IRENE TEINEMAA

Predictive and Prescriptive Monitoring of

Business Process Outcomes

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS

6

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
6

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
6

IRENE TEINEMAA

Predictive and Prescriptive Monitoring of
Business Process Outcomes

b

[ll UNIVERSITY or TARTU
. Press

Institute of Computer Science, Faculty of Science and Technology, University of

Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in informatics on March 5, 2019 by the Council of the Institute
of Computer Science, University of Tartu.

Supervisors

Opponents

Prof. Marlon Dumas
University of Tartu
Estonia

Assoc. Prof. Fabrizio Maria Maggi
University of Tartu
Estonia

Prof. Donato Malerba, PhD
University of Bari
Italy

Prof. Dr. Myra Spiliopoulou
University of Magdeburg
Germany

The public defense will take place on April 26, 2019 at 10:15 a.m. in J. Liivi 2,

room 404.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright (©) 2019 by Irene Teinemaa

ISSN 2613-5906

ISBN 978-9949-03-000-2 (print)
ISBN 978-9949-03-001-9 (pdf)

University of Tartu Press
http://www.tyk.ee/

ABSTRACT

Recent years have witnessed a growing adoption of machine learning techniques
for business improvement across various fields. Among other emerging applica-
tions, organizations are exploiting opportunities to improve the performance of
their business processes by using predictive models for runtime monitoring. Such
predictive process monitoring techniques take an event log (a set of completed
business process execution traces) as input and use machine learning techniques
to train predictive models. At runtime, these techniques predict either the next
event, the remaining time until the end, or the final outcome of an ongoing case,
given its incomplete execution trace consisting of the events performed up to the
present moment in the given case. In particular, a family of techniques called
outcome-oriented predictive process monitoring focuses on predicting whether a
case will end with a desired or an undesired outcome. An outcome-oriented pre-
dictive process monitoring system is expected to make accurate predictions in the
early execution stages, i.e. given as few events as possible. The user of the system
can use the predictions to decide whether or not to intervene, with the purpose of
preventing an undesired outcome or mitigating its negative effects. Prescriptive
process monitoring systems go beyond purely predictive ones, by not only gener-
ating predictions but also advising the user if and how to intervene in a running
case in order to optimize a given utility function.

In this context, this thesis addresses the question of how to train, evaluate,
and use predictive models for predictive and prescriptive monitoring of business
process outcomes. A variety of outcome-oriented predictive process monitoring
techniques have been developed in the literature. However, as different authors
have used different terminology, experimental settings, datasets, and baselines,
there is no clear overview of how these techniques compare to each other. To
address this issue, the thesis undertakes an analysis and proposes a taxonomy of
methods for training predictive process monitoring models. Moreover, the thesis
reports on a comparative experimental evaluation of existing techniques, using a
benchmark covering 24 prediction tasks constructed from nine real-life event logs.
The results put into question a previous hypothesis that training separate classifiers
for each prefix length using a lossless (index-based) feature encoding of a trace is
superior to training a single classifier with a lossy (aggregation) encoding.

The analysis of the state of the art unveiled that existing techniques focus on
structured data, neglecting the unstructured (textual) data often available in real-
life event logs. The thesis addresses this gap by proposing a framework that makes
use of text mining techniques to extract features from unstructured data and com-
bines them with features from structured data in order to train more powerful pre-
dictive models. An experimental evaluation shows that a simple bag-of-n-grams
encoding of textual data often outperforms other text mining techniques in this
setting.

The evaluation of predictive process monitoring techniques is traditionally lim-

ited to measuring the accuracy and the earliness of the predictions, ignoring the
stability of the sequential predictions generated by a model for increasingly longer
prefixes of the same trace. To address this gap, the thesis proposes a notion of tem-
poral stability for predictive process monitoring and evaluates existing techniques
with respect to this measure. The results show that LSTM classifiers achieve the
highest temporal stability, followed by XGBoost.

Lastly, existing research proposals in the field of predictive process monitor-
ing are either limited to providing the user with predictions without any advice
on using these predictions, or they expect the user to specify a decision thresh-
old, whereas the system will trigger an alarm if a prediction score exceeds this
threshold. The thesis proposes a framework for alarm-based prescriptive process
monitoring that empirically finds the optimal decision threshold based on a cost
model that accounts for the cost of an intervention, the cost of the undesired out-
come, and the effectiveness of mitigating the undesired outcome if an intervention
is made. The experimental evaluation shows that the proposed approach consis-
tently finds thresholds that minimize the overall processing costs.

CONTENTS

1. Introduction
1.1. Process mining

1.2. Predictive and prescriptive process monitoring

1.3. Problem statement
1.4. Contributions and outline .

2. Background
2.1. Machine learning

2.2. Evaluation measures and experimental settings

2.2.1. Evaluation measures

2.2.2. Model selection and generalization

2.3. Classification algorithms .
2.4. Early sequence classification

3. Literature Review
3.1. Search methodology
3.1.1. Study retrieval . . .
3.1.2. Study selection . . .

3.1.3. Primary and subsumed studies

3.2. Analysis and taxonomy of th
3.2.1. General concepts and

e training methods
workflowo

3.2.2. Prefix extraction and filtering

3.2.3. Trace bucketing . .
3.2.4. Sequence encoding

3.2.5. Classification algorithm

3.2.6. Discussion
3.3. Deployment use cases . . .

3.4. Evaluation measures and experimental settings

3.4.1. Evaluation measures

3.4.2. Model selection and generalization

3.5.Summary

4. Benchmark
4.1. Datasets
4.2. Experimental setup

4.2.1. Research questions and evaluation measures
4.2.2. Classifier learning and bucketing parameters
4.2.3. Filtering and feature encoding parameters
4.3. Results: accuracy and earliness

4.4. Results: time performance
4.5. Results: gap-based filtering

17
17
19
21
23

25
25
26
26
28
31
33

35
35
35
36
37
38
39
41
42
44
46
47
48
50
51
53
53

55
55
60
60
62
64
65
74
75

4.6. Results: categorical domain filtering
47.5ummary L e e e e e e e e

5. Predictive Business Process Monitoring with Structured and Unstruc-
tured Data
S.1.Textmining
5.2. Predictive process monitoring framework with structured and un-
structureddata oL oL
5.2.1. Overview of the framework
522.Textmodels
53.Evaluation
53.1.Approaches Lo
53.2.Datasets
5.3.3.Experimental setup
534.Results
SA4.Summary

6. Temporal Stability in Predictive Process Monitoring
6.1. Stability of learning algorithms
6.2. Temporal prediction stability
6.2.1. Prediction scores overtime
6.2.2. Temporal stability
6.2.3. Combining prediction scores via smoothing
6.3.Evaluationo
6.3.1. Approaches o
6.3.2.Datasets
6.3.3. Experimental setup
634.Results
6.4.Summary L

7. Alarm-Based Prescriptive Process Monitoring
7.1. Cost-sensitive learning and prescriptive process monitoring
7.2. Alarm-based prescriptive process monitoring framework
7.2.1. Concepts and costmodel
7.2.2. Alarm-based prescriptive process monitoring system
7.2.3. Return on investment analysis
7.3. Alarming mechanisms and empirical thresholding
74.Bvaluation
7.4.1. Approaches and baselines
742, Datasetso
7.4.3. Experimental setup
744 Resultso
7.5.Summary ... Lo

79
80

83
83

8. Conclusion and Future Work

8.1. Summary of contributions
82.Futurework L.

Bibliography

Appendix A. Code Repositories

Appendix B. Additional Experiments
Acknowledgement

Sisukokkuvoéte (Summary in Estonian)
Curriculum Vitae

Elulookirjeldus (Curriculum Vitae in Estonian)

List of original publications

140
140
142

144
159
160
185
186
188
189
190

[c BN Be) NV, I SUS I \O]

10.

11.
12.
13.

14.

15.
16.
17.
18.

19.

LIST OF FIGURES

. lllustration of a completed and a running trace. In outcome-oriented

predictive monitoring, we aim to predict the final outcomes for run-
ning traces. However, we can use the historical completed traces in
the event log for training the predictive model.

. Predictive and prescriptive process monitoring.
. Mapping of the contributions, chapters, and publications.
.Example ROC curves.
. Illustration of different splitting strategies.
. Predictive process monitoring workflow (offline phase).
. Predictive process monitoring workflow (online phase).
. Taxonomy of methods for outcome-oriented predictive business pro-

cess monitoring. Numbers correspond to the primary studies em-
ploying a given method (see Table 4 for mapping between primary
studies and their numbers).

. Comparison of all classifiers against each other with the Nemenyi

test. The classifiers are compared in terms of the best AUC achieved
in each of the 24 datasets. Groups of classifiers that are not signifi-
cantly different (at p < .05) are connected.
Comparison of the bucketing/encoding combinations with the Ne-
menyi test. The methods are compared in terms of AUC achieved
in each of the 24 datasets using the XGBoost classifier. Groups of
methods that are not significantly different (at p < .05) are connected.
AUC across different prefix lengths using XGBoost.
AUC across different prefix lengths using XGBoost (continued).
Concept drift in the bpic2011_4 log. The distributions of the vari-
ables are different across the two classes in the train and the test
set. The drift becomes more evident in the max_month feature used
by the aggregation encoding, while it is not so severe in the original
month feature used by the last state encoding. Statistical significance
of the differences is assessed using Wilcoxon signed-rank test.
Concept drift in data attributes in sepsis_1I log. The distributions of
the variables are different across the two classes in the train and the
test set. Statistical significance of the differences is assessed using
Wilcoxon signed-rank test. L.
Offline times across different gaps (XGBoost).
AUC across different gaps (XGBoost).
Online times across different gaps (XGBoost).
Offline times across different filtering proportions of dynamic cate-
gorical attribute levels (XGBoost).
AUC across different filtering proportions of dynamic categorical
attribute levels (XGBoost).,

10

20
21
24
28
30
40
40

49

66

68
69

72

73
78
78
79

80

81

20.

21.
22.
23.
24.

25.
26.
217.
28.
29.
30.
31.
32.

33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

49.

50.

51.

52.
53.

Online times across different filtering proportions of dynamic cate-

gorical attribute levels (XGBoost). 82
The offline component of the proposed framework. 85
Encoding a prefix carrying both structured and unstructured payload. 86
AUC across different prefix lengths using XGBoost. 95
Examples of prediction scores over time: original (left) and

smoothed (right). oL 101
Predictionaccuracy. 107
Prediction accuracy (continued). 108
Temporal stability. 110
Temporal stability (continued). 111
Temporal stability across different levels of smoothing. 113
Temporal stability across different levels of smoothing (continued). 114
Overall prediction accuracy across different levels of smoothing. . 115
Overall prediction accuracy across different levels of smoothing

(continued). 116
Temporal stability vs. prediction accuracy. 117
Temporal stability vs. prediction accuracy (continued). 118
Alarm-based prescriptive process monitoring. 128
Cost over different ratios of ¢, (0,L) and ¢;(k,0,L). 133
F-score and earliness over different ratios of c,,(0,L) and

Cin(kyO,L). . o o o 134
Cost over different thresholds (7 is marked with ared cross). . . . 135
Benefit of the alarm system, varying eff (k,o,L). 137
Benefit of the alarm system, varying ccom(G,L). 138
Case length histograms for positive and negative classes 161
Case length histograms for positive and negative classes (continued) 162
Bucket size distributionso oo 163
Bucket size distributions (continued) 164
AUC across prefix lengths using XGBoost, all methods 165
AUC across prefix lengths using XGBoost, all methods (continued) 166
AUC across prefix lengths using XGBoost, long tracesonly 166
Offline times across different filtering proportions of static categor-

ical attribute levels (XGBoost) 167
Online times across different filtering proportions of static categor-

ical attribute levels (XGBoost) 168
AUC across different filtering proportions of static categorical at-

tribute levels (XGBoost) 178

Differences in Brier scores on uncalibrated vs. calibrated classifiers
over different prefix lengths. Positive scores show that calibration
(Platt scaling) helped to make the classifier better calibrated. . . . 179
Differences in Brier scores (continued). 180
Benefit of the alarm system, varying eff (k, o,L) with a linear decay. 181

11

54. Benefit of the alarm system, varying ccom(0,L); cin(k,0,L) is in-
creasing linearly from 1/|c|to 1.

12

S W N =

o0 J O\ W

18.
19.
20.
21.

22.

23.

24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

LIST OF TABLES

.Example of aneventlog.
.Confusion matrix.
. Primary and subsumed studies.
. Classification of the 11 primary studies according to the four steps

of the offlinephase.

.Encodingmethods.,
. Deployment use cases in the primary studies.
. Evaluation procedures in the primary studies.
.LTL Operators Semantics. v v v v v v v v o
. Statistics of the datasets used in the experiments.
10.
11.
12.
13.
14.
15.
16.
17.

Hyperparameters and distributions used in optimization via TPE. .
Overall AUC (F-score) for XGBoost
Execution times for XGBoost.
Execution times for XGBoost (continued).
Example event log with structured and unstructured data payload .
Approaches. L
Data statistics.
Hyperparameters of the text models and their sampling distributions
used in optimizationviaTPE.
Overall AUC. e
Execution times for XGBoost with unstructured data.
Approaches.
Hyperparameters of LSTM and their sampling distributions used in
optimizationviaTPE.
Effects of maximizing the inter-run stability and accuracy (during
hyperparameter optimization) on the temporal stability and accuracy
of the finalmodels.
Cost of a case o based on its outcome and whether an alarm was
raised. L. e
Statistics of the unemployment dataset.
Cost model configurations.
Bestnumberofclusters L.
Best number of neighbors
Overall AUC (F-score) for random forest
Overall AUC (F-score) for logistic regression
Overall AUC (F-score) for SVM
Execution times for random forest
Execution times for random forest (continued)
Execution times for logistic regression
Execution times for logistic regression (continued)
Execution times for SVM 0oL

13

18
26
38

41
47
49
51
56
60
63
67
76
77
83
&9
91

93
94
96
104

106

112

125
130
131
167
168
169
170
171
172
173
174
175
176

36. Execution times for SVM (continued) 177

37. Execution times for RF with unstructured data. 178

38. Execution times for logit with unstructured data. 183

39. Overall Brier scores for uncalibrated and calibrated classifiers. Best
scores for each classifier are markedinbold. 184

14

LIST OF ABBREVIATIONS

Abbreviation ‘ Meaning

AB AdaBoost

ACC Accuracy

AUC Area under the ROC curve
BoNG Bag-of-n-grams

BPIC Business Process Intelligence Challenge
CRM Customer-relationship management
DFG Directly-Follows Graph

DR Debt recovery

ERP Enterprise resource planning

EX Exclusion criterion

FN False negative

FP False positive

FPR False Positive Rate

GBM Generalized boosted regression models
GBT Gradient boosted trees

HAC Hierarchical agglomerative clustering
HMM Hidden Markov Model

idf Inverse document frequencies
IN Inclusion criterion

KNN k-nearest neighbors

LDA Latent Dirichlet Allocation

logit Logistic regression

LSTM Long short-term memory

LtC Lead-to-cash

LTL Linear Temporal Logic

MPL Minimal prediction length

NB Naive Bayes

PV Paragraph Vector

RF Random forest

ROC Receiver operating characteristic
ROI Return on investment

RQ Research question

SGD Stochastic gradient descent

SLR Systematic Literature Review
SVM Support vector machine

tf Term frequencies

TN True negative

TP True positive

TPE Tree-structured parzen estimator
TPR True Positive Rate

TS Temporal stability
XGB/XGBoost | Extreme gradient boosting

15

LIST OF NOTATIONS

In the following, we list some fundamental notations used throughout the thesis.

Symbol ‘ Meaning

x() = (x(li>,. ,x§f>) a feature vector corresponding to the ith instance with p features
x(<r> a feature vector corresponding to the ¢th timepoint in the ith sequence
y<i) the target variable for the ith instance

ﬁ(i) a prediction (class or score) of the target variable for the ith instance
pli<r> a prediction for the tth timepoint in the ith instance

e an event

me(e), wr(e), ma(e) | the case id, timestamp, and the activity name of an event e

o =(e1,...,€q)) a trace, i.e. a sequence of events

lo| the length of

o(i) the ith event of trace &

ha’k(c) a prefix trace containing the first k events of a trace ¢

T decision threshold

16

1. INTRODUCTION

Companies and organizations aim to generate value to their customers and stake-
holders. This is achieved through business processes, i.e. chains of events, ac-
tivities, and decisions sharing common business goals, such as manufacturing of
a product or providing a service. For instance, a typical order-to-cash process
starts when a customer places an order for purchasing a product or a service;
encompasses several activities performed by the vendor, such as verifying the
purchase order, shipping of the product, composing and sending an invoice to the
customer; and concludes with the customer making the payment and receiving the
product [25].

1.1. Process mining

Modern organizations use process-aware information systems that record infor-
mation about the execution of business processes that can be extracted and pre-
processed to produce event logs [101]. The availability of event logs has lead
to a growing interest among organizations to improve their business processes in
a data-driven manner. The collection of techniques that aim to extract valuable
process-related information from event logs is called process mining [102].

An event log (see example in Table 1) consists of a set of traces, i.e. sequences
of event records (events for short) that are related to the same case (an instance
of a business process). For example, a case can refer to all events related to the
same purchase order. An event carries information about the execution of a given
activity'. The core elements of every event are the case id (e.g. the identifier of
the purchase order), the activity name (or event class, i.e. the type of the executed
event), and a timestamp. In other words, every event represents the occurrence
of an activity at a particular point in time and in the context of a given case.
Additionally, an event can contain various other data, e.g. together with a payment
activity, the amount of payment is often recorded. Furthermore, an event often
contains information about the resource, i.e. the process worker or the software
system involved in executing the activity. Such event attributes are of dynamic
nature, i.e. they can take different values for different events throughout the trace.
Conversely, case attributes are of static nature, i.e. they belong to the case and
are hence shared by all events generated by the same case. Examples of case
attributes are the type of the ordered product and the age of the customer. We use
the term control flow to refer to the case id, the activity name and the timestamp.
We use the term data payload to refer to the rest of the event and case attributes?.

'We use the term activity to refer to all the steps that can happen in a business process, including
those that are instantaneous and those with a non-zero duration.

%In the XES standard, which is an XML-based standard for event logs, the data payload is re-
ferred to as the optional attributes, since these attributes are not necessary for discovering a process
model from an event log [40].

17

Table 1: Example of an event log.

Case ID EventID Customer Product Timestamp Activity Resource Amount
Cl1 EO1 Kate PO1 2018-07-20 16:13 Create order Mark -
Cl1 E02 Kate PO1 2018-07-20 16:14 Check availability Mark -
Cl E03 Kate PO1 2018-07-20 16:16 Create invoice Mark 100
Cl E04 Kate PO1 2018-07-22 10:45 Receive payment PM1 100
Cl1 EO5 Kate PO1 2018-07-22 14:10 Ship product Mark -
Cl E06 Kate PO1 2018-07-22 17:23 Deliver product John -
C2 EO7 Tom P02 2018-07-23 10:05 Create order Alice -
C2 E08 Tom P02 2018-07-23 10:05 Check availability Alice -
C2 E09 Tom P02 2018-07-23 10:07 Create invoice Alice 200
C2 E10 Tom P02 2018-07-23 15:32 Cancel order System -

More formally, we assume that events are characterized by various properties
(i.e. event and case attributes).

Definition 1.1.1 (Events, Properties of events). Let £ be the universe of events,
i.e. the set of all possible event identifiers. Function mp : £ — P assigns a value
of a property P to an event.

We do not impose a specific set of properties, however, we assume that three of
these properties are the case id, the timestamp, and the activity name of an event.
Let C be the domain of case ids, 7 the domain of timestamps, and A the domain
of activity names, then there is a function 7z : £ — C that assigns a case id to an
event, a function 7y : £ — T that assigns a timestamp to an event, and a function
74 : £ — A that assigns an activity name to an event.

Definition 1.1.2 (Trace). A trace is a non-empty sequence 6 = (ei,...,€|g|) of
events such thatfor 1 <i < j<|o|:e;,e; € E; melei) =me(ej) Anr(ei) < wr(ej),
where |o| denotes the length of . The universe of all possible traces is denoted
by S..

In other words, all the events refer to the same case, each event appears only
once, and time is non-decreasing. If the timestamps of two events are identical,
the order between these events is chosen arbitrarily. We use the notation ¢ (i) to
refer to the ith element in 6. We say that a trace is completed if the corresponding
case has finished, i.e. no additional events related to the given case can occur in
the future.

Definition 1.1.3 (Completed trace). A completed trace is a trace ¢ such that there
exists no event ¢ which is not an element of &, but has the same case id as the
events in 0, i.e. e’ : me(e) = me(e;); € e; € E;¢' ¢ 6;e; € 6. The universe of all
possible completed traces is denoted by S.

Definition 1.1.4 (Event log). An event log L is a set of completed traces, i.e.
LCS.

Process mining encompasses a wide range of techniques that take as input
event logs. Examples of process mining techniques include automated process
discovery, i.e. deriving interpretable models that describe the flow of executing

18

activities in the process; conformance checking, i.e. checking how well the ac-
tual execution of the process is aligned with the intended stucture of the process;
performance analysis, i.e. identifying bottlenecks in the process; and deviance
mining, i.e. explaining the causes of “deviant” cases in a process, with respect to
a given function that classifies cases into “normal” and “deviant”.

1.2. Predictive and prescriptive process monitoring

The process mining techniques mentioned in the previous section (automated pro-
cess discovery, conformance checking, performance analysis, and deviance min-
ing) are tactical in nature, i.e. they help the process stakeholders to assess and im-
prove the process over a relatively long period of time. Conversely, online process
monitoring techniques are designed to aid the process workers on an operational
level, with the aim of supporting short-term decision making on a day-to-day ba-
sis.

The input to an online process monitor is an event stream, i.e. the event records
arrive one by one as they are executed. Traditionally, the output of process mon-
itoring methods is in the form of periodically produced reports or dashboards,
reporting the (aggregated) performance measures of the running (i.e. incomplete,
ongoing) instances [12]. Furthermore, compliance monitoring aims to check
whether an ongoing case is compliant with relevant regulations, constraints, and
rules [59].

A family of techniques called predictive process monitoring go a step further
by trying to predict how a running process instance will unfold up to its com-
pletion, given only its prefix, i.e. an incomplete (or running) trace containing the
sequence of events that are available for a running case at a given point in time
(a completed and a running trace are illustrated in Figure 1). In other words, we
aim at making predictions for incomplete cases, rather than for completed cases.
Therefore, we make use of a prefix function which extracts a prefix of a given
length from a given trace.

Definition 1.2.1 (Prefix function). Given a trace ¢ = (e, ...,e|q|) and a positive
integer k < |0/, the prefix function hd* : S, — S, returns an (incomplete) trace
corresponding to the first k events of 6: hd*(c) = (e,...,e). For example,

hd*((a,b,c,d,e)) = (a,b).

In the context of predictive monitoring, one can think of several different pre-
diction targets that are important from the business perspective, e.g. the remaining
time until the completion of the case [81], the next activity that will be performed
in the given case [28, 79, 93], or the final outcome of a case [60, 63, 64]. The latter
task, called outcome-oriented predictive process monitoring, is the core topic of
this thesis.

The outcome of a case can be defined in various ways depending on the busi-
ness goals. The outcome can be thought of as a categorical variable consisting of

19

Current moment
Current moment

‘

>
r

Time

(1) A completed trace. All 7 events have (2) An incomplete (running) trace. Only 3
been observed. events have been observed so far, while the
future events remain unknown.

Figure 1: Illustration of a completed and a running trace. In outcome-oriented
predictive monitoring, we aim to predict the final outcomes for running traces.
However, we can use the historical completed traces in the event log for training
the predictive model.

a number of possible values (i.e. classes). For example, an order-to-cash process
can end with (i) the customer successfully paying for the order and receiving the
products, (ii) canceling of the purchase order by the customer, or (iii) canceling
of the purchase order by the store. From the business perspective it is usually
sufficient to define the outcome as a binary variable with only two possible values
reflecting whether the case will finish with a desired (positive) or an undesired
(negative) result. For instance, a desired outcome in the latter example would be
that the customer pays the requested amount and receives the ordered product,
while canceling the purchase order (either by the store or by the customer) would
be considered an undesired outcome. In the rest of this thesis, we assume that the
outcome of a business process is a binary variable.

The outcome can also be defined as meeting a performance target, e.g. deliv-
ering the product on time (with respect to a maximum acceptable delivery time)
vs. delivering the product late. However, note that outcome-oriented predictive
monitoring techniques are orthogonal to those of remaining time prediction tech-
niques, which are widely studied in the literature (see, e.g. [107] for a survey of
these methods). In this respect, the problem of outcome-oriented process mon-
itoring is also distinct from survival analysis. In particular, we are interested in
predicting what the outcome will be, rather than predicting when the outcome
will be known. Therefore, outcome-oriented process monitoring techniques are
not concerned with the timestamps of the events other than to the extent that these
may be predictive of the outcome.

The class label, expressing the outcome of a (completed) trace, can be deter-

mined according to a labeling function.
Definition 1.2.2 (Labeling function). A labeling function out : S —) is a func-
tion that maps a completed trace o to its class label out(c) € Y with) being the
domain of class labels. For outcome predictions,) is a finite set of categorical
outcomes; specifically, for binary outcomes) = {0,1}.

The problem of outcome-oriented predictive process monitoring can be posed
as a classification task, where the input is a prefix of a sequence of events corre-
sponding to a running case and the goal is to predict the corresponding class label

20

- Alarm/
Predictive Model -
] i quality Prediction rec;an{:gnnen—
Labeling function .
7 A T P | E|
Ta L 4 N, , 4 .
T
Train predictive Evaluate ‘e
model — predictive model —> Predict — Use prediction
: T T 4
Event log ‘
Running

trace

Figure 2: Predictive and prescriptive process monitoring.

(the final outcome). This task is commonly solved by training a predictive model
(predictor for short) using machine learning algorithms, based on data from his-
torical traces available in an event log and a predefined labeling function. The
model is evaluated on a test set, comprising of a distinct set of historical traces
from the event log. If the model quality is acceptable for the process stakehold-
ers, the model is deployed for monitoring the ongoing cases. At runtime, the
predictive model is applied to a running trace, producing a prediction about its
final outcome. The process worker can use the prediction to decide whether to
intervene in the running case with the aim of avoiding an undesired outcome. Al-
ternatively, the prediction can be given to a prescriptive monitoring system that
advises the user if an intervention is necessary and/or which intervention actions
to take. This process is illustrated in Figure 2.

1.3. Problem statement

The thesis addresses the question of “How to train, evaluate, and use machine
learning models in the context of outcome-oriented predictive and prescriptive
business process monitoring?”.

The above question has been tackled by several research teams in the past
years, resulting in a rich field of outcome-oriented predictive process monitoring
methods. Even though these methods serve a common goal, different authors have
used different datasets, experimental settings, evaluation measures, and baselines,
resulting in a situation with no clear overview of how the different techniques
compare to each other methodologically and experimentally. This thesis addresses
this gap by: (i) performing a systematic literature review of outcome-oriented
predictive process monitoring methods; (ii) providing a taxonomy of the existing
methods; (iii) constructing a benchmark of 24 outcome-oriented predictive moni-
toring tasks based on nine real-life event logs; and (iv) performing a comparative
experimental evaluation of the existing methods using this benchmark.

The conducted survey (Chapter 3) reveals further gaps in the existing literature.
In particular, the existing approaches focus on:

21

e training predictive models on structured data, lacking support for unstruc-
tured data;

e evaluating the predictive models in terms of accuracy and earliness, lacking
attention to stability of the sequential predictions made for a given case;

e generating predictions, without prescribing a particular course of action to
prevent negative outcomes and without taking into account the cost and the
effect of such actions.

In the following paragraphs, these gaps are described in more detail.

Training predictive models on only structured data. Existing approaches as-
sume that the event records carry only structured data payload, i.e. the attributes
are assumed to be either of numeric or categorical type. In practice, not all data
generated during the execution of a process is structured. For instance, in an
order-to-cash process the customer may include a free-text description of spe-
cial requests. Later, a customer service representative may attach to the case the
text of an email exchanged with the customer regarding delivery details, or add a
comment to the purchase order following a conversation with the customer. Com-
ments like these ones are even more common in application-to-approval, issue-to-
resolution, and claim-to-settlement processes, where the execution of the process
involves many unstructured interactions with the customer.

Evaluating the predictive models in terms of accuracy and earliness. Tradi-
tionally, methods for outcome-oriented predictive process monitoring aim to make
predictions as accurately and as early (i.e. given only a few event records) as
possible. Oftentimes, accuracy is evaluated separately for prefixes of different
lengths, allowing one to estimate the expected accuracy of a given prediction,
knowing the number of events observed so far. Based on this information, the
process worker could decide whether to make a decision now or to postpone until
observing another event in the hope of getting a more accurate prediction. How-
ever, this evaluation scheme exploits only a limited amount of information that
is available at a given time. In particular, at each evaluation point the process
worker is expected to decide based on only the latest prediction available for a
given case, neglecting the sequential nature of predictive monitoring. Namely,
in a setting where the predictive model is applied to a running case successively
(after each observed event), a sequence of predictions is produced. Therefore, the
process worker could make a more informed decision by using not only the latest
prediction, but also the predictions made at earlier stages of the given case. In this
context, it becomes relevant to evaluate also the stability of the predictions, in or-
der to give the process workers some estimation of how reliable a given prediction
is.

Generating predictions without advice on using them. While existing tech-
niques aim to predict, after each event of a case, the probability that the case will
end up in an undesired outcome, they do not suggest nor prescribe when and how
process workers should intervene in order to decrease the probability of undesired

22

outcomes. Indeed, existing proposals implicitly assume that the users (analysts,
managers, or process workers) are able to manually choose the most suitable accu-
racy or confidence threshold for their scenario and act upon predictions that reach
this threshold. In practice, the optimal threshold depends on many factors, such
as the different costs involved in the execution of the process, as well as the scale
of the probability scores that the predictive model produces, making it difficult to
manually come up with a suitable threshold.

1.4. Contributions and outline

The thesis makes four contributions to the field of predictive and prescriptive pro-
cess monitoring as described below.

Contribution 1: Comparing and evaluating existing predictive process mon-
itoring methods. We propose a taxonomy of existing methods for training pre-
dictive models in the context of outcome-oriented predictive process monitor-
ing (Chapter 3). We perform a comparative experimental evaluation of existing
outcome-oriented predictive process monitoring methods. First, we construct a
benchmark of 24 predictive monitoring tasks based on 9 real-life event logs. We
then evaluate 11 representative methods identified in the literature review, using
the benchmark (Chapter 4).

Contribution 2: Training predictive models with structured and unstructured
data. We propose a framework that combines text mining techniques to extract
features from textual payload, with existing predictive process monitoring tech-
niques for structured data (Chapter 5). We perform a comparative experimental
evaluation of several text mining techniques in combination with different predic-
tive process monitoring methods.

Contribution 3: Evaluating the temporal stability of predictive models. We in-
troduce the notion of remporal stability of predictions, propose a metric for mea-
suring it, and evaluate existing predictive monitoring techniques with respect to
this metric (Chapter 6). Furthermore, we apply a sequential smoothing technique
to the series of predictions made for a given case, in order to decrease the volatility
of the predictions and produce more stable estimates as compared to using only
the latest available predictions.

Contribution 4: Using predictions for prescriptive process monitoring. We
propose a framework that extends predictive process monitoring techniques with
an alarm-generating mechanism that advises the process workers if it is time to
act upon the prediction (Chapter 7). The proposed framework is armed with a pa-
rameterized cost model that captures, among others, the tradeoff between the cost
of an intervention and the cost of an undesired outcome. Based on this cost model
and the prediction produced by a predictive model, the alarming mechanism de-
cides whether to raise an alarm or not. If an alarm is raised, a process worker is
expected to intervene in the running case with the goal of mitigating (or altogether
preventing) an undesired outcome. We propose and empirically evaluate an ap-

23

- Alarm/
Predictive Model -
] quality Prediction ret:é);:}?:n—
Labeling function T
T A T - -, El
“
Train predictive Evaluate -
] — predictive model —> Predict — Use prediction
*Il -7 Contributions 1, 2 T Contributions 1,3 ’.’ Contribution 4
Eventlog Chapters 3,5 = .- Chapters 4, 6 ' Chapter 7
_______ Publications I, Il .- Publications I, Il Publication IV
Running

trace

Figure 3: Mapping of the contributions, chapters, and publications.

proach to tune the generation of alarms to minimize the expected cost for a given
dataset and set of parameters.

The above contributions have been previously documented in publications I-IV
referenced at the end of the thesis (see “List of original publications”). Figure 3
illustrates the mapping between the contributions, the chapters, and the publica-
tions.

The rest of the thesis is structured as follows. In Chapter 2 we introduce the
relevant concepts and principles from machine learning. Chapter 3 presents the
systematic literature review and a taxonomy for existing methods. In Chapter 4 we
construct the benchmark and perform an experimental evaluation of the existing
methods. Chapter 5 proposes and evaluates a framework for combining structured
and unstructured data for predictive process monitoring. Chapter 6 introduces the
notion of temporal stability and evaluates the existing methods with respect to the
proposed metric. Chapter 7 proposes a prescriptive process monitoring frame-
work for generating alarms based on the output of predictive models. Chapter 8
concludes the thesis and outlines directions for future work.

24

2. BACKGROUND

In this chapter, we explain the relevant concepts from the machine learning field.
We start with describing different types of tasks in machine learning. Then, we
introduce evaluation measures and discuss the best practices regarding the exper-
imental settings in classification tasks. We proceed with an overview of classifi-
cation algorithms that are used later in the thesis. We conclude the chapter with a
brief overview of works on early sequence classification.

2.1. Machine learning

Machine learning is a set of methods that can automatically detect patterns in
data, and then use the uncovered patterns to predict future data, or to perform
other kinds of decision making under uncertainty [68].

Machine learning tasks can be divided into three categories. Firstly, in super-
vised learning the aim is to learn a function from inputs x to outputs y, where
X = (X1,...,X,) is a p-dimensional vector of features (or attributes) and y is the
target (or response) variable. In essence, each feature in x can be of numeric or
categorical type. However, many machine learning algorithms assume that cate-
gorical attributes are transformed into numeric values using, for instance, one-hot
encoding, where each value of a categorical attribute is transformed into a bitvec-
tor (vi,---,vp), where m is the number of possible levels (i.e. unique values) of
that attribute, v; = 1 if the given value is equal to the ith level of the attribute,
and v; = 0 otherwise. In order to learn the mapping from x to y, a machine learn-
ing algorithm is given as input a training set D = {(xV,y{)}¥, consisting of
N training examples (or training instances) (x(i), y(i)), i.e. feature vectors paired
with their corresponding target variables. A supervised learning algorithm learns
a predictive model that can consequently be used to predict (or estimate) the value
of y given a vector x that was not part of the training set. Supervised learning tasks
can be further divided into classification, where y is assumed to be a categorical
variable (a class label), and regression, where y is a real-valued numeric variable.

Conversely from supervised learning, where the algorithm is told which types
of patterns to look for (i.e. those that explain the mapping between the input
features and the target variable), the task of unsupervised learning techniques is to
look for any interesting patterns in the data. Namely, these methods take as input
a set of feature vectors D = {x(i) i»vzl without any corresponding target variables.
A representative of unsupervised learning techniques is clustering, where the aim
is to divide the inputs x into (possibly overlapping) groups (clusters) ci,...,cx,
where each cluster ¢, 1 < j <k consists of instances x that are (in some sense)
similar to each other. A well-known clustering algorithm is k-means where the
input space is partitioned into k clusters, each characterized by a centroid (a vector
of coordinates) tt;,1 < j <k, and each observation is assigned to the cluster j such
that u; is the closest centroid to the given observation.

25

Table 2: Confusion matrix.

Predicted
Positive Negative

Tg Positive | # true positives (TP) # false negatives (FN)
:ﬂ) Negative | # false positives (FP) # true negatives (TN)

The third type of techniques called reinforcement learning is concerned with
a setting where an agent is placed in an environment where it must decide which
(sequence of) actions to take. As a result of an action, the agent arrives to a state
and observes a reward. Reinforcement learning algorithms aim to learn an optimal
policy for the agent to take in order to maximize the cumulative reward.

Since this thesis is concerned with predicting the outcomes of business pro-
cesses, which corresponds to a classification task in machine learning, hereinafter,
we focus the discussion on classification methods.

2.2. Evaluation measures and experimental settings

After training a classification model, it is important to assess if the obtained model
is good for making predictions. For that purpose, different evaluation measures
can be used to evaluate the model’s performance on a test set. In particular, the
model is asked to predict the label for each test example in the test set and the
predictions are compared to the corresponding ground truth (i.e. the actual) class
labels. In this section we first describe some commonly used evaluation measures
for assessing the quality of a classifier. Then, we discuss some best practices
related to experimental settings in machine learning. Hereinafter, we focus on
binary classification tasks, i.e. y € {0,1}, or y € {negative, positive}.

2.2.1. Evaluation measures

An intuitive way to get insights about the performance of a classifier is by con-
structing a confusion matrix (see Table 2). Each cell in a confusion matrix refers
to the number of test examples that fall into a particular combination of the pre-
dicted and the actual outcome. True positives (TP) are the test examples where the
actual outcome is positive and the model correctly predict the positive class. True
negatives (TN) are negative test examples that are correctly classified as negative.
False positives (FP) refer to test examples where the actual outcome is negative,
but the model incorrectly predicts the positive class. False negatives (FN) are
cases where the actual outcome is positive, but the model incorrectly predicts it is
negative.

Based on these concepts, several commonly used evaluation measures can be
defined, such as:

26

ACC (Accuracy) = (TP+TN)/(TP+TN+FP+FN)
Precision=TP/(TP+ FP)
Recall = TPR (True Positive Rate) = TP/(TP+FN)
F-score =2 - Precision - Recall /(Precision + Recall)
F PR (False Positive Rate) = FP/(TN + FP)

Probably the most simple and widely used evaluation metric is ACC, measur-
ing the overall proportion of correctly classified instances. However, in case the
classes are imbalanced, e.g. when there are many more negative instances than
positive ones, ACC would give a high score to a classifier that always predicts the
negative class, while in reality it would be much more important to correctly clas-
sify the rare positive examples. In these cases, it is recommended to use Precision
and Recall, where the first measures the proportion of positive predictions that are
correct and the latter measures the proportion of all positives that are identified
(predicted) by the classifier. Note that a predictor that always predicts the positive
class would achieve perfect Recall, but low Precision. In fact, these two measures
are often reported together, as they measure different aspects of prediction quality
that complement each other. Alternatively, Precision and Recall can be combined
into a single metric called F-score, which is the harmonic mean of these two mea-
sures. Another pair of metrics that complement each other are Recall (in this
context, often called TPR) and FPR, where the latter measures the proportion of
all negatives that are incorrectly predicted as positive.

All of these measures assume that the classifier outputs a hard prediction (a
binary number) of the class label. However, classifiers often output a real-valued
prediction score instead, reflecting either the probability or the classifier’s con-
fidence that the case will end in one way or the other. A good classifier would
give higher scores to cases that will end with a positive outcome, and lower val-
ues to those ending with a negative one. In order to use the evaluation measures
defined above, a decision threshold T needs to be set on the prediction scores, so
that predictions larger than T would be considered positive predictions and predic-
tions smaller than 7, negative predictions. Often it is assumed that T = 0.5, but in
applications where the costs related to different types of misclassification errors
are asymmetric (e.g. when the cost of FP is much higher than the cost of FN),
it might be reasonable to increase or decrease T accordingly. Furthermore, one
might decide to adjust the threshold given the fact that prediction scores returned
by classifiers are often poorly calibrated, meaning that the scores do not reflect
well the actual probabilities of belonging to one class or to the other [69].

Another common technique for evaluating a classifier that outputs real-valued
prediction scores is to construct a Receiver Operating Characteristic (ROC) curve,
where TPR and FPR over all possible decision thresholds are plotted against each
other (see Fig. 4). In other words, each point in the ROC space corresponds to a

27

1.00

0.75
2
© Method
® — Perfect classifier
= 0.0 — Random classifier
8 == Good classifier
[o
o 0.25
>3
|: AUC(Perfect classifier) = 1.000

AUC(Random classifier) = 0.500
0.00 AUC(Good classifier) = 0.800

0.00 0.25 0.50 0.75 1.00
False positive rate

Figure 4: Example ROC curves.

pair of (FPR, TPR) given a specific threshold . The area under the ROC curve
(AUC) is often used to express the information from a ROC curve as a single per-
formance measure. AUC can also be thought of as the probability that a given
classifier will rank a positive case higher than a negative one. A major advan-
tage of the AUC metric over ACC and F-score is that it remains unbiased even
in case of a highly imbalanced distribution of class labels [7]. Furthermore, AUC
is a threshold-independent measure, as it operates on the ranking of the predic-
tion scores rather than on the binary (predicted) class labels. Note that a random
classifier (a diagonal line in the ROC space) would yield AUC = 0.5, while a per-
fect classifier (the line that crosses the coordinates where FPR =0, TPR = 1)
corresponds to AUC = 1.

2.2.2. Model selection and generalization

As mentioned earlier in this chapter, the goal in supervised learning is to train
a model that can later be used to predict the class label for unseen examples.
Predicting the class label for already seen examples would be trivial, because the
model could simply memorize the training data and look up the corresponding
class label. Therefore, it is important that the model generalizes to instances that
were not part of the training set. To evaluate this, the available data is divided into
two independent subsets: a training set and a test set. This splitting approach is
called the holdout method, since the test set is held out from the training process
and only used for evaluating the model’s generalization performance. The most
common way to split the data is via random sampling. Often, stratification is used
in combination with random sampling, so that the class label proportions observed
in the original data set are preserved in the training and test sets.

Classification algorithms typically have several hyperparameters which con-
trol the complexity of the resulting model and need to be specified manually by

28

the analyst instead of being learned automatically. On the one hand, a very com-
plex model is able to memorize the whole training set, but is unable to generalize
well to the test set, resulting in a situation called overfitting. On the other hand, an
overly simplistic model is not able to capture the underlying patterns, resulting in
an underfitting model. Since both over- and underfitting yield low accuracy on the
test set, we are typically interested in tuning (or optimizing) the model’s hyperpa-
rameters in a way that yields a model with an optimal generalization performance.
In order to achieve that, one can train multiple models, each with a specific config-
uration of hyperparameters, evaluate each model’s performance on a test set, and
select the configuration with the best performance according to some evaluation
measure.

However, it is not a valid approach to use the same test set for performing
the model selection and evaluating the generalization performance of the (best)
model, since this would result in an overly optimistic estimation of the general-
ization performance. Therefore, a three-way holdout method can be used, splitting
the data into three independent subsets: a training, a validation, and a test set. This
way, the training and validation sets can be used to test different hyperparameter
settings and select the best hyperparameters. Then, the training and validation
sets can be concatenated together and the final model can be trained on the best
parameters using this combined set. Finally, the generalization performance of
the final model can be evaluated on the independent test set.

A drawback of the holdout method is that by partitioning the data into inde-
pendent subsets we reduce the amount of training instances, which can result in
a less accurate model. This is especially an issue with small datasets, where the
number of training instances could become too low to learn a reasonable model.
To alleviate this problem, a method called k-fold cross-validation splits the data
into k independent chunks and builds £ models with the same hyperparameter con-
figurations, so that each model is trained on k — 1 chunks of the data and tested
on the remaining chunk. In other words, each example from the original data is
used exactly once for testing and k — 1 times for training. The performance scores
from the k folds are averaged into a single evaluation score.

In general, the splitting methods described above make use of random sam-
pling of the data. However, when the data is of temporal nature it is important to
ensure that future data is not used for predicting the past. In such cases, a tem-
poral (holdout) split can be used, by dividing the data into training and test sets
according to the timestamps related to the instances. In particular, the training set
would consist of the examples originating from the period up to a given time ¢
and the test set would contain the examples that originate from the period after ¢.
Special care needs to be taken when the data is in the form of sequences, since it
is possible that a sequence starts before the splitting timestamp ¢, but ends after
this time. One option in such cases is to discard all the sequences that overlap
with both the training and testing periods. However, since this approach wastes (a
possibly large) part of the available data, an alternative approach is to discard only

29

Train Test Test

P
. —

(1) Two-way holdout split.

Train Train Validation
Train Validation Test
Train Validation Train
(2) Three-way holdout split.
Validation Train Train

(3) Combined holdout split for test set
and 3-fold cross-validation for model

selection.

[
| | :’LZZ:
| [
| |:I ______ |
[R
[| >
Train period Test period

(4) Temporal holdout split for sequences.

Figure 5: Illustration of different splitting strategies.

the parts of the sequences that overlap with the test period. The different splitting
strategies are illustrated in Figure 5.

A variety or approaches exist for choosing the hyperparameter configurations
that are tested during the model selection phase. A common approach is grid
search, where the analyst is expected to specify for each hyperparameter a set
of values and all possible combinations of these values are tested. However, it
has been shown that random search, where the analyst needs to specify only the
ranges and sampling distributions for each hyperparameter rather than a specific
set of values, is more efficient than grid search [3]. This is particularly the case
in high-dimensional parameter spaces, where grid search tends to allocate too
many trials to exploring unimportant dimensions, while random search results in
an overall better coverage of the search space. In each iteration of random search,
a value is randomly sampled for each hyperparameter from the specified distri-
butions and the resulting configuration of hyperparameters is tested. Both grid
search and random search are outperformed by adaptive (or sequential) hyperpa-
rameter optimization techniques, which, similarly to random search, require the

30

analyst to specify only the ranges and the sampling distributions. Conversely from
random search, these techniques perform optimization in a sequential manner, so
that in each iteration a configuration of hyperparameters is chosen that appears
to be promising given the previously tried settings. A representative of adap-
tive hyperparameter optimization techniques is Tree-structured Parzen Estimator
(TPE) [2].

2.3. Classification algorithms

In this section, we give an overview of the classification algorithms used later in
this thesis.

k-nearest neighbors. One of the simplest classification algorithms, the k-
nearest neighbor (KNN) method makes predictions by retrieving the k training
instances that are closest to the input instance according to some similarity mea-
sure. The prediction is made by averaging (or taking the mode) of the class labels
corresponding to these k training examples. Contrary to the other methods de-
scribed in this section, KNN is a lazy learning (or instance-based learning) algo-
rithm, meaning that there is no model training stage. Instead, the algorithm uses
the training set only at prediction time. The number of considered neighbors k is
a hyperparameter of the method.

Logistic regression. Logistic regression is one of the simplest classification al-
gorithms, which learns to model the prediction target through a linear combination
of the input features. In order to make a prediction for X = (x1,...,X,), the model

p

calculates a weighted sum of the input features xp,...,x,, i.e. y =b+ Z W Xj,
j=1

where w; are the learnable weight coefficients corresponding to input features x;

and b is the bias (or intercept) term. Then, this sum is passed through a logistic
(or sigmoid) function, which ensures that the output is between 0 and 1 as needed
for binary classification. The weight coefficients and the bias term are learned by
optimizing a loss function (or cost function), most commonly logistic loss (also
called cross-entropy loss). Often, the gradient descent optimization algorithm is
used to iteratively update the weights. In order to avoid overfitting, a regulariza-
tion term is often added to the loss function, for instance, as a sum of the absolute
values of the weights (L1 regularization) or as the sum of their squares (L2 reg-
ularization). Optimizing the weights using an L1 regularization term results in
a sparser weight vector (a smaller number of non-zero weights) in comparison
to an L2 term. The regularization strength in a logistic regression model can be
controlled with a hyperparameter.

Neural network. A neural network consists of one or more (hidden) layers of
neurons (or units), where each neuron calculates a weighted sum of its inputs and
passes it through an activation function, such as the sigmoid function. The result-
ing activations constitute the inputs for the neurons in the next layer. The weights
in the neurons are learned through an optimization procedure, commonly using

31

stochastic gradient descent (SGD). The updates in SGD are calculated based on
batches of training instances, i.e. subsets of training data of size b,1 < b < N,
where the subsets are constructed via random sampling (without replacement)
over the training set. A complete pass over the training data (consisting of [N /b]
batch updates) is called an epoch; the SGD procedure is commonly performed
over multiple epochs. In order to model sequences and time series data, a special
recurrent architecture of neural networks can be used, where at each timestep ¢,
the neurons take as input both the feature vector x\/<"> and the activation from
t — 1. Such recurrent neural networks are, however, known to be unable to model
long-term dependencies in sequential data, caused by the vanishing gradient prob-
lem. In order to solve this issue, special types of neurons have been developed,
such as long short-term memory (LSTM) [43] units, which learn to control the
flow of information from the recent and the earlier timesteps via input, output
and forget gates. The hyperparameters of neural networks are the number of lay-
ers, the number of neurons in each layer, the learning rate (controlling the step
size in the SGD updates), the batch size, the number of epochs, and a variety of
regularization parameters, e.g. dropout, .1 and L2 regularization.

Support vector machine. A support vector machine (SVM) tries to find a hy-
perplane separating the two classes with a maximum margin. Specifically, SVMs
are commonly trained by optimizing hinge loss, which is zero for correctly clas-
sified instances and proportional to the distance between the given example and
the margin otherwise. By default, SVMs perform linear classification, similarly to
logistic regression. However, SVMs can easily be extended to non-linear classifi-
cation using the kernel trick, i.e. mapping the inputs into high-dimensional feature
spaces using a kernel function. The model complexity in SVM can be controlled
with a penalty parameter C, where a low C places more weight on obtaining a
larger margin (a smoother decision surface), while a high C aims at classifying
all training examples correctly [74]. Other hyperparameters depend on the chosen
kernel function; for instance, Radial Basis Function requires setting a coefficient
gamma for controlling how much influence a single training example has. By de-
fault, SVMs return a binary prediction instead of a real-valued prediction score.
In order to calculate probabilistic prediction estimates, Platt scaling can be used,
which fits a logistic regression model to the SVM outputs [76].

Decision tree. A decision tree (DT) learning algorithm recursively splits the
input space, aiming for subsets that have high purity in terms of the class label.
The resulting model can be represented as a tree structure, where each internal
node represents a splitting condition used to determine the branch where a given
instance belongs to. When a leaf is reached, a prediction is made by aggregating
the class labels of the training instances that fall into the same leaf. Decision
trees are widely used in practice thanks to their simplicity and interpretability. A
decision tree can easily be transformed into a set of decision rules in “if-else”
format. Decision trees are prone to overfitting, which can be mitigated by pruning
the tree, i.e. by reducing the size of the tree by removing parts that add little to the

32

predictive power of the model. Hyperparameters such as the maximum tree depth
or the minimum number of instances needed to create a new node can be used to
limit the complexity of a decision tree.

Random forest. The random forest (RF) [9] algorithm constructs an ensemble
of decision trees via bagging. Namely, for a number of m times, the following
procedure is repeated: 1) a subset of training instances is randomly sampled, with
replacement, from the complete training set and 2) a decision tree is built on the
sampled subset, so that for each split a random sample of features is considered.
At prediction time, the input is passed through all of the constructed decision trees
and the prediction is made as the average or the mode of the individual classifiers’
outputs. The RF algorithm greatly mitigates the problem of overfitting compared
to using a single decision tree. The hyperparameters of the method are the number
of iterations (i.e. the number of built decision trees) m and the number (or the
proportion) of features to consider for each split. Additionally, hyperparameters
related to the underlying decision trees can be set, such as the maximum depth
of the trees. The size of the sampled subset of training instances is often kept
the same as the original dataset size. Note that due to sampling with replacement,
these subsets are different from the original dataset because they can contain some
training instances multiple times, while some other instances might be missing.

Gradient boosted trees. Similarly to RF, the gradient boosted trees algorithm
(GBT) [31] constructs an ensemble of decision trees and the prediction is made
as the average of the individual trees’ outputs. However, while RF builds decision
trees in a parallel manner, GBT constructs the trees sequentially via boosting, i.e.
the decision tree at step m aims at correcting the mistakes made by the tree from
step m — 1. In each iteration, the residuals (the differences between the predicted
and the actual labels) are calculated and the next tree is fitted on these residuals,
resulting in a boosted version of the previous model. Compared to RF, GBTs are
more prone to overfitting and more sensitive to the selection of hyperparameters.
Common hyperparameters to tune for GBTs include the number of boosting itera-
tions, the learning rate (controlling the weight of each added tree), the proportion
of training instances to sample in each boosting iteration, the proportion of fea-
tures to sample in each boosting iteration, the maximum depth of the individual
decision trees, and the minimum number of instances needed in each node. A
well-known library that provides a very efficient implementation of GBT is called
XGBoost [15] (stands for “extreme gradient boosting”).

2.4. Early sequence classification

With respect to the broader literature on machine learning, we note that predic-
tive process monitoring corresponds to the problem of early sequence classifica-
tion [109]. In other words, given a set of labeled sequences, the goal is to build
a model that for a sequence prefix predicts the label this prefix will get when
completed.

33

The works on early sequence classification are generally focused on determin-
ing a prefix length that yields a good prediction, also referred to as the minimal
prediction length (MPL) [111]. The specific criteria for determining the MPL
differs in the literature. For instance, Xing et al. [109] introduced the notion of
seriality in sequence classifiers, referring to the property that for each sequence,
there exists a prefix length starting from which the classifier outputs (almost) the
same prediction. Another method by Xing et al. [111] finds the earliest timestamp
when the nearest neighbor relationships in the training data become stable (i.e. re-
main the same in the subsequent prefixes). Parrish et al. proposed a method based
on the reliability of predictions, i.e. the probability that the label assigned to a
given prefix is the same as the label assigned to the whole sequence [73]. More
recently, Mori et al. [67] designed an approach to make an early prediction when
the ratio of accuracy between the prediction made for the prefix and for the full
sequence exceeds a predetermined threshold.

While there is substantial literature on the problem of (early) sequence clas-
sification for simple symbolic sequences (e.g. sequences of events without pay-
loads), there is a lack of proposals addressing the problem for complex symbolic
sequences (i.e. sequences of events with payloads) [83, 110]. The problem of
outcome-oriented predictive process monitoring can be seen as an early classifi-
cation over complex sequences where each element has a timestamp, a discrete
attribute referring to an activity, and a payload made of a heterogeneous set of
other attributes. One of the few works on early classification on complex se-
quences is [55], where Lin et al. propose constructing serial decision trees and
monitor the error rate in leaf nodes in order to determine the MPL.

34

3. LITERATURE REVIEW

The purpose of the survey conducted in this chapter is to define a taxonomy of

methods for training predictive models for outcome-oriented predictive monitor-

ing of business processes and to give a structured overview of existing approaches
for evaluating and deploying such models. The decision to focus on outcome pre-
diction is to have a well-delimited and manageable scope, given the richness of
the literature in the broader field of predictive process monitoring, and the fact
that other predictive process monitoring tasks rely on entirely different techniques
and evaluation measures.

