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ACCURATE INDOOR LOCALIZATION USING 
WIDE GSM FINGERPRINTING 

Master’s Thesis 

Veljo Otsason 

Abstract 
 

Accurate indoor localization has long been an objective of the ubiquitous computing 

research community, and numerous indoor localization solutions based on 802.11, Blue-

tooth, ultrasound and infrared technologies have been proposed. This Thesis presents 

the first accurate GSM-based indoor localization system that achieves median accuracy 

of 5 meters in large multi-floor buildings. The key idea that makes accurate GSM-based 

indoor localization possible is the use of wide signal-strength fingerprints. In addition to 

the 6 strongest cells traditionally used in the GSM standard, the wide fingerprint in-

cludes readings from up to 32 additional cells whose signals are strong enough to be 

detected, but too weak to be used for efficient communication. We evaluate our GSM-

based indoor localization system in three multi-floor buildings located in two metropoli-

tan areas. Experimental results show that our system achieves accuracy comparable to 

an 802.11-based implementation, and can accurately differentiate between floors in both 

wooden and steel-reinforced concrete structures. 
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Introduction 
Developments in the wireless technology have enabled creating applications that are 

aware of the user’s location. These applications use location to provide relevant infor-

mation or use it otherwise for the benefit of the user. Different location aware 

applications are meant for different environments and require different accuracy. While 

many outdoors applications, such as friend-finder, can successively work with accuracy 

of hundreds of meters, indoor applications, like printing to the nearest printer or guiding 

people indoors, usually require granularity of a few meters. 

The accurate localization of objects and people in indoor environments has long been 

considered an important building block for ubiquitous computing applications [37, 18]. 

Most research on indoor localization systems has been based on the use of short-range 

signals, such as Wi-Fi [4, 8, 21], Bluetooth [1], ultrasound [29, 39], infrared [37, 38], or 

RFID [14, 27]. This Thesis shows that contrary to popular belief an indoor localization 

system based on wide-area GSM signal fingerprints can achieve high accuracy, and is in 

fact comparable to an 802.11-based implementation. 

GSM-based indoor localization has several benefits: 

• GSM coverage is almost pervasive, far outreaching the coverage of 802.11 

networks. 

• The wide acceptance of cellular phones makes them ideal conduits for the de-

livery of ubiquitous computing applications. 

• A localization system based on cellular signals, such as GSM, leverages the 

phone’s existing hardware and removes the need for additional radio inter-

faces. 

• Because cellular towers are dispersed across the covered area, a cellular-based 

localization system would still work in situations where a building’s electrical 

infrastructure has failed. Moreover, cellular systems are designed to tolerate 

power failures. For example, the cellular network kept working during the 

massive power outage that left most of the North-Eastern United States and 

Canada in the dark in the summer of 2003. 
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• GSM, unlike 802.11 networks, is operating in a licensed band, and therefore 

does not suffer from interference from nearby devices operating on the same 

frequency (e.g., microwave ovens, cordless phones, wireless keyboards, ga-

rage door openers, all Bluetooth devices etc). 

• The significant expense1 and complexity of cellular base stations results in a 

network that evolves slowly and is only reconfigured infrequently. While this 

lack of flexibility (and high configuration cost) is certainly a drawback for the 

cellular system operator, it results in a stable environment that allows the lo-

calization system to operate for a long period before having to be recalibrated. 

 

This Thesis presents the first fine-grained GSM-based indoor localization system. We 

present results for experiments conducted on datasets collected from three multi-floor 

buildings in two large North American cities spanning a wide spectrum of urban densi-

ties, ranging from a busy downtown core to a quiet residential neighborhood. The 

results show that this fine-grained GSM-based indoor localization system can effec-

tively differentiate between floors and achieves median within-floor accuracy as low as 

2.5 meters.  

The key idea that makes accurate GSM-based indoor localization possible is the use 

of wide signal-strength fingerprints. The wide fingerprint includes the 6 strongest GSM 

cells and readings of up to 32 additional GSM channels, most of which are strong 

enough to be detected, but too weak to be used for efficient communication. The higher 

dimensionality introduced by the additional channels dramatically increases localization 

accuracy.  

We make the following contributions: 

• We present the first accurate GSM-based indoor localization system and show 

that it achieves accuracy comparable to an 802.11-based implementation. 

• We show that a GSM-based localization system can effectively differentiate 

between floors for both wooden and steal-reinforced concrete structures. 

                                                 
1 A macro-cell costs $500,000 to $1-million (U.S.).  Micro-cells cost about a third as much, but a larger 

number is needed to cover the same area [24]. 
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• We show that there is significant signal diversity across metropolitan envi-

ronments and that this diversity enables the GSM-based system to achieve 

high localization accuracy. 

• We show that the availability of signal strength readings from cells other than 

the 6 strongest cells traditionally used in GSM increases localization accuracy 

by up to 50%. 

 

The rest of this Thesis is organized as follows. First we give a general overview and 

motivation of the location-aware applications, after which common approaches to loca-

tion sensing are described. Description of the wireless technologies that this Thesis is 

based on ends the first chapter. In the next chapter, related work is discussed. Several 

indoor and outdoor localization systems are described. Third chapter explains our meth-

odology – our localization algorithms and methods, as well as data collection approach. 

Chapter 4 describes results of our experimental evaluation. Finally, Chapter 5 concludes 

the Thesis and discusses directions for future work. 
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1 Background 
The rapid advancement of computing technology is constantly opening new possibili-

ties. The shift from mainframes to personal computers as well as the shift from 

disconnected computers to networked ones both dramatically enhanced the way we use 

computer technology in our every-day lives. Technology advancements have made it 

possible to shrink the size of the computer, and connect it wirelessly, so that it can be 

easily used anywhere anytime. The paradigm shift from desktop to mobile computing 

opens new possibilities. Context awareness, the ability of applications to adjust their 

behavior based on the environmental information, is considered one of the essential 

aspects of this new paradigm. Context-awareness and context-based adaptation is par-

ticularly useful for mobile computing, enabling many valuable applications, such as 

locating people in case of emergencies, tracking patients and equipment in hospitals, 

finding friends or colleagues, or sending location and context-based advertisements to 

people inside shopping malls. 

In this chapter we first give general overview of context awareness and location 

awareness in particular. We then discuss three common approaches for determining 

geographical location. Finally, we describe wireless technologies central to this Thesis, 

including GSM cellular system and 802.11 wireless LAN. 

1.1 Context awareness 

Context is any information that can be used to describe the general environment the 

application is used in. It can be information about people, their locations, activities and 

intentions, or anything else that is relevant to the application’s functionality [6]. Abowd 

et al. point out five important parts of context (“five W’s”) [2]: 

 

• Who is the user and/or the other people around (identity)? 

• What the user is doing (activity)? 

• Where the user is (location)? 

• When is the usage taking place, including relative time (time)? 

• Why the user is doing what she is doing? 
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The Where and Who of context (location and identity) have been widely researched. 

Olivetti Research Lab’s Active Badge [37] and the Xerox PARCTab [38] were two of 

the first applications that used indoor location to provide context-aware services, such 

as automatic call forwarding and automatically updated maps of users’ locations. Iden-

tity of the user is often used, but identities of other people have not gained that much 

attention. Time component is also widely used, but not with its full capacity. For exam-

ple, relative changes in time could be used to interpret user’s activity or intentions. 

Short visits at an exhibit could be used as an indication of lack of interest. Also, actions 

that diverge from the typical timeline can reveal useful information. For example, when 

an elderly person deviates from a typically active morning routine, a notification can be 

sent. The parts of context that deal with activity and user motivation (What, Why), are 

still widely unexplored, because of the complexity of extracting and representing this 

information. [2] 

Additionally, basic contextual elements can be used (alone or in combination) to ex-

tract more sophisticated contextual information. For example, the identity of the user 

can be used to get user’s phone number from the phone book. Location and identity can 

be leveraged to determine a list of friends near-by. Time and location can be leveraged 

together to get information about the weather conditions. [6] 

1.1.1 Location awareness 

Location is the most widely used contextual element. Location-aware applications 

take location into account to do their work or to show information to the user that is a 

function of their and/or other users’ location. Different applications require different 

granularity of location information. For example, to show weather conditions where the 

user currently is, city-scale accuracy could be sufficient, but finding near-by friends 

requires accuracy of at least a few kilometers. Some applications are specifically meant 

for indoors use and therefore require higher accuracy. Even within different indoor ap-

plications, however, there is significant variation in accuracy requirements For example, 

locating the nearest printer requires different accuracy than locating a book in a library 

[4]. 

Location-awareness enables many useful commercial [1], educational [11], military 

and healthcare [37] applications. Efficient location and coordination of staff in large 
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organizations is a recurring problem that can be relieved by location aware applications. 

Hospitals, for example, may utilize up-to date information about the location of staff 

and patients [37]. 

Location information is particularly useful, or sometimes even the matter of life and 

death, in case of emergencies. People needing help often do not know their exact loca-

tion or are unable to communicate it, for example while having a heart attack and 

calling for help over a cell phone. U.S. Federal Communications Commission has ap-

proved the Enhanced 911 (E911) mandate [50], which requires wireless carriers to be 

able to locate, within 50 to 100 meters, any cell phone calling 911, the U.S. nation-wide 

emergency service number. E112 [49], the European equivalent of the American E911, 

does not require any particular accuracy – carriers only need to provide location capa-

bilities that are compatible with their networks [36]. However, although 50 meters 

accuracy would significantly ease providing help in many situations, it does not help 

finding the person in high density areas, inside hospitals, office buildings, hotels or 

condominiums, with potentially tens of floors and hundreds of rooms. Therefore, satis-

fying the current E911 requirements is only the minimum that has to be done to 

accurately localize people and provide quick and effective help in these areas. 

