e-oppe programm

HE ™

Euroopa Liit
Euroopa Sotsiaalfond Eestl tuleviku heaks

E-kursuse "Simulation Methods in

Financial Mathematics (MTMS.02.038)" materjalid

Aine maht 3 EAP

Raul Kangro, Ants Kaasik (Tartu Ulikool), 2012

Course introduction
Amount of credits: 3 EAP

Lecturer: Raul Kangro (Assoc. prof., Institute of Mathematical statistics, Tartu
University)

Target Group: Master students of financial and actuarial mathematics program

Breaf description: This course gives an overview of and practical experiece in the
different aspects of applying Monte-Carlo methods for pricing various derivative
securities. Several methods of speeding up Monte-Carlo computations are studied

Goals of the course: The goals of the course are

1. To give an overview of the possibilities of using simulation methods (Monte-Carlo
methods) for pricing various assets, especially finanancial options

2. To give practical skills in effective application of simulation methods for numerical
solutions of various problems of mathematical finance.

Learning outcomes: After completing the course the students

1. Know the principles and practical error estimates of the Monte-Carlo method; are
able to generate the trajectories of the solutions of stochastic differential
equations (especially stock price trajectories) and know how to use the skill in
constructing simulation methods for pricing financial options

2. Know several variance reductions methods for speeding up the Monte-Carlo
simulation (antithetic variates, control variables, stratified sampling) and are able
to use them in option pricing

3. Know the concept of the quasai-random variables and are able to use them in
option pricing.

Topics of the course: Introduction to the R package. Generating random numbers. MC
method for numerical computation of expected values of random variables. Numerical
evaluation of integrals using MC methoc. Implementing Black-Scholes formulas in R.
Simulating the trajectories of stock prices. Implemening Euler's method. The analysis of
the convergence rate of the method. Euler's method in the case of a general market
model. Milstein's method and a weakly second order method for generating stock prices.
Variance reduction methods: antithetic variates and control variates, importance
sampling and stratified sampling. Additional points about stratified sampling, using
stratified sampling for generating the trajectories of the stock price. Pricing Asian options
by MC. Using stratified sampling for pricing Asian options. Quasi-Monte-Carlo methods,
Halton points, Sobol points. Computing the option price sensitivities with MC. Using MC
for pricing American options

Independent works: There are 8 homeworks giving up to 5 points each. The
homeworks are due one week after they were handed out. The late submissions are
allowed but the maximal score for such submissions is reduced by 50%. The solutions of

the practical homeworks have to be submitted through the Moodle web page of the
course as R files. The maximal total score for homeworks is 40 points.

Requirement to be met for final assessment: At least 20 points (50%) for
homeworks is required for qualifying for the final examination.

Composition of the final grade: 60% of the total score is given by the final exam,
40% comes from the homework assignments. The final exam takes place in a computer
lab and consists of 3 computational problems related to option pricing. The final grade is
determined by the total score as follows: the score less than 50 gives F, from 50 to 59.9
gives E, from 60 to 69.9 gives D, from 70 to 79.9 gives C, from 80 to 89.9 gives B and a
score of 90 or more gives A

E-learning activities: The course materials are divided between 16 study weeks and
can be used for independent study or as supporting materials for the computer labs. The
lab handouts contain all of the theoretical materials that are required for this course. The
solutions of the homeworks have to be submitted through Moodle. The final examination
has to be taken in person.

Additional information: Raul Kangro raul.kangro@ut.ee

Creation of the web page of the course was supported by European Union

Before you start

1) Remember that everything is CASE SENSITIVE in R. This means that caps make a difference.

2) Also, functions in R mostly work ELEMENTWISE by default! This means that a lot of
operations can be accomplished with a brief line of code.

3) Several functions can be used in the same line of code (i.e. output of one function is used as
(perhaps partial) input for another) and if needed lines of code can be “joined” by putting a
semicolon between them.

4) It is not necessary to leave any spaces anywhere, this is just for display purposes.

5) Character # can be used for commenting the code (i.e. everything following this symbol on a line
is ignored by R). Make sure that you do COMMENT YOUR CODE. It is invaluable when you are
returning to use your code later on.

Getting Started

variable <- value setting a value for variable, often = is used instead
a <- 3
b =29
?function documentation of a function
2sum
apropos ("string") lists all the functions that contain string in its name
apropos ("sum")
install.packages ("packagename") installs the package named packagename into the users

computer
install.packages ("gsl")

library ("packagename") loads that package
library (help="packagename") opens an overview of the package and the functions in it

Basic Operators

+ - * / **x ~ %/% %% binary operators addition, substraction, multiplication, division, raising to a
power (two variants), integer division, remainder
a * b #27
b ** (1 / 2) #3
b ** 1 / 2 #4.5

a %% b #3
Vectors
c(...) combines arguments into a vector

c(l, 2) #1 2
c(2 * c(a, b), a) #6 18 3
from : to produces a vector of integers with increment (plus or minus) one
a: b #3 45 6 7 8 9
a : -1 #3 2 1 0 -1
1 : 2+ 3 #4 5
seq(from, to, by) identical but by specifies the increment; instead of by argument /ength.out can be
used to specify the desired length of the sequence
seqg(a, -1, -2) #3 1 -1
seqg(a, -1, -3) #3 0
seqg(a, -1, length.out=5) #3 2 1 0 -1
rep (x, times) replicate argument x times times; each can be used to replicate each element of x each
times
rep(c(2, 5), times=2) #2 5 2 5
rep(c(2, 5), each=4) #2 2 2 2 5 5 5 5

1/4 Simulation Methods in Financial Mathematics

Math & Stat

length(x) number of elements in argument x

abs (x) absolute value of elements of argument x

max (...) maximal element of all elements in the arguments
max (a, 6) #6
max(c(a, b), 6) #9

min (. ..) minimal element of all elements in the arguments
sum (. ..) sum of all elements in the arguments
prod (.. .) product of all elements in the arguments

log(x) natural logarithm of elements of argument x; argument base can be used to set a different base
log (9, base=3) #2

exp (x) exponent of elements of argument x

mean (x) arithmetic mean of elements of argument x
mean (c(a, b)) #6

sd (x) standard deviation of elements of argument x
var (c(a, b)) #18

var (x) variance of argument x

cor (x, y) correlation between vectors x and y

cov(x, y) covariance between vectors x and y

round (x, digits) round the elements of x to the number of decimal places specified by digits

pmax(...) positionwise maxima
pmax (c(4, 5), c(a, b)) #4 9
pmin(...) positionwise minima

cumsum (x) cumulative sum of the elements of argument x
cumsum(c(a, b, a)) #4 13 17

cumprod (x) cumulative product of the elements of argument x

cummax (x) cumulative maximum of the elements of argument x
cummax (c(a, b, a)) #4 9 9

cummin (x) cumulative minimum of the elements of argument x

Matrices

matrix(x, nrow, ncol) creating a matrix with nrow rows and ncol columns from elements of x by
first filling the first column (top to bottom), then the second, etc
matrix(c (2, 3), nrow=2, ncol=2) #2 2
#3 3
diag(x) forms a diagonal matrix with elements of x on the main diagonal; argument nrow can still be
used
%$*% binary operator for matrix multiplication
t (x) transposes argument x
solve (x) inverse of the square matrix x
dim(x) dimensions of argument x i.e. number of rows and columns for a matrix, returns NULL for vectors
dim(diag (2, nrow=2)) #2 2
rowSums (x) sum the elements of x by rows
colSums (x) sum the elements of x by columns
cbind(...) combine arguments side-by-side
cbind(c (2, 3), c(4, 5), c(a, b)) #2 4 3
#3 5 9
rbind(...) combine arguments top to bottom
rbind(c (2, 3), c(4, 5)) #2 3
#4 5
apply (X,MARGIN, FUN) apply function FUN to the object X by rows if MARGIN=I or by columns if
MARGIN=2

2/4 Simulation Methods in Financial Mathematics

Logicals

== >= > < <= != %in% binary operators equal to, greater than or equal to, greater than, less than, less
than or equal to, not equal to, and is contained in producing logical objects consisting of TRUE
and/or FALSE
a > b #FALSE
a + 6 == b #TRUE
a !'= b #TRUE
c(a, 2) %in% c(2, b, 1) #FALSE TRUE

! unary operator for negating the logical object
!'c(FALSE, TRUE) #TRUE FALSE

& | binary operators AND and OR for combining logical objects
a == 3 | b == 3 #TRUE

Probability distributions

rnorm(n) random generation of #» numbers from a standard normal (Gaussian) distribution; arguments
mean and sd can be used to specify distribution parameters
set.seed(16)
rnorm(2) #1.147829 -0.468412
rnorm (2, mean=3) #4.096216 1.555771

dnorm(x) value of the probability density function (pdf) of a standard normal distribution at elements of
x; arguments mean and sd can be used to specify distribution parameters

pnorm(q) value of the cumulative distribution function (cdf) of a standard normal distribution at
elements of ¢; arguments mean and sd can be used to specify distribution parameters
pnorm(0) #0.5

gnorm (p) value of the quantile function i.e. inverse cdf of a standard normal distribution at elements of

q; arguments mean and sd can be used to specify distribution parameters
qnorm (0.95) #1.644854

Similar functions exist for many other distributions e.g. runif generates uniformly distributed random
numbers (from the unit interval) and rexp exponentially distributed random numbers; arguments for

specifying the parameters have different names

Data extraction

x =2 : 10

y =9 :1

z =c(5, 2, 3)

yI[3] #7 element at a specific position

z[-2] #5 3 all elements except one at a specific position
y[l : 3] #9 8 7 elements at specific positions

yl=-(1 : 7)] #2 1 all elements except those at specific positions
x[c(2, 4, 6)] #3 5 7 elements at specific positions

z[c (TRUE, FALSE, TRUE)] #5 3 elements at positions TRUE

x[y > 4] #2 3 4 5 6 elements at positions TRUE

x[x > 3 & x < 5] #4 elements at positions TRUE

m = rbind(x, y)

m[2, 3] #7 element at a specific position
m[l,] #2 3 4 5 6 7 8 9 10 speciﬁed row

m[, 2] #3 8 specified column

m[-1, 1] #9 specified sub-matrix

m[l, c(1, 3)] #2 4 specified sub-matrix

3/4 Simulation Methods in Financial Mathematics

Plotting

plot(x, y) plot the points coordinates of which are defined by the vectors x and y elementwise;
argument #ype can be used to change the plotting style e.g. "p" for points, "/” for lines, "o"” for
overplotted points and lines
plot(x, y, type="1")

matplot(x, y) plot the series of points coordinates of which are defined by the matrices x and y
elementwise with series in columns; if only one matrix is given then this is assumed to be y; type
can be used as before
matplot (m, type="1")
x1 = (1 : 200) / 100; yl = matrix(0, length(x1), 2)
yl[, 1] = cos(x); yl[, 2] = sin(x); matplot(xl, yl, type="1")

Programming

function (arglist) {expressions} function definition; functions are usually named and not used
“on the spot”; giving default values to arguments allows execution of a function without specifying
values for all the arguments; values can be arbitrary (e.g. function names); when the function body
consists of a single expression then the curly braces can be omitted
mltpl tbl = function(x=1:9, y=1:9){x %*% t(y)}
mltpl tbl(1:2, 1:2) #1 2
#2 4
univ_func = function(obj, f) f(obj)
if (condition) {expressions} expressions are executed only if condition is TRUE
if(runif (1) > runif(l)) print("first was bigger")
if (condition) {expressionsl}else{expressions2} if condition is TRUE then expressionsl
are executed, if not then expressions?2
if(runif (1) > runif (1)) {
print ("first was bigger')
telsef
print ("second was bigger')
}
for (variable in sequence) {expressions} a cycle where a variable takes the value of the first
element of the sequence and expressions are then executed, then the variable takes the value of the
second element of the sequence and expressions are again executed; this continues until the
sequence is exhausted or expressions cause the cycle to end prematurely
N = 1000
n = 500
meanv = rep (0, N)
for(i in 1 : N){
meanv/[i] = mean (runif (n))
}
var (meanv) #should be approximately 1/(12%n)
while (condition) {expressions} a cycle where expressions are executed if the condition is
TRUE initially; then the condition is re-checked and if it is still true then expressions are executed
again; this continues until the condition is FALSE or expressions cause the cycle to end prematurely
init = 1:10
summand = init
while (max (summand) > 0.00001) {
summand = summand / 2
init=init+summand

4/4 Simulation Methods in Financial Mathematics

An introduction to R language

The book addresses some topics of R language that are relevant to the course

Site: TU Moodle
Course: Simulation Methods in Financial Mathematics (MTMS.02.038)
Book: An introduction to R language

Printed by: Raul Kangro
Date: Tuesday, 10 April 2012, 03:27 PM

Table of Contents

How to use the book
Creating vectors

Sample answers
Manipulating vectors

Sample answers
Functions

Sample answers
Programming basics

Sample answers
Matrices

Sample answers
Efficient programming

Sample answers
Functions Il

Sample answers

Debugging

How to use the book

When reading the book, it is good idea to have the R program also running on your computer. When an example
is given in the text, try it immediately out by typing (or copying) it to the R console window. If a command
defines a variable, then you can see the value of that variable by just typing the name of the variable in the
command window and pressing the return (or enter) key.

After finishing reading a topic, please also try to find answers to the questions at the end of each chapter.
Finally, look also at the answers given in the subchapter Sample answers. If your answer does not appear

among the answers given, then it does not mean that your answer is wrong. As long as it produces the required
result, it is correct.