In line with the selected scope, the survey aims at answering the following
research questions:

RQ1 (Existing training methods) Given an event log of completed business pro-
cess execution traces and the final outcome (class) of each trace, what meth-
ods exist for training a model that can accurately and efficiently predict the
outcome of an incomplete (running) trace, based on a given prefix only?

RQ2 (Taxonomy) How to categorize these training methods in a taxonomy?

RQ3 (Evaluation procedures) What approaches exist for assessing the quality of
predictive models built for outcome-oriented predictive process monitoring?

RQ4 (Deployment use cases) What use cases exist for deploying the predictive
models built for outcome-oriented predictive process monitoring?

In Section 3.1, we describe our approach to identifying existing methods
for outcome-oriented predictive process monitoring. In Section 3.2, we analyze
(RQL1) and categorize (RQ?2) the existing training methods. As the choice of qual-
ity measures for evaluating the models depends on the deployment use case, we
first analyze the existing use cases (RQ4) in Section 3.3 and continue with the
evaluation procedures (RQ3) in Section 3.4. The chapter is concluded with a dis-
cussion on the threats to validity of the conducted survey in Section 3.5.

3.1. Search methodology

In order to retrieve and select studies for the survey, we conducted a Systematic
Literature Review (SLR) according to the approach described in [48]. We started
by developing relevant search strings for querying a database of academic papers
(Section 3.1.1). We then applied inclusion and exclusion criteria to the retrieved
studies in order to filter out irrelevant ones (Section 3.1.2). Lastly, we divided
all relevant studies into primary and subsumed ones based on their contribution
(Section 3.1.3).

3.1.1. Study retrieval

First, we selected keywords that are relevant to outcome-oriented predictive pro-
cess monitoring:

35

e “(business) process” — a relevant study must take as input an event log of
business process execution data;

e “monitoring” — a relevant study should concern runtime monitoring of
business processes, i.e. work with incomplete (running) traces;

e “prediction” — a relevant study needs to estimate what will happen in the
future, rather than monitor what has already happened.

We deliberately left out “outcome” from the set of keywords. The reason for
this is that we presumed that different authors might use different words to refer
to this prediction target. Therefore, in order to obtain a more exhaustive set of
relevant papers, we decided to filter out studies that focus on other prediction
targets (rather than the final outcome) in an a-posteriori filtering phase.

Based on these selected keywords, we constructed three search phrases: “pre-
dictive process monitoring”, “predictive business process monitoring”, and “busi-
ness process prediction”. We applied these search strings to the Google Scholar
academic database and retrieved all studies that contained at least one of the
phrases in the title, keywords, abstract, or the full text of the paper. We used
Google Scholar, a well-known electronic literature database, as it encompasses all
relevant databases such as ACM Digital Library and IEEE Xplore, and also allows
searching within the full text of a paper.

The search was conducted in August 2017 and returned 93 papers, excluding
duplicates.

3.1.2. Study selection

All the retrieved studies were matched against several inclusion and exclusion
criteria to further determine their relevance to predictive outcome-oriented process
monitoring. In order to be considered relevant, a study must satisfy all of the
inclusion criteria and none of the exclusion criteria.

Inclusion criteria. The inclusion criteria are designed for assessing the rele-
vance of studies in a superficial basis. Namely, these criteria are checked without
working through the full text of the paper. The following inclusion criteria were
applied to the retrieved studies:

IN1 The study is concerned with predictions in the context of business processes
(this criterion was assessed by reading title and abstract).

IN2 The study is cited at least five times.

The application of these inclusion criteria to the original set of retrieved papers
resulted in 8 relevant studies. We proceeded with one-hop-snowballing, i.e. we
retrieved the papers that are related to (cite or are cited by) these 8 studies and
applied the same inclusion criteria. This procedure resulted in 545 papers, of
which we retained 72 unique papers after applying the inclusion criteria.!

All retrieved papers that satisfy the inclusion criteria can be found at http://bit.ly/
2uspLRp

36

http://bit.ly/2uspLRp
http://bit.ly/2uspLRp

Exclusion criteria. The list of studies that passed the inclusion criteria were
further assessed according to a number of exclusion criteria. Determining if the
exclusion criteria are satisfied could require a deeper analysis of the study, e.g.
examining the approach and/or results sections of the paper. The applied exclusion
criteria are:

EX1 The study does not actually propose a predictive process monitoring
method.

EX2 The study does not concern outcome-oriented prediction.

EX3 The technique proposed in the study is tailored to a specific labeling func-
tion.

EX4 The study does not take an event log as input.

The EX1 criterion excludes overview papers, as well as studies that, after a
more thorough examination, turned out to be not focusing on predictive process
monitoring. EX?2 excludes studies where the prediction target is something other
than the final outcome. Common examples of other prediction targets that are
considered irrelevant to this study are remaining time and next activity prediction.
Using EX3, we excluded studies that are restricted to specific labeling functions
rather than being applicable to any definition of an (categorical) outcome. For ex-
ample, studies that predict deadline violations by means of setting a threshold on
the predicted remaining time, rather than by directly classifying the case as likely
to violate the deadline or not. The reason for excluding such studies is that, in
essence, they predict a numeric value, and are thus not applicable for predicting
an arbitrarily defined case outcome. EX4 concerns studies that propose methods
that do not utilize at least the following essential parts of an event log: the case
identifier, the timestamp, and the event classes. For instance, we excluded meth-
ods that take as input numerical time series without considering the heterogeneity
in the control flow (event classes). In particular, this is the case in manufacturing
processes which are of linear nature (a process chain). The reason for excluding
such studies is that the challenges when predicting for a set of cases of heteroge-
nous lengths are different from those when predicting for linear processes. While
methods designed for heterogenous processes are usually applicable to those of
linear nature, it is not so vice versa. Moreover, the linear nature of a process
makes it possible to apply other, more standard methods that may achieve better
performance.

The application of the exclusion criteria resulted in 16 relevant studies out of
the 72 studies selected in the previous step.

3.1.3. Primary and subsumed studies

Among the papers that successfully passed both the inclusion and exclusion crite-
ria, we determined primary studies that constitute an original contribution for the
purposes of our benchmark, and subsumed studies that are similar to one of the
primary studies and do not provide a substantial contribution with respect to it.

37

Table 3: Primary and subsumed studies.

Primary study Subsumed studies

de Leoni et al. [20] de Leoni et al. [19]

Maggi et al. [60]

Grigori et al. [37] Grigori et al. [36], Castellanos et al. [13]
Schwegmann et al. [85] Schwegmann et al. [86]

Lakshmanan et al. [52]

Conforti et al. [17] Conforti et al. [16]

Di Francescomarino et al. [30]
Leontjeva et al. [54]

van der Spoel et al. [104]
Verenich et al. [106]

Ghattas et al. [34]

Specifically, a study is considered subsumed if:

o there exists a more recent and/or more extensive version of the study from
the same authors (e.g. a conference paper is subsumed by an extended
journal version), or

e it does not propose a substantial improvement/modification over a method
that is documented in an earlier paper by other authors, or

e the main contribution of the paper is a case study or a tool implementation,
rather than the predictive process monitoring method itself, and the method
is described and/or evaluated more extensively in a more recent study by
other authors.

This procedure resulted in 11 primary and 5 subsumed studies, listed in Table

3. In the next section, we present the primary studies in detail, and classify them
using a taxonomy.

3.2. Analysis and taxonomy of the training methods

In this section, we present a taxonomy to classify the 11 primary studies that
we selected through our SLR. Specifically, with this section we aim at answer-
ing RQ1 (What training methods exist?) and RQ2 (How to categorize them?) —
cf. beginning of Chapter 3. The taxonomy is framed upon a general workflow
for predictive process monitoring, which we derived by studying all the surveyed
methods. In the following subsections, we first introduce the concepts and the
workflow for outcome-oriented predictive process monitoring, proceed with char-
acterizing the existing methods with respect to the different steps observable in
the workflow, and conclude with a taxonomy for the studied techniques.

38

3.2.1. General concepts and workflow

The analysis of the surveyed methods revealed that all of the existing techniques
operate on some common concepts, which we define below (cf. Chapter 1 for
definitions of event, trace, prefix function, etc.).

Predictions are made using a classifier that takes as input a fixed number of
independent variables (features) and learns a function to estimate the dependent
variable (class label). This means that in order to use the data in an event log as
input to a classifier, each trace in the log must be encoded as a feature vector.
Definition 3.2.1 (Sequence/trace encoder). A sequence (or trace) encoder ernc :
S, — & x--- x X, is a function that takes a (running) trace ¢ and transforms it
into a feature vector in the p-dimensional vector space X X --- x &), with &; C
R,1 < j < p being the domain of the j-th feature.

Despite the fact that the aim of a classifier is to estimate a class label, more
commonly the classifiers return real-valued scores.

Definition 3.2.2 (Classifier). A probabilistic binary classifier cls: X} x --- x X}, —
[0,1] is a function that takes a p-dimensional feature vector as input and returns a
real-valued prediction score estimating the probability of the positive class.

The construction (training) of a classifier for outcome-oriented predictive pro-
cess monitoring is achieved by applying a classifier learning algorithm over a
prefix log.

Definition 3.2.3 (Prefix log). Given a log L, a prefix log L. is an event log that
contains a (sub)set of prefixes of L.

For instance, a prefix log containing all possible prefixes is constructed as L, =
{hd"(c): 0 €L,1<k<|o|}.

The prefixes in a prefix log are divided into buckets using a bucketing function

(or bucketer) and separate classifiers are trained for each bucket.
Definition 3.2.4 (Bucketing function). A bucketing function buc : S, — N is a
function that takes a (running) trace ¢ and assigns it to an integer i, corresponding
to bucket b;,1 < i < B, where B is the number of buckets. In other words, b; =
{oc:0 €L, buc(c)=1i}.

Given these concepts, we define a predictive model in the context of outcome-

oriented predictive process monitoring as follows.
Definition 3.2.5 (Predictive model). A predictive model is a function out : S, —
[0,1] that takes a (running) trace o, assigns it to a bucket b; using a bucketer
buc, encodes ¢ as a feature vector using a sequence encoder enc, and returns a
prediction score using a classifier cls; corresponding to bucket b;, i.e. out(c) =
Clshuc(c) (enc(G)).

We refer to a predictive model where all prefixes are assigned to the same
bucket as single classifier. Conversely, a predictive model where prefixes are
assigned to multiple buckets (so that multiple classifiers are trained) is called a
multiclassifier.

39

Buckets of
Buckets of encoded

Classifiers
prefixes prefixes

Event log Prefix log

w S a a 4

Extract and filter Divide prefi; it Encod i i T |assifiers fi
|, Divide prefixes into » Encode prefixes for s Train classifiers for
prefixes buckets classification each bucket

Figure 6: Predictive process monitoring workflow (offline phase).

Buckets of
historical
prefixes

Encoded
trace Classifiers

Use classifier from
——>» the determined Prediction
bucket

Encode running trace

Running trace------» Determine bucket ————»| v o
for classification

Figure 7: Predictive process monitoring workflow (online phase).

The general workflow for predictive process monitoring can be divided into
two phases: the offline phase, to train a predictive model based on historical traces,
and the online phase, to make predictions on running process traces. The offline
phase, shown in Fig. 6, consists of four steps. First, given an event log, case pre-
fixes are extracted and filtered (e.g. to retain only prefixes up to a certain length).
Next, the identified prefixes are divided into buckets (e.g. based on process states
or similarities among prefixes) and features are encoded from these buckets for
classification. Finally, each bucket of encoded prefixes is used to train a classifier.

The online phase, shown in Fig. 7, concerns the actual prediction for a run-
ning trace, by reusing the elements (buckets, classifiers) built in the offline phase.
Specifically, given a running trace and a set of buckets of historical prefixes, the
correct bucket is first determined. Next, the running trace is encoded as a feature
vector for classification. In the last step, a prediction is extracted from the encoded
trace using the classifier corresponding to the determined bucket.

We note that there is an exception among the surveyed methods that does not
perfectly fit the presented workflow. Namely, the KNN bucketing approach pro-
posed by Maggi et al. [60] omits the offline phase. Instead, in this approach, the
bucket (a set of similar traces from the training set) is determined and a classifier
is trained during the online phase, separately for each running case. Note that con-
versely from the traditional KNN classifier, where a prediction is made directly
based on the class labels of the nearest neighbors, in this bucketing approach an
additional classifier (e.g. decision tree) is trained on the examples corresponding
to the nearest neighbors.

40

Table 4: Classification of the 11 primary studies according to the four steps of the
offline phase.

Prefix extraction and Sequence encoding
No. Primary study filtering Trace bucketing Control flow Data Classification algorithm
1 de Leoni et al. [20] all Single bucket agg., last state agg., last state DT
2 Maggi et al. [60] all KNN-based agg. last state DT
3 Grigori et al. [37] all State-based agg. (boolean) last state DT
4 Schwegmann et al. [85] all State-based agg. (boolean) last state SVM
5 Lakshmanan et al. [52] all State-based last state last state DT
6 Conforti et al. [17] all State-based last state last state DT
7 Di Francescomarino et al. [30] prefix length 1-21, Clustering-based agg. last state DT, RF
with gap 3, 5, or 10
8 Leontjeva et al. [54] prefix length 2-20 Prefix length index-based index-based DT, RF, GBM, SVM
index-based last state RF
agg. - RF
9 van der Spoel et al. [104] prefix length 1-30 Prefix length index-based - DT, RF, AB, NB, KNN
10 Verenich et al. [106] prefix length 2-20 Prefix length + cluster index-based index-based RF
11 Ghattas et al. [34] all Domain knowledge index-based index-based DT

Table 4 lists the 11 primary studies identified in our SLR, and shows their
characteristics according to the four steps of the offline phase (prefix selection
and filtering, trace bucketing, sequence encoding and classification algorithm). In
the rest of this section we survey the primary studies based on their characteristics,
and use this information to build a taxonomy that allows us to classify the studies.

3.2.2. Prefix extraction and filtering

After analyzing the identified studies, we found that all of them take as input a
prefix log (see Def. 3.2.3) to train a classifier. This choice is natural given that
at runtime, we need to make predictions for running traces rather than completed
ones. Using a prefix log for training ensures that our training data is comparable
to the testing data. For example, for a complete trace consisting of a total of 5
events, we could consider up to 4 prefixes: the (incomplete) trace after executing
the first event, the (incomplete) trace after executing the first and the second event,
and so on.

Using all possible prefixes raises multiple problems. Firstly, the large num-
ber of prefixes as compared to the number of traces considerably slows down the
training of the prediction models. Secondly, if the length of the original cases is
very heterogenous, longer traces produce much more prefixes than shorter ones
and, therefore, the prediction model is biased towards the longer cases. Accord-
ingly, it is common to consider prefixes up to a certain number of events only. For
example, Di Francescomarino et al. [30] limit the maximum prefix length to 21,
while Leontjeva et al. [54] use prefixes of up to 20 events only. In other words, in
their training phase, these approaches take as input the length-filtered prefix log
LK = {hd*(6) : 6 € L,1 <k <min(K,|c]|)}, where K = 21 and K = 20, respec-
tively.

Di Francescomarino et al. [30] propose a second approach to filter the prefix
log using so-called gaps. Namely, instead of retaining all prefixes of up to a
certain length, they retain prefixes whose length is equal to a base number (e.g.
1) plus a multiple of a gap (e.g. 1, 6, 11, 16, 21 for a gap of 5) . This approach

41

helps to keep the prefix log sufficiently small for applications where efficiency of
the calculations is a major concern. More formally, a gap-filtered prefix log is
constructed as LS = {hd' 7"4(c): 6 € L,0 <i < |c6|/g)}, where g denotes the gap
length, e.g. g =3, g =5, or g = 10.

We observe that length-based or gap-based filtering can be applied to any pre-
dictive process monitoring method. In other words, the choice of length or gap
filtering is not an inherent property of a method.

3.2.3. Trace bucketing

Most of the existing predictive process monitoring approaches train multiple clas-
sifiers rather than a single one (see Table 4). In particular, the prefix traces in the
historical log are divided into several buckets and different classifiers are trained
for each such bucket. At runtime, the most suitable bucket for the ongoing case is
determined and the respective classifier is applied to make a prediction. In the fol-
lowing, we describe the bucketing approaches that have been proposed by existing
predictive process monitoring methods.

Single bucket. All prefix traces are considered to be in the same bucket. A sin-
gle classifier is trained on the whole prefix log and applied directly to the running
cases. This approach has been used in the work by de Leoni et al. [20].

KNN-based bucketing. This approach differs from the general workflow in the
sense that the offline training phase is skipped and the prefixes are not divided
into non-overlapping buckets. Instead, for each running prefix trace, its k nearest
neighbors are selected from the historical prefix traces and a classifier is trained (at
runtime) on this “bucket” of k neighbors. This means that the number of buckets
(and classifiers) is not fixed, but grows with each executed event at runtime. Note
that this approach is similar to the KNN classifier introduced in Chapter 2 in the
sense that both methods retrieve the k nearest neighbors. However, a KNN clas-
sifier predicts the average (or the mode) of the class labels associated with these
neighbors, while a KNN bucketer only retrieves the neighbors, so that a classifier
(such as DT or RF) can be constructed from these instances. The KNN method
for predictive process monitoring was proposed by Maggi et al. [60]. Namely,
they calculate the similarities between prefix traces using string-edit distance on
the control flow. All instances that exceed a specified similarity threshold are con-
sidered as neighbors of the running trace. If the number of neighbors found is
less than 30, the top 30 similar neighbors are selected regardless of the similarity
threshold.

State-based bucketing. State-based approaches determine the buckets based on
elements in a process model, e.g. each task [37, 85] or decision point [17, 52]
corresponds to a state. A bucket is formed from trace prefixes having the same
current (i.e. the most recent) state and a classifier is trained on these prefixes. At
runtime, the current state of the running case is determined, and the respective
classifier is used to make a prediction for the running case.

42

Some of the state-based approaches (Grigori et al. [37], Schwegmann et
al. [85], and Conforti et al. [17]) assume that the process model is constructed
beforehand, i.e. they take as input both an event log and a process model. Note
that these methods implicitly or explicitly assume that the event log they take as
input perfectly fits the given process model, since for prefixes that do not corre-
spond to any state in the process model it is not possible to determine the bucket.
However, when a process is executed by an enterprise system such as an enterprise
resource planning (ERP) or customer-relationship management (CRM) system or
by a custom-made information system, it is not guaranteed that the process will
always abide to the reference process model (there can be deviations) and as such,
this assumption is often unrealistic.

Conversely, Lakshmanan et al. [52] derive a process model automatically from
a given event log. Specifically, they construct a so-called activity graph where
there is one node per possible activity (event class) in the log, and there is a di-
rected edge from node a; to a; iff a; has occurred immediately after a; in at least
one trace. This type of graph is also known as the Directly-Follows Graph (DFG)
of an event log [101]. We observe that the DFG is the state-transition system ob-
tained by mapping each trace prefix in the log to a state corresponding to the last
activity appearing in the trace prefix (and hence the state of a running case is fully
determined by its last activity). The edges in the DFG are annotated with tran-
sition probabilities, where the transition probability from node a; to a; captures
how often after performing activity a;, a; is performed next. We also observe that
a DFG annotated with transition probabilities is a first order Markov chain. Also,
buckets constructed based on a DFG correspond to the last state abstraction of a
trace, i.e. the bucket of a prefix is determined based on the activity name of the
last event executed in the given prefix. Alternative methods for constructing state
abstractions are identified in [103] (e.g. set-based, multiset-based and sequence-
based state abstractions), but these have not been used for outcome-oriented pre-
dictive process monitoring. Also, these latter state abstractions are likely not to
be suitable for most logs since they can generate a very large number of states,
which would lead to very large number of buckets, so that most of these buckets
would be too small to train a separate classifier.

Clustering-based bucketing. The clustering-based bucketer relaxes the re-
quirement of a direct transition between the buckets of two subsequent prefixes.
Conversely, the buckets (clusters) are determined by applying a clustering algo-
rithm on the encoded prefix traces. This results in a number of clusters that do
not exhibit any transitional structure. In other words, the buckets of hd*(c) and
hd* ! (o) are determined independently from each other. Both of these prefixes
might be assigned to the same cluster or different ones. One classifier is trained
per each resulting cluster, considering only the historical prefix traces that fall into
that particular cluster. At runtime, the cluster of the running case is determined
based on its similarity to each of the existing clusters and the respective classifier
is applied.

43

A clustering-based approach is proposed by Di Francescomarino et al. [30].
They experiment with two clustering methods, DBScan (with string-edit distance)
and model-based clustering (with Euclidean distance on the frequencies of per-
formed activities), while neither achieves constantly superior performance over
the other. Another clustering-based method is introduced by Verenich et al. [106].
In their approach, the prefixes are encoded using index-based encoding (see 3.2.4)
using both control flow and data payload, and then either hierarchical agglomer-
ative clustering (HAC) or k-medoids clustering is applied. According to their
results, k-medoids clustering consistently outperforms HAC.

Prefix length based bucketing. In this approach, each bucket contains only the
incomplete traces of a specific length. For example, one bucket contains traces
where only the first event has been executed, another bucket contains those where
the first and the second event have been executed, and so on. One classifier is
built for each possible prefix length. The prefix length based bucketing has been
employed by van der Spoel et al. [104] and Leontjeva et al. [54]. Also, Verenich et
al. [106] bucket the prefixes according to prefix length before applying a clustering
method.

Domain knowledge based bucketing. While the bucketing methods described
so far can detect buckets through an automatic procedure, it is possible to define
a bucketing function that is based on manually constructed rules. In such an ap-
proach, the input from a domain expert is needed. The resulting buckets can, for
instance, refer to context categories [34].

The aim of this survey and benchmark is to derive general principles by com-
paring methods that are applicable in arbitrary outcome-based predictive process
monitoring scenarios and, thus, the methods that are based on domain knowledge
about a particular dataset are left out of scope. For this reason, we do not further
consider bucketing approaches based on domain knowledge.

3.2.4. Sequence encoding

In order to train a classifier, all prefix traces in the same bucket need to be repre-
sented as fixed length feature vectors. The main challenge here comes from the
fact that with each executed event, additional information about the case becomes
available, while each trace in a bucket (independent of the number of executed
events) should still be represented with the same number of features. This can be
achieved by applying a trace abstraction technique [103], for example, consider-
ing only the last m events of a trace. However, choosing an appropriate abstraction
is a difficult task, where one needs to balance the trade-off between the general-
ity? and loss of information. After a trace abstraction is chosen, a set of feature
extraction functions may be applied to each event data attribute of the abstracted

2Generality in this context means being able to apply the abstraction technique to as many prefix
traces as possible; as an example, the last m states abstraction is not meaningful for prefixes that are
shorter than m events.

44

trace. Therefore, a sequence encoding method can be thought of as a combination
of a trace abstraction technique and a set of feature extraction functions for each
data attribute.

In the following paragraphs we describe the sequence encoding methods that
have been used in the existing predictive process monitoring approaches. As de-
scribed in Chapter 1, a trace can contain any number of static case attributes and
dynamic event attributes. Both the case and the event attributes can be of numeric,
categorical, or textual type. As none of the compared methods deal with textual
data, hereinafter we will focus on numeric and categorical attributes only.

Static encoding. The encoding of case attributes is rather straightforward. As
they remain the same throughout the whole case, they can simply be added to the
feature vector “as is” without any loss of information. In order to represent all
the information as a numeric vector, we assume the “as is” representation of a
categorical attribute to be one-hot encoding (see Chapter 2). The static encoding
was first mentioned explicitly by Leontjeva et al. [54].

Last state encoding. In this encoding method, only the last available snapshot
of the data is used. Therefore, the size of the feature vector is proportional to the
number of event attributes and is fixed throughout the execution of a case. A draw-
back of this approach is that it disregards all the information that has happened in
the past, using only the very latest data snapshot. To alleviate this problem, this
encoding can easily be extended to the last m states, in which case the size of the
feature vector increases m times. As the size of the feature vector does not depend
on the length of the trace, the last state (or the last m states) encoding can be used
with buckets of traces of different lengths.

Using the last state abstraction, only one value (the last snapshot) of each data
attribute is available. Therefore, no meaningful aggregation functions can be ap-
plied. Similarly to the static encoding, the numeric attributes are added to the
feature vector “as is”, while one-hot encoding is applied to each categorical at-
tribute.

The last state encoding is the most common encoding technique, having been
used in the KNN approach [60], state-based bucketing [17, 37, 52, 85], as well
as the clustering-based bucketing approach by Di Francescomarino et al. [30].
Leontjeva et al. [54] combine index-based encoding for control flow with last
state encoding for data attributes. Furthermore, de Leoni et al. [20] mention the
possibility of using the last and the previous (the last two) states.

Aggregation encoding. The last state encoding has obvious drawbacks in terms
of information loss, neglecting all data that have been collected in the earlier
stages of the trace. Another approach is to consider all events since the begin-
ning of the case, but ignore the order of the events. This abstraction method paves
the way to several aggregation functions that can be applied to the values that an
event attribute has taken throughout the case.

In particular, the frequencies of performed activities (control flow) have been
used in several existing works [30, 54]. Alternatively, boolean values have been

45

used to express which activities have occurred in the trace in order to determine
the state (bucket) of a prefix [37, 85]. However, when used to generate feature
vectors to be given as input to a classifier, frequency-based encoding has been
shown to be superior to the boolean encoding [54]. For numeric attributes, de
Leoni et al. [20] proposed using general statistics as aggregation functions, such
as average, maximum, minimum, and sum.

Index-based encoding. While the aggregation encoding exploits information
from all the performed events, it still exhibits information loss by neglecting the
order of the events. The idea of index-based encoding is to use all possible in-
formation (including the order) in the trace, generating one feature per each event
attribute per each executed event (each index). This way, a lossless encoding of
the trace is achieved, which means that it is possible to completely recover the
original trace based on its feature vector. A drawback of index-based encoding
is that due to the fact that the length of the feature vector increases with each ex-
ecuted event, this encoding can only be used in homogenous buckets where all
traces have the same length.

Index-based encoding was used by van der Spoel et al. [104] to encode control
flow and was extended to data attributes by Leontjeva et al. [54]. Additionally, in
the latter work the authors combined the index-based encoding with HMM log-
likelihood ratios. However, we decided not to experiment with HMMs in this
study for mainly two reasons. Firstly, the HMMs did not consistently improve the
basic index-based encoding in [54]. Secondly, rather than being an essential part
of index-based encoding, HMMs can be thought of as an aggregation function that
can be applied to each event attribute, similarly to taking frequencies or numeric
averages. Therefore, HMMs are not exclusive to index-based encoding, but could
also be used in conjunction with the aggregation encoding. Index-based encoding
is also used in the approach of Verenich et al. [106].

Summary. An overview of the encoding methods can be seen in Table 5. Note
that the static encoding extracts different type of data from the trace (case at-
tributes) than the other three methods (event attributes). Therefore, for obtaining
a complete representation for a trace, it is reasonable to concatenate the static
encoding with one (or more) of the other three encodings.

3.2.5. Classification algorithm

The existing predictive process monitoring methods have been experimented with
different classification algorithms. The most popular choice has been decision tree
(DT), which has been employed in 9 out of 11 primary studies. Another popular
method has been random forest (RF), used in 4 studies. Additionally, some works
have experimented with SVM, Naive Bayes (NB), k-nearest neighbors (KNN),
AdaBoost (AB), and generalized boosted regression models (GBM). Works that
experimented with RF among other classification algorithms found that the per-
formance of RF is superior [54, 104] or comparable [30] to other techniques.

46

Table 5: Encoding methods.

Encoding Relevant Trace Feature extraction
name attributes abstraction Numeric Categorical
Static Case Case attributes as is one-hot
Last state Event Last event as is one-hot
Aggregation Event All events, unordered min, max, mean, frequencies or
(set/bag) sum, std occurrences
Index-based Event All events, ordered as is one-hot
(sequence) for each index for each index

3.2.6. Discussion

We have observed that the prefix filtering techniques are not inherent to any given
predictive process monitoring method. Instead, these techniques are selected
based on performance considerations and can be used in conjunction with any
of the predictive process monitoring methods. In a similar vein, the choice of a
classification algorithm is a general problem in machine learning and is not spe-
cific to business process data. Indeed, all of the authors of the methods reviewed
above claim that their method is applicable in conjunction with any classifier.
Therefore, we treat the prefix filtering technique and the classification algorithm
employed as orthogonal aspects to the categorization of predictive process moni-
toring methods. However, while excluded from the taxonomy, the specific prefix
filtering technique and classification algorithm used still play an important role in
obtaining good predictions, with their performance being influenced by the par-
ticular settings used.

The considered methods also differ in terms of the event log attributes that
are used for making predictions. However, it has been shown [54] that including
more information (i.e. combining control flow and data payload) can drastically
increase the predictive power of the models, so it is preferable to use the largest
possible set of evant and case attributes independently of the method.

Based on the above, we conclude that existing outcome-oriented predictive
process monitoring methods can be characterized on two grounds:

e how the prefix traces are divided into buckets (trace bucketing)?

e how the (event) attributes are transformed into features (sequence encod-

ing)?

Figure 8 provides a taxonomy of the relevant methods based on these two per-
spectives. Note that the 11 approaches shown in the taxonomy do not correspond
directly to the 11 primary studies. The reason for this is that while the primary ap-
proaches tend to mix different encoding schemes, e.g. to use aggregation encoding
for control flow and last state encoding for data payload (see Table 4), the taxon-
omy is constructed in a modular way, so that each encoding method constitutes
a separate approach. In other words, the taxonomy, as presented here, assumes

47

that the same encoding is applied to both control flow and data payload. Still,
in practice the different encodings (that are valid for a given bucketing method)
can be easily combined. Similarly, the taxonomy does not contain combinations
of several bucketing methods. An example of such “double bucket” approaches
is the method by Verenich et al. [106], where the prefixes are first divided into
buckets based on prefix length and, then, clustering is applied within each bucket.
In practice, it is possible to come up with a variety of such constructs, combining
the elements presented in the taxonomy. However, note that such double bucket
approaches divide the prefixes into many small buckets, which often leads to sit-
uations where a classifier receives too little training instances to learn meaningful
patterns.

We note that the taxonomy generalizes the state-of-the-art, in the sense that
even if a valid pair of bucketing and encoding method has not been used in any
existing approach in the literature, it is included in the taxonomy (e.g. the state-
based bucketing approach with frequency-based aggregation encoding). We also
note that while the taxonomy covers the techniques proposed in the literature, all
these techniques rely on applying a propositional classifier on an explicit vecto-
rial representation of the traces. One could envisage alternative approaches that do
not require an explicit feature vector as input. For instance, kernel-based SVMs
have been used in the related setting of predicting the cycle time of a case [105].
Furthermore, one could envisage the use of data mining techniques to extract ad-
ditional features from the traces (e.g. latent variables or frequent patterns). Al-
though the taxonomy does not cover this aspect explicitly, applying such tech-
niques is consistent with the taxonomy, since the derived features can be used in
combination with any of the sequence encoding and bucketing approaches pre-
sented here. While most of the existing works on outcome-oriented predictive
monitoring use the event/trace attributes “as-is” without an additional mining step,
Leontjeva et al. used Hidden Markov Models for extracting additional features in
combination with index-based encoding [54]. Further on, although not yet applied
to outcome-oriented predictive process monitoring tasks, different pattern mining
techniques could be applied to extract useful patterns from the sequences, occur-
rences of which could then be used as features in the feature vectors of the traces.
Such techniques have been used in the domain of early time series/sequence clas-
sification [32, 33, 42, 55, 109] and for predicting numeric measures (e.g. remain-
ing time) for business processes [29].

3.3. Deployment use cases

In this section, we discuss the deployment use cases employed in the existing
works on outcome-oriented predictive process monitoring (RQ4). In particular,
we have identified three main use cases that have been used or mentioned in the
primary studies (see Table 6). While in continuous predictive monitoring the sys-
tem remains purely predictive in nature, in alarm-based and recommendation-

48

Predictive

monitoring
State ‘

Last state
(3.4,5,6)
Aggregation

Trace
bucketing

1

Prefix length

Last state
(8)

Aggregation

Clustering

Last state
]
Aggregation
n

Last state
(2)

Last state
9]
Dynamic

ttribut
encoing

encoding

Index-based
(8.9,10,11)

il

Figure 8: Taxonomy of methods for outcome-oriented predictive business pro-
cess monitoring. Numbers correspond to the primary studies employing a given
method (see Table 4 for mapping between primary studies and their numbers).

Table 6: Deployment use cases in the primary studies.

No. Study Use cases

1 de Leoni et al. [20] continuous, recommendation
2 Maggi et al. [60] continuous, alarm, recommendation
3 Grigori et al. [37] continuous, alarm

4 Schwegmann et al. [85] continuous

5 Lakshmanan et al. [52] continuous

6 Conforti et al. [17] recommendation

7 Di Francescomarino et al. [30] alarm

8 Leontjeva et al. [54] continuous

9 van der Spoel et al. [104] continuous

10 Verenich et al. [106] continuous

11 Ghattas et al. [34] recommendation

based scenarios the system is expected to estimate if the prediction is reliable
(or severe) enough for the process worker to act upon it and/or how the process
worker should intervene. Therefore, we consider the latter two use cases to be
instances of prescriptive process monitoring.

Continuous predictive monitoring. In this setting, the process worker receives
predictions about the case outcome after every event. The predictions can be
provided in either binary format (O for negative class, 1 for positive class) or
as a real-valued score, reflecting the probability or confidence towards a certain
outcome. The predictive monitoring system does not prescribe if and when the
process worker should act upon the prediction and continues to monitor the case
until the end.

Alarm-based prescriptive monitoring. In this scenario, the predictive monitor-
ing system only outputs a prediction if the probability or confidence of a cer-

49

tain outcome is sufficiently high. This corresponds to triggering an alarm, i.e.
notifying the process worker that an action is needed in the given process in-
stance. After an alarm is raised, the instance is taken out of monitoring, i.e. an
alarm can be raised at most once per case. Alarm-based monitoring can be im-
plemented in a one-sided or a two-sided manner. In the first case, alarms are
raised only when an undesired outcome is predicted with sufficient probability,
while in the second case alarms are raised for both (sufficiently likely) undesired
and desired outcomes. In the existing works, alarm-based settings are usually
implemented using a decision threshold on the prediction scores returned by the
classifier. In a two-sided setting, often the notion of confidence is used, so that
an alarm is raised if the prediction score is either sufficiently low or sufficiently
high. For instance, given a classifier that outputs scores in the range of 0 to 1,
confidence(0.3) = confidence(0.7) = 0.7. The threshold in the existing works
is chosen manually, either as a fixed value [30] or set as the average class prob-
ability (i.e. the percentage of examples correctly classified with respect to all the
examples following that specific path) over all leaves in a decision tree [60]. In
the latter work, the authors also propose an alternative approach where alarms are
raised only if the class support (i.e. the number of examples in the training set
that follow the path from the root to the leaf and that are correctly classified) in
the given leaf of the decision tree is higher than the median of class supports over
all leaves. In [30], a hybrid approach is used, where the alarm is raised if both the
class support and the class probability are higher than the respective thresholds.

Recommendation-based prescriptive monitoring. In this setting, the system is
expected to not only raise an alarm, but also to recommend what would be the
most appropriate action that the process worker should take in order to prevent or
mitigate the undesired outcome. Some of the related works outline an approach
that queries the predictive model for predictions about several hypothetical con-
tinuations of the process and recommends the action taken in the path with the
most desirable predicted outcome [20, 60]. Ghattas et al. [34] derive interpretable
decision rules in the form IF <current state of attributes> THEN <action>. The
approach by Conforti et al. [17] generate recommendations by computing an op-
timal work-item distribution based on the predictions.

3.4. Evaluation measures and experimental settings

In this section, we discuss the evaluation procedures used in the existing works on
outcome-oriented predictive process monitoring (RQ3). We observe that the eval-
uation procedures in the existing studies differ mainly in terms of four aspects:
evaluation measures, evaluation points in the trace, train-test split, and model se-
lection. An overview of the existing studies with respect to these aspects is given
in Table 7. In the following subsections, we first discuss evaluation measures and
evaluation points (Section 3.4.1) and proceed with log splitting and hyperparam-
eter optimization strategies (Section 3.4.2).

50

Table 7: Evaluation procedures in the primary studies.

No. Study Evaluation measures Evaluation points Train/test split ~ Model selection

1 de Leoni et al. [20] ACC (train) and F-score (train) overall - -

2 Maggi et al. [60] TPR, FPR, precision, F-score, ACC start, 1/4, 1/2, overall temporal 80-20 -

3 Grigori et al. [37] ACC (train) every state - -

4 Schwegmann et al. [85] ACC every state CcvV CvV

5 Lakshmanan et al. [52] ACC (train) every state - -

6 Conforti et al. [17] % faulty instances end of trace simulation -

7 Di Francescomarino et al. [30] F-score, earliness, failure-rate alarm time temporal 80-20 -
train, processing, prediction times

8 Leontjeva et al. [54] AUC, earliness, stability of AUC prefixes 2-20, overall ~temporal 80-20 5-fold CV
training and prediction times

9 van der Spoel et al. [104] ACC prefixes 1-30, overall random 50-50 -

10 Verenich et al. [106] AUC prefixes 2-20, overall random 80-20 -

11 Ghattas et al. [34] % excellent, (un)acceptable instances end of trace simulation -

3.4.1. Evaluation measures

In outcome-oriented predictive process monitoring, the quality of the predictions
is typically measured with respect to two main dimensions based on the following
desiderata: a good prediction should be accurate and it should be made in the
early stages of the process. Furthermore, in order to be applicable in practice
a prediction should be produced efficiently, i.e. the execution times should be
suitable for a given application. In the following paragraphs, we delve deeper into
these aspects and map the evaluation measures used in the existing works to these
three quality dimensions. Lastly, we briefly describe the evaluation measures used
in the recommendation use cases.

Accuracy. Prediction accuracy refers to the correctness of the predictions with
respect to the ground truth (i.e. the actual class labels). A prediction that is often
inaccurate is a useless prediction, as it cannot be relied on when making decisions.
Therefore, accuracy is, in a sense, the most important quality of a prediction.

Two main types of metrics emerge in the existing works for measuring predic-
tion accuracy. In the first approach, predictions are expected to be binary values,
i.e. to directly refer to a positive or a negative predicted outcome. In these cases,
metrics such as ACC, precision, recall, F-score, or other derivatives from the con-
fusion matrix (see Chapter 2) are used. In the second approach, it is assumed that
the classifier returns a real-valued score, reflecting how likely it is that the case
will end in one way or the other. Most commonly, AUC is used to measure the
prediction accuracy in the latter approach.

In continuous predictive monitoring settings, prediction accuracy is often re-
ported for different evaluation points, e.g. prefix lengths [54, 104, 106], relative
prefix lengths [60], or states in a process model [37, 52, 85]. Additionally, in
some cases the overall accuracy is reported as the mean of the respective accuracy
measure over all considered evaluation points. Furthermore, Leontjeva et al. [54]
report the standard deviation of the AUC over all prefix lengths, as a measure of
stability of the quality of the results across different stages in the process.

The evaluation procedure in alarm-based use cases exhibits some differences
from the continuous monitoring setting. Firstly, as the output of the system is of

51

binary nature (alarm or not alarm), the prediction accuracy can only be measured
using the first group of metrics, e.g. the F-score. Secondly, the prediction is made
at most once per case and, therefore, reporting the quality measures separately for
different execution stages is not meaningful. Instead, the evaluation point in each
case corresponds to the point in the trace where an alarm was raised. Further-
more, in a two-sided alarm setting, it can happen that the case finishes before the
confidence of any prediction reaches the respective threshold and, therefore, no
prediction is made for the case. In such cases, Di Francescomarino et al. [30] pro-
pose measuring the failure-rate as the proportion of cases for which no predictions
were made. Note that reaching the end of the case without making a prediction is
not considered a failure in one-sided alarm settings, since if the case ends without
alarms, it can simply be considered a predicted “desired” outcome.

Earliness. The earlier an accurate (or reliable) prediction is made, the more
useful it is in practice, since it leaves more time to act upon the prediction. From
the literature, two different approaches emerge for measuring the earliness of the
predictions. In continuous predictive monitoring settings, earliness is often mea-
sured implicitly by evaluating the accuracy of the models separately for different
evaluation points, e.g. for each prefix length [54]. The improvement of prediction
accuracy as the prefix length increases serves as a notion of earliness. In particular,
the smaller the prefix length is when an acceptable level of accuracy is reached,
the better the method in terms of earliness. In these settings, earliness can also
be defined explicitly as a metric, i.e. as the smallest prefix length in which the
model achieves a specified accuracy threshold [54]. Another approach to measur-
ing earliness corresponds to the alarm-based use case, where a prediction is made
at most once per case. Then, earliness is defined as the prefix length when such a
prediction is made (i.e. the alarm time) divided by the length of the trace [30].

Efficiency. Efficiency of a predictive monitoring method refers to the ability
of the system to produce predictions in reasonable time. In this context, both
the offline and the online execution times are measured. In particular, in the of-
fline phase, it should be possible to train the underlying predictive models within
a feasible timeframe. In the online phase, the system should be able to output
predictions in nearly real time. Di Francescomarino et al. further divide the com-
putation times in the online phase into processing time, i.e. the total time taken
to process the entire test dataset (e.g. encoding and assigning prefixes to clus-
ters), and prediction time, i.e. the average time to make a prediction for a given
prefix [30].

Quality measures in the recommendation use cases. The works that follow the
recommendation-based prescriptive monitoring use case measure the goodness of
the recommendation system directly, rather than assessing the quality of the pre-
dictions produced in an intermediate step. Conforti et al. [17] measure the propor-
tion of faulty instances in the “as-is” case (no recommender system in place) and
in the “to-be” case (when using the recommendation system). Similarly, Ghat-
tas et al. [34] report the proportions of excellent, acceptable, and unacceptable

52

instances. The goodness of the recommender system is measured by the extent
to which it is able to reduce the number of faulty/unacceptable instances and/or
increase the number of excellent instances.

3.4.2. Model selection and generalization

As discussed in Chapter 2, it is essential in machine learning to evaluate how
well the model generalizes to unseen data. In other words, the performance of
the predictive model should be measured on a separate test set that has not been
used when training the model. Such evaluation has been performed in 8 out of
the 11 primary studies (see Table 7). The most common strategy to split the
log into a train and a test log has been a 80-20 temporal split, i.e, the traces are
ordered by their start time (the time of the first event); the first 80% are used
as the training set and the remaining 20% as the test set [30, 54, 60]. In these
works, no correction has been employed for events that belong to training traces
but overlap with the time period of the testing traces. Therefore, this setup does
not strictly imitate a real-life scenario, since some information from events that
happen in “the future” (i.e. during the testing period) is leaked to the training set.
Additionally to temporal split, some works have used a random split [104, 106] or
cross-validation [85]. Studies that follow the recommendation use case have used
a completely different evaluation procedure by simulating new traces according
to a process model and evaluating the quality of the recommendations on these
unseen but artificial traces [17, 34]. In the rest of the studies, no quantitative
evaluation of the predictive models is performed and the discussion remains on
the level of training accuracy in selected examples [20, 37, 52].

Hyperparameter optimization has been performed in only 2 existing works,
where cross-validation has been used to find the optimal hyperparameters of the
models [54, 85].

3.5. Summary

This chapter provides a survey of existing outcome-oriented predictive business
process monitoring techniques. The relevant existing studies were identified
through a systematic literature review (SLR), which revealed 16 studies dealing
with the problem of predicting case outcomes. Out of these, 11 were considered to
contain a distinct contribution (primary studies). Through further analysis of the
primary studies, a taxonomy was proposed based on two main aspects, the trace
bucketing approach and sequence encoding method employed. Combinations of
these two aspects led to a total of 11 distinct methods.

One of the threats to the validity of the survey presented in this chapter re-
lates to the potential selection bias in the literature review. To minimize this, we
described our systematic literature review procedure on a level of detail that is
sufficient to replicate the search. However, in time the search and ranking al-
gorithms of the used academic database (Google Scholar) might be updated and

53

return different results. Another potential source of bias is the subjectivity when
applying inclusion and exclusion criteria, as well as when determining the primary
and subsumed studies. In order to alleviate this issue, all the included papers were
collected in a publicly available spreadsheet, together with decisions and reasons
for excluding them from the study.

In the next chapter, we proceed with an experimental evaluation of the 11
techniques identified in this chapter.

54

4. BENCHMARK

In Chapter 3, we identified 11 approaches (shown in Figure 8) that have been de-
veloped in the context of outcome-oriented predictive process monitoring. How-
ever, we observed that different authors have used different datasets, experimental
settings, evaluation measures, and baselines to assess their proposals, resulting in
poor comparability and an unclear picture of the relative merits and applicability
of different methods. This leads us to the following research question:

RQ1 (Benchmark) What is the relative performance of existing methods for
outcome-oriented predictive monitoring of business processes?

In this chapter, we aim at answering the posed research question by perform-
ing a comparative experimental evaluation of the 11 existing techniques (shown
in Figure 8) in a unified setting. To perform our benchmark, we implemented
an open-source, tunable and extensible predictive process monitoring framework
in Python. All experiments were run using Python 3.5 and the scikit-learn li-
brary [74] on a single core of an Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
with 64GB of RAM.

In the rest of this chapter, we first introduce the evaluation datasets, then de-
scribe the evaluation procedure and conclude with discussing the results of the
experiments.

4.1. Datasets

The benchmark is based on 9 real-life event logs that cover 6 different application
domains: healthcare (event logs BPIC201 1, Sepsis, and Hospital billing), govern-
ment (BPIC2015 and Traffic fines), manufacturing (Production), insurance (Insur-
ance), and banking (BPIC2012 and BPIC2017). Eight of these event logs are pub-
licly available and accessible from the 4TU Centre for Research Data'. Several of
these logs originate from Business Process Intelligence Challenges (BPIC) from
different years. The criterion for selecting the public event logs for the evalua-
tion was that the log must contain both case attributes (static) and event attributes
(dynamic). Based on this, we discarded the BPIC logs from years 2013-2014.
We also discarded the BPIC 2016 dataset because it is a clickstream-dataset of
a Web service, rather than an event log of a business process. Even though pro-
cess mining is also widely used in the insurance domain [90], no event logs from
this domain are publicly available. Therefore, we decided to include a private
log Insurance, which originates from a claims handling process at an Australian
insurance company.

In some logs, we applied several labeling functions out (see Definition 1.2.2).
In other words, the outcome of a case is defined in several ways depending on the
goals and needs of the process owner. Each such notion of outcome constitutes a

! https://data.4tu.nl/repository/collection:event_logs_real

55

https://data.4tu.nl/repository/collection:event_logs_real

Table 8: LTL Operators Semantics.

operator | semantics
Xo ¢ has to hold in the next position of a path.
Go @ has to hold always in the subsequent positions of a path.

Fo ¢ has to hold eventually (somewhere) in the subsequent positions of a path.
¢ has to hold in a path at least until y holds. y must hold in the current or
in a future position.

¢ Uy

separate predictive process monitoring task with a slightly different input dataset.
In total, we formulated 24 different outcome prediction tasks based on the 9 orig-
inal event logs: bpic2011_1, bpic2011_2, bpic2011_3, bpic2011_4, bpic2015_1,
bpic2015_2, bpic2015_3, bpic2015_4, bpic2015_5, production, insurance_l, in-
surance_2, sepsis_I, sepsis_2, sepsis_3, bpic2012_1, bpic2012_2, bpic2012_3,
bpic2017_1, bpic2017_2, bpic2017_3, hospital_1, hospital_2, and traffic . In the
following paragraphs, we describe the original logs, the applied labeling func-
tions, and the resulting predictive monitoring tasks in more detail.

Event log BPIC2011. This event log contains cases from the Gynaecology de-
partment of a Dutch Academic Hospital. Each case assembles the medical history
of a given patient, where the applied procedures and treatments are recorded as
activities. Similarly to previous work [30, 54], we use four different labeling func-
tions based on LTL rules [77]. Specifically, we define the class label for a case ¢
according to whether an LTL rule ¢ is violated or satisfied by each trace o.

(6) 1 if ¢ violated in &
ou =
0 otherwise

Table 8 introduces the semantics of the LTL operators.
The four LTL rules used to formulate the four prediction tasks on the
BPIC2011 log are as follows:
o bpic2011_I: ¢ = F(“tumor marker CA —19.9”) V F(“ca — 125 using meia”),
o bpic2011_2: ¢ =
G(“CEA — tumor marker using meia” — ¥ (“squamous cell carcinoma using eia”)),
e bpic2011_3: ¢ =
(=*histological examination — biopsies nno”)U(“squamous cell carcinoma using eia”), and
o bpic2011_4: ¢ = F(“histological examination — big resectiep™).

For example, the ¢ for bpic2011_1 expresses the rule that at least one of the
activities “tumor marker CA-19.9” or “ca-125 using meia” must happen even-
tually during a case. Evidently, the class label of a case becomes known and
irreversible when one of these two events has been executed. In order to avoid
bias introduced by this phenomenon during the evaluation phase, all the cases are
cut exactly before either of these events happens. Similarly, the cases are cut be-
fore the occurrence of “histological examination-biopsies nno” in the bpic2011_3
dataset and before “histological examination-big resectiep” in bpic2011_4. How-
ever, no cutting is performed in the bpic2011_2 dataset, because ¢ states that
a “CEA-tumor marker using meia” event must always be followed by a “squa-
mous cell carcinoma using eia” event sometime in the future. Therefore, even

56

if one occurrence of “CEA-tumor marker using meia” has successfully been fol-
lowed by a “squamous cell carcinoma using eia” (¢ is satisfied), another occur-
rence of “CEA-tumor marker using meia” will cause ¢ to be violated again and,
thus, the class label is not irreversibly known until the case completes.

Event log BPIC2015. This dataset assembles event logs from 5 Dutch munic-
ipalities, pertaining to a building permit application process. We treat the dataset
from each municipality as a separate event log and apply a single labeling func-
tion to each one. Similarly to BPIC2011, the labeling function is based on the
satisfaction/violation of an LTL rule ¢. The prediction tasks for each of the 5
municipalities are denoted as bpic2015_i, where i = 1...5 indicates the number
of the municipality. The LTL rule used in the labeling functions is as follows:

e bpic2015_i: o = G(“send confirmation receipt” —

F(“retrieve missing data”)).

No trace cutting can be performed here, because, similarly to bpic2011_2, the
final satisfaction/violation of ¢ is not known until the case completes.

Event log Production. This log contains data from a manufacturing process.
Each trace records information about the activities, workers and/or machines in-
volved in producing an item. The labeling (production) is based on whether or not
the number of rejected work orders is larger than zero.

Event log Insurance. This is the only private log we use in the experiments.
It comprises of cases from an Australian insurance claims handling process. We
apply two labeling functions:

e insurance_l: out is based on whether a specific “key” activity is performed
during the case or not.

e insurance_2: out is based on the time taken for handling the case, dividing
them into slow and fast cases.

Event log Sepsis. This log records trajectories of patients with symptoms of
the life-threatening sepsis condition in a Dutch hospital. Each case logs events
since the patient’s registration in the emergency room until her discharge from the
hospital. Among others, laboratory tests together with their results are recorded
as events. Moreover, the reason of the discharge is available in the data in an
obfuscated format.

We created three different labelings for this log:

e sepsis_I: the patient returns to the emergency room within 28 days from
the discharge,

e sepsis_2: the patient is (eventually) admitted to intensive care,
e sepsis_3: the patient is discharged from the hospital on the basis of some-
thing other than Release A (i.e. the most common release type).
Event log BPIC2012. This dataset, originally published in relation to the BPIC
in 2012, contains the execution history of a loan application process in a Dutch
financial institution. Each case in this log records the events related to a particular

57

loan application. For classification purposes, we defined some labelings based
on the final outcome of a case, i.e. whether the application is accepted, rejected,
or canceled. Intuitively, this could be thought of as a multi-class classification
problem. However, to remain consistent with previous work on outcome-oriented
predictive process monitoring, we approach it as three separate binary classifica-
tion tasks. In the experiments, these tasks are referred to as bpic2012_1 (accepted
vs. not accepted), bpic2012_2 (rejected vs. not rejected), and bpic2012_3 (can-
celed vs. not canceled).

Event log BPIC2017. This event log originates from the same financial institu-
tion as the BPIC2012 one. However, the data collection has been improved, result-
ing in a richer and cleaner dataset. As in the previous case, the event log records
execution traces of a loan application process. Similarly to BPIC2012, we define
three separate labelings based on the outcome of the application: bpic2017_1,
bpic2017_2, and bpic2017_3, referring to binary classification tasks on identify-
ing accepted, rejected, and canceled cases, respectively.

Event log Hospital billing. This dataset comes from an enterprise resource
planning (ERP) system of a hospital. Each case is an execution of a billing proce-
dure for medical services. We created two labelings for this log:

e hospital_I: the billing package was not (eventually) closed,
e hospital_2: the case is reopened.

Event log Traffic fines. This log comes from an Italian local police force. The
dataset contains events about notifications sent about a fine, as well as (partial) re-
payments. Additional information related to the case and to the individual events
include, for instance, the reason, the total amount, and the amount of repayments
for each fine. We created the labeling (¢raffic) based on whether the fine is repaid
in full or is sent for credit collection.

Preprocessing. It has been shown [54] that including more information (i.e.
combining control flow and data payload) can drastically increase the predictive
power of the models. In order to provide a fair comparison of the different meth-
ods, it is preferable to provide the same set of attributes as input to all methods,
and preferably the largest possible set of attributes. Accordingly, in the compara-
tive evaluation below, we will encode traces using all the available case and event
attributes (covering both control flow and data payload).

While most of the attributes can be readily included in the train and test
datasets, timestamps should be preprocessed in order to derive meaningful fea-
tures. In our experiments, we use the following features extracted from the times-
tamp: month, weekday, hour, duration from the previous event in the given case,
duration from the start of the case, and the position of the event in the case. Ad-
ditionally, some recent works have shown that adding features constructed from
collections of cases (inter-case features) increases the accuracy of the predictive
models, particularly when predicting deadline violations [17, 87]. For example,
waiting times are highly dependent on the number of ongoing cases of a process

58

(the so-called “Work-In-Process”). In turn, waiting times may affect the outcome
of a case, particularly if the outcome is defined with respect to a deadline or with
respect to customer satisfaction. Accordingly, we construct an inter-case feature
reflecting the number of cases that are “open” at the time of executing a given
event. All the abovementioned features are used as numeric dynamic (event) at-
tributes.

Each of the categorical attributes has a fixed number of possible values (lev-
els). For some attributes, the number of distinct levels can be very large, with
some of the levels appearing only in a few cases. In order to avoid exploding
the dimensionality of the input dataset, we filter only the category levels that ap-
pear in at least 10 examples. The less frequent levels are set to a common level
“other”. This filtering is applied to each categorical attribute except the event class
(activity), where we use all category levels.