Cell phones are increasingly becoming the most ubiquitous mobile devices. In Europe 

more than 80% of the people carry cell phones, in North America the penetration is 

about 60% and growing rapidly. At the same time the capabilities of phones improve – 

screens become bigger, processing power and networking bandwidth increase etc. This 

makes mobile phones an ideal platform for ubiquitous computing and location-aware 

applications. 

1.2 Location Sensing 

An important building block of location-aware applications is the location sensing 

system, which provides the application with the actual geographical location of the user 

or other important entities. The location can be represented as absolute coordinates 

(longitude, latitude, elevation), relative coordinates (x,y relative to the corner of a build-

ing), or in symbolic form (such as “Room 5180”, or “5th floor of the Bahen building”). 

This section describes three main approaches of extracting location using radio (infrared 

or ultrasound) signals. These approaches can be used separately or in combination to do 

actual location sensing. 
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1.2.1 Cell Identification 

Most of the wireless radio networks make use of cellular architecture. This means that 

instead of one wide-range radio transmitter, many stations with smaller ranges are used. 

This allows more effective bandwidth and energy use. The general idea behind cell 

identification method is that such small stations (or cells) transmit unique location in-

formation that is only heard by mobile stations in the radio range of the particular cell. 

Reading this information, the stations can extract their own location. The transmitted 

information can be in a form of explicit location, or as a unique identifier, which re-

quires further matching of identifiers and explicit locations to make the information 

useful. 

Obviously, the accuracy of this approach depends on the size of cells. Unfortunately 

the optimal cell size of many technologies is quite large. In case of cellular telephony 

systems such as GSM, the cell size can be up to tens of kilometers [26]. Wireless local 

area networks such as 802.11 also use cellular organization, but cells are much smaller, 

usually up to hundreds of meters [31]. However, the usefulness of this approach also 

depends on the area that is covered by the base technology, i.e. the geographical area 

where any of the cells can be heard and thus location determined. 

In the case of GSM, the Cell Identification (CI) method relies on the fact that a cell 

phone is constantly aware of the cell ID it is currently using. The size of cells is usually 

smaller (up to tens of meters) in urban areas and much larger (up to tens of kilometers) 

in rural environments [26]. CI’s accuracy can be improved by TA (Timing Advance) 

[36]. TA is a delay time used to adjust the transmission timing to the propagation delay 

between cell phone and cell station that are farther away. In practice, TA is a discrete 

parameter; each unit of which represents about 500 meters. 

1.2.2 Lateration 

Lateration-based techniques extend basic Cell Identification by taking advantage of 

the fact that in cellular systems, coverage areas of cells usually overlap and mobile sta-

tion can hear many cells simultaneously. Knowing that the station is located in the 

intersection of the areas of multiple cells increases the accuracy of localization. In addi-

tion to that, lateration methods try to estimate the angle or distance [35] between the 

mobile station and cells, increasing the accuracy even more. 
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The angle can be measured by cells with directional antennas that detect the direction 

of the signal transmitted by the mobile station. If at least two cells detect the angle, the 

intersection of the lines formed by the angles identifies the two-dimensional location of 

the mobile station. This method is also referred to as Angle of Arrival (AOA) [35]. 

The distance between the cell and mobile station can be estimated by measuring the 

time it takes the signal to travel between them or the amount of signal attenuation along 

the way.. Radio signals travel at the speed of light, so by knowing the time, the distance 

from the cell could be easily calculated. Knowing distances between the mobile station 

and at least three cell stations, the actual location can be calculated. Each distance forms 

a circle around a cell. The intersection of three circles is the position of the mobile sta-

tion. Popular methods based on this approach are Time of Arrival (TOA) [35], Time 

Difference of Arrival (TDOA) [35], Enhanced Observed Time Difference (E-OTD) 

[36]. In case of TOA, the distance is derived from the absolute time for a radio signal to 

travel. TOA, however requires that the receiver knows the exact time of transmission. 

To overcome this requirement, round-trip time can be measured instead. TDOA meas-

ures time difference of the same signal at different cells. In E-OTD, cells broadcast 

messages to mobile stations, which then compare the relative times of arrival to esti-

mate its distance from stations. [36] 

Signal strength of the radio waves in vacuum decreases as the inverse of the squared 

distance (d-2) [26]. Using this relation, the received signal strength and the transmission 

power of the cell, the distance from it can be estimated. Similarly to TOA, the location 

of the mobile station can be calculated if the distances from at least three cells are 

known. 

Unfortunately, these methods are not very accurate in real life. In reality, radio signals 

are corrupted by unwanted random effects such as noise, interference from other 

sources, and interference between different radio channels. Signal propagation indoors 

is even more complex. Indoor environments cause harsh multi-path effects, interference 

and dead-spots [21]. Thus, these methods work ideally only in line-of-sight conditions, 

where no obstructions are on the way of the signal, which is rarely the case indoors. 

They do not take into account complicated radio signal propagation and therefore lack 

the accuracy required for indoor positioning. 
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1.2.3 Fingerprinting 

One approach to overcome the problem of signal propagation peculiarities is to teach 

them to the system. The varying signal strengths, propagation times or angles can be 

measured at different known locations and recorded. When a new point needs to be lo-

calized, these quantities can be compared to the ones encountered before. The new 

location can then be assumed to be close to the previously collected points that have 

similar signal characteristics. This technique is called fingerprinting and the collected 

signal characteristics are called fingerprints, due to similarity to the fingerprint com-

parison in forensics. Therefore, to localize a mobile device using fingerprinting, the 

current signal fingerprint has to be compared to the fingerprints collected during a train-

ing period whose locations are known. 

Two factors account for the good performance of radio fingerprinting. The first is that 

the signal characteristics observed by mobile devices exhibit considerable spatial vari-

ability. For example, a given radio source may be heard stronger or not at all a few 

meters away. The second factor is that these characteristics are consistent in time; for 

example a medium-weak signal from a given source at a given location is likely to be 

similar tomorrow and next week. In combination, this means that there is a radio profile 

that is feature-rich in space and reasonably consistent in time. Fingerprinting-based lo-

cation techniques take advantage of this by capturing this radio profile for later 

reference. 

The advantage of a fingerprinting based localization system is that it allows determin-

ing the location very accurately as all the signal propagation oddities can be taken into 

account. However, the more details are learned, the more vulnerable is this radio map to 

changes in the environment, such as moving furniture, construction of new buildings, 

weather conditions or even people and cars moving inside or outside the buildings. 

Therefore, this approach requires recalibration time after time to adapt to the changes in 

the environment. However, the parts of the environment that affect the signal propaga-

tion the most (buildings, walls) are usually stable, so recalibration is not needed often. 

Fingerprinting approach can be used with different technologies (e.g., GSM, 802.11), 

and with different types of input data. Most common is to use signal strength measure-

ments, times or angles of arrival, or combinations of these. Another important part of 

fingerprinting based localization method is the predictive algorithm. The role of this 

algorithm is to calculate the locations of new points by building a generalizing model 
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that matches the training samples, but more importantly, is able to predict the location 

of the yet unseen samples with high accuracy. In other words, determining the location 

if the fingerprint is identical to one of the training points is trivial; the algorithm has to 

be able to estimate the location in all the other cases as well, for example if the user is in 

between the training locations. Possible predictive algorithms include k-Nearest 

Neighbors, Support Vector Machines, Neural Networks, or other machine learning algo-

rithms for supervised learning [25, 13, 5]. 

1.3 Wireless Technologies 

This Thesis considers signal strength fingerprinting-based indoor localization systems 

that use two wireless technologies: GSM cellular phone system [26] and 802.11 (Wi-Fi) 

wireless LAN [31]. This section provides an overview of GSM and 802.11 emphasizing 

those aspects that are most relevant for building indoor localization systems.  

1.3.1 GSM Cellular System 

In the 1980s several analog systems for mobile communications were in use, such as 

AMPS in the United States, TACS in Britain and NMT in Northern Europe [41]. How-

ever, the need for a system that allowed roaming between countries was quickly 

recognized. Soon a standardization organization was created to develop a common 

standard – GSM (Global System for Mobile communications). GSM is fully digital sys-

tem; it supports both speech and data services, and allows smooth roaming across 

wireless carriers and countries. [41] 

GSM is the most widespread cellular telephony standard in the world, with deploy-

ments in 210 countries by 676 network operators2 in the end of 2004. Last year, the 

number of subscribers was growing most rapidly in Latin America (more than 150%), 

Russia, North America3 and India (all more than 70%). Asia Pacific region together 

with China is steadily becoming the largest GSM market. There were 1.6-billion GSM 

subscribers worldwide by the end of 2004, accounting for close to 80% of all the cellu-

lar subscribers. [43] 

                                                 
2 Excluding China and Chinese operators, which are not members of the GSM Association. 
3 Here, North America includes United States and Canada, but not Mexico, which belongs to Latin 

American subdivision. 
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GSM is the only cell phone standard in Europe and many other regions. North Ameri-

can market is dominated by CDMA, the next popular technology worldwide. Only 

about 30% of the North American subscribers were using GSM in the end of 2004, but 

the annual growth of GSM subscribers was bigger than the one of CDMA subscribers 

[43], which suggests growing importance of GSM in North America as well. 

