BY to UE. While it may seem that this
would allow us to extend the use of Theorem [1| from UE to BY, and although
to an extent it does, the monomorphic 2-cells of UE might not be the same
as the monomorphic 2-cells of UE.

The relation between UE and BY is in general not that clear. We need a
better way to transfer information between these two lax-unital bicategories.
The process described above is clearly not ideal for unitary objects, since
the construction is not idempotent in the sense that it need not give us an
isomorphic context when the context we are applying it to is already an
E-Morita context.

Note that it does fix contexts between firm objects when 6 and ¢ are
isomorphisms, which is to say that it takes adjoint equivalences between firm
objects to Morita equivalences between firm objects in a way that is in a
sense the most optimal.
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Unitarization

We can use a different method to improve 1-cells and contexts with respect
to their unitarity. In the paper [20] for example, the method used to make
the unitors of acts surjective used the assignment

Mg+ {ms|me M, se S},

which maps a right act Mg to the image of the act’s unitor M ® S — M,
m ® s — ms. We can generalize that construction to the our situation,
but we have to make more assumptions. We will need to use orthogonal
factorization systems.

3.1 Orthogonal factorization systems

As the name suggests, an orthogonal factorization system allows us to split
morphisms into factors. Intuitively we can think of it acting like the ho-
momorphism theorem, splitting a morphism into the surjective part and the
injective part.

Definition 8. Let C be a category and let £ be a class of epimorphisms
and M a class of monomorphisms belonging to that category. Morphisms
e: A— B and m: C — D are said to be orthogonal, a situation expressed
by writing e 1. m, when for each commuting square

A B
C

e
’
s
v
s

S
’
s
’
s
L
— D
m

34
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there exists a unique diagonal fill-in s: B — C making the whole diagram
commute. Let £ consist of precisely those morphisms e of C for which e 1 m
for each m € M and let M consist of precisely those morphisms m of C for
which e L m for each morphism e in £. If each morphism f of C factors as
f = me, we say that (£, M) is an orthogonal factorization system on C.

For more information about factorization systems, see for example section
5.5 of [3]. We will now assume that on each morphism category of our lax-
unital bicategory B, the 2-cells in £ and the monomorphic 2-cells constitute
an orthogonal factorization system on that category. This means that the
collection & is precisely the collection of all strongly epimorphic 2-cells. For
convinience, we will make the following definition in order to refer to lax-
unital bicategories with this property later.

Definition 9. We will say that a lax-unital bicategory has 2-cell factor-
1zations, when the 2-cells in £ and the monomorphic 2-cells constitute an
orthogonal factorization system on each of the hom-categories.

Remark 6. We now have a slightly easier way of checking whether a given
class & satisfies the conditions we required of it in the beginning. Let us
assume we are given a random lax-unital bicategory B’ such that each mor-
phism category has (StrongEpis, Monos) as an orthogonal factorization sys-
tem. Because of some well known properties of factorization systems, the
class of all strongly epimorphic 2-cells automatically satisfies all but the last
condition required of £, which is E4, the requirement that £ is closed with
respect to the horizontal composition.

The first of the two can often be deduced from other properties of B’. For
example, if the functor of composing with a 1-cell always has a right adjoint,
it automatically preserves regular epimorphisms, which in nice enough cate-
gories coincide with strong epimorphisms. Such is the case in the lax-unital
bicategory of non-unital rings and modules and the lax-unital bicategory of
semigroups and two sided actions.

3.2 The unitarization lax functor

We can now define an alternate way of improving right wide Morita contexts
and the unitors of 1-cells. First we will do it for right unitarity. We will do
this in a way that is in a sense the best possible, since it will be locally right
adjoint to the inclusion RUB — BY.

Let us fix for each 1-cell M in BY, an (€ ,mono)-factorization (eys, mas)
of ). Let A and B be unitary objects of B. We will now define a functor

Rap: BY(A,B) = RUB(A, B).
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This functor will depend on the choice of the factorizations (e, myy), but
will be unique up to isomorphism. Since R4 p will later turn out to be the
local part of a lax functor, we will omit the subscripts A and B when applying
the functor. Let M: A — B. We define R(M) as the 1-cell through which
ry factors, as seen in the diagram

- - N
MI R(M) M

em mMm

We need to check that R(M) is actually in RUB(A, B). To show that,
we will use the following diagram, which commutes because of coherence and
the naturality of r.

(MI)I —=— R(M)I

/ J/TJ\/II J/TR(M)

M(II) MI ——— R(M).

1ry

The right composite rr 0 €l is in £, since the left side composite is the
composite of 2-cells in €. This implies that rg(as is in £, which means that
R(M) is a 1-cell in RUB.

Now suppose that f: M — N is a 1-cell in BY. Then we can define R(f)
to be the unique 2-cell R(M) — R(N) that makes the following diagram
commute and exists because of the diagonal fill-in property of a factorization
system.

™M
4 Y
MI R(M) M
(74 | mm
nl ' R(S) |1
NI —" - R(N) /- N
N )
TN

It is clear that we can vertically paste the defining diagrams of R(f) and R(g)
of a composable pair of 2-cells f and ¢g. It is also clear that the resulting
diagram will be the defining diagram of R(go f). Therefore, since R(go f) is
the unique 2-cell making the diagram commute, it must equal R(g) o R(f).
Since R also clearly takes unit 2-cells to unit 2-cells, we have shown that
R4 p is a functor.

Now we will construct an identity-on-objects lax functor R: BY — RUB
with the functors R4 p as the local components. The only data missing is
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the comparison 2-cells. We will define the comparison 2-cell
Oy n: RIM)R(N) — R(MN)
as the unique 2-cell that makes the following diagram commute

EMEN

(MI)(NT) — R(M)R(N)

| mymy
a"lo(rl) PN

(MN)I R(MN) ——— MN.

EMN

The unique 2-cell exists because of the properties of a factorization system,
since ee is in £, m is a monomorphism and the outer composites are equal.
To see that the outer composites are equal, we simply need to remember that
mas o epr = T and use coherence.

It might be worth noting that from the definition of ®,; ; we can see that
it is always a monomorphism.

To define ®Y for an object A of B, we need to remember that r;: IT —
I is in €. This means that my, the monomorphic part of the (£ mono)-
factorization of 77, is an isomorphism. Therefore we can define ®Y: I — R([)
to be m;': I — R(I). Finally we need to check that ® and ®° satisfy the
conditions required of comparison maps and that & is natural.

For the first condition, observe that all the small parts of the following
diagram commute either because of naturality, functoriality, the definition of
® or the definition of R.

(R(M)R(N))R(K) == R(M)(R(N)R(K))

(mm)1 1(mm)

Y (MN)R(K) R(M)(NK) .
% o) k
R(MN)R(K) 1m |(11)m m(11)| m1 R(M)R(NK)
é\)(MN)K —————— M(NK) /q)
R((MN)K) ——— R(M(NK)).

One can easily check that the left composite and the right composite of the
outer hexagon are equal under m. This means that they are equal, because m
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is a monomorphism. Therefore the first condition holds. In a similar fashion,
we can see that the second condition holds by looking at the diagram

190

R(M)I — R(M)R(I)
x %
" M —— MI oy
- ™~
R(M) o R(MI).

One can use a diagram very similar to the previous one to check that the third
condition holds. To check the naturality of ®, let f: M — U and g: N -V
be 2-cells between suitably composable 1-cells. Then the commutativity of
the following diagram is checked by using the monomorphicity of m, as we

did before.

R(f)R(9)

R(M)R(N) R(UYR(V)
) m MN . uv \mm ®
R(MN) o R(UV).

We have now shown everything we need to prove the first part of the following
theorem.