Due to the fact that event logs consist of data that are recorded automatically
by information systems during the execution of tasks of a process, there is none
or very little missing data in the traditional sense. However, it is common that
different events carry different data payloads, resulting in a situation where some
attribute values for a given event can be “missing” due to the fact that they are not
applicable for that particular event. This can be caused by mainly two reasons.
Firstly, in most event logs, an event records only the values of data attributes that
were changed during that particular event. Therefore, in order to determine the
value of an attribute at the point where an event occurred, we need to search for
the latest event in the trace (or trace prefix) where the value of the attribute in
question changed (or the first event if no change point is found). For instance,
the name of the resource involved in the execution of an activity in a case is often
logged only if the resource has changed since the previous event. In such cases,
we search for the closest preceding event in the same case where the resource
name was present and use the same value in the feature vector produced for the
current event. Secondly, different activities can produce different types of data.
For instance, in a loan application process, information about the offer made to
the customer becomes available only when an offer is made (before that, no offer
nor information about it exists). Similarly, in a fine collection process, the amount
of the payment is only available for payment events. These examples constitute
a form of legitimately missing data [72] or missing data that is out of scope [84].
In our experiments, we decided to address such cases by adding an additional
feature (for each data attribute) to the dataset, indicating whether the given value
is present for a given event or not. The value of the attribute itself was set to O if
not present.

In event logs where information is available about case completion, we filter
out incomplete cases in order to not mislead the classifier. Also, we cut each trace
before the occurrence of the event that was used to define the label. For instance,
in the production log, the traces are cut immediately before the number of rejected
work orders becomes larger than zero.

59

Table 9: Statistics of the datasets used in the experiments.

min med max trunc #variants posclass #event #static #dynamic #static # dynamic

dataset #traces length length length length (after trunc) ratio classes attr-s attr-s catlevels cat levels
bpic2011_1 1140 1 25.0 1814 36 815 04 193 6 14 961 290
bpic2011_2 1140 1 54.5 1814 40 971 0.78 251 6 14 994 370
bpic2011_3 1121 1 21.0 1368 31 793 0.23 190 6 14 886 283
bpic2011_4 1140 1 44.0 1432 40 977 0.28 231 6 14 993 338
bpic2015_1 696 2 42.0 101 40 677 0.23 380 17 12 19 433
bpic2015_2 753 1 55.0 132 40 752 0.19 396 17 12 7 429
bpic2015_3 1328 3 42.0 124 40 1280 0.2 380 18 12 18 428
bpic2015_4 571 1 42.0 82 40 576 0.16 319 15 12 9 347
bpic2015_5 1051 5 50.0 134 40 1048 0.31 376 18 12 8 420
production 220 1 9.0 78 23 203 0.53 26 3 15 37 79
insurance_l 1065 6 12.0 100 8 785 0.16 9 0 22 0 207
insurance_2 1065 6 12.0 100 13 924 0.26 9 0 22 0 207
sepsis_1 754 5 14.0 185 30 684 0.14 14 24 13 195 38
sepsis_2 782 4 13.0 60 13 656 0.14 15 24 13 200 40
sepsis_3 782 4 13.0 185 22 709 0.14 15 24 13 200 40
bpic2012_1 4685 15 35.0 175 40 3578 0.48 36 1 10 0 99
bpic2012_2 4685 15 35.0 175 40 3578 0.17 36 1 10 0 99
bpic2012_3 4685 15 35.0 175 40 3578 0.35 36 1 10 0 99
bpic2017_1 31413 10 35.0 180 20 2087 0.41 26 3 20 13 194
bpic2017_2 31413 10 35.0 180 20 2087 0.12 26 3 20 13 194
bpic2017_3 31413 10 35.0 180 20 2087 0.47 26 3 20 13 194
traffic 129615 2 4.0 20 10 185 0.46 10 4 14 54 173
hospital_1 77525 2 6.0 217 6 246 0.1 18 1 21 23 1756
hospital_2 77525 2 6.0 217 8 358 0.05 17 1 21 23 1755

General statistics. The resulting 24 datasets exhibit different characteristics
which can be seen in Table 9. The smallest log is production which contains 220
cases, while the largest one is traffic with 129615 cases. The most heterogenous
in terms of case lengths are the bpic2011 labeled datasets, where the longest case
consists of 1814 events. On the other hand, the most homogenous is the traffic log,
where the case length varies from 2 to 20 events. The class labels are the most
imbalanced in the hospital_2 dataset, where only 5% of cases are labeled as pos-
itive ones (class label = 1). Conversely, in bpic2012_1, bpic2017_3, and traffic,
the classes are almost balanced. In terms of event classes, the most homogenous
are the insurance datasets, with only 9 distinct event classes. The most heteroge-
nous are the bpic2015 datasets, reaching 396 event classes in bpic2015_2. The
datasets also differ in terms of the number of static and dynamic attributes. The
insurance logs contain the largest number of dynamic attributes (22), while the
sepsis datasets contain the largest number of static attributes (24).

4.2. Experimental setup

In this section, we start with describing the employed evaluation measures. We
then proceed with describing our approach to splitting the event logs into train and
test datasets and optimizing the hyperparameters of the compared methods.

4.2.1. Research questions and evaluation measures

We choose to adopt the continuous predictive process monitoring use case in the
benchmark, since it is applicable for all business processes and, thus, provides
more general insights into the performance of the methods. As discussed in Chap-

60

ter 3, the quality of the predictions in predictive process monitoring is typically
measured with respect to three aspects: accuracy, earliness, and efficiency. Fol-
lowing the same criteria, we formulate two subquestions as follows:

RQ1.1 (Accuracy and earliness) How do the existing outcome-oriented predictive
business process monitoring techniques compare in terms of accuracy and
earliness of the predictions?

RQ1.2 (Efficiency) How do the existing outcome-oriented predictive business
process monitoring techniques compare in terms of execution times?

We choose AUC as the measure for prediction accuracy due to its properties of
being threshold-independent and remaining unbiased even in case of a highly im-
balanced distribution of class labels. Still, relying on a single evaluation criterion
may provide a biased viewpoint of the results; therefore, we report the F-scores
(on the default threshold of 0.5) additionally to AUC. To measure prediction earli-
ness, we use the implicit approach of evaluating the models on each prefix length.
The reason for this choice is that it does not require specifying accuracy (or con-
fidence) thresholds and, therefore, provides a more general view on the results.

When measuring the execution times of the methods, we distinguish the time
taken in the offline and the online modes. The offline time is the total time
needed to construct the classifier from the historic traces available in an event
log. Namely, it includes the time for constructing the prefix log, bucketing and
encoding the prefix traces, and training the classifier(s). Note that we do not add
the time spent on model selection to the offline time measurements. The reason
for this is that we consider the extent of hyperparameter optimization to be largely
dependent on the requirements and the constraints of a given project. Specifically,
if obtaining a final model with minimal amount of time is critical in a project,
one can settle for a smaller number of iterations for hyperparameter optimization,
while if the accuracy of the final model is of greater importance than the time for
obtaining the model itself, more time can be spent on model selection. Still, a
rough estimate of the total time needed for optimizing the hyperparameters can be
obtained by multiplying the time taken for building the final model by the num-
ber of optimization rounds to be performed. In the online phase, it is essential
that a prediction is produced almost instantaneously, as the predictions are usu-
ally needed in real time. Accordingly, we define the online time as the average
time for processing one incoming event (incl. bucketing, encoding, and predicting
based on this new event).

The execution times are affected by mainly two factors. Firstly, since each pre-
fix of a trace constitutes one example, the lengths of the traces have a direct effect
on the number of (training) examples. It is natural that the more examples are
used for training, the better the accuracy the predictive monitoring system could
yield. At the same time, using more examples increases the execution times of the
system. In applications where the efficiency of the predictions is of critical impor-
tance, reducing the number of training examples can yield a reasonable tradeoff,

61

bringing down the execution times to a suitable level, while accepting lower ac-
curacy. One way to reduce the number of examples is by using the gap-based
filtering, where a prefix is added to the training set only after each g events in the
trace. This leads us to the third subquestion:

RQ1.3 (Gap-based filtering) To what extent does gap-based filtering improve the
execution times of the predictions?

The second factor that affects the execution times is the number and the diver-
sity of attributes that need to be processed. In particular, the number of unique
values (levels) in the categorical attribute domains has a direct effect on the length
of the feature vector constructed for each example, since each level corresponds to
a feature in the vector (this holds for the one-hot encoding, as well as when using
occurrences or frequencies). The dimensionality of the vector can be controlled
by filtering the levels, for instance, by using only the most frequent levels for each
categorical attribute. However, such filtering may negatively impact the accuracy
of the predictions. In the fourth subquestion, we aim at answering the following:

RQ1.4 (Categorical attribute levels) To what extent does filtering the levels of
categorical attributes based on their frequencies improve the execution
times of the predictions?

Train-test split. In order to simulate the real-life situation where prediction
models are trained using historic data and applied to ongoing cases, we employ a
temporal holdout split to divide the event log into train and test cases. Namely, the
cases are ordered according to the start time and the first 80% are used for select-
ing the best model parameters and training the final model, while the remaining
20% are used to evaluate the performance of the final model. Specifically, split-
ting is done on the level of completed traces, so that different prefixes of the same
trace remain in the same chunk (either all in the train set or all in the test set). In
other words, the classifier is optimized and trained with all cases that started be-
fore a given date, and the testing is done only on cases that start afterwards. Note
that, using this approach, some events in the training cases could still overlap with
the test period. In order to avoid that, we cut the training cases so that events that
overlap with the test period are discarded.

4.2.2. Classifier learning and bucketing parameters

We selected four classification algorithms for the experiments: random forest
(RF), gradient boosted trees (XGBoost), logistic regression (logit), and support
vector machines (SVM). We chose logistic regression because of its simplicity
and wide application in various machine learning applications. SVM and RF have
been used in existing outcome-oriented predictive monitoring studies. RF has
shown to outperform many other methods (such as decision trees) in both predic-
tive monitoring scenarios [54, 104] and in more general empirical studies [22].
We also included the XGBoost classifier which has recently gained attention and
showed promising results when applied to business process data [82, 87]. Further-

62

Table 10: Hyperparameters and distributions used in optimization via TPE.

Method Parameter Distribution Values

RF Max features Uniform €[0,1]
Learning rate Uniform €10,1]
Subsample Uniform €[0.5,1]

XGBoost Max tree depth Uniform integer x € [4, 30]
Colsample bytree Uniform €[0.5,1]
Min child weight Uniform integer x € [1,6]

Logit Inverse of regularization strength (C) Uniform integer 2,x € [—15,15]

SVM Penalty parameter of the error term (C) Uniform integer 2* [—15,15]
Kernel coefficient (gamma) Uniform integer 2",x € [—15,15]

K-means Number of clusters Uniform integer x € [2,50]

KNN Number of neighbors Uniform integer x € [2,50]

more, a recent empirical study on the performance of classification algorithms
across 165 datasets has shown that RF and boosted trees generally outperform
other classifier learning techniques [70]. For the clustering-based bucketing ap-
proach (cf. Section 3.2.3), we use the k-means clustering algorithm, which is one
of the most widely used clustering methods.

The classification algorithms as well as some of the bucketing methods (clus-
tering and KNN) require one to specify a number of parameters. In order to
achieve good performance with each of the techniques, we optimize the hyper-
parameters using the TPE algorithm, separately for each combination of a dataset,
a bucketing method, and a sequence encoding method. For each combination of
parameter values (i.e. a configuration) we perform 3-fold cross-validation, di-
viding the traces in the training set randomly into chunks (i.e. so that any two
prefixes originating from the same trace remain in the same chunk), and we se-
lect the configuration that leads to the highest mean AUC calculated across the
three folds. In the case of the prefix length based bucketing method, an optimal
configuration is chosen for each prefix length separately (i.e. for each combina-
tion of a dataset, a bucketing method, an encoding approach and a prefix length).
Table 10 presents the bounds and the sampling distributions for each of the param-
eters, given as input to the optimizer. In the case of RF and XGBoost, we found
via exploratory testing that when increasing the number of estimators (i.e. trees)
constructured per model, the accuracy converges around 500 estimators. In other
words, when increasing the number of estimators further, there is little or no gain
in accuracy. Therefore, we use a fixed value of n_estimators = 500 throughout
the experiments.

Both k-means and KNN require us to map each trace prefix into a feature
vector in order to compute the Euclidean distance between pairs of prefixes. To
this end, we apply the aggregation encoding approach, meaning that we map each

63

trace to a vector that tells us how many times each possible activity appears in the
trace. In order to be consistent with the original methods [30, 60], we decided to
use only the control flow information for the clustering and the identification of
the nearest neighbors.

In the case of the state-based bucketing, we employ an approach similar to
Lakshmanan et al. [52], since, conversely from the other state-based approaches,
it does not require a process model as additional input. In particular, we use the
last-activity encoding to map each trace prefix to a state in a DFG, meaning that
one state is defined per possible activity and a trace prefix is mapped to the state
corresponding to the last activity in the prefix. The reason for this choice is that
this state abstraction leads to reasonably large buckets (the number of buckets pro-
duced by this approach is equal to the number of unique activities in the dataset,
see Table 9). We also experimented with the multiset state abstraction approach,
but it led to too many buckets, some of small size, so that in general there were
not enough examples per bucket to train a classifier with sufficient accuracy. Con-
versely from the original method by Lakshmanan et al. [52], we omit the transition
probabilities from the DFG, since we aim at making a prediction for any running
case regardless of its frequency. Furthermore, their approach builds one classifier
per decision point, i.e. the places in the process model where the execution splits
into multiple alternative branches. Given that in our problem setting, we need to
be able to make a prediction for a running trace after each event (not just at de-
cision points), we employ a natural extension to their approach by building one
classifier for every task in the DFG.

Note that in some cases it can happen that all of the training instances in a
bucket belong to the same class. In these cases, no classifier is trained for this
bucket and, instead, the test instances falling into this bucket are simply assigned
the same class as the training instances (i.e. the assigned prediction score is either
Oorl).

In case of logit and SVM, the features are standardized by subtracting the mean
and scaling to unit variance before being given as input to the classifier.

4.2.3. Filtering and feature encoding parameters

As discussed in Section 3.2.2, training a classifier over the entire prefix log (con-
taining all prefixes of all traces) can be time-consuming. Furthermore, we are only
interested in making predictions for earlier events rather than making predictions
towards the end of a trace. Additionally, we observe that the distributions of the
lengths of the traces can be different within the classes corresponding to different
outcomes (see Figures 41-42 in Appendix). When all instances of long prefixes
belong to the same class, predicting the outcome for these (or longer) prefixes
becomes trivial. Accordingly, during both the training and the evaluating phases,
we vary the prefix length from 1 to the point where 90% of the minority class
have finished (or until the end of the given trace, if it ends earlier than this point),

64

as both training and evaluation of the classifier would be unreliable when having
very few sequences from either of the classes (for histograms of case lengths in
both classes, see Figure 41 and Figure 42 in Appendix). For computational rea-
sons, we set the upper limit of the prefix lengths to 40, except for the bpic2017
datasets where we further reduced the limit to 20, since the predictions mostly
converge by that point. The truncated lengths for each dataset can be seen in Ta-
ble 9. We argue that setting a limit to the maximum prefix length is a reasonable
design choice, as the aim of predictive process monitoring is to predict as early
as possible and, therefore, we are more interested in predictions made for shorter
prefixes. When answering RQ1.3, we additionally apply the gap-based filtering
to the training set with g € {3,5}. For instance, in case of g = 5, only prefixes of
lengths 1, 6, 11, 16, 21, 26, 31, and 36 are included in the training set.

In Section 3.2.4, we noted that the aggregation encoding requires us to specify
an aggregation function for each event attribute. For activities and resource at-
tributes we use the count (frequency) aggregation function (i.e. how many times
a given activity has been executed, or how many activities a given resource has
executed). The same principle is applied to any other event attribute of a categor-
ical type. For each numeric event attribute, we include 6 numeric features in the
feature vector: mean, median, maximum, minimum, sum, and standard deviation.
Furthermore, to answer RQ1.4, we filter each of the categorical attribute domains
by using only the top {10,25,50,75,90} percent of the most frequent levels from
each attribute.

In order to provide a fair comparison of different encoding schemes, we have
decided to evaluate each encoding separately, while the same encoding is applied
to both control flow and data payload. An exception is the static encoding, which,
conversely from the other encoding methods, extracts features from the case at-
tributes rather than from the event attributes. In the experiments, we include the
static encoding in every evaluated method, e.g. the “last state” method in the ex-
periments refers to the static encoding for case attributes concatenated with the
last state encoding for event attributes.

4.3. Results: accuracy and earliness

Table 11 reports the overall AUC and F-score for each dataset and method using
XGBoost, while Tables 28, 29 and 30 in the Appendix report the same results for
RF, logit, and SVM. The overall metric values (AUC or F-score) are obtained by
first calculating the scores separately for each prefix length (using only prefixes
of a given length) and then by taking the weighted average of the obtained scores,
where the weights correspond to the number of prefixes used for the calculation
of a given score. This weighting assures that the overall metrics are influenced
equally by each prefix in the evaluation set, instead of being biased towards longer
prefixes (i.e. where many cases have already finished). The best-performing clas-
sifiers are XGBoost, which achieves the highest (or shared highest) AUC in 15 out

65

CD

xgboost ———— logit

rf L svm

Figure 9: Comparison of all classifiers against each other with the Nemenyi test.
The classifiers are compared in terms of the best AUC achieved in each of the 24
datasets. Groups of classifiers that are not significantly different (at p < .05) are
connected.

of 24 datasets and the highest (or shared highest) F-score in 11 datasets, and RF,
which achieves the best (or shared best) AUC in 11 datasets and F-score in 14.
Logit achieves the highest (or shared highest) AUC in 7 and F-score in 6 datasets.
SVM in general does not reach the same level of accuracy as the other classifiers,
the only exceptions being bpic2012_3, traffic, and hospital_2 (and only in terms
of AUC).

In order to further assess the relative performance of the classifiers, we ap-
plied the Nemenyi test (as proposed in [23]) as a means for statistical comparison
of classifiers over multiple datasets. In this setting, we compared the best AUC
scores obtained by each classifier for a given dataset, i.e. we selected the best com-
bination of bucketing and encoding technique for each dataset and classification
algorithm. The resulting critical difference diagram (Figure 9), obtained using a
0.05 significance level, confirms that XGBoost is on average the best perform-
ing classifier, achieving an average rank of around 1.8. However, the difference
between XGBoost, RF, and logit is not statistically significant (indicated by the
horizontal line connecting these three classifiers). On the other hand, SVM per-
forms significantly worse than XGBoost and RF. In the following, we analyze the
results obtained by XGBoost in detail.

Concerning the bucketing and encoding methods, we can see in Table 11 that
single_agg achieves the best AUC in 10 out of 24 datasets (and the best F-score in
9 datasets), followed by prefix_agg, which is the best in 8 datasets (4 in terms of
F-score). They are followed by cluster_agg, state_agg, and prefix_index, which
obtain the best AUC in 6, 5, and 4 datasets, respectively. With a few exceptions,
which are discussed separately below, the last state encodings in general perform
worse than their aggregation encoding counterparts and KNN performs worse than

66

Table 11: Overall AUC (F-score) for XGBoost

bpic2011_1 bpic2011_2 bpic2011_3 bpic2011_4 insurance_1 insurance_2
single_laststate 0.85 (0.73) 0.91 (0.82) 0.94 (0.78) 0.89 (0.8) 0. 86 (0.36) 0.83 (0.44)
single_agg 0.94 (0.86) 0.98 (0.95) 0.98 (0.94) 0.86(0.78) 9 (0.5) 0.8 (0.51)
knn_laststate 0.87 (0.86) 0.91(0.93) 0.88(0.81) 0.71(0.64) 0. 85 (0.49) 0.78 (0.49)
knn_agg 0.87 (0.85) 0.91(0.93) 0.88(0.82) 0.72(0.64) 0.84 (0.52) 0.78 (0.5)
state_laststate 0.87 (0.73) 0.91(0.84) 0.93(0.8) 0.87(0.77) 0.89 (0.55) 0.84 (0.59)
state_agg 0.94 (0.84) 0.95(0.91) 0.97 (0.89) 0.85(0.75) 0.89 (0.59) 0.83 (0.6)
cluster_laststate 0.89 (0.74) 0.91 (0.86) 0.97 (0.9) 0.89 (0.8) 0.87 (0.38) 0.81 (0.45)
cluster_agg 0.95(0.84) 0.97(0.94) 0.97(0.9) 0.84(0.75) 0.91(0.57) 0.8 (0.45)
prefix_index 0.93 (0.79) 0.94(0.82) 0.97(0.8) 0.85(0.74) 0.89 (0.55) 8 (0.55)
prefix_laststate 0.89 (0.76) 0.94 (0.86) 0.95 (0.74) 0.88 (0.78) 0.87 (0.42) 0.83 (0.53)
prefix_agg 0.94 (0.87) 0.98(0.94) 0.98(0.85) 0.86(0.77) 0.9 (0.6) 0.83 (0.6)
bpic2015_1 bpic2015_2 bpic2015_3 bpic2015_4 bpic2015_5 production
single_laststate 0.81 (0.42) 0.83 (0.34) 0.78 (0.45) 0.8 (0.41) 0.83 (0.67) 0.62 (0.57)
single_agg 0.89 (0.62) 0.92(0.75) 0.9(0.75) 0.85(0.62) 0.87 (0.77) 0.7 (0.59)
knn_laststate 0.8(0.37) 0.87(0.64) 0.83(0.6) 0.81(0.55) 0.86(0.72) 0.62 (0.56)
knn_agg 0.79 (0.39) 0.87 (0.67) 0.84 (0.61) 0.8 (0.56) 0.86 (0.72) 0.62 (0.55)
state_laststate 0.77 (0.46) 0.85(0.56) 0.85(0.56) 0.86 (0.46) 0.85 (0.66) 0.62 (0.51)
state_agg 0.8 (0.54) 0.88(0.67) 0.87(0.61) 0.88(0.63) 0.87(0.72) 0.68 (0.56)
cluster_laststate 0.7 (0.39) 0.85(0.46) 0.86 (0.66) 0.87 (0.61) 0.87 (0.71) 0.68 (0.57)
cluster_agg 0.88(0.58) 0.92(0.73) 0.9(0.72) 0.87 (0.64) 0.88 (0.76) 0.71 (0.59)
prefix_index 0.8 (0.46) 0.83(0.39) 0.88(0.63) 0.86(0.5) 0.85 (0.64) 0.68 (0.57)
prefix_laststate ~ 0.75 (0.32) 0.82(0.28) 0.76 (0.4) 0.82 (0.4) 0.83 (0.62) 0.68 (0.56)
prefix_agg 0.84 (0.6) 0.88(0.7) 0.91(0.71) 0.87 (0.6) 0.89 (0.75) 0.73 (0.57)
sepsis_1 sepsis_2 sepsis_3 bpic2012_1 bpic2012_2 bpic2012_3
single_laststate 0.4 (0.08) 0.84 (0.48) 0.65 (0.24) 0.68 (0.61) 0.59 (0.09) 0.7 (0.38)
single_agg 0.33(0.0) 0.85(0.42) 0.72(0.35) 0.7 (0.59) 0.57 (0.16) 0.69 (0.36)
knn_laststate 0.49 (0.07) 0.61(0.01) 0.61(0.23) 0.57(0.72) 0.55(0.34) 0.59 (0.45)
knn_agg 0.45(0.05) 0.68 (0.05) 0.59 (0.15) 0.63 (0.61) 0.59 (0.05) 0.63 (0.48)
state_laststate 0.39(0.0) 0.83(0.42) 0.71(0.13) 0.68 (0.62) 0.61 (0.12) 0.7 (0.35)
state_agg 0.42 (0.0) 0.83(0.43) 0.71(0.2) 0.7 (0.59) 0.6 (0.13) 0.7 (0.33)
cluster_laststate 0.48 (0.04) 0.81(0.42) 0.72 (0.11) 0.65 (0.6) 0.59 (0.12) 0.69 (0.3)
cluster_agg 0.46 (0.0) 0.82(0.44) 0.7 (0.28) 0.67 (0.6) 0.6 (0.17) 0.7 (0.29)
prefix_index 0.44 (0.07) 0.79 (0.36) 0.73 (0.15) 0.68 (0.61) 0.62 (0.13) 0.69 (0.35)
prefix_laststate 0.47 (0.07) 0.82(0.38) 0.72 (0.06) 0.66 (0.61) 0.59 (0.1) 0.69 (0.35)
prefix_agg 0.48 (0.08) 0.8 (0.4) 0.71 (0.21) 0.68 (0.61) 0.59 (0.13) 0.7 (0.35)
bpic2017_1 bpic2017_2 bpic2017_3 traffic hospital_1 hospital_2
single_laststate ~ 0.81 (0.66) 0.81 (0.42) 0.79 (0.73) 0.66 (0.67) 0.89 (0.66) 0.73 (0.11)
single_agg 0.84 (0.71) 0.81(0.45) 0.79 (0.76) 0.66 (0.67) 0.9 (0.63) 0.76 (0.08)
knn_laststate 0.76 (0.66) 0.6 (0.04) 0.62 (0.53) 0.63(0.69) 0.78 (0.37) 0.56 (0.06)
knn_agg 0.74 (0.59) 0.56 (0.0) 0.62(0.52) 0.59 (0.7) 0.75 (0.47) 0.55 (0.01)
state_laststate 0.83(0.7) 0.79 (0.45) 0.78 (0.72) 0.66 (0.67) 0.9 (0.65) 0.74 (0.11)
state_agg 0.83(0.7) 0.79 (0.46) 0.79 (0.73) 0.67 (0.66) 0.9 (0.65) 0.69 (0.11)
cluster_laststate 0.84 (0.69) 0.8 (0.39) 0.78 (0.72) 0.66 (0.67) 0.89 (0.64) 0.68 (0.12)
cluster_agg 0.84 (0.7) 0.79 (0.44) 0.79 (0.73) 0.67 (0.66) 0.88 (0.64) 0.69 (0.09)
prefix_index 0.83(0.72) 0.8 (0.45) 0.8 (0.73) 0.67 (0.66) 0.87 (0.64) 0.69 (0.11)
prefix_laststate 0.82(0.7) 0.76 (0.44) 0.79 (0.72) 0.66 (0.66) 0.86 (0.63) 0.74 (0.08)
prefix_agg 0.84 (0.71) 0.77 (0.45) 0.79 (0.73) 0.67 (0.66) 0.87 (0.64) 0.74 (0.1)

67

CcD

prefix_agg

state_laststate

single_agg

single_lasistate

cluster agg ———-—— prefix_laststate

slate agg ——— knn_laststate

prefix_index L— knn_agg

cluster_laststate

Figure 10: Comparison of the bucketing/encoding combinations with the Ne-
menyi test. The methods are compared in terms of AUC achieved in each of
the 24 datasets using the XGBoost classifier. Groups of methods that are not
significantly different (at p < .05) are connected.

the other bucketing methods.

The critical difference diagram in Figure 10 shows that in terms of the average
rank, prefix_agg slightly outperforms single_agg, while both are closely followed
by cluster_agg and state_agg. Despite a larger gap in the average ranks, the dif-
ferences between prefix_agg and prefix_index, cluster_laststate, state_laststate,
and single_laststate are not statistically significant either. On the other hand, pre-
fix_laststate, knn_laststate, and knn_agg are found to perform significantly worse
than prefix_agg.

Figures 11 and 12 present the prediction accuracy in terms of AUC for the 6
best performing methods (according to Figure 10), evaluated over different pre-
fix lengths®>. Each evaluation point includes prefix traces of exactly the given
length. In other words, traces that are altogether shorter than the required prefix
are left out of the calculation. Therefore, the number of cases used for evaluation
is monotonically decreasing for increasing prefix lengths. In most of the datasets,
we see that starting from a specific prefix length the methods with aggregation
encoding achieve perfect prediction accuracy (AUC = 1). It is natural that the
prediction task becomes trivial when cases are close to completion, especially if
the labeling function is related to the control flow or to the data payload present in
the event log. However, there are a few exceptions from this rule, namely, in the
bpic2012 and sepsis datasets, the results seem to decline on larger prefix sizes. To
investigate this phenomenon, we recalculated the AUC scores on the longer traces
only, i.e. for traces that have a length larger than or equal to the maximum con-
sidered trace length (see Figure 47 in Appendix). This analysis confirmed (with

%For a comparison of all the 11 methods, see Figures 45 and 46 in Appendix.

68

- cluster_a ~ prefix_a - single_a
method = cluster"lags state F;greﬂx iy sta?e ag%g

bpic2011_1 bpic2011_2 bpic2011_3
1.0- . : 1.00 Freeese | 1.00 1
094 i 0,954 ”
- I R | 0954+
0gd? 0.90- @xﬂ, S
07 0854 |\ 0.904
064 . . . 0.807, ! ! ! 085+
0 10 20 30 0 10 20 30 40 0 10 20 30
bpic2011_4
cn —
0,88 ey ettt s st
\.’ e d ade [\
0.84- \w‘/ Yy
0.80-
%) 0 10 20 30 40
)
<

1.0 1.0

0.91 0.97
0.89 0.8+
0.7 4 pugzzs

0.6
0

074 «

insurance_1

1.0
0.9+
0.84
0.7
0.64
0.5+

5 10
Prefix length

Figure 11: AUC across different prefix lengths using XGBoost.

the exception of sepsis_I, which we discuss separately later in this section) that
the phenomenon is caused by the fact that the datasets contain some short traces
for which it appears to be easy to predict the outcome. These short traces are
not included in the later evaluation points, as they have already finished by that
time. Therefore, we are left with longer traces only, which appear to be more
challenging for the classifier, dragging down the total AUC score on larger prefix
lengths.

From the results presented above, we see that the choice of the bucketing
method seems to have a smaller effect on the results than the sequence encod-
ing. Namely, the best results are usually achieved using the aggregation encod-
ing with either the single bucket, clustering, prefix length based, or state-based
bucketing. In general, these methods achieve very comparable results. Still, it
appears that in event logs with many trace variants (relative to the total number
of traces), such as insurace, production, bpic2012, and bpic2015_4 (see Table 9)
it may be preferred to use a multiclassifier instead of a single bucket. However,
this only holds if each bucket receives enough data to learn relevant patterns. For

69

AUC

- cluster_ag - prefix_ag -+ single_agg

method T Ciuster jaststate prefindex - state agy
bpic2012_1 bpic2012_2 bpic2012 3
0.94
0.84
0.8 4
0.7+ 0.74
0.61 0.6
0 10 20 30 40
bpic2017_1 bpic2017_2 bpic2017_3
1.0
09- 09
0.8- 0.8
0.7- 0.7 4
06 0.64
0.5 T T T T
5 10 15 20
0.95 4
0.90 4
0.85 /S
& S e a
ol V|V Fm=
2 4 6 2 4 6 8
sepsis_3
1.04
0.9 4
0.8+
0.7 4
0.6
0.5

10 20 30
Prefix length

Figure 12: AUC across different prefix lengths using XGBoost (continued).

70

instance, when the number of categorical attribute levels is very high (as in the
bpic2011, bpic2015, and hospital datasets), a single classifier is usually able to
produce better predictions. Similarly, when the classes are very imbalanced (hos-
pital, bpic2017_2, sepsis_2), it is likely that some buckets receive too limited
information about the minority class and, therefore, a single classifier is recom-
mended over a multiclassifier. The effect of having too many buckets can easily
be seen in the case of state-based bucketing when the number of different event
classes (and therefore, the number of buckets) is very large (see bpic2011 and
bpic2015 in Figure 11 and the counts of training prefix traces in each bucket in
Figures 43-44 in Appendix). As a result, each classifier receives a small number
of traces for training, resulting in a very spiky performance across different pre-
fix lengths. The same phenomenon can be seen in the case of prefix_agg, which
usually achieves very good performance, but at times can produce unexpectedly
inaccurate results (like in the longer prefixes of bpic2011_1 and bpic2012_2). On
the other hand, single_agg and cluster_agg in general produce stable and reliable
results on all datasets and across all prefix sizes. The optimal number of clusters
in case of cluster_agg with XGBoost was often found to be small, i.e. between
2-7 (see Table 26 in Appendix), which explains why these two methods behave
similarly. In some cases where the optimized number of clusters was higher, e.g.
bpic2012_1 and hospital_2, the accuracy of cluster_agg drops compared to sin-
gle_agg.

We can see from Figure 11 that in several cases (e.g. bpic2011, bpic2015,
bpic2012_1, and sepsis_2), all the methods achieve a similar AUC on shorter
prefixes, but then quickly grow apart as the size of the prefix increases. In partic-
ular, the aggregation encoding seems to be able to carry along relevant informa-
tion from the earlier prefixes, while the last state encoding entails more limited
information that is often insufficient for making accurate predictions. Compar-
ing the overall AUC in Table 11, the last state encodings outperform the other
methods only in three datasets. One such exceptional case is bpic2011_4, where
single_laststate and cluster_laststate considerably outperform their aggregation
encoding counterparts. A deeper investigation of this case revealed that this is
due to overfitting in the presence of a concept drift in the dataset. In particular,
the aggregation encodings yielded a more complex classifier (e.g. the optimized
maximum tree depth is 15 in case of single_agg and 6 in case of single_laststate),
memorizing the training data completely. However, a concept drift occurs in the
relationship between some data attributes and the class labeling, which affects the
aggregated features more than the “as-is” features (see Figure 13). Another ex-
ception is sepsis_I, where the best results are achieved by knn_laststate. In this
dataset, all the methods consistently yield an AUC less than 0.5 (i.e. worse than
random). Further investigation revealed that this phenomenon is also due to a
concept drift in the dataset, which makes it impossible to learn useful patterns in
case of a temporal train-test split. For instance, Figure 14 illustrates that in the
training set the values of CRP are larger in positive instances, while in the test

71

12.5 12.5

10.04 10.04
=
g 7.54 < 7.54
E‘ S
% 1S
£ 5.04 5.0
2.54 2.54
teslt_O tes't_1 traih_O traih_1 teslt_O tes't_1 traih_O traih_1
type type

(1) Attribute = max_month. Signifi- (2) Attribute = month. The difference
cant differences in means between train_0— is significant between train_l-test_1 (Z =
test_0 (Z =6.077, p < .001) and train_1- 8.754, p < .001), but not between train_0—
test_1 (Z=17.972, p < .001). test_0 (Z =.028, p = .978).

Figure 13: Concept drift in the bpic2011_4 log. The distributions of the variables
are different across the two classes in the train and the test set. The drift becomes
more evident in the max_month feature used by the aggregation encoding, while
it is not so severe in the original month feature used by the last state encoding.
Statistical significance of the differences is assessed using Wilcoxon signed-rank
test.

set the CRP values are larger in negative instances. The third exceptional dataset
is insurance_2, where state_laststate slightly outperforms other techniques. We
did not find any peculiarities in this dataset that would explain this phenomenon,
however, the differences in scores (between, e.g. state_laststate and state_agg) are
much smaller compared to the previous two datasets.

These peculiar results on bpic2011_4 and sepsis_I illustrate that in order to
obtain reliable predictions from a predictive model, it is essential that the train
and test cases follow the same distribution. Therefore, it is important to check for
concept drift before training a predictive model and choose the training set so that
there is no drift within the training period. Also, one should keep monitoring for
drift while the model is deployed and consider retraining the model in case signs
of a drift are detected.

We can also observe that the index-based encoding, although lossless, in gen-
eral does not outperform the lossy encoding schemes, reaching the highest overall
AUC only in 4 datasets: bpic2012_2, bpic2017_3, sepsis_3, and traffic. In these
logs the number of levels in dynamic categorical attributes is not very high (see
Table 9), which helps to keep the size of the feature vector in reasonable bounds.
Still, even in these cases the difference in AUC compared to the other methods
(such as prefix_agg) is marginal. In fact, in some datasets (e.g. hospital_2 and

72

204
154
5
o
N I |
54
04

test 0 test_1

train_0

type

(3) Attribute =
Significant difference
between train_l-test 1
(Z = 3.651, p < .001),
but not between train_0—

train_1

hour.

4001

CRP

2004

Eln=

test 0 test 1

train 0 train_1

type

(4) Attribute = CRP.
Significant differences
between train_O-test_0O
(Z =3.61, p < .001) and

=)

LacticAcid

5 i i

| .=

test 0 test_1

train 0 train_1

(5) Attribute = LacticAcid.
Significant differences in
train_O-test_0 (Z = 3.064,
p = .002) and train_I-

test_0 Zz = 1.373,
p=.17).

train_l-test_1 (Z =2.492,
p=.013).

test_1 (Z = 7337, p <
.001).

Figure 14: Concept drift in data attributes in sepsis_J log. The distributions of the
variables are different across the two classes in the train and the test set. Statistical
significance of the differences is assessed using Wilcoxon signed-rank test.

sepsis_2) the index-based encoding performs even worse than the last state en-
coding. This suggests that in the given datasets, the order of events is not that
relevant for determining the final outcome of the case. Instead, combining the
knowledge from all events performed so far provides much more signal. Alter-
natively, it may be that the order of events (i.e. the control flow) does matter in
some cases, but the classifiers considered in this study (including XGBoost) are
not able to infer high-level control-flow features by themselves, which would ex-
plain why we see that even the simple aggregation-based methods outperform the
index-based encoding. This phenomenon deserves a separate in-depth study.

These observations, further supported by the fact that KNN does not appear
among the top performing methods, lead to the conclusion that it is preferable to
build few classifiers (or even just a single one), with a larger number of traces as
input. XGBoost seems to be a classifier sophisticated enough to derive the “buck-
eting patterns” by itself when necessary. Another advantage of the single_agg
method over cluster_agg is the simplicity of a single bucket. In fact, no addi-
tional preprocessing step for bucketing the prefix traces is needed. On the other
hand, clustering (regardless of the clustering algorithm) comes with a set of pa-
rameters, such as the number of clusters in k-means, that need to be tuned for
optimal performance. Therefore, the time and effort needed from the user of the
system for setting up the prediction framework can be considerably higher in case
of cluster_agg, which makes single_agg the overall preferred choice in terms of
accuracy and earliness. This discussion concludes the answer to RQ1.1 (How do
the existing outcome-oriented predictive business process monitoring techniques
compare in terms of accuracy and earliness of the predictions?).

73

4.4. Results: time performance

The time measurements for all of the methods and classifiers, calculated as aver-
ages over 5 identical runs using the final (optimal) parameters, are presented in
Tables 12 and 13 (XGBoost), Tables 31 and 32 (RF), Tables 33 and 34 (logit),
and Tables 35 and 36 (SVM). In the offline phase, the fastest of the four classi-
fiers is logit. The ordering of the others differs between the small (production,
bpic2011, bpic2015, insurance, and sepsis) and the large (bpic2017, traffic, hos-
pital) datasets. In the former group, the second fastest classifier is SVM, usually
followed by RF and, then, XGBoost. Conversely, in the larger datasets, XGBoost
appears to scale better than the others, while SVM tends to be the slowest of the
three. In terms of online prediction time, logit, SVM, and XGBoost yield compa-
rable performance, while RF is usually slower than the others. In the following,
we will, again, analyse deeper the results obtained with the XGBoost classifier.

Recall that the KNN method (almost) skips the offline phase, since all the
classifiers are built at runtime. The offline time for KNN still includes the time
for constructing the prefix log and setting up the matrix of encoded historical
prefix traces, which is later used for finding the nearest neighbors for running
traces. Therefore, the offline times in case of the KNN approaches are almost
negligible. The offline phase for the other methods (i.e. excluding KNN) takes
between 3 seconds on the smallest dataset (production) to 6 hours and 30 minutes
on hospital_I. There is no clear winner between the last state encoding and the
corresponding aggregation encoding counterparts, which indicates that the time
for applying the aggregation functions is small compared to the time taken for
training the classifier. In general, the index-based encoding takes the most time in
the offline phase.

In terms of bucketing, the fastest approach in the offline phase is usually the
state-based bucketing, followed by either the prefix length or the clustering based
method, while the slowest is single bucket. This indicates that the time taken to
train multiple (“small”) classifiers, each trained with only a subset of the original
data, is smaller than training a few (“large”) classifiers using a larger portion of
the data.

In general, all methods are able to process an event in less than 100 millisec-
onds during the online phase (the times in Tables 12 and 13 are in milliseconds
per processed event in a running trace). Exceptions are hospital_I and hospi-
tal_2, where processing an event takes around 0.3-0.4 seconds. The online ex-
ecution times are very comparable across all the methods, except for KNN and
prefix_index. While prefix_index often takes double time with respect to the other
methods, the trends for KNN are less straightforward. Namely, in some datasets
(bpic2012, sepsis, production, insurance, and traffic), the KNN approaches take
considerably more time than the other techniques, which can be explained by the
fact that these approaches train a classifier at runtime. However, somewhat sur-
prisingly, in other datasets (hospital and bpic2011 datasets) the KNN approaches

74

yield the best execution times even at runtime. A possible explanation for this
is that in cases where all the selected nearest neighbors are of the same class,
no classifier is trained and the class of the neighbors is immediately returned as
the prediction. However, note that the overall AUC in these cases is 7-21 per-
centage points lower than that of the best method (see Table 11). In the online
phase, the overhead of applying the aggregation functions becomes more evident,
with the last state encoding almost always outperforming the aggregation encod-
ing methods by a few milliseconds. The fastest method in the online phase tends
to be prefix_laststate, which outperforms the others in 17 out of 24 datasets. This
method is followed by knn_laststate, state_laststate, and single_laststate.

In terms of online execution times, the trends observed in the case of XGBoost
are in line with those of other classifiers. However, there are some differences
in the offline phase. Namely, in case of RF, the single classifiers perform rela-
tively better as compared to bucketing methods. Furthermore, the difference be-
tween the encoding methods becomes more evident, with the last state encodings
usually outperforming their aggregation encoding counterparts. The index-based
encoding is still the slowest of the techniques. In case of logit, all the methods
achieve comparable offline times, except for the index-based encoding and the
clustering based bucketings, which are slower than the others. In case of SVM,
the single_laststate method tends to be much slower than other techniques. This
discussion concludes the answer to RQ1.2 (How do the existing outcome-oriented
predictive business process monitoring techniques compare in terms of execution
times?).

4.5. Results: gap-based filtering

In order to investigate the effects of gap-based filtering on the execution times
and the accuracy, we selected 4 methods based on their performance in the above
subsections: single_agg, single_laststate, prefix_index, and prefix_agg combined
with the XGBoost classifier. The first three of these methods were shown to take
the most time in the offline phase, i.e. they have the most potential to benefit
from a filtering technique. Also, single_agg and prefix_agg achieved the highest
overall AUC scores, which makes them the most attractive candidates to apply in
practice. Furthermore, we selected 6 datasets which are representative in terms of
their sizes (i.e. number of traces), consist of relatively long traces on average, and
did not yield a very high accuracy very early in the trace.

Figures 15-17 plot the performance of the methods over different gap sizes,
i.e. on the x-axis, g = 1 corresponds to no filtering (using prefixes obtained after
every event), g = 3 to using prefixes obtained after every 3rd event, and g = 5 to
prefixes after every Sth event. In Figure 15, we can see that using g = 3 yields an
improvement of about 2-3 times in the offline execution times, while using g =5,
the improvement is usually around 3-4 times, as compared to no filtering (g = 1).
For instance, in case of single_agg on the bpic2017_2 dataset with g = 5, this

75

Table 12: Execution times for XGBoost.

bpic2011_1 bpic2011_2 bpic2011_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 418.35+£0.56 69+98 581.68+1.09 62+96 217.69+1.38 71+£96
single_agg 317.18+0.58 69 +99 342.34+2.02 62+97 271.33+0.54 71+£97
knn_laststate 5.9+0.31 44+ 65 9.82+0.66 37+59 4.14+£0.06 48 +72
knn_agg 6.63+0.12 52+76 9.79+0.44 46+72 4.57+£0.06 61+£91
state_laststate 142.53+0.31 52+72 181.874+0.92 48 +74 86.78+0.52 53+70
state_agg 183.67+0.79 61+84 169.98 +0.47 58+90 119.84+0.2 62482
cluster_laststate 211.88+1.0 66+ 112 592.92+4.84 67112 93.83+0.48 57+98
cluster_agg 341.4+1.89 70£113 381.61+1.87 62+111 94.45+0.71 72+111
prefix_index 763.8+20.33 114+68 1405.87 +-88.64 126 +62 428.6 £19.49 113+69
prefix_laststate 290.64+1.44 57+86 264.71 +4.58 50+81 108.844+0.33 59+84
prefix_agg 172.8+12.28 56+82 274.29+9.08 53+82 125.61+7.42 58 £80
bpic2011_4 bpic2015_1 bpic2015_2
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate ~ 418.65+17.42 62+97 263.56+0.38 20+30 134.874+0.59 18+29
single_agg 319.27+10.75 62+98 105.58+0.39 22+34 282.97+8.14 20+£32
knn_laststate 8.99+0.23 42+67 8.4440.04 31+51 11.46+0.63 34+59
knn_agg 9.47+0.07 57+86 9.45+0.06 45+£72 11.95+0.12 38+66
state_laststate 156.45+1.1 48+73 25.24+0.08 25+44 30.28+0.2 27+45
state_agg 301.91+7.54 58+90 53.39+0.34 29+48 64.72+0.08 31+49
cluster_laststate ~ 274.97 £8.03 69+112 46.71£0.58 37+58 52.8+1.6 36+60
cluster_agg 252.81+6.36 69+112 62.25+0.48 29+46 135.33+1.21 28 +45
prefix_index 794.59+35.34 111+£59 396.03+4.79 51+10 442.17+£8.47 48+13
prefix_laststate 344.73+13.5 48 + 80 62.174+0.26 7+9 45.274+0.27 6+7
prefix_agg 441.82+£1.01 63+98 57.14+0.16 10+10 74.98+1.04 8+8
bpic2015_3 bpic2015_4 bpic2015_5
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 150.3+0.44 21£33 67.21+0.09 18+27 83.78 £0.31 17426
single_agg 627.3+3.48 21+35 191.224+0.21 19+29 428.23+1.24 17+£28
knn_laststate 18.940.68 37+61 7.38+0.08 29450 17.22+0.14 36+60
knn_agg 19.57+0.84 414+69 7.5+0.35 34+58 19.67+0.53 37+87
state_laststate 45.06£0.03 29449 18.5+0.06 25+42 37.974+0.08 23438
state_agg 86.47+0.06 33+53 30.76 +0.07 29+45 73.2+0.46 26+41
cluster_laststate ~ 102.82+£0.26 35+60 34.9440.19 34+62 72.76 +£0.26 35+60
cluster_agg 181.85+1.13 28+45 61.06+0.84 26+40 74.79+0.7 20+34
prefix_index 2155.36+80.83 55+15 261.21+0.5 41+38 550.87+4.23 4812
prefix_laststate 98.37+0.7 7+9 37.594+0.06 6+7 109.77 +0.1 6+8
prefix_agg 108.91+2.83 9+9 40.83£0.38 8+8 92.61+0.88 8+9
production insurance_1 insurance_2
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)

single_laststate
single_agg
knn_laststate
knn_agg
state_laststate
state_agg
cluster_laststate
cluster_agg
prefix_index
prefix_laststate
prefix_agg

7.284+0.12
4.3+0.13
1.094+0.01
0.76+0.0
2.69+0.11
4.37+£0.04
6.94+0.06
6.354+0.07
13.81+0.04
5.62+0.35
5.89+0.01

25421
28+25
51+£49
62160
23+19
30+26
30+30
35431
49+£10
28423
28423

36.0+0.1
12.81+0.12
0.66+0.01
0.66+0.0
11.45+0.1
17.67+0.11
32.75+0.11
30.06+0.2
58.79+0.58
9.44+0.03
17.17+0.05

38+31
40+£33
49+44
57+53
31+22
40+£31
39+37
52443

90+4
31+21
35+24

15.524+0.09
78.17+0.62
0.96+0.01
1.06+0.01
15.224+0.06
30.62+0.17
42.42+£0.15
47.2+0.14
80.56+0.12
22.34+0.07
24.66+0.07

33+30
34432
48+36
69 £50
26+21
35+30
37+34
45+43
91+4
26+21
30+24

76

Table 13: Execution times for XGBoost (continued).

sepsis_1 sepsis_2 sepsis_3

method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 40.05+£0.15 27431 18.68 £0.03 33433 81.334+0.08 29431
single_agg 39.65+0.2 29433 21.86+0.15 36+35 54.24+0.18 31+34
knn_laststate 2.85+0.04 54458 1.04+£0.04 64162 2.08+0.03 57460
knn_agg 2.91+0.04 61466 1.0740.03 83+78 1.9540.05 68470
state_laststate 25.724+0.22 29+33 15.5+0.07 35+36 41.82+0.17 31+33
state_agg 28.85+0.13 32436 24.5+0.06 39+39 61.92+0.82 34437
cluster_laststate 27.8+0.1 26+32 17.28+0.2 37436 59.4+0.33 32435
cluster_agg 21.22+0.14 28+33 19.71+0.07 39439 64.08+£0.39 33+37
prefix_index 93.4+1.62 37424 23.02+0.16 41+26 43.06+£0.29 38425
prefix_laststate 21.86+0.12 26+29 23.41+0.12 31+29 28.9+0.08 27+29
prefix_agg 26.75+0.15 28+31 20.73+0.05 34+33 28.3+0.19 29+31

bpic2012_1 bpic2012_2 bpic2012_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 402.094+3.02 7+11 181.944+6.17 7+10 454.27+1.31 T+11
single_agg 290.33+0.99 8+12 268.54+2.51 8+12 268.29+1.14 8+12
knn_laststate 29.8+0.58 82493 28.27+0.26 117+132 34.41+0.03 156 +171
knn_agg 29.86+0.59 143+ 159 30.07+0.59 403 +434 29.65+0.55 38452
state_laststate 234.38+0.68 8+ 10 251.72+0.8 8+10 132.18+0.61 8410
state_agg 205.54+4.88 10+12 640.61 +8.42 10+12 293.0+3.62 9+12
cluster_laststate 718.57+15.83 9+14 533.58+£2.9 9+13 141.214+1.96 10+15
cluster_agg 200.12+0.45 9+13 741.83 +19.09 10+16 264.94+6.29 10+16
prefix_index 2637.76 +3.59 36+12 5857.46+19.9 36+12 2815.82+14.87 34411
prefix_laststate 313.24+3.13 4+3 253.69+1.02 4+3 240.8+1.81 4+3
prefix_agg 562.56+7.46 5+5 409.94 +4.45 5+5 223.96+10.6 545

bpic2017_1 bpic2017_2 bpic2017_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 1845.39+36.22 19+23 2116.09+41.53 18+22 2587.324+50.78 19+23
single_agg 4569.55 1+ 89.68 19+24 7042.71+138.21 21426 2021.16+39.67 20425
knn_laststate 124.61+2.45 1476 +1389 125.474+2.46 1474 £1386 125.41+2.46 1477 £1390
knn_agg 134.2+2.63 1601 £ 1504 125.39+2.46 1488 +1398 125.58 +2.46 148041393
state_laststate 1568.31 +30.78 18+20 2661.92 +66.32 19+23 2771.55+54.39 18+20
state_agg 2357.57+£46.27 20422 4387.994194.51 22425 3051.07 +59.88 20422
cluster_laststate 780.47+15.32 1721 2894.35+56.8 19+23 2032.37+39.89 1620
cluster_agg 2556.04+50.16 16420 4233.3+83.08 20424 1800.81+35.34 17420
prefix_index 19581.63 £384.29 72+9 15822.79 £310.52 81+7 17384.94 £341.18 78+13
prefix_laststate 2745.56+53.88 14+15 1863.41 £36.57 17+18 1660.26 +32.58 1515
prefix_agg 4751.78 £93.25 18+24 2712.28 +£53.23 17+£17 2680.83 +52.61 1617

traffic hospital_1 hospital_2

method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 3169.91£76.52 62+34 23191.09 +455.13 380+249 5303.26 +104.08 4104270
single_agg 4018.67+82.0 71440 5999.77 +£6.31 401 +264 8634.78 +169.46 4264281
knn_laststate 400.63+7.64 96+ 60 117.9+2.31 54+37 320.52+6.29 104+ 90
knn_agg 444.14+8.93 158+ 101 213.95+4.2 79+51 315.68+6.2 114+93
state_laststate 1088.97 +18.94 74+43 10056.83 £197.37 312+£257 7321.59 4+ 143.69 2934235
state_agg 828.18+14.85 T5+41 16417.43+322.19 392+£238 16783.74+329.38 363+£212
cluster_laststate 2152.68 +3.26 64+37 11463.75+224.98 2964270 4704.15+92.32 302 +£282
cluster_agg 1572.57+3.52 69 +40 3297.8+64.72 339+£254 9174.11+180.04 353 +£264
prefix_index 2895.03 +56.82 102+£13 16114.53 £316.25 930+ 136 21000.14 £412.13 9604220
prefix_laststate 2963.04 £3.57 59+32 6756.85+132.6 380265 9208.33 4+ 180.71 323+£219
prefix_agg 1669.98+4.9 62434 11395.98 +-223.65 399 +£241 7993.41+156.87 353+£204

77

method = prefix_agg - prefix_index = single_agg +single_laststate

bpic2011_4 bpic2012_1 bpic2012_2
800 - 6000 -
600 2000+ 4000 -
o 4007 1000 2000 -
g 2001 _ e
= ‘ ‘ ! ‘ . 0+ : ‘ : : 0 . * ; :
o 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
o
© bpic2015_2 bpic2017_2 sepsis_3
c
£ 400- 15000 80
o i 60 -
300 10000
200+ 404
0+ ; : : i 0+ : : : : : : : : T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Gap (g)
Figure 15: Offline times across different gaps (XGBoost).
method =prefix_agg prefix_index=single_agg—single_laststate
bpic2011_4 bpic2012_1 bpic2012_2
i — . a| 062-
0.89 +\ 0.69 -
0.88 0.61-

0.87- 0.681 >“§ 0.5
.__’_. i

0.86 0.67- 0-59

0.85- -\'\- 0.58

(@]
2 | ! ; ! i | : : ! ! | : . ! :
< 1 2 3 4 5 12 3 4 5 12 3 4 5
S bpic2015_2 bpic2017 2 sepsis_3
> ———— =8 | 8| {p————
o 0.90- 080 ———— | 0724
o—__.‘. .79 - A 4
0.87 g ;g] 0.71
: 0.70 1
0.84 - 0.77
—— 1 i|076] e | 0694
0.81+ , , ‘ , : : , : : : : ; : ;
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Gap (9)

Figure 16: AUC across different gaps (XGBoost).

means that the offline phase takes about 30 minutes instead of 2 hours. At the
same time, the overall AUC remains at the same level, sometimes even increasing
when a filtering is applied (Figure 16). On the other hand, the gap-based filtering
only has a marginal (positive) effect on the online execution times, which usually
remain on the same level as without filtering (Figure 17). This concludes the
answer to RQ1.3 (To what extent does gap-based filtering improve the execution
times of the predictions?).