The GSM network architecture can be divided into three general parts. The Mobile 

Station (MS) is the device (cell phone) carried by the user. The Base Station (BS) hosts 

cells and handles the radio link with MS’s. The Network Subsystem (NS) switches calls 

between mobile users, and between mobile and fixed network. [33, 26] 

1.3.1.1 Radio Resource Use 

The radio interface of GSM uses a combination of Frequency Division Multiple Ac-

cess (FDMA), Time Division Multiple Access (TDMA), and frequency hopping. The 

FDMA part divides the bandwidth by frequency into Radio Frequency Channels 

(RFCH) spaced 200 kHz apart. Each of these carrier frequencies is then divided into 

eight timeslots or bursts using TDMA. A timeslot lasts 0.577 ms and occupies a 200 

kHz slice of bandwidth. The slots numbered from timeslot 0 to 7 form a TDMA frame 

with length 4.615 ms. The recurrence of one of the eight timeslots in each frame makes 

up one physical channel. [26, 33, 30] 

Different radio frequencies are used for GSM networks around the globe. In Europe 

and most of the world, 900 MHz + 1800 MHz bands are used. In North America and 

some countries in Latin America and Caribbean, GSM is using 850 MHz + 1900 MHz 

bands. In several popular tourist destinations in Caribbean, all four bands are supported 

to make it easier for international travelers to use their cell phones. Different ranges are 

allocated for uplink (MS to BS) and downlink (BS to MS) communication (Table 1). In 

North America there are 124 bi-directional RFCHs in the 850 MHz band and 299 in the 

1900 MHz band, totaling 423 channels. In Europe the total number of channels is 548. 

[46] In this Thesis, all the experiments are done in North American bands. However, as 

the frequencies are similar, results should be analogous in other bands as well. 
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Band Frequencies used for RFCHs Numbers 

up 880.2, 880.4, …, 914.8 MHz 
900 MHz 

down 925.2, 925.4, …, 959.8 MHz 

975..1023, 
0..124 

up 1710.2, 1710.4, …, 1784.8 MHz 
1800 MHz

down 1805.2, 1805.4, …, 1879.8 MHz 
512..885 

up 824.2, 824.4, …, 848.8 MHz 
850 MHz 

down 869.2, 869.4, …, 893.8 MHz 
128..251 

up 1850.2, 1850.4, …, 1909.8 MHz 
1900 MHz

down 1930.2, 1930.4, …, 1989.8 MHz 
512..810 

Table 1. Four frequency bands used for GSM, up- and downlink frequencies, and channel numbering 

 

The GSM radio interface uses slow frequency hopping, changing the transmission 

frequency at regular intervals. The frequency is changed between bursts so that the 

whole burst is transmitted using the same frequency. Frequency hopping sequence is 

broadcast to all the MS’s through control channels. [26] 

The transmission power can be reduced to minimize the energy use and decrease in-

terference, whilst maintaining the quality of the radio links. According to specifications, 

power control must be implemented in MS side, but is optional in the BS. BS can re-

duce its RF output power at most 30 dB from its maximum level. [47] 

In each physical channel defined above, many logical channels can be transmitted, 

dividing physical channels further in time. GSM defines a variety of traffic and signal-

ing/control logical channels of different bit rates. There are speech and data traffic 

channels, different control and synchronization channels, etc. [30] 

1.3.1.2 BCCH Carrier 

Particularly important in the context of this Thesis is the broadcast control channel 

(BCCH), which is used in the BS to MS direction to broadcast system information such 

as the synchronization parameters, available services, and cell ID. Each cell is allocated 

a subset of RFCH channels, defined as the cell allocation (CA). One radio frequency 
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channel of the CA is used to carry BCCH (among other channels). This is called BCCH 

carrier (a.k.a. beacon frequency or C0, as it is the first frequency channel in a cell allo-

cation). In this channel, no frequency hopping is permitted on the first timeslot carrying 

BCCH. Although the BCCH information is only transmitted on the first timeslot, all 

other timeslots of the BCCH carrier should also be continuously transmitted without 

variation of RF level. If there is no information to send on a timeslot, BS must transmit 

a dummy burst. This enables MS to measure the received signal level and estimate the 

potential for handover to surrounding cells by simply tuning to their BCCH carriers. As 

BCCH carriers are constantly transmitted, MS can listen to them whenever it can, with-

out waiting for the particular timeslot. [45, 47, 26] In this Thesis, we also measure 

signal strengths on multiple BCCH channels and use this information to infer user’s 

location. 

When the MS is switched on and doesn’t know which channels are BCCH carriers, it 

goes through all the channels within its bands of operation and searches for BCCH car-

riers. Once it has found a BCCH carrier, it can read all the channel numbers of other 

BCCH carriers near by. To achieve smooth handover and operation, MS measures sig-

nal strengths of 16 BCCH channels, but synchronizes to and reads the BCCH 

information from the 6 strongest ones. [47, 44] 

The RFCHs allocated to a cell (including C0) may change dynamically in time, al-

though this happens very rarely. Frequencies can be changed to install new hardware or 

remove some for maintenance, or due to unplanned interference. [26] A change in one 

cell must usually be coupled with changes to other cells in order to retain non-

interference. The change is broadcast to all MSs in range together with the exact time 

(timeslot number) the change will occur. 

1.3.2 802.11 Wireless Networks 

In 1997, the IEEE approved 802.11 standard [48] that uses 2.4 GHz band to provide 

wireless networking at a maximum rate of 1-2 Mbps. In 1999, the 802.11b High Rate 

amendment was approved, which increased the maximum rate to 11 Mbps. The 802.11b 

(a.k.a. Wi-Fi or Wireless Ethernet) is now the most popular wireless LAN standard in 

the world. [31] However, many new improvements have been developed, for example 

802.11a and 802.11g, which increase the rate even further. In the following, term 

“802.11” is used to refer to the IEEE 802.11b networks. 
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The 802.11 network consist of several mobile nodes and an access point (AP), which 

usually provides the connection to the Internet. The nodes communicate wirelessly with 

the AP and to each other. 

1.3.2.1 Radio Resource Use 

Wi-Fi networks operate in 2.4 GHz ISM (Industrial, Scientific and Medical) band, 

which is reserved for unlicensed use in most of the countries in the world. It means that 

anybody using equipment that complies with the technical requirements can send and 

receive radio signals on these frequencies without a license. One of the allowed uses of 

this band is spread-spectrum wireless data networks, like 802.11. The exact frequency 

allocations are slightly different from one part of the world to another. [31] 

There are 14 possible carrier frequencies, different subsets of these in use in different 

countries. Table 2 shows frequencies allowed in United States, France, rest of the 

Europe and Japan. Most of the other countries use one of these four subsets (for exam-

ple Canada uses the same channels as the U.S.). 

 

Frequency U.S. Europe Japan France 

2412 MHz 1 1 1  
2417 MHz 2 2 2  
2422 MHz 3 3 3  
2427 MHz 4 4 4  
2432 MHz 5 5 5  
2437 MHz 6 6 6  
2442 MHz 7 7 7  
2447 MHz 8 8 8  
2452 MHz 9 9 9  
2457 MHz 10 10 10 10 
2462 MHz 11 11 11 11 
2467 MHz  12 12 12 
2472 MHz  13 13 13 
2484 MHz   14  

Table 2. Radio frequency channels and channel numbers used for 802.11 networks [31] 
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All of these frequencies, most of them only 5 MHz apart from each other, are actually 

center frequencies of a 22 MHz channel. Therefore, each channel overlaps several oth-

ers above and below it. The whole 2.4 GHz band provides only three completely 

separate channels – 1, 6 and 11. Different countries also put different limits on the al-

lowed transmission power. 

Each AP is assigned a single channel, which is used both for uplink and downlink 

communication with the nodes. Collisions and conflicts are avoided by using 

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). [31] 

Spread spectrum technology uses wide channels, which makes it in theory less sensi-

tive to interference from other radio signals and electrical noise. However, as the ISM 

band is unlicensed, many different devices, like microwave ovens, Bluetooth equipment 

and cordless phones, are using the band without synchronization, and interference with 

them has turned out to be a difficult problem [17, 10]. 
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2 Related Work 
This Thesis examines the effectiveness of GSM signal strength fingerprinting as an 

indoor localization technique. While this combination is new, indoor localization, radio 

fingerprinting and use of GSM for localization have all been explored before. We de-

scribe these efforts and key distinctions between these efforts and our. 

2.1 Indoor Localization 

Indoor location systems have been successfully built using a variety of technologies. 

The Active Badge [37], PARCTab [38] and follow on commercial systems like Versus 

[55] used infrared emitters and detectors to achieve 5-10 meter accuracy. Both the 

Cricket [29] and Active Bat [39] used ultrasonic signals to estimate location. Depending 

on the density of infrastructure and degree of calibration, ultrasonic systems have accu-

racies from a few meters to a few centimeters. Radio Frequency ID (RFID) technology 

has been used in research systems, such as SpotON [14] and Landmark [27], and com-

mercial solutions like PinPoint [40, 51] to perform three-dimensional localization using 

signal strength measurements. Most recently, ultra-wideband emitters and receivers 

have been used to achieve highly accurate indoor localization [54]. The common draw-

back of all of these systems is that they require custom infrastructure for every area in 

which localization is to be performed. Bluetooth based systems like [1] could use exist-

ing Bluetooth network, but the specific uses of this technology do not cause large indoor 

areas to be covered with signals from fixed Bluetooth devices. Thus, additional equip-

ment still needs to be installed to make Bluetooth localization work. As a result, all 

these systems have not seen significant deployment outside of high-value applications 

like hospital process management. In contrast, GSM fingerprinting makes use of the 

existing GSM infrastructure, obviating the need for infrastructure investment and 

greatly increasing the possible area in which the system will work. This increases the 

likelihood of GSM fingerprinting achieving wider adoption. 