Theorem 2. If for the hom-categories of a lax-unital bicategory B, the 2-cells
belonging to £ and the monomorphic 2-cells form an orthogonal factorization
system, then R as constructed above is an identity on objects lax functor
from BY to RUB. Additionally, this lax functor is locally right adjoint to the
inclusion

RUB — BY..

Proof. We will now prove that R: BV — RUB is locally right adjoint to the
inclusion RUB — BY. We want to use Lemmal[llto do so. Let us look at R as
an endofunctor on BY(A, B). The copointed structure on R will be provided
by m: R(M) — M. Indeed, mp will be an isomorphism since R(M)
is already left unitary and if we use the naturality of m (see the following
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lemma) for mys, we get a commutative diagram

R(may)
RR(M) —5 R(M)

MR(M) l l mpr

R(M) M,

mar

which implies that R(mas) and mpgas) coincide, since my; is a monomor-
phism. O

The following is a simple observation, which follows directly from the
definition of e;; and myy.

Lemma 3. The 2-cells

may

MI—" R(M) 1 M

defined in the construction of the lax functor R are natural in M. Also ey
always belongs to € and my; is always a monomorphism.

Remark 7. Note that m is essentially a familiy of natural transformations
indexed by A and B from R, p to the identity functors of the respective
categories. Such families (not necessarily into the unit functor) of natural
transformations were studied by Stephen Lack in [I7], where, when satisfy-
ing some additional axioms, they were called icons. Indeed, m satisfies the
axioms of an icon R — 1 by the definition of the comparison maps of R, if
we view R as a lax endofunctor of BY. If —I were a lax functor, then e would
also be an icon —I — R, but —I is only a lax functor on firm objects. We
will not go into any more details about icons.

What we have shown so far in this section is that in addition to R being
a lax functor, RUB is a locally coreflextive lax-unital subbicategory of BY.
This connection allows us to transfer useful properties between the two lax-
unital bicategories.

We could go through a similar process for the left unitors, constructing
a lax functor L: BY — LUB and showing that LURB is a locally coreflective
lax-unital subbicategory of BY.
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BU
2N
LUB RUB
~
UB

Composing these lax functors we now have two lax functors RL and
LR from BY to UB. However since they are both identity on objects and
both locally right adjoint to the inclusion UB — BY, they must be locally
isomorphic. This local isomorphism can be shown to be an icon in the sense
of [17].

The following observation about the lax functor R will prove useful in the
future

Proposition 11. Suppose that f: M — N is a monomorphic 2-cell in BY.
Then R(f): R(M) — R(N) is monomorphic both as a 2-cell of BY and as a
2-cell of RUB.

Proof. Since R is locally right adjoint to the inclusion RUB — BY, it will
take 2-cells monomorphic in BY to 2-cells monomorphic in RUB.

To see that R(f) is also monomorphic as a 2-cell of BY, let us write out
the naturality diagram of m: R(A) — A for f:

rRM) 1 Ry

mar J/ J/ mn

M N.

In the diagram, clearly everything besides R(f) is monomorphic as a 2-cell
of BY. Therefore myR(f) is monomorphic as a 2-cell of BY, which implies
that R(f) must also be monomorphic as a 2-cell of BY. O

Example 2. Let us see what the unitarization process does in the lax-unital
bicategory of semigroups and biacts. We recall that in that case the compo-
sition of 1-cells, the two sided actions, or biacts as they are sometimes called,
is by tensor product. The unit 1-cell on S is gSg, which is .S acting on itself.
The unitors in a sense carry information about the structure of the actions
of the semigroups on the biacts. But only in a sense, because we can not
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really define the actions of the semigroups in terms of the unitors, since the
unitors depend on the tensor product structure, which itself depends on the
actions of the semigroups. For right actions we have

ry: M®S —> M, m®s+—ms.

The orthogonal factorization system on the categories of biacts separates
morphisms f: M — N into the mapping onto their image f(M) and the
inclusion of the image. Therefore the orthogonal factorization system acts
on M by separating R(M) as the image of r);, giving us the decomposition

™™

4 N
M®S —————— R(M) ——— M,
M®S {ms: me M,s e S} —— M.

m® s+ ms inclusion

For semigroups it is customary to denote
MS ={ms:s€ S,me M}

for the set of all the products of the elements of M and S. Supposing that S
is a factorizable semigroup, meaning that it is unitary in our sense, M .S will
be right unitary.

There is an interesting point to make about the action of the lax functor
R on morphisms between biacts. Let us look at the defining diagram of R(f)
for a morphism f: M — N of biacts for M and N between factorizable

semigroups:
M

r Ry
M®S MS——— M
m® s+— ms \ inclusion
fel1 i R(f) f
N ® IS n® s ns ]V‘VS inclusion N
N A
TN

We could equivalently define R(f) as the unique morphism making the left
square commute or the unique morphism making the right square commute.
The left square would define R(f) using the relation

R(f)(ms) = f(m)s.
Using the right square defines R(f) as the restriction of f to MS. Both
of these are possiblities that come to mind when a person working with
semigroups and acts is trying to make —S into a functor. This approach
makes it very clear that these two definitions are equivalent.
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3.3 Transfering contexts

In the paper [§] it is shown that given a right wide Morita context I" from A
to B in a bicategory C, a 2-functor F': C — D will induce a right wide Morita
context from F(A) to F'(B) in D. One can follow that proof to easily check
that it also works for lax-unital bicategories and that the comparison 2-cells
F(A)F(B) — F(AB) do not have to be invertible for the construction to
be valid. This means that the lax functors L and R can be used to improve
right wide Morita contexts, just as we did in Proposition

According to the results in [§], a pseudofunctor F' will take a right wide
Morita context I' = (P, @, 6 ¢) to the context I'r(F(P), F(Q), 0%, ¢*), where
0* is the composite

o F(0) @01

F(PQ) F(I) I

F(P)F(Q)

and ¢* is the obvious counterpart. If we apply that to the lax functor R, we
see that the 1-cells in I'g are given by Pgr = R(P), Qr = R(Q), the 2-cell Og
is the composite

P R(0) m

R(PQ) R(I) I

PrQr = R(P)R(Q)

and the 2-cell ¢g is a similar composite. To see that 0z is in £ if # is in &,
observe that the following diagram commutes because of the definitions of R

and ©.
as(r) 01

(PI)(QI) (PQ)I T \
R(P)R(Q) R(PQ) ) R(I) —— I

By using naturality and coherence, one can simply verify that the upper
composite of the diagram above is just ' as constructed in Proposition
This means that 0z o ee = €' is in €. Therefore 0y is in £.

Remark 8. Note that the above provides an alternate proof for the part of
Proposition [10| that deals with unitary objects. However, this new construc-
tion is idempotent in the sense that it will produce an isomorphic context
when applied to an £-Morita context.

If we are dealing with firm objects instead, then by coherence, —1I clearly
satisfies the axioms of a lax functor BY — REB with the obvious comparison
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maps. If we use the property of lax functors mapping Morita contexts to
Morita contexts here, we can derive the part of Proposition [10| that is about
firm objects.

All of the above can of course also be done for the lax functor L.



Chapter 4

Closed lax-unital bicategories

This chapter is in part a generalization of some of the results in the author’s
joint paper [16], with V. Laan and L. Marki, from semigroups to objects in a
right closed lax-unital bicategory. In particular, Theorem [3|below generalizes
the fact that if two firm semigroups are strongly Morita equivalent then they
are Morita equivalent.

4.1 Definition

For a 2-categorical structure, left (right) closedness means that for any 1-cell
N, the functor of composing with it on left (right) has a right adjoint.