Creating vectors

(Numeric) vectors are collections of numbers

There are many ways to create a vector in R:

1) just join several numbers or existing vectors together by c() function.

For example,

x=c(3.4,5)

creates a vector x with two elements.

y=c(x,7)

creates a vector y with elements 3.4,5,7. You can use as arguments for ¢ other commands that produce vectors,
like

z=c(0,rnorm(5))

which produces a vector starting with 0 and then containing 5 random numbers from the standard normal
distribution.

Remark: actually it is possible to use c() to join together things of different types, like z=c(1, "hallo",sin),
where the last is a function name, but we are not going to use those more exotic possibilities in the course.

2) creating a vector of constant values (zeros, ones or some other values) with the function rep(value,n):
x=rep(0,10)
creates a vector containing 10 zeros

3) a vector of consecutive integers can be formed by the construction nl:n2, where nl and n2 are integers. The
result is a vector containing all having nl as the first element, n2 as the last element and containing all integers
between those values. For example

x=5:10

produces a vector x with elements 5,6,7,8,9,10 and the command

y=3:0

produces a vector y with elements 3,2,1,0.

4) There is a command seq() for producing linearly spaced (meaning with constant distance between
consequtive elements) vectors. The most useful forms are seq(from, to, by=stepsize) which gives a
segence starting with the value from and increments each next element by the value stepsize, and seq(from,
to, length.out=n), which produces n equally spaced numbers starting from the value from and ending with
value to (so the step size is (to-from)/(n-1)). Examples:

x=seq(1l.5,6,by=2)

produces a vector with values 1.5,3.5,5.5 and

y=seq(0,1,length.out=5)

produces a vector with values 0,0.25,0.5,0.75,1

5) by using any function that returns a vector as a result, for example
x=runif(10)
produces a vector of 10 uniformly distributed random variables from the interval [0,1]

There is one type of vectors that we will be using apart from numeric ones (even if this use is perhaps implicit) --
logical vectors. These have TRUE and FALSE as its possible elements. These can be abbreviated as T and F.
Creation of such vectors is still straightforward. For example

x=c(T,F,F)

creates one. We will see in the next chapter why logical vectors can be very useful.

Questions:

~ W

Write a command that creates a vector x with elements 10,0,1.5

. Write a command that creates a vector x starting with 5 ones and then 16 twos without writing explicitly out

all of the elements

. Write a command that creates a vector y with values 10,9,8,...,0

Write a command that produces a vector x with values 1,1.1,1.2,...,3

. Write a command that produces 101 equally spaced number between -1 and 1 (including -1 and 1).

Sample answers

PwWNE

x=c(10,0,1.5)

x=c(rep(1,5),rep(2,16))

y=10:0 or y=seq(10,0,by=-1) or y=seq(10,0,length.out=11)

y=seq(1,3,by=0.1) or y=seq(1,3,length.out=21). Later we see, that a possible command is also

y=1+4(0:20)*0.1
seq(-1,1,length.out=101) or seq(-1,1,by=0.02), it is also possible to write -1+(0:100)*0.2

Manipulating vectors

When we have created vectors our aim is typically to make use of them. Many functions can be used.

1) + - * [%k~ %/% %% are examples of binary operators (performing addition, substraction, multiplication,
division, raising to a power (two variants), integer division, integer division remainder, respectively). They all
operate elementwise as do most of the functions in R.

For example after creating

x=c(3.4,5)

y=c(1,7)

we can write

X+y

to get a vector with elements 4.4,12 as a result. This suggests that the vectors that we are going to use should
have the same length. This is not necessarily true as R recycles elements if the vectors are not of equal length.
This is why

2*X

produces vector 6.8,10 as a result.

Remark: Recycling will take place whenever the lengths don't match but it makes sense only when longer vector
length is a multiple of shorter vector length, otherwise a warning message is produced.

2)Examples of (elementwise) operators producing logical vectors are == >= > < <= = %in%(respectively
equal to, greater than or equal to, greater than, less than, less than or equal to, not equal to, and is contained
in). For example

x>y

returns T,F as the first element of x is greater than the first element of y but the second element of xis not
greater than the second element of y. Command

c(x,2) %in% c(2,y,1)

returns F,F,T as neither of the elements in x is contained among the elements of the second vector but the third
element (2) is. Logical vectors can further be combined with & and | standing for logical AND and OR (and
operating elementwise). Thus

x>y |y>x

produces T,T as the elements in respective positions are different.

It is also interesting that logical vectors can be used in arithmetic operations. R simply translates Tto 1 and F to
0.

3) Some functions use all the elements in the input vector to produce a single number (one-element vector) as
a result. For example

mean (Xx)

produces 4.2.

4)We might need just some elements of a vector. This is accomplished with square brackets. Let us define
X=2:10

y=9:1

z=c(5,2,3)

and then we can

ask for the third element in vector y with y[3]

ask for all the elements in vector z apart from the second element with z[-2]

ask for the first three elements in y with y[1:3]

ask for the last four elements in y with y[-(1:5)]

ask for the second, fourth and sixth element from x with x[c(2,4,6)]

ask for specific elemnts from z by specifying the required elements by a logical vector like

z[c(TRUE, FALSE, TRUE)]

7. ask for specific elemnts from x by specifying the required elements by a logical vector which is created using
a condition like x[y>4] or x[x>3 & x<5]

8. write an index after any expression that produces a vector, for example (x-y)[2] and sqrt(x)[3] are

valid usages of indeces.

ouvkewnNH

Remark: positions in a vector can also have names and then these names can be used for extracting data from
the vector but we will not be using this option in the course.

5) Replacing elements in a vector is possible by first selecting the elements that need replacing (as shown
previously) and then writing the replacements on the other side of the equality sign. For example
yl[1:5]=c(1,3,11,2,9)

replaces the first five elements in vector y by 1,3,11,2,9 respectively.

Questions:

Write a command that creates a vector x with elements 2,4,8,16,32,64

Write a command that reverses the order of that vector x so that it becomes 64,32,16,8,4,2

Write a command that selects elements from x that are multiples of 16.

Look at the the function reference sheets and find the function for rounding numbers. Write commands that
generate two vectors x1 and x2, each with 10 random numbers from the standard normal distribution and
then rounds the elements of these vectors to integers. Write a command that finds how many of the numbers
in the first rounded vector are contained in the second rounded vector.

5. Generate 100 random numbers from the interval [0,1]. Find the element that causes the cumulative sum of
these numbers to get larger than 20. Hint: use the function reference sheets to find a suitable function.

PR

Sample answers

x=2%*(1:6)

x=X[6:1] or x=rev(x)

X[X%%16==0]

x1=round(rnorm(10)); x2=round(rnorm(10)); sum(x1 %in% x2)
x=runif(100); x[cumsum(x)>20][1] or x[min(which(cumsum(x)>20))]

vihewnNeE

Functions

Every (valid) command that you use in R makes use of a function. Sometimes this might be implicit but it is
actually always so. You have already seen many useful functions that are predefined and many others are
available in different R packages. However, throughout the course it will be very useful to write several
functions of your own.

1) How do we define a function?

Typically with a command similar to this

function_name=function(arguments_list){expressions}

So a function really is comprised of three parts: it's name, it's arguments and the function body (this is the main
part that is inside the curly brackets).

Let us consider an example. Suppose we want to write a function that returns the n largest elements in
decreasing order from a vector. But this n is not fixed in advance.

1. So we first decide on its name and think it should be topn.

2. Secondly we think about the arguments that the function needs. Obviously the vector from which the large
elements are sought from. So suppose we call this vector x. And also the amount n.

3. Now the function body. In the function body we must use the input arguments with the names that we gave
them in the previous part. We can find that R has a predefined function sort that we can use to make our
work easier.

So our function can be defined as follows:
topn=function(x,n){
sort(x,decreasing=T)[1:n]

}

2) How do we use this function?

We use it as we have seen previously. We just must remember what kind of arguments the function is expecting.
The first one must be a vector and the second one a positive integer.

Remark: You may notice that we may provide arguments that do not make sense. For example n might be
larger than the number of elements in x. Of course our function will not work properly with such arguments.

So suppose we first generate 100 random numbers from a standard normal distribution and store them.
a=rnorm(100)

Now we ask for the top ten by writing

topn(a,10)

3) How does our function work?

We can imagine what goes on. The function first sets

x=a

n=10

because these were the input values provided. Then it executes the expressions in the function body. There is
just a single command there.

sort(x,decreasing=T)[1:n]

The result of this command is returned as output.

4) Why can't | just write sort(rnorm(100) ,decreasing=T)[1:10]?

You could, but imagine that you want to perform this operation several times (and the number of times is not
known in advance) and each time the number of elements in the input vector is randomly generated and the
size of the top (value of n) is also not fixed. Using the function topn meakes the code shorter and easier to
uderstand.

5) Give me another example of defining and using a function!
Ok, lets take a more complicated example. Imagine now that we want to find the smallest and largest number in
a vector that exceed some number which is not fixed in advance. So we define

sl=function(x,y=0){
x1=x[x>y]
large=max(x1)
small=min(x1)
return(c(small, large))

}

Note some differences:

1. Argument y has a default value
2. New objects are created inside the function body
3. Function body ends with expression making use of the return command

So?

1. Default values allow us to not provide input values when executing the function (so if we are happy with y=0
we must only provide a value for x)

2. These (temporary) variables (x1, large, small) are only accesible inside the function and when the function
has terminated you will not be able to use them anymore (using those names x1, large, small).

3. When the function body contains several expressions then it is customary to write explicitly what the function
should return as output. If we do not use return then the value of the last expression inside the function body
is returned. This is why the function topn could be defined as it was (without return).

6) What can be used as arguments of a function?

Anything. You just have to keep in mind what kind of object is meant to be given for an argument when writing
the body of the function and use the name of the argument accordingly. During this course it is often useful to
write functions that take names of other functions as arguments. As an example, suppose we want to
investigate the behavior of the top n values of random variables from a probability distributions for various
distributions. Let the arguments of the function be N (the value of random values generated), n (the number of
largest values to select) and gen (the name of a function that for a given value of n generates n random
numbers). By using our earlier function topn we get write the following code:

topn_rand=function(N,n,gen){
x=gen(N)#note that here gen is assumed to be the name of a function of one variable
return(topn(x,n))

}

and use the function like this:

topn rand(100,10, runif) #10 largest uniformly distributed random numbers out of 100
topn rand (100,10, rnorm) #the same for normally distributed random numbers

Questions:

1. What would the function s1 do when we would totally omit return from the the last line in its body (i.e. the
last line would be c(small, large))?

2. Write a function meanse that gets a vector as an input and returns the mean and standard error of the mean
as output. For computing the standard error of the mean, assume that the vector consists of values of
independent and identically distributed random variables.

3. Perform a test that makes use of this function to check whether the mean of 10 000 random numbers from a
standard normal distribution is closer to zero than twice the value of the standard error of the mean. Provide
the code for the test.

4. What should you change in the code of the function topn if you would like to select whether you want the
largest or the smallest elements when using the function? Provide the new code.

5. Suppose we want to compare two vectors and out of those elements in the first vector that are larger than
their respective counterparts in the second vector find the smallest and largest elements. Write the code of a
function that would do this.

Sample answers

1. It would still do what it did previously as the output from the last line (of the function body) would be
returned if there is no return statement in the function body.

2. meanse=function(x){c(mean(x),sd(x)/sqrt(length(x)))}

3. result=meanse(rnorm(10000)); abs(result[1])<2*result[2]

4. topbottomn=function(x,n,top=T){sort(x,decreasing=top)[1:n]} where we have set largest elements as the
default value

5. If you carefully consider what the function sl does then you realize that it will do exactly that if you provide
the two vectors as input.

Programming basics

Simulation is our main activity throughout this course and this usally means performing some particular step for
a large number of times. Also, sometimes the exact value of this large number depends on the (stochastic)
results that we have obtained previously. We thus need to know how to accomplish this with code. We look at 4
important constructs.

1) if(condition) {expressions} means that expressions are executed only if condition is TRUE. So with
if(runif(1)>runif(1)) print("first was bigger")

first two random numbers from the unit interval are generated and then if the first one is larger than the second
one then a message is printed. If this is not the case then the expressions are not evaluated at all.

Remark: as with functions, when there is a single expression, curly braces are not needed.

2) if(condition) {expressionsl}else{expressions2} is an extension of this, where depending on whether
the condition is TRUE or FALSE different expressions get evaluated. So with
if(runif(1)>runif(1)){

print("first was bigger")

}else{

print("second was bigger")

}
again two random numbers from the unit interval are generated and then if the first one is larger than the

second one then a message is printed. However, if this is not the case then the other message is printed.
Remark: Negation of "first was bigger" in our case is of course "second was bigger or equal" not simply "second
was bigger" but equality of two random number from a continuous distribution is out of the question.

Remark: It is still possible to omit curly braces with just a single expression but then make sure that the whole
construct is on the same line. With the curly braces as above it is also important to not start a new line of code
with else as otherwise R will think that there is no else and only evaluate the if part.

Remark: Of course the body of else (i.e. expressions2) may contain another if or if...else construct.