2.1.1 Active Badge 

Want et al. proposed the Active Badge [37] localization system in 1992. Their solu-

tion to the problem of automatically determining the location of an individual was to 

design a wearable tag that emits a unique code every 15 seconds. These signals were 
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then picked up by sensors around the building. A master station polled the sensors for 

badge “sightings” and processed the data, making it available for client applications. 

Infrared (IR) signals were used for signaling between the badge and sensor. The emit-

ted signals operated in approximately 6 meters range, and didn’t travel through the 

walls. Thus, sensors needed to be installed at least in every room, more than one to big-

ger or more complicated rooms. People had to wear special badges. Because the signals 

were transmitted through an optical path, the badges had to be worn outside of the 

clothing, preferably clipped to a shirt or a blouse. Sensors needed to be placed high up 

on walls or ceiling tiles of offices and on the entrances and exits of corridors and other 

public areas. The total cost of sensors, badges, cabling and installation was high, espe-

cially when large buildings had to be covered. It was not expected that sensors had 

overlapping coverage areas. Even if multiple sensors received signals from the same 

badge, this information was not used to increase accuracy. No other characteristics of 

the signal (like signal strength or time-of-arrival) was used to pinpoint the exact location 

inside the room. 

2.1.2 Cricket 

Cricket [29], developed in MIT in 2000, is a location-support system for indoor loca-

tion aware applications. It allows mobile and static nodes to learn their physical location 

by using listeners that hear and analyze information from beacons located throughout 

the building. On the contrary to the Active Badge, devices carried by users infer the 

location, not the central server. Thus the device controls the location information and 

can determine to whom it actually publishes it and to what extent. This alleviates pri-

vacy concerns, but on the other hand, makes it impossible to create applications that 

require guaranteed location (e.g., location based billing). In that sense, Cricket is similar 

to our approach. 

Cricket uses beacons that send location information to listeners. A beacon is a small 

device attached to some location within the geographic space it advertises. It is typically 

placed at an unobtrusive location like a ceiling or wall. The message sent out by beacon 

is a plain text string that identifies the location. 

To obtain location information, every device has a listener attached to it. Devices 

measure the one-way propagation time of the ultrasonic signals emitted by a beacon. A 

beacon sends information over radio frequency, together with an ultrasonic pulse. When 
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the listener hears the RF signal, it turns on its ultrasonic receiver and listens for the ul-

trasonic pulse, which will arrive a bit later, because the speed of sound is lower than the 

speed of light. The listener uses the time difference between the receipt of the RF signal 

and the ultrasonic signal to calculate the distance to the beacon. This is done to deter-

mine the nearest beacon, whose location information is then taken as an estimate to 

user’s own location. 

2.2 Indoor Localization Using 802.11 Fingerprinting 

Bahl et al. observed that the strength of the signal from an 802.11 access point does 

not vary significantly in a given location. They used this observation to build RADAR 

[4], a system that performed localization based on which access points would be heard 

where, and how strongly. This was the first 802.11 fingerprinting system, and in the 

hallways of a small office building, fingerprints from three access points could localize 

a laptop within 2-3 meters of its true location. There have been improvements to 

RADAR’s fingerprint matching algorithm that have advanced accuracy [3, 21, 42, 5, 19, 

34, 32, 28] and differentiated floors of a building with a high degree of precision [12]. 

In addition, commercial localization products have been built using 802.11 fingerprint-

ing [51]. 

The differences between our work and 802.11 fingerprinting systems are primarily 

due to the differences between 802.11 and GSM: 

• Due to higher coverage, GSM fingerprinting works in more places than 

802.11 fingerprinting. 

• Due to more stable infrastructure, 802.11 radio maps will degrade more 

quickly than GSM radio maps. 

• Due to the larger range of GSM cells, 802.11 fingerprinting will be more ac-

curate than GSM fingerprinting given the same number of radio sources.  

 

2.2.1 RADAR 

RADAR [4] was the first attempt to use fingerprinting and an existing 802.11 infra-

structure for localization. Instead of utilizing special equipment like infrared or 

ultrasound sensors and badges, RADAR used wireless networks already deployed in the 
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building to localize hosts. The hosts periodically broadcast packets to the network and 

access points measured the signal strengths of these packets. The collected signal 

strength data was used to train the system and to determine later the location of a mobile 

host. RADAR describes two solutions: empirical and signal propagation modeling. 

Empirical approach was based on fingerprinting, similarly to the solution described in 

this Thesis. The training phase consisted of measuring signal strengths in multiple loca-

tions a few meters apart across the floor of a building. To determine the actual location, 

the measured signal strengths were compared to the ones measured during testing phase. 

The closest one or a number of closest ones were used to estimate the location of the 

predicted point. Nearest neighbors in signal space (NNSS) algorithm was used to find 

closest matches. No weighting was done to give higher weights to nearest neighbors. 

The main limitation of the empirical method is that significant effort is needed to con-

struct the data set for each physical environment. Furthermore, the data collection 

process may need to be redone if the network changes, e.g., when a base station is relo-

cated. The purpose of the second approach, radio propagation model, was to decrease 

the amount of time required to take the measurements in the building. A simple Wall 

Attenuation Factor method was used to estimate the signal strengths in the building as a 

function of distance and the number of walls in the path from the access point to the 

mobile host. However, the exact map of walls was required, as well as a few measure-

ments to determine the actual attenuation caused by each wall. The reported results 

were worse than the ones of the empirical method. In our case, modeling radio propaga-

tion would be much more complicated, because we would also need to take account 

other near-by buildings as GSM radio transmitters are located outside. 

2.2.2 Improvements to 802.11 Fingerprinting 

In their subsequent report [3] Bahl et al. proposed a number of enhancements to the 

RADAR system. Specifically, they describe a Viterbi-like algorithm for continuous user 

tracking. This algorithm takes into account the mobility pattern of the user to disam-

biguate between candidate user locations guessed by the system. They also describe 

access point-based environmental profiling scheme, where they automatically switch 

between two sets of fingerprints, taken in different environmental conditions (busy 

hour, non-busy hour). 
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Ladd et al. [21] have increased the accuracy of 802.11 fingerprinting by applying 

standard approaches from robotics-based localization, notably the explicit manipulation 

of noise distributions and the modeling of position as a probability distribution. 

Battiti et al. [5] have used other statistical learning methods besides simple k-Nearest 

Neighbors. The experiments with Weighted k-Nearest Neighbors, Support Vector Ma-

chines, Neural Networks, Bayesian Nets and others resulted in slightly better accuracy. 

Elnahrawy et al. [8] proposed interpolation technique to decrease the amount of time 

required to take measurements without losing too much accuracy. They used Interpo-

lated Map Grid (IMG) to create additional training points between the existing ones. In 

addition to that, they described three new area-based localization methods, where the 

predicted location is an area not a single point. 

Most of these ideas can also be useful and applicable to GSM fingerprinting. This is 

however left for future work. 

2.3 Localization Using GSM Fingerprinting 

The Place Lab system employed a map built using war-driving software and a simple 

radio model to estimate cell phone’s location with 100-150 meter accuracy in a city en-

vironment [23]. Laitinen et al. [22] used GSM-based fingerprinting for outdoor 

localization. They collected sparse fingerprints from the 6 strongest cells, achieving 67th 

percentile accuracy of 44 meters. Laasonen et al. used the transition between GSM cells 

to build a graph representing the places user goes [20]. Like Place Lab, Laasonen’s sys-

tem used cell phones that only exported the single cell-tower the phone was associated 

with. In contrast to the other systems we have mentioned, Laasonen’s system did not 

attempt to estimate absolute location, but rather assigned locations symbolic names like 

Home and Grocery Store. 

These previous efforts to use GSM for localization differ from the work reported in 

this Thesis in that they are based on sparse fingerprints collected tens to hundreds of 

meters apart from each other. Moreover, these efforts used narrow fingerprints obtained 

from commercial GSM phones that report the signal strength for the current cell [23, 

20] or the 6 strongest cells [22]. In contrast, we collected GSM fingerprints in a dense 

grid with 1.5 meters granularity. Moreover, in addition to the 6 strongest GSM cells, we 

collected wide fingerprints that include up to 32 different GSM channels. This addi-
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tional information has helped to significantly increase the accuracy of our system, as we 

show in the following chapters. 

2.3.1 Place Lab 

Place Lab [23] provides wide scale localization by listening for the transmissions of 

wireless networking sources like 802.11 access points, fixed Bluetooth devices, and 

GSM cell towers. However, instead of relying on extensive training phase, they use a 

public database of measurements collected by people in volunteering basis. Many of 

these beacon databases can come from institutions that own a large number of wireless 

networking beacons. Companies, universities and departments often know the locations 

of their 802.11 access points since this information is commonly recorded as part of a 

deployment and maintenance strategy. Other sources of Place Lab mapping data are the 

large databases produced by the war-driving community. War-driving is the act of driv-

ing around with a mobile computer equipped with a GPS device and a radio (typically 

an 802.11 card but sometimes a GSM phone or Bluetooth device) in order to collect a 

trace of network availability. 