In this chapter we will assume that the lax-unital bicategory B is
such that for all objects A, B, C of B and 1-cells N: B — C, we have
the following adjunction

B(A,C) T B(A,B)

for some fixed family of functors M>—, called the right closed structure
of B. In other words, we will assume that B is right closed.
This means the existence of the following isomorphism natural in M and
L:
B(A,C)(MN,L) = B(A,B)(M,N>L).

We denote the unit of this adjunction by

nn: N — M>(NM)

44
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and the counit by
ex: (M>N)M — N .

As per usual in this case, we can make M>— into a contravariant functor
with respect to M by using the universality of the counit. If f: M — M’
is a 2-cell of B, then we define f>1y: M'™>N — M>N as the unique 2-cell
making the following diagram commute:

feln)lm

(s N M s vy

lfJ Je%[

(M'>N)M’ N.

M’
EN

The commutativity of this diagram is sometimes called the extranaturality
of e¥ in the variable M.

4.2 The closedness of RUB

An important application of the results of the last section is that we can
extend the closedness of B to RUB.

Proposition 12. Suppose that the lax-unital bicategory B is closed and has
2-cell factorizations. Then RUB is also closed. We will let » denote the
closed structure on RUB. The counit of this closed structure will be denoted
by &' and the unit .

Proof. Let N: B — C be a right unitary 1-cell of B. Under these assump-
tions we can compose the adjunction from Theorem [2| and the closedness
adjunction of B

Np>— R
A /—\
BU(A,C) T BY(A,B) T RUB(A,B),
~_ \_/

-N inclusion

which will result in the adjunction
R(N>—)
T~
BY(A,C) T RUB(A,B).
\_/

—-N
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Finally we need to notice that —N actually maps into RUB(A, C'), since, by
coherence, the diagram

(MN)I % M(NI)

\ J 1yrn
TMN

MN

commutes and N is right unitary. O]

4.3 Non-singular right unitary 1-cells

When idempotent pointed or copointed endofunctor on C has a right adjoint,
we get several equivalences of categories of free. These categories will be an
essential colocalization of C and and essential localization of C. An essential
(co)localization is a (co)reflective subcategory such that the (co)reflection
has a (right) left adjoint. See for example [3].

Lemma 4. Let (F,§) be an idempotent copointed endofunctor on a category
C and let G: C — C be right adjoint to F with adjunction unit n and counit
e. Then

1. the natural transformation (: 1 — G corresponding to &: F' — 1 under
the adjunction, defined componentwise as (4 = G(£a)na, makes G into
an idempotent pointed endofunctor on C;

2. we have
Fix(C, €) = Fix(C, ¢)

and it is an essential colocalization of C with a coreflection F|FX(C4);
3. we have

Fix(C,¢) = Fix(C,7)

and it is an essential localization of C with a reflection G|F*(C:¢)

4. the adjunction between F' and G restricts to an adjoint equivalence
F
/\
Fix(C,¢) T Fix(C,().
e

-G
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Proof. (1) Recall (beginning of Section 1 of [6]) that if L 4 R and L’ 4 R’ are
two adjunctions on a category D, then there is a bijection between natural
transformations w: L — L’ and natural transformations v: R — R compat-
ible with the vertical and horizontal composition of natural transformations.
Since ¢ corresponds to £ and 1p to 1g, by compatibility F¢ = £F being
isomorphisms implies (G = G( being isomorphisms.

(2) By Lemma [1] we have a coreflective subcategory Fix(C,¢) with the
coreflection functor F|"*(€4)  Clearly G |Fix(c,¢) is right adjoint to the coreflec-
tion, making Fix(C, ) an essential colocalization of C, meaning that G'|pix(c,e)
is full and faithful according to Proposition 3.4.2 of [3]. Therefore €4 is in-
vertible for objects A from Fix(C, £) (Proposition 3.4.1 of [3]). This gives us
Fix(C,¢) C Fix(C,e). To get the reverse inclusion, consider A € Fix(C,¢)
and calculate

EaF (ea) = €abrciay

using the naturality of £. Since the morphisms other than &4 in the last
equality are invertible, {4 must be invertible, meaning that A € Fix(C,¢).
(3) Analogous to (2).
(4) Note that any adjunction restricts to an adjoint equivalence between
Fix(C,n) and Fix(C, €) due to the triangle identities (Section 0.4 of [19]). O

Let A and B be firm objects of the lax-unital bicategory B. We will now
apply this lemma to the functor

—I: RUB(A, B) - RUB(A, B)

with copointed structure provided by r: — I — 1. According to the last
section this functor has a right adjoint

I»—: RUB(A, B) — RUB(A, B).

We will denote the idempotent pointed structure that will exist on I»—
according to the lemma by 7: 1 — I»— and we will denote the category
Fix(RUB(A, B),i) by RNB(A, B). Then, according to the lemma, we have
the following proposition, since Fix(RUB(A, B), ) is just RFB(A, B).

Proposition 13. The category RNB(A, B) that we just defined is a reflective
subcategory of RUB(A, B) and we have an equivalence of categories

—I: RNB(A, B) = RFB(A,B).

The reason we are interested in RNB(A, B) is that it combines the in-
vertibility of the natural transformation i: 1 — I'»— with the fact that the
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epimorphisms in RNB(A, B) are the same as the ones in BY(4, B) — a fact
that we will prove in the next section.

We call 1-cells of B which lie in RNB(A, B) non-singular unitary 1-cells.
We take this name from semigroup theory, where the unitary acts charac-
terized by the invertibility of ¢ are called non-singular unitary acts and the
category they form is denoted by NActg. From the last proposition it fol-
lows that for a firm semigroup S, the epimorphisms in the category NActg
of non-singular unitary S-acts are surjective.

Remark 9. We are interested in the categories RNB(A, B) for firm A and
C. Unfortunately that stops us from talking about RNB as a lax-unital
subbicategory of B, since in general it will not be one.

4.4 On the epimorphicity of 2-cells

Let A and B be firm objects of a lax-unital bicategory B. We need to study
how the categories B(A, B), RUB(A, B), RFB(A, B) and RNB(A, B) relate
to each other with respect to the epimorphicity of their morphisms. We
want to show that a morphism of RNB(A, B) is also an epimorphism as a
morphism of B(A, B).

Since RFB(A, B) is a coreflective subcategory of B(A, B), we have the
following proposition.

Proposition 14. Morphisms of RFB(A, B) are epimorphic precisely when
they are epimorphic as morphisms in B(A, B).

Proposition 15. A morphism f of RNB(A, B) is an epimorphism precisely
when it is an epimorphism as a morphism of B(A, B).
Proof. Suppose that f: M — N is a morphism of RNB(A, B). Since

—1: RNB(A,B) — RFB(A, B)

is an equivalence functor, f is an epimorphism in RNB(A, B) if and only if
fly: MI — NI is an epimorphism in RFB(A, B), which by Proposition
occurs pecisely when f1; is epimorphic in B(A, B). If we have a look at the
naturality diagram of r with respect to f

M1 N

m| |

M— N,
f
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and consider that every morphism there besides f is epimorphic in B(A, B),
we can see that f must also be epimorphic in B(A, B). O

We can also use these adjunctions to study monomorphisms in the various
hom-categories, as was done in the author’s joint paper with V. Laan [15].

4.5 On £-equivalence in right closed lax-unital
bicategories

The following theorem is one of the main results of this work and says that in
the setting of this chapter, when epimorphisms have nice enough properties,
the £-equivalence of firm objects implies equivalence of the hom-categories
of right firm 1-cells.

Theorem 3. Let B be a right closed lax-unital bicategory in which the 2-cell
factorizations in B are given by the epimorphic and the monomorphic 2-
cells. Then, if two firm objects A and B of B are €-equivalent, the categories
RFB(C,A) and RFB(C, B) are also equivalent for any firm object C' of B.