78

method = prefix_agg - prefix_index #single_agg-single_laststate

‘ bpic2011_4 ‘ bpic2012_1 bpic2012_2
0.12
0104 0.03 - 0.03 -
0.08 - 0.02 - 0.02-
£ o.o&"% 0.01-] 0014,
= — o ——— 3
o 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
©
Q ‘ bpic2015_2 bpic2017_2 sepsis_3
= 0057 0.08 0.038 1
O 0.04- 0.064 0.036 -
0.03 - 0.034 1
0024e— . _|004 0.032
001 {o— e ,|002{= ——g | 00307
i 2 3 4 5 1 2 3 4 5 i 2 3 4 5
Gap (9)

Figure 17: Online times across different gaps (XGBoost).

4.6. Results: categorical domain filtering

To answer RQ1.4 (To what extent does filtering the levels of categorical attributes
based on their frequencies improve the execution times of the predictions?), we
proceed with the 4 methods as discussed in the previous subsection. To better
investigate the effect of filtering the categorical attribute levels, we distinguish be-
tween static and dynamic categorical attributes. For investigating the effects of
dynamic categorical domain filtering, we selected 9 datasets that contain a con-
siderable number of levels in the dynamic categorical attributes.

Both the offline (Figure 18) and the online (Figure 20) execution times tend
to increase linearly when the proportion of levels is increased. As expected, the
prefix_index method benefits the most from the filtering, since the size of the fea-
ture vector increases more rapidly than in the other methods when more levels are
added (the vector contains one feature per level per event). Although the overall
AUC is negatively affected by the filtering of levels (see Figure 19), reasonable
tradeoffs can still be found. For instance, when using 50% of the levels in case
of single_agg on the hospital_2 dataset, the AUC is almost unaffected, while the
training time has decreased by more than 30 minutes and the online execution
times have decreased by a half.

We performed similar experiments by filtering the static categorical attribute
domains, selecting 6 datasets that contain a considerable number of levels in these
attributes. However, the improvement in execution times was marginal compared
to those obtained when using dynamic attribute filtering (see Figures 48-50 in
Appendix). This is natural, since the static attributes have a smaller effect on
the size of the feature vector (each level occurs in the vector only once). This
concludes the answer to RQ1.4 (To what extent does filtering levels of categorical
attributes improve the execution times?).

79

method = prefix_agg - prefix_index ®single_agg+single_laststate

bpic2011_4 | bpic2012_1 ‘ bpic2015_2
500
800 2000 - 4001
600- 300 -+
400 1000 -+ 200 1
ﬂ -~ —o——e—>2| {0~ %
025 050 075 1.00 025 050 075 1.00 025 050 075 1.00
bpic2017_2 hospital_2 insurance_1
[
£ 16000 |
= 15000 50
5 12000+ 40
S 8000- 10000 30-
£ 4000~ " | 0. 20
E=S ———r—r—" 104 /
5 o =—F—— 0= , , : , ,
025 050 075 1.00 025 050 0.75 0.25 050 0.75
production ‘ sepsis_3 traffic
3500 -
12 801 "™ 5000l
9- 607 .———l”k’.’—_-\l 2500+
2000 -
61, | a0 1500 - /
- w———— " o= | {000~

025 050 0.75 025 050 0.75 1.0 025 050 0.75
Proportion of levels in dynamic categorical attributes

Figure 18: Offline times across different filtering proportions of dynamic cate-

gorical attribute levels (XGBoost).

4.7. Summary

In this chapter, we performed a comparative evaluation of the 11 existing pre-
dictive process monitoring techniques identified in Chapter 3. The benchmark
was executed using a unified experimental set-up and 24 predictive monitoring
tasks constructed from 9 real-life event logs. To ensure a fair evaluation, all the
selected techniques were implemented as a publicly available consolidated frame-
work, which is designed to incorporate additional datasets and methods.

The results of the benchmark show that the most reliable and accurate results
(in terms of AUC) are obtained using a lossy (aggregation) encoding of the se-
quences, e.g. the frequencies of the performed activites rather than the ordered
activities. One of the main benefits of this encoding is that it enables to represent
all prefix traces, regardless of their length, in the same number of features. This
way, a single classifier can be trained over all of the prefix traces, allowing the
classifier to derive meaningful patterns by itself. These results put into question
the existing opinion in the literature about the superiority of a lossless encoding of
the traces (index-based encoding) that requires prefixes to be divided into buckets
according to their length, while multiple classifiers are trained on each such subset
of prefixes.

A threat to validity of the benchmark is related to the comprehensiveness of
the conducted experiments. In particular, only one clustering method was tested,

80

method = prefix_agg - prefix_index ®single_agg - single_laststate

bpic2011_4 | bpic2012_1 ‘ bpic2015_2
——— | 0.72- 0.95- M
0.88 0.70- " 0.90 -
""" | 0.66- i
0.84- 0.80
: : : ~ 0.64- : : ; : : : : ;
025 050 0.75 1.00 025 050 0.75 1.00 025 050 0.75 1.00
bpic2017_2 ‘ hospital_2 insurance_1
© 0857 0.775 - 0.950 ——————————,
2 0.80- 0.7507 ﬁ 0.925- A~
E 0.75- 0.725 0.900
[4 T N
5 0.70 0.700 0.875
0.675 1 f i] 0.850 - ; T T
0. 25 0. 50 0. 75 1. 00 0.25 0.50 0.75 025 0.50 0.75
production ‘ sepsis_3 traffic
0.725 1 .78+
0.72 é;_;: 0.78 /\/
0.704 0.700 4 0.77-
0.68 \/ 0.675- 076
0.66 0.650 -
0.64 T T T T T T T 075 T T T
0.25 0.50 0.75 0.25 050 0.75 1.00 0.25 0.50 0.75

Proportion of levels in dynamic categorical attributes

Figure 19: AUC across different filtering proportions of dynamic categorical at-
tribute levels (XGBoost).

a single state abstraction was used when building the transition systems for state-
based bucketing, and four classification algorithms were applied. It is possible
that there exists, for example, a combination of an untested clustering technique
and a classifier that outperforms the settings used in this study. Also, although
the hyperparameters were optimized using a state-of-the-art hyperparameter op-
timization technique, it is possible that using more iterations for optimization or
a different optimization algorithm, other parameter settings would be found that
outperform the settings used in the current evaluation. Furthermore, the general-
izability of the findings is to some extent limited by the fact that the experiments
were performed on a limited number of prediction tasks (24), constructed from 9
event logs. Although these are all real-life event logs from different application
fields that exhibit different characteristics, it may be possible that the results would
be different using other datasets or different log preprocessing techniques for the
same datasets. In order to mitigate these threats, we built an open-source software
framework which allows the full replication of the experiments, and made this
tool publicly available. Moreover, additional datasets, as well as new sequence
classification and encoding methods can be plugged in. So the framework can be
used for future experiments. Also, the preprocessed datasets constructed from the
8 publicly available event logs are included together with the tool implementation
in order to enhance the reproducibility of the experiments.

In this chapter, we compared existing predictive process monitoring tech-

81

method = prefix_agg - prefix_index #single_agg-single_laststate

bpic2011_4 ‘ bpic2012_1 bpic2015_2
0.05 -
0.121 0.03- 0.04-
0.10 1 ’
0.02- 0.03 +
0.08 - 0.024
006 e OO e o.m—%
025 050 075 1.00 025 050 075 1.00 025 050 075 1.00
© bpic2017_2 hospital_2 insurance_1
E 0.08’ 0.8 0.08 -
> 0.06- 0.6- 0.06-
S .
[B i
o 0.04 0.4 0,044
= . 0.2-
5 0.02 .ﬁ%ﬂa 0_02,/
025 050 075 1.00 025 050 075 025 050 075
production sepsis_3 traffic
0.05 - 0.040 7 0.09 -
0.08
0.04 - 0.035- 0.07 -
0.03- 0.06
0.030 1 0.05-
0.02 0.04
‘ i . ‘ !] - 0.03 ! ! !
025 050 0.75 025 050 075 1.00 025 050 0.75

Proportion of levels in dynamic categorical attributes

Figure 20: Online times across different filtering proportions of dynamic categor-
ical attribute levels (XGBoost).

niques, all of which are limited to using structured data when training the pre-
dictive models. In the next chapter, we aim at enchancing the predictive accuracy
of these techniques by additionally exploiting unstructured data.

82

5. PREDICTIVE BUSINESS PROCESS MONITORING
WITH STRUCTURED AND UNSTRUCTURED DATA

As observed in Chapter 3, all of the existing outcome-oriented predictive
monitoring techniques focus only on structured (i.e. numeric and categorical)
data, neglecting the presence of unstructured (textual) data in real-life event logs.
Neglecting textual data in predictive models can result in reduced prediction
accuracy, since the classifiers are not given all the information that is available
about a given case. Therefore, in this chapter we aim to fill this gap by proposing
a framework that makes use of text mining techniques in order to combine both
structured and unstructured data payload for predictive process monitoring. In
this chapter we assume that each trace consists of a sequence of events carrying
both structured and unstructured data payload. For example, consider the event
log in Table 14 originating from a hypothetical debt recovery process, where each
event is associated with structured attributes (Activity, Revenue, Debt sum) and
an unstructured one (Comment).

In the following sections, we first explain the relevant concepts and principles
from the text mining field (Section 5.1), then introduce the proposed framework
(Section 5.2), and, lastly, evaluate different text modeling techniques in combina-
tions with existing predictive process monitoring approaches using the proposed
framework (Section 5.3).

5.1. Text mining

While structured data objects (consisting of attributes) can be readily encoded
as a feature vector by mapping each attribute to one or more features depending
on the type, this approach cannot be applied to textual data. One of the main
affordances that text mining techniques provide is the ability to map a document
into a feature vector in such a way that the resulting features capture the semantics
of the document to an extent that is suitable for training a machine learning model.
Here, the term document refers to a unit of textual data such as a comment or the
text of an email.

Prior to applying a text mining technique, we need to preprocess the input

Table 14: Example event log with structured and unstructured data payload

Case ID EventID Timestamp Activity = Revenue Debtsum Comment

Cl1 El T1 Call 34555 500 Gave extension of 5 days and issued a warn-
ing about sending the debt to encashment.
1234567: “Will pay the debt in full tomor-
row.”

Cl1 E2 T2 Send letter 34555 500 A warning letter sent on 06/10, 11:10 dead-
line 13/10.

83

document. Firstly, the text needs to be tokenized — segmented into meaning-
ful pieces. In the simplest approach, text is split into tokens on the white space
character. More sophisticated tokenization techniques can be used to obtain multi-
word tokens (e.g. “New York™) or to separate words such as “it’s” into two tokens
“it” and “is”.

Tokens can also be normalized so that tokens with small differences (e.g. “e-
mail” and “email”) are equated. In addition, inflected forms of words can be
grouped together using stemming or lemmatization. While stemming is usually
done by cutting off the endings of the words, lemmatization uses more sophisti-
cated techniques, such as morphological analysis [61]. For instance, lemmatiza-
tion can group words “good”, “better”, and “best” under a single lemma.

A straightforward way of representing a preprocessed document as a feature
vector is by using the words themselves as features and assigning to each word its
frequency in the document. For example, the document “The fox jumps over the
dog” is represented as {“the”:2, “fox™:1, “jumps”:1, “over”:1, “dog”:1}. This rep-
resentation ignores the order of words — a limitation that can be overcome by using
sequences of two (bigrams), three (trigrams), or n (n-grams) contiguous words
instead of or in addition to single words (unigrams). The bigrams in the above
document are: {‘“the fox:1, “fox jumps”:1, “jumps over”:1, “over the’:1, “the
dog”:1}. Features that are constructed based on words that occur in the document
are called terms, while the corresponding representation is called bag-of-n-grams.

Terms that occur frequently in a document collection are not representative
of a particular document, yet they receive misleadingly high values in the basic
BoNG model. This problem can be addressed by normalizing the term frequencies
(tf) with the inverse document frequencies (idf) — the number of all documents
divided by the number of documents that contain the term, scaled logarithmically.
Thus, rare terms receive higher weights, while frequent words (like “with” or
“the”) receive lower weights. In text classification scenarios, weighing the term
frequencies with Naive Bayes log count ratios may improve the accuracy of the
predictions [108]. The BoNG model also suffers from high dimensionality, as
each document is represented by as many features as the number of terms in the
vocabulary (the set of all terms in the document collection). A common practice
is to apply feature selection techniques, such as mutual information or Chi-square
test, and retain only the most relevant terms.

Alternative approaches to the BoONG model are continuous representations of
documents. These techniques represent text with real-valued low-dimensional
feature vectors, where each feature is typically a latent variable — inferred from
the observed variables. One such approach is fopic modeling, which extracts ab-
stract fopics from a collection of documents. The most widely used topic mod-
eling technique, Latent Dirichlet Allocation [4], is a generative statistical model,
which assumes that each document entails a mixture of topics and each word in
the document is drawn from one of the underlying topics.

Continuous representations of words (i.e. word embeddings) using neural

84

Buckets of
encoded
Event log Prefix log Buckets of Text models
prefixes

prefixes

Extract and filter Divide prefixes into Train a text moadel for Encode prefixes for Train a classifier for
prefixes buckets each bucket classification > each bucket

Figure 21: The offline component of the proposed framework.

network-based language models have also shown high performance in natural lan-
guage processing tasks. These language models are trained to predict a missing
word, given its context — words in the proximity of the word to be predicted.
Techniques have been proposed that extend these approaches from word-level
to sentence-, or document-level. For instance, Paragraph Vector [53] generates
fixed-length feature representations for documents of variable length.

5.2. Predictive process monitoring framework with structured
and unstructured data

In the following, we introduce a framework for predictive process monitoring with
both structured and unstructured data. We start with an overview of the proposed
framework and proceed with describing the techniques from the text mining field
that our framework draws upon.

5.2.1. Overview of the framework

The proposed framework embodies two components: the offline component takes
as input labeled historical traces and trains classifiers which are then used to make
predictions about running cases through the online component. The offline com-
ponent (depicted in Figure 21) mainly follows the same worklow as the general
predictive process monitoring framework (see Figure 6). The core difference is
that additionally to a classifier, a fext model is trained for each bucket. The purpose
of a text model is to transform a variable length chunk of textual data associated to
an event into a fixed length numerical feature vector. Differently from the general
framework, encoding a prefix now requires dividing the data payload related to
each event into a structured and an unstructured part and transforming the latter
into a numeric feature vector using the text model (Figure 22). Consequently, a
sequence encoding technique (e.g. aggregation, last state, or index-based encod-
ing) can be applied to both types of data payload related to a prefix: the sequence
of initially structured payloads and the sequence of transformed unstructured pay-
loads. The online component of the framework remains the same as in the general
one (Fig. 7) with the exception of using the updated prefix encoding step.

85

Structured
payload

.

Extract structured Transform Apply sequence Encoded

Trace prefix [----# and unstructured —— unstructured payload —» encoding and
. prefix
payload to numeric features concatenate

-~)

Unstructured
payload

Transformed
unstructured
payload

Text model

Figure 22: Encoding a prefix carrying both structured and unstructured payload.

5.2.2. Text models

The goal of a text model in the proposed framework is to transform a document
(i.e. the textual data associated to a single event) of arbitrary length to a fixed
length numeric feature vector. In essence, the text models in the framework can
be instantiated with any technique that is able to perform such transformations.
In the following, we introduce 4 specific techniques for extracting feature vectors
from text and explain how they can be used as instantiations of the text models
in our framework. In particular, we employ the bag-of-n-grams (BoNG), bag-
of-n-grams weighted with Naive Bayes log count ratios (NB), Latent Dirichlet
Allocation topic modeling (LDA), and Paragraph Vector (PV).

BoNG (n, tfidf):. In this model, the feature vector is constructed from the fre-
quencies of different n-grams in a given document. The method takes as input two
parameters: n, which is the maximum size of the considered n-grams; and tfidf,
that is a boolean variable specifying whether the vector of frequencies should
be refined with tf-idf weighting. First, the documents from historical prefixes
are used to build a vocabulary of n-grams, V(n). Given a vocabulary V(n) of
size [V (n)| = v, a document j is represented as a vector d\/) = (,(lj),gt(zj), ...,gt(vj)),
where:

G) { thidf(f)) if tfidf
8 =

f,f,j) otherwise

and f,Ej) represents the frequency of n-gram ¢; in document av.

For instance, consider our running example (Table 14), if n = 1, tfidf = false
and the vocabulary (after cleaning the text and removing stopwords) V(1) =
{about, day, deadline, debt, encashment, extension, full, give, issue, letter, pay,
send, tomorrow, warning}, the vector encoding the textual data in the first event
would be:

86

a¥) =(1,1,0,2,1,1,1,1,1,0,1,1,1,1) (5.1
where the word “debt” occurs two times in the document, the word “about”
occurs once and the word “deadline” does not occur.

NB (n, a):. In this model, the features are also based on the BoNG vec-
tor, but are additionally weighted with Naive Bayes log count ratios [108],
av) = (ﬁ(lj) . rl,ft(zj) . r2,...,f,sj) -ry). A ratio r;,1 < i < v reflects the po-
larity of the corresponding term ¢, i.e. how frequently the term occurs
in positive/negative cases. = The parameter o is a smoothing parameter
for the weights, while n is, as in BoNG, the maximum size of the n-
grams. For instance, if the vocabulary (and hence the term frequency)
is the same as the one in (5.1) and the NB vector of polarity ratios is
r = (0.85,1.02,0.76,0.76,1.52,2.03,1.19,1.02,0.45,0.89,1.02,1.4,1.39,0.41),
dY) would be:

dV) = (0.85,1.02,0,1.52,1.52,2.03,1.19,1.02,0.45,0,1.02,1.4,1.39,0.41) (5.2)

LDA (c, tfidf):. In this model, a feature vector represents a mixture of topics
covered by a document. A topic is a latent feature, expressed as a probability
distribution over words, where words that are characteristic to a particular topic
possess higher values. In turn, each document is represented as a probability
vector over topics, d/) = (pgj), pgj),..., pgj)), where pfj) is the probability that
document j concerns topic i. The underlying topic model is derived using an
inference procedure that takes as input the number of topics c. Also, similarly to
BoNG, a boolean parameter tfidf determines whether the tfidf weighting should
be performed before applying topic modeling.

For instance, let us imagine that by applying topic modeling on the un-
structured data payload in the historical traces, the following three topics have
been identified (note that the descriptions of the topics on the right are assigned
manually, not as part of the topic modeling procedure):

topicl :(mobile : 0.3,answer : 0.2, switched : 0.15,0ff : 0.15,...) (not accessible by phone)
topic2 :(send : 0.35,letter : 0.2, warning : 0.1,...) (warning letter sent)
topic3 :(full : 0.4,debt : 0.2, pay:0.1,...) (immediate payment)

In this case, the first event in our running example (Table 14) will be represented
as a vector of three items, each item corresponding to the probability that the
document concerns topicl, topic2, and topic3, respectively. Given that the
example document is not very related to ropicl, is a bit more related to ropic2,
and is closest to the warning letter scenario, the resulting feature vector could be:

87

d¥) =(0.1,0.2,0.7) (5.3)

PV (vector_size, window_size):. Using the Paragraph Vector model, not only
the terms but also the the context of the word is exploited for the construction
of the feature vector. Namely, the method slides a window of size window_size
over the document, using each of such windows of words as the context. Then, a
neural network is trained to predict the context of a word, based on the word itself
(or vice versa, depending on the type of the model). The trained word vectors are
lifted to the level of documents. As a result, the model is able to provide for each
document a vector of features of a fixed length (specified by vector_size).

After obtaining the numeric feature vectors from unstructured data, any
sequence encoding technique can be applied to these features and the encoded
vectors for structured and unstructured data can be concatenated before given as
input to the classifier. For instance, given the prefix corresponding to the first
event in the example (Table 14), let the one-hot vector of the Call activity to be
(1,0), then the concatenated feature vector x using last state encoding and the
LDA text model (see 5.3) would be:

x = (1,0,34555,500,0.1,0.2,0.7) (5.4)

5.3. Evaluation

In this section we perform an experimental evaluation in order to answer the fol-
lowing research questions:

RQ1 (Accuracy and earliness) Do the features derived from textual data (using
different text modeling methods) increase the prediction accuracy and ear-
liness of existing predictive process monitoring techniques?

RQ2 (Efficiency) Is the proposed predictive process monitoring framework com-
putationally efficient?

In the following subsections we describe the approaches, the evaluation
datasets, the experimental setup, and the findings.

5.3.1. Approaches

An overview of the approaches can be seen in Table 15. For encoding the struc-
tured data payload, we experiment with the last state, the aggregation, and the
index-based sequence encodings. The first two are combined with a single bucket
approach, while the latter with prefix length based bucketing. For the unstructured
data payload, we test all the text modeling methods described in Section 5.2.2,
namely, BoNG, NB, LDA, and PV. After obtaining numeric features using these
techniques, we apply either the last state or the aggregation encoding. We do not

88

Table 15: Approaches.

Method name Bucketing Enc. (str.) Enc. (unstr.) Text model Classifier
single_agg single last last BoNG, NB, LDA, PV, none RF, XGBoost or logit
single_laststate single agg agg BoNG, NB, LDA, PV, none RF, XGBoost, logit
prefix_index_laststate prefix index last BoNG, NB, LDA, PV, none RF, XGBoost, logit
prefix_index_agg prefix index agg BoNG, NB, LDA, PV, none RF, XGBoost, logit

use index-based encoding for textual features, since the text models yield feature
vectors that are already high-dimensional and, therefore, growing the size of the
vector with each event would be infeasible. Instead, we combine the index-based
encoding for structured payload with either the last state or the aggregation en-
coding for unstructured payload. As a baseline, we implement the approach of
using only structured data (neglecting the unstructured data completely). In terms
of classifiers, we apply RF and XGBoost, which showed to outperform the other
classifiers in the benchmark (see Chapter 4), and logit, as a representative of linear
classifiers that are often used in text classification [108].

5.3.2. Datasets

We evaluate the framework on three real-life datasets pertaining to: (i) the debt
recovery (DR) process of an Estonian company that provides credit management
service for its customers (creditors), (ii) the lead-to-contract (LtC) process of a
due diligence service provider in Estonia, and (iii) the issue tracking process in
Github projects. Due to privacy constraints, the DR and the LtC event logs are
not publicly available. The Github dataset contains data about public repositories,
which are made publicly available through APIs. We use a precollected and pre-
processed version of the data from [45], which originates from GHTorrent [35].
Event log DR. The DR process starts when the creditor transfers a delinquent
debt to the company. This means that the debtor has already defaulted — failed to
repay the debt to the creditor in due time. Usually, the collection specialist makes a
phone call to the debtor. If the phone is not answered, an inquiry/reminder letter is
sent. If the phone is answered, the debtor may provide an expected payment date,
in which case no additional action is taken during the present week. Alternatively,
the specialist and the debtor can agree on a payment schedule that outlines the
repayments over a longer time period. If the collection specialist considers the
case to be irreparable, she makes a suggestion to the creditor about forwarding the
debt to an outside debt collection agency (send to encashment) or about sending a
warning letter to the debtor on the same matter. The final decision about issuing an
encashment warning to the debtor and/or sending the debt to encashment is made
by the creditor. If there is no advancement in collecting the debt after 7 days
(e.g. the payment was not received on the provided date or the debtor has neither
answered the phone nor the reminder letter), the procedure is repeated. It is in the
interest of the creditor to discover, as early as possible, cases that will not lead
to any payment in a reasonable timeframe. The earlier the debt is recovered, the

89

more value it entails for the creditor. Moreover, such cases are likely irreparable
and could be sent to encashment without further delay. Therefore, our prediction
goal is to determine cases where no payment is received within 8 weeks after the
beginning of the debt recovery process.

Event log LtC. The lead-to-contract process is logged through a CRM system.
The process begins when the sales manager selects companies as “cold leads”
and loads them into the CRM system. Based on personal experience, the sales
manager selects leads that qualify for an opportunity, or alternatively, makes a
phonecall to the company in order to determine qualification. Then, when a case
is in the qualification stage, a phonecall is initiated with the purpose of scheduling
a meeting with the potential customer’s representatives. If a meeting is scheduled,
the opportunity enters the presentation stage. The goal of a sales person is to get
the contract signed during the presentation. If she succeeds, the opportunity is
marked as won and the case terminates. If the offer made during the meeting was
acceptable, but the signing of the contract is postponed, the opportunity enters
the contract stage. If the offer was not accepted during the meeting, an offer is
sent via email, and the opportunity moves to the offer stage. Any time during
the process additional phonecalls can be made, emails exchanged, and follow-up
meetings scheduled. When it becomes clear that the company is not interested
in collaboration, the opportunity is marked as lost. The number of potential cus-
tomers is very high and it is not feasible for the sales people to deeply explore
all of the possible leads. Thus, the process would benefit from a support system
that estimates if an opportunity will likely end with a signed contract (opportunity
won) or not (opportunity lost). If an opportunity is likely to be lost, the sales per-
son can close it at an early stage (or assign it a lower priority), becoming able to
focus on other leads with higher potential. Given this motivation, in the following
experiments we aim at predicting, as early as possible, if an opportunity will be
lost.

Event log Github. This log, originally constructed by Kikas et al. [45], contains
data from the issue tracking system in more than more than 4000 Github projects.
This set of projects was obtained from the total pool of over 7 million Github
repositories by filtering projects that (i) were created between January 1, 2012
and December 31, 2014, (ii) were not forks of other projects, (iii) had at least
100 opened issues and one closed issue, (iv) had at least five commits to the main
repository, and (v) had not shown any activity before the repository creation date.
Additionally, projects with very high issue creation acitivity during short periods
(2000 issues in a single month or 500 issues in a day), projects shorter than 8
months, and reopened projects were filtered out. The labeling for this dataset is
based on the motivation that various stakeholders are interested in estimating the
closing time of an issue. For instance, the submitter of the issue is interested
in knowing whether it is reasonable to wait for the issue to be fixed or should
she switch to using another software. The development team desires to have an
estimate of the issue closing time, so that they could better prioritize and plan

90

Table 16: Data statistics.

med max (trunc) #variants posclass #event #dynamic # static # dynamic avg text % events
dataset # traces length length (after trunc) ratio classes attr-s attr-s catlevels #lemmas length with text
DR 14025 1.0 8(8) 8 0.03 1 73 9 3 10408 11 100
LtC 74739 12.0 431 (33) 21090 0.1 13 0 19 268 67734 251 18
Github 920148 4.0 7(5) 5 0.69 1 18 14 0 465754 70 55

their tasks. Guided by these motivations, we formulate a classification task on this
dataset with the aim to predict at different points in an issue’s lifetime, whether or
not the issue will close within a year since it was created.

General statistics about the datasets are given in Table 16. We apply the same
preprocessing to the structured part of the event logs as described in Section 4.1.
We identify 8 static and 69 dynamic features in the debt recovery dataset, and 3
static and 65 dynamic features in the lead-to-contract dataset. The static features
are general statistics about the company, for instance, the size of equity, the net
profit, and field of activity. The dynamic features in the first dataset are mostly
related to the debt, e.g. the number of days past due, the expected repayment
amount until the next 7 days, and the sum of other debts of the debtor. In the sec-
ond dataset, the dynamic features include activity name, resource, and expected
revenue. For both datasets, we use dynamic features that reflect the company’s
(either the debtor’s or the potential customer’s) risk score, calculated at 6 dif-
ferent months prior to the given event. Moreover, as the first dataset contains a
considerable amount of missing values, additional 16 (static) features are added
that express whether the value of a particular feature is present or missing. In the
Github dataset, we consider each issue as a separate case. This dataset contains
unstructured data in both static (the title and the description of the issue) and dy-
namic (comments about the issue) format. Structured issue payload includes, for
instance, the number of people interacting with the issue and the number of times
the issue has been mentioned from other issues. We use a preprocessed format of
the dataset, where additional features have been extracted, such as the number of
comments, the text length of the issue content, and the number of commits made
by the people participating in the issue [45].

In the LtC dataset, unstructured data occurs in emails (the subject and the
content), as well as in the summaries of phonecalls, which are written in textual
format. In the DR dataset, the activity names are not explicitly logged; instead,
this information is captured in the debt collector’s notes, which are written down
in unstructured textual format. These notes constitute a dynamic feature, which
may describe the activity taken by the collection specialist, as well as the answer
of the debtor and the assessment of the specialist. Similarly, in the Github data
the activity names are not present, so that the comment field of an issue becomes
essential in carrying the information about the status of an issue. Conversely
from the other two logs, the Github dataset additionally entails static textual data,
namely, the title and the description (content) of the issue.

Using a richer collection of textual data helps to build potentially more pow-

91

erful text models. Also, the text models transform each textual field to potentially
hundreds or thousands of features, which makes it infeasible to create a separate
representation for each of the fields. For these reasons, we have decided to con-
catenate the textual data originating from different fields within the same event
into a single textual attribute.

Prior to building the text models, we performed some preprocessing steps to
take into account the specificities of each dataset. In the Github dataset, all source
code blocks, tables, links, and other markdown markup has been removed, keep-
ing only the textual content. In the DR and LtC datasets, we generate equivalence
classes for different types of numerals by replacing them with a corresponding
tag (phone number, date, or other). For instance, in the running example (Ta-
ble 14), token “1234567” would be replaced by token “phone number”, token
“06/10” by “date” and token “11:10” by “time”. Then, we convert all text into
lowercase, remove punctuation, and tokenize the documents using simple white
space tokenization. The texts in the DC and the LtC datasets are written in Esto-
nian language, where words can have a lot of possible inflections. Therefore, we
lemmatize the texts using the estnltk [71] library in Python. The Github dataset
is based mainly on English, where the number of possible inflections is smaller,
so we apply the Porter stemming algorithm to extract the stem for each word. Ta-
ble 16 present the statistics of the datasets related to the preprocessed unstructured
data.

5.3.3. Experimental setup

In most aspects we follow the same experimental setup as in Chapter 4. Namely,
we split the datasets into 80% training (precisely, Lyqin U Lyg) and 20% testing
traces (Ly.s) using a temporal holdout split; optimize the hyperparameters for each
dataset and technique using TPE on the training set; and evaluate the accuracy and
earliness by monitoring the AUC across different prefix lengths. In order to mea-
sure the efficiency of the framework, we report the offline and online execution
times of the final models.

However, contrarily to the benchmark, we omit the 3-fold cross-validation dur-
ing hyperparameter optimization, since the size of the datasets in combination
with the unstructured data makes it infeasible. Instead, in case of DR and LtC we
split the training traces randomly into a 80% Ly, set (64% of original traces) and
a 20% L, set (16% of original traces) and select the best model based on AUC
on L,,. In case of the Github dataset we follow the same procedure, but due to
the even larger size of the data we use only 10% of the original traces as the Ly,
set and 5% as the L,,; set. Note that even such reduction leaves us with about 90k
traces for L;,;, and 45k traces for L, sets.

While in the LDA and the PV models, the size of the feature vector is limited
by the input arguments (the number of topics and the size of the feature vector,
respectively), in case of BONG and NB a feature selection step is required in

92

Table 17: Hyperparameters of the text models and their sampling distributions
used in optimization via TPE.

Method Parameter Distribution Values

BoNG ™Méx n-gram size Unlfor@ xe€{1,2,3}
tf-idf Categorical x € [True,False|

NB max n-gram size Uniform x€{1,2,3}
alpha Log-uniform x €[0.01,1]

LDA # topics Log-uniform integer x € [10,200)]
tf-idf Categorical x € [True, False]
vector size Log-uniform integer x € [10,400]

PV . . ; .
window size Uniform integer x € [1,13]

order to keep the number of extracted features in reasonable bounds. In particular,
for the basic BONG model we apply the Chi-square test, while for NB the most
discriminative features (i.e. the terms that achieve the top lowest and top highest
NB log ratio scores) are selected. In both cases, we fix the number of selected
features to 500.

Table 17 reports the hyperparameter values that we consider for optimizing the
text models. The hyperparameter spaces for the classifiers (optimized jointly with
the text models) remain the same as in Table 10.

Experiments were run using Python 3.5 and the scikit-learn (BoNG and clas-
sifiers), gensim (LDA and PV) and estnltk (lemmatization) libraries on a single
core of a Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz with 64GB of RAM.

5.3.4. Results

Table 18 shows the overall AUC values (i.e. the weighted sum of AUC over dif-
ferent prefix lengths, where the weights are assigned according to the number of
prefixes in that evaluation point) for all datasets, classifiers, bucketing/encoding
combinations, and text modeling methods. The best overall AUC for LtC and
Github datasets are achieved by XGBoost classifier. In case of Github, the ap-
proaches using textual data outperform the baseline (only structured data), while
there is little difference between the different bucketing, sequence encoding and
text modeling methods. In case of LtC, the best overall AUC is achieved by a
single classifier with aggregation encoding and the NB text modeling method,
yielding a 4 percentage points increase compared to the baseline. This technique
is closely followed by the BoONG method, which yields a 3 percentage points in-
crease. In the DR dataset, RF outperforms XGBoost. The best results in this
dataset are achieved using the BoNG text modeling method, while the bucket-

93

Table 18: Overall AUC.

RF XGBoost logit
DR LtC Github DR LtC Github DR LtC Github
single_agg no text 096 056 072 093 0.6 073 094 0.6 0.71
single_agg BoNG 098 057 073 094 063 074 093 054 0.71
single_agg NB 097 054 072 097 064 074 096 0.59 0.7
single_agg LDA 096 057 072 095 0.6 074 096 062 0.72
single_agg PV 096 055 073 095 061 074 094 062 0.72

single_laststate no text 096 056 072 096 061 073 093 048 0.65
single_laststate BONG 098 057 073 093 0.6 074 096 049 0.65

single_laststate NB 097 056 072 097 0.6 0.73 097 048 0.65
single_laststate LDA 097 056 073 096 061 074 097 05 0.65
single_laststate PV 096 056 073 096 059 074 094 049 0.65

prefix_index_agg BoONG 098 0.59 0.73 096 061 074 094 0.54 0.71
prefix_index_agg NB 097 057 072 09 06 073 09 053 0.71
prefix_index_agg LDA 096 0.58 0.73 095 0.6 074 096 053 0.72
prefix_index_agg PV 096 058 073 094 06 074 092 053 0.72
prefix_index_last BONG 0.98 0.58 073 097 06 074 096 054 0.71
prefix_index_last NB 097 057 072 096 059 073 096 0.53 0.71
prefix_index_last LDA 0.96 0.57 073 097 06 074 096 052 0.72
prefix_index_last PV 095 058 073 096 06 074 094 052 0.71
prefix_index no text 097 057 072 095 059 073 094 052 0.71

ing/encoding combination does not affect the results much.

Since XGBoost achieved the top performance in two out of three datasets, we
will have a closer look at the predictions obtained with this classifier. In Figure 23
the AUC over different prefix lengths are plotted for all datasets and approaches.
We can observe that the most consistent improvement for all text modeling meth-
ods over the baseline (exploiting structured data only) is achieved with a single
classifier with aggregation encoding. In other bucketing/encoding combinations
there exist at least a few prefixes where the performance of the methods exploiting
textual data drops below that of the baseline. The reason for this lower stability
in performance might be that introducing a high number of additional features ex-
plodes the dimensionality of the feature vector, so that it becomes more difficult
for a classifier to find the relevant patterns. Focusing on the single_agg approach,
we can see that NB tends to perform very well on smaller prefix lengths, but is
outperformed by others in longer prefixes. Conversely LDA performs better on
longer prefixes than on shorter ones. BoNG retains high performance on both
short and long prefixes, making it an overall good choice for text modeling. This
discussion concludes the answer to RQ1 (Do the features derived from textual
data (using different text modeling methods) increase the prediction accuracy and
earliness of existing predictive process monitoring techniques?).

Table 19 reports the execution times using the XGBoost classifier, calculated
as averages over 5 identical runs using the final (optimal) parameters. The exe-
cution times for RF and logit can be found in the Appendix (Tables 37-38). We

94

AUC

text method = BoNG -~ LDA = NB + Notext -~ PV

prefix_index_agg

prefix_index_agg

prefix_index_agg

Github

LtC

0.76 1
0.751
0.74 7
0.73

0.724

prefix_index_laststate

Github

LtC

0.76 1
0.754

0.744
0734

0.72-

single_agg

single_agg

Github

LtC

0.76
0.74 4

0724+ -

single laststate

single laststate

single laststate

Github

LtC

1.00 4
0.95 1
0.90 4
0.85 1
0.80

0.76 1
0.754

0749,

0.73

0.724%

0.84
0.7 A
0.64

0.5+

2 3 4
Prefix length

Figure 23: AUC across different prefix lengths using XGBoost.

95

Table 19: Execution times for XGBoost with unstructured data.

DR LtC Github
single_agg offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 46.15+0.22 0.0440.01 8434.35+41.28 0.02+0.02 416.56£5.06 0.01+0.0
BoNG 744.57+£1.76 0.06+0.02 38362.78 £303.36 0.05+0.07 12172.71 £1730.25 0.4+0.24
NB 831.38+0.95 0.05+£0.02 31420.83 +£2899.93 0.05+£0.06 27300.41 +406.14 0.02+£0.03
LDA 119.4+0.69 0.04+0.01 43900.04 £+ 140.91 0.04£0.05 48613.824+604.37 0.01£0.01
PV 1762.494+15.71 0.06+0.03 17269.98 +26.62 0.06+0.5 8980.354105.81 0.08+0.67

single_laststate

DR

LtC

Github

offline_total (s)

online_avg (ms)

offline_total (s)

online_avg (ms)

offline_total (s)

online_avg (ms)

no text 64.3+0.27 0.02+0.01 5144.46 +162.66 0.02+0.02 327.76 +£10.06 0.0+0.0
BoNG 161.84+0.59 0.09+0.03 16037.87 +351.32 0.04£0.05 4144.12+12.22 0.41+0.24
NB 281.16+0.63 0.0340.01 18881.63 +803.84 0.03+0.03 2752.984+20.7 0.01+0.01
LDA 79.02+0.12 0.02+0.01 9062.85 +337.98 0.02+0.03 12466.744+9.19 0.01+0.01
PV 217.19+£0.91 0.14+0.45 8297.59+25.33 0.05+0.44 1444.44+18.98 0.03+0.1
DR LtC Github
prefix_index_agg offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 48.4140.1 0.0440.01 18859.61+1112.83 0.14+0.01 771.33£2.12 0.01+0.0
BoNG 715.8+1.47 0.11+0.02 64155.49 4+ 1539.62 0.18+0.03 39749.18 +£22.28 0.374+0.29
NB 622.41+4.29 0.04+0.01 54377.93 +£1939.57 0.16+0.01 45020.54+11.73 0.03+0.02
LDA 450.67 £1.69 0.03+£0.01 158752.32+9170.91 0.15+0.01 110522.33 £232.32 0.03+0.01
PV 185.01£10.5 0.27+3.1 51910.47 £5968.19 021£1.1 14907.05 £156.84 0.08£0.71
DR LtC Github
prefix_index_last offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 48.4140.1 0.04+0.01 18859.61+1112.83 0.141+0.01 771.33£2.12 0.01+0.0
BoNG 250.1+1.8 0.05+£0.01 26876.55+419.47 0.16£0.01 7493.64 £9.59 0.11+£0.08
NB 267.65+8.29 0.04+0.02 30886.92+761.83 0.15+0.01 9472.26 £6.57 0.02+0.01
LDA 514.37+£5.46 0.03+0.03 128553.23 +-8156.23 0.1540.01 52794.38 +£45.14 0.0240.01
PV 248.66 +30.97 0.3+3.51 40380.02 +4302.25 0.22+1.33 6340.22+53.46 0.094+0.99

can observe that incorporating textual data increases the offline execution times
considerably. This is expected, since additional time is spent on training the text
models and the increased size of the feature vector slows down the training of
classifiers. Also, it is likely that the larger feature space leads to a configuration
of hyperparameters that yields a more complex model, thus, taking more time for
training. There is no clear pattern in the offline time measurements of different
text modeling techniques, which indicates that the execution times depend heav-
ily on the selected hyperparameter setting. In the online phase, all methods take
less than half a millisecond on average to process an event. In general, the online
execution times of NB and LDA remain close to the ones where only structured
data is used, while BoNG is slightly slower. PV takes, in general, the longest
time to process an event, with the standard deviation across different events being
even more than a millisecond in some cases (see PV with index-based encoding).
This concludes the answer to RQ?2 (Is the proposed predictive process monitoring
framework computationally efficient?).

5.4. Summary

In this chapter we outlined a framework for predictive process monitoring that
combines text mining methods to extract features from textual documents, with
existing predictive process monitoring techniques designed for structured data.
We studied different combinations of text mining and classification techniques and

96

evaluated them on three real-life datasets pertaining to a debt recovery process, a
lead-to-contract process, and the Github issue resolution process. The evaluation
datasets exhibited different characteristics in terms of textual data, from short and
homogenous notes to long heterogenous emails and project descriptions.

In the reported evaluation, the proposed approach of including textual data in
most cases (though not always) outperforms the baseline of using only structured
data. A likely reason for the instability of the results is the increased size of the
feature vectors and the complexity of the preditive models. Still, the results show
that single classifiers with aggregation encoding consistently outperform the base-
line. Also, although logistic regression is a common choice for text classification,
RF and XGBoost outperform the former in our techniques. A possible reason for
this is that in our case the (sparse) textual features are combined with (denser)
structured data. In terms of text modeling techniques, NB often performs best on
shorter prefixes, while LDA achieves better performance on longer ones. BoNG
is a reliable option that performs well over all prefix lengths.

This chapter (as well as the previous chapter) addressed the task of train-
ing more accurate predictive models for predictive business process monitoring.
Specifically, we used traditional quality dimensions to evaluate the obtained mod-
els, namely, the accuracy, the earliness, and the efficiency of the predictions. In the
next chapter we focus more deeply on the phase of evaluating predictive models
in the context of predictive process monitoring.

97

6. TEMPORAL STABILITY IN PREDICTIVE
PROCESS MONITORING

As identified in Chapter 3, existing works on outcome-oriented predictive process
monitoring measure the goodness of the predictions in terms of accuracy, earli-
ness, and efficiency. Only one of the studies considers the stability of prediction
accuracy over different evaluation points, while none of the works have investi-
gated the stability of predictions made for the same case over time. The latter is,
however, important when predictive monitoring is applied in practice, i.e. when
predictions are provided sequentially for the same case. In those scenarios, pre-
dictions that are highly volatile (changing drastically throughout the same case)
are undesirable, given that process workers and their supervisors need to make
decisions at runtime based on these predictions.

Consider, for instance, a healthcare process where the target is to estimate
whether a patient will need intensive or standard care. An accurate prediction
could help the patient to receive the suitable treatment in a timely manner, as well
as help the hospital to better allocate resources to patients. Suppose that when
the patient first arrives at the hospital, the predictive model estimates that she
will need intensive care, so she is admitted to the intensive care program. After
executing a procedure, the predictor changes the prediction and estimates that
standard care is sufficient for the patient, so the patient is brought to standard care.
Then, after performing another procedure, the classifier changes the prediction
again and recommends transferring the patient back to intensive care. Since the
classifier has made two different predictions within the first three events, at least
one of them has been accurate and made early in the process. However, switching
between standard and intensive care multiple times has caused the hospital to
waste resources and brought inconveniences to the patient. This example shows
how the practical usefulness of a predictive model is limited if it outputs unstable
predictions, i.e. if it tends to often change the value of the predictions after seeing
new data about the same case. In this example, the treatment of the patient could
have been more efficient had the personnel not trusted the intermediate prediction
of the predictor and not brought the patient to the standard care. Another example
concerns a debt encashment process, where a prediction engine can be used to
decide whether the debt should be sent to a credit collection agency or not. In this
case, volatile predictions can mislead users of the system to prematurely send the
debt to the collection agency, resulting in smaller revenue as compared to waiting
some more time for the debt to be repaid. Similarly, in case of fraud detection in
a financial institution, unstable predictions may cause the institution to frequently
block and unblock the credit of a user, resulting in inconveniences and loss of
revenue related to potential transactions that the user was not able to complete.

Note that measuring prediction accuracy and earliness over different prefix
lengths would not capture the stability of the predictions over prefixes. For in-

98

stance, consider two running traces, o, and O, one with a desired and the other
with an undesired outcome. It is possible that one classifier C4 outputs a constant
sequence of prediction scores (0.6,0.6,0.6,0.6) for both 6, and o}, over the first
4 prefixes, whereas Cp outputs (0.4,0.8,0.4,0.8) for 0, and (0.8,0.4,0.8,0.4) for
op. In terms of prediction accuracy (e.g. AUC) these classifiers would be equiv-
alent. Also, since the accuracy is the same over all the four prefixes, there is
no difference in prediction earliness between the classifiers. However, in terms
of prediction stability, the first classifier would be preferred since it would cause
the process workers to make fewer switches between the decisions. This exam-
ple, together with the motivational use cases presented above, illustrates that it is
not always sufficient to measure the goodness of the predictions only in terms of
accuracy and earliness.

In this chapter, we give an overview of the traditional notions of stability of
learning algorithms (Section 6.1), introduce the notion of temporal stability and
propose a way to decrease the volatility of sequential predictions via smoothing
(Section 6.2), and evaluate the existing techniques for predictive process monitor-
ing with respect to temporal stability (Section 6.3).

6.1. Stability of learning algorithms

Stability of learning algorithms has been a topic of interest for many years. Con-
ventionally, a learning algorithm is considered unstable if small perturbations in
the training set can cause significant changes in the predictor [8]. Such insta-
bility of single predictors motivated Breiman et al. to introduce bagging predic-
tors, showing that the stability and accuracy of a predictor can be increased by
aggregating the estimations from multiple versions of the predictor [8]. In this
context, increasing stability relates to decreasing the variance between prediction
estimates. Bousquet et al. studied the relationship between stability and general-
ization [6]. Their study is based on sensitivity analysis, i.e. how much replacing
or deleting a training example affects the prediction loss. They propose three def-
initions of stability, which are all based on changes in the training set. The reason
for this is that they focus on deterministic algorithms, so that all the randomness
comes from the sampling on the datasets. Elisseeff et al. extended these notions of
stability to non-deterministic algorithms [26] where randomness is present even
when the training set remains unchanged. Their stability definitions are supple-
mented with a randomness parameter. More recently, Liu et al. proposed a metric
for measuring stability across several runs of random forest and incorporated it
into a framework for selecting the hyperparameters based on a goodness measure
combining AUC, stability, and cost [57]. In particular, the question addressed by
their notion of stability is the following: if we train multiple classifiers with the
same parameter setting but different randomization parameters, would these clas-
sifiers agree on the predictions made for the same example or not? Hereinafter,
we refer to this notion of stability as the inter-run stability.

99

While existing notions of stability are related to changes made in the train-
ing phase (either by changing the training set or by changing the randomness
parameter), in this thesis we study the case where both the training dataset and
the randomness are fixed, but the input vector changes over time. In particular,
we study the temporal stability of predictions in the setting where predictions are
made successively for different prefixes of the same sequence. In other words, we
examine how much increasing the length of the prefix changes the predictions.

Other research proposals from the field of early sequence classification that
focus on developing serial classifiers [55, 109] and finding the minimal prediction
length (MPL) [111] are closely related to the notion of temporal stability studied
in this thesis. In fact, a serial classifier, by definition, must have a prefix length
starting from which the predictions made for the same case will not change as the
prefix grows further, i.e. the classifier has perfect temporal stability starting from
that prefix length. However, instead of determining MPL and making predictions
only after the MPL is reached, we are interested in predicting the outcome for
every prefix of the sequence. The reason for this is that in a predictive process
monitoring setting, it is necessary to give the best estimate of the case outcome
even when too few data is available to make a final prediction. In this respect, we
aim for temporal stability also on short prefixes, when the prediction might still
differ from the one that would be made for the entire sequence.

6.2. Temporal prediction stability

In this section, we start with introducing the notion of prediction scores in
outcome-oriented predictive process monitoring. We proceed with defining tem-
poral stability and provide a metric to measure this property. Lastly, we describe
our approach for combining prediction scores obtained for prefixes of the same
case in order to reduce their volatility.

6.2.1. Prediction scores over time

In predictive process monitoring, the classifier is asked to give an estimation about
the case outcome after each performed event. Therefore, the prediction scores es-
timated after each event of the same case form a time series. As an example,
consider the pink time series (Case B) plotted in Figure 24 (left). During the first
5 events, the classifier is unsure about what will be the outcome of this case (the
prediction scores for these events are equal to 0.5). Then, the 6th event provides
some relevant signal, so that the classifier becomes confident that the case will
be positive (the prediction scores for the following events are 0.9). This series is
rather stable over time, as the successive prediction scores change only once. An
example of a completely stable series of predictions is Case A (the black line),
where the prediction scores remain the same for all prefixes. Now consider Cases
C and D (green and blue). We can see that the classifier changes the prediction
score after almost every event, producing a volatile time series for these cases.

100

~Case A4 Case B® Case C+ Case D

original smoothed

1.00 -
o
3
Q 0.75- 2
S
= 0.50 -
Q
3
& 025- w \

3 6 9 3 6 9

Prefix length

Figure 24: Examples of prediction scores over time: original (left) and smoothed
(right).

Such unstable predictions have little practical value, causing users to be cautious
about acting upon the prediction and decreasing the overall credibility of the clas-
sifier.

6.2.2. Temporal stability

Based on the above rationale, we say that a classifier is temporally stable if it (gen-
erally) outputs similar predictions to successive prefixes from the same sequence.

Given a threshold on the prediction scores that determines whether the pre-
dicted outcome is positive or negative, it would be natural to define temporal in-
stability as the number of times the classifier “flips” its prediction, and to define
temporal stability as one minus a normalized measure of instability. The draw-
back of this approach is that it is dependent on the chosen threshold. Instead,
we aim for a more general, threshold-independent measure that would capture the
stability of the classifier under any threshold. Accordingly, we propose to mea-
sure stability as a function of the magnitude of the changes between successive
prediction scores. This latter definition is related to the former: If the difference
between successive scores is high, there exist many thresholds that would lead to
flips in the predicted outcome. Conversely, if the difference is low, only a low
number of thresholds would flip the prediction.

The simplest way to consider the magnitude of the changes would be to mea-
sure the (average) absolute difference between successive prediction scores. Note
that this metric does not consider the direction of the changes, i.e. a change to-
wards the correct direction (the actual class) affects the measure in the same way
as a change towards the wrong direction. As a result, a classifier that consistently
improves its prediction is assigned a similar stability score as one that fluctuates
around the same score. An alternative would be to consider only the changes
that are made to the wrong direction, calculating the (average) absolute difference
only over these changes. However, this metric would reflect the consistency of the
classifier rather than its stability. For instance, consider a sequence with the actual

101

outcome being positive, and two classifiers. One of the classifiers outputs a score
of 1 at the first event, i.e. it is (correctly) certain that the outcome will be positive,
but throughout the case becomes only slightly less certain of it, outputting 0.99
on some events. The other classifier makes a completely wrong estimation at the
beginning of the sequence, outputting a score of 0, while throughout the rest of
the case, it only improves its estimate (sometimes by large magnitudes), produc-
ing scores like 0.1, 0.5, and even 0.95. According to the latter metric, the second
classifier, which makes changes in large magnitudes, would be considered more
stable than the first classifier, although the first one only changes its prediction by
a small amount. In a sense, a measure that considers the direction of the change
penalizes classifiers that make the right prediction from the onset, since the only
way to maintain their stability throughout the sequence would be to always output
exactly the same score. Based on these considerations, we proceed with measur-
ing the average difference between the successive prediction scores without taking
into account the direction of the change.

Accordingly, we measure the temporal stability (TS) of a classifier as one mi-
nus the average absolute difference between any two successive prediction scores:

TS—177272| <t> <l 1>| (61)

where N is the number of cases used for the evaluation, 7; is the total number
of events in the i-th case, and $)<'> is the prediction score of the ¢-th event of
the i-th case. This metric first evaluates the average absolute difference between
successive prediction scores within each case in order to eliminate the bias towards
long sequences, and then averages over the cases.

6.2.3. Combining prediction scores via smoothing

We can adjust the prediction scores during a post-processing phase to reduce
volatility without affecting the pre-trained classifier. Specifically, instead of using
explicitly the score that the classifier outputs for a case after observing ¢ events,
we combine it with prediction scores made for shorter prefixes of the same case.
To combine predictions, we can use various time series smoothing methods,
which average out the noise and fluctuations. The simplest way to smooth a time
series is via a moving average. The smoothed estimate at each event is computed
as the average of the last k observations. A different approach, called single ex-
ponential smoothing, assigns weights that decrease exponentially over time. The
smoothed estimate at time ¢ is the combination of the observed value at time ¢ and
the smoothed estimate at time ¢ — 1, using a smoothing parameter o, 0 < @ < 1:
s@<> = (1 —a) - $0<> 4 - s0<"=1> Parameter o controls to what extent the
previous observations are taken into account. The larger the o, the stronger the
smoothing effect. While other smoothing techniques are available, we use the
single exponential smoothing because of its simplicity and because it allows us to

102

directly control the level of smoothing. Also, only techniques that enable sequen-
tial smoothing (as opposed to smoothing over the entire sequence) are applicable
in our case, as in the predictive process monitoring setting, only the prediction
scores made up to a certain point in the sequence are known.

For example, consider the time series plotted in Figure 24 (right). These time
series have been derived from the examples in Figure 24 (left) by applying ex-
ponential smoothing with & = 0.8. We can notice that the fluctuations in Cases
C and D have been reduced considerably. However, smoothing can also have a
negative effect on the predictions, illustrated by Case B. Namely, changes in the
scores do not have an immediate strong effect, as the adjusted score puts some
weight on the previous estimates. Therefore, when an event carrying a relevant
signal about the case outcome arrives, the smoothed estimate is cautious about
trusting it, resulting in a lower accuracy.

6.3. Evaluation

In this section we conduct an empirical evaluation to address the following ques-
tions:

RQ1 (Temporal stability) What is the relative performance of different predictive
process monitoring methods in terms of temporal stability (in addition to
accuracy)?

RQ2 (Inter-run stability) How does maximizing the inter-run stability in combi-
nation with prediction accuracy affect the temporal stability?

RQ3 (Smoothing) How does decreasing prediction volatility via exponential
smoothing affect the accuracy and the temporal stability?

Below, we describe the employed approaches and evaluation datasets, we ex-
plain the experimental setup, and discuss the results.

6.3.1. Approaches

To address RQ1, we choose 7 predictive process monitoring approaches (see Ta-
ble 20) as basis for the experiments. For structured data, we experiment with two
existing sequence encoding techniques, the index-based and the aggregation en-
coding. For modeling unstructured data we always use BoONG with aggregation
encoding, which showed the best overall performance in Chapter 5. Both encod-
ings (index-based and aggregation) are combined with two classification methods,
RF and XGBoost. Additionally, we adapt a predictive process monitoring method
based on LSTM neural networks [94] to predict the outcome of a case. While
the latter method uses only control flow and timestamp information, we employ a
straightforward extension of this method by concatenating the (one-hot encoded)
feature vectors for each data attribute in an event. For encoding textual data in
LSTMs, we consider the 500 most frequent words and concatenate the vector of
frequencies of these words in a given event.