They have used three methods for location calculation. A simple Centroid calculates 

the average coordinates of the beacons in range and uses this as estimation. Fingerprint-

ing method takes also signal strength information into account. More complicated 

Bayesian Particle Filter method uses the information about previous locations of the 

user to pinpoint the location. 

The goal of Place Lab was to provide coarse-grained accuracy with minimal mapping 

effort. This is different, and complementary to our goal of doing accurate indoor local-

ization given a detailed radio survey. Another distinction is that Place Lab used a cell 

phone platform that only programmatically exported the single associated cell tower. 

2.3.2 Database Correlation Method 

Laitinen et al. have proposed Database Correlation Method (DCM) [22], which uses 

sparse GSM fingerprints to do localization outdoors. DCM is based on adjusted 1-

Nearest Neighbor algorithm to find the best matching fingerprint from the collected 

fingerprint database. The location of that fingerprint is then used as a resulting predic-

tion. They report 44m accuracy in 67% of times in urban environments and 90m 

accuracy 90% of the times. The location calculation method they use is a very simple 
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version of ours. We use more fingerprints to average location, weight them based on the 

distance in the signal space and use clustering to eliminate outliers; techniques which all 

have improved indoors accuracy considerably. In addition to that, we use wide finger-

prints that are taken with higher granularity. 

2.4 Indoor Localization and Global Positioning System 

Additionally, many cell phone manufacturers have integrated GPS [9] units into the 

phones. A technique called Assisted GPS (A-GPS) [7] is used to shorten the time it 

takes for MS to localize themselves. Although accurate outdoors, these solutions are not 

very useful indoors or in “urban canyons,” because of the lack of line of sight (LoS) 

between phone and multiple satellites. Indoor GPS [52] installs expensive GPS repeat-

ers inside buildings to make the GPS devices work. However, the technique is still 

based on trilateration, which does not consider complicated signal propagation inside 

buildings, and thus requires large empty rooms or huge number of repeaters to provide 

high accuracy. 
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3 Methodology 
This chapter first gives an overview of signal strength fingerprinting, and the predic-

tive algorithm we use in this Thesis. Then we describe the data collection process and 

the localization methods that we compare in our evaluation. 

3.1 Signal Strength Fingerprinting 

In our research, we use signal strength data measured in different GSM radio chan-

nels. As a comparison, we also use signal strength fingerprints from 802.11 wireless 

networks. Our initial assumption was that the signal strengths in GSM channels are rela-

tively stable in time, but vary location by location, so that localizing mobile station with 

high accuracy is possible. To evaluate this assumption, we compared the stability of 

GSM and 802.11 signals. We recorded signal strengths of several 802.11 access points 

(AP) and GSM cells at a few fixed locations in a University building in downtown To-

ronto over a period of several days. In the reminder of this Thesis, we will refer to this 

building as University. 
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Figure 1. Temporal 802.11 and GSM signal stability 
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Figure 1 shows a 3-hour segment of the signal strength measurements at a fixed loca-

tion on the 5th floor of the building during a workday afternoon. The plot shows signals 

from three strongest GSM cells and the three strongest 802.11 APs. GSM signals appear 

to be more stable than 802.11 signals. We believe that one reason for this is that 802.11 

uses unlicensed overcrowded 2.4 GHz band, and therefore its signal strength suffers 

from interference from nearby appliances such as microwaves and cordless phones. An 

analysis of GSM signal stability under different weather conditions (e.g., rain, snow, 

fog) is left for future work. 
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Figure 2. Signal strength of three GSM cells while walking through the University building 

 

Figure 2 shows the changing signal strengths while taking a walk from one end to the 

other on the 5th floor of the University building. Measurements are taken about every 

1.5 meters. It can be seen that the signal strengths change considerably and different 

locations have different patterns, which suggests that it may be possible to deduct the 

location of the mobile device from signal strength data. 

Signal strength fingerprinting relies on a “training phase” in which a mobile device 

moves through the environment recording the strength of signals emanating from a 
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group of radio sources (e.g., 802.11 access points, GSM base stations, FM radio or TV 

stations). We refer to the physical position where the measurement is performed as a 

location, to the whole radio scan as a measurement and to the recording of the signal 

strength of a single source as a reading. That is, to build a radio map of the building, a 

mobile device takes a series of measurements in multiple locations of the building. Each 

measurement is composed of several readings; one for each radio source in range. The 

set of data recorded in a single location is also referred to as a training point. Since sig-

nal strengths have considerable spatial variability, a fairly dense collection of locations 

need to be collected to achieve good accuracy. The original RADAR experiments, for 

example, measured every square meter on average [4]. To achieve their advertised accu-

racy, the commercial 802.11 fingerprinting product from Ekahau [51] recommends 

similar density. Once the training phase is completed, the locations of new fingerprints 

(also referred to as testing points) can be calculated using the predictive algorithm. 

3.1.1 Predictive Algorithm 

A simple technique for estimating location is to choose the location of the training 

point with the closest Euclidean distance in a signal strength space. The Euclidean dis-

tance d can be calculated according to Equation 1, where s1…sn are the signal strengths 

of n radio sources of the testing point and s’1…s’n are the corresponding signal strengths 

of the training point. 
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Equation 1. Euclidean distance in signal strength space 

 

Better accuracy can be achieved by averaging the location of the k closest neighbors 

(or training points) in the radio map, where k is some small constant. It is also beneficial 

to use weighted averaging, so that neighbors closer in signal space are given higher 

weights. This method is further referred to as Weighted k-Nearest Neighbors (WKNN). 

We calculated weights according to Equation 2, where wi is the weight of i-th 

neighbor and di is the distance of that neighbor in signal space. Weighting factor b de-
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termined the amount of weighting being done. If b = 0, then there is no weighting and 

all the neighbors are given equal weights. The ideal value for b depends on the average 

distances di, which depends on the dimensionality n. 
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Equation 2. Weight calculation using distances and weighting factor b 

 

We use WKNN both for estimating the floor (z) and the location (x, y) on that floor. 

The first calculation is called classification, as the estimated value has final number of 

possible values (number of floors in the building). The latter calculation is called re-

gression, as the coordinates on the floor have more continuous nature. 

In case of regression, the continuous value is estimated according to Equation 3, 

where xi are values of the training points and wi the corresponding weights. 
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Equation 3. Regression using WKNN 

 

In case of floor classification, the estimated floor is found according to Equation 4, 

where zi are values of the training points, wi the corresponding weights, and δ is a func-

tion, that returns 1 if the arguments are equal, and 0 if not. 
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Equation 4. Classification using WKNN 
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Our initial evaluation uncovered cases in which the algorithm selected points that are 

neighbors in the signal space, but are actually located far away from the true location of 

the testing point in the physical space. Often just a few of them lied away from the oth-

ers. To ameliorate the effect of these false positives, we used simple K-mean clustering 

[16] in physical space. The K-mean clustering algorithm works in the following way: 

 

1. Set randomly K initial locations, which are called means 

2. Assign each of the k neighbors to the mean that is closest to it 

3. Recalculate means to be the average values of the assigned locations 

4. Repeat (go back to step 2) until the assignments don’t change 

 

We used K-mean clustering to split the set of nearest neighbors into two geographical 

clusters (i.e., setting K equal to two4). We then compared the sizes of the clusters, and if 

one of the clusters was considerably larger than the other, we removed the points that 

belonged to the smaller cluster from the final location calculation. 

In this Thesis, WKNN is used as the predictive algorithm. Similar approach has been 

compared with some others by Battiti et al. in [5] and reported as the most effective 

technique for spatial localization using 802.11 signal strength fingerprinting. Investigat-

ing the applicability of other predictive algorithms to GSM fingerprinting is a topic for 

future work. 

3.2 Data Collection 

We collected multi-floor measurements in two office buildings and one single-family 

detached house. The three buildings are located in two major North-American cities 

located on opposite coasts. The office buildings house part of the Computer Science 

Department at the University of Toronto and the Intel Research Lab in Seattle. The pri-

vate house is located in Seattle as well. In the rest of this Thesis, we refer to these 

buildings as: University, Research Lab, and House. University is located in a busy 

                                                 
4 We experimented with different vales for K, but 2 produced the best results. 
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downtown core, Research Lab is located in a commercial midtown area, and House is 

located in a quiet residential neighborhood. 

 

 

Figure 3. Map of the 7th floor of the University building with red squares as training points 

 

University is a large 88m x 113m 8-storey building with lecture rooms, offices and re-

search labs. Since we had no access to the offices, we collected training points in the 

hallways5 of the 5th and 7th floors of the building (Figure 3). Research Lab is a medium 

size (30m x 30m) 6-storey building. Space inside the building is partitioned with semi-

permanent cubicles. Due to access restrictions, we collected readings from the whole 6th 

floor, but only a half of the 5th floor. House is a 3-storey wooden structure (18m x 6m) 

that includes a basement and two floors above ground. We collected measurements on 

all 3 floors. The distance between floors is about 6 meters for University and Research 

Lab, and about 3 meters for House. 