Proof. The E-equivalence of A and B means that there exists an £-Morita
context (P,Q,0,¢) from A to B. By applying Proposition [10| on the right
and its analogue on the left, we can assume without loss of generality that P
and @ are firm. First let us show that for any 1-cell M in B(C, A), the 2-cell

O>1y: Iyy>M — PQ>M
is a monomorphism in B(C, A). Let X be a 1-cell in B(C, A) and let
u,v: X — I, M

be 2-cells such that
(O>1)v = (0>1)u.

Since the diagram

ul (o>1)1

X(PQ) —= (I>M)(PQ) — (PQ)>M)(PQ)

vl

wl wl lsfﬁ
ul

XTI (I>M)1I : M

vl e

commutes and since 16 is an epimorphism, the two composites in the bottom
row coincide. Since these composites are the 2-cells corresponding to u and
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v under the adjunction defining >, the 2-cells © and v must also coincide.
This implies that #c>1,; is a monomorphic 2-cell in B(C, A). Using Proposi-
tion [I1], we see that L(f>1,) is also a monomorphic 2-cell in B(C, A). But
L(0t>1y) is equal to O»1;,, so in conclusion we have shown that 01, is a
monomorphic 2-cell in B(C, A). It is however, by the same proposition, also
monomorphic in RUB(C, A).

From now on let us assume that M lies in RNB(C, A). Let

p: (LU)»V — Ly (UpV)

be the natural invertible 2-cell that corresponds to the associator under the
adjunction that defines ». We define

Orr: M — Py(QwM)

to be the composite

M- e M - (PO M —L— Pe (O M)

and ¢pr: M — Qw(P» M) to be the composite
im o 3t p
M —— IvM —— (QP)» M —— Q»(Pw»M).

Since 0 is a composite of natural transformations, it must itself be natural.
Also, since p is always an isomorphism and i,; is an isomorphism for M in
RNB(C, A), the morphisms & and ¢ are both monomorphisms in B(C, A).
Let us show that

PV(QPQ_M) = ép,(@,M) .
We have the following diagram:

Py»(Qw(P»M)) (PQ)»(Pw» M)
Pr((QP)»M —— (P(QP))»M = (PQ)P)»M or1
1>(¢>1)[ (1¢>)>1] (91)»1‘

Py (I»M) (PI)» M (IP)» M

p
lp»l
rppl
1>i1\4 inJ\I

Py M

Iv(P»M).
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The center part of this diagram commutes, since (P, @, 0, ¢) is a Morita con-
text and the left and right squares commute by the naturality of p. The
upper pentagon corresponds to the associativity pentagon under the adjunc-
tion that defines », so it commutes. See, for example, Proposition 3.12 in
[23]. The two lower triangles correspond under the adjunction to two of the
coherence axioms involving the lax unit.

Note that left composite of this diagram is 1p» @y and the right com-
posite is Opp s giving us

1p»én = Oppar -

Doing the same while swapping 6 and ¢ results in
Lo» 0y = domar -
Now we have
Py(Qw01) = Po(dopr1) = Opwownr) -
Let X be in RNB(C, A) and let
u,v: Pe(QwM) — X
be such that ufly; = vfy;. Then we can use the naturality of 6 to calculate

Oxu = (Pw»(Qwu))lpy 0w
= (P> (Qpu))(Pr(Qwbi))
= (Py»(Qwuby))
= (P»(Qwvly))
= Oxv
Since @) is a monomorphism in B(C, A), it is also a monomorphism in
RNB(C, A), because it is a reflective subcategory of RUB(C, A), in which
Oy is a monomorphism. B
Therefore we have u = v, meaning that 6y, is an epimorphism in the
category RNB(C, A). By Proposition 0 will also be an epimorphism in
the category B(C, A). Since by our assumption epimorphisms and monomor-
phisms form an orthogonal factorization system on B(C, A), we have shown

that 0); must be an isomorphism. Similarly we can show that ¢ is an
isomorphism. Therefore we have an equivalence of categories

P»—: RNB(C,B) < RNB(C, A) :Q» — .

This means, because of Proposition [13] that RFB(C, B) and RFB(C,A)
must also be equivalent. O
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Therefore we have shown that firm £-equivalence between firm objects
implies the equivalence of hom-categories of firm 1-cells. Unfortunately that
was under quite strict conditions. Many cases of interest do not satisfy the
condition that epimorphisms and monomorphisms in hom-categories form
an orthogonal factorization system. We note however that the lax-unital
bicategory of non-unital rings and bimodules and the lax-unital bicategory
of semigroups and two-sided actions do satisfy the condition.

Theorem (3] gives a bicategorical proof of the fact that, using the termi-
nology of the paper [16], the strong Morita equivalence of firm semigroups
implies their Morita equivalence.

Remark 10. In the last proof we essentially constructed a left wide Morita
context (P»—, Q»—, 0, ) between RNB(C, A) and RNB(C, B) in the (quite
big) 2-category CAT of sufficiently large categories.

The calculation done to deduce the epimorphicity of 6 from its monomor-
phicity was essentially the application of the dual of Theorem [1| to that left
wide Morita context in CAT, which as a 2-category is of course also an
oplax-unital bicategory.



Chapter 5

The lax-unital bicategory of
modules between semigroups in
a monoidal category

In the section we will introduce our main source of lax-unital bicategories
— the tensor product structure on bimodules between semigroup objects in
a monoidal category. The main two examples of this construction that one
can keep in mind are the case of non-unital rings and bimodules, in which
case the monoidal category in question is the category of Abelian groups
with the tensor product of Abelian groups, and the case of semigroups and
two-sided semigroup actions (sometimes called biacts), in which case the
monoidal category is the category of sets with the cartesian product.

We do not need to assume anything of the monoidal category to be able
to define semigroup objects in it and bimodules between the semigroup ob-
jects. In order to define the tensor products of bimodules, we just need the
monoidal category have coequalizers and that the monoidal product preserves
these coequalizers in both variables. Of course we will later make additional
assumptions like the existence of a right adjoint for the monoidal product,
meaning the closedness of the monoidal category. This construction is quite
standard.

Until the end of this thesis, V will denote a monoidal category. We will
denote the monoidal product of objects A and B by their juxtaposition AB,
the unit object of V by [ and the structure maps by

aapc: (AB)C — A(BC), ta: Al - A, [4: A — A.

We recall that the structure maps are required to be isomorphisms and satisfy
the coherence property, meaning that any two morphisms constructed from
a, v, [, their inverses and identity morphisms using morphism composition
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and the monoidal product must coincide when they have the same source
and target objects.

Note that we can think of monoidal categories with bicategories with a
single object. Their relationship is the same as the relationship between a
monoid and a category.

In most cases the coherence property allows us to act as if the maps a, ©
and [ were identity morphisms.

5.1 Semigroups and modules in V

In this section we will give the definition of semigroups in V' and related
constructions. The constructions given are the same as in the case of monoids
in V [23], except for the lack of identities and identity related axioms.

There is a natural notion of a semigroup in the monoidal category V.
Likewise, given two semigroups in V), there is a natural notion of a one or
two sided module between these semigroups.

Note that these definitions also make sense for semimonoidal V), as do a
lot of the proofs, but the existence of a unit object in VV makes things easier
for us.

Definition 10. A semigroup in )V is an object of S of V along with an
associative operation m: S — S. In other words, a semigroup in V is a
pair (S, m), where S is an object of V and m is a morphism which makes the
diagram

(SS)S S(SS)

| [

commute. Since outside of examples we will only be considering semigroups
in some fixed monoidal category V, we will not always explicitly mention V
when talking about semigroups.