103

Table 20: Approaches.

Approach Multi/single cIs ~ Encoding Classifier
RF_agg single aggregation RF
RF_idx_pad single index RF
RF _idx_mul multi index RF
XGB_idx_pad single index XGBoost
XGB_idx_mul multi index XGBoost
XGB_agg single aggregation XGBoost
LSTM single index LSTM

In all of the approaches, each prefix constitutes a separate training instance.
For index-based encoding, the fact that different prefixes consist of different num-
bers of events raises an issue when trying to encode all prefixes with fixed-length
vectors. There are two possible solutions to this issue. Firstly, it is possible to
fix the maximum prefix length and, for shorter prefixes, pad the data for miss-
ing events with zeros. An alternative solution is to build multiple classifiers, one
for each prefix length; given a prefix of length / in the testing set, the predic-
tion for this prefix is derived from the classifier constructed based on prefixes (in
the training set) of length /. In our experiments, we apply both solutions to the
RF and XGBoost based approaches, marked as RF_idx_pad/XGB_idx_pad and
RF_idx_mul/XGB_idx_mul, respectively. Since the second, multiclassifier solu-
tion is not commonly used with LSTMs, in the LSTM-based approach we only
apply the padding solution.

Prediction scores returned by classifiers are often poorly calibrated, meaning
that the scores do not reflect well the actual probabilities of belonging to one class
or to the other [41]. For instance, one classifier may output scores that are always
concentrated around 0.5, while another may return scores that are well distributed
within the range between 0 and 1. This causes bias when comparing different
classifiers in terms of temporal stability. Indeed, the differences between any two
prediction scores in the case of the former classifier are very small, making it
seem a very stable classifier, while the relative differences within each case might
be larger than in the latter classifier. To address this issue, we apply a well-known
calibration method, Platt scaling [76], to each of the classifiers before compari-
son. We choose this technique because it outperforms other methods when data is
scarce (e.g. less than 1000 data points available for calibration) [69], which is the
case in most of our datasets. Note that, in principle, calibration does not change
the order of the prediction scores assigned by the same classifier, so that the AUC
of each classifier is not affected by it. However, in order to perform calibration, a
separate validation set is needed, so the final models are effectively built using a
smaller number of training traces, which might slightly affect the AUC.

To test RQ2 (How does maximizing the inter-run stability in combination with

104

prediction accuracy affect the temporal stability?), we adapt the approach pro-
posed in [57] to RF and XGBoost hyperparameter optimization. Namely, instead
of choosing the optimal parameter setting based on AUC on a single run of classi-
fier training, we perform 5 runs with each setting and choose the one that achieves
1) the best average AUC over all runs, and 2) the best combined AUC and inter-
run stability! over all runs. For the latter scenario, we give more weight to the
inter-run stability, assigning weights 1 and 5 to AUC and stability, respectively.
To decrease prediction volatility (RQ3), we experiment with exponential
smoothing, varying the smoothing parameter a € {0.1,0.25,0.5,0.75,0.9}.

6.3.2. Datasets

As evaluation datasets, we use the same event logs and preprocessing as intro-
duced in Chapters 4 and 5.

6.3.3. Experimental setup

In general, we apply the same experimental setup as described in Chapters 4 and 5.
In particular, we employ a temporal holdout split into 80% training and 20% test-
ing data. The hyperparameters for RF and XGBoost are optimized using TPE
with either 3-fold cross-validation (for event logs containing only structured data
payload) or on a single validation set (for event logs containing unstructured data).
As LSTM is computationally more demanding than RF and XGBoost, we use a
single validation set for optimizing the LSTM hyperparameters on all event logs
(the same setup as in Chapter 5). In other words, the only difference in the hy-
perparameter optimization procedure between RF/XGBoost and LSTM is that for
event logs introduced in Section 4.1, in case of LSTM we use a single holdout
split rather than 3-fold cross-validation. During training, LSTMs optimize binary
cross-entropy, which is why we select the best parameters according to this met-
ric instead of AUC. Table 21 presents the bounds and the sampling distributions
for the LSTM hyperparameters, given as input to TPE. The activation function
for LSTM is always fixed to sigmoid and the number of epochs to 100. We opti-
mize the weights using Adam, which is a stochastic gradient-based optimization
algorithm with adaptive learning rates [46].

After selecting the optimal hyperparameters we use a holdout split to randomly
divide the traces in the training set into 80% (i.e. 64% of the total) for building
the final model (L;,4;,) and 20% (i.e. 16% of the total) for calibration (L.4;p).

Experiments were implemented in Python 3.5. For RF and XGBoost we used
the scikit-learn library on a single core of a Intel(R) Xeon(R) CPU E5-2660 v2 @

Unter-run stability refers to the MSPD metric introduced in [57]: MSPD(f) =
2By, [Var(f(x;)) — Cov(fj(x;), fx(xi))], where E,, is the expectation over all validation data, f is
a mapping from an example x; to a label y; on a given run, Var(f(x;)) is the variance of the pre-
dictions of a single data point over the model runs, and Cov(fj(x;), fx(xi)) is the covariance of
predictions of a single data point over two model runs.

105

Table 21: Hyperparameters of LSTM and their sampling distributions used in
optimization via TPE.

Classifier Parameter Distribution Values
hidden layers Categorical xe{l1,2,3}
units in hidden layer Log-uniform integer x € [10,150]

LSTM Initial learning rate Log-uniform x € [0.000001,0.0001]
Batch size Categorical x€{8,16,32,64}
Dropout Uniform x €[0,0.3]
L1 regularizer Log-uniform x € [0.00001,0.1]
L2 regularizer Log-uniform x €[0.00001,0.1]

2.20GHz with 64GB of RAM. Experiments for LSTM were performed using the
Keras” with Tensorflow® backend.

6.3.4. Results

General comparison. Figures 25-26 show the prediction accuracy (AUC) of
the calibrated classifiers across different prefix lengths. One observation is that
the multiclassifiers (RF_idx_mul and XGB_idx_mul) can yield a high accuracy
on some prefixes (especially on the shorter ones), but at the same time the re-
sults are very volatile, causing the AUC to drop unexpectedly. For instance, see
XGB_idx_mul with pre fix = 13 in production or prefix = 6 in DR. On long pre-
fixes, the index-based encoding approaches (both multiclassifiers and single clas-
sifiers with padding) tend to perform worse than the other methods. There are
some execptions to this rule, e.g. sepsis_2 and hospital_1, where XGB_idx_pad
performs well over all prefix lengths.

The performance of LSTM differs considerably between datasets. In some
datasets (such as bpic2015, bpic2012, bpic2017, and hospital variants, as well as
sepsis_2) LSTM achieves top performance over all prefix lengths. Conversely,
in some others (bpic2011, insurance, production, github, and sepsis_3) LSTM is
not competitive with other techniques. In general, LSTM tends to perform bet-
ter on large datasets, implying that a sufficiently large amount of training data is
needed for LSTM to be usable in predictive monitoring scenarios. An interesting
observation can be made in the case of bpic2012_1 and bpic2012_3, where the
accuracy of LSTM is rather low for shorter prefixes, but after the relevant signal
comes in (around prefix length 13), the model is able to make use of it better than
the other methods, reaching the highest AUC on long prefixes. Relating this to
the characteristics of the datasets (see Table 9 in Chapter 4), the bpic2012 datasets
do not contain any case attributes. This suggests that LSTM is more prone to the
“cold start” problem, i.e. when there is few data in the early prefixes, LSTM needs

2https ://github.com/fchollet/keras/
3ht'cps ://www.tensorflow.org/

106

https://github.com/fchollet/keras/
https://www.tensorflow.org/

« LSTM = RF_idx mul ~ XGB a XGB_jdx_pad
Method T Rp'3gg © RFidx pad -~ XGB Gk mul P

bpic2011_1 bpic2011_3

1.0 1.001

AUC

5 10 4 8 12 16
Prefix length

Figure 25: Prediction accuracy.

to wait for more events in order to make a good prediction. A general observation
is that even in datasets where LSTM does not achieve the highest AUC, its per-
formance always remains reasonably stable, in the sense that no sudden drops in
AUC occur in any prefix length.

The single classifiers with aggregation encoding (RF_agg and XGB_agg) per-
form well on both short and long prefixes. Although in some prefix lengths they
are outperformed by the index-based encoding methods, they are overall more sta-
ble. In particular, these methods are somewhat more volatile than LSTM, but they
usually do not undergo strong falls in AUC as the multiclassifiers. For example,
see bpic2015, LtC, and sepsis_cases_3 where RF_agg and XGB_agg retain high
accuracy on long prefixes, while RF_idx_mul and XGB_idx_mul become more
volatile.

Additionally we assess the effect of calibration on the predictions. Specifically,
we measure the Brier score, which is a frequently used and well suited measure
for assessing the quality of prediction score in terms of their calibratedness [51].
Table 39 in Appendix shows the overall Brier scores (i.e. measured over all prefix

107

+ LSTM = RF_idx_mul = XGB a ~ XGB_idx_pad
Method - o mul —idx_p

+ RF_agg — RF_idx_pad + XGB_i

bpic2012_1 bpic2012_2 bpic2012_3
o | 0.70 0219 *
0.65 1 084
0.60 4 0.7 1
0.55 4 -
0.50 06 -
0.45 4, i 0.5 eovhoes
0 10 20 30 40
bpic2017_1 bpic2017_2 bpic2017_3
1.0
0.94 0.9+ 0.9+
0.84 0.8 A 0.8 1
0.7 1 0.7 0.7
0.6 1 0.6 0.6 1
10 15 20 5 10 15 20 5 10 15 20
DR hospital_1
104 0.95-
O 0.8 0.90 1
2
< 5 0.85-
0.80 1
04 T T T T T
4 6 2 4 6
hospital_2 sepsis_1
0.94 0.75 1
0.8+ 0.504+
074 0257
4 6 8 0
traffic
0.84 0.751
0.6 0504
0.44 0.25+
0.24 v : T T T 1
0 10 20 30 25 50 75 10.0

Prefix length

Figure 26: Prediction accuracy (continued).

108

lengths) for each dataset and method combination. We can observe that single
classifiers with aggregation encoding (both RF_agg and XGB_agg) and LSTMs
tend to produce better calibrated predictions (i.e. lower Brier scores). LSTMs are
initially better calibrated and are not much affected by calibration. In case of RF
and XGBoost, the patterns are more mixed: calibration helps to improve the Brier
scores in some datasets, while in others can make the predictions even less cali-
brated compared to the initial ones. The effects of calibration are further explored
in Figures 51-52 in Appendix, where the differences in Brier scores between un-
calibrated and calibrated classifiers are plotted against the length of the prefixes.
In other words, a positive value in these plots indicates that applying Platt scaling
resulted in better calibrated classifiers, while a negative value shows applying the
calibration technique produces worse scores in terms of calibratedness. We can
see that the effects of calibration depend on the prefix length, but the patterns are
quite different across the datasets. In some cases, calibration helps considerably
on early prefixes (see bpic2017, production, hospital_2), while in other datasets
the effects are more positive on longer prefixes (see github, traffic).

The temporal stability is plotted in Figures 27-28. In 15 out of 27 datasets
the highest stability is achieved by LSTM, while XGB_idx_pad reaches the high-
est stability in 9 datasets. In general, RF achieves slightly lower stability than its
XGBoost counterparts. The multiclassifier approaches almost always have lower
temporal stability than single classifiers, which is not surprising. Namely, as the
RF and XGBoost classifiers do not consider the temporal relations between the
input features and, instead, assume them to be independent and identically dis-
tributed (i.i.d.), the variance between classifiers built for prefixes of length / and
[+ 1 can be very high and, thus, the predictions made for two successive prefixes
can be completely uncorrelated. This discussion answers RQ1 (What is the rela-
tive performance of different predictive process monitoring methods in terms of
temporal stability (in addition to accuracy)?).

Increasing inter-run accuracy and stability in model selection. Table 22
presents the overall AUC (the weighted average over all prefix lengths) and the
temporal stability for the single classifier with aggregation encoding with RF
and XGBoost using three hyperparameter optimization approaches: i) validation
based on AUC over a single run with each parameter setting (RF, XGB); ii) val-
idation based on average AUC over 5 runs with each parameter setting (RF_J5,
XGB_)5); and iii) validation based on a combined measure of mean AUC and
inter-run stability over 5 runs with each parameter setting (RF_5_S, XGB_5_S).

The results show that selecting the best parameters according to AUC over
multiple runs usually (in 19 out of 27 datasets) increases the AUC on the test set
as compared to selecting them based on a single run, while the temporal stability
is increased in 16 datasets. The trends are more mixed between optimizing only
the AUC and optimizing the combined metric (both over multiple runs). The
latter approach of optimizing the combined AUC and inter-run stability yields
better results for RF, making it the best method in terms of AUC (overall best in

109

>

poral stabilit

LSTM RF_idx_mul [XGB a [XGB_idx_pad
Method [B¢ agg B RFidx pad B XGB Gk mul P
bpic2011_1 bpic2011_2 bpic2011_3

0974 0883 0971 g

bpic2011_4

bpic2015_1

bpic2015_2

0.94
0.8+
0.7

1.0q&

1.0 42

0.9 1
0.8+
0.7 4

bpic2015_3

bpic2015_4

bpic2015_5

0.944 0946 0.952

insurance_1

insurance_2

production

1.0
0.9
0.8+
0.7

1.0 1
0.9+
0.8
0.7

Figure 27: Temporal stability.

110

tability

S

LSTM RF_idx_mul [XGB_ a [XGB._idx_pad
Method [B¢ agg B RFidx pad B XGB Gk mul P
bpic2012_1 bpic2012_2 bpic2012_3

222, 0.977 969

0.97

4p 0.959 0967 (g5 0963

bpic2017_1

bpic2017_2

bpic2017_3

hospital_1

o =
© o
1 1

0.928 0.934

093 gy 0919 0.924 0918 0918 092

hospital_2

LtC

sepsis_1

1.0 1
0.94
0.8+
0.7 4

0988 0985 o7s 0.988 0987 gg7g 0.988

0994 0991 (g3 O

sepsis_2

sepsis_3

traffic

0.99_ 0985 g74 0.986 0.993

1.04
0.9
0.8+
0.7 1

0.872 0.991 0.992 0.975 2

1.0
0.9+
0.8
0.7 4

0.763

0.737 0738
0.725 0.73
il 0693

Figure 28: Temporal stability (continued).

111

Table 22: Effects of maximizing the inter-run stability and accuracy (during hy-
perparameter optimization) on the temporal stability and accuracy of the final
models.

Prediction accuracy (AUC) Temporal stability
Dataset RF RFS5 RFS5S XGB XGB_5S XGB_5.S| RF RFS5 RFS5.S XGB XGB_5 XGB_5_S
bpic2011_1 0.937 0.935 0.898 0.944 0954 0.925 0.943 0.947 0.944 0951 0953 0.948

bpic2011_2 0972 0972 0973 0.967 0.964 0.969 0949 0956 0958 0.948 0.95 0.942
bpic2011_3 0.979 0.979 0.979 098 0.979 0.98 0972 0975 0.965 0971 0.974 0.969
bpic2011_4 0.883 0.871 0.887 0.852 0.865 0.884 0.987 0.991 0987 0.993 0.996 0.991
bpic2015_1 0.834 0.827 0.837 0.859 0.793 0.84 0.934 0933 0934 0941 0943 0.939
bpic2015_2 0.895 0.898 0.9 0919 0.922 0.869 0.954 0953 0.954 0969 0.967 0.952
bpic2015_3 0.887 0.886 0.891 0.889 0.889 0.886 0932 0934 0932 0946 0.942 0.937
bpic2015_4 0.865 0.862 0.877 0.849 0.86 0.876 0951 0.952 0949 0954 00951 0.955
bpic2015_5 0.881 0.873 0.874 0.862 0.87 0.863 0.935 0.938 0.937 0948 0.948 0.944
production 0.668 0.707 0.719 0.674 0.667 0.683 097 0954 0953 0964 0.962 0.946
insurance_1 0.879 0.877 0.875 0.861 0.86 0.87 0936 0.937 0929 0954 0.954 0.946
insurance_2 0.81 0.828 0.831 0.786 0.806 0.808 0.903 0.896 0.893 0935 0.929 0.905
sepsis_1 0.396 0.378 0.388 0.348 0.398 0.401 0.984 0977 0.978 099 0.992 0.999
sepsis_2 0.779 0.781 0.758 0.824 0.869 0.842 0.985 0.987 0.978 0.993 0.992 0.994

sepsis_3 0.688 0.691 0.714 0.689 0.675 0.708 099 0989 0992 0992 0.99 0.993
bpic2012_1 0.668 0.667 0.663 0.673 0.678 0.676 0942 0.94 0943 0937 094 0.939
bpic2012_2 0.561 0.565 0.56 0.553 0.566 0.561 097 0.972 0.98 0.977 0.978 0.974

bpic2012_3 0.706 0.708 0.709 0.693 0.683 0.665 0.946 0945 0.945 0952 0.947 0.945
bpic2017_1 0.834 0.835 0.834 0.837 0.843 0.846 0.886 0.889 0.892 0.889 0.895 0.897
bpic2017_2 0.805 0.808 0.808 0.808 0.821 0.817 0.947 0.957 0.957 097 0.965 0.961
bpic2017_3 0.799 0.801 0.8 0.789 0.813 0.808 0.894 0.896 0.89 0.881 0.896 0.895
traffic 0.646 0.65 0.661 0.645 0.641 0.634 0.737 0.74 0.754 0.73 0.731 0.726
hospital_1 0.884 0.883 0.884 0.892 0.897 0.896 092 0919 0918 0918 0919 0.918
hospital_ 2 0.699 0.701 0.704 0.758 0.755 0.752 0985 0.981 0979 0987 0.983 0.985

DR 0981 0978 0.977 0952 0.96 0.963 0.931 0911 0914 0947 0.952 0.992
github 0.724 0.721 0.722 074 0.734 0.737 0912 0.906 0.906 0915 0.908 0.909
LtC 0.545 0.564 0.044 0.63 0.602 0.599 0975 0973 0.956 0.991 0.995 0.988

9 datasets), while the effects on temporal stability are inconsistent. For XGBoost,
the first approach tends to work better, yielding an increase in AUC in most of the
cases (overall best in 8 datasets), while not affecting much the temporal stability.

To answer RQ2 (How does maximizing the inter-run stability in combination
with prediction accuracy affect the temporal stability?), we found that validating
over multiple runs instead of a single run, in general, results in improvement of
AUC, but has little effect on temporal stability. It is also worth noting that the
improvements in AUC come at the expense of running 5 times more experiments
during the hyperparameter optimization phase.

Decreasing intra-case prediction volatility at prediction time. Figures 29-30
show that decreasing the prediction volatility via exponential smoothing consis-
tently improves the temporal stability. The larger the smoothing parameter o, the
larger the increase in temporal stability. The methods that benefit the most from
smoothing are multiclassifiers (RF_idx_mul and XGB_idx_mul). Being initially
less stable, smoothing helps these methods to achieve a similar level of temporal
stability as the other methods. In some cases, the multiclassifiers even overtake
the other methods on large « (see bpic2011, bpic2015, and bpic2012 variants).

In Figures 31-32, the overall AUC is plotted against the o parameter. We
observe that in most cases smoothing decreases the AUC. The reason for this is
that as the smoothed estimate is cautious about the most recent prediction, the

112

« LSTM = RF_idx mul ~ XGB a XGB_idx_pad
Method T RE'3gq © RFidx pad -~ XGB Gk mul P

bpic2011_1 bpic2011_2 bpic2011_3
1 — —_—FF & 17
0.98 0.994 s —=— 0.99 -
0.96 1 0.984
0.94- 0-98 0.97-
0.9214 T T T 0.97 13 T T r 0.96 14 T T T
0.00 025 050 0.75 0.00 025 050 0.75 0.00 025 050 0.75
bpic2011_4 bpic2015_1 bpic2015_2
1.00 | 1.00 1
0.99 0.98 4 0.99 4
098 0.96 823 1
(Y5 V- | Pl S ——— - ====ss
(&) 0.00 025 050 0.75 0.00 025 050 0.75 0.00 025 050 0.75
o}
< bpic2015_3 bpic2015_4 bpic2015_5
1.000
0.994
0.98 - 0.975
0.97 - 0.950 +
0.96 1 0.925 4
0.95-4 T T T T T T T T T T T
0.00 025 050 0.75 0.00 025 050 0.75 0.00 025 050 0.75
insurance_1 insurance 2 production
0.99 1.000
0975 n 096 4 0975 T =
0.950 1 0934 sa—"t— g 0.950 4
0.925 0.90 0.925 4
0.900 15 : : 0.900 <4 . : :
0.00 025 050 0.75 0.00 025 050 0.75 0.00 025 050 0.75

Alpha

Figure 29: Temporal stability across different levels of smoothing.

true signal in the data occurs after a lag. However, the AUC does not always
decrease with smoothing. Especially in smaller logs, the AUC remains almost
unchanged by smoothing or even increases (e.g. see bpic2011_3, bpic2015_3,
sepsis_2, sepsis_3). The methods that benefit the most from smoothing are again
the multiclassifiers. While not the most accurate methods before postprocessing,
they often overtake the other methods with high levels of smoothing.

To further understand the relationship between AUC and temporal stability,
let us look at Figures 33-34, where these two metrics are plotted against each
other (each dot corresponds to AUC and temporal stability obtained via smoothing
with a particular value of o). We see that RF_idx_mul and XGB_idx_mul change
considerably in the direction from left to right, indicating that they are initially
unstable but improve substantially with smoothing. At the same time, their change
in the up-down direction is small, meaning that the AUC is not affected much.
The least affected by smoothing is the XGB_idx_pad method. For instance, in
bpic2015 and sepsis variants both the accuracy and the temporal stability remain
almost constant. In the top right corner we can usually see XGB_agg and RF_agg,

113

+ LSTM = RF jdx mul - XGB_ a — XGB_idx_pad
Method = Id%gmm 1dx_p

+ RF_agg = RF_idx_pad + XGB_i NA
bpic2012_1 bpic2012_2 bpic2012_3
0994 4
1 0994 0.99
0.98 0.98-
0.97 1 0.98- '
0.96 1 0.974
0'95- T T T T 0.97- T T T T 096 L T T T T
000 025 050 0.75 0.00 025 050 0.75 000 025 050 075
0.99 bpic2017_1 bpic2017_2 bpic2017_3
0:98- 0.995 4 [0.98 4
0.97 - 0.990 1 0.97 1 :
0.96 0.985- 0.964 —
0.951 0.980 1 0.957
T T T T T T T v 0.94 -4 : T T
0.00 0.25 050 0.75 0.00 0.25 0.50 0.75 0.00 025 050 0.75
github hospital_1
1.00 0.98-
o 0.99 1 0.96 4 0.98 4
2 0.984 0.94 1 0.96 4
< 0971 0.92 o= 0.94+
T T T T 0901 ¢ T T T 0.924 T T T
0.00 025 050 0.75 0.00 025 050 0.75 0.00 025 050 0.75
hospital_2 LtC sepsis_1
1.00 1 1.000 -
0.995 ~ 0.995
0.990 1 0.99+ 0.990 -
0.985 1
0.985
0.9801 . 09801
’ : : : : : : : . 0.975 4 : : :
0.00 0.25 050 0.75 0.00 0.25 0.50 0.75 0.00 025 050 0.75
sepsis_2 sepsis_3 traffic
1.00 1.00 ==
0.99 1 0.9
0.98 4 0.99
0.974 0.98+ 081
0.96 1 0.7 4
0.00 0.25 050 0.75 0.00 0.25 0.50 0.75 0.00 025 050 0.75

Alpha

Figure 30: Temporal stability across different levels of smoothing (continued).

114

0.94
0.92
0.90
0.88
0.86

0.88
0.87
0.86
0.85
0.84
0.83

AUC

0.89
0.87
0.85
0.83
0.81

0.85
0.80
0.75
0.70

Method

- LSTM
+ RF_agg = RF_idx_pad + XGB_i

= RF_idx_mul = XGB

a:?g — XGB_idx_pad
X_mul

bpic2011_1

bpic2011_2

bpic2011_3

%\ﬁ

0.96 1
0.94 1
0.92 1
0.90

0.975
0.950

0.925
0.900

=

L=

0.875

000 025 050 075

000 025 050 075 000 025 050 075
bpic2011_4 bpic2015_1 bpic2015_2
LSS . 086{F=——% 094i—m——— ——
] 0.84 —= a ‘ I
I RS 11 fEE—— Y] —
e 0.80 R
Jim—— 0.78- 0.7
————— o7l . ! . : : : :
000 025 050 075 000 025 050 075 000 025 050 0.75
bpic2015_3 bpic2015_4 bpic2015_5
— 0.90 — 0.88 T
4 0.87- e — . vpal T
. 0.84- —t— Jf—— e
1 061 - 0.80 {e———
———1 076 >~

0.00 025

050 075

000 025 050 075

000 025 050 075

insurance 1 insurance 2 production
.0 ———__
- 08 0.70 4
7 07 0.65 %ﬁ '7\,7
- 0.6 ’)
] 05- 0.60
. . . . ; . . J 0.56 Lg—e—p——p—y "
0.00 0.25 050 0.75 0.00 0.25 050 0.75 0.00 025 050 0.75
Alpha

Figure 31: Overall prediction accuracy across different levels of smoothing.

115

+ LSTM = RF jdx mul - XGB_ a — XGB_idx_pad
Method = Id%gmm 1dx_p

+ RF_agg = RF_idx_pad + XGB_i NA
bpic2012_1 bpic2012_2 bpic2012_3
0.675 F 0.60 4 0.700 4
0.650 0.57 4 0.675
0.625 0.54 1 0.650
06004 ——— : 0.625
- = 0.514 — ‘ | 0.600+
0.575 4+ T T T — T T T - T T T T
0.00 025 050 0.75 0.00 0.25 050 0.75 0.00 025 050 0.75
bpic2017_1 bpic2017_2 bpic2017_3
_ 0.82 0.81
0.80 0.80 4 0.79 1
0.78 0.774
0751 0.76 0.751
0.70 4 : . . 0.74 14 : : : 0.7314 . : :
0.00 025 050 0.75 0.00 0.25 0.50 0.75 0.00 025 0.50 0.75
DR hospital_1
0.98 {7 2—7| 0.74 0899 ==
O 0.97- 0.724 0.88 A
2 e | 0704 0.871
T o0y T 0.86
0954e o | 0681 0.85
T ———— 0.66 T T T T T T T
0.00 025 050 0.75 0.00 0.25 050 0.75 0.00 025 050 0.75
hospital_2 LtC sepsis_1
076 ——— ——— = 0.50
0.74 4 -—\“‘\;\ 0.60 % 0.454
0.724 o Z___——-_—i.:_a
0.70 1 055 0.40 1
0.68 T\: 035 qe—s—s—u ™
000 025 050 0.75 000 025 050 0.75 000 025 050 0.75
sepsis_2 sepsis_3 traffic
m M—x/
0.84 - 0.7 15— ¥ -)j- 0.65
0.80 1 064 — 0.604
g;g k 0.5 0.55
e 0.4 -
YR — | 0801
0.00 025 050 0.75 0.00 0.25 0.50 0.75 0.00 025 0.50 0.75
Alpha

Figure 32: Overall prediction accuracy across different levels of smoothing (con-
tinued).

116

« LSTM = RF_idx mul ~ XGB a XGB_jdx_pad
Method T Rp'3gg © RFidx pad -~ XGB Gk mul P

bpic2011_1 bpic2011_2 bpic2011_3
0.94 4 S 0.9751 s,
0.92 1 -'—’#'—A:kv 0-9 e 0.950
0.904 "’g—\\ LE Do PR Y X-71E
0.88 0.921 0.900
0.86 —r T T T 0.90 = T — 0.875 T T T
092 094 096 0.98 0.97 0.98 0.99 0.96 0.97 098 0.99
bpic2011_4 bpic2015_1 bpic2015_2
0.88 - LN g-gi 1 0.9 o
0.87 1 -.a Dol dddsy //_M
0.86 L. | 0821 B 0.8
0.854 *4.—‘_1——’-—1'/_’*?* 0.80 1
0844 0784 0.7 1
0.83 -+ T T T 0.76 T T T T T T 5
O 0.97 0.98 0.99 1.00 0.94 0.96 0.98 097 098 099 1.00
-]
< bpic2015_3 bpic2015_4 bpic2015_5
0.89 1 — 0.90 - 0.88 =
0.87 4 \ 0.87 1 ._—.——.—l—nl,—:; 0.844 ._.__._._‘w\
0.85 0.84 /_,’—»—'%w P
0.834 TS s 0.80
0.81 T T T T 0.76 T
0.96 0.98 0.96 0.98 0.95 1.0C
insurance 1 insurance 2 production
e - A L
055 e | o7 \«\% o &
0.80] 0.65+ s
0.754 0.6 R I —
0.70 0.5 W | 0601
| . . . 0.554, i
0.90 0.95 0.90 0.95 0.90 0.95 1.0C

Temporal stability

Figure 33: Temporal stability vs. prediction accuracy.

often also LSTM, dominating the other techniques in terms of both accuracy and
stability.

To answer RQ3 (How does decreasing prediction volatility via exponential
smoothing affect the accuracy and the temporal stability?), exponential smooth-
ing helps to increase the temporal stability, but usually at the expense of lower
accuracy. Exceptions are RF_idx_mul and XGB_idx_mul, where smoothing often
increases both temporal stability and AUC. The best tradeoff between temporal
stability and accuracy is usually achieved by XGB_agg and RF_agg.

117

AUC

« LSTM = RF_idx_mul = XGB_a — XGB_idx_pad
Method T Rp'2gg © RFidk pad -~ XGB Gomu NA —
bpic2012_1 bpic2012_2 bpic2012_3
0.675 = 060 = ———__— | 0.700 “t\\
0.650 1 0574 0.6754 %
0.625 0,54+ '—'—'—*"g%g\ 0.650 H—.—_F—Hui
0.600 4 N 0.51 et 0.625 \
’ =17 0.600 +
0.575 . . : . — . v
0.96 0.98 097 098 0.99 0.96 0.98
bpic2017_1 bpic2017_2 bpic2017_3
0.82 0.81
0.80 W 0.80 h\ 0.791
0.78 \ 0774
0751 0.76 0.751
0.70+ T . 074 ; : 1 0734, I I
0.96 0.98 0.980 0.985 0.990 0.995 0.94 0.96 0.98
DR github hospital_1
0908 s—s—n—8—=sm==8 | (.74 0.89
0.97 4 oo+ 0.724 0.88 4
0.70 4 0.87
0.96+ WA—HW\X\ ' 0.86
0.954 - 0.68 4 0.854
T T —— 0.66 T T T T
097 098 0.99 1.00 092 0.94 096 0.98
hospital_2 LtC sepsis_1
0.76 — =y 0.50 \\.
0.74 4 —~ \\ 0.60 4 ¥ —] 0.45 4 \
0.72 - \ ._._.__.—*'.ﬁ{
0.70 1 ':% 0.55 4 0.40 4
0.68 - : 0.35 =
0.98 0.99 0.98 0.99 1.0 0.98 0.99 1.00
sepsis_2 sepsis_3 traffic
0.844 ‘.J 0.7 4 ._M;h 0.654
0.80 0.64 0.60 4
0.761 ey | 054 0.551
0.72 H}/_/-&{* 0.4+
0.68-L, . i . — ol 0801 !)
0.96 0.98 1.00 0.98 0.99 1.00 0.7 0.8 0.9

Temporal stability

Figure 34: Temporal stability vs. prediction accuracy (continued).

118

6.4. Summary

In this chapter we introduced the notion of temporal stability for predictive pro-
cess monitoring. Temporal stability characterizes how much successive prediction
scores obtained for the same case (sequence of events) differ from each other. For
a temporally stable classifier, such successive prediction scores are similar to each
other, resulting in a smooth time series, while in case of an unstable classifier, the
resulting time series is volatile. We evaluated the temporal stability of 7 existing
predictive process monitoring methods, including single and multiclassifiers us-
ing RF, XGBoost, and LSTM. The experiments were done on 27 prediction tasks
formulated on 12 real-life datasets. We found that the highest temporal stability
was achieved by LSTM, followed by a single classifier approach with XGBoost
(using either aggregation or index-based encoding).

We investigated the effects of hyperparameter optimization on temporal stabil-
ity. We compared the final classifiers constructed after selecting the best parame-
ters based on 1) AUC over a single run for each parameter setting, 2) AUC over
5 runs for each setting, 3) combined AUC and inter-run stability over 5 runs for
each setting. The results show that choosing the parameters based on 5 runs can
increase both AUC and temporal stability. However, the improvement is small
and is subject to the trade-off of 5 times more computations during validation.

Finally, we explored how exponential smoothing affects the AUC and temporal
stability. We concluded that smoothing can be a reasonable approach for adjusting
the predictions in applications where temporal stability is important at the expense
of achieving slightly smaller AUC. Moreover, we observed that the multiclassi-
fiers benefit the most from smoothing, in some cases even increasing both the
temporal stability and the AUC at the same time. Therefore, when high temporal
stability is required, it may be reasonable to use a multiclassifier approach with
smoothing, achieving stable results with little or no loss in accuracy.

This chapter addressed the task of evaluating predictive models in the con-
text of predictive business process monitoring. In the evaluation we assumed a
continuous monitoring setting, where predictions are made after each event but
no advice is given on using the predictions. In the next chapter we focus on us-
ing the predictions returned by a predictive model in order to mitigate or prevent
undesired outcomes in business processes.

119

7. ALARM-BASED PRESCRIPTIVE PROCESS
MONITORING

After a predictive process monitoring system has been constructed, it can be used
to support decision-making in a real business process setting by either notifying
the process workers when they should intervene in a process or recommending in-
tervention actions that would help to prevent or mitigate the undesired outcomes.
As seen in Chapter 3, such prescriptive monitoring use cases have received lit-
tle attention in the literature. In particular, the existing methods for alarm-based
prescriptive monitoring are limited to very basic alarming mechanisms, where
the user is expected to specify a threshold on the prediction scores. In practice,
however, the optimal threshold depends on many factors, such as the different
costs involved in the execution of the business process, as well as the scale of
the predicition scores that the predictor outputs (i.e. whether the scores are well
calibrated or not). Therefore, choosing the threshold manually can be a difficult
task for the user. In this chapter, we propose an alarm-based prescriptive process
monitoring system that enables building a cost-sensitive alarming mechanism that
automatically identifies an optimal threshold on the prediction scores based on
different types of costs related to a business process.

In Section 7.1, we give an overview of the works on cost-sensitive learning and
prescriptive process monitoring. In Section 7.2, we introduce the alarm-based
prescriptive process monitoring framework and outline a procedure for estimat-
ing the return on investment (ROI) of such an alarm system. We then propose
a technique to empirically find the optimal alarming threshold based on a given
cost configuration (Section 7.3) and evaluate the proposed mechanism empirically
under different cost settings (Section 7.4).

7.1. Cost-sensitive learning and prescriptive process
monitoring

Cost-sensitive learning seeks to find the optimal prediction in the case where dif-
ferent types of misclassifications have different costs and different types of cor-
rect classifications have different benefits [27]. There exist different approaches
for achieving the cost-sensitivity of a classifier. Firstly, the underlying classi-
fier can be modified to take the costs into account in the learning phase [50, 56].
Other approaches are more general in the sense that they do not require mak-
ing inherent modifications to the classification algorithm itself. For instance, one
can rebalance the proportion of positive and negative examples in the training set
(stratification) [27], learn a meta-classifier after relabeling the training examples
according to their estimated cost-minimizing class label [24], or use empirical
thresholding [88] in order to empirically find the optimal threshold on the scores
the classifier outputs. Furthermore, direct cost-sensitive decision making can be

120

used by training estimators for both probabilities of the outcome and for the cost
related to a given instance [112].

In these settings, cost can refer to different types of negative consequences
related to wrong predictions. Elkan [27] analyzes the basic notion of misclassi-
fication cost and defines conditions under which a misclassification cost matrix
is reasonable. A broad range of cost variables in the context of inductive context
learning is examined in [100]. This latter study introduces, among other types of
costs, the notion of cost of intervention, which we include in our proposed cost
model. Apart from that, the cost-sensitive learning approaches do not take into ac-
count the specific costs that arise in prescriptive process monitoring. In particular,
works in the cost-sensitive learning area assume that the prediction must be made
at a given timepoint, without the possibility of delaying the decision. In this work
we propose a more general formulation of the cost model where the costs may
depend also on the time when the decision is made, i.e. it is a possible to delay
the decision and wait for more information about the instance to be classified.

To the best of our knowledge, works [18, 66, 91] are the only cost-sensitive
early sequence classification methods trying to balance accuracy-related and
earliness-related costs. However, these approaches assume that predicting a pos-
itive class early has the same effect on the cost function as predicting a negative
class early, which is not the case in typical business process monitoring scenarios,
where earliness matters only when an undesired outcome is predicted.

As discussed in Chapter 3, alarm-based settings in predictive process moni-
toring literature rely on fixed-threshold alarming mechanisms where the threshold
needs to be provided by the user [30]. The works by Groger et al. [38] and Krume-
ich et al. [49] propose architectures for prescriptive process monitoring systems,
but neglect the two core elements of a cost-sensitive process monitoring system,
i.e. the cost models and the earliness. Metzger et al. [62] study the effect of
different prediction score thresholds on the adaptation cost (corresponds to the
intervention cost in our framework) and the misclassification penalties. However,
their work assumes that the alarms can only be generated when a given state of the
process is reached. This assumption restricts their approach to scenarios where:
(i) there is a process model that perfectly captures all executions of the process;
(i) raising an alarm early in the case does not yield a higher cost or reward than
raising it later. Furthermore, none of these mentioned works propose a way of
determining the alarming threshold automatically according to the costs related to
the business process.

7.2. Alarm-based prescriptive process monitoring framework

In this section, we introduce a cost model for alarm-based prescriptive process
monitoring and illustrate this model using three scenarios (Section 7.2.1). We
then formalize the concept of alarm system (Section 7.2.2) and discuss conditions
under which an alarm system has a positive return on investment (Section 7.2.3).

121

7.2.1. Concepts and cost model

An alarm-based prescriptive process monitoring system (alarm system for short) is
a monitoring system that raises an alarm in relation to a running case of a business
process, in order to indicate that the case is likely to lead to an undesired outcome.
These alarms are handled by process workers who intervene by performing an
action (e.g. calling a customer or blocking a credit card) in order to prevent or
mitigate the undesired outcome. These actions may have a cost, which we call
cost of intervention. Instead, if the case ends in a negative outcome, this leads to
a cost called cost of undesired outcome.

As an example, consider a municipality that needs to collect city taxes. If the
inhabitants do not pay their taxes on time, the municipality may run into cash flow
issues. Accordingly, in case of an unpaid tax debt, the municipality may decide
to end the tax collection process by outsourcing the debt collection to an external
collection agency, for which it has to pay a recovery fee. In this case, sending the
debt to a collection agency would be an undesired outcome and the recovery fee
would constitute the cost of the undesired outcome. In light of their characteristics
and past payment history, certain inhabitants may have a higher risk of missing
the payment deadline. Therefore, sending a reminder letter to these high-risk
inhabitants before the payment deadline is reached may increase the chances of
receiving the payment on time. However, such an intervention comes with costs
related to preparing the letter by an employee (proportional to the employee’s
hourly salary rate) and the postal costs for sending the letter.

In certain scenarios, the cost of an intervention may increase over time, ac-
knowledging the importance of alarming as early as possible. For instance, in a
railway maintenance process, if an alarm about a possible railway disruption is
raised early, the problem could be solved with regular maintenance procedures.
Conversely, if the alarm is raised when the need for maintenance has become ur-
gent, the maintenance provider could be required to allocate more resources in
order to solve the problem on time.

When an alarm is raised, there is a certain probability, but no certainty, that the
case will reach an undesired outcome if no intervention is made. If the case does
not conclude with an undesired outcome even without interventions, doing the in-
tervention causes unnecessary costs (e.g. a company could lose customers and/or
opportunities). The cost related to such unnecessary interventions is referred to
as cost of compensation. For instance, financial institutions may block credit card
payments when they suspect that a card was cloned. However, in some cases,
it may happen that the suspicion was unfounded and that the payment was legiti-
mate. If these cases become too frequent, the reputation of the financial institution
could be hampered.

The purpose of alarming is to avoid an undesired outcome. However, in several
scenarios, it is not possible to fully prevent the cost of the undesired outcome,
while the intervention could still help to mitigate it. Based on this rationale, we

122

introduce the concept of mitigation effectiveness of an intervention, reflecting the
proportion of the cost of an undesired outcome that can be avoided by carrying out
the intervention. Oftentimes, the mitigation effectiveness decreases with time, i.e.
the earlier the intervention takes place, the higher the proportion of costs that can
be avoided. Consider, for instance, the process of paying unemployment benefits
by a social security institution. In this case, the aim of an alarm system could be
to notify the institution about citizens who might be receiving unentitled benefits.
Since the benefits that have already been issued are unlikely to be recollected,
the cost of the undesired outcome cannot be avoided completely. Therefore, it is
important to raise the alarm as early as possible, in order to effectively mitigate
the cost of the undesired outcome.

An alarm system is intended as a system where cases are continuously moni-
tored. However, since continuous monitoring is impractical, we assume that cases
are monitored after each executed event and, therefore, alarms can only be raised
after an event has occurred. In the remainder, each case is identified by a com-
pleted trace o that is (eventually) recorded in an event log. Definition 7.2.1 for-
malizes the costs defined above. Since costs may depend on the position in the
case in which the alarm is raised and/or on other cases being executed, we define
the costs as functions over the number of already executed events and over the
entire set of cases under execution.

Definition 7.2.1 (Alarm-based Cost Model). An alarm-based cost model is a tuple
(Cins Couts Ccoms €ff) consisting of:
e afunction ¢; : N x S x 25 — Rg modeling the cost of intervention: given
a trace o belonging to an event log L, c;,(k,0,L) indicates the cost of an
intervention in ¢ when the intervention takes place after the k-th event;
e afunction ¢,y : S X 25 R(f modeling the cost of undesired outcome;
e a function coop : S X 25 R(J{ modeling the cost of compensation;
e a function eff : Nx S x 25 — [0, 1] modeling the mitigation effectiveness
of an intervention: given a trace & belonging to an event log L, eff (k,o,L)
indicates the mitigation effectiveness of an intervention in o when the in-
tervention takes place after the k-th event.

To illustrate the versatility of the above cost model, we discuss three use cases
for alarm systems and their corresponding cost model configurations. The first
scenario, in Box 1, refers to the provision of unemployment benefits. The cost
model for this scenario is based on several discussions with the stakeholders of
a real social security institution [21]. The second scenario, in Box 2, refers to
the detection of malicious credit card payments in a financial institution. Differ-
ently from the previous scenario, in this case, there is a risk of cost of compen-
sation: due to the inconvenience caused by blocking their credit card, customers
can switch to competitors. Box 3 refers to the process of predictive maintenance
in railway services. This scenario is different from the previous ones because, in
this case, the cost of an intervention increases over time.

123

Box 1 — Scenario ‘“Unemployment Benefits”

In several countries, a social security institution is responsible for the execution of a number of employee-
related insurances, such as unemployment benefits. When residents (hereafter customers) become un-
employed, they are usually entitled to monthly monetary benefits for a certain period of time. These
payments are stopped when the customer reports that he/she has found a new job. Unfortunately, several
customers omit to inform the institution about finding a job and, thus, keep receiving benefits they are not
entitled to. Those customers are expected to return the amount of benefits that they have received unlaw-
fully. However, in practice, this rarely happens and the overpaid amount is lost to the institution. In light
of the above, the social security institution would benefit from an alarm system that would inform about
customers who are likely to be receiving unentitled benefits. Let unt(o) denote the amount of unentitled
benefits received in a case corresponding to trace 6. Based on discussions with the stakeholders of a real
social security institution, we designed the following cost model instantiation for such an alarm system.

Cost of intervention. For the intervention, an employee needs to check if the customer is indeed re-
ceiving unentitled benefits and, if so, fill in the forms for stopping the payments. Let S be the
employee’s average salary rate per time unit; let iy and iy denote the positions of the events in &
when the employee started working on the intervention and finished it, respectively. The cost of
an intervention can be modeled as: cy:(0,L) = (w7 (0 (if)) — w7 (0 (is))) - S.

Cost of undesired outcome. The total amount of unentitled benefits that the customer would obtain
without stopping the payments, i.e. ¢ou (0, L) = unt(c).

Cost of compensation. The social security institution works in a situation of monopoly, which means
that the customer cannot be lost because of moving to a competitor, i.e. there is no cost of
compensation: c¢om(0,L) = 0.

Mitigation effectiveness. The proportion of unentitled benefits that will not be paid thanks to the inter-
unt(c) — unt(hd*(c))
unt(o)

_ there is no undesired outcome (i.e. if unt(o) = 0).)

vention: eff(k,0,L) = . Note that this cost function is not employed if

Box 2 — Scenario ‘“Financial Institution”

Suppose that the customers of a financial institution use their credit cards to make payments online. Each

such transaction is associated with a risk that the transaction is made through a cloned card. In this

scenario, an alarm system is intended to determine whether the credit card needs to be blocked due to a

high risk of being cloned. However, in case the credit card is not malicious, blocking the card would cause

discomfort to the customer who may consequently opt to switch to a different financial institution. Let &
be the trace of credit card transactions for a customer and value(c) the total amount of money related to
malicious transactions in o, the following is a possible cost model instantiation for this scenario.

Cost of intervention. The card is automatically blocked by the system and, therefore, the intervention
costs are limited to POST_COST, i.e. to the costs for sending a new credit card to the customer
by mail: ¢, (k,0,L) = POST_COST.

Cost of undesired outcome. The total amount of money related to malicious transactions that the bank
would need to reimburse to the legitimate customer: ¢y (0,L) = value(o).

Cost of compensation. Denoting the asset value of a customer (consisting of the amount of the invest-
ment portfolio, the account balance, etc.) with asser(o) and supposing that a fraction p (i.e.
p € [0, 1]) of the customers would switch to a different institution, the cost of compensation can
be estimated as the value of the lost asset (the customer), multiplied by p: ccom = p - asset(o).

Mitigation effectiveness. The proportion of the total amount of money related to malicious transactions
that does not need to be reimbursed by blocking the credit card after that k events have been

_ k
executed: eff (k,,L) = value(o) — value(hd* (o))

_ value(o) ’)

124

Box 3 — Scenario “Railway Maintenance”

In a process for railway maintenance, an alarm should be raised when there is a risk that the railway may

break down within a relatively short time range. Railway breakdowns can cause severe disruptions in

the train transportation (i.e. trains could be canceled or delayed), thereby causing losses of reimbursing
tickets to travelers.

Cost of intervention. The cost of an intervention increases with time because the more urgent the
disruption, the more resources need to be allocated for handling it. We assume that the
cost is at its minimum m at the beginning of a trace o and grows exponentially with time:
cin(k,0,L) =m- Bexp(mr(c(k))) for some f > 0.

Cost of undesired outcome. Let P be the average total price of tickets sold per time unit; let i; and
im be the positions of the events in o when the disruption took place and was resolved, respec-
tively. The cost of the undesired outcome can be calculated as P multiplied by the length of the
timeframe when the railway service was disrupted: ¢, (0,L) = (77 (0 (im)) — T (0 (ig))) - P.

Cost of compensation. Assuming that performing (unnecessary) maintenance actions does not cause
inconveniences to the customers, no cost of compensation is present: ¢om(0,L) = 0.

Mitigation effectiveness. A timely intervention fully avoids the undesired outcome: eff (k,o,L) = 1 for

_ any k € [1,|o]].)
Table 23: Cost of a case ¢ based on its outcome and whether an alarm was raised.
‘ undesired outcome ‘ desired outcome
alarm raised | cju(k,0,L)+ (1 —eff (k,0,L))cou(0,L) | cin(k,0,L)+ ceom(0O,L)
alarm not raised Cout(0,L) 0

7.2.2. Alarm-based prescriptive process monitoring system

An alarm-based prescriptive process monitoring system aims at alarming if an
ongoing case is likely to end up with an undesired outcome. The case outcomes
are represented by a labeling function out : S — {0, 1}, s.t. given a case identified
by a trace o, out(c) = 1 if the case has an undesired outcome, and out(c) =
0 otherwise. At runtime, the outcome of a running case is not yet known and
needs to be estimated using a predictive model trained on past executions that are
recorded in an event log L C S. A predictive model is a function out : S, — [0, 1]
returning the probability 0/1/7[(6/) that the outcome of a case that starts with prefix
o’ is undesired. We can define an alarm system as a function that returns 1 or 0
depending on whether an alarm is raised based on the predicted outcome or not.

Definition 7.2.2 (Alarm-Based Prescriptive Process Monitoring System). Given
an event log L C S, let O/I;lL be a predictive model built from L. An alarm-
based prescriptive process monitoring system is a function alarmg, : S, —
{0,1}. Given a running case identified by a trace ¢ and with current prefix
o/, alarm@L(G') returns 1, if an alarm is raised based on the predicted outcome
out; (6), or 0, otherwise.

For simplicity, we omit the subscript L from out; and omit out; from alarm vty
when it is clear from the context. An alarm system can raise an alarm at most once
per case, since we assume that already the first alarm triggers an intervention by
the stakeholders.

The purpose of an alarm system is to minimize the cost of executing a case.

125

Table 23 summarizes how the cost of a case is determined based on a cost model
(cf. Def. 7.2.1), on the case outcome, and on whether an alarm was raised or not.

Definition 7.2.3 (Cost of Case Execution). Let cm = (Cin, Cour, Ccom, €ff) be an
alarm-based cost model. Let our : S — {0, 1} be a labeling function. Let alarm :
S. — {0,1} be an alarm-based prescriptive process monitoring system. Let L C
S be the entire set of completed traces. Let o € L be a completed trace. Let
Z(o,alarm) be the first index of the event in ¢ when the alarm was raised or zero

if no alarm was raised: .

if Aie{l,...,|o|—1}:alarm(hd (o)),
min{i € {1,...,|0| =1} : alarm(hd’'(G))} otherwise
The cost of execution of a case identified by a trace ¢ supported by the alarm
system is:

I(o,alarm) =

cin(Z(0,alarm),o,L)+ (1 —eff (Z(o,alarm),o,L)) - cou(0,L) out(c) NZ(c,alarm) >0,

cin(Z(0,alarm),o,L) + ccom(0,L) —out(0) NZ(o,alarm) > 0,
cost(o,L,cm,alarm) =

Cour(O,L) out(0) ANIZ(o,alarm) =0,

0 otherwise.

Section 7.3 illustrates how an alarm-based prescriptive process monitoring sys-
tem can be designed aiming at the minimization of the case execution costs (ac-
cording to Def. 7.2.3).

7.2.3. Return on investment analysis

In this section, we provide an analysis and guidelines that suggest when it is valu-
able to invest in developing an alarm system, namely, when the return on invest-
ment (ROI) is positive. To this end, we compare the situation where the execution
of a business process is supported by an alarm system with the as-is situation,
where the business process is executed without this support. For this analysis, we
consider a set of traces recorded in an event log L, where no interventions were
done, and a cost model cm = (¢in, Cours Ccom, eff)-

The as-is situation implies that no interventions are done in any of the cases
that lead to an undesired outcome, yielding a cost ¢, (o) for each of trace ¢ € L
where out(0) = 1. When applied to the entire log L, the as-is cost is:

COStys-is (L) = Z Cout(c)'
o€ELs.t. out(o)

Instead, when an alarm system alarm is in effect, the cost for each trace can be
calculated according to Def. 7.2.3:

coStgiarm(L) = Z cost(o,L,cm,alarm).
o€l

With this setting, the ROI of the system alarm is:

ROI(L,cm,alarm) = costys.is(L) — cost gjqm (L),

which must be positive to make deploying the system worthwhile.

126

The question that remains is: how does the ROI depend on the cost model and
the alarm system? For the sake of simplicity, we assume in this analysis that every
component of the cost model is constant, i.e. does not depend on the position in
the trace where the alarm is raised. Furthermore, the initial investment costs are
not considered because we assume the system to be fully operational already for a
sufficiently long time, so that the the initial costs have been amortized. The above
assumptions yield the following simplified cost of a case execution:

cint+ (1 —eff)cour out(c) NZ(o,alarm) >0,

Cin+cC —out(c) ANL(o,alarm) > 0,
cost(o,L,cm,alarm) = T mcom (0) ()

Cout out(o) NZ(o,alarm) =0,

0 otherwise

where cin, Couss Ccom» and eff are constants. In order for the ROI to be positive, it
is necessary that cost s is(L) > costgiqm(L), that is:

‘Lund| *Cout > |Lund&al|(cin + (1 - eﬁ)cnut) + |Ldes&al|(cin + ccom) + |Lund&nal’ *Cout

where Lyng&al> Laesa&al> Lunagnal t€Spectively consist of the traces in L related to the
cases with an undesired outcome that would be alarmed, with a desired outcome
that would still be alarmed, with an undesired outcome that would not be alarmed;
also, Lyng = Luna&at Y Luna&nal- After simplification:

’Lund&al ‘ (eﬁcout - Cin) > ‘Ldex&al | (Cin + Ccom) . (71)

Because the right-hand side of Eq. 7.1 is non-negative, it follows as a corollary
that eff'cous > cin s a necessary condition for yielding a positive ROIL. In other
words, it must be possible to avoid a cost that is higher than the cost of doing
the intervention. This provides a validation of our framework: it complies with
the reasonableness condition in the cost-sensitive learning literature [27], which
states that the cost of labeling an example incorrectly should always be greater
than the cost of labeling it correctly.

Eq. 7.1 also illustrates that the policy of always alarming does not yield a
positive ROI unless the number of cases with undesired outcome and the cost of
the undesired outcome are sufficiently high. When the number of cases with an
undesired outcome is small (e.g. the unemployment benefits and the financial
institution scenarios described in Boxes 1 and 2) and at the same time the cost of
this undesired outcome is low, then the left-hand side of Eq. 7.1 is negligible, thus
leading to condition c;; + ccom < 0, which can never hold.

So far we have assumed, for the sake of simplicity, that costs and mitigation
effectiveness are constant, similarly to traditional cost-sensitive learning. How-
ever, the novelty of our formulation lays in the fact that costs are functions that
depend on the time when an intervention is made. As a result, the reasonableness
of the cost matrix would not be fixed, but potentially changes over time. Still,

127

N

Labeling function

Event log Cost model
« ¥ T ¥
. -~ Construct
Tralnrﬁorgilctwe alarming
mechanism
/’ .
A ’ K
Predictive Alarming
i mechanism
Offline phase model

.