                                                 
5 A localization system that should also work inside offices will in all likelihood not function properly if it 

is limited to relying on training points taken exclusively from hallways. 
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We collected 802.11 and GSM fingerprints using a laptop running Windows XP. To 

collect 802.11 fingerprints, we used an Orinoco Gold wireless card configured in active 

scanning mode, where the laptop periodically transmits probe requests and listens to 

probe responses from nearby 802.11 APs. 

 

 

Figure 4. Sony Ericsson GM28 GSM modem 

 

We collected GSM fingerprints using the Sony Ericsson GM286 GSM modem (Figure 

4), which operates as an ordinary GSM cell phone, but exports a richer programming 

interface. The GSM modem provides two interfaces for accessing signal strength infor-

mation: cellsAPI and channelsAPI. The cellsAPI interface reports the cell ID, 

signal strength, and associate channel for the n strongest cells. While the modem’s 

specifications does not set a hard bound on the value of n, in practice in the 3 environ-

ments we measured n was equal to 6. The channelsAPI interface simultaneously 

provides the signal strength for up to 32 channels, 16 of which can be specified by the 

programmer, with up to 16 additional channels picked by the modem itself. In practice, 

6 of the 32 channels typically correspond to the 6 strongest cells. Unfortunately, chan-

nelsAPI reports signal strength but does not report cell IDs. We speculate that the cell 

ID information for other than the 6 strongest cells cannot be determined because the 

signals of those cells are strong enough to be detected, but too weak to be used for effi-

cient communication. In addition to that, many cells can use the same channel and 

signal strength measured in a single channel may in fact be a sum of the signals from all 

these cells, and detecting single cell ID is impossible (we refer to this as aliasing). 

                                                 
6 Sony Ericsson GM28 works on North American 850+1900 MHz frequency bands. The exact same 

product for European 900+1800 MHz bands has a model number GM29. 
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University 

(downtown) 

Research Lab 

(midtown) 

House 

(residential) 

cellsAPI -87.69 -76.74 -88.35 

channelsAPI -96.14 -102.19 -105.27 

Table 3. The average signal strength (dBm) of the signals received from cells and channels 

 

Table 3 shows the average signal strength returned by the cellsAPI and chan-

nelsAPI interfaces. As expected, the average signal strength reported by cellsAPI 

is significantly higher than the average reported by channelsAPI. Note that the aver-

age signal strength reported by the channelsAPI interface is close to modem’s stated 

receiver sensitivity7 of -102 dBm. Efficient GSM communication requires an SNR (sig-

nal to noise ratio) higher than -90 dB. 

The lack of cell ID information for some channels raises the possibility of aliasing, 

i.e., a situation when two or more cells transmitting simultaneously on the same channel 

appear to be a single radio source and therefore cannot be differentiated. In the extreme 

case, a fingerprinting system that relies exclusively on channel-based data may suffer 

from world-wide aliasing. Because channels are reused throughout the world, finger-

prints taken in two far-away locations may produce similar fingerprints. To alleviate the 

aliasing problem, we combine the information returned by the cellsAPI and chan-

nelsAPI interfaces into a single fingerprint. We then restrict the set of fingerprints to 

which we compare a testing point to fingerprints that have at least one cell ID in com-

mon with the testing point. This practice effectively differentiates between fingerprints 

from our three indoor environments. However, for environments closer to each other 

(for example, several buildings in a campus), more precise method that considers more 

cells to differentiate between the buildings could be necessary. 

As we show in Section 4, even in the presence of aliasing, our localization system 

based on wide GSM fingerprinting significantly outperforms GSM fingerprinting based 

on the 6 strongest cells, and is comparable to 802.11 based fingerprinting. This is be-

                                                 
7 In practice, the modem reports signal strength as low as -115 dBm. 
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cause our fingerprints are wide (have many readings), and therefore, in order for the 

aliasing to reduce accuracy, many readings in the fingerprints of distant locations need 

to match, which is highly unlikely in practice. 

 

 

Figure 5. Application for measuring signal strengths and identifying location by clicking on the map 

 

We developed a simple Java-based application to assist us in the process of gathering 

fingerprints. To record a fingerprint, we first identify the current position by clicking on 

a map of the building. The application then records the signal strengths reported by the 

802.11 card and the cellsAPI and channelsAPI interfaces of the GSM modem. 

Figure 5 shows a screen shot of the Java-based application. 
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Figure 6. Experimental setup with laptop computer, GSM modem and antenna 

 

To collect the measurements, we placed the laptop on an office chair and moved the 

chair around the building. While primitive, this setup assures measurements collected at 

a constant height. Figure 6 shows our experimental setup. Table 4 summarizes the num-

ber of training points collected on each of the floors of the three buildings. In all three 

indoor environments, we collected 802.11 and GSM fingerprints for points located 1.5 

meters apart. 



 39

 

University 

(downtown) 

Research Lab 

(midtown) 

House 

(residential)  

5th 7th 5th 6th B 1st 2nd 

Per floor 130 154 53 181 17 44 50 

Total 284 234 111 

Table 4. Training points collected on each floor for the three buildings 

 

3.3 Localization Methods 

All our localization algorithms use the weighted k-nearest neighbors algorithm de-

scribed in Section 3.1.1. For each method, we varied the number of nearest neighbors to 

average over, and selected the value of k that gave the best results. In most cases, the 

best k was a small constant (2 or 4). The weighting factor b was chosen the same way 

and best values were in range 0 to 5. 

We implemented four localization methods which differ in the structure of their fin-

gerprints: 

• radar, uses only readings from 802.11 access points; 

• onecell, uses the reading of the single strongest GSM cell; 

• cell, uses readings of the 6 strongest GSM cells; 

• ch, uses readings from up to 32 GSM channels in addition to readings of the 6 

strongest GSM cells. 

To the best of our knowledge, onecell and cell are the methods that could be 

currently implemented using commercial cell phones [23, 20, 22]. cell method also 

provides a comparison with ch to show the advantage of wide fingerprinting using ad-

ditional GSM channels. 

An initial evaluation of ch revealed cases where the algorithm selected neighbors 

close in signal space, but far away in the physical space. To eliminate these neighbors, 
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geographical K-mean clustering was used, as described in Section 3.1.1. In the rest of 

this Thesis, the version of ch that uses geographical clustering is referred as clch. 

We also present results of a random algorithm that determines location by picking 

an arbitrary position in the particular floor or building by simply choosing one of the 

training samples. Therefore, random provides a lower bound on the performance of 

localization systems for a given floor and building. 

3.4 Practical Considerations 

We collected our wide fingerprints using a programmable Sony Ericsson GSM mo-

dem, which operates as an ordinary GSM cell phone, but exports a richer programming 

interface that provides access to readings from up to 32 GSM channels. In contrast, 

commercial phones limit access to signal strength information to the 6 strongest cells or 

even just the current cell. However, we speculate that the software on commercial 

phones could be easily enhanced to provide signal strength measurements for a richer 

set of channels. Once extended, those phones could take advantage of the wide-

fingerprinting technique introduced in this Thesis. We base this speculation on the ob-

servation that the Sony Ericsson GSM modem is implemented using standard GSM 

electronics, and that the GSM specifications require phones to be able to scan all chan-

nels in the GSM band. 

This Thesis presents a new localization method supported by an initial evaluation. 

However, many issues need to be addressed while creating a real life localization sys-

tem based on this method. The following describes some of them. 

While creating applications that run on mobile devices, the optimal use of scarce re-

sources is important. Cell phones have limited computing power, memory and battery 

life. The network bandwidth is also limited and expensive, usually charged per kilobyte 

of data transferred. If some computations are done in the network side and used by 

many mobile users simultaneously, the network bandwidth and computing power of the 

server might also become bottle-necks. In case of emergency applications, such as 

E112/E911, the resource use is not so important, because situations when localization is 

needed are relatively rare and the high value created by it compensates most of the 

costs. In these cases, accuracy and precision are much more important. However, there 

are many other applications that provide less value, but use localization information 

more often. Especially resource consuming are applications that need to know the loca-
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tion of many people all the time, such as the ones that notify people when their friends 

or potential dates are near-by, or the ones that constantly track people indoors to help 

managing the workforce. These applications need the information to be constantly 

known by a central entity, so the network bandwidth and energy have to be used by the 

phone to transfer it. The localization using the predictive algorithm can be done by the 

mobile device and the extracted location used locally or transferred over the wireless 

network to a server that provides services. It can also be done by a server, where the 

device has to send the raw data. If the calculations are done by the mobile device, then 

the predictive model has to be sent to it. In case of WKNN, this means sending all the 

training points. For that matter, other methods such as SVM or Neural Networks can 

give an advantage, because their smaller models take less to transfer and store. 

Another important issue is privacy [34, 15]. For some applications, it is possible to 

keep user’s location undisclosed if the calculation is carried out in the mobile device’s 

side. However, the problem is that in case of multiple areas and buildings, the whole 

model (in case of WKNN, a radio map) does not fit into the device’s memory and parts 

of it need to be downloaded on demand. The sequence of downloading the parts reveals 

the location of the user to the server hosting the models [15]. 

As noted in [12, 23], different chipsets for different Wi-Fi devices can report different 

signal strength values in the same circumstances. However, as was discovered, there 

was a linear correlation between them. The same might be true in case of cell phones 

produced by different manufacturers and with different antenna sensitivities. To com-

pensate against that, signal strengths relative to each other might be used instead of the 

absolute ones we have used in this Thesis. This is another interesting topic for future 

work. 
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4 Evaluation 
In this section, we first analyze the collected data and then evaluate localization accu-

racy obtained by 802.11 and GSM fingerprinting.  