Example 3. In any monoidal category V there always exists the unit semi-
group (I,t;) on the unit object I with the structure map t; = [;.

Definition 11. Let S be a semigroup in V, then a right S-module is an object
A of V together with a right action r4: AS — A of S on A compatible with
the semigroup operation of T', in other words, r4 needs to make the diagram

(AS)S 2 A(SS)

rat | | 1m

AS — A—— AS
TA TA
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commute. Similarly, for a semigroup 7" in V, a left T-module is an object A
of V together with a left action [4: TA — A of T on A, making the diagram

a

(TT)A T(TA)

mll llm

TA— A——TA
la Ia

commute. Finally, given semigroups S and 7" in V a T'-S-bimodule will be an
object A of V, which carries a right S-module structure r4: AS — S and a
left T-module structure l4: TA — A which are compatible with each other,
meaning that the diagram

a

(TA)S — = T(AS)

lAlJ llTA

AS — A—TA
TA 1

A

commutes.

Example 4. If (S,m) is a semigroup in a monoidal category V, then we
always have a canonical S-S-bimodule structure on S with lg = rg = m.

We can define a morphism of modules in the obvious way as a morphism
in V compatible with the right modules stucture.

Definition 12. Let S be a semigroup in V and let A and B be right S
modules. A morphism f: A — B in V will be called a morphism of right
S-modules, if the following diagram commutes

As 5 Bs

ra |s

A— B.
!

Morphisms of left modules are defined in a similar fashion. A morphism
of bimodules is a morphism compatible with both the left and right module
structures.

Given a semigroups S and 7' in a monoidal category V, we define, using
the preceding definitions, the category Modg of right S-modules, the cat-
egory tMod of left T-modules and the category rModg of T'-S-bimodules.
Note that ;Modg and rMod; are clearly isomorphic to Modg and rMod,
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respectively, which is quite handy, since we can define and prove things for
bimodules and the corresponding results for one sided modules follow.

To define tensor products, we need coequalizers to exist in rModg. There-
fore we need to study colimits in that bicategory.

If D and C are categories, we will call a functor D — C a diagram of shape
D and a (co)limit of such a diagram a (co)limit of shape D. The following
results about colimits and limits are proved almost exactly as they are proved
for the case of monoids in monoidal categories. The only difference is the
lack of units.

Proposition 16. Let S and T be semigroups in a monoidal category V. Let
us suppose that colimits of shape D exist in V and that the monoidal product
functors X — XS and X — TX of V preserve all such colimits. Then
rModg has colimits of shape D. To be more precise, the forgetful functor
U: rModg — V creates colimits of shape D.

Proof. Let D: D — rModg be a diagram of shape D in yModg. Let
(L, (6:);cp) be the colimit of UD. We can define a right S-module structure
on L using the universal property of colimits as the unique map r;: LS — L
making the following diagram

commute for any objects i, 7 of D and all morphisms x: ¢ — j. This definition
makes all 6;: D(i) — L morphisms of right S-modules.
To see that r indeed makes L into a right S-module, let ¢ be any element
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of D and behold the following diagram.

(D(i)S)S - /D(i)(SS)
o1 1.9)s a (g5)" %
Dyl rdl llm tm
LS o1

Observe that the outer pentagon and every quadrilateral commutes. By using
diagram chasing, we can see that the inner pentagon commutes under (6;1)1.
However, since ¢ was an arbitrary element of D and (6;1)1, i € D constitute
a colimiting cocone, thus being jointly epimorphic, we can conclude that the
inner pentagon commutes.

Similarily, we can define a left T-module structure l,: TL — L on L. To
see that the right module structure and the left module structure on L are
compatible, consider the diagram

(TD(i))S T(D(i)S)
(16,)1 (TL)S a T(LS) 1(6;1)
tp@l Il l l Irg, 17p ()

9
D) Ip@)

l

and reason in the same way as for the digram before that.

Next let us check that L is the colimit of D. Suppose that we have another
T-S-bimodule @ along with a cocone k;: D(i) = @ , i € D on D. Using the
fact that L is a colimit of D in V, we get a morphism m: L — @ in V. We
need to show that m is a morphism of 7-S-bimodules. Let x: ¢ — j be an
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arbitrary morphism in D and behold the following diagram.

L
Q.

In the same way as we showed the commutativity of the inner pentagon in
the last diagram, we can show the commutativity of the lower quadrilateral
by using the fact that the other parts of the diagram commute and the fact
that 6,1 constitute a colimiting cocone. This shows that m is a morphism
of right S-modules. Similarily we can show that m is a morphism of left
T-modules. The uniqueness of m as a T-S-module morphism comes from its
uniqueness as a morphism in V. This concludes the proof that the forgetful
functor U creates colimits of shape D. m

There is a similar result for limits, with a proof along the same lines,
which does not require anything from the monoidal product functor of V.

Proposition 17. Let S and T be semigroups in a monoidal category V. Let
us suppose that limits of shape D exist in V. Then rModg has limits of shape
D and the forgetful functor U: rModg — V creates limits of shape D.

We will need the following construction to define tensor products

Construction 1. Let S, T and R be semigroups in V, let A be an R-T-
bimodule and let B be a T-S-bimodule. Then we define an R-S-bimodule
structure on AB with the following structure maps

lAB = (lA]-B) o a_l: T(AB) — AB, TAB = (]_ATB) oa: (AB)S — AB.

This defines a functor kMods x rModg — rModg, which acts on the
object part of modules and on morphisms as the monoidal product functor
of V, meaning that f: A — B and g: A’ — B’ will map to fg: AB — A'B’
for f a morphism in gkMody and g a morphism in gMody. The details are
easy to verify and the verification is in part done in Proposition 2.04 of [14].
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Now that we have this functor, we can note that structure maps of the
modules and the associator of VV induce maps of bimodules, as noted by the
next proposition.

Proposition 18. Let S, T, R and W be semigroups in V. Let A be a W-R-
bimodule, B an R-T bimodule, and C a T-S-bimodule. Then the following
maps are morphisms of right S-modules natural in A (and B, C' in the case

of a).
1. a: (AB)C — A(BC)

2. r4: AR — A
3. ZAWA—>A
4. m:SS —S.

Proof. For a, note that up to a the left action of W on (AB)C and A(BC)
is [411 and similarly for the right action.

For r4, being a map of left W-modules is basically equivalent to the
compatibility between the left and right module structures of A and being
a map of right R-modules is equivalent to r4 giving A a right R-module
structure. For [, we have an analogous explanation and m is just a special
case, since m =rg = lg. O

5.2 Tensor products

Starting from this section we will require that V has coequalizers and
that the monoidal product of V preserves them in both variables.
Some authors express this situation by saying that the monoidal category V
has stable coequalizers.

The definition of tensor products of bimodules we use is standard and the
same as the one used in the monoidal case. For some proofs regarding tensor
products we will refer to [14], which, while written in a slightly different
and more general setting and using somewhat different terminology, still has
proofs that apply to our situation.

Proposition 19. Suppose that colimits of shape D exist in V' and the monoi-
dal product functor of V preserves them in both variables. Then for any
semigroups S, T', R in YV the functor

RMOdT X TMOdS — RMOds, (A, B) — AB

preserves colimits of shape D.
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Proof. Let us show that the functor in question preserves colimits of shape
D in the right variable. The colimit preservation in the left variable can be
shown in the same fashion. Let A be an R-T-bimodule and let us reason
about the functor

A—: rModg — gpModg, B+ AB.

We have the following diagram of categories, which clearly commutes:

D -2 Modg = ,Modg

Since U creates colimits of shape D and X—:V — )V preserves colimits
of shape D, we can easily deduce that the functor A—: rModgs — rModg
preserves colimits of shape D as follows:

U(A—)colimD = (A—)UcolimD
= (A—)colim(UD)

= colim((A—)UD)

= colim(U(A—)D)

= Ucolim((A—)D).