Running
trace

> Predict ——— Assess prediction

Bl

Alarm/not

Prediction alarm

Online phase

Figure 35: Alarm-based prescriptive process monitoring.

variable costs do not invalidate the ROI analysis. In fact, in order for the ROI
to be positive, it is sufficient that the cost model is reasonable for a certain time
period; otherwise, the alarm system would never raise alarms because of the cost
model. Clearly, the longer the reasonable-cost period, the higher the chances of
obtaining a positive ROI.

7.3. Alarming mechanisms and empirical thresholding

An alarm system as described above needs two components to minimize the costs
of future cases: (1) a predictive model out; : S, — [0,1] that estimates the prob-
ability of an undesired outcome for a running trace based on some historical ob-
servations L, and (2) an alarming mechanism that, for a given incomplete case,
decides whether or not to raise an alarm based on the prediction made by out;.
Specifically, an alarming mechanism is a function agent : [0,1] — {0, 1} that op-
erates on the estimated probability of an undesired outcome, where the value 1
represents the decision to raise an alarm. Together, the two components form an
alarm system, alarm(hd*(c)) = agent(out; (hd*(5))), which makes the decision
on whether or not to raise an alarm based on the observed k events of trace o. The
offline and online workflows of an alarm system consisting of a predictive model
and an alarming mechanism are illustrated in Figure 35.

The first component can be implemented using any predictive process moni-

128

toring technique and a training set L;,4;,, yielding a predictive model o/u\term. Itis
easy to see that the decision on whether or not to raise an alarm should be depen-
dent not only on o/\utL,m,.n (hdk(c)), but also on the configuration of ¢y, Cours Ceoms
and eff. When ¢;, and c.,,;, are very low compared to c,,,, it might be beneficial
to use a lower threshold for the estimated probability outy,,, (hd*(c)), while one
would want to be more certain that the undesired outcome will happen when c;,
O Ccom 1S high.

We propose to implement the second component, agent, as an alarming thresh-
old, i.e. a mechanism that alarms when the estimated probability of an un-
desired outcome is at least 7. We define function alarm.(hd*(c)) to be the
alarming function that uses the alarming mechanism agent(out;, . (hd*(c))) =
outy, . (hd*(c)) > t. We aim at finding the optimal value 7 of the alarming thresh-
old that minimizes the cost on a log Ly, consisting of historical observations
such that Lpes N Lygin = @ with respect to a given predictive model O/LTth”.n and
cost model cm. The total cost of an alarming mechanism alarm on a log L is de-
fined as cost(L,cm,alarm) = Xgcpcost(0,L,cm,alarm). Using this definition, we

define T = arg m[(i)n] cost(Lspres,cm,alarmz). Finding the optimal threshold T with
7€(0,1

respect to a specified cost model can be done empirically (i.e. empirical threshold-
ing) using a separate thresholding set L. and any hyperparameter optimization
technique. The resulting approach can be considered to be a form of cost-sensitive
learning, since the value T depends on how the cost model cm is specified.

Note that as an alternative to a single global alarming threshold 7 it is possible
to optimize a separate threshold Ty for each prefix length k. Our initial experiments
showed that a single global threshold 7 optimized on Ly, tends to outperform
separate prefix-length-dependent thresholds 7, optimized on L., therefore we
propose using a single threshold.

After creating the fully functional alarm system by training a classifier on
Lyyain and optimizing the alarming threshold on L., for the given cost model
cm, the obtained alarming function alarm can be applied to the continuous stream
of events coming from the executions of a business process, thereby reducing the
processing costs of the running cases.

7.4. Evaluation

In this section, we describe the experimental setup for evaluating the proposed
framework and the results of the evaluation. We address the following research
questions:

RQ1 (Empirical thresholding) Can empirical thresholding find thresholds that
consistently lead to a reduction in the average processing cost for different
cost model configurations?

RQ2 (Mitigation effectiveness) Does the alarm system consistently yield a benefit
over different values of the mitigation effectiveness?

129

Table 24: Statistics of the unemployment dataset.

min med max trunc #variants posclass #event #static #dynamic #static # dynamic
dataset #traces length length length length (after trunc) ratio classes attr-s attr-s catlevels cat levels
unemployment 34627 1 21.0 1177 40 29689 0.2 21 6 13 218 27

RQ3 (Cost of compensation) Does the alarm system consistently yield a benefit
over different values of the cost of compensation?

7.4.1. Approaches and baselines

We use XGBoost single classifier with aggregation encoding as the implementa-
tion of outy,,,, since it has shown to perform reliably over different datasets (see
Chapters 4-6). For event logs containing unstructured data, we use the BoONG
model to obtain numeric features from text. We apply the TPE optimization pro-
cedure for the alarming mechanism to find the optimal threshold 7.

We use several fixed thresholds as baselines. First, we compare with the as-is
situation in which alarms are never raised. Secondly, we compare with the base-
line T = 0, allowing us to compare with the situation where alarms are always
raised directly at the start of a case. Finally, we compare with T = 0.5 enabling
the comparison with the cost-insensitive scenario that simply alarms when an un-
desired outcome is expected.

7.4.2. Datasets

As evaluation datasets, we use the same event logs and preprocessing as intro-
duced in Chapters 4 and 5. Additionally, we use an event log unemployment
corresponding to the Unemployment Benefits scenario (Box 1). In this log, the un-
desired outcome occurs when a resident will receive more unemployment benefits
than entitled, causing the need for a reclamation. Due to privacy constraints, this
event log is not publicly available.

We use the same preprocessing on the unemployment dataset as described in
Section 4.1. The statistics of this dataset are reported in Table 24.

7.4.3. Experimental setup

We start with the same experimental setup as in Chapters 4 and 5, i.e. we split
each dataset into 80% training (precisely, Lyqgin U Linres) and 20% of testing (Lyes;)
traces using a temporal split. For event logs consisting of only structured data the
hyperparameters of the classifiers are optimized via 3-fold cross-validation using
TPE on the training set. For event logs containing unstructured data, we apply the
setup described in Chapter 5, i.e. the model selection is done on a single validation
set. Then, in all event logs we randomly divide the traces in the training set into
80% (i.e. 64% of the total) for building the final model (L;.4;,) and 20% (i.e. 16%
of the total) for finding the optimal threshold (Lyjyes)-

It is common in cost-sensitive learning to apply calibration techniques to the

130

Table 25: Cost model configurations.

L‘,,M[(G,L) Cin(kv G,L) Ccom(GvL) eﬁc(kv G,L)
RQI {1,273,5,10,20} 1 0 1—k/|0'|
RQ2 {1,2,3,5,10,20} 1 0 {0,0.1,0.2,...,1}
RQ3 {1,2,3,5,10,20} | {0,1/20,1/10,1/5,1/2,1,2,5,10,20} 1-k/|o]

resulting classifier in order to obtain accurate probability estimates and, therefore,
more accurate estimates of the expected cost [112]. However, in case of empirical
thresholding for a single classifier, it is sufficient that the prediction scores are
reasonably ordered, but not necessarily well calibrated. In particular, the only
difference could occur in the exact value of the threshold, but not in its relative
position among the returned scores. Therefore, we omit the calibration step in the
given evaluation.

Table 25 shows the configurations of the cost model that we explore in the
evaluation. To answer RQ1 (Can empirical thresholding find thresholds that con-
sistently lead to a reduction in the average processing cost for different cost model
configurations?), we vary the ratio between ¢, (0,L) and c;,(k,0,L) (keeping
ccom(0,L) and eff (k,0,L) unchanged). To answer RQ2 (Does the alarm system
consistently yield a benefit over different values of the mitigation effectiveness?),
we vary both eff (k,0,L) and the ratio between ¢, (0,L) and c;,(k,0,L). To
answer RQ3 (Does the alarm system consistently yield a benefit over different
values of the cost of compensation?), we vary two ratios: 1) between c,,(0,L)
and ¢;,(k,0,L) and 2) between c;,(k,0,L) and com(0,L).

As our main evaluation metric, we use the average processing cost per case
in Lyes, and aim at minimizing this cost. Additionally, we measure the benefit of
the alarm system, i.e. the reduction in the average processing cost of a case when
using the alarm system compared to the average processing cost when not using
it. Also, we report the prediction accuracy in terms of F-score and the prediction
LocLuawa /10|

‘Lund&al |
of evaluation traces where an alarm was raised and that were labeled with an

undesired outcome (i.e. the true positives) and k is the length of the prefix when
the alarm was raised. In case of F-score and earliness, higher values reflect better
performance of the method.

Experiments were run using Python 3.5 and the scikit-learn library on a single
core of an Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz with 64GB of RAM.

earliness, calculated as earliness = 1 — , where L,,,48. 1S the set

7.4.4. Results

Figure 36 shows the average cost per case when increasing the ratio of c,,,(c,L)
and c;,(k,0,L) from left to right. When the ratio between these two costs is
balanced (i.e. 1:1), the minimal cost is obtained by never alarming. This is in
agreement with the ROI analysis, where we found eff'c,,; > ci, to be a necessary

131

condition for having an advantage from an alarm system. When c,,; > c;, the best
strategy is to always alarm. When ¢, is slightly higher than c¢;, the best strategy
is to sometimes alarm based on out. We find that the optimized T almost always
outperforms the baselines, with the exception of insurance_2 and a few specific
ratios on other datasets. In particular, the optimized threshold tends to sometimes
alarm on the ratio 1:1, where never alarming would be the optimal strategy (see,
for instance, production, bpic2015_4, bpic2017_3).

Figure 37 provides more insights about the (optimized) alarming mechanism
by plotting the resulting F-score and earliness. We can see that as the ratio between
cour(0,L) and c;,(k, 0, L) increases, the alarming mechanism starts to raise alarms
earlier in the process, while resulting in lower prediction accuracy. Note that when
the alarms are never raised (mostly in case of the 1:1 ratio), both F-score and
earliness are undefined.

In Figure 38, the average cost per case is plotted against different (fixed)
thresholds. The optimized threshold is marked with a red cross and each line rep-
resents one particular cost ratio. We observe that, while the optimized threshold
generally obtains minimal costs, there sometimes exist multiple optimal thresh-
olds for a given cost model configuration. For instance, in the case of the 2:1 ratio
in bpic2017_3, all thresholds are cost-wise almost equivalent. To answer RQ1
(Can empirical thresholding find thresholds that consistently lead to a reduction
in the average processing cost for different cost model configurations?), we con-
clude that the empirical thresholding approach consistently finds a threshold that
yields the lowest cost in a given event log and cost model configuration.

Figure 39 shows the benefit of having an alarm system compared to not having
it for different (constant) mitigation effectiveness values. As expected, the bene-
fit increases both with higher eff (k, o, L) and with higher ¢, (0,L) : ¢in(k,0,L)
ratio. Necessary conditions for receiving any benefit are ¢, (0,L) > ciy(k,0,L)
and eff (k,0,L) > 0. In most of the datasets the alarm system yields a benefit
always when eff (k,o,L) > 0.5 and ¢, (0,L) > ciy(k,0,L). In datasets with a
larger number of cases with undesired outcome (i.e. with balanced class propor-
tions), the potential benefit is much higher than in datasets with imbalanced class
proportions (see the high benefit values in the top right corners of the plots for,
e.g. bpic2011_1, bpic2011_2, bpic2012_1, bpic2017_3, github, traffic). At the
same time, in these balanced datasets there is a risk that the alarm system yields
a cost rather than a benefit. For instance, in the production dataset, if cyy(0,L) :
cin(k,0,L) < 5, using an alarm system is more costly than not using one. Simi-
larly, in bpic2011_4 if eff (k,0,L) < 0.3 or when ¢y (0, L) : cin(k,0,L) < 3, the
alarm system yields a cost instead of a benefit.

In slightly more imbalanced datasets (such as bpic2012_2, bpic2017_2, un-
employment) the value of the benefit is small even in case both eff (k,o,L) and
cour(O,L) : cin(k,0,L) are high. The reason for this is that in these datasets the
number of cases with undesired outcome is small and, therefore, the number of
cases where c,,, can be prevented by alarming is lower. At the same time, the risk

132

Avg. cost per case

alarm_method <+ always alarm +

never alarm = optimized - tau=0.5

bpic2011_1

bpic2011_2

bpic2011_3

bpic2011_4

0.6 1
0.4
0.2
0.0~

bpic2012_1 bpic2012_2 bpic2012_3 bpic2015_1
0.6
0.4 1
0.2
0.0+

bpic2015_2 bpic2015_3 bpic2015_4 bpic2015_5
0.6 1
0.4+
0.2
0.0+

bpic2017_1 bpic2017_2 bpic2017_3 DR
0.6
0.4 4
0.2
0.0+ = >

github hospital 1 hospital 2 insurance 1

0.6
0.4+
0.2
0.0+

insurance_2 LtC production sepsis_1

sepsis_2 sepsis_3 traffic unemployment
0.6 1
0.4 4
0.2 —1 1 'y
— —— "'r"' "3'-_____.'
0.01— 1 b . e ' o ' '
31 10:1 20:1 31 104 20:1 31 10:1 20:1 31 101 20:1
c out:c in

Figure 36: Cost over different ratios of ¢,,(0,L) and ¢;,(k,0,L).

metric + earliness = iscore

bpic2011_1

bpic2011_2

bpic2011_3

bpic2011_4

1.00 ~
0.751
0.50 -
0.25 1
0.00 1

&
i

-

M

bpic2012_1

bpic2012 2

bpic2012_3

bpic2015 1

1.00 1
0.751
0.50 1
0.251
0.00 4

i

il
=

)

bpic2015_2

bpic2015_3

bpic2015_4

bpic2015_5

1.004
0.75 1
0.50 +
0.25+
0.00 -

il

/
A

i

bpic2017 1

bpic2017_2

bpic2017_3

DR

w
@ 1.00 -
Q
% 0.75-
v 0.50 4
w
S 0.25-
90.00-

[

A

i
1]

github

hospital 1

hospital 2

insurance 1

1.00 ~
0.751
0.50 1
0.254
0.00 -

4

J
it

insurance_2

LiC

production

sepsis_1

1.00 ~
0.75 1
0.50 1
0.25 1
0.00 4

]
i

i

fit

sepsis_2

sepsis_3

traffic

unemployment

1.004
0.75 1
0.50 A
0.25 1

0.00+

/|

31 104

20:1 31

il
il

10:1

201 31

10:1

cout:c in

201 3:1

10:1 20:1

Figure 37: F-score and earliness over different ratios of ¢, (o, L) and ¢;,(k,0,L).

Avg. cost per case

cout:cin = 111+ 21 = 51 = 2011

bpic2011_1 bpic2011_2 bpic2011_3 bpic2011_4
L Al ri L.
bpic2012_2 bpic2012_3 bpic2015_1
% .
bpic2015_2 bpic2015_3 bpic2015_4 bpic2015_5
0.6 1
0.4+
02 7 [
\. e -\.
0.0+
bpic2017_1 bpic2017_2 bpic2017_3 DR
0.6 1
0.4 4
0.2 1 K_.an—*' —a—a-—
0.0+
github hospital_1 hospital_2 insurance_1
0.6 4
_a—a
0.4+
029 s e w Y B\ -
0.0+
insurance_2 LtC production sepsis_1
0.6 1
0.4 4
0.24Y Krl"ﬂ-lfrf" p
0.0+
sepsis_2 sepsis_3 traffic unemployment
0.6 1

0.4+

0.2+

g

0.0+

[
¢

00 03 06 09

00 03 06 09

00 03 06 09

Threshold (7)

00 03 06 09

Figure 38: Cost over different thresholds (7 is marked with a red cross).

of achieving a cost instead of a benefit is low — in smaller eff (k, o, L) values and
Cout(0,L) : cin(k,0,L) ratios, the alarm system simply does not have an effect.
In the case of very imbalanced datasets (such as DR, hospital_2, and LtC), the
benefits (and costs) are almost non-existent.

We conducted analogous experiments with linear effectiveness decay, varying
the maximum possible effectiveness (at the start of the case), which confirmed
that the observed trends remain the same (see Figure 53 in Appendix). As answer
to RQ2 (Does the alarm system consistently yield a benefit over different values
of the mitigation effectiveness?), we have empirically confirmed our theoretical
finding (Section 7.2.3) that eff ¢, > ci, is a necessary condition to obtain a benefit
from using an alarm system, and have shown that a benefit is in practice also
obtained under this condition when an optimized alarming threshold is used.

Similarly, the benefit of the alarm system is plotted in Figure 40 across differ-
ent ratios of ¢, (0,L) : ¢in(k,0,L) and ¢ (k,0,L) : ccom(0,L). We observe that
when c.om(0,L) is high, the benefit decreases due to false alarms. For balanced
datasets, such as bpic2017_3, a benefit is obtained almost always, except when
cour(O,L) @ cin(k,0,L) is low (e.g. 2:1). For slightly more imbalanced datasets,
such as unemployment, a benefit is obtained with fewer cost model configurations,
e.g. when ¢y (0,L) : cin(k,0,L) =5:1and ccom(0,L) is smaller than ¢, (k, o, L).
For very imbalanced datasets (DR, hospital_2, and LtC), the alarm system has al-
most no effect. We conducted analogous experiments with linearly increasing cost
of intervention, varying the maximum possible cost (at the end of the case), which
confirmed that the trends described above remain the same (see Figure 54 in Ap-
pendix). To answer RQ3 (Does the alarm system consistently yield a benefit over
different values of the cost of compensation?), we have empirically confirmed that
the alarm system achieves a benefit as discussed in Section 7.2.3 in case the cost
of the undesired outcome is sufficiently higher than the cost of the intervention
and/or the cost of the intervention is sufficiently higher than the cost of compen-
sation.

7.5. Summary

In this chapter, we outlined an alarm-based prescriptive process monitoring frame-
work that extends existing predictive process monitoring approaches with the con-
cepts of alarms, interventions, compensations, and mitigation effects. The frame-
work incorporates a cost model to analyze the tradeoffs between the cost of in-
tervention, the benefit of mitigating or preventing undesired outcomes, and the
cost of compensating for unnecessary interventions induced by false alarms. The
cost model allows one to estimate the benefits of deploying a prescriptive process
monitoring system for the purposes of return on investment analysis. Additionally,
the framework incorporates a technique to optimize the alarm generation mech-
anism with respect to a given configuration of the cost model and a given event
log. An empirical evaluation on real-life logs showed the benefits of applying this

136

benefit
0.0

02 04

bpic2011_1

bpic2011_2

20:14
10:14
5:1
3:14
2:1 1
1:1 1

bpic2011_3

bpic2011_4

bpic2012_1

bpic2012_2

bpic2012_3

bpic2015_1

20:1 A
10:1 4
5:1 1
3:1 1
2:1 1
1:14

bpic2015_2

bpic2015_3

bpic2015_4

bpic2015_5

20:14
10:14
5:1 1
3:1 4
2:1 1
1:14

bpic2017_1

bpic2017_2

bpic2017 3

DR

20:14
10:14
5:1 1
3:1 1
2:1 1
1:14

github

hospital 1

hospital 2

insurance 1

insurance_2

LiC

production

sepsis_1

20:1 4
10:14
5:1 1
311
2:14
1:14

sepsis_2

sepsis_3

traffic

unemployment

20:1 4
10:14
5:1 1
3:1 4
2:14
1:14

024681

0246 .81

mitigation effectiveness I(eff)

=

m_
e
o
0

Figure 39: Benefit of the alarm system, varying eff (k,o,L).

— -

benefit
-0.2 0.0

02 04

bpic2011_1
20:1 NN
10:1 NI
51400

21
11

bpic2011_2

bpic2011_3

bpic2011_4

bpic2012_1
20:1
10:1

5140
2:1 1
1:1 1

bpic2012 2

bpic2012_3

bpic2015_1

bpic2015_2

bpic2015_3

bpic2015_4

bpic2015_5

20:1 4
10:14
5:1 1
2.1
1:1 1

bpic2017_1

bpic2017_2

< 201 RN
BETRE

~ o1

bpic2017_3

DR

hospital_1

hospital_2

insurance_1

LiC

production

sepsis_1

sepsis_2

sepsis_3

20:1 A
10:1 4
5:1 1
2:1 1
1:14

traffic

unemployment

Figure 40: Benefit of the alarm system, varying ccom(0,L).

optimization versus a baseline where a fixed prediction score threshold is used to
generate alarms, as considered in previous work in the field.

While the scenarios discussed in Boxes 1-3 show that the proposed framework
is versatile enough to cover a variety of cases, the current version of the framework
relies on two main assumptions. First, it assumes that an alarm always triggers an
intervention, thus ignoring that a process worker might in some cases decide not to
or be unable to intervene. Additionally, the current version of the framework con-
siders each case in isolation, omitting the overall workload of the process workers,
which in reality is an important factor for determining the number of alarms that
can be acted upon. This limitation can be lifted by, e.g. combining the alarm sys-
tem with [17], which proposes a recommender system that optimizes suggestions
in case of concurrent process executions. A second limitation of the framework
is that only one possible type of intervention is envisaged. This assumption can
be lifted by extending the framework so that the cost of an intervention can vary
depending on the specific action suggested by a recommender system.

Next to these limitations, we acknowledge the importance of further investiga-
tion on the applicability of the framework in practice. In particular, in the future,
we aim at collaborating with companies and institutions to study whether pro-
cess stakeholders are able to define the costs in a natural and simple way. Also,
we plan to further investigate the consequences of incorrect and/or imprecise in-
stantiations of the cost models. Furthermore, the current evaluation is limited to
measuring the benefit of the alarm system in an offline manner, while a more
thorough evaluation would consist in deploying the alarming mechanism in a real
organization and making an end-to-end comparison of the costs before and after
the deployment of the alarm system. However, this is a difficult task for two main
reasons. First, companies need to be willing to let the technique really influence
the process executions. Second, the end-to-end effectiveness analysis cannot be
conducted without coupling the alarm system with a recommender system: if the
system raises proper alarms, but inappropriate interventions are taken, the system
would still be ineffective.

Another avenue for future work would be to explore alternative cost models
and alarming mechanisms. In particular, the empirical thresholding approach is
not restricted to the cost model proposed in this chapter and could be combined
with any cost function. Furthermore, an alarm system does not necessarily need
to consist of two components (a predictive model and an alarming mechanism).
An alternative approach would be to learn an alarming policy directly using rein-
forcement learning techniques.

139

8. CONCLUSION AND FUTURE WORK

8.1. Summary of contributions

This thesis addressed the question of how to train, evaluate, and use machine
learning models in the context of outcome-oriented predictive and prescriptive
process monitoring.

By systematically retrieving and analyzing prior research proposals in this
field, we found that existing proposals differ in two main aspects: 1) how the
prefixes are divided into buckets (trace bucketing) and 2) how the data related
to events in a prefix are transformed into fixed-length feature vectors (sequence
encoding). For example, some techniques do not divide the traces in the event
log into buckets (i.e. they use a single bucket), while others divide the traces
into buckets using clustering or other approaches and then train one classifier per
bucket. On the sequence encoding side, some techniques use a lossless encoding,
while others use lossy encodings (of different types).

Based on these observations, we identified 11 representative methods in the
field. We then designed a benchmark to empirically compare these techniques
in a common setting. The benchmark is performed on the 11 identified tech-
niques, executed using a unified experimental set-up and 24 predictive monitoring
tasks constructed from 9 real-life event logs. To ensure a fair evaluation, all the
selected techniques were implemented as a publicly available consolidated frame-
work, which is designed to incorporate additional datasets and methods. The re-
sults of the benchmark show that the most reliable and accurate results (in terms
of AUC) are obtained using a lossy (aggregation) encoding of the sequence, e.g.
the frequencies of performed activites rather than the ordered activities. One of
the main benefits of this encoding is that it enables to represent all prefix traces,
regardless of their length, in the same number of features. This way, a single clas-
sifier can be trained over all of the prefix traces, allowing the classifier to derive
meaningful patterns by itself. These results disprove the existing opinion in the
literature about the superiority of a lossless encoding of the trace (index-based
encoding [54]) that requires prefixes to be divided into buckets according to their
length, while multiple classifiers are trained on each such subset of prefixes.

The review of previous work revealed that existing methods for training pre-
dictive models for outcome-oriented predictive process monitoring make use of
only the structured (categorical or numeric) data available in an event log, neglect-
ing the fact that real-life event logs often contain additional unstructured (textual)
data. To address this gap, the thesis proposes a framework that combines text
mining methods to extract features from textual documents, with existing predic-
tive process monitoring techniques designed for structured data. We perform an
experimental evaluation over different combinations of text mining, trace buck-
eting, sequence encoding, and classification techniques on three real-life datasets
containing both structured and unstructured data. The evaluation confirms the im-

140

portance of including textual data when training predictive models and shows that
a simple bag-of-ngrams encoding, in combination with a RF or XGBoost single
classifier and aggregation encoding often outperforms other text modeling tech-
niques.

The literature review also revealed that predictive process monitoring tech-
niques are traditionally evaluated in terms of two main dimensions: 1) prediction
accuracy, measuring how well the predictions correspond to the actual outcomes,
and 2) prediction earliness, reflecting that a prediction is more useful if it uses
only a short prefix of the trace, i.e. if it is made in the early stages of the ex-
ecution of a process instance. These quality dimensions, however, neglect the
“monitoring” aspect of predictive process monitoring, i.e. that for the same pro-
cess instance multiple predictions are made given different prefixes of the same
trace. In practice it is undesirable that a predictive model often changes its mind,
i.e. that it outputs a highly volatile (unstable) sequence of predictions for the same
case, since it would reduce the users’ trust in the model and decrease their will-
ingness to act upon any given prediction. To address these problems, the thesis
introduces the notion of temporal stability for predictive process monitoring and
propose a metric for measuring it. Temporal stability characterizes how much the
prediction scores obtained for successive prefixes of the same trace differ from
each other. For a temporally stable classifier, such successive prediction scores
are similar to each other, resulting in a smooth time series, while in case of an
unstable classifier, the resulting time series is volatile. We evaluate the temporal
stability of seven existing predictive process monitoring methods, including single
and multiclassifiers using random forest, XGBoost, and LSTM neural networks.
The experiments conducted on 27 datasets show that the highest temporal stabil-
ity is achieved by LSTM, followed by a single classifier approach with XGBoost
(using either aggregation or index-based encoding). Furthermore, we investigate
the effects of hyperparameter optimization on temporal stability. We compare the
final classifiers constructed after selecting the best parameters based on 1) AUC
over a single run for each parameter setting, 2) AUC over five runs for each setting,
3) combined AUC and inter-run stability over five runs for each setting. The re-
sults show that choosing the parameters based on five runs can increase both AUC
and temporal stability. However, the improvement is small and is subject to the
trade-off of five times more computations during validation. Finally, we explore
how combining the predictions made for the same case via exponential smooth-
ing affects the AUC and temporal stability. The results indicate that smoothing
can be a reasonable approach for adjusting the predictions in applications where
temporal stability is important at the expense of achieving slightly smaller AUC.
Moreover, we observe that the multiclassifiers benefit the most from smoothing,
in some cases even increasing both the temporal stability and the AUC at the same
time. Therefore, when high temporal stability is required, it may be reasonable to
use a multiclassifier approach with smoothing, achieving stable results with little
or no loss in accuracy.

141

The purpose of a predictive process monitoring system is to provide opera-
tional decision support for process workers. Namely, based on a prediction, the
user can decide to intervene in the process in order to mitigate the effects of a
likely undesired outcome or to prevent it altogether. Despite that end goal, most
of the existing works employ a continuous monitoring setting, where the users
receive predictions after every event in a case, but are not advised if and how to
act upon them. A handful of studies adopt an alarm-based monitoring setting,
where the user is alerted only if a prediction is severe and/or reliable enough that
it calls for an intervention action by the user. All of these works assume that the
user is able to specify a threshold on the prediction scores that would trigger such
alerts. However, in practice the optimal threshold depends on different types of
costs related to the business process, such as the cost of an intervention and the
cost of reaching an undesired outcome. The fifth contribution of the thesis is an
alarm-based prescriptive process monitoring framework that extends existing pre-
dictive process monitoring approaches with the concepts of alarms, interventions,
compensations, and mitigation effects. The framework incorporates a cost model
to analyze the tradeoffs between the cost of intervention, the benefit of mitigating
or preventing undesired outcomes, and the cost of compensating for unnecessary
interventions induced by false alarms. The cost model allows one to estimate
the benefits of deploying a prescriptive process monitoring system for the pur-
poses of return on investment analysis. Additionally, the framework incorporates
a technique to optimize the alarm generation mechanism with respect to a given
configuration of the cost model and a given event log. An empirical evaluation on
28 real-life logs shows the benefits of applying this optimization versus a baseline
where a fixed prediction score threshold is used to generate alarms, as considered
in previous work in the field.

In order to support the reproducibility of the research results, the implemen-
taions for all the experiments performed in this thesis are made available in code
repositories (see Appendix A).

8.2. Future work

The contributions presented in this thesis pave the way for several directions for
future work, outlined in the following paragraphs.

Multi-class outcomes. This thesis focuses specifically on the settings where
the outcome of a business process is considered a binary variable (e.g. positive vs.
negative outcomes). There are situations, however, where a case may have more
than two outcomes. For example, a complaint-to-resolution process may end up
in the case being (i) resolved; (ii) closed without resolution by the IT helpdesk; or
(iii) closed by the customer. Many of the ideas presented in this thesis can also be
applied to multiclass outcome-oriented predictive monitoring problems. However,
we cannot say which sequence encodings, bucketing and classification techniques
would perform better in this setting. Also, the problem of temporal prediction

142

stability and alarm-based prescriptive monitoring would need to be recast to fit
this setting. This is a direction for future work.

Advanced text modeling. Recent years have witnessed a rapid growth of lit-
erature on methods for generating better deep-learning based word and sentence
representations. A general trend emerging in these works is to use universal word
embeddings that are pretrained on a large text corpus and fine-tune them to the
specific task at hand via transfer learning [44]. Such embeddings are likely to
yield more stable and comprehensive representations for textual data than train-
ing the embeddings separately for each data set. Another tendency is towards
subword [5] or character-based [75] language models that are able to generate
representations for out-of-vocabulary words, which were not seen in the training
set. Regarding sentence representations, a simple yet effective approach proposed
by Arora et al. represents sentences as weighted averages of word vectors [1].
Inspired by the well-known skip-gram model for generating word vectors [65],
Kiros et al. proposed Skip-Thought Vectors, which lift the same idea to the sen-
tence level [47]. Over the last year, several approaches for learning universal
sentence represenations via multi-task learning have been developed [14, 89]. In-
corporating these recent advances in text modeling to the framework proposed in
Chapter 5 is a direction for future work.

Extending the notion of temporal stability. As another future direction, more
robust notions of temporal stability could be developed, which would (still) re-
quire most of the successive differences in predictions to be small, but would not
penalize the classifier for changing the prediction when an event with a relevant
signal arrives. For instance, works on early sequence classification could possibly
be helpful in developing an adaptive smoothing method that decreases volatility
on subsequences without suppressing the relevant signal. Furthermore, the notion
of temporal stability could be extended to other prediction tasks, such as multi-
class predictions and regression. For instance, temporal stability could also be
investigated in the context of predicting the remaining time of an ongoing case.
While several methods have been developed with the goal of providing accurate
remaining time estimations, using, e.g. non-parametric regression [105], support
vector regression [78], or LSTM neural networks [94], none of these works has
considered the stability of the predictions. Another avenue for future work is to
incorporate the notion of stability into the training phase of the classifiers. For
instance, in case of neural networks this could be achieved by adjusting the loss
function to take into account both the accuracy and the stability of the predictions.

Alarming mechanism based on sequences of predictions. The alarm-based pre-
scriptive process monitoring framework presented in Chapter 7 makes use of an
alarming mechanism which decides whether to raise an alarm based on a single
prediction. However, as observed in Chapter 6 there is benefit in combining the
predictions made for different prefixes of the same trace. Based on this motivation,
a possible avenue for future work would be to construct an alarming mechanism
that takes into account the whole series of predictions made for the same case.

143

For instance, concepts of Bayesian statistics could be used to update the expected
processing cost each time a new prediction is made, taking into account that the
uncertainty in predictions made for longer prefixes is smaller than in predictions
made for shorter ones.

Explainable predictions. If the process workers and analysts are able to un-
derstand why a predictive model yielded a particular prediction, they are able
to make better founded decisions based on the prediction. Therefore, when de-
ploying a predictive process monitoring system in practice, it is desirable that the
system provides explainable predictions. However, as supported by the evidence
from the experiments performed in this thesis, there is often a tradeoff between
the accuracy and the explainability of a model. In particular, recurrent neural
networks (e.g. LSTMs) and ensemble models (e.g. RF and XGBoost) that are
considered to be difficult to interpret (or even black-box) achieve higher accuracy
than simpler models like logistic regression or decision trees. A future direction
would be to explore ways of extracting interpretable explanations from these high
accuracy models (using techniques such as LIME [80]) and presenting them to
the users of a predictive process monitoring system in an understandable way. A
systematic overview of such techniques is provided by Guidotti et al. [39]. Al-
ternatively, a broader range of techniques yielding explainable predictions can be
tested, including sequential pattern mining approaches [58] and predictive clus-
tering rules [113].

Active learning. Another avenue for future work is to extend the alarm-based
prescriptive monitoring framework with active learning methods in order to incre-
mentally tune the alarming mechanism based on feedback about the relevance of
the alarms and the effectiveness of the interventions. Also, since specifying the
cost model manually can be a difficult task for the user, active learning can be
used to adjust the initial costs to better reflect the costs and benefits observed in
practice.

144

[1]

(2]

[3]

[4]

(5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

BIBLIOGRAPHY

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat
baseline for sentence embeddings. Infernational Conference on Learning
Representations, 2017.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algo-
rithms for hyper-parameter optimization. In John Shawe-Taylor, Richard S.
Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 24:
25th Annual Conference on Neural Information Processing Systems 201 1.
Proceedings of a meeting held 12-14 December 2011, Granada, Spain.,
pages 2546-2554, 2011.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13:281-305, 2012.
David M. Blei, Andrew Y. Ng, and Michael 1. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:993-1022, 2003.
Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. TACL, 5:135-146,
2017.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal
of Machine Learning Research, 2:499-526, 2002.

Andrew P. Bradley. The use of the area under the ROC curve in the eval-
uation of machine learning algorithms. Pattern Recognition, 30(7):1145—
1159, 1997.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140,
1996.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
Diego Calvanese, Marlon Dumas, Ulari Laurson, Fabrizio Maria Maggi,
Marco Montali, and Irene Teinemaa. Semantics and analysis of DMN de-
cision tables. In Marcello La Rosa, Peter Loos, and Oscar Pastor, edi-
tors, Business Process Management - 14th International Conference, BPM
2016, Rio de Janeiro, Brazil, September 18-22, 2016. Proceedings, vol-
ume 9850 of Lecture Notes in Computer Science, pages 217-233. Springer,
2016.

Diego Calvanese, Marlon Dumas, Ulari Laurson, Fabrizio Maria Maggi,
Marco Montali, and Irene Teinemaa. Semantics, analysis and simplification
of DMN decision tables. Inf. Syst., 78:112-125, 2018.

Malu Castellanos, Fabio Casati, Umeshwar Dayal, and Ming-Chien Shan.
A comprehensive and automated approach to intelligent business processes
execution analysis. Distributed and Parallel Databases, 16(3):239-273,
2004.

145

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Mald Castellanos, Norman Salazar, Fabio Casati, Umeshwar Dayal, and
Ming-Chien Shan. Predictive business operations management. In Sub-
hash Bhalla, editor, Databases in Networked Information Systems, 4th In-
ternational Workshop, DNIS 2005, Aizu-Wakamatsu, Japan, March 28-30,
2005, Proceedings, volume 3433 of Lecture Notes in Computer Science,
pages 1-14. Springer, 2005.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,
Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan,
Chris Tar, Brian Strope, and Ray Kurzweil. Universal sentence encoder
for english. In Eduardo Blanco and Wei Lu, editors, Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 -
November 4, 2018, pages 169-174. Association for Computational Lin-
guistics, 2018.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting sys-
tem. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C.
Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
785-794. ACM, 2016.

Raffaele Conforti, Massimiliano de Leoni, Marcello La Rosa, and Wil M. P.
van der Aalst. Supporting risk-informed decisions during business process
execution. In Camille Salinesi, Moira C. Norrie, and Oscar Pastor, editors,
Advanced Information Systems Engineering - 25th International Confer-
ence, CAISE 2013, Valencia, Spain, June 17-21, 2013. Proceedings, vol-
ume 7908 of Lecture Notes in Computer Science, pages 116—132. Springer,
2013.

Raffaele Conforti, Massimiliano de Leoni, Marcello La Rosa, Wil M. P.
van der Aalst, and Arthur H. M. ter Hofstede. A recommendation system
for predicting risks across multiple business process instances. Decision
Support Systems, 69:1-19, 2015.

Asma Dachraoui, Alexis Bondu, and Antoine Cornuéjols. Early classifi-
cation of time series as a non myopic sequential decision making problem.
In Annalisa Appice, Pedro Pereira Rodrigues, Vitor Santos Costa, Car-
los Soares, Jodo Gama, and Alipio Jorge, editors, Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD
2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I, vol-
ume 9284 of Lecture Notes in Computer Science, pages 433—447. Springer,
2015.

Massimiliano de Leoni, Wil M. P. van der Aalst, and Marcus Dees. A
general framework for correlating business process characteristics. In
Shazia Wasim Sadiq, Pnina Soffer, and Hagen Volzer, editors, Business

146

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Process Management - 12th International Conference, BPM 2014, Haifa,
Israel, September 7-11, 2014. Proceedings, volume 8659 of Lecture Notes
in Computer Science, pages 250-266. Springer, 2014.

Massimiliano de Leoni, Wil M. P. van der Aalst, and Marcus Dees. A gen-
eral process mining framework for correlating, predicting and clustering
dynamic behavior based on event logs. Inf. Syst., 56:235-257, 2016.
Marcus Dees, Massimiliano de Leoni, and Felix Mannhardt. Enhancing
process models to improve business performance: A methodology and
case studies. In Hervé Panetto, Christophe Debruyne, Walid Gaaloul,
Mike P. Papazoglou, Adrian Paschke, Claudio Agostino Ardagna, and
Robert Meersman, editors, On the Move to Meaningful Internet Sys-
tems. OTM 2017 Conferences - Confederated International Conferences:
CooplS, C&TC, and ODBASE 2017, Rhodes, Greece, October 23-27,
2017, Proceedings, Part I, volume 10573 of Lecture Notes in Computer
Science, pages 232-251. Springer, 2017.

Manuel Ferndndez Delgado, Eva Cernadas, Senén Barro, and Di-
nani Gomes Amorim. Do we need hundreds of classifiers to solve real
world classification problems? Journal of Machine Learning Research,
15(1):3133-3181, 2014.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1-30, 2006.

Pedro M. Domingos. Metacost: A general method for making classifiers
cost-sensitive. In Usama M. Fayyad, Surajit Chaudhuri, and David Madi-
gan, editors, Proceedings of the Fifth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, San Diego, CA, USA,
August 15-18, 1999, pages 155-164. ACM, 1999.

Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of Business Process Management. Springer, 2013.

André Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. Stabil-
ity of randomized learning algorithms. Journal of Machine Learning Re-
search, 6:55-79, 2005.

Charles Elkan. The foundations of cost-sensitive learning. In Bernhard
Nebel, editor, Proceedings of the Seventeenth International Joint Confer-
ence on Artificial Intelligence, IICAI 2001, Seattle, Washington, USA, Au-
gust 4-10, 2001, pages 973-978. Morgan Kaufmann, 2001.

Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. Predicting process
behaviour using deep learning. Decision Support Systems, 100:129-140,
2017.

Francesco Folino, Massimo Guarascio, and Luigi Pontieri. Mining
predictive process models out of low-level multidimensional logs. In
Matthias Jarke, John Mylopoulos, Christoph Quix, Colette Rolland, Yannis

147

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Manolopoulos, Haralambos Mouratidis, and Jennifer Horkoff, editors, Ad-
vanced Information Systems Engineering - 26th International Conference,
CAiSE 2014, Thessaloniki, Greece, June 16-20, 2014. Proceedings, vol-
ume 8484 of Lecture Notes in Computer Science, pages 533—-547. Springer,
2014.

Chiara Di Francescomarino, Marlon Dumas, Fabrizio Maria Maggi, and
Irene Teinemaa. Clustering-based predictive process monitoring. [EEE
Transactions on Services Computing, 2016. To appear.

Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189-1232, 2001.

Mohamed F. Ghalwash and Zoran Obradovic. Early classification of multi-
variate temporal observations by extraction of interpretable shapelets. BMC
Bioinformatics, 13:195, 2012.

Mohamed F. Ghalwash, Vladan Radosavljevic, and Zoran Obradovic. Ex-
traction of interpretable multivariate patterns for early diagnostics. In Hui
Xiong, George Karypis, Bhavani M. Thuraisingham, Diane J. Cook, and
Xindong Wu, editors, 2013 IEEE 13th International Conference on Data
Mining, Dallas, TX, USA, December 7-10, 2013, pages 201-210. IEEE
Computer Society, 2013.

Johny Ghattas, Pnina Soffer, and Mor Peleg. Improving business pro-

cess decision making based on past experience. Decision Support Systems,
59:93-107, 2014.

Georgios Gousios. The ghtorent dataset and tool suite. In Thomas Zimmer-
mann, Massimiliano Di Penta, and Sunghun Kim, editors, Proceedings of
the 10th Working Conference on Mining Software Repositories, MSR ’13,
San Francisco, CA, USA, May 18-19, 2013, pages 233-236. IEEE Com-
puter Society, 2013.

Daniela Grigori, Fabio Casati, Mald Castellanos, Umeshwar Dayal,
Mehmet Sayal, and Ming-Chien Shan. Business process intelligence. Com-
puters in Industry, 53(3):321-343, 2004.

Daniela Grigori, Fabio Casati, Umeshwar Dayal, and Ming-Chien Shan.
Improving business process quality through exception understanding, pre-
diction, and prevention. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri,
Stefano Paraboschi, Kotagiri Ramamohanarao, and Richard T. Snodgrass,
editors, VLDB 2001, Proceedings of 27th International Conference on Very
Large Data Bases, September 11-14, 2001, Roma, Italy, pages 159-168.
Morgan Kaufmann, 2001.

Christoph Groger, Holger Schwarz, and Bernhard Mitschang. Prescrip-
tive analytics for recommendation-based business process optimization. In
Witold Abramowicz and Angelika I. Kokkinaki, editors, Business Informa-
tion Systems - 17th International Conference, BIS 2014, Larnaca, Cyprus,

148

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

May 22-23, 2014. Proceedings, volume 176 of Lecture Notes in Business
Information Processing, pages 25-37. Springer, 2014.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A survey of methods for explain-
ing black box models. ACM Comput. Surv., 51(5):93:1-93:42, 2019.

C.W. Gunther and HM.W. Verbeek. XES - standard definition. BPM re-
ports. BPMcenter.org, 2014.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration
of modern neural networks. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1321-1330. PMLR, 2017.

Guoliang He, Yong Duan, Rong Peng, Xiaoyuan Jing, Tieyun Qian, and
Lingling Wang. Early classification on multivariate time series. Neuro-
computing, 149:777-787, 2015.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neu-
ral Computation, 9(8):1735-1780, 1997.

Jeremy Howard and Sebastian Ruder. Universal language model fine-
tuning for text classification. In Iryna Gurevych and Yusuke Miyao, ed-
itors, Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers, pages 328-339. Association for Computational
Linguistics, 2018.

Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Using dynamic and con-
textual features to predict issue lifetime in github projects. In Miryung Kim,
Romain Robbes, and Christian Bird, editors, Proceedings of the 13th Inter-
national Conference on Mining Software Repositories, MSR 2016, Austin,
TX, USA, May 14-22, 2016, pages 291-302. ACM, 2016.

Miryung Kim, Romain Robbes, and Christian Bird, editors. Proceedings of
the 13th International Conference on Mining Software Repositories, MSR
2016, Austin, TX, USA, May 14-22, 2016. ACM, 2016.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In
Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and
Roman Garnett, editors, Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 3294—
3302, 2015.

Barbara Kitchenham. Procedures for performing systematic reviews.
Keele, UK, Keele University, 33(2004):1-26, 2004.

Julian Krumeich, Dirk Werth, and Peter Loos. Prescriptive control of busi-

149

[50]

[51]

[52]

[53]

[54]

[55]

[56]

ness processes - new potentials through predictive analytics of big data in
the process manufacturing industry. Business & Information Systems En-
gineering, 58(4):261-280, 2016.

Matjaz Kukar and Igor Kononenko. Cost-sensitive learning with neural
networks. In ECAI, pages 445449, 1998.

Meelis Kull and Peter A. Flach. Novel decompositions of proper scor-
ing rules for classification: Score adjustment as precursor to calibration.
In Annalisa Appice, Pedro Pereira Rodrigues, Vitor Santos Costa, Car-
los Soares, Jodo Gama, and Alipio Jorge, editors, Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD
2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I, volume
9284 of Lecture Notes in Computer Science, pages 68—85. Springer, 2015.

Geetika T. Lakshmanan, Songyun Duan, Paul T. Keyser, Francisco
Curbera, and Rania Khalaf. Predictive analytics for semi-structured case
oriented business processes. In Michael zur Muehlen and Jianwen Su, ed-
itors, Business Process Management Workshops - BPM 2010 International
Workshops and Education Track, Hoboken, NJ, USA, September 13-15,
2010, Revised Selected Papers, volume 66 of Lecture Notes in Business
Information Processing, pages 640—-651. Springer, 2010.

Quoc V. Le and Tomas Mikolov. Distributed representations of sentences
and documents. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, vol-
ume 32 of JMLR Workshop and Conference Proceedings, pages 1188—
1196. JIMLR.org, 2014.

Anna Leontjeva, Raffaele Conforti, Chiara Di Francescomarino, Marlon
Dumas, and Fabrizio Maria Maggi. Complex symbolic sequence encodings
for predictive monitoring of business processes. In Hamid Reza Motahari-
Nezhad, Jan Recker, and Matthias Weidlich, editors, Business Process
Management - 13th International Conference, BPM 2015, Innsbruck, Aus-
tria, August 31 - September 3, 2015, Proceedings, volume 9253 of Lecture
Notes in Computer Science, pages 297-313. Springer, 2015.

Yu-Feng Lin, Hsuan-Hsu Chen, Vincent S. Tseng, and Jian Pei. Reliable
early classification on multivariate time series with numerical and cate-
gorical attributes. In Tru Cao, Ee-Peng Lim, Zhi-Hua Zhou, Tu Bao Ho,
David Wai-Lok Cheung, and Hiroshi Motoda, editors, Advances in Knowl-
edge Discovery and Data Mining - 19th Pacific-Asia Conference, PAKDD
2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part
I, volume 9077 of Lecture Notes in Computer Science, pages 199-211.
Springer, 2015.

Charles X. Ling, Qiang Yang, Jianning Wang, and Shichao Zhang. De-
cision trees with minimal costs. In Carla E. Brodley, editor, Machine
Learning, Proceedings of the Twenty-first International Conference (ICML

150

[57]

[58]

[59]

[60]

[61]

[62]

[63]

2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69 of ACM Interna-
tional Conference Proceeding Series. ACM, 2004.

C. H. Bryan Liu, Benjamin Paul Chamberlain, Duncan A. Little, and An-
gelo Cardoso. Generalising random forest parameter optimisation to in-
clude stability and cost. In Yasemin Altun, Kamalika Das, Taneli Mielikéi-
nen, Donato Malerba, Jerzy Stefanowski, Jesse Read, Marinka Zitnik,
Michelangelo Ceci, and Saso Dzeroski, editors, Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD
2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part IlI,
volume 10536 of Lecture Notes in Computer Science, pages 102—113.
Springer, 2017.

David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian
Sun. Classification of software behaviors for failure detection: a discrimi-
native pattern mining approach. In John F. Elder IV, Francoise Fogelman-
Soulié, Peter A. Flach, and Mohammed Javeed Zaki, editors, Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Paris, France, June 28 - July 1, 2009, pages 557-566.
ACM, 2009.

Linh Thao Ly, Fabrizio Maria Maggi, Marco Montali, Stefanie Rinderle-
Ma, and Wil M. P. van der Aalst. Compliance monitoring in business pro-
cesses: Functionalities, application, and tool-support. Inf. Syst., 54:209-
234, 2015.

Fabrizio Maria Maggi, Chiara Di Francescomarino, Marlon Dumas,
and Chiara Ghidini. Predictive monitoring of business processes. In
Matthias Jarke, John Mylopoulos, Christoph Quix, Colette Rolland, Yannis
Manolopoulos, Haralambos Mouratidis, and Jennifer Horkoff, editors, Ad-
vanced Information Systems Engineering - 26th International Conference,
CAiSE 2014, Thessaloniki, Greece, June 16-20, 2014. Proceedings, vol-
ume 8484 of Lecture Notes in Computer Science, pages 457-472. Springer,
2014.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. In-
troduction to information retrieval. Cambridge University Press, 2008.
Andreas Metzger and Felix Focker. Predictive business process moni-
toring considering reliability estimates. In Eric Dubois and Klaus Pohl,
editors, Advanced Information Systems Engineering - 29th International
Conference, CAISE 2017, Essen, Germany, June 12-16, 2017, Proceed-
ings, volume 10253 of Lecture Notes in Computer Science, pages 445-460.
Springer, 2017.

Andreas Metzger, Rod Franklin, and Yagil Engel. Predictive monitoring
of heterogeneous service-oriented business networks: The transport and
logistics case. In 2012 Annual SRII Global Conference, San Jose, CA,
USA, July 24-27, 2012, pages 313-322. IEEE Computer Society, 2012.

151

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Andreas Metzger, Philipp Leitner, Dragan Ivanovic, Eric Schmieders, Rod
Franklin, Manuel Carro, Schahram Dustdar, and Klaus Pohl. Comparing
and combining predictive business process monitoring techniques. [EEE
Trans. Systems, Man, and Cybernetics: Systems, 45(2):276-290, 2015.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient es-
timation of word representations in vector space. CoRR, abs/1301.3781,
2013.

Usue Mori, Alexander Mendiburu, Sanjoy Dasgupta, and José Antonio
Lozano. Early classification of time series by simultaneously optimiz-
ing the accuracy and earliness. IEEE Trans. Neural Netw. Learning Syst.,
29(10):4569-4578, 2018.

Usue Mori, Alexander Mendiburu, Eamonn J. Keogh, and José Antonio
Lozano. Reliable early classification of time series based on discriminating
the classes over time. Data Min. Knowl. Discov., 31(1):233-263, 2017.
Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive
computation and machine learning series. MIT Press, 2012.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabili-
ties with supervised learning. In Luc De Raedt and Stefan Wrobel, editors,
Machine Learning, Proceedings of the Twenty-Second International Con-
ference (ICML 2005), Bonn, Germany, August 7-11, 2005, volume 119 of
ACM International Conference Proceeding Series, pages 625-632. ACM,
2005.

Randal S. Olson, William La Cava, Zairah Mustahsan, Akshay Varik, and
Jason H. Moore. Data-driven advice for applying machine learning to
bioinformatics problems. In Russ B. Altman, A. Keith Dunker, Lawrence
Hunter, Marylyn D. Ritchie, and Teri E. Klein, editors, Biocomputing 2018:
Proceedings of the Pacific Symposium, The Big Island of Hawaii, Hawaii,
USA, January 3-7, 2018, pages 192-203, 2018.

Siim Orasmaa, Timo Petmanson, Alexander Tkachenko, Sven Laur, and
Heiki-Jaan Kaalep. Estnltk - NLP toolkit for estonian. In Nicoletta Cal-
zolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik,
Bente Maegaard, Joseph Mariani, Hélene Mazo, Asuncién Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth International
Conference on Language Resources and Evaluation LREC 2016, Portoroz,
Slovenia, May 23-28, 2016. European Language Resources Association
(ELRA), 2016.

Jason W. Osborne. Dealing with missing or incomplete data: Debunking
the myth of emptiness. In Best practices in data cleaning: A complete
guide to everything you need to do before and after collecting your data,
pages 105—-138. Sage Publications Thousand Oaks, CA, 2013.

Nathan Parrish, Hyrum S. Anderson, Maya R. Gupta, and Dun-Yu Hsiao.

152

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Classifying with confidence from incomplete information. Journal of Ma-
chine Learning Research, 14(1):3561-3589, 2013.

Fabian Pedregosa, Gagl Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay.
Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12:2825-2830, 2011.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In Marilyn A. Walker, Heng Ji, and Amanda Stent, editors,
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018,
Volume 1 (Long Papers), pages 2227-2237. Association for Computational
Linguistics, 2018.

John Platt et al. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in large margin clas-
sifiers, 10(3):61-74, 1999.

Amir Pnueli. The temporal logic of programs. In /8th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46-57. IEEE Computer Society, 1977.

Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano
de Leoni. Data-aware remaining time prediction of business process in-
stances. In 2014 International Joint Conference on Neural Networks,
IJCNN 2014, Beijing, China, July 6-11, 2014, pages 816-823. IEEE, 2014.

Sonja Pravilovic, Annalisa Appice, and Donato Malerba. Process mining
to forecast the future of running cases. In Annalisa Appice, Michelangelo
Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, and Zbigniew W.
Ras, editors, New Frontiers in Mining Complex Patterns - Second Interna-
tional Workshop, NFMCP 2013, Held in Conjunction with ECML-PKDD
2013, Prague, Czech Republic, September 27, 2013, Revised Selected Pa-
pers, volume 8399 of Lecture Notes in Computer Science, pages 67-81.
Springer, 2013.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should
I trust you?": Explaining the predictions of any classifier. In Balaji Kr-
ishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou
Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, pages 1135-1144. ACM, 2016.

Andreas Rogge-Solti and Mathias Weske. Prediction of remaining ser-
vice execution time using stochastic petri nets with arbitrary firing de-

153

lays. In Samik Basu, Cesare Pautasso, Liang Zhang, and Xiang Fu, edi-
tors, Service-Oriented Computing - 1 1th International Conference, ICSOC
2013, Berlin, Germany, December 2-5, 2013, Proceedings, volume 8274
of Lecture Notes in Computer Science, pages 389—403. Springer, 2013.

[82] Andrii Rozumnyi. A dashboard-based predictive process monitoring en-
gine. Master’s thesis, University of Tartu, 2017.

[83] Tiago Santos and Roman Kern. A literature survey of early time series
classification and deep learning. In Roman Kern, Gerald Reiner, and Olivia
Bluder, editors, Proceedings of the 1st International Workshop on Science,
Application and Methods in Industry 4.0 co-located with (i-KNOW 2016),
Graz, Austria, October 19, 2016., volume 1793 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2016.

[84] Joseph L Schafer and John W Graham. Missing data: our view of the state
of the art. Psychological methods, 7(2):147, 2002.