3) for(variable in sequence){expressions} is an example of a cycle. The basic idea is that variable takes
the value of the first element of the sequence and expressions are then executed, then the variable takes the
value of the second element of the sequence and expressions are again executed; this continues until the
sequence is exhausted. Thus
N=1000
n=500
meanv=rep(0,N)
for(i in 1:N){

meanv[i] = mean(runif(n))

}
first produces three objects and then begins the cycle. As a first step variable i gets value 1 (first value in the

sequence). In the body of the cycle the first element of vector meanv is changed. Now variable i gets value 2
(second value in the sequence) and in the body of the cycle the second element of vector meanv is changed.
This cycle continues till i=1000 (last value in the sequence) and in the last step the last element of meanv is
changed. Then the cycle terminates as i has received its last value.

Remark: It is best not to use cycles in R unless absolutely necessary as it is usally possible to produce a code
that executes much faster when no (explicit) cycles are present.

4) while(condition){expressions} is a different kind of cycle where expressions are executed if the condition
is TRUE initially; then the condition is re-checked and if it is still true then expressions are executed again; this
continues until the condition is FALSE. Basically this looks ver much like a for cycle presented previously but
the difference is that the number of times the cycle body is run is not predetermined. So
init=1:10
summand=init
while(max(summand)>0.00001){
summand=summand/2

init=init+summand
}
after the two variables have been defined a cycle starts. As the maximum value of the summand is 10 the
expressions are evaluated and all the elements of summand are divided by 2 (it is then
0.5,1,1.5,2,2.5,3,3.5,4,4.5,5). The value of init is increased by the new value of summand. Now the maximum
value of the summand is 5 and the expressions are evaluated again -- the elements of summand are halved
again and these new values are added to init. Eventually even the last (which is the largest) element of
summand is not greater than 0.00001 and then the cycle is terminated (i.e. the condition is no longer TRUE and
the expressions are no longer evaluated).

Remark: Also for for and while cycles curly braces are not obligatory when a single expression is in the body of
the cycle.

Typically constructs presented are combined -- e.g. the body of a for cycle may contain an if construct.
Questions:

1. In the previous chapter you constructed a function meanse and performed a test with this function. Now
write code that performs this test 100 times and stores the test results in a vector.

2. In the manipulating vectors chapter you generated 100 random numbers from the interval [0,1] and found
the element that caused the cumulative sum of these numbers to get larger than 20. Now accomplish this
with code that uses a for cycle and does not generate more random numbers than necessary.

3. And now write a similar code that uses a while cycle.

4. When you compare the execution time of the three possible codes then you probably won't see much of a
difference because they all execute quite fast. However can you think of a situation where the first two
solutions won't work properly.

Sample answers

1. reps=100
test=rep(0,reps)
for (i in 1:reps){result=meanse(rnorm(10000)); test[i]=(abs(result[1])<2*result[2])}
test

2. rsum=0
a=0
for (i in 1:100){

if (rsum<=20){
a=runif(1)
rsum=rsum+a
}
}

a
#remark: it is possible to use the break command to stop computations of a for cycle, so we could add
else{break} for the if command to avoid unneccesary computations.
3. rsum=0
a=0
while (rsum<=20){
a=runif(1)
rsum=rsum-+a
}
a
4. Even if highly improbable it is still possible that the sum of the first 100 numbers from the unit interval [0,1]
is not greater than 20. Thus, if our aim is to find the first value that couses the cumulative sum to be larger
than 20 without any bound for the number of random variables to be generated, the only absolutely correct
solution is the one with while.

Matrices

We have already learned how to use vectors but sometimes it can be more convenient to arrange the data into
matrices i.e. have several vectors next to each other.

1) To create a matrix function matrix can be used. We just need to provide the elements (in a vector) for the
matrix and also inform R about the number of rows and columns the matrix has (i.e. set matrix dimensions). For
example

EEEsssgml=matrix(c(2,3,2,1), nrow=2, ncol=2)

produces a 2x2 square matrix where the first column is 2,3 and the second column 2,1.

Remark: Recycling takes place when the provided vector does not have enough elements (but is of a suitable
length) so giving just a single element will work.

2) We can put vectors side-by-side or top to bottom to produce matrices. The respective functions are cbind
and rbind. So

cbind(c(2,3),c(2,1))

and

rbind(c(2,2),c(3,1))

will also produce the matrix that was produced at the previous step. Input of those functions can also be a
matrix.

Remark: Of course matrix can also be an output of some function so this is yet another example of producing a
matrix.

3) What might we do with a matrix? We could add or subtract or multiply or divide or comapre them
elementwise as we did with vectors using the same operators as long as the matrices have matching
dimensions.

However more elaborate things are binary operator %*% for matrix multiplication, function t for transposing a
matrix and function solve for inverting a matrix. So, for example,

m1%*%ml

produces a 2x2 matrix with first column 10,9 and second column 6,7 and

solve(ml)

produces a 2x2 matrix with first column -0.25,0.75 and second column 0.5,-0.5.

Remark: Transposing a vector produces a matrix with one row

4) Function apply is also noteworthy as it allows us to apply some function to the matrix by rows or by columns.
First argument is the matrix, second is typically 1 or 2 specifying whether the function should be applied by
columns or by rows and the thrid argument is the function to use. So

apply(ml,2,prod)

produces a vector 6,2 as the first element is the product of the elemnts in the first column and the second is the
product of the elements in the second column.

5) The principle of extracting elements from a matrix is a generalisation of the concept of extracting elements
from a vector and again makes use of the square brackets. The difference is that now there are two positions
inside the brackets -- first for rows and the other for columns. Let us first define

m2=cbind(ml,ml)

and then we can

ask for the element in the 2nd row and 3rd column with m2[2, 3]

ask for all the elements in the first row with m2[1,]

ask for all the elements in the 4th column with m2[, 4]

ask for all the elements in the 1st colum except the one in the first row with m2[-1, 1]

ask for the 1st and 3rd elements in the 1st row with m2[1, c(1, 3)]

ask for the submatrix that consists of rows 1 and 2 and columns 2 and 3 with m2[c(1,2),c(2,3)]
ask for all the elements in the matrix that are greater than 1 with m2[m2>1]

NoukRwnNnHE

Remark: As we see from example 7, it is possible to use a logical matrix to specify the positions from which we

want to extract the elements. However, as this does not follow the usual square brackets extraction style for
matrices (there is no comma inside), both the logical matrix and the matrix that we are extracting the data from
are first converted into a vector (columns are stacked under each other from left to right) and the output will
also be a vector (even if it could theoretically have a matrix layout).

Questions:

1. Make a 5x3 matrix X with columns 1:5, 2:6 and 6:2. Now use X to make another matrix Y)swith dimensions
5x2) that has the mean of the first two columns of X as its first column and the third column of X as its
second column.

2. Now form a 3x2 matrix D with columns 0.5,0.5,0 and 0,0,1 and use X and D to produce Y.

3. Produce a sequence with 1:9 and then form a "multiplication table" based on this sequence. Hint: use matrix
multiplication but make sure one of the arguments is a matrix as otherwise it returns the inner product.

4. Write the code that first generates 10000 random numbers from the unit interval [0,1], arranges them into a
100x100 matrix and then calculates the geometric means of each row and column (i.e. 200 geometric means
in total) and finally the arithmetic mean of these 200 values.

Sample answers

PwWNE

X=matrix(c(1:5,2:6,6:2),nrow=5); Y=cbind((X[,11+X[,21)/2,X[,31)

D=matrix(c(0.5,0.5,0,0,0,1),nrow=3); X%*%D

a=1:9; a%*%t(a)

mat=matrix(runif(10000),nrow=100); mean(c(apply(mat,1,prod)**(1/100),apply(mat,2,prod)**(1/100)))
or

mat=log(matrix(runif(10000),nrow=100)); mean(c(exp(rowMeans(mat)),exp(colMeans(mat))))

Efficient programming

Now that we have covered the basics (i.e the essential knowledge without which it is impossible to complete the
course) we switch our attention to advanced subjects that make life easier. First, we cover some tips that help
us to arrive at an answer more quickly.

1) Use vectorized operations whenever possible. A lot of functions can act on vectors (elementwise). Many
tasks can be accomplished with a cycle but this is mostly inefficient. This typically remains true even if we might
do some extra work.

Suppose we have to generate 10 000 numbers from a standard normal distribution and divide by 2 the positive
numbers and multiply by 2 the negative numbers. This can of course be accomplished with a cycle that has an if
else construct inside. However it is much more efficent to do it differently:

a=rnorm(10000)

ala>0]=ala>0]/2

ala<0]=ala<0]*2

or

a*((a<0)*2+(a>0)/2)

where the second option works even if we would have to change the sign or do something similar that could
cause problems in the first one.

Remark: Only very rarely does it make sense to use a cycle in R when it is possible to vectorize. One of these
cases is when we would otherwise run out of memory.

Remark: When the situation is tight with memory it might be worthwhile to erase/overwrite all the objects that
are no longer used in the code that follows. Function rm can be used for deleting objects.

2) Typically built-in R functions operate much quicker than those that are manually added. However, the
efficiency might be lost if the built-in function actually does what we need but also a lot more (i.e performs
some tasks that are not needed by us). Sometimes functions operate differently depending on the type of the
input.

Suppose we have to generate 1000 random numbers and calculate the standard deviation. Then we have to do
it 999 more times. We can simply write.
sd(matrix(rnorm(1000000),nrow=1000))

3) Growing objects is very slow.

Suppose we have to generate random numbers from a normal distribution, standard deviation of which is
random and determined by an exponential distribution. We stop when our sample includes an element that has
an absolute value of at least 30 but have to return the full sample. Seems that we cannot avoid a cycle but at
least we should not grow our sample vector too many times.

step=100000

samp=rnorm(step,sd=rexp(step))

smax=max(abs(samp))

while (smax<30){

new=rnorm(step,sd=rexp(step))

samp=c(samp,new)

smax=max(abs(new))

}

Remark: If no extra elements are allowed it is possible to fix where the maximum occurs in the while cycle and
then cut off the tail of the sample after the cycle has finished.

4) When it seems that a cycle is needed there might still be a way to avoid it (at least explicitly). Sometimes the
apply function can be an alternative.

Remark: If you really want to avoid cycles then functions sapply, mapply and replicate might help. If we still
have to use a cycle constructs next and break might speed up the cycle.

Questions:

1. Write code that will generate a vector y based on vector x. When x[i]<1 then y[i] should be -1 and it should
be 1 otherwise.

2. Simulate numbers from the standard normal distribution until three sample elements have exceeded 5.
Present the sample elements that are less than -3.

3. Find the median for each of the 1000 samples, each containing 1000 random numbers from the standard
exponential distribution. Plot the histogram of sample medians.

Sample answers

We first might get some estimate of how long this might take. 1-pnorm(5) shows that a sample element
exceeds 5 about once in 4 million attempts. Thus 2 (or more) in 1 million is not typical and we are willing to
throw some numbers away if it were to happen.

sample=NULL

check=0

large=5

small=(-3)

step=1000000

while (check<3){

samp=rnorm(step)

big=which(samp>large)

if (length(big)==0) {sample=c(sample,samp[samp

Simulation Methods in Financial Mathematics
Computer Lab 1

Goals of the lab:

e To familiarize yourself with R
e To learn to use the Monte-Carlo method and estimate its error

e To learn to calculate integrals using simulation methods

Monte-Carlo method or simulation method is a computational algo rithm for estimating
the mean of a random variable. The method is based on performing indep endent trials and
averaging these results. That is, if we are interested in EY for some random variable Y,
we generate n independent values Y7, Ys, ..., Y, from the distribution of Y and estimate

1 n
EYan:EZYi.

=1

It is important to understand, that for a given random variable Y the expected value EY
is a constant (non-random real number) but the the approximatio n H,, computed by MC
method is a random number, so the error of the computed result is also random. So, when
using MC method, we can never be completely sure that the error of the result we get is
as small as we want but we can make the probability of getting a res ult with a large error
very small.

The estimation of the error of H,, can be based on the Central Limit Theorem: for large
enough n we have that the error of H,, (i.e. |H, —EY) is less than

o (a/2)oy
Vn

with approximate probability 1 — «. Here ® denotes the cumulative distribution function
of the standard normal distribution. The inverse of a cumulativ e distribution function is
called the quantile function of that distribution, so actually t he quantile function of the
standard normal distribution is used in the error estimate. The st andard deviation oy of
the random variable Y is also estimated by using Y7,...,Y).

€= —

In most cases relevant Y can be expressed as Y = ¢g(X), where X is a random variable
(or random vector) with known distribution and ¢ is some given function. In this case we
generate values of Y by applying the function g to the generated values of X.

Tasks:

1. We start using the MC method. Let Y = X?, where X has the standard uniform
distribution. Using the sample of size n = 1000 find an estimate of EY', calculate
the error estimate for a = 0.1 and the actual error.

2. Let us write our first useful function for applying MC method in ma ny different
situations. Namely, define the function MC1 with four arguments: the name of a
function g, the name of a function that for a given n generates n random variables
X, the number n of random variables to be generated, and the value of « used in
computing the error estimate. The function should return a vector of t wo numbers;
the estimat of E[g(X) and the error estimate. Additionally, define the function
f(x) = 2% and compute the value MC1(f,runif,100,0.1). Is the result correct?

3. Use the function M C'1 to repeat the first task 100 times and produce three vectors:
average, error _estimate, actual error. How many times did the actual error exceed
the error estimate?