]

Construction 2 (Tensor product of bimodules). Let S, T" and R be semi-
groups in V, let A be a right R-T-bimodule and B be an T-S-bimodule. We
define the tensor product A ® B of A and B using the following coequalizer
diagram in pModg:

(AT)B AB—"5 A®B.

Proposition 20. Let S, T and R be semigroups in V. Then we get a functor
- —: RMOdT X TMOdS — RMOdS

such that for a morphisms f: A — B in gModr and g: A’ — B’ in 1Modg,
the morphism f® g: AR A" — B® B’ is the unique morphism making the
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diagram
AN — 1 pp
LAJA,A/ J/ J/WB’B(
AQA ---- BB’
f®g
commute.

Proof. 1t is evident that — ® — is a functor when f ® g is defined using
the universal property of being the unique morphism making the preceding
diagram commute. To show that such an universal property is satisfied, we
can simply note that we have the following morphism of coequalizer cocones

1l Ar wa, A

(AS)A" —— A(SA) AN — A A
f(lg)l 3
(f1)g B(SB') f9 f®g
(BS)B' 1 BB 2 Be B
B IS
(fDg T T fg ! f®eg
(AS)A’ AN’ A A,
ral wA, A
which does give us the univeral property we need. O]

Proposition 21. The tensor product of bimodules as we just defined is as-
sociative up to a coherent natural isomorphism. The associator of the tensor
product will henceforth be denoted by

a: (A®B)®@C - A® (B ().

It makes the diagram

(AB)C -2 (A® B)C —*~ (A® B)® C)

o |o

A(BCY — A(B®C) —— A® (B®C)

commute and is coherent.

Proof. For the proof we refer to Proposition 2.09. of [14]. O
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If A is a T-S-bimodule, then the structure map r4: AS — A induces
the map ps: A® S — A in rModg, defined using the universal property of
coequalizers using the diagram

ral wA s

(AS A®S.

)S AS :
x /1m 7‘N w7 /;A
A(SS) A

Similarly the left S-module structure on A induces a map As: S ® A — A.
A special case of this is the map m: S — S, viewed as the structure
map of a right S-module, inducing the map p: S® S — S.

Proposition 22. Let S be a semigroup in a monoidal category V. Then the
morphisms pa, Aa as defined above form natural transformations

P — ®S — 1: TMOdS — TMOds,
AT ®——1: 7Modg — rModg
and they make the diagrams

[e% [e%

(A®T)® B A9 (T®B), (A9B)®S A® (B®S)

pa ca\ /1® Ap PA@B\A . B/1® o5

A®B

commute. The symmetric analogue of the second triangle also commutes.

Proof. Since every map besides p4 in the diagram defining p4 is natural in
A, so will be p4s. Same for 4.

To see that the first triangle in the statement of the theorem commutes,
observe that the outer composition and all the small parts besides the triangle
commute in the following diagram

wl w

(AT)B (A®T)B (AT)® B
a AB = A®B o
V NB WB
A(TB) A(T @ B) — A® (T ®B),

which implies that that the triangle also commutes, since w is a regular
epimorphism and so is w1, since the functor —B: gkModr — rpModg preserves
colimits.
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The commutativity of the second triangle follows much in the same fash-
ion from the diagram

(AB)T “l (A® B)T © (A®B)®T
% Tm W
a AB “ A® B «
V NB 1®p3
A(BTY - AB®T) . AR (B®T).

]

We have now constructed all the components of the lax-unital bicategory
of Mod of semigroups and bimodules in V and almost proved that all the
necessary diagrams commute. The last thing we need is that ps = Ag, but
this holds trivially, since rg = lg. Thus we have the following theorem:

Theorem 4. The semigroups and bimodules in a monoidal category V with
respect to the tensor product of bimodules make up a lax-unital bicategory
Mod. The unitors of this laxz-unital bicategory are p and A and the associator
18 Q.

The notable difference with the case of monoids is that in the semigroup
case p and A are not always be invertible. Just as we did for lax-unital
bicategories in general, we can restrict our attention to firm semigroups in
YV and firm modules between them, which will give us a bicategory FMod of
firm semigroups and firm bimodules.

5.3 Firm modules

It is difficult to prove nice Morita type results for arbitrary semigroups and
modules in V other than the ones that derive from the fact that they form
a lax-unital bicategory. In this chapter firm semigroups and modules will
be one of our main objects of interest. First let us just recap what firmness
means in terms of semigroups and bimodules in V.

Definition 13. Let S and 7" be semigroups in a monoidal category V. We say
that a T-S-bimodule A is firm if the maps pa: A®S — Aand A4: AQT — A
are isomorphisms. If only As or p4 is an isomorphism we say that A is firm
as a left T-module or a right S-module respectively. Same for one sided
modules.
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Definition 14. We say that a semigroup S in V is firm if the associated map
w: S ®S — S is an isomorphism. In other words S is firm if the bimodule
associated to S is firm.

If S and T are firm semigroups in V, then we will use rFModg to denote
the full subcategory of rModg induced by all the firm 7-S-bimodules by
rFModg. Similarly rFMod and FModg will denote the full subcategories of
rMod and Modg respectively, determined by the firm modules.

Proposition 23. Let S and T be firm semigroups in )V and let A be a T-S-
bitmodule. Then the following statements are equivalent:

1. A is a firm right S-module,

2. the following 1s a coequalizer diagram in rModg.

ral TA

) AS
™~
A(SS)

(AS A

A similar statement holds for the left module structure on A.

Proof. Since pa was defined using the universal property of the coequalizer
as the unique map such that pswa s = 74, it will only be an isomorphism if
ra also coequalizes the same diagram. O]

The last proposition says that our firm semigroups and firm modules are
essentially the same as the interpolads and i-modules of [14]. Rephrasing
some results about firmness in lax-unital bicategories we get:

Theorem 5. o Let S and T be semigroups in V. Let A be a right S-
module and let B be an T'-S-bimodule which is firm as a right S-module.
Then A ® B is a firm right S-module. A similar statement holds for
left modules and bimodules.

o Let S and T be firm semigroups in V. The inclusion functor
J: rFModg — rModg
is left adjoint to the functor
(T®—-)®S: tMods — rFMods, A= (T®A)® S,

so TFModg is a locally coreflective subcategory of tModg.
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o Firm semigroups and firm bimodules in YV form a bicategory.

The last statement is essentially Theorem 3.02. of [14], although Koslowski
used a different approach for proving it.

Proposition 24. Let S, T and R be semigroups, let A be an R-T-bimodule
and B a T-S-bimodule. If A is firm as a left R-module then so is AB. If B
is firm as a right S-module, then so is AB.

Proof. Suppose that B is firm as a right S-module. Then the diagram

T‘Bl

(BS)S

IS
B(SS)

BS — B.
B

is a coequalizer diagram in pkModg by Proposition [23] Since the functor A—
preserves colimits in Modg, the following is also a coequalizer diagram in
MOdS

1(’)”51)

A((BS)S) A(BS) +— AB,

m\ /l(lm)

A(B(55))

which modulo associativity tells us that AB is firm as a right S-module.
The proof of the other part follows by symmetry. n

5.4 The Eilenberg-Watts theorem

Now we will prove the Eilenberg-Watts theorem for one-sided modules in V

Note that when we take R =T = I for the functor,
rModr x rModg — grModgs, (A, B)+— AB
we get a functor
VY x Modg — Modg, (X,B)+— XB,

which defines an action of the monoidal category V on the category Modg.
Equivalently we could have taken R =T = [ in the tensor product functor.