[85] Bernd Schwegmann, Martin Matzner, and Christian Janiesch. A method
and tool for predictive event-driven process analytics. In /1. Internationale
Tagung Wirtschaftsinformatik, Leipzig, Germany, February 27 — March 1,
2013, page 46, 2013.

[86] Bernd Schwegmann, Martin Matzner, and Christian Janiesch. precep: Fa-
cilitating predictive event-driven process analytics. In Jan vom Brocke, Ri-
itta Hekkala, Sudha Ram, and Matti Rossi, editors, Design Science at the
Intersection of Physical and Virtual Design - 8th International Conference,
DESRIST 2013, Helsinki, Finland, June 11-12, 2013. Proceedings, vol-
ume 7939 of Lecture Notes in Computer Science, pages 448—455. Springer,
2013.

[87] Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini, Kerwin
Jorbina, and Fabrizio Maria Maggi. Intra and inter-case features in pre-
dictive process monitoring: A tale of two dimensions. In Josep Carmona,
Gregor Engels, and Akhil Kumar, editors, Business Process Management
- 15th International Conference, BPM 2017, Barcelona, Spain, September
10-15, 2017, Proceedings, volume 10445 of Lecture Notes in Computer
Science, pages 306-323. Springer, 2017.

[88] Victor S. Sheng and Charles X. Ling. Thresholding for making classifiers
cost-sensitive. In Proceedings, The Twenty-First National Conference on
Artificial Intelligence and the Eighteenth Innovative Applications of Arti-
ficial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts,
USA, pages 476-481. AAAI Press, 2006.

[89] Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christopher J.
Pal. Learning general purpose distributed sentence representations via large
scale multi-task learning. CoRR, abs/1804.00079, 2018.

[90] Suriadi Suriadi, Moe Thandar Wynn, Chun Ouyang, Arthur H. M. ter Hoft-
stede, and Nienke J. van Dijk. Understanding process behaviours in a large

154

[91]

[92]

[93]

[94]

[95]

[96]

[97]

insurance company in australia: A case study. In Camille Salinesi, Moira C.
Norrie, and Oscar Pastor, editors, Advanced Information Systems Engineer-
ing - 25th International Conference, CAISE 2013, Valencia, Spain, June
17-21, 2013. Proceedings, volume 7908 of Lecture Notes in Computer Sci-
ence, pages 449-464. Springer, 2013.

Romain Tavenard and Simon Malinowski. Cost-aware early classification
of time series. In Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and
Jilles Vreeken, editors, Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2016, Riva del Garda,
Italy, September 19-23, 2016, Proceedings, Part I, volume 9851 of Lecture
Notes in Computer Science, pages 632—647. Springer, 2016.

Niek Tax, Irene Teinemaa, and Sebastiaan J. van Zelst. An interdisciplinary
comparison of sequence modeling methods for next-element prediction.
CoRR, abs/1811.00062, 2018.

Niek Tax, Sebastiaan J. van Zelst, and Irene Teinemaa. An experimental
evaluation of the generalizing capabilities of process discovery techniques
and black-box sequence models. In Jens Gulden, Iris Reinhartz-Berger,
Rainer Schmidt, Sérgio Guerreiro, Wided Guédria, and Palash Bera, ed-
itors, Enterprise, Business-Process and Information Systems Modeling -
19th International Conference, BPMDS 2018, 23rd International Confer-
ence, EMMSAD 2018, Held at CAIiSE 2018, Tallinn, Estonia, June 11-12,
2018, Proceedings, volume 318 of Lecture Notes in Business Information
Processing, pages 165-180. Springer, 2018.

Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. Predictive
business process monitoring with LSTM neural networks. In Eric Dubois
and Klaus Pohl, editors, Advanced Information Systems Engineering - 29th
International Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017,
Proceedings, volume 10253 of Lecture Notes in Computer Science, pages
477-492. Springer, 2017.

Irene Teinemaa, Marlon Dumas, Anna Leontjeva, and Fabrizio Maria
Maggi. Temporal stability in predictive process monitoring. Data Min.
Knowl. Discov., 32(5):1306-1338, 2018.

Irene Teinemaa, Marlon Dumas, Fabrizio Maria Maggi, and Chiara Di
Francescomarino. Predictive business process monitoring with structured
and unstructured data. In Marcello La Rosa, Peter Loos, and Oscar Pas-
tor, editors, Business Process Management - 14th International Confer-
ence, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016. Proceed-
ings, volume 9850 of Lecture Notes in Computer Science, pages 401-417.
Springer, 2016.

Irene Teinemaa, Marlon Dumas, Marcello La Rosa, and Fabrizio Maria
Maggi. Outcome-oriented predictive process monitoring: Review and

155

benchmark. ACM Transactions on Knowledge Discovery from Data, 2018.
To appear.

[98] Irene Teinemaa, Anna Leontjeva, Marlon Dumas, and Riivo Kikas.
Community-based prediction of activity change in skype. In Jian Pei, Fab-
rizio Silvestri, and Jie Tang, editors, Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, ASONAM 2015, Paris, France, August 25 - 28, 2015, pages 73-80.
ACM, 2015.

[99] Irene Teinemaa, Niek Tax, Massimiliano de Leoni, Marlon Dumas, and
Fabrizio Maria Maggi. Alarm-based prescriptive process monitoring. In
Mathias Weske, Marco Montali, Ingo Weber, and Jan vom Brocke, edi-
tors, Business Process Management Forum - BPM Forum 2018, Sydney,
NSW, Australia, September 9-14, 2018, Proceedings, volume 329 of Lec-
ture Notes in Business Information Processing, pages 91-107. Springer,
2018.

[100] Peter D. Turney. Types of cost in inductive concept learning. CoRR,
¢s.L.G/0212034, 2002.

[101] Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[102] Wil M. P. van der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros,
Franco Arcieri, Thomas Baier, Tobias Blickle, R. P. Jagadeesh Chan-
dra Bose, Peter van den Brand, Ronald Brandtjen, Joos C. A. M. Buijs,
Andrea Burattin, Josep Carmona, Mald Castellanos, Jan Claes, Jonathan
Cook, Nicola Costantini, Francisco Curbera, Ernesto Damiani, Massim-
iliano de Leoni, Pavlos Delias, Boudewijn F. van Dongen, Marlon Du-
mas, Schahram Dustdar, Dirk Fahland, Diogo R. Ferreira, Walid Gaaloul,
Frank van Geffen, Sukriti Goel, Christian W. Giinther, Antonella Guzzo,
Paul Harmon, Arthur H. M. ter Hofstede, John Hoogland, Jon Espen Ing-
valdsen, Koki Kato, Rudolf Kuhn, Akhil Kumar, Marcello La Rosa, Fab-
rizio Maria Maggi, Donato Malerba, R. S. Mans, Alberto Manuel, Martin
McCreesh, Paola Mello, Jan Mendling, Marco Montali, Hamid R. Motahari
Nezhad, Michael zur Muehlen, Jorge Munoz-Gama, Luigi Pontieri, Joel
Ribeiro, Anne Rozinat, Hugo Seguel Pérez, Ricardo Seguel Pérez, Mar-
cos Sepulveda, Jim Sinur, Pnina Soffer, Minseok Song, Alessandro Sper-
duti, Giovanni Stilo, Casper Stoel, Keith D. Swenson, Maurizio Talamo,
Wei Tan, Chris Turner, Jan Vanthienen, George Varvaressos, Eric Verbeek,
Marc Verdonk, Roberto Vigo, Jianmin Wang, Barbara Weber, Matthias
Weidlich, Ton Weijters, Lijie Wen, Michael Westergaard, and Moe Thandar
Wynn. Process mining manifesto. In Florian Daniel, Kamel Barkaoui,
and Schahram Dustdar, editors, Business Process Management Workshops
- BPM 2011 International Workshops, Clermont-Ferrand, France, August
29, 2011, Revised Selected Papers, Part I, volume 99 of Lecture Notes in
Business Information Processing, pages 169—-194. Springer, 2011.

156

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Wil M. P. van der Aalst, Vladimir A. Rubin, H. M. W. Verbeek,
Boudewijn F. van Dongen, Ekkart Kindler, and Christian W. Giinther. Pro-

cess mining: a two-step approach to balance between underfitting and over-
fitting. Software and System Modeling, 9(1):87-111, 2010.

Sjoerd van der Spoel, Maurice van Keulen, and Chintan Amrit. Pro-
cess prediction in noisy data sets: A case study in a dutch hospital. In
Philippe Cudré-Mauroux, Paolo Ceravolo, and Dragan Gasevic, editors,
Data-Driven Process Discovery and Analysis - Second IFIP WG 2.6, 2.12
International Symposium, SIMPDA 2012, Campione d’Italia, Italy, June
18-20, 2012, Revised Selected Papers, volume 162 of Lecture Notes in
Business Information Processing, pages 60—83. Springer, 2012.

Boudewijn F. van Dongen, R. A. Crooy, and Wil M. P. van der Aalst. Cycle
time prediction: When will this case finally be finished? In Robert Meers-
man and Zahir Tari, editors, On the Move to Meaningful Internet Systems:
OTM 2008, OTM 2008 Confederated International Conferences, CooplsS,
DOA, GADA, IS, and ODBASE 2008, Monterrey, Mexico, November 9-14,
2008, Proceedings, Part I, volume 5331 of Lecture Notes in Computer Sci-
ence, pages 319-336. Springer, 2008.

Ilya Verenich, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi,
and Chiara Di Francescomarino. Complex symbolic sequence clustering
and multiple classifiers for predictive process monitoring. In Manfred Re-
ichert and Hajo A. Reijers, editors, Business Process Management Work-
shops - BPM 2015, 13th International Workshops, Innsbruck, Austria, Au-
gust 31 - September 3, 2015, Revised Papers, volume 256 of Lecture Notes
in Business Information Processing, pages 218-229. Springer, 2015.

Ilya Verenich, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi,
and Irene Teinemaa. Survey and cross-benchmark comparison of re-
maining time prediction methods in business process monitoring. CoRR,
abs/1805.02896, 2018.

Sida I. Wang and Christopher D. Manning. Baselines and bigrams: Simple,
good sentiment and topic classification. In The 50th Annual Meeting of the
Association for Computational Linguistics, Proceedings of the Conference,
July 8-14, 2012, Jeju Island, Korea - Volume 2: Short Papers, pages 90-94.
The Association for Computer Linguistics, 2012.

Zhengzheng Xing, Jian Pei, Guozhu Dong, and Philip S. Yu. Mining se-
quence classifiers for early prediction. In Proceedings of the SIAM Interna-
tional Conference on Data Mining, SDM 2008, April 24-26, 2008, Atlanta,
Georgia, USA, pages 644—-655. SIAM, 2008.

Zhengzheng Xing, Jian Pei, and Eamonn J. Keogh. A brief survey on se-
quence classification. SIGKDD Explorations, 12(1):40-48, 2010.

157

[111]

[112]

[113]

Zhengzheng Xing, Jian Pei, and Philip S. Yu. Early classification on time
series. Knowl. Inf. Syst., 31(1):105-127, 2012.

Bianca Zadrozny and Charles Elkan. Learning and making decisions when
costs and probabilities are both unknown. In Doheon Lee, Mario Schkol-
nick, Foster J. Provost, and Ramakrishnan Srikant, editors, Proceedings of
the seventh ACM SIGKDD international conference on Knowledge discov-
ery and data mining, San Francisco, CA, USA, August 26-29, 2001, pages
204-213. ACM, 2001.

Bernard Zenko, Saso Dzeroski, and Jan Struyf. Learning predictive clus-
tering rules. In Francesco Bonchi and Jean-Frangois Boulicaut, editors,
Knowledge Discovery in Inductive Databases, 4th International Workshop,
KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and In-
vited Papers, volume 3933 of Lecture Notes in Computer Science, pages
234-250. Springer, 2005.

158

Appendix A. CODE REPOSITORIES

In order to support the reproducibility of the research results, we have published
the implementations of the proposed methods and the code required to run the
experiments reported in the thesis in the following code repository: https://
github.com/irhete/predictive-monitoring-thesis.

Due to our aim of applying a unified experimental setting throughout the thesis,
the experiments reported in this thesis differ slightly from the ones reported in the
original publications. Accordingly, the implementations and the code required to
run the experiments reported in the the original publications can be found in the
following code repositories:

I Benchmark of outcome-oriented predictive monitoring methods [97]:
https://github.com/irhete/predictive-monitoring-benchmark

IT Predictive business process monitoring with structured and

unstructured data [96]: https://github.com/irhete/
PredictiveMonitoringWithText

III Temporal stability in predictive process monitoring [95]: https://
github.com/irhete/stability-predictive-monitoring

IV Alarm-based prescriptive process monitoring [99]: https://github.
com/TaXxER/AlarmBasedProcessPrediction

159

https://github.com/irhete/predictive-monitoring-thesis
https://github.com/irhete/predictive-monitoring-thesis
https://github.com/irhete/predictive-monitoring-benchmark
https://github.com/irhete/PredictiveMonitoringWithText
https://github.com/irhete/PredictiveMonitoringWithText
https://github.com/irhete/stability-predictive-monitoring
https://github.com/irhete/stability-predictive-monitoring
https://github.com/TaXxER/AlarmBasedProcessPrediction
https://github.com/TaXxER/AlarmBasedProcessPrediction

Appendix B. ADDITIONAL EXPERIMENTS

This Appendix reports the following:

The distributions of case lengths in different outcome classes (Figures 41-
42);

The optimal number of clusters (Table 26) and the optimal number of neigh-
bors for KNN approaches (Table 27) found for each classifier;

The distributions of bucket sizes for the different bucketing methods (Fig-
ures 43-44);

The overall AUC and F-score values for RF (Table 28), logit (Table 29), and
SVM (Table 30);

The AUC scores across prefix lengths using XGBoost classifier and all of
the compared methods (Figures 45-46);

The AUC scores across prefix lengths, including long traces only, using the
XGBoost classifier (Figure 47);

The execution times for RF (Tables 31-32), logit(Tables 33-34), and
SVM(Tables 35-36);

The offline (Figure 48) and online (Figure 49) execution times and the over-
all AUC scores (Figure 50) when filtering the static categorical attribute
domain, using the XGBoost classifier;

The execution times for RF (Table 37) and logit(Table 38) over different
text modeling approaches;

Overall Brier scores for uncalibrated and calibrated classifiers (Table 39);
Differences in Brier scores on uncalibrated vs. calibrated classifiers over
different prefix lengths (Figures 51-52);

Benefit of the alarm system, varying mitigation effectiveness with a lin-
ear decay (Figure 53) and varying the ratios of ¢,,(0,L) : ¢in(k,0,L) and
cin(k,0,L) : ccom(0,L) with linearly increasing c;,(k, o, L) (Figure 54).

160

Count

label M negative M positive

bpic2011_1 bpic2011_2 bpic2011_3
80
150
2004 60
40+ 1004
1004 204 50 1 I
ol 1M s | ;| | S, | [0 |,
0 1 2 3 0 1 2 3 0 1 2 3
bpic2011_4 bpic2015_1 bpic2015_2
150 - 2007 200
150 4 150 4
1004
100 1004
50 4 I 50 4 504
01z T T T 0i—x T T T 01+ T T T T
1 2 3 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
bpic2015_3 bpic2015_4 bpic2015_5
600 2004 4004
1504 300 A
400
1004 200
200 o 504 100
01 T T T Ot — T r 0+ T T T
0.5 1.0 1.5 2.0 0.0 05 1.0 15 2.0 1.0 15 2.0
insurance_1 insurance_2 production
250 A 250 o 304
200 A 200 A
1504 150 207
100 100 104
50 50 4 I I
0 L T T T T 0 L T T T T 0 L T T T T T
0.8 1.2 1.6 2.0 0.8 1.2 1.6 2.0 0.0 0.5 1.0 1.5 2.0

log10(case length)

Figure 41: Case length histograms for positive and negative classes

161

label M negative M positive

bpic2012_1 bpic2012_2 bpic2012_3
30 1 304
204 204
10+ 104
O L T T T T T T T T T T O L T T T T T
125 150 175 200 225 125 150 175 200 225 1256 150 175 200 225
bpic2017_1 bpic2017_2 bpic2017_3
40+ 40
304 304
204 204
104 104
0 L T T T T T T T 0 L T T T T
"g 1.2 16 2.0 2.4 1.2 1.6 2.0 2.4 1.2 16 2.0 2.4
8 hospital_1 hospital_2 sepsis_1
6_
7.5+
44
5.0
25- 21 I I
00 L T T T T 0 L T T T T T T T
0.5 1.0 15 2.0 05 1.0 15 2.0 1.0 15 2.0
sepsis_2 sepsis_3 traffic
8- 125 5.4
64 10.01 44
7.54 4
44 3
5.04 04
27 254 1+
0 —l T T - 00 1 T T T T 0 L . T T
0.5 1.0 15 0.5 1.0 15 2.0 0.5 1.0

log10(case length)

Figure 42: Case length histograms for positive and negative classes (continued)

162

bpic2011_1 bpic2011_2 bpic2011_3
6 B
2.04
2 -
1.5 4+
1.0+ o4 1
0.5+
007 : . : e 0] : :
1 2 3 0 1 2 3 4 0 2 3
bpic2011_4 bpic2015_1 bpic2015_2
204
- 10 -
15 4
104 24 54
5 - j
> 0+ T T T 0+ T T T T T 01 T T T
S 1 2 4 0 1 2 3 4 0 2 3 4
c
[} bpic2015_3 bpic2015_4 bpic2015_5
T
8 20
104 6 154
44 104
5 -
24 5+
O - T T T O L T T T T 0 L T T T
1 2 4 0 1 2 3 0 2 3
insurance_1 insurance_2 production
60
34 0.94
401 24 0.6+
201 1+ 0.34
O L T T T O L T T T T T 00 L T T T
25 3.0 35 250 275 3.00 325 3.50 o] 3

method [] cluster_agg [] cluster_laststate [] prefix_agg [] state_agg

log10(bucket size)

Figure 43: Bucket size distributions

163

density

method [cluster_agg [] cluster laststate [] prefix_agg [] state_agg

bpic2012_1 bpic2012_2 bpic2012_3
34 34 34
24 24 24
14 14 11
01— : ! 04 : . ! 04 : ! ! :
1 2 3 2 3 4 2 3 4 5
bpic2017_1 bpic2017_2 bpic2017_3
60 604 60
404 404 404
204 204 204
01— - - - 04 - - -~ -~ 04 - - - -
1 2 3 5 2 3 4 2
hospital_1 hospital_2 sepsis_1
6
44 1.04
04 0.5
01+ . : - 0.0t - - : :
0 1 2 3 0 1 2 3 4
sepsis_2 sepsis_3
6+ 0.6 0.3+
44 0.4 0.2+
24 0.2 0.1+
04 T T 0.0+ Y . Y 0.0 4 . ! ¥
1 2 2 3 4 5

Figure 44: Bucket size distributions (continued)

7
log10(b

3
ucket size)

164

AUC

< cluster_ag gt; tstat prefix_laststate - state_ag
method cluster_laststate ~ preFx a%? - single_ag state_laststate
- knn_agg - prefix_index smgle—las state
bpic2011_1 bpic2011_2 bpic2011_3
1.0 W 1.04
& +- y
soo b i 4 b
054 & S K ol !
\‘ 0.8+ - Ny
0.6 074 0.7 1 '
N A 0.6 4 \
0'4_ \. T T T 0-6_| T T T T
0 10 20 30 0 10 20 30
1.0 1.04
0.8- 0.94
0.8+
0.64
| 0.7+
04+ 0.6
0 20 30 40 0 0 20 30 40 0 0 20 30 40
bpic2015_5
1.0 ST
091 SRR,
0.8+
{ 0.7 4 Hseiasih
A AN 06471
0.44 LA 0.5
40 0 10 20 30 40 0 10 20 30 40
production
1.0 1.00 - 77T
0.91 0.751 i
0.8+ /
0.7 4 0.50 4 4
0.6 0.25 |
051F— 0.00+ !

2 4 6 8 5

10

Prefix length

Figure 45: AUC across prefix lengths using XGBoost, all methods

165

AUC

< cluster_ag gt; prefix_| - state_ag
method cluster"las state - preFx a%? - single_ag state_laststate
- knn_agg - prefix_index smgle—las state
bpic2012_1 bpic2012_2 bpic2012_3

094
0.8
0.7
0.6

0.5+

0.9 }
0.8+ g
0.7 e A e
0.64 J Y

0547

1.0
0.94
0.84
0.7
0.6
0.5

sepsis_2

0.9
0.8
0.7 4
0.6
0.54

0 10 20 30 2.5 5.0 7.5 10.0
Prefix length

Figure 46: AUC across prefix lengths using XGBoost, all methods (continued)

AUC

= cluster_a refix_index - single laststate
method = prefix_: aggg - ’s)lngle agg - stale agg

bpic2012_1 bpic2012 2 bpic2012_3
0.8+
0.7
061
054
0 0 20 30 40
0.751 0754
0509 |
0504
0.251
0254
0.00,

Prefix length

Figure 47: AUC across prefix lengths using XGBoost, long traces only

166

Table 26: Best number of clusters

RF XGBoost Logit SVM
dataset cluster_last cluster_agg cluster_last cluster_agg cluster_last cluster_agg cluster_last cluster_agg
bpic2011_1 10 8 10 6 24 23 15 43
bpic2011_2 28 4 3 6 20 13 27 24
bpic2011_3 30 4 28 4 33 13 32 44
bpic2011_4 2 21 2 2 16 2 24 36
insurance_2 8 12 2 2 4 3 30 25
insurance_1 6 18 3 2 10 47 45 3
bpic2015_1 39 10 37 4 21 2 13 7
bpic2015_2 32 6 31 5 42 7 9 13
bpic2015_3 44 12 36 10 41 11 11 13
bpic2015_4 45 3 47 5 47 40 19 8
bpic2015_5 43 4 49 19 32 4 8 4
production 44 21 18 2 38 44 10 7
sepsis_1 38 14 19 6 39 41 9 29
sepsis_2 3 8 4 2 7 3 10 21
sepsis_3 2 7 13 7 7 23 7 3
bpic2012_1 22 7 3 35 3 3 8 49
bpic2012_2 9 9 3 4 7 9 15 3
bpic2012_3 10 26 3 2 13 8 22 15
bpic2017_1 39 30 22 43 4 34 39 19
bpic2017_2 11 10 20 15 31 27 40 4
bpic2017_3 29 30 32 34 19 47 21 35
traffic 42 43 29 23 42 36 9 13
hospital_1 35 2 33 48 10 8 48 32
hospital_2 19 48 33 45 11 8 34 28

method = prefix_agg - prefix_index = single_agg+single_laststate
bpic2011_4 ‘ bpic2017_2 hospital_2
1 20000
750 - 15000
15000 -
500 - 10000
——————=—=—" 10000
() 4 —3
E 2501 %ﬁ 5000
= e . — . —
= . . ‘ ‘ : : : — 5000 - : - :
ol 025 0.50 0.75 1.00 025 050 0.75 1.00 025 050 0.75
o]
© production sepsis_3 traffic
£ 15]
= 8 3500
O 124 601 3000
°] 40+ /_/"“/\' 2500 4
P —— 2000+
025 050 0.75 025 050 075 1.00 025 050 0.75

Proportion of levels in static categorical attributes

Figure 48: Offline times across different filtering proportions of static categorical
attribute levels (XGBoost)

167

Table 27: Best number of neighbors

RF XGBoost Logit SVM
dataset knn_last knn_agg knn_last knn_agg knn_last knn_agg knn_last knn_agg
bpic2011_1 47 45 50 50 46 48 49 39
bpic2011_2 45 47 50 46 26 21 42 40
bpic2011_3 50 46 50 46 45 32 44 42
bpic2011_4 40 41 43 46 44 50 16 32
insurance_2 46 47 50 45 48 49 32 44
insurance_1 45 49 44 50 29 36 16 12
bpic2015_1 31 49 50 45 32 17 12 3
bpic2015_2 48 50 46 46 41 12 11 2
bpic2015_3 29 48 46 46 40 49 2 3
bpic2015_4 30 43 50 36 13 9 3 38
bpic2015_5 30 37 46 50 27 47 2 2
production 10 19 19 16 46 14 15 21
sepsis_1 50 49 47 32 32 26 32 43
sepsis_2 50 41 47 49 47 49 46 39
sepsis_3 47 48 50 50 32 50 49 29
bpic2012_1 2 50 9 17 6 45 37 33
bpic2012_2 50 50 14 50 3 42 32 39
bpic2012_3 50 50 19 3 9 25 22 22
bpic2017_1 50 50 50 50 50 50 4 50
bpic2017_2 50 50 50 50 50 50 50 50
bpic2017_3 50 50 50 50 50 50 50 50
traffic 50 50 14 25 10 10 31 42
hospital_1 50 50 26 22 29 50 38 3
hospital_2 50 50 50 50 36 6 31 24

method = prefix_agg - prefix_index = single_agg+single_laststate
bpic2011_4 ‘ bpic2017_2 hospital_2
0.125 1
0.100 0.075- 08-
0.0751 0.050 - 0.6
o 0.050-
£ 0.025 / 0025 e g pg| 04- .
2 025 050 075 1.00 025 050 075 100 025 050 075
§ production sepsis_3 traffic
g 0.05 0.035- 0.094
0.04 0.030 0.081
0.025 - 0.071
0.02- | 0.015- T T

025 050

0.75
Proportion of levels in static categorical attributes

T T 1 — 0.05
025 050 0.75 1.00

0.25

0.50

0.75

Figure 49: Online times across different filtering proportions of static categorical

attribute levels (XGBoost)

168

Table 28: Overall AUC (F-score) for random forest

bpic2011_1 bpic2011_2 bpic2011_3 bpic2011_4 insurance_1 insurance_2
single_laststate 0.87 (0.73) 0.92 (0.83) 0.94 (0.79) 0.9 (0.82) 0.88 (0.53) 0.83 (0.47)
single_agg 0.94 (0.86) 0.98 (0.95) 0.98 (0.94) 0.89 (0.8) 0.91 (0.65) 0.82 (0.48)
knn_laststate 0.92 (0.85) 0.96 (0.92) 0.92(0.85) 0.79 (0.7) 0.85 (0.55) 0.77 (0.5)
knn_agg 0.87 (0.8) 0.94 (0.9) 0.9 (0.81) 0.78 (0.7) 0.87 (0.63) 0.79 (0.54)
state_laststate 0.88 (0.74) 0.92 (0.86) 0.94 (0.76) 0.88 (0.8) 0.88 (0.55) 0.84 (0.61)
state_agg 0.92 (0.85) 0.96 (0.93) 0.97 (0.87) 0.87 (0.77) 0.9 (0.63) 0.85 (0.59)
cluster_laststate 0.9 (0.75) 0.91 (0.87) 0.98 (0.92) 0.88 (0.79) 0.89 (0.54) 0.82 (0.46)
cluster_agg 0.91(0.82) 0.96 (0.94) 0.98 (0.93) 0.89(0.79) 0.9 (0.61) 0.82 (0.58)
prefix_index 0.93 (0.8) 0.96(0.88) 0.97 (0.73) 0.85(0.76) 0.88(0.56) 0.79 (0.37)
prefix_laststate 0.9 (0.75) 0.94 (0.87) 0.97 (0.72) 0.88 (0.78) 0.87 (0.5) 0.84 (0.57)
prefix_agg 0.94 (0.88) 0.97 (0.94) 0.98(0.78) 0.88(0.78) 0.9(0.59) 0.83(0.58)
bpic2015_1 bpic2015_2 bpic2015_3 bpic2015_4 bpic2015_5 production
single_laststate ~ 0.83 (0.43) 0.84 (0.5) 0.76 (0.49) 0.83 (0.51) 0.84 (0.59) 0.65 (0.55)
single_agg 0.88(0.73) 0.91(0.74) 0.91(0.72) 0.86(0.62) 0.88 (0.76) 0.63 (0.54)
knn_laststate 0.8 (0.44) 0.87 (0.63) 0.87(0.67) 0.88(0.56) 0.85(0.71) 0.62 (0.55)
knn_agg 0.78 (0.53) 0.85(0.63) 0.87 (0.73) 0.87 (0.67) 0.85 (0.69) 0.66 (0.58)
state_laststate 0.75(0.52) 0.84 (0.57) 0.84 (0.58) 0.85(0.57) 0.86 (0.68) 0.62 (0.56)
state_agg 0.79 (0.64) 0.87 (0.69) 0.89 (0.74) 0.87 (0.66) 0.88 (0.75) 0.68 (0.58)
cluster_laststate 0.75 (0.43) 0.86 (0.61) 0.85(0.67) 0.87 (0.63) 0.89 (0.74) 0.6 (0.53)
cluster_agg 0.85(0.69) 0.89(0.73) 0.91 (0.71) 0.87 (0.63) 0.88 (0.76) 0.74 (0.66)
prefix_index 0.82(0.52) 0.85(0.46) 0.89 (0.67) 0.85(0.59) 0.86 (0.63) 0.76 (0.57)
prefix_laststate ~ 0.75 (0.37) 0.84 (0.4) 0.79 (0.44) 0.85(0.38) 0.84 (0.61) 0.72 (0.58)
prefix_agg 0.82 (0.65) 0.87 (0.7) 0.9(0.74) 0.87(0.67) 0.88(0.77) 0.69 (0.59)
sepsis_1 sepsis_2 sepsis_3 bpic2012_1 bpic2012_2 bpic2012_3
single_laststate 0.49 (0.01) 0.78 (0.45) 0.67 (0.3) 0.67 (0.63) 0.6 (0.11) 0.69 (0.42)
single_agg 0.41 (0.0) 0.79 (0.39) 0.66 (0.34) 0.69 (0.64) 0.61 (0.17) 0.7 (0.42)
knn_laststate 0.46 (0.05) 0.77 (0.26) 0.64 (0.16) 0.59 (0.59) 0.58 (0.11) 0.66 (0.41)
knn_agg 0.48 (0.04) 0.74(0.2) 0.61 (0.17) 0.64(0.59) 0.57 (0.14) 0.67 (0.42)
state_laststate 0.46 (0.0) 0.79 (0.41) 0. 71 (0.26) 0.68 (0.63) 0.6 (0.16) 0.69 (0.4)
state_agg 0.43 (0.0) 0.79 (0.44) 7(0.3) 0.68 (0.64) 0.59 (0.17) 0.7 (0.42)
cluster_laststate 0.48 (0.01) 0.8 (0.41) 0. 71 (0.35) 0.66 (0.61) 0.61 (0.09) 0.68 (0.39)
cluster_agg 0.43 (0.0) 0.8 (0.44) 0.69 (0.3) 0.67 (0.64) 0.59 (0.16) 0.68 (0.41)
prefix_index 0.47 (0.0) 0.75(0.41) 0.71(0.19) 0.67 (0.61) 0.6 (0.22) 0.67 (0.39)
prefix_laststate 0.46 (0.01) 0.8 (0.43) 0.71 (0.21) 0.66 (0.62) 0.59 (0.14) 0.68 (0.4)
prefix_agg 0.46 (0.02) 0.76 (0.41) 0.7 (0.26) 0.68 (0.64) 0.59 (0.16) 0.7 (0.41)
bpic2017_1 bpic2017_2 bpic2017_3 traffic hospital_1 hospital_2
single_laststate ~ 0.83 (0.7) 0.81 (0.47) 0.79 (0.72) 0.66 (0.67) 0.88 (0.66) 0.72 (0.11)
single_agg 0.83(0.71) 0.8 (0.48) 0.8(0.73) 0.65(0.66) 0.88 (0.65) 0.7 (0.11)
knn_laststate 0.78 (0.65) 0.61 (0.09) 0.78 (0.67) 0.67 (0.7) 0.81 (0.51) 0.58 (0.05)
knn_agg 0.78 (0.65) 0.57 (0.13) 0.76 (0.66) 0.66 (0.7) 0.81 (0.44) 0.56 (0.04)
state_laststate 0.83 (0.7) 0.8 (0.46) 8(0.72) 0.65(0.66) 0.88 (0.65) 0.71 (0.12)
state_agg 0.83(0.72) 0.8 (0.47) 8(0.73) 0.66 (0.66) 0.88 (0.64) 0.7 (0.07)
cluster_laststate 0.83 (0.71) 0.8 (0.46) 8(0.72) 0.66 (0.66) 0.88 (0.65) 0.7 (0.12)
cluster_agg 0.83 (0.71) 0.79 (0.46) 8(0.73) 0.66 (0.66) 0.88 (0.65) 0.69 (0.07)
prefix_index 0.83(0.72) 0.8(0.46) 0.79 (0.73) 0.66 (0.66) 0.88 (0.64) 0.69 (0.1)
prefix_laststate 0.83 (0.7) 0.8 (0.46) 0.79 (0.72) 0.65 (0.66) 0.88 (0.64) 0.71 (0.11)
prefix_agg 0.83(0.71) 0.8 (0.47) 0.8(0.73) 0.66 (0.66) 0.88 (0.63) 0.7 (0.09)

169

Table 29: Overall AUC (F-score) for logistic regression

bpic2011_1 bpic2011_2 bpic2011_3 bpic2011_4 insurance_1 insurance_2
single_laststate 0.9 (0.82) 0.9 (0.83) 0.92(0.75) 0.88(0.76) 0.84 (0.47) 0.83 (0.56)
single_agg 0.92 (0.83) 0.94(0.9) 0.96(0.86) 0.87(0.75) 0.79 (0.46) 0.77 (0.49)
knn_laststate 0.91(0.79) 0.94(0.92) 0.92(0.87) 0.81(0.82) 0.77 (0.49) 0.65 (0.46)
knn_agg 0.82(0.73) 0.86 (0.86) 0.87 (0.77) 0.75 (0.72) 0.79 (0.5) 0.7 (0.57)
state_laststate 0.91(0.8) 0.89(0.86) 0.91(0.76) 0.87(0.79) 0.82(0.48) 0.8 (0.62)
state_agg 0.91(0.82) 0.94(0.91) 0.96 (0.86) 0.85(0.77) 0.82 (0.49) 0.75 (0.51)
cluster_laststate 0.91 (0.8) 0.9(0.88) 0.95(0.86) 0.89 (0.8) 0.82 (0.53) 0.77 (0.53)
cluster_agg 094 (0.84) 0.95(0.92) 0.97 (0.88) 0.87(0.77) 0.82(0.59) 0.76 (0.58)
prefix_index 0.91 (0.81) 0.92(0.88) 0.94(0.83) 0.8(0.73) 0.82(0.55) 0.67 (0.53)
prefix_laststate 0.9 (0.79) 0.89 (0.83) 0.95(0.82) 0.86 (0.77) 0.83(0.5) 0.74 (0.55)
prefix_agg 0.92 (0.83) 0.95(0.91) 0.96(0.79) 0.86(0.77) 0.85(0.57) 0.75 (0.6)
bpic2015_1 bpic2015_2 bpic2015_3 bpic2015_4 bpic2015_5 production
single_laststate 0.8 (0.5) 0.87 (0.51) 0.79 (0.45) 0.86 (0.5) 0.81 (0.58) 0.68 (0.59)
single_agg 0.81 (0.61) 0.9 (0.68) 0.89 (0.7) 0.87(0.51) 0.86(0.74) 0.67 (0.58)
knn_laststate 0.76 (0.52) 0.84 (0.73) 0.85(0.72) 0.85(0.57) 0.81 (0.68) 0.71 (0.58)
knn_agg 0.75 (0.47) 0.81(0.67) 0.84(0.72) 0.81(0.51) 0.82 (0.7) 0.57 (0.46)
state_laststate 0.75(0.48) 0.83(0.53) 0.81(0.53) 0.87(0.52) 0.82(0.62) 0.65 (0.56)
state_agg 0.79 (0.57) 0.88 (0.67) 0.87(0.7) 0.89(0.64) 0.84 (0.72) 0.58 (0.38)
cluster_laststate 0.46 (0.19) 0.81 (0.58) 0.84 (0.61) 0.85 (0.63) 0.85 (0.7) 0.66 (0.59)
cluster_agg 0.86 (0.61) 0.91(0.69) 0.88(0.7) 0.86(0.63) 0.85(0.74) 0.71 (0.59)
prefix_index 0.84 (0.51) 0.87 (0.64) 0.86 (0.69) 0.89(0.57) 0.83 (0.69) 0.71 (0.6)
prefix_laststate 0.73 (0.43) 0.81 (0.45) 0.79 (0.49) 0.82 (0.45) 0.83(0.62) 0.68 (0.56)
prefix_agg 0.85(0.63) 0.89 (0.69) 0.89 (0.71) 0.9 (0.66) 0.86 (0.76) 0.67 (0.6)
sepsis_1 sepsis_2 sepsis_3 bpic2012_1 bpic2012_2 bpic2012_3
single_laststate ~ 0.43 (0.0) 0.88 (0.44) 0.74 (0.34) 0.65(0.57) 0.58 (0.09) 0.7 (0.32)
single_agg 0.57 (0.09) 0.86 (0.47) 0.73(0.37) 0.65(0.53) 0.59 (0.13) 0.69 (0.3)
knn_laststate 0.43 (0.12) 0.76 (0.35) 0.58 (0.27) 0.6 (0.49) 0.54 (0.17) 0.64 (0.52)
knn_agg 0.5(0.13) 0.76 (0.35) 0.59(0.27) 0.57(0.47) 0.55(0.17) 0.6 (0.45)
state_laststate 0.47 (0.01) 0.9(0.43) 0.71 (0.34) 0.65(0.56) 0.59 (0.09) 0.69 (0.34)
state_agg 0.55(0.13) 0.9 (0.43) 0.7 (0.38) 0.66 (0.58) 0.59 (0.13) 0.7 (0.36)
cluster_laststate 0.47 (0.05) 0.86 (0.43) 0.67 (0.32) 0.64 (0.55) 0.58 (0.1) 0.68 (0.33)
cluster_agg 0.51(0.11) 0.87(0.44) 0.7(0.35) 0.65(0.55) 0.58 (0.13) 0.69 (0.34)
prefix_index 0.5(0.12) 0.88(0.48) 0.7(0.84) 0.66(0.59) 0.56 (0.16) 0.67 (0.39)
prefix_laststate 0.42 (0.11) 0.88 (0.45) 0.7 (0.86) 0.65 (0.56) 0.58 (0.09) 0.69 (0.34)
prefix_agg 0.55(0.12) 0.87(0.49) 0.73(0.87) 0.67 (0.58) 0.59 (0.13) 0.69 (0.34)
bpic2017_1 bpic2017_2 bpic2017_3 traffic hospital_1 hospital_2
single_laststate ~ 0.82 (0.67) 0.81 (0.46) 0.79 (0.73) 0.65 (0.64) 0.88 (0.58) 0.73 (0.05)
single_agg 0.83 (0.67) 0.79 (0.23) 0.79 (0.74) 0.66 (0.65) 0.87 (0.6) 0.72 (0.04)
knn_laststate 0.7 (0.59) 0.62 (0.3) 0.77 (0.7) 0.6 (0.65) 0.78 (0.45) 0.59 (0.07)
knn_agg 0.73 (0.61) 0.63 (0.28) 0.75(0.67) 0.63 (0.63) 0.8 (0.48) 0.57 (0.02)
state_laststate 0.82(0.67) 0.72(0.3) 0.79 (0.73) 0.67 (0.64) 0.88 (0.64) 0.73 (0.09)
state_agg 0.82(0.68) 0.8 (0.45) 0.8(0.74) 0.68 (0.64) 0.88(0.63) 0.71 (0.09)
cluster_laststate 0.82 (0.67) 0.78 (0.41) 0.79 (0.74) 0.68 (0.64) 0.88 (0.63) 0.72 (0.08)
cluster_agg 0.81 (0.67) 0.77 (0.39) 0.79 (0.73) 0.68 (0.65) 0.88 (0.62) 0.7 (0.09)
prefix_index 0.82(0.68) 0.78 (0.41) 0.79 (0.73) 0.68 (0.64) 0.87 (0.57) 0.73 (0.1)
prefix_laststate 0.82 (0.67) 0.8 (0.45) 0.79 (0.74) 0.67 (0.64) 0.88 (0.59) 0.74 (0.08)
prefix_agg 0.83(0.69) 0.8(0.41) 0.79(0.74) 0.68 (0.64) 0.88 (0.55) 0.73 (0.07)

170

Table 30: Overall AUC (F-score) for SVM

bpic2011_1 bpic2011_2 bpic2011_3 bpic2011_4 insurance_1 insurance_2
single_laststate 0.89 (0.65) 0.9 (0.76) 0.92 (0.0) 0.86 (0.0) 0.78 (0.38) 0.82 (0.39)
single_agg 0.87 (0.73) 0.95(0.91) 096 (0.0) 0.87(0.35) 0.81(0.24) 0.78 (0.42)
knn_laststate 0.92(0.83) 0.95(0.91) 0.93(0.81) 0.76 (0.46) 0.74 (0.46) 0.63 (0.35)
knn_agg 0.88(0.85) 0.94(0.9) 0.92(0.66) 0.72(0.29) 0.77 (0.46) 0.7 (0.15)
state_laststate 0.88 (0.54) 0.89 (0.82) 0.86(0.55) 0.8 (0.62) 0.79 (0.46) 0.77 (0.46)
state_agg 0.91 (0.75) 0.95(0.87) 0.94 (0.61) 0.82(0.62) 0.83 (0.42) 0.73 (0.0)
cluster_laststate 0.9 (0.78) 0.89 (0.79) 0.94 (0.58) 0.88 (0.5) 0.68 (0.23) 0.68 (0.37)
cluster_agg 0.92 (0.75) 0.94(0.84) 0.93(0.78) 0.86(0.49) 0.74 (0.27) 0.76 (0.35)
prefix_index 0.91 (0.66) 0.92(0.77) 0.93(0.52) 0.82(0.36) 0.83(0.26) 0.65 (0.0)
prefix_laststate 0.87 (0.59) 0.9 (0.81) 0.93 (0.38) 0.84 (0.0) 0.8(0.09) 0.74 (0.41)
prefix_agg 0.92 (0.64) 0.94(0.89) 0.95(0.12) 0.86(0.0) 0.85(0.13) 0.77 (0.33)
bpic2015_1 bpic2015_2 bpic2015_3 bpic2015_4 bpic2015_5 production
single_laststate ~ 0.78 (0.54) 0.8 (0.5) 0.82(0.43) 0.86(0.41) 0.81(0.55) 0.71 (0.6)
single_agg 0.82(0.56) 0.88(0.57) 0.88(0.67) 0.85(0.56) 0.85(0.64) 0.66 (0.54)
knn_laststate 0.72 (0.48) 0.76 (0.6) 0.8 (0.66) 0.76 (0.56) 0.78 (0.6) 0.6 (0.41)
knn_agg 0.7 (0.49) 0.78 (0.62) 0.81(0.68) 0.82(0.56) 0.78 (0.63) 0.63 (0.51)
state_laststate 0.68 (0.44) 0.76 (0.5) 0.75(0.42) 0.8 (0.42) 0.8 (0.57) 0.67 (0.54)
state_agg 0.63 (0.34) 0.85(0.62) 0.85(0.53) 0.86(0.52) 0.85(0.57) 0.63 (0.56)
cluster_laststate 0.78 (0.37) 0.8 (0.46) 0.82 (0.61) 0.85(0.47) 0.85(0.57) 0.74 (0.62)
cluster_agg 0.79 (0.0) 0.84 (0.0) 0.88(0.49) 0.88 (0.5) 0.83 (0.17) 0.74 (0.59)
prefix_index 0.77 (0.15) 0.83(0.23) 0.85(0.51) 0.86(0.22) 0.83 (0.52) 0.72 (0.57)
prefix_laststate 0.67 (0.07) 0.69 (0.04) 0.75(0.0) 0.75(0.09) 0.82(0.55) 0.67 (0.49)
prefix_agg 0.81(0.01) 0.86(0.53) 0.88 (0.54) 0.86(0.34) 0.86 (0.66) 0.66 (0.53)
sepsis_1 sepsis_2 sepsis_3 bpic2012_1 bpic2012_2 bpic2012_3
single_laststate 0.5 (0.0) 0.78 (0.41) 0.72(0.26) 0.63 (0.52) 0.56 (0.09) 0.68 (0.18)
single_agg 0.49 (0.0) 0.82 (0.0) 0.72 (0.0) 0.63 (0.38) 0.55 (0.0) 0.7 (0.2)
knn_laststate 0.47 (0.09) 0.7 (0.11) 0.62 (0.0) 0.57 (0.5) 0.51 (0.06) 0.59 (0.3)
knn_agg 0.48 (0.0) 0.71 (0.01) 0.59 (0.0) 0.63(0.56) 0.53 (0.06) 0.58 (0.28)
state_laststate 0.5 (0.0) 0.75(0.0) 0.69 (0.05) 0.63(0.42) 0.52(0.09) 0.61 (0.13)
state_agg 0.54 (0.0) 0.81(0.0) 0.65(0.27) 0.64 (0.45) 0.53(0.09) 0.65 (0.27)
cluster_laststate 0.49 (0.0) 0.81 (0.0) 0.67 (0.0) 0.64 (0.52) 0.54 (0.08) 0.65 (0.3)
cluster_agg 0.5 (0.0) 0.79 (0.4) 0.68 (0.0) 0.6 (0.28) 0.55(0.12) 0.67 (0.25)
prefix_index 0.54(0.0) 0.84(0.33) 0.65(0.0) 0.61(0.39) 0.57 (0.06) 0.66 (0.05)
prefix_laststate 0.46 (0.0) 0.8(0.22) 0.66(0.18) 0.64 (0.46) 0.56 (0.04) 0.67 (0.23)
prefix_agg 0.51(0.01) 0.81(0.0) 0.68 (0.01) 0.64(0.31) 0.57 (0.02) 0.67 (0.0)
bpic2017_1 bpic2017_2 bpic2017_3 traffic hospital_1 hospital_2
single_laststate ~ 0.75 (0.14) 0.59 (0.0) 0.71 (0.67) 0.64 (0.63) 0.85 (0.49) 0.51 (0.0)
single_agg 0.79 (0.67) 0.71 (0.0) 0.64 (0.0) 0.67 (0.5) 0.73 (0.0) 0.78 (0.0)
knn_laststate 0.55(0.28) 0.54(0.0) 0.68 (0.51) 0.62(0.69) 0.78 (0.48) 0.5 (0.0)
knn_agg 0.63 (0.06) 0.57(0.0) 0.71 (0.54) 0.63(0.17) 0.61 (0.43) 0.5 (0.04)
state_laststate 0.57 (0.11) 0.52(0.0) 0.62 (0.06) 0.65 (0.6) 0.84 (0.56) 0.57 (0.03)
state_agg 0.79 (0.58) 0.57 (0.03) 0.55(0.4) 0.66(0.59) 0.84 (0.59) 0.57 (0.01)
cluster_laststate 0.59 (0.07) 0.56 (0.0) 0.77 (0.68) 0.66 (0.58) 0.82 (0.57) 0.61 (0.07)
cluster_agg 0.64 (0.13) 0.73(0.0) 0.73(0.58) 0.73(0.58) 0.82 (0.54) 0.59 (0.0)
prefix_index 0.68 (0.0) 0.73(0.28) 0.68 (0.0) 0.59(0.27) 0.82(0.46) 0.59 (0.0)
prefix_laststate 0.76 (0.34) 0.77 (0.46) 0.74 (0.58) 0.65 (0.6) 0.85 (0.52) 0.54 (0.02)
prefix_agg 0.6 (0.01) 0.73(0.28) 0.73 (0.0) 0.65 (0.6) 0.84 (0.52) 0.66 (0.09)

171

Table 31: Execution times for random forest

bpic2011_1 bpic2011_2 bpic2011_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 42.88+0.78 76+ 108 38.81+0.27 67 £106 34.12+0.17 78 £107
single_agg 51.92+0.85 76+ 109 369.75+2.56 68+ 107 57.62+1.04 794109
knn_laststate 6.24+0.24 168 £251 9.75+£0.44 143 £228 4.15+£0.09 169 £257
knn_agg 6.14+0.12 176 £264 10.2+£0.35 1514240 4.22+0.22 190 +288
state_laststate 112.57+£0.39 58 +80 145.86 £0.49 53+82 81.7+0.19 60+79
state_agg 265.71+£0.58 69+95 226.93+£0.82 64 +100 153.58+0.14 72+95
cluster_laststate 35.88+0.23 73+£122 73.3+£0.18 56+ 105 42.61£0.12 64+t114
cluster_agg 211.72+0.86 76+ 124 439.57+£0.68 73+122 58.2+0.1 80+122
prefix_index 410.74+5.03 126 +79 465.87+£10.13 127+71 331.3+£12.36 121+75
prefix_laststate 98.34+0.22 66+98 129.95+0.5 57+93 61.51+0.07 69+97
prefix_agg 173.76 £0.29 70+ 101 189.644+0.57 61+95 122.134+0.15 73 £100
bpic2011_4 bpic2015_1 bpic2015_2
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 50.65+0.21 68 + 106 22.29+0.54 26 +40 60.39+0.53 24+38
single_agg 135.39+7.21 68+ 108 102.42+£0.65 26 +41 86.86+£0.26 24+40
knn_laststate 11.42+£2.19 151+£236 8.35+0.48 126 +226 11.01+0.16 116 £225
knn_agg 9.3+0.2 152+237 9.33+£0.13 138 £240 11.24+0.54 115+£225
state_laststate 14421 +4.36 54+83 107.37+£0.18 31+54 100.87 £0.27 33+55
state_agg 227.05+4.78 65100 135.72+£0.47 34457 132.69+£0.32 37458
cluster_laststate 428.27+8.7 75+121 40.05+£0.58 43+69 55.96+2.26 40+ 66
cluster_agg 125.97+£0.29 54 +87 52.37+£0.83 30+46 73.58+£2.67 32+52
prefix_index 1121.44+25.31 126 £71 504.84 £0.61 62+12 1137.08 +2.07 60+ 14
prefix_laststate 196.68 £0.02 57+93 70.06 £0.24 14+19 75.49+0.13 12+16
prefix_agg 306.88 +0.64 61+95 97.72+£0.08 17+21 159.75+£0.25 15+18
bpic2015_3 bpic2015_4 bpic2015_5
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 138.37+2.95 26+42 20.86+0.6 24 +36 37.74+£0.9 22+35
single_agg 95.39+0.2 27+43 70.51+£0.32 25+38 105.67+£0.64 23+36
knn_laststate 19.944+0.64 113+£226 7.66+0.02 120+228 15.2+0.33 115+£221
knn_agg 19.15+0.68 124 +239 7.77+0.35 127 +237 18.78+0.24 122 £231
state_laststate 147.65+0.1 35459 89.114+0.16 31+51 114.35+04 29448
state_agg 192.76+0.73 39+62 93.86£0.31 34+54 157.16+6.82 32+52
cluster_laststate ~ 121.76+0.41 43+73 41.47+0.19 37+£72 72.07+0.35 38+66
cluster_agg 73.09+0.4 31+49 31.47+0.27 35+55 64.21+£0.58 31+49
prefix_index 1531.4+15.22 71+£17 176.56 £0.22 51+10 366.0+2.63 60+13
prefix_laststate 100.27+£0.28 13+18 62.28+0.02 12+17 99.77+£0.71 12+17
prefix_agg 172.12+4.21 16£19 94.56 £0.16 15+18 156.44 +3.28 14+18
production insurance_1 insurance_2
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 2.994+0.06 43+37 12.51£0.09 55444 9.65+0.09 47+£42
single_agg 8.54+0.05 47440 17.82+£0.12 57+47 11.85+0.08 48+45
knn_laststate 0.89+0.05 307+338 0.61+£0.03 204 £206 0.89+0.04 217+£173
knn_agg 1.04+0.01 338 +333 0.65+£0.04 223 +228 0.94+0.04 224 +178
state_laststate 17.34+0.07 41+34 14.36 £0.04 48435 16.631+0.01 40+ 34
state_agg 17.2+0.21 47440 16.88£0.12 57+44 15.36+0.18 49443
cluster_laststate 18.89+0.26 45+43 10.9+0.1 50+50 19.69+0.06 48+44
cluster_agg 15.18+0.13 49 +47 24.89+0.09 50+49 31.68+0.1 51+48
prefix_index 24.93+0.11 70+£27 27.69+0.22 107 £10 2891+0.4 10311
prefix_laststate 18.324+0.89 41+36 15.16+0.0 51437 22.9340.1 43 +37
prefix_agg 26.86+0.08 57+48 16.36 £0.03 48435 24.44+0.38 40+33