4. When using the MC method, we usually do not know beforehand how 1 arge a sample
should be generated in order to get an answer that is accurate enough for our pur-
poses. Thus simulation continues until the required precision is a chieved (or in some
cases until we cannot wait any longer). In order to do that we first set the number of
random variables to be generated at one go and after generating this n umber of val-
ues we estimate the error. If the error is not small enough we repeat the generation
process and estimate the error again by using all generated values. Si nce the number
of generations needed for achieving the desired accuracy can be very large, w e do not
store the previously generated random variables (to avoid memory problems), and
thus we cannot use the R functions to calculate the mean and standa rd deviation of
the sample. Instead we store only the sum, the sum of squares and t he total number
of values of Y generated so far. The standard deviation can then be estimated as

|sum_of squares of y— (sum_of y)?/n

oy =~
n—1

Write a function which takes as the input a function g, a function gen which gen-
erates values from the distribution of X, allowed error ¢ and « — the probability
of exceeding the allowed error and would return the estimate (with give n precision
with probability 1 — «) of the expected value of Y = g(X).

5. Homework (Deadline 16.02.2012) Definite integrals

/a b g(z) dz

can be viewed as expected values of a function by multiplying and dividi ng the
integrand by a suitable probability density function:

’ _ [9(2) _ (s
[at@yar = [L8 pi(@yas = EG(0),

where X is a random variable with the probability density function fx such that
fx(x) >0, x € [a,b] and

i(a) = J?;;’Z)I[avb] (@).

Here I}, 4)(2) is the indicator function of the set [a, b] having value 1 when x belongs
to that interval and 0 otherwise and it is not needed if the density fx or the function
g is constantly zero outside of the interval [a,b]. So there are many ways to compute
by MC the same definite integral (different choices of the random variable X give
different methods with different convergence properties).

Use the Monte-Carlo method to calculate with precision € = 0.01 (with probability

a = 0.05) the integrals
2
/ V1+a2de
-1

100 15
/ e "t dy.
3

Hint: the indicator function Ij,4)(z) can be written in R as (z >=a) x (z <=1).

and

Simulation Methods in Financial Mathematics
Computer Lab 2

Goals of the lab:

e To familiarize yourself with Brownian motion and the Black-Scholes model of the
market

e To program the Black-Scholes call and put option pricing formula s

e To understand that the prices of options can be calculated as expected val ues

A standard (also called vanilla) option is a contract written by a sel ler that conveys to the
buyer the right — but not the obligation — to buy (in the case of a call option) or to sell (in
the case of a put option) in a future a particular asset, such as a p iece of property, or shares
of stock or some other underlying security, such as, among others, a futures contract, for
the price specified in the contract. In return for granting the option, the seller collects a
payment (the premium) from the buyer. We will deal with stock option s.

For example, an European call option gives the buyer the right on a fi xed future date and
time (time 7') to buy a share of the fixed company for a fixed price F; such a contract is
equivalent to the right to receive the amount p(S(T")) at time 7', where p(s) = max(s —
E,0). The function p is called the payoff function of the option. A similar put option
gives the owner the right to sell a share at some fixed timepoint with so me fixed price; the
respective payoff function is p(s) = max(E — s,0).

Actually, there are many different types of options and not all of t hem are related to
buying or selling something, but all options can be viewed as contra cts giving the owner
the right to receive in the future a payment which value is determined by the future price
(or prices) of the underlying asset (or assets). So it is important to be able to compute
the prices for of options with arbitrary payoff functions.

To find the price of an option, we will first need to model the share price. Based on the
model we can deduce the rule for calculating the price. One of the mos t commonly used
models is the Black-Scholes model

dS(t) = S(t) - (- dt + o - dB(t)),

where p is trend, o is the volatility of the stock price (quantifies the risk of the instrument)
and B is the standard Brownian motion. In a general case p and o can depend on time,
stock price and the Brownian motion. In the current lab, however, we d eal with constant
uand o.

Tasks:

1. The standard bownian motion is defined by the following properties

o B(0) = 0;
e increments B(t2) — B(t1) are normally distributed N (0,+/t2 — ¢1) and indepen-
dent for disjoint intervals.

To generate the paths of a Brownian motion we need to split the interval [0, 7]
into m disjoint intervals and the values of the Brownian motion at the t ime instants

t; = i-L can be generated as B(t;11) = B(t;)+X;, where X; iid normally distributed

m
N(0, \/%) random variables.
Produce a graph consisting of 10 different paths of a Brownian motion in interval
[0,0.5], by dividing the latter into m = 100 subintervals. It is recommended to store
the paths in a matrix with dimensions 100 x 10 (one trajectory in each column).

2. When p and o are constant, then it is known that,the stock prices corresponding t o
the Black-Scholes model are distributed as

S(t) _ S(O)e(,ufoQ/Z)H%rB(t)'

Thus we have a one-to-one correspondence between the paths of the Brownia n motion
and the paths of a stock price.

Assume S(0) = 100, © = 0.1, 0 = 0.5 and produce a graph of 10 stock price paths
in interval [0,0.5], by dividing the latter into m = 100 subintervals.

3. For a constant risk-free interest rate r, stock dividend percent D and volatility o,
one can calculate the option prices for the Black-Scholes model exactly . Program the
Black-Scholes formulas for European call and put options. The resp ective formulas
are

C(S,E,T,r,0,D,t) = Se P"TD®(d)) — Ee " TDd(dy),

P(S,E,T,r,0,D,t) = —Se PTD&(—d)) + Ee T 0H(—dy),

where 5)
In(2)+ (r— D+ %)(T —t)
dy = —£ 2 , dy =dy —oVT — 1,
' VT —t 0
S is the stock price at time t and ® is the cdf of a standard normal distribution
(function pnorm in R). Make a graph of call and put option prices at ¢t = 0 and the
respective payoff functions in the interval 0 < S < 200 when r = 0.03, 0 =04, E =

100, T'=1, D = 0, by computing the option prices for integer values of S.

4. Homework (deadline 23.02.2012) Make an experiment to test the fact that for
European calls and puts we can calculate the option price as an expected value

H(t,T,5(t) = Ele""Ip(S(T))],
where S(7T') is a random variable defined as

S(T) = S(t)e(r—D—"2—2)(T—t)+o(B(T)—B(t)) (1)

and p is the option payoff function. Use the Monte-Carlo method with error proba-
bility o = 0.05 and allowed error 0.05 and the the parameters from the previous task
to compute the prices of put and call options at ¢ = 0.2 when S(0.2) = 95. Output
the price obtained by MC method, the exact price according to Black-Sch oles for-
mulas and the difference of the results for both put and call option. Compute also
the price of the option with the pay-off function
.8
p(s) = min(5:.5)

withe the same accuracy. (Hint: use the solution of Task 4 from the previous lab.
Thus one needs to define a generator which for a given n would output n values of
S(T) and a suitable function g, the expected value of which needs to be computed.
For defining the generator of the stock prices, one can benefit from the fact that
B(T) — B(t) has distribution N(0,vT —1).)

Simulation Methods in Financial Mathematics
Computer Lab 3

Goals of the lab:

e To program Euler’s method for providing a solution to the stoch astic differential
equation (SDE)
dS(t) = S(t) - (- dt +o-dB(t))

at time T so that the solution satisfies the initial value S(0) = Sp.

e To study the weak and strong convergence rate of Euler’s method experim entally.

As we saw in the first lab, the idea of Monte-Carlo (or simulation) method is very simple:
we just have to generate certain random variables X, apply a function g to generated
values and calculate the average the results together with an error estimate. It turns out
that the simplicity is only apparent: it is not always easy to g enerate efficiently the values
of the random variables and that it is not always obvious what ra ndom variables and
function g to use for a given problem.

The prices of many financial instruments (including options) can be ex pressed as expected
values of certain random variables and therefore it is possible to a pply MC method for
computing the prices. In Lab 2 and homework problem 2 we saw that when we assume
the validity of the Black-Scholes market model with constant volatility, then generating
the future values of stock prices is easy and hence it is quite straig htforward to use Monte-
Carlo method to compute option prices. When the market model does not ha ve constant
parameters (e.g. o is not constant), the explicit distribution of the stock prices at the
exercise time 7' is not available. Thus we have to calculate approximate stock prices using
the respective trajectories of the Brownian motion. In the present lab we study the easiest
method for generating the approximate stock prices — Euler’s method . In order to analyze
the error introduced by approximate stock price generation, we start with the market
model with constant p and o, so that we know the exact results.

Fix the terminal value 7'. In order to generate the values of S(7) using Euler’s method,
we fix m — the number of steps and denote dt = % Now we calculate

Si:Si_l(l-i-udt—i-O'Xi), 1=1,2,...,m,

where X; ~ N(0,v/dt) and independent.

When using numerical methods for solving SDEs, two types of errors a re distinguished.
Firstly, how much does the generated stock price differ from the exact stock price (both
based on the same trajectory of the Brownian motion). The rate of convergence of this
error (in m) is called the strong rate of convergence. Secondly, how rapidly does the
difference between E[g(S(T))] and E[g(S(T))] go to zero as m increases, where S(T') are
the approximate stock prices (generated using e.g. by Euler’s method) and ¢ is some
function of interest. This rate is called the weak rate of convergence. Both rates are
measured in terms of the maximal power ¢ for which the respective errors are less than or
equal to —= for some constant g. It can be shown that for most reasonably “nice” functions
g (for example, for functions with bounded first derivative) the weak convergence rate is
at least as large as the strong convergence rate.

It is important to understand that when calculating the price of an o ption by replacing
S(T) with its approximation produced by the Euler’s method and then usin g the Monte-
Carlo method to estimate the expected value the error of the final result consists of two

components: the error of the Monte-Carlo method which we can reduce by increasing the
number of simulations n and the error introduced because of the wrong distribution of the
stock prices which we can reduce by decreasing step length m. If we let n increase without
a bound all that is left is the second error.

Tasks:

1. Program a function for generating n stock prices based on the Euler’s method
S_euler(n,S0,m,T,mu,sigma). Use this function to calculate the price of an Euro-
pean put option when m = 40,50 =50, F = 50,7 =0.5,D =0.1,r = 0.03,0 = 0.7,
using the Monte-Carlo method and allowing the MC error to exceed 0.01 with prob-
ability a = 0.05 (for the stock price generation, take p =1r — D).

2. Study the strong convergence rate of the Euler’s method experimentally. First write
a function S_euler_error(n,S0,m,T,mu,sigma) which returns the difference be-
tween the S(7T') obtained by the Euler’s method and the exact value based on the
formula ,

S(T) = S0 - =7 T+oB(T)

Then use the Monte-Carlo method to estimate the expected value of the absolute
difference. NB! One has to use the same trajectories on both instances i.e. when
calculating the exact value of S(T) one needs to set B(T) = > | X;, where X; are
the random variables used with Euler’s method. Use the parameters fr om the first
task and trend p = r — D. To analyze the dependence on m calculate the expected
value for m = 5, 10, 20, 40, 80 and the use the R command
nls(log(error)~“log(c)-g*xlog(m),start=1ist(c=1,q=1))to estimate the rate of
convergence. In that command error has to be the vector of errors and m has to be
a vector of steps used.

3. Determine experimentally the weak rate of convergence of the Euler’s method for
the put option of the previous task using m = 3,6, 12,24 steps. NB! The allowed
error for the Monte-Carlo method has to be significantly smaller than the error that
depends on m!

Simulation Methods in Financial Mathematics
Computer Lab 4

Goal of the lab:

e To learn to use Euler’s method for generating stock prices (which enable us to price options) when
the actual distribution of the stock prices is unknown. To learn to compute option prices with a
given accuracy when using a numerical method for generating stock prices.

The Euler’s method for solving a stochastic differential equation (SDE) of the form
dY (t) = a(t, Y (t))dt + B(t,Y (t)) dB(t), Y(0) =Yy
can be presented as
Yit1 = Yi + alty, i) (thyr — te) + B, Yi) X, k=0,1,...,m—1

where Xj, ~ N(0,+/fxt+1 — tx) are iid random variables and Y}, are the approximate values of Y (ty).
Typically we take t, = k - %, which in turn means that t;1 —t, = At = % More generally, the Euler’s
method for solving a system of N SDE’s of the form

dY;(t) = a(t, Y1 (t),. ... Yn () dt + B(t, Yi(t), ..., YN (£)) dB;(t), Yi(0) =Yio,i=1,....,N

is
Yiks1r = Yie +alte, Yig, oo, Ynu) (tepr — t) + B, Vi, - - YNu) Xin, i =1,...,N, k=0,1,...,m—1,
where the vectors (Xig,..., Xng) are iid random variables with the same n-dimensional normal distri-
bution as (Bl (tk+1) — B1 (tk), . 7BN(tk+1) — BN(tk)).
Euler’s method for Black-Scholes market model

dS(t) = S(t)(u(t, S(t)) dt + o(t, S(t)) dB(t)) (1)
with constant step At = % has the form

Si+1 = Si . (1+M(ti,si)At+O’(ti,Si)Xi), (2)

where the random variables X; are independent and with distribution N (0, v At).
Let V be the price of an European option with the expiration date T" and pay-off function p, then

V = E(exp(—rT)p(S(T))),

where S(t), 0 <t < T follows certain stochastic differential equation (SDE). If the SDE can not be solved
exactly, then instead of S(T") we use S,,, thus we use Monte-Carlo method to compute an approximate
value V,,, of V', where

Vin = E[eier(Sm)}-

It is known that if p is continuous and has bounded first derivative (ie it is Lipshitz continuous), then
Euler’s method is weakly convergent with rate 1, hence

C 1
[V = Vin| = — 4+ 0o(—),
m m

where C' is a constant that does not depend on m and m-o(+) — 0 as m — co. Actually, a more precise

relation o 7:
V=V = — +0(—),
m m

where C' = |C|, holds and we use that later in estimating the coefficient C'.