To prove a version of the Eilenberg-Watts theorem for semigroups in V,
we need the functors between the module categories to respect the structure
of these categories in the following sense.
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Definition 15. Let S and T be semigroups in V. We will call a func-
tor F': Mods — Mody along with a natural transformation ¢: X F(A) —
F(XA) a V-functor if the natural transformation ¢ makes the following di-
agram commute for all X, Y € V and A in Modg.

(XY)F(A) F(XY)A)

o F@ |

X(YF(A) 2 XF(YA) — F(X(Y 4)

This definition can be found for example in [24] or [10].

Example 5. e In the case that )V is Set with the cartesian product, X A
is the X-fold coproduct in Modg of A with itself. Coproduct is in this
case the disjoint union with the obvious induced actions. All functors
are V-functors and the map £ is induced by the universal property of the
coproduct. The map £ is an isomorphism precisely when F' preserves
coproducts.

e In the case that V is Ab, the category of Abelian groups with the tensor
product, V-functors are precisely the additive functors.

Now we are ready to prove a version of the Eilenberg-Watts theorem.

Theorem 6. Let S and T be firm semigroups in V. Let F' be a coequalizer
preserving V-functor F: FModg — FModr with an invertible &. Then the
functor F is isomorphic to the functor — ® F(S), where the left S-module
structure on F(S) is defined as the composition

lr(s)

SF(S) F(S).
)

™~
F(SS)

Proof. First we will define the morphisms 74: A ® F(S) — F(A). Since A
is a firm right S-module, the following is a coequalizer diagram in FModg

ral

AS A

(AS)S

I
A(SS)

The next diagram shows that £ provides us with an isomorphism of coequal-
izer cocones between the image under F' of the preceding coequalizer and the
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coequalizer defining the tensor product of A and F'(S). This isomorphism of
coequalizer cocones in FMody defines the morphism 74 of right T-modules.

) WA, F(S)

(AS)F(S) —— A(SF(S)) —— AF(S) —— A® F(S)

¢ )/w(m)

| :

AF(SS 3
13 'El 13 I TA

" F(A(SS)) |

F(a F(1m) |

/ F(ra) v
F((AS)S) P F(AS) F(4)
| I

(AS)F(S) - AF(8) 5 A® F(S)

Now we just need to show that 74: A®Q F(S) — F(A) is natural in A. Behold
the following diagram:

AF(S) BF(S)

\wf,p(s)

¢ A F(9) 2D B F(S)

TA ¢

Since every face of the cube other than the front face clearly commutes, the
front face commutes under wa p(g). Since wa p(s) is a regular epimorphism,
the front face of the cube also commutes, which means that 7 is indeed
natural. O]

5.5 Orthogonal factorizaton systems on V

Now let us show that an orthogonal factorization system on V will extend
virtually unchanged to an orthogonal factorization system on each of the
hom-categories of the lax-unital bicategory Mod.

Proposition 25. Suppose that (€, M) is an orthogonal factorization system
on 'V such that the monoidal product of V maps morphims in € to morphisms
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in € in both variables. Then each category tModg, where S and T are semi-
groups in V, has a factorization system such that all morphism of bimodules
are factorized as morphisms of V and the left and right actions on the middle
object M of the factorization

A— M — B.

€ m

of f: A— B are defined as the unique morphisms making the diagrams

AS — s " . BS TA 1M TR
TA J i M lTB and la J i I JIB
A . M — B A . M — B
commute.

Proof. To show that factorizations in rModg are inherited from V), first we
will to check that the diagonal fill-in morphism s of a square

A . B
o
—— D

of T-S-bimodule morphisms is a morphism of T-S-bimodules. Let us check
that the fill-in is compatible with the right S-module structure. We have the
following commutative diagram:
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We need the square with the dashed sides to commute, which it does, since ev-
erything else commutes and since el is an epimorphism and m is a monomor-
phism. Similarly we get the compatibility of s with the left T-module struc-
ture. Notice that we did not use the fact that any of the left T-module and
right S-module structure maps of A,B,C and D was actually compatible with
the respective semigroup structure of 7" and S. This observation makes the
next part of the proof easier.

Next we need to check that when f: A — B is a morphism of T-S5-
bimodules and

A—S0s M N

is a factorization of f, then M carries a T-S-bimodule structure and m and e
are morphisms of bimodules. The right S-module structure on M is defined
as the unique morphism r,; making the diagram

el ml

AS MS BS
TA l :v ™™ l B
A——M———B

commute. Note that this definition makes e and m into maps of right S-
modules. Since M being being a right S-module is equivalent to rp;: MS —
M satistying the morphism of modules diagram, we have that M is a right S-
module because of rj; being defined as a diagonal fill-in. In a similar fashion
we will define the left T-module structure l3;: TM — M on M and observe
that it makes e and m into morphisms of left T-modules.

Now we just need the left and right module structures of M to be com-
patible, but this is equivalent to [, being a map of right M-modules, which
also holds, since when defining [, : T'"M — M using diagonal fill-in property,
we can think of all of the modules involved as right S-modules. O

We also want the tensor product of bimodules to map morphisms in &
to morphisms in €. If 9 consists of precisely the monomorphisms, as is the
assumption in Chapter 3, then indeed, the tensor product will satisfy that
property.

To see that, let us take a look at the diagram

AN —T . pp

WA'A/JI J/wB,B/

AQA ---- B B’
f®g
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that defines the tensor product on morphisms. Note that the maps w are
regular epimorphisms, which means that they are also strong epimorphisms
and must belong to €. This should make it clear, that in this case, if f and
g are in €, the morphism f ® g must also lie in €.

5.6 Closed monoidal V

Starting with this section we will assume that V' is right closed, or in other
words, that the functor

—Y:VxV=V, X—=XY
has a right adjoint
Y,-]: VxV =YV, ZwlY 7

for all objects Y of V.

Additionally we will assume that the category V has equalizers. This
allows for the existence of right adjoints for various functors we have con-
sidered. We will not prove that these adjoints exist or show how they are
constructed, for that we refer the reader to Section 3 of [23] and Section 5 of
[14].

From now on, for semigroups R, T, S in V and a T-S-bimodule B, let

Homg(B, —): RpMods — gModr
denote the right adjoint of
— ® B: pModr — pModg .
The counit and unit of this adjunction will be denoted by
ef: Homg(B,A)® B —+ A and n%: A — Homg(B,A® B).

Therefore we have a right closed structure on the bicategory of modules
and we can apply all the results from the previous chapter. In the specific
case of the lax unital bicategory of bimodules between semigroups in ¥V The
closedness has other nice uses.

If we take T'= R = I in the preceding adjunction, we get an adjunction

—B :V = Modg :Homg(B, —).

We note that if V is a symmetric closed monoidal category, then we can
use the nice theory of V-categories and V-functors (see [13]) to study our
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module categories and V-functors, since the adjunction above equips the
hom-categories of Mod with a V-category structure (see [10]). For example,
we can get functors that satisfy our Eilenberg-Watts theorem from enriched
adjunctions and equivalences.

Proposition 26. Suppose that the functors F': Modg = Modr :G are in an
adjunction
Modr(F(A), B) = Mods(A,G(B)),

such that we also have a natural isomorphism in V
Homy(F(A), B) 2 Homg(A, G(B)).

Then F' is a V-functor with an invertible &.

Proof. We have natural isomorphisms

Modg(X F(A), B) = V(X,Homg(F
=~ V(X,Homg(A,
=~ Modgs(XA,G(B
~ Mods(F(X A),

(4), B))
G(B)))
)

B).

Therefore by Yoneda lemma we have an isomorphism
£: XF(A) — F(XA).