4.1 Data analysis 

The total number of 802.11 APs, GSM cells and channels recorded during the data 

collection phase is summarized in Table 5. The University building has a much denser 

802.11 deployment than the Research Lab building both because the University build-

ing is much larger and because while the APs at the Research Lab building are centrally 

managed by IT personnel, numerous APs at the University building are owned and 

maintained by independent research groups. 

The total number of GSM cells seen at the University building is larger than in other 

buildings because of the better coverage, larger building size and smaller cell size in 

higher density downtown area. The lower number of cells seen at the Research Lab is 

the consequence of both the much smaller building size and the much stronger signal 

received from nearby cells. Because of the proximity of a few base stations, the strong-

est cells reported by the modem in the Research Lab benefit from less variations than in 

other buildings (i.e., the same group of cells appears in most of the cell measurements). 

The total number of channels seen in the residential area is slightly lower than in other 

areas due to lower coverage. 

 

 

University 

(downtown) 

Research Lab 

(midtown) 

House 

(residential) 

802.11 APs 44 10 5 

Cells 58 14 18 

Channels 34 33 24 

Table 5. The total number of different 802.11 APs, GSM cells and channels spotted in each of the areas 
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Figure 7 plots the cumulative distribution function (CDF) of the number of readings8 

per location of 802.11 APs, GSM cells and GSM channels at the University building. 

The figures showing the data for the Research Lab and the House show a very similar 

pattern and are therefore not presented. The number of readings for 802.11 and GSM 

cells is roughly the same but much lower than the number of GSM channel readings. As 

we will show in the next section, this has a dramatic effect on the localization perform-

ance.  
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Figure 7. Readings per location of 802.11 APs, GSM cells and GSM channels in the University building 

 

4.2 Channel Aliasing 

Figure 8 shows the amount of channel aliasing seen in our three different experimen-

tal environments. There is significantly more aliasing in the University building, than in 

the other two buildings. Small percentage of channels was even used by five different 

cells in different parts of the building. This is because University building is much big-

ger than the others, and that it is located in a high density downtown area, where smaller 

cells are used. However, as shown in the following sections, aliasing does not decrease 

the localization accuracy significantly. 

                                                 
8 recordings of the signal strength of a single source, e.g., 802.11 AP, GSM cell or GSM channel 
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Figure 8. Channel reuse (aliasing) in different buildings 

 

4.3 Relative performance 

The results reported in this section were obtained by taking one point at a time out of 

the training set and using it as the testing point. This technique is similar to the one used 

by Bahl et al. [4], and is somewhat pessimistic approach since it takes the point with the 

best match out of the training set, and creates a hole in the set exactly at the location we 

are trying to estimate. 

4.3.1 Floor Classification 

Table 6 summarizes the effectiveness with which the localization methods introduced 

in Section 3.3 differentiate between floors in the three indoor environments. clch 

achieves similar performance to ch and is therefore not shown – grouping neighbors 

into floors already constitutes a form of clustering. 

 

 

University 

(downtown) 

Research Lab 

(midtown) 

House 

(residential) 

radar 100 100 62.16 

ch 89.08 97.01 93.69 

cell 89.08 81.2 51.53 

onecell 74.65 77.35 57.66 

random 50.18 64.81 37.79 

Table 6. Percentage of successful floor classifications 
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First, it is important to notice the different accuracy random method provides in our 

environments. Although randomly guessing the floor from 2 or 3 possible options 

would result in 50% or 33% accuracy, the actual random accuracy is higher due to dif-

ferent sizes of the floors in the building, which resulted in different number of testing 

points taken on each floor. The bigger the difference between floors (i.e., lower en-

tropy), the easier it is to randomly pick the right floor. 

As expected, radar does an excellent job differentiating between floors in the Uni-

versity and Research Lab buildings. The reinforced concrete floors in these structures 

effectively block the propagation of 802.11 signals between floors, significantly simpli-

fying the task of floor prediction. These results are consistent with previous findings 

[12].   

In the House environment, however, radar achieves low classification accuracy as 

the house’s wood structure presents little obstacle to radio propagation, making it harder 

to differentiate between signal fingerprints on different floors. Not surprisingly, all but 3 

of the 42 misclassifications happen at locations on the first and second floors of the 

house. In the house scenario, 4 out of 5 of the available 802.11 signals emanate from 

neighboring residences. These signals propagate easily through the wooden frame of the 

first and second floors, but suffer significant attenuation propagating through dirt and 

the house’s foundations to reach the basement. The low power at which neighboring 

access points are heard (if at all) in the basement helps to identify basement locations. 

On the other hand, the 802.11 signals from neighboring households contribute little to 

improving the accuracy of predictions for the above-ground floors.  

In contrast, the GSM-based ch algorithm shows strong performance across all three 

buildings, and significantly outperforms radar for the House environment. It is inter-

esting that in both the Research Lab and the House environments, ch achieves up to 

42% better accuracy than cell and onecell. This is strong evidence that extending 

fingerprints to include signal strength information from channels other than the 6 

strongest cells, even when the identity of the transmitter cannot be determined, can 

dramatically improve localization accuracy.  
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4.3.2 Within-Floor Localization Error 

Table 7 summarizes the localization errors within specific floors for the 5 algorithms 

introduced in Section 3.3 for the three indoor environments. For each floor, the table 

shows the 50-percentile localization error, calculated as the Euclidean distance between 

the actual and predicted location of the point within the specific floor. All calculations 

assume a training set restricted to include only points that are on the same building and 

floor as the point whose position is being determined.  

The localization error in random depends on the size of the covered area on each 

floor, which accounts for difference in its localization error across floor and building. 

 

University 

(downtown) 

Research Lab 

(midtown) 

House 

(residential) 

 5th 7th 5th 6th B 1st 2nd 

radar 4.22 4.78 2.20 2.59 3.49 3.43 3.87 

clch 5.44 3.98 2.48 4.77 3.28 2.95 3.96 

ch 6.47 4.07 3.40 4.82 3.28 3.36 4.55 

cell 11.06 8.02 4.82 6.99 3.41 3.40 5.27 

onecell 15.05 14.64 8.39 7.93 3.42 4.85 6.13 

random 33.87 30.43 10.40 13.35 4.68 6.21 7.07 

Table 7. Single-floor median localization error 

 

Across the three buildings, radar achieves median accuracy between 2.2 and 4.8 

meters. These results are consistent with results previously reported in the literature. 

Differences in accuracy between buildings reflect discrepancies in the areas of the 

floors, granularity of the measurement grid which varied between 1 and 1.5 meters, dif-

ferent number of radio sources in range etc. 
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Figure 9. CDF of the localization error for 5th floor of the University building 

 

There are large differences in the performance of the various GSM-based algorithms. 

ch and clch outperform cell and onecell in all cases. Moreover, clch achieves 

between 25% to 50% better performance than cell for at least one floor in each of the 

three buildings. Across the three buildings, clch achieves median accuracy between 

2.5 and 5.4 meters, and in 3 out of the 7 floors, clch even achieves better accuracy 

than radar (e.g., 7th floor of University building). 

The strong performance of clch demonstrates the advantage of wide fingerprints in-

cluding measurements from a large number of channels rather than just the 6 strongest 

cells. Moreover the significant accuracy improvement of clch over ch shows that 

geographical clustering manages to reduce the effect of false-positives introduced by 

channel aliasing. Geographical clustering, on the other hand, did not have a significant 

effect on the performance of radar as channel aliasing does not occur in this case. 

Figure 9 shows the cumulative distribution function (CDF) of the localization error of 

all algorithms for the 5th floor of the University building. Most remarkable is the close-

ness with which clch approximates radar, and the large difference in performance 

between clch and cell.  
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4.3.3 Effects of Multi-Floor Fingerprints 

In the previous section, we evaluated within-floor localization accuracy assuming that 

the training set was limited to fingerprints in the same floor, i.e., we predicted the floor 

first, and then predicted position within that floor. In contrast, in this section, we evalu-

ate the effects on within-floor localization accuracy of including in the training set 

fingerprints taken on different floors. For this purpose, we project the training points 

collected on different floors of a building onto a single XY-plane, therefore removing 

all floor information. We then ran the K-nearest neighbors on the extended training set. 

Table 8 shows the results of this experiment. 

 

University 

(downtown) 

Research Lab 

(midtown) 

House 

(residential)  

50th % 90th % 50th % 90th % 50th % 90th % 

radar 4.40 10.27 2.49 4.94 3.11 5.80 

clch 4.98 18.74 4.41 9.43 3.66 7.02 

ch 5.76 21.75 4.72 9.44 4.10 7.18 

cell 9.86 22.31 6.41 11.64 4.35 8.05 

onecell 14.92 29.80 8.55 14.31 4.67 8.95 

random 35.61 59.36 13.85 21.33 6.46 15.18 

Table 8. Median and 90th percentile localization error with multi-floor fingerprints 

 

Projecting the points collected on different floors onto a single plane has several ef-

fects. On one hand, this practice may reduce the localization accuracy as the training 

points of other floors add “noise” (e.g., potential aliasing), which may result in larger 

localization errors. On the other hand, if the training points at a specific <X,Y> location 

on all floors have similar signal strength signatures, combining the training data from 

multiple floors will increase the density of the measurement’s grid, which may result in 
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higher accuracy. The ability to detect floor well suggests the latter is not the case, and 

points close to each other on X,Y dimensions buy on different floors have different sig-

natures. 