Thus, if we use Sy, instead of S(7T') and use Monte-Carlo method with allowed error ¢ at a specified
allowed error probability a, then the total error of the computed number V,, . is

. . C 1
[V = Ve <V =Vl +Vin = Vinel < — +0(—) +e
m m

The last term is the error of the Monte-Carlo method and can be chosen by us. So, in order to compute

the option price V' with a given error e, we should choose large enough m (so that the term % is small
enough, for example less than §) and then use MC method with allowed error € = 5). There is one

trouble: we do not know C'. One possibility to estimate C' is as follow:

1. Choose some values for mg, ¢g for m and MC error e. The value of mg should not be too small,
but very large values take too much computation time; the value of the allowed error €y should be
sufficiently small (we discuss it in more detail in the next step). In practice we usually use m0 =5
or m0 = 10.

2. Use MC method twice to compute Vmo’m and ngoyéo. The value €y is small enough if the results
differ significantly more than by ¢y. If we use too large value of €y, then we overestimate the value
of C' and hence the final value of m in the following steps and our final computations may take too
much time.

3. Estimate the value of C. We use the inequality
|Vm0 - Vémol < ‘Vmo - Vmoﬁo' + I‘/émo - V2m07€0| + |Vmo,€0 - ‘721710,60"

If we use the more precise infrmation about V,, and V5, and assume that the terms O(m%)) and

o(ﬁ) are practically zero, then it follows that

C < 2"nO : (|‘A/m0760 - V2m0760| + |Vm0 - A77LU7€0| =+ |V2m0 - ‘72m0160|)
< 2mo - (|Ving.co — Vamg.co| + 2€0) =: C.

4. Choose my such that % < 5 and compute th%. The last result is an approximation of the true
option price which satisfies the desired error estimate, if the starting value of mq was large enough
so that the additional error terms of order 0(%) are practically equal to zero. In this course we do
not consider methods of determining if the starting value of m(was sufficiently large and take the

result of the last computation to be the desired answer.
Tasks:

1. Find the value of an European call option with strike price E = 98 at time ¢t = 0 with precision
0.1, when o = 0.05, r = 0.05, D =0, T = 0.5, S(0) = 100 and o(t,s) = 0.7 — 0.7e9915. To solve
the problem we have to choose an m so that the error due to m would be sufficiently small.

2. Future risk free interest rate is actually not a constant and can be considered to be a random
variable. In the case Black-Scholes model with a random interest rate the prices of European
options can be computed as

Price = E[exp(—/0 r(t) dt)p(S(T))],

where
dS(t) = S(t)((r(t) — D)dt + o dB;(t))

and r(t) follows a suitable stochastic differential equation. We conside so calle Cox-Ingersoll-Ross
model

dr(t) = a(b—r(t)) dt + o2/7(t) dBa(t),
where Bj(t) andf By(t) are independent Brownian motions. So we have a system of stoch as-
tic differential equations for S and r. Write a function that for a given values of parameters
D,o,05,T,a,b,m and n generates n values of the future stock prices S(7) by using Euler’s method
with m time steps for solving the system of SDEs for S and 7.

3. Homework (Deadline 08.03.2012). Find the price of a call option with maximum error of 0.1 when
considering the market model with a stochastic interest described in task 2. Use the parameter
valuesf (except r) from the first task and additionally let @ = 1, b = 0.06, o2 = 0.1 and r(0) = 0.03.
When computing the expected value, replace the integral with the product of 7" and the mean value
of r for a given trajectory. For this, the generator should return a two-column matrix, where the
first column contains the approximate values of S(¢) and the secon column contains the average
interest rates for each generated trajectory. In order to use the general functions of applying MC
methods we should rewrite the function ¢ so that it works correctly when it’s argument is the result
of the generator, so a correct form is

g=function(x){return(exp(-T*x[,2])*p_call(x[,1]1))}

Simulation Methods in Financial Mathematics
Computer Lab 5

Goal of the lab:

e To learn to use higher order discretization methods for stock price gener ation and
study their error rates

There are many numerical schemes of different strong and weak convergence r ates for
solving stochastic differential equations. For example, a stocha stic differential equation of
the form

dS(t) = S(t)(u(t, S()) dt + o (t, 5(1)) dB(t)) (1)

can be solved by using the following methods:

Euler’s method

Sit1 = 8i - (1 + p(ti, Si)At + o(ti, Si) Xi), (2)
Milstein’s method
Si+1 =5;- <1 + M(ti, Sl)At + U(ti, SZ)Xz + %(51%(752, Sl) + J(ti, Si))d(ti, Sz)(Xf — At))

(3)
and
A weakly second order method

Sit1 = Si - (1 + plti, Si)At + o (i, 5:) Xi)
1
+35 (Lapu(ts, Si) A + (Lop(ti, Si) + Lio(ti, Si)) At X; + Loo(t;, 9i) (X7 — At)), (4)

where random variables X; are independent and have distribution N(0,vAt) and the

operators L1 and Lo are defined by

s20(t,s)?
2

22 14 o]

Lif(t,s) = s%(t, s)+s-u(tys)- (f(t,s)+ sg(t, s)) + (B (t,s)+ s@(t,s)),

ot Js
Lof(t,s) = so(t,s)(f(t,s)+ s%(t, s)).

For example, if u(t,s) = p (a constant), then Lipu(t,s) = s - p?, Lou(t,s) = so(t,s) - .
Tasks:

1. Program methods (3) and (4) for generating solutions of the SDE (1) at time T
when the Black-Scholes market model with constant coefficients is assumed.

2. Experimentally find the strong convergence rates of (3) and (4) using procedure nls
in the case when S(0) = 100, 7'= 0.5, 4 = 0.1 and o = 0.6.

3. Experimentally find the weak convergence rates of (3) and (4) for an European put
option when £ =100, T =1, r = 0.05, S(0) = 100, D =0, 0 = 0.5.

Homework 4 (deadline 15.03.2012) Use the weakly second order method for compung the price of
the put option with the total error less than 0.1 with probability 0.95 in the case
S(0) = F =100, T =1.0, r = 0.05, D = 0.1 and o(s) = e~*/19 4+ 0.3. Note that in
the process of choosing an appropriate value of m one has to take into account the
second order convergence rate, so the procedure of of the previous lab for computing
the price of an option with a given accuracy has to be slightly modified .

Simulation Methods in Financial Mathematics
Computer Lab 6

Goal of the lab:

e To learn to use antithetic variates and control variates for variance reduction in the
Monte Carlo method.

Antithetic variates. Suppose we know, how to generate Y and Y that have the same
distribution but are negatively correlated. Then it is reasonable to generate a random
variable Z = % as the variance of it is smaller than the variances of Y and Y. This
means that the Monte Carlo method will work faster. In option pricing the easiest way
to introduce antitethic variates is generating pairs of stock prices (S(T'), S(T)), where the
random variables used to generate the second are the ones used for the first but with
changed sign. Assuming the payoff function is monotone, its value s will be negatively

correlated for those price pairs and we can calculate

—rrPS(T)) + p(S(T))

Price = E| 5

]

Control variates. Control variates can be used when in addition to the random variable
of interest, Y, we also know how to generate another random variable Z for which its
expected value is known. This means that we are also able to generate Y1 =Y —a(Z—-EZ)
and if Y and Z are strongly correlated and a is chosen wisely, Y7 can have a variance that is
a magnitude smaller than the variance of Y. The constant a should approximate COVZ%Z).
In this lab the price of an European call option with strike price £ = 100 at time ¢ = 0 is
examined when 7 = 0.1, D = 0.05, T = 0.5, S(0) = 102 and o(t,s) = 0.5 — 0.3~ 0-01s,
Tasks:

1. Enhance the function that calculates expected values with Monte-Carlo met hod so
that it would output the number of generations used (in thousands) to achieve a
specific precision. Use the function for pricing the call option by gene rating stock
prices with Euler’s method with m = 20 and precision 0.05.

2. Enhance the generator of stock prices using Euler’s method so that it would output
a matrix with two colums consisting of pairs of antithetic stock prices. Function
g also needs to be updated to be able to use the output. Compare the nu mber of
generations needed (when using pairs the number of generations is actual ly double
the amount of the counter value)

3. Modify the generator that uses the Euler’s method so that it would use the same
Brownian motion to output the stock prices for a market model with cons tant volatil-
ity and a market model with a non-constant volatility. For the former use the exact
stock price formula. Let S be the stock price corresponding to the non-constant
volatility and S the stock price corresponding to the constant volatility. Use the
Monte Carlo method (with the settings of this lab and constant vola tility o1 = 0.4)
to find the expected value of

e p(S) — ale " Tp(S) — h).

Here h is the exact price of the option for the market model with constant volatility
and a is the estimate of B
cov(p(9). p(3))

var(p(5))

based on 1000 generations. Function p is the payoff function for an European call
option. Compare the number of generations needed with the correspondin g number
of the previous task.

Simulation Methods in Financial Mathematics
Computer Lab 7

Goal of the lab:

e To learn to use importance sampling and stratified sampling for s peeding the nu-
merical option pricing process.

The idea of importance sampling comes from the fact that we can compute instead
of the expected value of g(X) in the case of random variable X with probability density
function fx the expected value of %(XY()Y)

density function fy:

using a random variable Y with the probability

B0 = [gl)ix@ds = [W fr(w) dy:E[WL

This idea is very useful when X is such that ¢g(X) has large values with low probability
and Y increases the chances of seeing the large values of ¢ with higher probability.

Using this idea it can be shown that we can also calculate the price of t he option as

72T

Price = E[e”"T=1B="5"p(s(T))],
where the stock price S(T') corresponds to the market model
dS(t) = S(t)((r — D+ no)dt + odB(t)).

This is especially useful for out-of-the-money options when there is relati vely low proba-
bility of the payoff function of becoming positive. To reduce the variance of the random
variable expectation of which is to be found, we must choose 7 so that S(0) - er=P+no)T
would be in the region where the payoff function p is not equal to zero. This kind of
methodology is known as importance sampling because we increase the probability of gen-
erating important values of the random variable. The described metho d is also applicable
when the volatility ¢ is not constant and can also be used in the case of american options.
Stratified sampling is based on specifying (disjoint) events (A4;)¥_; that partition the
probability space and then invoking the formula

k
E(Y) = Y E(Y|4)P(A)).

i=1

There are several possibilities for the latter, including the followin g:

e one can replace the calculation of the expected value of Y by the calculation of the

k
expected value of Z P(A;)Y;, where Y; are independent and are distributed as Y
i=1
given the event A;;

e Conditional expectations on the right-hand side can be calculated sep arately using
the MC method and then a weighted sum of the results can be calculated. In order
to get the final result with error €, one should compute the the expected value at

each stratum with the error £
P(A;

~

Since these two approaches turn out to be equivalent, we use only th e second one. In this
lab we use the system of events

7 —

A= {B(T) (\FTqu(Tl), \/ch—l(é)]}, i=1,2..k

thus P(A;) =1, i=1,2,...,k.

In the following we will be interested in a call option with S(0) = 50, r = 0.1, ¢ = 0.5,
T=1,t=D=0, E=100.

Tasks:

1. Use importance sampling to find the price of an European call opt ion with precision
0.01 and error probability 0.05. Use the exact formula for stock price generation. De-
termine the best value of 1 (best being the one with which least number of generated
random variables is needed) with precision 0.1.

2. Write a procedure, that uses the representation S(7') = S(O)e(“Dfﬁ)T“’B(T) and
the number 7 of the strata to generate stock prices corresponding to the event A;.
Values of the Brownian motion from the conditional distribution can be generated
as VT®~1(X;), where X; ~ U(“2, £). Use this procedure to find the price of the
call option when using k with values k = 5, 10, 20, 100 with precision 0.01 (take the
probability of an error as o = 0.05). Compare the number of generations (that is
the sum of the number of generations for all strata) with the ordinary MC method

as well as with the importance sampling method.

Simulation Methods in Financial Mathematics
Computer Lab 8

Goal of the lab:

e To continue to study the use of stratified sampling for speeding up the numerical
option pricing process.

Stratified sampling is based on specifying (disjoint) events (A;)¥_; that partition the prob-
ability space and then invoking the formula

k
E(Y) =) E(Y|A)pi,

i=1
where p; = P(A4;). It is known that maximal variance reduction is achieved when in
stratum 4 the number n; of generated random variables is proportional to o;p; (where o?
is the conditional variance in stratum ¢); it is also known that when we generate n; random
variables in stratum ¢ then the variance of

k n;

T 'Yl]

Z=3 pi), .

i=1 j=1
is equal to
2o
DZ = -t
and EZ = EY. Thus one possibility for generating the optimal number of Y; is setting the

proportionality constant C' to some fixed value and in every stratum generating random
variables until n > Cp; - 0; where the value of o; is estimated.

Proofs of the previous results can be found, for example, in P. Glasserma nn, “Monte Carlo
Methods in Financial Engineering”, Section 4.3.

We will continue to use te system of events
1)
A ={B(I) € VT (=) VIO (DI} i =L.2... .k,

and thus p; = P(4;) = %, 1=1,2,..., k. We want to price a call option when r = 0.1,
o=04,T=05t=D=0, E=100.
Tasks:

1. Write a function for calculating the expected value so that proport ionality constant C'
and stratum probability p can be given as input and the expected value is calculated
as the average of n generated values, where n is the smallest number in whole
hundreds such that n>C'-p- oy (where oy is the estimate of the standard deviation
of the random variable, whose expected value we are calculating). The o utput of the
function should include the calculated expected value, estimated variance and the
number of generations.