It can be checked that it is natural in X and A and satisfies the conditions
needed. O

5.7 Conclusion

Let us summarise what we can we conclude from the results in this thesis:

e lax-unital bicategories seem to be a natural environment for right wide
Morita contexts,

e to get useful results, we should restrict our attention to 1-cells whose
unitors are nice enough epimorphisms,

e to get results resembling the classical Morita theory, we need to put
increasingly strict conditions on the epimorphic and monomorphic 2-
cells of the lax-unital bicategory,
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e the lax-unital bicategory Mod of semigroups and bimodules in a monoi-
dal category provides a good source of examples of situations where the
more general results can be used,

e the prerequisites of the general results for lax-unital bicategories can,
in the case of the lax-unital bicategory Mod, be derived in quite a
straightforward way from the corresponding properties on V.

In terms of future work, we hope that it is possible to improve Theorem |3| to
include situations where the epimorphic 2-cells need not be strong, which is
what we originally wanted to achieve.
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Uhikuteta Morita ekvivalentsus bikategoorses

keskkonnas
Kokkuvote

Selles t66s on uuritud Morita teooriat 16tvade tihikutega bikategooriate
kontekstis. Peamiseks motivatsiooniks on tihikuta multiplikatiivsete struk-
tuuride uurimine. Uhikuta multiplikatiivne struktuur on méiste, mis voib
elada mitmes keskkonnas ning selle koige puhtamaks vormiks, vahemalt as-
sotsiatiivsust eeldades, voib lugeda poolrithma. Sellega aga asi ei piirdu,
multiplikatiivne struktuur voib asuda ka teise struktuuri peal. Ringid, mate-
maatikas iithed uurituimad algebralised struktuurid, saab lugeda iihiku pu-
udumisel samuti tthikuta multiplikatiivseks struktuuriks.

Uldises mottes on oluline see, et on antud mingi matemaatiline objekt,
nimetame seda hetkel alusobjektiks, koos korrutamistehtega, kusjuures see
korrutamistehe peaks olema selle objekti struktuuriga kooskolas. Kooskolas
olemine tahendab seda, et multiplikatiivne struktuur peaks olema alusobjekti
tiitipi objektide teisendus. Probleemi taoline sonastus viitab sellele, et an-
tud kiisimust voiks olla koige sobilikum uurida kategooriateooria kontekstis.
Kategooriateooria uuribki ju objekte ning nendevahelisi teisendusi.

Uks eelnevalt kirjeldatud kategoorsetest esitustest on méiste “poolrithm-
objekt monoidkategoorias”. Poolrithmobjekt viitab siin eelneva konteksti
moistes lihtsalt abstraktsele iihikuta multiplikatiivsele struktuurile ning mo-
noidkategooria on keskkond kus sellised struktuurid loomulikul viisil elavad.
Seda moistet on uuritud antud t66 viiendas peatiikis, kuid see on t66 peamine
motivatsioon, mitte eesmark.

Mainitud “poolrithmobjekte monoidkategoorias”, edaspidi lihtsalt “pool-
rithmobjekte”, on voimalik omavahel vorrelda mitmel viisil. Uks neist vii-
sidest on tavaline poolriithmobjektide teisendus, moiste, mis ringide ja pool-
rithmade korral annab homomorfismi moiste. Antud t06 seisukohalt eelis-
tatav seose moiste on bimoodul. Esmapilgul voib-olla ei kipu bimoodulitest
motlema, kui “struktuuri sailitavatest teisendustest”, kuid bimoodulid kaitu-
vad mitmeti nagu need oleksid seda. Votmeks on siin bimoodulite tensorko-
rrutis, mis voimaldab neid jarjestikku komponeerida.

Tensorkorrutis on mingis mottes t06 peamine uurimisobjekt. Nimelt on
huvi pakkuv tensorkorrutise abstraktne analoog, bikategooria — kategooriat
meenutav struktuur mis koosneb objektidest, nendevahelistest teisendustest
ning teisenduste vahelistest teisendustest. Morita teooria ja selle teoreemid
on sonastatavad mitmeti, kuid iildjuhul on need seotud mingite struktuuride
ning nendevaheliste moodulite voib bimoodulitega. Bikategooria on seetottu
hea keskkond, kus Morita teooriat abstraktselt uurida.
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Tapsemalt on huviobjektiks lotvade iihikutega bikategooria. Tavaliste
bikategooriate kontekstis on mitmed autorid Morita teooriat uurinud, kuid
siinne peamine motivatsioon, ithikuta multiplikatiivsed struktuurid, tavaliselt
bikategooriat ei moodusta. Seega tuleb lasta bikategooria definitsiooni nor-
gemaks, nii et ka poolriithmad ja tihikuta ringid arendatava teooria alla jaaks,
ning tihikute lodvaks laskmine on just see, mis seda voimaldab.

Teises peatiikis on defineeritud lotvade iihikutega bikategooria ja Morita
kontekstid, selle t06 tahtsuselt teine moiste. Siin peatiikis on uuritud nende
moistete omadusi ning sisu pohineb autori vastava pealkirjaga artiklil. Tule-
mused on suures osas inspireeritud analoogiliste tulemuste poolt poolrithmade
ning ka ringide Morita teoorias. Nendel juhtudel on teoorial mitmed head
omadused ning on tritatud nendele omadustele voimalikult 1ahedale jouda.
Samuti uuritakse kuidas Morita kontekstide kaudu defineeritud ekvivalentsus
kaitub ning kuidas kontekstide omadusi parandada.

Kolmas peatiikk pohineb samal artiklil ning seal on uuritud kontekstide
parandamist lisaeeldusel et iihikutega bikategooria 2-nooled, ehk teisenduste
vahelised teisendused, oleksid tegurduvad homomorfismiteoreemile analoogi-
lisel viisil — labi teisenduse kujutise. See annab uue meetodi kontekstide
parandamiseks ning voimaldab lihtsamalt uurida eelnevas peatiikis defineer-
itud unitaarsuse moistet.

Neljandas peatiikis on uuritud juhtu, kus lotvade iihikutega bikategoo-
ria on kinnine. Kinnisuse moistet on koige kergem ette kujutada ringide
naitel: kui on antud kaks bimoodulit, millel on kas iihine vasak voi parem
ring, siis moodustavad nende bimoodulite vahelised teisendused omakorda
bimooduli. See eeldus voimaldab toestada selle peatiiki pohitulemuse: kui
kahe piisiva objekti vahel leidub epimorfsete kujutustega Morita kontekst,
saame konstrueerida ekvivalentsuse teatud teisenduste kategooriate vahel.
Mitmed siinsed tulemused on Valdis Laane, Laszl6 Marki ja autori piisivate
poolrithmade teemalise artikli analoogid bikategoorses kontekstis.

Viiendas peatiikis on uuritud pohinaidet, poolrithmobjekte monoidkate-
goorias. On naidatud, mida peab monoidkategoorialt eeldama, et monoid-
objektide ning bimoodulite 16tvade iihikutega bikategoorias oleksid taidetud
esimeses neljas peatiikis tehtud eeldused.

Tehtud t66 jarel kokkuvottena voib oelda, et kuigi mitmed tihikuteta
struktuuride Morita teoorias kasutatavad konstruktsioonid ja meetodid on
ildistatavad lotvade iithikutega bikategooriate konteksti ning Morita teooria
arendamise keskkonnana paistab see struktuuri mottes taiuslik, ei onnestunud
autoril toestada esialgselt loodetud iildisusega tugevaid Morita ekvivalent-
suse kohta kaivaid tulemusi. Autori intuitsioon iitleb, et paar tulemust pole
optimaalsed ning on optimistlik, et siinne ldhenemine voib ka tulevikus vilja
kanda.
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