The multi-floor performance of radar in the House is better than in any of the sin-

gle-floor experiments. We found that the signal strength from the APs outside the 

building varies more with distance within a floor than within similar position on differ-

ent floor. As a result, the training data from multiple floors overlaps tightening the grid 

and increasing localization accuracy. The performance of radar in a multi-floor set-

ting in the University and Research Lab buildings is close to the average of the single-

floor experiments, which is further indication that radar can effectively differentiate 

between floors in office buildings with heavy concrete and steel frames.  

The multi-floor localization error for GSM-based algorithms is also close to the 

average of the single-floor experiments. This suggests that GSM-based algorithms can 

differentiate between the floors with good accuracy.  

Therefore, for most cases, first identifying the floor and then performing localization 

using single-floor training data results in higher accuracy than performing the 

localization using multi-floor data. However, when the number of readings per location 

is low or differences in signal strength across floors are small, combining the training 

sets of multiple floors may produce higher localization accuracy.  

 

4.4 Sensitivity Analysis 

In this section, we analyze the best GSM performer, clch, in more detail. Specifi-

cally, we test the localization accuracy of clch as a function of the number of channels 

used, the number of measurements collected per location and the training grid size.  

4.4.1 Number of Channels 

Figure 10 plots the median localization error for the multi-floor experiment as a func-

tion of the number of channels used. Increasing the number of channels results in a 

larger fingerprint, which allows for more accurate comparison between neighboring 

points and therefore for increased localization accuracy. The channels picked are sorted 

by popularity (i.e., the number of readings of the specific channel in all measurements). 

For example, the median localization error for 6 channels, corresponds to an algorithm 
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where 6 fixed most popular channels are picked from the training set. Notice that the 

accuracy of the algorithm that picks 6 most popular channels is lower than of the cell 

algorithm. This is because the cell algorithm picks 6 strongest cells for each meas-

urement, which may result in much larger fingerprint vector (i.e., completely different 6 

cells may be picked in two far locations, increasing the fingerprint vector to at least 12 

entries).  

Figure 11 plots the percentage of incorrect floor classifications as a function of the 

number of channels. As expected, picking more channels decreases classification error. 

Interestingly, in all cases, picking about 20 channels is sufficient for achieving good 

localization accuracy.  
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Figure 10. Number of channels and localization error with multi-floor fingerprints 
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Figure 11. Number of channels and percentage of erroneous floor classifications 

 

4.4.2 Number of Measurements per Location 

Although all the results reported so far were based on the average of 2 measurements 

per location, we actually obtained 10 measurements per location for the University 

building dataset. However, experiments varying the number of measurements per loca-

tion between 2 and 10 scan showed virtually no difference in the accuracy of the 

algorithms. This is because the readings are stable and therefore adding more measure-

ments per location does not improve localization accuracy. 

4.4.3 Data Collection Grid Size 

We reduce the number of locations used for training by including only every n-th 

point we measured. As the points were collected sequentially while walking through the 

corridors, this approach still results in points that cover the whole area evenly; only the 

distance between measured points increases. Figure 12 and Figure 13 show the effects 

of reducing grid size on the median multi-floor localization error and the floor classifi-

cation error, respectively. In most cases, reducing the grid size results in lower 

localization accuracy, but occasionally we do see anomalies. As it turns out, decreasing 

the size of the grid may eliminate (in some cases) “problematic” or “aliased” points, 

which in turn increases localization accuracy. 
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Figure 12. Grid size and localization error with multi-floor fingerprints 
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Figure 13. Grid size and percentage of erroneous floor classifications 
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4.5 Combined 802.11 and GSM localization 

In this section, we present an initial attempt to combine 802.11 and GSM fingerprint-

ing. Since we collected both 802.11 and GSM channels information simultaneously, we 

have been able to combine the readings of both into one large fingerprint. We refer to 

the method where this large fingerprint was used together with geographical clustering 

as clchradar. The results are summarized in Table 9. The combined algorithm 

achieves slightly better accuracy in the University building, underperforms radar in 

the Research Lab, and achieves similar performance in the House. An explanation for 

the lackluster performance of the combined algorithm may be found in the way in 

which we combine the fingerprint data. By simply concatenating fingerprint vectors we 

implicitly give more weight to the more numerous and less accurate GSM readings. 

Therefore, the additional accuracy that could be gained from 802.11 signal readings is 

overlooked and does not help localizing the user. 

 

University 

(downtown) 

Research Lab 

(midtown) 

House 

(residential)  

50th % 90th % 50th % 90th % 50th % 90th % 

clchradar 4.03 8.65 3.35 6.39 3.24 4.29 

radar 4.40 10.27 2.49 4.94 3.11 5.80 

clch 4.98 18.74 4.41 9.43 3.66 7.02 

random 35.61 59.36 13.85 21.33 6.46 15.18 

Table 9. Multi-floor localization error 
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5 Conclusions 
We presented the first fine-grained GSM-based indoor localization system that 

achieves median accuracy comparable to an 802.11-based implementation. We show 

that accurate indoor GSM-based localization is possible thanks to the use of wide sig-

nal-strength fingerprints that include readings of up to 32 GSM channels in addition to 

the 6 strongest cells.  

While the lack of cell ID information for majority of channels raises the possibility of 

world wide aliasing, we show that filtering fingerprints based on the subsets of the cell 

IDs of the 6 strongest cells is sufficient for differentiating between locations in our three 

indoor environments. 

We presented evaluation results of our system in three multi-floor buildings located in 

two North American metropolitan areas, covering a wide range of urban densities. Our 

GSM-based indoor localization system achieves a median accuracy ranging from 2.48m 

to 5.44m in large multi-floor buildings. Moreover, our GSM-based system effectively 

differentiates between floors in both wooden and steel-reinforced concrete structures, 

achieving correct floor classifications between 89% and 97% of the time. In contrast, in 

the wooden building, the 802.11-based fingerprinting system achieved correct classifi-

cations only 62% of the time due to a limited fingerprint size.  

5.1 Future Work 

The applicability of additional predictive algorithms to GSM-based fingerprinting is 

an interesting question. Although this Thesis focuses on WKNN algorithm, other algo-

rithms might improve accuracy or have other advantages. Probabilistic location tracking 

by taking account the previous locations can be applied to increase the accuracy even 

further. Also, it would be interesting to apply our method outdoors, where signal propa-

gation is simpler, area is much larger and taking measurements tightly together is not 

feasible. Collecting measurements in large multi-floor buildings takes a lot of time. The 

applicability of extending the measurement grid using interpolation can be investigated. 

Our initial experiments and analysis suggest that signal strength fingerprints are rela-

tively stable in time. However, it would be interesting to see how much the changing 

environment changes the accuracy of this method in the long run. Also, GSM signal 

stability under different weather conditions (e.g., rain, snow, fog) needs to be evaluated. 
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Resümee 

GSM MOBIILTELEFONI TÄPNE 
POSITSIONEERIMINE SISERUUMIDES 

Magistritöö 

Veljo Otsason 

Resümee 
 

Traadita andmeside areng on teinud võimalikuks asukohatundlike rakenduste 

loomise. Need rakendused võtavad arvesse kasutaja geograafilist asukohta, et esitada 

talle parasjagu relevantset informatsiooni või pakkuda muid kasulikke teenuseid. 

Erinevad rakendused on mõeldud erinevates tingimustes kasutamiseks ning nõuavad 

erinevat täpsust. Kui vabas õhus kasutamiseks mõeldud teenused ei eelda enamasti väga 

suurt täpsust, siis mitmed spetsiifiliselt siseruumide tarvis loodud rakendused nõuavad 

mõnemeetrist täpsust, et tuua kasutajale maksimaalselt kasu. 

Mobiilsete seadmete täpset positsioneerimist siseruumides on ammu peetud traadita 

andmeside võimaluste ärakasutamisel oluliseks, ning see on olnud paljude uurimistööde 

eesmärgiks. Kui vabas õhus on enamasti kasutatud globaalset positsioneerimissüsteemi 

(GPS), siis siseruumide jaoks on välja pakutud erinevaid lahendusi, mis baseeruvad Wi-

Fi (802.11) või Bluetooth traadita andmesidel, ultrahelil või infrapuna lainetel. Käesolev 

töö esitleb esimest GSM mobiilside signaalidel baseeruvat siseruumide 

positsioneerimissüsteemi, mis on võimeline määrama mobiiltelefoni asukoha 5-meetrise 

mediaan-täpsusega suurtes mitmekorruselistes hoonetes. Kandev idee, mis teeb täpse 

GSM positsioneerimise võimalikuks, on laiendatud signaalitugevuste informatsiooni 

kasutamine. Lisaks kuue tugevaima raadiomasti signaalide mõõtmisele, mida tavaliselt 

GSM standardis kasutatakse, jälgime meie ka kuni 32 lisamasti, mille signaalid on 

piisavalt tugevad, et neid mõõta, kuid enamasti liiga nõrgad efektiivseks 

andmevahetuseks. Me tegime eksperimente ja mõõtsime oma süsteemi kolmes hoones, 

mis asuvad kahes suurlinnas. Eksperimentaalsed tulemused näitavad, et meie süsteemi 

täpsus on võrreldav 802.11-baseeruvate süsteemidega, ning et see suudab ka täpselt 

vahet teha erinevate korruste vahel nii puit- kui betoonehitistes. 
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