2. Program a procedure that would calculate the price of the option using stratified
sampling, where the conditional expected value in every stratum is calcu lated using
the previously completed function with some given C. Output the overall error esti-
mate (calculated assuming that Z is normally distributed, so that with probability «
we have |Z — EY| < —@‘1(%)\/ﬁ) and the number of total genrations in addition
to the calculated expected value.

3. Homework 5 (deadline 05.04.2012) Compare the number of random variable g ener-
ations needed for this optimal method with those of the stratified sam pling method
of the previous lab when S0 = 75, 100, 125, £ = 1020, 40, 80 and the allowed error
is 0.01. Thus a proportionality constant C' must be picked so that the error estimate
is approximately equal to the allowed error. (Hint: if we multiply C by a certan
number z, then the error of the final result is divided approximately by /x)

Simulation Methods in Financial Mathematics
Computer Lab 9

Goal of the lab:

e To learn to use stratified sampling for speeding the numerical option pricing process in
situations where the price of the option is depenent on the path of the stock price.

We denote by A’ the transpose of a matrix A and by writing Y ~ N(0,s) we mean that Y is
normally distributed with mean 0 ans standard deviation s.

When v = (vy,...,v,)" is a non-zero vector (i.e. ||v] = /v?+...+v2 > 0), W ~ N(0,a|v])

and Z; ~ N(0,a), ¢ = 1,...,m are independent random variables and a > 0, then it is easy to
check that by defining a vector X of random variables X;, i =1,...,m as
w 'Z
X = SV +Z-— v 2) v
vl v

we have that the components of X are independent and have distribution N(0,a), and also
v'X = W. Indeed, X is normally distributed since it is a linear combination of (jointly) nor-
mally distributed random variables and by a direct calculation we get that the covariance matrix
E(X X') is of the form al,,, where I,,, is the m x m identity matrix.

If we want to generate at once more than one vector, each corresponding to different value of W,
then the former formula can be written as

YW 47— (vW'Z)

X_ =
[[v? vl

where X is now a m x n matrix with independent normally N (0, a) distributed random variables,
W is a 1 x n matrix (a row vector) of independent N (0, al|v||) distributed random variables and Z
is a m x n matrix with independent normally N (0, a) distributed random variables. The matrix X
has now the property v'X = W (i.e. each column sums with weights v; to the value of W;). Thus
we can generate independent normally distributed random variables so that we first generate the
value of a lienar combination of the variables and then determine the variables itself.

This result allows us to stratify the generation of normally distributed random variables X; ac-
cording to any given linear combination (e.g. according to the sum) of the random variables -
we just have to generate the values W from a given stratum and to determine X; by the above
formula.

We use the previous result to generate the increments of a Brownian motion B(t;) — B(0), B(t2) —
B(ty),...,B(T) — B(t;—1) so that their sum B(T) would be in a given stratum (i.e. v =
(1,1,...,1)). To accomplish this we first need to generate the value of W (from the desired
stratum) according to the distribution N(0,v/7T) and calculate the vector of Brownian motion

increments X using the formula presented (for intervals that have equal lengths, a = %)

It is useful to know that in R the matrix multiplication is % * % and transposed matrix can be
obtined by the function ¢().

Tasks:

1. Write a procedure that, given the inputs k, m, T, would draw k different Brownian motion
paths such that every stratum (based on the value of B(T) and defined as in the previous
lab) would include the terminal value of exactly one path.

2. Enhance the stock price generation function that is based on Euler’s method and non-
constant volatility so that one could use the optimal stratified sampling. Using optimal
stratified sampling find the price of an European call with precision 0.01 in the case when

r=0.06, D =0.03, o(s) = gio, T = 0.5, S(0) = 105, E = 100, using « = 0.05.

Simulation Methods in Financial Mathematics
Computer Lab 10

Goal of the lab:
e To learn to use Monte-Carlo method for pricing Asian options

An Asian option is an option which payoff depends on the average sto ck price. Let A(T')
be the average stock price for the period [0, 77 i.e.

T
A(T) = ;/0 S(t) dt.

The most typical payoff functions for Asian options are p(s,a) = max(s — a,0) (i.e. at
time 7 the value of the option is p(S(T), A(T)) = max(S(T) — A(T),0); it is known
as the average strike call option), p(s,a) = max(a — s,0) (average strike put option),
p(s,a) = max(a— FE,0) ja p(s,a) = max(FE —a,0) (average price call and put options with
strike price E). When the stock price is governed by the Black-Scholes market model, then
the price of all the named options at time ¢t = 0 can be calculated as the expected value

Hind = Ele”""p(S(T), A(T))],

where S(T') corresponds to the Black-Scholes market model with trend g = r — D. Thus
to use the MC method we need to generate (in addition to the stock prices at time T)
the average values of stock prices which depend also on the intermediate values of the
stock price paths. The simplest way of calculating the average is using the average of

S(i%), 1=0,1,...,m — 1; a better approximation can be calculated as

A(T) ~ %Z Si—1 (1 + (r — D)% + %(B(ti) — B(ti_l))> .
=1

The idea leading to the improved formula is to write

T m t m 12 t
;/0 S(t)dt = ;;/t_l S(t)dt = ;;/ti_l(s(til)‘f‘/ dS(r)) dt,

ti—1

using the equation for dS(7) and to approximate the resulting double integrals by replacing
the integrands wiht their values at the beginning of the integration intervals.

We will assume that the Black-Scholes market model with constant par ameters holds and
fixr=0.1,D=0,0=04,7T = 0.5, S(0) = 100. We will consider average strike calls

and average price calls with strike price £ = 100.

Tasks:

1. Write a generator which for a given value of n would generate n pairs of (terminal)
stock price and average stock price. Calculate the stock prices using the exact
formula (also use it when calculating the average stock prices); calculate the average
as the mean of S(i%), 1=20,1,...,m—1. Find the weak convergence rate depending
on m (by using the values 5,10,20,40 for m and a small enough MC error). For
both options find m for which the error caused by the choice of m is less than 0.1
(using the result obtained for the weak rate of convergence).

2. Repeat the task when the average price is calculated according to the im proved
formula. To study the rate of weak convergence use the values 2,4,6,8 for m and
take 0.01 for the MC error.

Simulation Methods in Financial Mathematics
Computer Lab 11

Goal of the lab:
e To learn to use stratified sampling for speeding up the pricing of asian options

We will consider the case where the average stock price is calculated usin g the formula

%ZS'—I (1 + @m)% + (Bt >—B<ti—1>>>)
=1

where t; = ’L% We already know, how to generate the increments of the Brownian motion
AB = (B(t1) — B(ty), B(t2) — B(t1), - .., B(tm) — B(tm-1))" (here a’ denotes the transpose
of a) so that given a vector v = (v1,...,v,,)" the stratifying would be based on the values
of vAB:

e Generate the value of W from the desired stratum of N (0, [|v]/Z).

e Generate a random vector Z = (Z1,..., Zy), where Z; ~ N(0,4/1)

e Calculate
AB= ——5Wv+7Z-— v(V'Z).
Hvll2 I H2
When we want to generate a matrix with dimensions m x n so that each column would
represent the increments of the Brownian motion of a corresponding generated value of
W (thus in total there are n values of W), then we need to modify the formula as follows:

W must be generated as a row vector with n components, Z must be a m x n matrix and
the increment matrix can then be calculated as

AB = o ||2VVV—I-Z o ||2(VV/Z).

Using this formula there are several possibilities for stratification:

e When we want the the strata based on the values of B(T), we take v = (1,1,...,1)".
This stratification should be appropriate for European options.

° When we want the the strata based on the average values of the Brownian motion

T fo t) dt, we may approximate the integral by
1 T m—1 B(tl) m—1 1 m—1 m _j
T/O FOYTSD DR 35 SIVIED SEL=INe)
1=0 i=1 j=1 7j=1
and hence should use stratification with v = (m=L m=2 m-my/ Thig stratifi-
m m m

cation should be appropriate for Asian options when the payoff does not depend on
the stock price at time T'.

e When we want the the strata based on differences of B(T) and the average values

of the Brownian motion, we take v = (%, %, ..., =) This stratification should be

appropriate for average strike options.

Tasks:

1. Let m = 20. Consider the pricing of Asian options with payoff functions p(s,a) =
max (50 — a,0) and p(s,a) = max(s — a,0) using the MC method with error 0.01
in the case when S(0) = 49, r = 0.05, D = 0.02, T' = 0.5, 0 = 0.5. Compare the
number of generations required when not using any variance reduction met hods and
when using the optimal stratified sampling with the number of strat a k = 40 for all
the abovementioned stratifications (3 different values of v).

2. Homework 6 (deadline 26.04.2012). When volatility is not constant, then we have
to use a numerical method for generating the stock prices and an approx imation for
the average stock price. Implement MC for pricing Asian options by using Euler’s
method for generating the option prices and the simple formula for com puting the
values of the average stock price. Use this method for computing the price of the
average strike put option in the case SO =90, r = 0.05, D = 0.02, T' =1, o(s,t) =
0.440.5- 67%, with the total error that is less than 0.01 with the probability 0.95.
Use an appropriate variance reduction method if necessary.

Simulation Methods in Financial Mathematics
Computer Lab 12

Goals of the lab:

e To learn the generation of Halton sequences for quasi-Monte Carlo simulation

e To learn to compute the price of an European option by using quasi- Monte Carlo
method

The speed of convergence of Monte-Carlo methods for computing expected values is always
ﬁ, where n is the number of random variables generated. It is possible to reduce the
constant ¢, but for Monte-Carlo methods the convergence speed with respect to n is always
the same. It turns out that if we replace the random numbers in a Monte-Carlo method by
specially constructed (non-random) values, it is possible to imp rove the convergence rate
to % The basis for this improvement are so called low discrepancy sequences which are
sequences in the m-dimensional unit cube [0, 1] which for every value of n cover the cube
in some sense as well as possible. One (the simplest possible) class of such a sequences is

so called Halton sequences.

To generate Halton sequences we need to know how to represent a number, say k, in a
number system that has base b where b > 2. To find this representation we can use the
fact that if

k= ai(k)V', ai(k) €{0,1,...,b—1},
i=0
then the multipliers a;(k) can be determined as
ai(k) = (k% %b") %%,

where %/% symbolizes the process of finding the division quotient (an integer) and %%
symbolizes the process of finding the remainder. Denote

vp(k) = O[;Zzs-kl)
=0

When generating an m-dimensional Halton sequence, m numbers by, bo, ..., b, that do
not have a common factor (usually m first prime numbers are chosen) and point xj is
defined as a point with coordinates

TRy =Py, (k), j=1,...,m.

When the expected value must be calculated from a function which uses m independent
values from the uniform distribution U(0,1) then we can replace these values with the
coordinates of a point from the quasi-random sequence. Other distributions can also be
replaced by applying the inverse of the cumulative distribution fu nction to the coordinates.

Tasks:

Task 1 Write a function Corput with input nl, n2 and b, that would output the values of
function (k) for k = nl,nl +1,...,n2 (to deal with all the values of k simulta-
neously R function outer can be used). Produce the graphs showing the first 200
points of the Halton sequence using the function Corput in the case when m = 2
with a) b1 = 2,52 =3 and b) b1 = 17, bg = 19.

Task 2 Consider pricing an European put option with F = 100 at time ¢ = 0 using the
Euler’s method when » = 0.1, D = 0, T' = 0.5, S(0) = 105 and o(t,s) = 0.6 —
0.5e¢79015 We want to study how much the use of Halton sequence speeds up the
convergence of the MC method in the cases when m = 5 and m = 20. To do this,
replace the increments of the Brownian motion with values that are gener ated using
a Halton sequence (coordinates of which are based on the first m prime numbers)
and find the errors for cases n = 10000, 20000, . ..,100000. For comparison, find the
errors for regular MC method for the same values of n. Use the knowledge that the
expected value is 7,731 when m = 5 and it is 7,577 when m = 20.

Simulation Methods in Financial Mathematics
Computer Lab 13

Goal of the lab:
e To learn to use Quasi Monte Carlo methods for pricing financial options.
The procedure of implementing a Quasi Monte Carlo methods is as follow s:

1. Implement a Monte-Carlo method for for computing EY, where Y is the random
variable we are interested in. It can be a simple MC or a method using various
variance reduction techniques.

2. Rewrite your MC method so that it is based on generating independent uniformly
distributed random variables. This can be achieved, for example, by applying the
knowledge that if F'x is the cumulative distribution function of a continuous random
variable X, then the random variable Fy'(U), where U ~ U(0,1) is uniformly
distributed in the interval (0, 1), has the same distribution as X. So, if our MC
method uses random variables from the distribution N (0, a), then we can generate
them by

X =a® }(U),

where U ~ U(0,1) and ® is the cumulative distribution function of the standard
normal distribution.

3. If for generating one value of Y we use m uniformly distributed random variables,
then replace them by coordinates of a point of a m-dimensional low discrepancy
sequence.

4. Compute the final answer using as the simple average of the larg est number of values
of Y that can be generated in reasonable time.

The final answer is usually much more accurate than the answer obtained with a simple
MC using the same number of generated values of Y. Unfortunately there are no efficient
procedures for estimating the error of the answer obtained by this procedure that is called
Quasi Monte Carlo method.

In this lab we use Sobol sequences. The Sobol sequences are based on the van der Corput
sequences (like Halton sequences) but for every coordinate base 2 is used. Different coor-
dinates are obtained by applying specifically constructed matrices that change the order of
the sequence. The generation of a Sobol sequence is not too hard to implemen t, however
we will use pre-defined functions in this lab.