172

Table 32: Execution times for random forest (continued)

sepsis_1 sepsis_2 sepsis_3

method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 87.17+2.69 38+43 10.85+0.19 46+45 8.81+0.03 40+44
single_agg 43.23+0.31 39+45 14.38+£0.14 49+48 46.89+0.22 43 +£46
knn_laststate 2.78£0.06 2424271 0.99+0.01 305+301 1.9+0.05 261+279
knn_agg 2.79+0.06 255+282 1.04+0.05 307 +£305 1.8940.04 2724288
state_laststate 71.76+£0.18 41+46 23.6+0.06 50£50 22.51+0.33 43+46
state_agg 140.28+£0.2 42+47 19.23+£0.03 51451 123.09+0.17 45+48
cluster_laststate 41.2240.15 36+44 25.36£0.21 49448 36.94+0.26 41445
cluster_agg 77.48£0.11 38445 81.31£0.18 50£50 47.184+0.08 43+46
prefix_index 165.12+£0.03 51439 114.1£0.09 58+£42 137.86+£0.18 52439
prefix_laststate 78.81+0.18 39+44 44.04+0.02 48 +46 51.21+£0.25 41+44
prefix_agg 141.0+0.06 37+41 57.12+0.03 46+44 73.75+0.01 39+42

bpic2012_1 bpic2012_2 bpic2012_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 258.83+4.05 13+20 113.69+1.3 13+20 221.25+0.69 13+20
single_agg 395.73+£2.98 14+£21 358.35+1.11 13+21 389.96 +7.22 14£21
knn_laststate 29.02+4.34 107 +£213 30.214+0.59 501+593 27.96+0.55 4914577
knn_agg 29.96+0.59 506 +£592 30.54+£0.6 509 £599 29.94+0.59 513 +£605
state_laststate 139.79 £1.06 14+19 215.16£0.66 14+19 129.01+£0.82 14+19
state_agg 697.14£6.11 15+21 547.46+£4.22 15+£20 394.35+6.53 15+21
cluster_laststate 147.92+£5.76 15+23 125.69+0.15 16+24 175.72£2.12 15422
cluster_agg 535.28+£10.75 16£25 196.31+2.84 16+24 276.72£3.67 15+£23
prefix_index 7198.38 £70.16 43+10 8059.82 4 147.53 41+9 4076.35+70.84 43+10
prefix_laststate 277.58+£0.87 11+13 253.66+£0.28 10+12 265.56+£0.7 10+12
prefix_agg 1326.15+4.76 11+14 548.041.36 11+14 833.38+3.9 12+15

bpic2017_1 bpic2017_2 bpic2017_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 1289.72+£25.31 26+32 1625.87+31.91 30£36 3172.95+62.27 26+31
single_agg 2880.68 £56.53 31438 4371.05+85.78 27+33 8649.74 +169.75 28+34
knn_laststate 143.14 £2.81 1757+ 1700 138.09£2.71 1792+ 1727 117.39+£2.3 153241475
knn_agg 136.12£2.67 1784+ 1715 132.3+£2.6 1642+ 1582 130.03 £2.55 1679+ 1612
state_laststate 1239.01+£24.32 25430 1247.274+24.48 29+£35 795.83£15.62 25+30
state_agg 12366.43 4242.69 31+34 5671.91+111.31 33+£39 13165.58 +-258.37 27431
cluster_laststate ~ 2325.38 £45.64 24+31 1018.82+£19.99 25+29 1367.58 £26.84 23+28
cluster_agg 1535.54+£30.14 26+34 3979.78 +78.1 27+32 1728.18 £33.92 25+31
prefix_index 25283.444+496.19 88+12 22481.59+441.2 91+12 19949.41 £391.51 86+ 14
prefix_laststate 2270.56+29.0 25428 789.43+15.49 22424 4245.86+60.81 26+30
prefix_agg 5933.72+£36.32 27432 5003.87+£98.2 25+£28 10723.16 +41.97 23+27

traffic hospital_1 hospital_2

method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate ~ 2553.51+175.77 86+48 5508.58 £ 108.11 401 +£263 2974.02+58.37 4564300
single_agg 2253.99+12.52 94453 11667.12+228.97 470309 131453.83 +£2579.78 4114271
knn_laststate 424.08 £56.11 543+392 123.42+2.42 463 £362 368.05+7.22 4354401
knn_agg 439.44+59.76 560 +404 115.82+£2.27 4974387 362.69+7.12 453+419
state_laststate 1222.57+£25.28 94453 1329.314+26.09 3714298 1491.67+29.27 309+255
state_agg 1362.58 +£48.94 97 +54 959.94 +18.84 414 £270 1663.75+32.65 370+£236
cluster_laststate 1129.09 £44.03 90+52 2402.26 +47.14 341+305 1794.1£35.21 3324324
cluster_agg 1261.5+3.47 96+ 55 5956.26+116.89 465 +£305 1267.46 +24.87 393+295
prefix_index 2051.23+£27.11 116 £26 3566.4 +69.99 890490 6309.374+123.82 930+ 174
prefix_laststate 1365.6 £8.31 91450 1950.52 +38.28 402+£281 2085.55+16.28 3374235
prefix_agg 1601.71+£11.23 99+ 55 17359.15+340.67 4314251 7652.09+2.19 374£219

173

Table 33: Execution times for logistic regression

bpic2011_1 bpic2011_2 bpic2011_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 8.14+0.29 6897 11.09+£0.4 6196 5.55+0.13 70+96
single_agg 11.85+0.39 69+99 16.89+0.17 62+98 6.58+£0.05 71+£97
knn_laststate 5.69+0.03 29+42 9.86+£0.22 23+37 4.12£0.12 29+41
knn_agg 5.93+0.14 32446 9.69+0.05 26+42 4.28+0.13 29443
state_laststate 8.64+0.1 51+70 11.97+0.15 47+73 6.57+0.01 52+68
state_agg 11.49+0.05 66+91 15.76 +£0.59 57+88 7.77+£0.01 6180
cluster_laststate 19.61+0.1 564102 27.12+0.79 534100 16.11+0.07 554102
cluster_agg 19.1£0.7 53+76 27.15+0.2 58+109 13.86+0.21 651107
prefix_index 28.51+£0.71 122+71 44.66+2.52 124 +£65 18.37+0.5 106 £62
prefix_laststate 7.52+0.13 58 +87 10.34+0.12 51+83 5.32+£0.07 60+85
prefix_agg 9.28+0.11 61+88 13.22+0.14 54+83 7.34+£0.08 64+86
bpic2011_4 bpic2015_1 bpic2015_2
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 11.13+0.71 62+97 7.97+0.29 20+30 7.04£0.05 18+29
single_agg 20.21+£2.74 62+98 16.57+0.41 22434 48.14+0.66 20+£32
knn_laststate 8.55+0.43 26+40 8.98+0.07 23+37 10.59+0.04 24+39
knn_agg 8.56+0.36 26+41 8.16+£0.27 24+39 11.9+0.11 26+£45
state_laststate 11.714+0.08 47+72 8.52+0.2 26+£45 9.65+0.2 27+46
state_agg 15.1+£0.04 55+85 9.84+0.36 29+48 11.07+£0.08 31+49
cluster_laststate ~ 25.99+£0.08 54+ 106 24.07+0.07 22+35 37.74+0.67 36+£61
cluster_agg 26.49+£0.23 68+112 19.51+0.27 33+52 27.18+£0.34 27+45
prefix_index 41.4140.35 118 £60 27.99+0.6 56+12 38.47+£0.45 54+15
prefix_laststate 10.814+0.11 51+£82 7.09£0.06 7+9 7.67+0.28 6+6
prefix_agg 14.14+0.08 54+84 7.53+0.03 8+9 9.77+0.07 7+7
bpic2015_3 bpic2015_4 bpic2015_5
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 38.41+0.18 21+£33 6.57+£0.09 18+27 18.67+0.14 17+£26
single_agg 29.69+£0.72 21+34 9.17+£0.24 18+£29 249+0.24 17+27
knn_laststate 19.6£0.62 26+42 7.6+0.34 21+35 14.04+0.14 20+33
knn_agg 18.5+£0.67 31+49 7.76 £0.36 23+38 14.56 £0.54 26+42
state_laststate 14.56+£0.3 30+50 7.17£0.08 26+42 12.4+0.09 23439
state_agg 18.28+£0.07 33+53 8.37+£0.09 29+45 14.394+0.3 26+42
cluster_laststate ~ 60.56 £ 1.47 36+63 27.27+0.18 34+61 38.51+£0.45 18+31
cluster_agg 44.96 +0.59 26+41 26.35+0.24 33+60 48.48+0.84 25+40
prefix_index 65.17+£0.35 64+19 253+0.3 43+8 46.49+0.74 53+13
prefix_laststate 12.024+0.08 7+8 6.37+0.07 6+7 11.194+0.02 6+7
prefix_agg 17.16 £0.1 8+8 6.65+0.04 T7+7 12.4+0.13 T7+7
production insurance_1 insurance_2
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)

single_laststate
single_agg
knn_laststate
knn_agg
state_laststate
state_agg
cluster_laststate
cluster_agg
prefix_index
prefix_laststate
prefix_agg

0.89+0.01
1.11£0.13
0.87+£0.03
0.93+0.05
1.47+0.12
1.68+0.06
5.16+0.08
5.72+0.05
3.03+0.08
1.154+0.01

1.67+0.0

25+21
28+25
31+£28
31+31
23+19
30+26
28+29
33+34
51+10
23+19
34428

1.41£0.01
1.04£0.05
0.624+0.03
0.6340.01
1.29£0.04
1.54+0.03
4.9610.08
5.83+0.11
2.8940.02
1.26 £0.0
1.2940.01

37+30
39433
20+18
24+21
31+£22
43+£32
32431
27+28
89+5
33+23
32422

2.88+0.01
2.68+0.09
0.924+0.01
0.8940.01
2.43£0.01
2.03+£0.02
5.34£0.13
8.5+0.11
3.86+0.03
2.33£0.01
1.754+0.01

32+£29
34432
2416
27+18
27+21
37+32
34431
36+34
90+4
28+£22
27421

174

Table 34: Execution times for logistic regression (continued)

sepsis_1 sepsis_2 sepsis_3

method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 321+£0.15 27+31 1.314+0.03 33+33 2.3+0.04 29 +31
single_agg 21.44+0.28 29+33 1.48+0.03 35+35 2.54+0.04 31+£33
knn_laststate 2.82+0.06 28+32 0.98+0.04 35+£35 1.97+£0.05 31+£33
knn_agg 2.88+0.11 31+34 1.05+0.06 40+39 1.85+0.06 34+36
state_laststate 5.74+0.17 29+33 1.88+0.03 36+36 3.04+0.02 31+34
state_agg 22.54+0.11 32436 2.14+0.02 39+39 3.18+£0.02 35+37
cluster_laststate 9.514+0.11 26+32 5.524+0.18 35+34 6.52+0.15 31+34
cluster_agg 11.734+0.04 27+33 4.98+0.09 38+38 7.584+0.03 30+34
prefix_index 16.74+£0.07 39426 3.14+0.02 45+28 6.1+£0.02 40426
prefix_laststate 4.8+0.07 27430 2.1+£0.07 33+32 3.25+0.03 28+30
prefix_agg 8.01+£0.07 28+32 2.27+0.05 35+34 3.64+£0.06 30+32

bpic2012_1 bpic2012_2 bpic2012_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 30.51+£0.38 7+£10 29.15+£0.79 7+10 30.31+£1.76 7+£10
single_agg 31.1+£0.27 8+12 60.4+3.11 8+12 74.28+0.31 8+12
knn_laststate 30.24+£0.38 55+62 28.85+0.08 27+30 27.84+0.83 74+82
knn_agg 29.06 £0.46 350+374 28.32+0.08 310+£333 31.05+£2.0 192 +£208
state_laststate 24.21+£0.29 8+10 24.41+£0.1 8+10 23.68+0.37 8+10
state_agg 29.84+0.39 1012 28.8+1.11 9+11 30.25+0.17 9+12
cluster_laststate 38.2+0.11 10£15 37.28+£0.57 9+13 39.4+0.72 9+13
cluster_agg 108.75+1.51 10+17 64.86 £2.16 9+ 14 79.46 +£6.91 9+14
prefix_index 67.45+£2.49 3612 65.61£1.1 34+11 62.86+1.03 3612
prefix_laststate 26.0+£0.87 4+3 25.84+0.39 4+3 23.42+0.3 4+3
prefix_agg 38.74+£0.91 5+5 42.84+041 5+5 47.5+0.28 5+5

bpic2017_1 bpic2017_2 bpic2017_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 88.86 £ 1.74 19+23 155.13+3.04 19+23 107.82+£2.12 18+21
single_agg 213.25+4.18 21+26 143.2+2.81 21+27 209.74+4.12 19+23
knn_laststate 137.49+2.7 1575+ 1484 129.35+2.54 1518+ 1426 135.54 +2.66 1567+ 1473
knn_agg 127.0+2.49 1474 +£ 1387 129.12+2.53 1524 + 1432 121.37+2.38 1413+ 1326
state_laststate 92.96 +1.82 19+20 74.44 1 1.46 18+24 84.76 £1.66 17+£20
state_agg 472.574+9.27 20+22 24476 £4.8 22424 114.88+2.25 19+22
cluster_laststate ~ 154.87+3.04 21+£25 172.13+3.38 15+18 104.51£2.05 16£19
cluster_agg 368.51+£7.23 19+24 431.13+8.46 17+21 163.87+3.22 16+20
prefix_index 539.244+10.58 7249 512.71+10.06 7249 340.34+£6.68 72+9
prefix_laststate 95.98 £0.95 15+16 112.1+£5.26 15+16 75.28+£0.25 14+15
prefix_agg 281.04+£0.84 15+17 551.86+26.98 17+£20 325.93+0.41 1617

traffic hospital_1 hospital_2

method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 95.22+0.54 62+34 171.88+3.37 381+£250 105.77 £2.08 395+259
single_agg 273.55+1.81 66+ 37 361.41+£7.09 405 +267 269.08 +5.28 397 £262
knn_laststate 384.89+£5.26 75+42 108.0+0.13 43+24 361.86+£7.1 88+ 64
knn_agg 361.35+£8.72 81+51 110.14+1.45 78 +54 352.76 £6.92 94+£65
state_laststate 68.11£0.53 66+37 274.97+5.4 349 4287 144.61 +2.84 334 +282
state_agg 151.294+4.43 75+42 274.89+5.39 368 £230 308.15+6.05 402+249
cluster_laststate ~ 93.99 +£6.84 66+ 39 225.334+4.42 330+£284 124.98 +2.45 280 +244
cluster_agg 111.74£25 68 +39 259.91+£5.1 386 +264 681.42+13.37 369 +246
prefix_index 331.76 £1.14 89+11 263.88+5.18 964+ 112 229.74+4.51 848 £+ 100
prefix_laststate 80.76 £0.95 62+34 122.85+1.04 363 £262 112.294+0.47 313+£223
prefix_agg 186.94+2.77 63+£35 166.22 +5.34 394 +£232 173.75+0.52 353 +£204

175

Table 35: Execution times for SVM

bpic2011_1 bpic2011_2 bpic2011_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate ~ 503.86 £1.75 70+ 100 457.58+4.1 64+ 100 173.03+1.95 73+£99
single_agg 40.4+0.35 69 £ 100 381.13+£0.35 63 £ 100 156.46 +£0.44 734+ 100
knn_laststate 6.0+£0.22 29+42 9.79+0.44 27+42 4.26+0.23 29+41
knn_agg 5.91+0.26 29+42 9.98+0.28 28 +44 4.25+0.25 31+44
state_laststate 12.444+0.07 52472 19.77+0.13 49475 9.52+0.04 53+70
state_agg 16.44+0.08 61+84 21.67+£0.04 58+90 10.44+0.08 63+83
cluster_laststate ~ 35.72+£0.22 62110 44.74+0.14 45+75 18.37+0.28 48+76
cluster_agg 30.12£0.1 57+£99 46.53+0.29 56+ 106 21.49+0.11 50+74
prefix_index 39.94+£0.49 123+72 64.98+3.13 125+65 25.33+0.46 107 +62
prefix_laststate 16.31+0.17 60+90 23.17+0.1 52+84 11.99+0.04 62+87
prefix_agg 17.82+£0.08 62+89 24.89+0.04 54+84 11.54+0.1 65+88
bpic2011_4 bpic2015_1 bpic2015_2
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate ~ 549.47 +23.94 65+ 102 86.12+0.31 21+£33 111.39+0.15 20+£32
single_agg 130.1£15.04 63+99 68.34+£6.06 22434 88.97+1.6 21+£33
knn_laststate 8.93+0.43 23+35 8.324+0.43 23+37 11.31+0.37 23+39
knn_agg 8.84+0.41 26+40 8.44+0.33 21+38 11.4+0.34 18+28
state_laststate 18.984+0.03 48+74 8.87+0.11 26+£45 9.74+£0.07 28 +46
state_agg 25.72+0.83 58+89 10.33+£0.21 28 £47 11.49+0.15 31+48
cluster_laststate ~ 46.62+0.44 51+£103 22.02+0.1 22434 29.91+0.11 25+41
cluster_agg 43.2240.12 49+92 25.47+0.13 25+39 33.13+£0.22 25+40
prefix_index 60.85+0.68 119+ 60 3455+0.4 52412 41.09+0.26 52+14
prefix_laststate 21.82+£0.04 52+85 7.45+0.05 7+9 9.34+0.1 6+6
prefix_agg 22.69+0.19 54+385 9.16+0.12 9+10 10.71+£0.04 8+7
bpic2015_3 bpic2015_4 bpic2015_5
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 363.33+16.46 21432 45.01+0.31 17+£27 567.21+11.07 16£25
single_agg 178.69 £12.55 21+34 28.26+0.59 18+£28 144.11+1.39 17+27
knn_laststate 18.82+0.62 21+37 7.6+0.05 20+35 14.34+0.32 19+32
knn_agg 19.6£0.81 26+£45 7.07+0.11 23+38 14.37+£0.04 19+34
state_laststate 15.56+0.21 30+50 7.34+0.05 26+43 13.02+0.16 23+39
state_agg 19.63+0.09 34+54 9.29+0.07 29446 16.39+0.11 27+43
cluster_laststate ~ 51.08 £0.33 25+39 20.86+0.1 21+£33 43.79+0.08 21+£35
cluster_agg 52.3+1.32 25440 19.61+£0.3 24 +37 140.02+1.08 25+41
prefix_index 77.944+0.32 61+18 27.1+£0.09 42+8 66.81+1.85 50+£12
prefix_laststate 16.14£0.1 7+8 6.4+0.12 6+7 13.36+0.18 6+7
prefix_agg 22.12+£0.07 9+9 9.14+0.03 10+ 10 22.26+0.07 10+ 10
production insurance_1 insurance_2
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 1.46+0.05 26+22 4.4240.05 38+30 8.06+£0.05 33+30
single_agg 1.48+0.05 28424 3.63+0.05 39+33 7.16£0.09 34+£32
knn_laststate 0.88+£0.05 26+25 0.63+0.02 19+17 0.9+0.02 22+15
knn_agg 0.93+0.05 33+31 0.64+0.01 22+44 1.02+£0.07 27+18
state_laststate 1.32+£0.06 22+19 1.64+£0.03 31+£22 2.37+0.01 27 +21
state_agg 1.67+0.1 30+26 1.78+£0.03 43433 3.01+£0.02 37+£32
cluster_laststate 4.84+0.14 31+£29 5.48+0.09 24+£25 6.56+£0.07 27+26
cluster_agg 5.04+0.13 37+34 5.37+0.1 39+37 6.83+0.03 30+£26
prefix_index 3.5+0.01 61+12 2.85+0.03 89+4 5.98+0.04 89+4
prefix_laststate 1.174+0.01 23+19 1.8+0.0 33+23 2.45+0.01 28+22
prefix_agg 1.56+0.18 31+£26 1.55+0.23 32+£23 2.12+0.02 26+£21

176

Table 36: Execution times for SVM (continued)

sepsis_1 sepsis_2 sepsis_3

method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate 62.484+0.54 28+32 6.46+0.02 34434 12.884+0.09 30+£32
single_agg 15.52+£0.22 29433 5.81+0.06 36+36 14.88+0.08 31+34
knn_laststate 3.1440.07 29433 1.06+0.01 38+£37 1.91+0.06 31£33
knn_agg 2.72+0.12 30+34 1.024+0.02 37+£37 1.824+0.03 33£35
state_laststate 5.14+0.09 29+33 2.08£0.02 35436 4.23+0.02 31+£34
state_agg 9.5+0.16 33+37 2.61+0.03 40+40 5.08+0.02 35+38
cluster_laststate 10.03 £0.09 26+32 6.02£0.11 34+34 7.74+0.07 29+32
cluster_agg 10.374+0.09 28434 6.84+0.03 33+35 7.95+0.06 31+£34
prefix_index 10.45+0.03 36+24 3.16+0.01 41+26 6.67+0.05 38425
prefix_laststate 6.6340.02 28431 2.4940.03 34+33 4.78 £0.04 30+£32
prefix_agg 6.61+0.09 30+£33 2.85+0.04 36£35 4.96+£0.02 31+£34

bpic2012_1 bpic2012_2 bpic2012_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate ~ 12067.81 +399.76 10+ 14 14557.12+780.58 8411 2746.74 +£133.03 9+13
single_agg 3143.14+24.75 10£16 1336.26 £5.35 9+14 3940.96+508.12 10+15
knn_laststate 28.924+0.47 2794299 31.4740.55 254+£274 30.7+2.47 174+ 188
knn_agg 33.21+1.1 258 +277 29.04+0.93 297+319 31.11+0.58 171+189
state_laststate 108.84+0.29 8+10 156.77+£2.77 8+10 128.66 +0.22 8+10
state_agg 168.48+1.15 10+12 88.35+1.29 10+12 191.19+£3.22 10413
cluster_laststate 414.04+3.83 9+14 139.3+0.17 8+13 181.63£2.76 8+12
cluster_agg 186.63 +2.21 8+9 2409.21+£27.71 11+18 273.16+6.91 10+£15
prefix_index 538.77+6.5 3712 420.91+13.0 34+11 344.04£8.18 34+11
prefix_laststate 77.874+0.94 4+3 211.04£9.02 4+3 100.44 £2.24 5+4
prefix_agg 100.43+0.25 5+5 288.14+£4.56 5+5 66.23+0.75 5+4

bpic2017_1 bpic2017_2 bpic2017_3
method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate ~ 86469.6 + 1696.97 38+46 91457.8 £1923.76 42+56 64770.83+1271.13 32+39
single_agg 89619.4 +1736.87 40+47 23877.21+468.59 30+£38 68407.03 4 1323.42 35+42
knn_laststate 117.67+£2.31 118+108 133.43+£2.62 151541424 119.49+£2.35 1375+ 1292
knn_agg 122.36+2.4 1408 +1332 118.44+2.32 1412 +£1329 139.45+2.74 1587 + 1497
state_laststate 18343.13+£359.98 23+26 1905.91+37.4 20+24 37822.2+742.26 17423
state_agg 10257.06 +201.29 25428 58203.39+1142.24 23+£26 10121.8 £198.64 24+26
cluster_laststate ~ 8744.81+171.62 17422 7006.73 £137.51 17421 3026.05+59.39 18422
cluster_agg 74691.13 £ 1465.81 22427 8903.74+174.74 23+28 5264.25+103.31 18+£21
prefix_index 17933.49 +£351.94 76+9 39670.6 +778.54 87410 24417.21+479.19 89+11
prefix_laststate 16596.88 + 1364.46 16+17 3553.0+£3.84 14+15 7667.05+53.16 15+16
prefix_agg 21941.34+37.13 16+18 5395.36+587.31 16+18 4509.12+372.24 18+£20

traffic hospital_1 hospital_2

method offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
single_laststate ~ 52218.27 +1024.78 103 +57 163070.85 £ 3200.27 4874319 100195.84 4+ 1966.34 4824311
single_agg 58867.1641155.27 114+62 65398.88 4 1283.45 436+281 291765.77 £5725.9 5454353
knn_laststate 394.55+7.74 69 +40 109.75+1.32 81£55 312.82+£6.14 62+49
knn_agg 482.25+9.46 96+ 54 102.69+£2.02 42+23 321.04£6.3 85+68
state_laststate 31579.01 4 1040.68 78 +48 33549.224+658.4 320268 110178.73 +£2162.26 365 +307
state_agg 71510.15+1403.39 87+53 31458.64+617.38 359+£222 18274.1+£358.63 385+£236
cluster_laststate ~ 7466.95 4 149.95 72446 23090.77 £453.16 313+£292 19699.97 +386.61 285 £255
cluster_agg 97876.03 £1920.82 45+40 46246.86 +907.59 324+£239 22553.25+442.61 325+242
prefix_index 28902.06 + 145.18 125420 53322.05 4+ 1046.45 1093 +132 82296.524+1615.07 1013 +£214
prefix_laststate 12316.56+ 14.1 72443 39203.83 +1030.35 360+255 76378.26 +118.46 344 +244
prefix_agg 24735.14 +£425.56 75+45 52526.59 +857.39 393+234 57426.99 £22.74 3644215

177

method =prefix_agg - prefix_index#single_agg - single_laststate

bpic2011_4 bpic2017_2 hospital_2
0.90 .—4.__*/,.——-
08t 0.76 -
0.85 =
0.82 0.74 -
0.80 - 0.80 0.72
S B] gl ——
< 025 050 075 1.00 025 050 0.75 1.00 025 050 0.75
®
© production sepsis_3 traffic
5 0.725 1 0.725 - 0.780
07001 > 0.700 0'7757;\/./\-
S e N N 7 0.770
0.675-] <~ 0.675 0.765 -
06501\~ | 06501 0.7601
T T T T T T T 0-755 1 T T T
025 050 0.75 025 050 0.75 1.00 025 050 0.75

Proportion of levels in static categorical attributes

Figure 50: AUC across different filtering proportions of static categorical attribute
levels (XGBoost)

Table 37: Execution times for RF with unstructured data.

DR LtC Github
single_agg offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 19.83+£0.58 0.21£0.07 1648.58 £82.5 0.09£0.11 1043.73 +40.63 0.07£0.05
BoNG 29.66+0.84 0.37+£0.12 22761.75+456.53 0.11+£0.13 2286.96+241.26 0.56+0.34
NB 81.03+1.46 0.23+£0.07 18208.0+0.0 0.11£0.13 2456.88+189.07 0.14£0.09
LDA 134.16 +£2.14 0.22+0.07 10303.79 +482.55 0.05+0.06 2325.06+21.31 0.14£0.08
PV 34.4+8.0 0.25+0.27 3855.07+174.3 0.11+£0.79 945.45+17.32 0.21+0.24
DR LtC Github
single_laststate offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 14.06+0.43 0.2+0.06 950.4+25.6 0.08+0.1 251.42+16.26 0.07+£0.05
BoNG 38.35+£2.09 0.23+0.07 3499.54302.86 0.08£0.1 1424.13+33.39 0.53+£0.33
NB 34.92+1.76 0.22+0.07 3779.144+258.75 0.05+0.06 1035.07 +52.62 0.08 £0.05
LDA 85.16+5.79 0.22+0.07 62506.71 4-2453.04 0.05+0.06 1756.59+27.88 0.07£0.05
PV 103.6 £12.36 0.32+£0.46 1554.434+138.73 0.07+£0.83 792.51+£10.35 0.16£0.26
DR LtC Github
prefix_index_agg offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 25.98+0.52 0.21£0.06 2016.054247.85 0.19£0.06 265.76+3.44 0.08 £0.05
BoNG 71.38+£2.52 0.26£0.1 12098.83 4 1956.86 0.22+0.1 4931.93+15.19 0.27+0.08
NB 135.0+£0.78 0.25+0.08 8087.82+1378.65 0.19£0.06 3253.13+9.82 0.16£0.13
LDA 585.43+1.69 0.13+0.05 67104.63 +8767.19 0.21£0.08 137211.56 +68.25 0.15+£0.09
PV 685.96+25.44 0.5+4.14 21406.83 +4621.16 0.28+1.49 6624.45+150.46 0.18£0.26
DR LtC Github
prefix_index_last offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 25.98+0.52 0.21£0.06 2016.054247.85 0.19£0.06 265.76+3.44 0.08 £0.05
BoNG 47.35+0.64 0.25+0.11 7743.854+1267.65 0.21£0.07 1558.444+6.77 0.24+0.1
NB 56.77+0.6 0.13+0.05 8385.814+326.55 0.2+0.07 1709.9 +69.61 0.09£0.07
LDA 292.75+2.71 0.13+0.04 59552.844-9298.44 0.240.06 10590.26 +24.73 0.08£0.05
PV 502.114+69.74 0.4+5.03 18544.04+4078.02 0.28+1.37 2821.29452.41 0.17+£0.26

178

« LSTM = RF_idx_mul ~ XGB a — XGB_idx_pad
Method T RE agg © RFidk pad — XGB 10k mul —IxP

bpic2011_1 bpic2011_2 bpic2011_3

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

insurance_2
0.10

0.05+ /

0.00 & ?W = y

-0.05+ 1 1 1 EE
0 5 10

Prefix length

Figure 51: Differences in Brier scores on uncalibrated vs. calibrated classifiers
over different prefix lengths. Positive scores show that calibration (Platt scaling)
helped to make the classifier better calibrated.

179

Brier(uncal) - Brier(cal)

« LSTM = RF_idx_mul ~ XGB a — XGB_idx_pad
Method T RE agg © RFidk pad — XGB 10k mul —IxP

bpic2012_1 bpic2012_2 bpic2012_3
0.15 1 '
0.10 1
0.05 T
0.00 1 X b
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
bpic2017_1
0.100
0.075
0.050
0.025 4
0.000 -
0 5 10 15
DR hospital_1
= 0.04-
0.34 I 003l 0.000 4 =
0.0 0.024 -0.0054
-0.34 0.01 1 -0.0104
06—t = 0001— : ; -0.0151 : ; :
0 2 4 6 8 0 2 4 0 2 4 6
hospital_2 LtC
0.005 0.04 w
-0.14 I
0.000 004 “N‘
-0.005 A 034 U‘
0 2 4 6 8 0 10 20 30
traffic
0.06
0.04 1
0.02 1
0.00
-0.024
. . 0044
0 10 20 30 00 25 50 7.5 10.0

Prefix length

Figure 52: Differences in Brier scores (continued).

180

benefit -

00 02 04

bpic2011_1 bpic2011_2 bpic2011_3 bpic2011_4

20:1 4 N [| | B []]
10:1 -] | N |
|

|

5:1 1
3:1 1
2:1 1
1:14

bpic2012_1 bpic2012_2 bpic2012_3 bpic2015_1

20:1 4 |nl
10:1 4

5:1 1
3:1 1
2:1 1
1:14

bpic2015_2 bpic2015_3 bpic2015_4 bpic2015_5

20:14
10:14
5:1 4
3:1 1
2:1 4
1:1 1

bpic2017_1 bpic2017_2 bpic2017_3 DR

c 201+] |]]
| [|

github hospital 1 hospital 2 insurance 1

20:1 - lln
10:1 -

5:1 - T |
3:1 4
2.1
1:1 1

insurance_2 LtC production sepsis_1
20:1 4 []]

10:1 4 [|
5:1 1
3114
2:1 1
1:1 1

sepsis_2 sepsis_3 traffic unemployment
20:1 1]]
10:1 4
5:1 1
3:1 1
2:1 1
1:14

024681 024681 0246381
mitigation effectiveness (eff)

o4
o
e
o
o
o

Figure 53: Benefit of the alarm system, varying eff (k, o, L) with a linear decay.

benefit -

-02 00 02 04 06

bpic2011_1

bpic2011_2

bpic2011_3

bpic2011_4

bpic2012 2

bpic2015 1
]

bpic2015_2 bpic2015_3 bpic2015_4 bpic2015_5
20:1 - B B

bpic2017 1 bpic2017_2 bpic2017_3 DR

hospital_1 hospital_2 insurance_1

insurance_2 Lc production sepsis_1

20:1
101
5:1
2.1
1:1 1

sepsis_2 sepsis_3 unemployment

20:1 A
10:1 4
5:1 1
2:1 1
1:14

Figure 54: Benefit of the alarm system, varying c.om(0,L); cin(k, 0, L) is increas-
ing linearly from 1/|c| to 1.

Table 38: Execution times for logit with unstructured data.

DR LtC Github
single_agg offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 4.64+£0.09 0.02+£0.01 1135.82+2.18 0.02+£0.02 327.34+4.34 0.01+£0.01
BoNG 30.29+1.17 0.18+£0.06 12411.58 +0.0 0.094+0.11 1143.934+15.48 0.424+0.25
NB 20.9+0.14 0.05+£0.02 6047.49 + 1285.66 0.05£0.06 899.01+8.47 0.02£0.03
LDA 55.24+0.76 0.04£0.01 2493.09 £36.36 0.02+£0.03 6325.6+11.63 0.01+£0.01
PV 49.78 £3.24 0.06£0.09 2892.62+67.85 0.05+£0.52 1480.71+£23.16 0.11+0.21

DR LtC Github
single_laststate offline_total (s) online_avg (ms) offline_total (s) online_avg (ms) offline_total (s) online_avg (ms)
no text 5.51+0.09 0.02+£0.01 233.54+0.63 0.02+£0.02 39.91+0.46 0.0+0.0
BoNG 10.5+0.16 0.04 £0.01 1481.22+20.49 0.06£0.07 548.76+3.59 0.39+£0.23
NB 16.88+0.29 0.04£0.01 1539.13 £150.79 0.02+£0.03 560.12+2.21 0.01+£0.01
LDA 87.36+0.23 0.03+0.01 70902.31 +466.62 0.02+£0.03 11261.53 £26.37 0.01+0.01
PV 22.36+2.27 0.13+£0.45 685.1+29.85 0.06£0.37 663.124+23.53 0.12+0.21

DR LtC Github

prefix_index_agg

offline_total (s) online_avg (ms)

offline_total (s)

online_avg (ms)

offline_total (s) online_avg (ms)

no text 6.44+0.04 0.03£0.01 546.524+25.14 0.09+0.01 5478 +1.42 0.01£0.0

BoNG 65.831+0.61 0.09£0.02 7020.34+63.33 0.12£0.02 1857.56 +30.7 0.2+£0.12

NB 64.31+0.63 0.05+£0.01 6577.28 £51.08 0.09+£0.01 1785.06+19.56 0.02£0.02

LDA 481.8+£2.41 0.05£0.01 66009.73 £6023.06 0.09£0.01 42738.68 +741.82 0.02+0.01

PV 154.514+5.81 0.33£3.49 17449.61 +3765.84 0.16£0.08 3015.114+134.45 0.12+0.21
DR LtC Github

prefix_index_last

offline_total (s) online_avg (ms)

offline_total (s)

online_avg (ms)

offline_total (s) online_avg (ms)

no text
BoNG
NB
LDA
PV

6.44+£0.04 0.03£0.01
38.2940.65 0.06£0.03
40.73 £0.64 0.03£0.01
406.3+£5.15 0.03£0.02
281.64+73.6 0.3+£2.89

546.524+25.14

5865.15+£10.65

5470.95£48.09
73917.56 £9302.16
20248.29 £6224.33

0.09+£0.01
0.12£0.02
0.09£0.01
0.09+£0.01
021£1.23

5478 £1.42 0.01£0.0
1161.78 £49.62 0.36+£0.35
2048.33+117.08 0.02£0.01
64183.27 +£1736.86 0.01£0.01
3139.05£86.97 0.12+£0.21

183

Table 39: Overall Brier scores for uncalibrated and calibrated classifiers. Best
scores for each classifier are marked in bold.

RF_agg XGB_agg RF_idx_mul XGB_idx_mul RF_idx_pad XGB_idx_pad LSTM
uncal cal ‘uncal cal ‘uncal cal | uncal cal uncal cal | uncal cal uncal cal

bpic2011_1 | 0.11 011 | 0.13 0.11| 011 0.12 | 0.13 0.15 | 0.13 0.15| 0.15 0.13 | 0.14 0.16
bpic2011_2 | 0.05 0.05| 0.05 0.06 | 0.12 0.13 | 02 0.2 0.12 0.13 | 0.13 0.16 | 0.14 0.13
bpic2011_3 | 0.04 0.04 | 0.12 0.03 | 0.06 0.07 | 0.08 0.07 | 0.06 0.07| 006 0.06 | 0.13 0.14
bpic2011_4 | 0.13 0.14 | 0.18 0.16 | 0.16 0.15| 0.17 0.16 | 0.16 0.15| 021 0.16 | 0.16 0.16
bpic2015_1 | 0.09 0.1 | 0.09 0.1 | 0.15 0.16 | 0.15 0.15 | 0.14 0.15| 0.19 0.13 | 0.12 0.13
bpic2015_2 | 0.06 0.06 | 0.05 0.05| 0.09 0.1 | 0.12 0.11 0.08 0.08 | 0.09 0.09 | 0.14 0.13
bpic2015_3 | 0.07 0.07 | 0.08 0.08 | 0.09 0.1 0.1 0.12 | 0.08 0.1 | 0.09 0.12 | 0.09 0.09
bpic2015_4 | 0.07 0.07 | 0.07 0.07 | 0.1 0.09 | 0.08 0.08 0.1 008 | 0.1 0.1 0.06 0.06
bpic2015_5 | 0.08 0.09 | 0.08 0.1 | 0.11 0.12| 0.13 0.15 | 0.11 0.14| 0.13 0.17 | 0.09 0.1
production 027 023|035 024 026 023|028 024 | 029 024| 029 022 | 028 0.29
insurance_1 | 0.09 0.1 | 0.12 0.12| 0.11 0.11 | 0.12 0.12 | 0.12 0.13| 0.14 0.14 | 0.14 0.15
insurance_2 | 0.23 0.21 | 0.29 0.23 | 025 024 | 02 0.21 027 028 034 028 | 025 0.26

sepsis_1 0.12 0.2 0.12 0.11] 0.12 0.1 | 0.15 0.1 0.12 0.11 | 0.17 0.1 0.1 0.1
sepsis_2 006 0.06 | 006 006 | 006 006 006 0.06 | 0.06 006 | 006 006 | 0.07 0.07
sepsis_3 014 0.15| 022 0.15| 014 0.15| 0.15 0.15 | 0.15 0.15| 0.16 0.16 | 0.16 0.16

bpic2012_1 | 021 0.22| 021 021 | 022 022 | 022 022 | 023 024 | 029 024 | 022 0.22
bpic2012_2 | 0.15 015 015 015 0.17 0.15] 0.18 015 | 0.19 0.16 | 0.16 0.16 | 015 0.15
bpic2012_3 | 0.17 0.16 | 0.16 0.17 | 0.18 0.18 | 0.18 0.16 | 0.19 0.18 | 0.2 0.19 | 0.16 0.16
bpic2017_1 | 0.12 0.12 | 0.13 0.13| 012 0.12 | 0.14 0.13 | 0.13 0.13 | 0.21 0.17 | 012 0.12
bpic2017_2 | 0.08 0.08 | 0.08 0.08 | 0.08 0.08 | 0.08 0.08 | 0.08 0.08| 0.09 0.09 | 0.07 0.08
bpic2017_3 | 0.15 0.15| 0.19 0.16 | 015 0.15 | 0.18 0.16 | 015 0.16 | 0.17 0.17 | 015 0.15
traffic 019 02| 019 0.19| 02 018 0.19 0.18 02 021 02 0.2 0.18 0.18
hospital_1 0.03 0.03| 0.03 0.04 | 003 0.03| 003 003 | 0.04 003 | 0.04 0.04 | 0.04 0.04
hospital_2 0.05 0.04 | 0.04 0.04 | 0.04 004 | 004 0.04 | 0.05 004 | 004 004 | 0.04 0.04

DR 0.02 0.01 | 0.02 0.03| 0.02 0.02| 0.02 0.02 | 0.02 0.02| 002 0.02 | 0.02 0.02
github 021 02 02 02 | 021 02021 0.2 021 02 | 021 02 023 0.23
LtC 0.12 011} 0.12 ¢0.11| 011 0.12 | 011 011 | 011 011 | 011 011 | 0.12 0.14

184

ACKNOWLEDGEMENT

I am very grateful to my supervisors Marlon Dumas and Fabrizio Maria Maggi for
guiding me in my research and for their constant support and feedback throughout
the years.

I would also like to express my gratitude to my thesis reviewers Myra
Spiliopoulou, Donato Malerba, and Meelis Kull for their positive feedback and
insightful comments that helped me to improve the thesis further.

I would like to thank all my co-authors for helping me in fine-tuning the ideas
and executing them into research papers. I am very thankful to Marcello la Rosa
and Massimiliano de Leoni for their time while hosting me in their research groups
at Queensland University of Technology and Eindhoven University of Technol-
ogy.

I am grateful to my friends and family without whom I cannot imagine going
through the PhD years. I would like to give a special thanks to Anna Leontjeva,
for always being up for the idea-generating and pair-programming sessions. To
Karl-Oskar Masing for always being there for me when needed and providing the
very necessary moral support. And to Niek Tax, for convincing me that anything
is possible and for motivating me to aim higher; your constant encouragement and
positivity have been key factors in helping me finish writing this thesis.

I would also like to acknowledge the Estonian Research Council, the Doc-
toral School of Information and Communication Technology (IKTDK), and the
European Regional Development Fund for funding my studies. The experiments
provided in the thesis were performed using the resources from the University of
Tartu High Performance Computing Center.

185

SISUKOKKUVOTE

Ariprotsessi tulemuste ennustav ja korralduslik seire

Viimastel aastatel on erinevates valdkondades tegutsevad ettevotted iiles néida-
nud kasvavat huvi masindppel pohinevate rakenduste kasutusele votmiseks. Muu-
hulgas otsitakse voimalusi oma &driprotsesside efektiivsuse tdstmiseks, kasutades
ennustusmudeleid protsesside jooksvaks seireks. Sellised ennustava protsessiseire
meetodid votavad sisendiks siindmuslogi, mis koosneb hulgast 16petatud &riprot-
sessi juhtumite siindmusjadadest, ning kasutavad masindppe algoritme ennustus-
mudelite treenimiseks. Saadud mudelid teevad ennustusi 16petamata (antud aja-
hetkel aktiivsete) protsessijuhtumite jaoks, vottes sisendiks siindmuste jada, mis
selle hetkeni on toimunud ning ennustades kas jargmist siindmust antud juhtu-
mis, juhtumi 16ppemiseni jidnud aega voi instantsi 10pptulemust. Lopptulemusele
orienteeritud ennustava protsessiseire meetodid keskenduvad ennustamisele, kas
protsessijuhtum 15ppeb soovitud voi ebasoovitava 10pptulemusega. On oluline,
et sellised ennustussiisteemid teeksid ennustusi vdimalikult tdpselt ning vdimali-
kult varajastes protsessistaadiumites, teisisonu, vottes sisendiks vdimalikult vihe
siindmusi. Siisteemi kasutaja saab ennustuste alusel otsustada, kas sekkuda antud
protsessijuhtumisse voi mitte, eesmirgiga dra hoida ebasoovitavat 10pptulemust
voi leevendada selle negatiivseid tagajdrgi. Erinevalt puhtalt ennustavatest siis-
teemidest annavad korralduslikud protsessiseire meetodid kasutajale ka soovitusi,
kas ja kuidas antud juhtumisse sekkuda, eesmirgiga optimeerida mingit kindlat
kasulikkusfunktsiooni.

Kéesolev doktoritdo uurib, kuidas treenida, hinnata ja kasutada ennustusmude-
leid &riprotsesside 1opptulemuste ennustava ja korraldusliku seire raames. Kuigi
kirjanduses eksisteerib mitmeid ennustava protsessiseire meetodeid, on eri autorid
kasutanud erinevat terminoloogiat, katsete iilesehitust, andmestikke ja vordlusalu-
seid, mistottu puudub selge iilevaade, kuidas antud meetodid iiksteisega korvutu-
vad. Selle tithimiku tditmiseks analiiiisib antud doktoritd6 olemasolevaid ennus-
tava protsessiseire meetodeid ning pakub vélja taksonoomia nende klassifitsee-
rimiseks. Lisaks vordleb doktoritd6 olemasolevaid meetodeid katseliselt, vottes
aluseks 24 ennustusiilesannet, mis pohinevad iiheksal reaalsel siindmuslogil. Eks-
perimentide tulemused panevad kahtluse alla varasema hiipoteesi, mille kohaselt
on soovitatav treenida iga voimaliku jada pikkuse jaoks eraldi klassifitseerija, ka-
sutades kadudeta (indeksipohist) jada kodeerimist, eelistades seda vorrelduna ka-
dudega (agregeeritud) kodeerimise ning iiheainsa klassifitseerija treenimisega.

Varasemate meetodite analiiiisist selgub, et olemasolevad meetodid keskendu-
vad vaid struktureeritud andmetele, jittes tdhelepanuta struktureerimata (tekstili-
sed) andmed, mis reaalsetes siindmuslogides tihtipeale esinevad. Kéesolev dok-
toritdo tdidab antud tithimiku, pakkudes vilja raamistiku, mis kasutab tekstikae-
ve tehnikaid, ekstraheerimaks tunnuseid tekstilistest andmetest, ning kombineerib
need struktureeritud andmetest saadud tunnustega, eesmérgiga treenida tipsemaid

186

ennustusmudeleid. Katsed néitavad, et lihtne sdnahulga-pdhine kodeering to6tab
enamasti paremini kui teised tekstikaeve meetodid.

Ennustava protsessiseire tehnikate kvaliteeti moddetakse enamasti ennustus-
te tdpsuse ning varasuse seisukohast, eirates ennustuste stabiilsust olukorras, kus
ennustused on tehtud sama protsessijuhtumi jaoks, kasutades erinevat hulka siind-
musi. Selle tithimiku tditmiseks pakub kéesolev doktoritoo vilja ennustuste ajalise
stabiilsuse mdiste ning vordleb olemasolevaid ennustava protsessiseire tehnika-
id antud moddiku alusel. Tulemuste kohaselt on kdige stabiilsemad rekurrentse-
tel ndrvivorkudel ning otsustuspuude vdimendamisel pdhinevad klassifitseerijad
(LSTM ja XGBoost).

Varasemad teadustddd ennustava protsessiseire vallas keskenduvad ennustuste
genereerimisele, kuid ei anna kasutajale soovitusi nende ennustuste kasutamise
osas voi eeldavad, et kasutaja mairab ise ennustusskoori suuruse osas ldvendi,
mille iiletamisel saadab siisteem hiire. Kdesolev doktoritoo pakub vilja raamis-
tiku hairepdhiseks korralduslikuks protsessiseireks, mis leiab optimaalse lavendi
empiiriliselt, vottes arvesse driprotsessiga seonduvaid kulusid, nt protsessijuhtu-
misse sekkumise kulu, ebasoovitava 16pptulemuse kulu ning ebasoovitava 15pp-
tulemuse leevendamise efektiivsust, juhul kui protsessi sekkutakse. Katsed nii-
tavad, et véljapakutud ldhenemine vdimaldab jdrjepidevalt leida ldvendeid, mis
minimeerivad protsessijuhtumite to6tlemise kogukulusid.

187

Name:
Date of Birth:
Citizenship:

2015-2019
2012-2014

2009-2012

2018
2013-2017
2015
2014-2015

CURRICULUM VITAE

Personal data

Irene Teinemaa
22.08.1990
Estonian

Education

University of Tartu, Faculty of Science and Technology,
doctoral studies, specialty: Computer Science.

University of Tartu, Faculty of Mathematics and Computer
Science, master’s studies, specialty: Software Engineering.
University of Tartu, Faculty of Law, bachelor’s studies,
specialty: Law.

Employment

University of Tartu, Data Analyst
STACC, Research Engineer

University of Tartu, Teaching Assistant
Teleport Inc., Data Scientist

Scientific work

Main fields of interest:

e machine learning

e data mining

e process mining

188

Nimi:
Siinniaeg:
Kodakondsus:

2015-2019
2012-2014

2009-2012

2018
2013-2017
2015
2014-2015

ELULOOKIRJELDUS

Isikuandmed

Irene Teinemaa
22.08.1990
Eesti

Haridus

Tartu Ulikool, Loodus- ja tippisteaduste valdkond, dokto-
ridpe, eriala: Informaatika.

Tartu Ulikool, Matemaatika-informaatikateaduskond, ma-
gistridpe, eriala: Tarkvaratehnika.

Tartu Ulikool, Oigusteaduskond, bakalaureusedpe, eriala:
Oigusteadus.

Teenistuskaik

Tartu Ulikool, andmeanaliiiitik
STACC, teadur

Tartu Ulikool, praktikumijuhendaja
Teleport Inc., andmeteadlane

Teadustegevus

Peamised uurimisvaldkonnad:

e masindpe

e andmekaeve

e protsessikaeve

189

I

I

II

v

LIST OF ORIGINAL PUBLICATIONS

Publications in the scope of the thesis

Irene Teinemaa, Marlon Dumas, Marcello La Rosa, and Fabrizio Maria
Maggi. Outcome-oriented predictive process monitoring: Review and
benchmark. ACM Transactions on Knowledge Discovery from Data, 2018.
To appear

Lead author. The author performed the implementation and the analysis of
the experiments, most of the literature review, and contributed substantially
to the ideas and the writing.

Irene Teinemaa, Marlon Dumas, Fabrizio Maria Maggi, and Chiara Di
Francescomarino. Predictive business process monitoring with structured
and unstructured data. In Marcello La Rosa, Peter Loos, and Oscar Pas-
tor, editors, Business Process Management - 14th International Confer-
ence, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016. Proceed-
ings, volume 9850 of Lecture Notes in Computer Science, pages 401-417.
Springer, 2016

Lead author. The author performed the implementation and the analysis of
the experiments and contributed substantially to the ideas and the writing.
Irene Teinemaa, Marlon Dumas, Anna Leontjeva, and Fabrizio Maria
Maggi. Temporal stability in predictive process monitoring. Data Min.
Knowl. Discov., 32(5):1306-1338, 2018

Lead author. The author performed the implementation and the analysis of
the experiments, and contributed substantially to the ideas and the writing.
Irene Teinemaa, Niek Tax, Massimiliano de Leoni, Marlon Dumas, and
Fabrizio Maria Maggi. Alarm-based prescriptive process monitoring. In
Mathias Weske, Marco Montali, Ingo Weber, and Jan vom Brocke, edi-
tors, Business Process Management Forum - BPM Forum 2018, Sydney,
NSW, Australia, September 9-14, 2018, Proceedings, volume 329 of Lecture
Notes in Business Information Processing, pages 91-107. Springer, 2018
Lead author. The author performed the implementation and the analysis of
the experiments and contributed substantially to the ideas and the writing.

Publications out of the scope of the thesis

Irene Teinemaa, Anna Leontjeva, Marlon Dumas, and Riivo Kikas.
Community-based prediction of activity change in skype. In Jian Pei, Fab-
rizio Silvestri, and Jie Tang, editors, Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, ASONAM 2015, Paris, France, August 25 - 28, 2015, pages 73—
80. ACM, 2015

190

. Chiara Di Francescomarino, Marlon Dumas, Fabrizio Maria Maggi, and
Irene Teinemaa. Clustering-based predictive process monitoring. [EEE
Transactions on Services Computing, 2016. To appear

. Diego Calvanese, Marlon Dumas, Ulari Laurson, Fabrizio Maria Maggi,
Marco Montali, and Irene Teinemaa. Semantics and analysis of DMN de-
cision tables. In Marcello La Rosa, Peter Loos, and Oscar Pastor, editors,
Business Process Management - 14th International Conference, BPM 2016,
Rio de Janeiro, Brazil, September 18-22, 2016. Proceedings, volume 9850
of Lecture Notes in Computer Science, pages 217-233. Springer, 2016

. Diego Calvanese, Marlon Dumas, Ulari Laurson, Fabrizio Maria Maggi,
Marco Montali, and Irene Teinemaa. Semantics, analysis and simplification
of DMN decision tables. Inf. Syst., 78:112-125, 2018

. Niek Tax, Sebastiaan J. van Zelst, and Irene Teinemaa. An experimental
evaluation of the generalizing capabilities of process discovery techniques
and black-box sequence models. In Jens Gulden, Iris Reinhartz-Berger,
Rainer Schmidt, Sérgio Guerreiro, Wided Guédria, and Palash Bera, ed-
itors, Enterprise, Business-Process and Information Systems Modeling -
19th International Conference, BPMDS 2018, 23rd International Confer-
ence, EMMSAD 2018, Held at CAISE 2018, Tullinn, Estonia, June 11-12,
2018, Proceedings, volume 318 of Lecture Notes in Business Information
Processing, pages 165-180. Springer, 2018

. Ilya Verenich, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi,
and Irene Teinemaa. Survey and cross-benchmark comparison of re-
maining time prediction methods in business process monitoring. CoRR,
abs/1805.02896, 2018

. Niek Tax, Irene Teinemaa, and Sebastiaan J. van Zelst. An interdisciplinary
comparison of sequence modeling methods for next-element prediction.
CoRR, abs/1811.00062, 2018

191

19.

22.
23.

24.

27.

29.
45.

49.

53.

55.

56.

59.

61.

62.

64.

66.

67.

71.
72.

73.

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN
DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

Kaili Miiiirisep. Eesti keele arvutigrammatika: siintaks. Tartu, 2000, 107 1k.
Varmo Vene. Categorical programming with inductive and coinductive
types. Tartu, 2000, 116 p.

Olga Sokratova. Q-rings, their flat and projective acts with some appli-
cations. Tartu, 2000, 120 p.

Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline iihesta-
mine. Tartu, 2001, 138 1k.

Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

Hirmel Nestra. Iteratively defined transfinite trace semantics and program
slicing with respect to them. Tartu 2006, 116 p.

Marina Issakova. Solving of linear equations, linear inequalities and
systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving I11-Posed Problems. Tartu 2010, 105 p.

Jiiri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

Mark FiSel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
Margus Treumuth. A Framework for Asynchronous Dialogue Systems:
Concepts, Issues and Design Aspects. Tartu 2011, 95 p.

Dmitri Lepp. Solving simplification problems in the domain of exponents,
monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

192

74.

7.

78.
79.

81.

83.

84.

87.

90.

91.

92.

94.

100.

101.

102.

103.

104.

108.

109.

110.

I11.

112.

Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

Reina Uba. Merging business process models. Tartu 2011, 166 p.

Uuno Puus. Structural performance as a success factor in software deve-
lopment projects — Estonian experience. Tartu 2012, 106 p.

Georg Singer. Web search engines and complex information needs. Tartu
2012, 218 p.

Dan Bogdanov. Sharemind: programmable secure computations with
practical applications. Tartu 2013, 191 p.

Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu
2013, 151 p.

Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language
development in enterprise information systems. Tartu, 2013, 151 p.

Raivo Kolde. Methods for re-using public gene expression data. Tartu,
2014, 121 p.

Vladimir Sor. Statistical Approach for Memory Leak Detection in Java
Applications. Tartu, 2014, 155 p.

Naved Ahmed. Deriving Security Requirements from Business Process
Models. Tartu, 2014, 171 p.

Liina Kamm. Privacy-preserving statistical analysis using secure multi-
party computation. Tartu, 2015, 201 p.

Abel Armas Cervantes. Diagnosing Behavioral Differences between
Business Process Models. Tartu, 2015, 193 p.

Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:
An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

193

113.

114.

116.

121.

122.

Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

Eno Tonisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

194

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

	Introduction
	Process mining
	Predictive and prescriptive process monitoring
	Problem statement
	Contributions and outline

	Background
	Machine learning
	Evaluation measures and experimental settings
	Evaluation measures
	Model selection and generalization

	Classification algorithms
	Early sequence classification

	Literature Review
	Search methodology
	Study retrieval
	Study selection
	Primary and subsumed studies

	Analysis and taxonomy of the training methods
	General concepts and workflow
	Prefix extraction and filtering
	Trace bucketing
	Sequence encoding
	Classification algorithm
	Discussion

	Deployment use cases
	Evaluation measures and experimental settings
	Evaluation measures
	Model selection and generalization

	Summary

	Benchmark
	Datasets
	Experimental setup
	Research questions and evaluation measures
	Classifier learning and bucketing parameters
	Filtering and feature encoding parameters

	Results: accuracy and earliness
	Results: time performance
	Results: gap-based filtering
	Results: categorical domain filtering
	Summary

	Predictive Business Process Monitoring with Structured and Unstructured Data
	Text mining
	Predictive process monitoring framework with structured and unstructured data
	Overview of the framework
	Text models

	Evaluation
	Approaches
	Datasets
	Experimental setup
	Results

	Summary

	Temporal Stability in Predictive Process Monitoring
	Stability of learning algorithms
	Temporal prediction stability
	Prediction scores over time
	Temporal stability
	Combining prediction scores via smoothing

	Evaluation
	Approaches
	Datasets
	Experimental setup
	Results

	Summary

	Alarm-Based Prescriptive Process Monitoring
	Cost-sensitive learning and prescriptive process monitoring
	Alarm-based prescriptive process monitoring framework
	Concepts and cost model
	Alarm-based prescriptive process monitoring system
	Return on investment analysis

	Alarming mechanisms and empirical thresholding
	Evaluation
	Approaches and baselines
	Datasets
	Experimental setup
	Results

	Summary

	Conclusion and Future Work
	Summary of contributions
	Future work

	Bibliography
	Code Repositories
	Additional Experiments
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