There are several add-on packages of R that implement quasi random number generators.
One such library is randtoolbox and we are going to use the generators from this library.
The function for generating Sobol sequences is sobol() and the function for Halton se-
quences is halton()

Tasks:

1. Install and load package randtoolbox, if needed. Installation can usually be done
by the command install.packages("randtoolbox") and loading by the command
library("randtoolbox"). If you do not have administrative rights and R is not
configured well, you still can install packages for your own use. For this make a
catalog where you are going to install your own R packages. Then you can use
commands

.libPaths("your catalog paths")
install.packages("randtoolbox",lib="your catalog path')

to install the package. Generate first 200 Sobol points for dimension 10 and visualize
the placement by scatterplots that can be created with R function pairs(). Compare
the placement with Halton points.

. Consider pricing an European put option with F = 100 at time ¢ = 0 using the
Euler’s method when r = 0.1, D = 0, T = 0.5, S(0) = 105 and o(t,s) = 0.6 —
0.5¢79015 We want to study how much the use of Sobol sequence speeds up the
convergence of the MC method in the cases when m = 5 and m = 20. To do this,
replace the increments of the Brownian motion with values that are gener ated using
a Sobol sequence and find the errors for cases n = 10000, 20000, . ..,100000. For
comparison, find the errors for regular MC method for the same values of n. Use
the knowledge that the expected value is 7,731 when m = 5 and it is 7,577 when
m = 20.

. Homework 7 (Deadline 10.05.2012) Assume that the Black-Scholes market mod el
with constant parameters r = 0.05, D = 0, ¢ = 0.5, T = 0.5, S(0) = 90 holds.
Consider pricing the average price put option (see Lab 10). Start from the Monte-
Carlo method that uses the exact formula for computing the stock prices and the
improved formula for computing the average stock price values. Modify this method
for using Sobol points. Find the prices and error estimates for m = 4 and m = 10
corresponding to n = 10000, 20000, . . ., 100000 and for n. = 1000000 by the standard
Monte-Carlo method and also prices by QMC using Sobol points for th e same number
of generations. Does QMC give more accurate answers for the same number of
generations?

Simulation Methods in Financial Mathematics
Computer Lab 14

Goal of the lab:

e To learn a way to compute derivatives of the option price with respect to market
parameters

Often the behavior of the random variable X depends on some parameter 6 and therefore
the expected value E(g(X(f)) depends also on that parameter, so we have

V(0) = Elg(X(0))]

and often one is interested in the value of the derivative of the expected value with respect
to that parameter. For example, stock price (and hence the price of an option) depends
on the initial stock price S(0), the volatility o, risk free interest rate r etc and we may
want to know how the price changes if some of the parameters changes. A general way to
compute the derivatives is to use finite difference approximations, for example

V(O+h)—V(O—h)
2h

When using Monte-Carlo method for computing the values of V' it is important not to
compute V(0 + h) and V(0 — h) independently, but to write

V(@+h)—V(0—h) g(X(O0+h))—g(X(@—h))

2h =&l 20]

and to compute this expected value by MC by using the same random variables for gen-
erating both the values of X (6 + h) and X (0 — h) at the same time.

Let us consider an European call option with £ = 100, T" = 0.5, assume r = 0.05, D = 0,
S(0) = 100 and that the Black-Scholes market model holds.

Tasks:

V() = + O(h?).

1. Assume that the volatility is constant: ¢ = 0.5. Implement Monte-Carlo method for
computing the derivative of the price of the option with respect to S(0), using the
exact formula for generating the stock prices. Compute the derivative at S(0) = 100
using h = 20 and allowed MC error 0.001 (corresponding to o = 0.05).

2. If we want to compute the derivative with a given total error then we have to estimate
the error coming from the choice of h. For this the Runge’s method can be used.
We assume that error coming from the choice of h is C' - h? with an unkonwn h.
In order to esitmate C' we do two computations, one for A = 2hy and the other on
with h = hg (where hg is some value we choose) and using the difference of the
answers it is possible to estimate C. After that we can choose h so that C - h? < 2,

where € is the allowe total error and do the final computation with this value of h

€

and allowed MC error 5. Find the derivative of the option price considered in the

previous problem with total error less than 0.0005 with probability 0.95.

3. Consider the case of non-constant volatility o(s) = 1—0.5-e~(s7100%/200 Tpplement
the procedure for computing the value of the derivative of the option price with
respect to the initial stock price with a given accuracy. Use variance reduction
techniques for speeding up the computation and find the value as exact ly as you can
so that the total computation time does not exceed 3 minutes; give an estimate of
the total error of your answer.

Simulation Methods in Financial Mathematics
Computer Lab 15

The aim of this lab is to learn to use two additional methods for comp uting sensitivities
of option prices.

Let us consider European options. For simplicity we also assume that the stock price
behaves according to Black-Scholes market model with constant volatility. Then the price
of an option with payoff function p is given by

H = E[e~"p(S(T))],
where T is the exercise time and the final stock price S(T") is given by
S(T) — SO€<T_U2/2)T+JB(T).

In addition to the difference quotients method considered in the previous lab, we consider
the following two methods.

1. Pathwise derivative method. Let # denote a parameter in the stock price formula.
Assume that the function p is continuous with piecewise continuous and bounded
derivative, then it can be shown that we can change the order of taking expected
value and differentiation when computing the derivative of the price with respect to

0:
OH _ d(e™"Tp(S(T)))
T
For example, if § = Sy we have
a5, = EleT S) = Bl S)

2. Likelihood ratio method. Suppose we know the probability density function fg
of the final stock price. If # is a market parameter, then the density function depends
on 0 (is a function of s and #). Using the density function, we can write

o0

H= /e (s)fs(s,0)ds

Assuming again, that we can change the order of integration and differentiation, we

get now
aH_ 7 o, _, fS(Svg)
W) (gt sste.0n) oy
= E[p(S(T))R(S(T),0)],
where

Z(e7 fs(s,0))
R(s,0) = 7o(5,0) :

If 6 is not r of T, we can further write

”Qmﬁ@w

R(S7 9) = 80

Since according to our assumptions S(7') is log-normally distributed, we have

L (s = =)
so/2nT 20%T ‘

Thus for 8 = Sy the likelihood ratio method leads to the formula

fs(s) =

oH _
0Sy

In(S(T)/) = (r = /2T,
Soo2T '

Ele™"p(S(T))

Consider two European options: the usual call option and so called b inary call option with

the payoff function
(s) 1, s> FE,
S) =
b 0, s<F.
Let T =0.5, So = 100, £ = 100, 0 = 0.5, r = 0.05, D = 0.

e Taskl: Compute the derivative of the usual call option with respect to Sy with both
methods with accuracy 1%. Compare the number of generated stock prices.

e Task2: Compute the derivative of the binary call option with respect to Sy with
accuracy 1% by using a suitable method described in the lab.

Homework 8 (Deadline May 25, 2012) Find the derivatives of both usual and binary call options
with respect to o with accuracy 1% with all suitable methods (including the method
of Lab 14). Compare the numbers of generated stock prices. Which method is the
best for each option type?

Simulation Methods in Financial Mathematics
Computer Lab 16

The aim of this lab is to practice using MC for pricing american options.

In this lab we consider pricing an American put option in the case of H eston market model

dS(t) = S(t)((r — D) dt + /V () dBi(t)),
AV (t) = k- (0 — V(1)) dt + E/V (1) dBs(t),

where B1 and Bs are uncorrelated Brownian motions. Recall that American options give
the holder the right to exercise the option at any time before the maturity date 7. It can
be shown that the price of option can be computed as

price = maxEle " p(S(7))],

where 7 is so called stopping time (exercise strategy, that uses information only from the
past).

We consider the case S(0) = 100, » = 0.05, D =0, T = 0.5, F = 100, Kk = 1 £ = 0.1,
0 =0.36, V(0) = 0.4. For pricing options we discretize the model by choosing integer m,
defining t; = and writing

Siv1 = Si(14 (r— D) — 4+ Vi X1.,),
Vipr=Vi+r-(0— +£fX21,

where X1 ; and X ; are independent, normally distributed, with variance %

For pricing an American option we replace it with so-called Bermudan op tion, for which
it is possible to sell the option only at time moments ¢; =i - %, i=1,2,....m

Denote by W; the value of option at ¢ = ¢;, then W,, = p(S(T")). Let C; denote the
continuation value of option at t = ¢; (the value after we decide not to exercise), then

Cy = B(e™"n Wis1 | F),

where F; is the information available at time ¢;. If we know the continuation values of
an Bermudan option at any time moment t;, then it defines the optimal exercise strategy:
exercise the option at the first time ¢; for which the payoff value p(S(¢;)) is larger than
the continuation value.

A numerical method using the observations above is Longstaff-Sch wartz method:

1. Simulate n trajectories for stock prices and variances for time moments t;, i =
0,....,m.

2. For each time moment assume a form for the continuation value

k
x) = Z Cqq(X)
q=0

where ¢, are basis functions (polynomials, for example) and x corresponds to the
state of the market model (pair of S and V' values in the case of Heston model).

3.

4.

Task1l

Task2

Task3

Task4

Define W, j = p(Sm,;) for j-th trajectory

at each time moment t;, ¢« = 1,2,..., m estimate the parameters of C; by linear
T
regression for Y = e™"m W ;, using only the trajectories that satisfy p(S;;) > 0.

Define
{p(Sm), if p(Si;) > Ci(xi,),
Wi,j - T .
e "mW;i1,, otherwise.

Here x; j denotes the state of the market model at time ¢ = ¢; for j-th trajectory.

compute the approximate price as the average of e W1 ;; also estimate the MC
error using the variance of those numbers.

Write a procedure, that for a given n generates n trajectories of the stock prices and
squared volatilities for Heston market model.

Assume
Ci(s,v) = Co+C1(S—E/2)+Cz(v—9)+C3(8—E/2)2+C4(S—E/2)(v—9)+C5(v—9)2.

Generate n = 10000 trajectories and find (using the command 1m() the coefficients
of the continuation value function for ¢ = t,,_1. Plot the graph of the continuation
value function.

Implement Longstaff-Schwartz algorithm for pricing the option. Compute also the
error estimate.

Use Longstaff-Schwartz algorithm for pricing an American straddle option with pay-
off
p(s) =1|s — E|.

Assume the Black-Scholes market model with parameters S(0) = 52, r = 0.05,
D =0,0 =05 F =50, T = 0.5. Implement the method so that it is possible
to give as the arguments the number of basis functions, the number of timesteps m
and the number of trajectories n and to get the approximate option price with MC
error estimate as the answer (there still remains the error that depends on m, it is
not necessary to estimate that).

A method for deriving numerical methods for ordinary and
stochastic differential equations

There are many ideas that can be used for deriving numerical methods for differential
equations. We'll discuss one of them, namely integral expansion meth od.

Let us start from an ordinary differential equation

y'(t) = fy(t), 1)

We can rewrite it in a differential form:

For deriving a numerical method, we consider a small interval [t;,¢;+1] and use the differ-
ential equation to approximate the value y(¢;11) in terms of the known value y; = y(¢;).
Integrating the differential form ower the small interval, we get

) == [.0 (1)

As any differentiable function z(t) can be written as

2(t) = 2(t;) + /t dz(T)

we can write .
F0(6),0) = Flust) + [dlf (ol 7)
t;
and hence, after substituting this into (1) we have

ti+1 t
yltin) =wi+ St~ e+ [[alstien) o 2
L £
If we stop at this point and throw away the double integral term, we get Euler’s method

Vi1 = ¥i + f(yi, ti) (tin — ti).

If we want a more accurate method, we should continue working with the double integral.
Since

of

Al (y(r.7)) = S (u(),) +

at

~ (Swernse.)+ L.) ar

(y(r),7)dr

we can denote of of
gly,t) = afy(y,t)f(y,t) + o W)

and write

[asrwe.m= [owir)mar

ti t

-/ t (st + t;d[g@(w),w)]) dr

i

~ st = 1)+ [i [datutww) ar

Substituting it into (2) we get

t: — ¢t 2
y(tiv1) = yi + [(i ti) (tig1 — 1) + 9 (i, ti)(”lz’)

. / (/ (f ditotwr-on) ar) ar. (3

If we throw away the triple integral, we get a second order method

of

0 iv1 — ti)?
Yir1 = yi + i ti)(tig1 — ti) + (ay(yi,ti)f(yi;ti) + f(m,m)) (t+12t)

ot
In principle, we can continue expanding the triple integral to get a third order method
and so on.

Similar ideas can be used for constructing numerical methods for stochastic differential
equations but we have to use It6’s formula for computing differentials of stochastic pro-
cesses.

Let us consider a stochastic differential equation of the form
d(Y () = a(t, Y () dt + B(t, Y (t)) dB(2), (4)

where B(t) is the standard Brownian motion. By integrating over the interval [¢;,t;41] we
get

tit1

Vit =Y(t) = [ey [8V (0)aB0). (5)

t;
Now we have two integral terms and have to use expansions in both of them. In order
to make expressions shorter, let us define operators (functions that take a function of two
arguments as input and return another function of two arguments for the result) L; and
L2 by
Blt,y)* & f

of

at

of

(L1f>(tay) = (tay) +O‘(tvy)

and
(Laf)(ty) = ﬁ(t,wgg(a),

where f is an arbitrary twice differentiable function of two variables ¢ and y. Then Ito’s
formula for the process f(t,Y (t)) can be written as

df (t, Y (t)) = (Lo f)(&, Y (2)) dt + (L2f)(¢, Y () dB(2)

wich, after integrating from t; to ¢ gives

FOYO) = £ Y0 + [(MaDEYE) e+ [(aheY @) e, ©
By using (6) in the cases f = « and f = 3, we can write (5) as
Y (tiv1) = Y(t;) = alts, Y(t3)) At + (8, Y (t:))(B(tiv1) — B(t:)) + R, (7)
where At =t;41 — t; and

/tl (L1a)(z,Y (2)dzdt+/t /tl (Loa)(z,Y (2))dB(z) dt
+/ti /t (Llﬁ)(z,Y(z))dde(t)+L /t (L2B)(2,Y (2))dB(z) dB(t). (8)

By throwing away terms with double integrals (the remainder R), we get Euler’s method
for stochastic differential equations.

By analysing the double integral terms one can show that the largest error is caused by
trowing away the last term, where both integrals are with respect to Brownian motions.
We can approximate this term better by expanding it. Applying (6 to Lof3, we get

[[sy iseasn - @) [[asedso + R

where R has triple integral terms. Since according to Ito’s formula we have

S ((B() — B(t))?) = (B(t) ~ B(t:)) dB(1),

we get
(LaB)(t, Y (1 / / AB(2)dB(1) = 3 (LaB) (11, Y (1) (Btis1) — B(1)* — M),

If we add this term to Euler’s method, we get Milstein’s method for solving stochastic
differential equations:

Yiy1 = Yi+a(t;, Vi) At + B(t, Vi) Xiv1 + 5 (L25)(75z,y)(i1 — At). (9)

If we use the formula (6 for expanding all terms of R and throw away triple integral terms,
we get a method

Yipr =Yi+a(t,Yi) At + B(t:, Yi) Xip1

45 [(L10) (16, YOAR + (Lo + L) (15, YA X + (L) (11, YO (X — AD)] - (10)

where X; ~ N(0,VAt) are independent random variables.

H:\MC\MC12\lab1.R 10. aprill 2012. a. 16:42

fexercise 1
n=100
X=runif (n)
Y=X**2 fior Y=X"2
EY=mean (Y)
#estimate the error
alpha=0.1 #the prob. of actual error being larger than the estimate
estimate=-gnorm(alpha/?)*sd(Y)/sqgrt(n)
fexercise 2
MCl=function (g, Xgen,n,alpha) {
X=Xgen (n)
Y=g (X)
EY=mean (Y)
estimate=-gnorm(alpha/?)*sd(Y)/sqgrt(n)
return(c(EY,estimate))
}
f=function (x) {return (x*2)}
MC1(f, runif,100,0.1) #Yes, it is correct, the exact anser is 1/3 and the actual error is
smaller than estimate.
#Exercise 3
n=1000
alpha=0.1
exact=1/3
N=100 #we repeat the computation N times
average=rep (0, N)
error estimate=rep (0, N)
actual error=rep(0,N)
for(i in 1:N){
result=MCl (f, runif, n, alpha)
average[i]l=result[1l]
error_estimate[i]l=result[?]
actual error[i]=abs(result[l]-exact) #error is abs value of difference
}
fexercise 4
MC2=function (g, Xgen,error,alpha) {
N=10000#the number of variables to be generated in one go
sum y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
error estimate=error+l# Make the estimate to be large than the given error to start the
while cycle
n=0 #the number of values generated so far
while (error estimate>error) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated values
error estimate=-gnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean
value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum y/n
}
#try out
MC2 (£, runif, 0.001,0.05)
#can use other functions and generators

H:\MC\MC12\lab1.R 10. aprill 2012. a. 16:42

MC2 (sin, rexp,0.01,0.05) #E(sin (X)), X has standard exponential distribution (lambda=1)

#if we want to use nonstandard generator, then we have to define corresponding function of
one variable

#runif can take more arguments, see ?runif

?runif

gen=function (n) {return (runif (n,min=1,max=100))} #generates uniformly distributed random
numbers between 1 and 100

g=function (x) {return (x*sin(x))}

MC2(g,gen,0.1,0.05)

2

H:\MC\MC12\lab2.R 10. aprill 2012. a. 16:43

#Exercise 1

#first try: generating one trajectory of the Brownian motion

T=0.5

m=100 #the number of time steps

B=rep(0,m+1) #make a place for values corresponding to t=0, T/m,2*T/m,...,T

dt=T/m

for(i in 2:(m+1)){ #here we can decide what the variable of the cycle denotes. In the code

here it denotes the index of the component of the vector of B values we are going compute
Xi=rnorm(1l,sd=sqrt(dt)) #or Xi=sqgrt (dt)*rnorm(1l)
B[i]=B[i-1]+Xi #the current value is the previous one plus the random increment

}

#an alternate form, where i1 denotes the value that is known and in the cycle we compute the

next one:

#for (i in 1:m) {

Xi=sqgrt (dt) *rnorm (1)
Bli+1]=B[i]+Xi
#}

t=seq(0,T,length.out=m+1) #t=(0:m)/m*T
plot(t,B, type="1")
#fmodification to get M trajectories together
M=10
B=matrix (0, nrow=m+1,ncol=M) #a pace for the values of the brownian motion. In each column of
the matrix there is going to be one trajectory
for(i in 2:(m+1)){
Xi=rnorm (M, sd=sqrt (dt)) # one value for each trajectory
B[i,]=B[i-1,]1+Xi #computes new values of all trajectories by using previous values (in
the previous row) and adding a different random increment to each one

}
matplot (t,B, type="1")

fexercise 2

#let us use previous brownian motion values, so we have to compute just the corresponding

stock prices

S0=100 #the starting price

S=matrix (S0, nrow=m+1,ncol=M) # a place of the values of the stock prices. For each time

moment is different row, columns correspond to the price trajectories

mu=0.1

sigma=0.5

T=0.5

for(i in 2:(m+1)){
time=(i-1)*dt # the first row corresponds to t=0, second row to t=dt, third one to
t=2*dt etc
S[i,]1=S0*exp ((mu-sigma**2/2)*time+sigma*B[i,]) # The i-th row is computed using the i-th
row of the Brownian motion

}

matplot(t,S, type="1")

#Exercise 3

Put=function(S,E, T, r,sigma, D, t=0){
tau=T-t
dl=(log(S/E)+(r-D+sigma**2/2)*tau)/ (sigma*sqgrt (tau))
d2=dl-sigma*sqgrt (tau)
value=-S*exp (-D*tau) *pnorm (-dl)+E*exp (-r*tau) *pnorm (-d2)
return (value)

H:\MC\MC12\lab2.R 10. aprill 2012. a. 16:43

Call=function(S,E, T, r,sigma, D, t=0) {
tau=T-t
dl=(log(S/E)+(r-D+sigma**2/2)*tau)/ (sigma*sqgrt (tau))
d2=dl-sigma*sqgrt (tau)
value=S*exp (-D*tau) *pnorm (dl) -E*exp (-r*tau) *pnorm (d2)
return (value)

}

r=0.03

sigma=0.4

E=100

T=1

D=0

Call(100,E,T,r,sigma,D) #compute just one value to see if the function is working correctly

Put(100,E,T,r,sigma,D) #the same for the put option

n=200 #how many points use for drawing the graph
S=seqg (0,200, length.out=n) #make a vector of the stock prices
plot(S,Call(S,E,T,r,sigma,D),type="1") #here Call computes option prices for all stock prices

#defining payoff functions
p_put=function (S, E) {

pmax (E-S,0) #note that the function is pmax (from parallel maximum), not Jjust max
}
matplot (S,cbind (Put(S,E,T,r,sigma,D),p put(S,E)),type="1") #this is one way to put the
graphs of many functions to one picture

2

H:\MC\MC12\lab3.R 10. aprill 2012. a. 16:44

ffexercise 1
S _euler=function(n,S0,m, T, mu, sigma) {
dt=T/m
S=matrix (S0, nrow=m+1,ncol=n)
for(i in 1:m){
Xi=rnorm(n, sd=sqgrt (dt))
S[i+1,1=S[1i,]1* (l+mu*dt+sigma*Xi)
}
return (S[m+1,1])

#define parameters
m=40
S0=50
E=50
T=0.5
D=0.1
r=0.03
sigma=0."7
mu=r-D
MCerror=0.01
alpha=0.05
#the function for computing expected values with MC method from the first lab
MC2=function (g, Xgen,error, alpha) {
N=10000#the number of variables to be generated in one go
sum y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
error estimate=error+l# Make the estimate to be large than the given error to start the
while cycle
n=0 #the number of values generated so far
while (error estimate>error) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_ y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated values
error estimate=-gnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean
value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum y/n

#for pricing an European option, we define the payoff function
p_put=function (S, E) {
pmax (E-S,0) #note that the function is pmax (from parallel maximum), not Jjust max

}

foption price is the expected value of the discounted payoff, so define the corresponding

function

g=function (x) {
return (exp (-r*T) *p put (x,E))#the values of the parameters r,T,E have to be defined
outside of any function

}

#we also need to define a generator that for a given n computes n random variables (final
stock prices S(T) for European options)
generator=function (n) {

H:\MC\MC12\lab3.R 10. aprill 2012. a. 16:44

return(S_euler(n,S0,m,T,mu, sigma))
}
#now we can use the function MC2 to get an approximate option price
answer=MC2 (g, generator,MCerror, alpha)

#HAH A A A AR A Exercise 2
#When the market parameters are constant, there is an exact formula for S(T) in therms of
the final value B(T) of the brownian motion
#fwe want to see how different is the value computed by Euler's method from the exact value
S euler error=function(n,sS0,m,T,mu,sigma) {
dt=T/m
S=matrix (S0, nrow=m+1,ncol=n)
B=matrix (0, nrow=m+1,ncol=n) #to keep track of the values of Brownian motion
for(i in 1:m){
Xi=rnorm(n, sd=sqrt (dt)) #the increment of the brownian motion
B[i+1,]1=B[i,]1+Xi
S[i+1,1=S[i,]1*(l+mu*dt+sigma*Xi) #Euler's method uses the increments of the path of
the Brownian motion
}
BT=B[m+1,] #for comparison we have to compute the exact value for the same brownian
motion, so we need the final value
S _exact=S0*exp ((mu-sigma**2/2)*T+sigma*BT)# the exact value of S(T)
return(S[m+l,]-S exact)
}
#check if the code works
S euler error(n=10,50,m=5,T,mu, sigma)
#we are actually interested in the mean absolute error
m=5
generator=function (n) {
return(S_euler error(n,S0,m,T,mu,sigma))
}
error 5=MC2 (abs,generator,error=0.01,alpha)
error 5
#if we use just 5 time steps to approximate the final value of S, the obtained result is not
very accurate
#let us see, how the difference between the exact and approximate stock prices change, when
we change m
m=10
error 10=MC2 (abs,generator,error=0.01,alpha)
#0OK, it got smaller. But how the error depends on m?
#for this we fit the curve c/m**q for the error. The parameter g is called the rate of
convergence
#large rate means that we usually get good results for smaller values of m
#To find the rate, we do many computations
m values=c(5,10,20,40,80)
errors=rep (0, length(m values))
for(i in l:length(m values)) {
m=m values[i]
errors[i1]=MC2 (abs, generator,error=0.01,alpha) [1]
print (m)
}
#it turns out that instead of fitting c/m**g to errors we get a more accurate value if we
take logarithm before fitting
nls(log(errors)~log(c)-g*log(m values),start=list (c=1,g=1))
#so the rate is approximately 0.5. This means, that if we want to reduce the error in S
values 2 times, we have to multiply the current value of m by four

2

H:\MC\MC12\lab3.R 10. aprill 2012. a. 16:44

#this is quite slow convergence, usually a large value of m is needed for the error to be
small
#the rate of convergence of the S values is called the strong convergence rate

#HAH A A #Exercise 3

#If we use Euler's method for generating values of S(T) in option pricing, we introduce an
additional error that depends on the value of m (the number of time steps)

#So, if we fix m and use MC2 to compute an option price, we usually do not get the exact
value of the price even when we let the error given to MC2 to go to O

#We are interested, how the part of the error that comes from fixing a value of m behaves
#If we assume a BS market model with constant coefficients, we know the exact option price
#So we can study how the difference between the computed price and the exact price goes to 0
#by fitting the curve c¢/m**qg to this difference gives us the weak convergence rate

#it is called weak rate because option prices can converge well even if the stock prices do
not converge very fast

#weak convergence rate is at least as large as the strong convergence rate, but can be larger

#the function for put:

Put=function(S,E, T, r,sigma, D, t=0){
tau=T-t
dl=(log(S/E)+ (r-D+sigma**2/2)*tau)/ (sigma*sqgrt (tau))
d2=dl-sigma*sqgrt (tau)
value=-S*exp (-D*tau) *pnorm (-dl)+E*exp (-r*tau) *pnorm(-d2)
return (value)

#fcompute the exact value
exact=Put (SO,E, T, r,sigma,D, t=0) f#the exact value of the put option
m values=c(3,6,12,24)
errors=rep (0, length(m values))
#we need the generator for stock prices
generator=function (n) {
return(S_euler(n,S0,m,T,mu, sigma))
}
#the function g is the same as in the exercise 1
for(i in l:length(m values)) {
m=m values[i]
errors[i1]=MC2 (g, generator,MCerror,alpha) [1]-exact
print (m) #to see how many computations are finished. In R console you should choose menu
Misc und uncheck Buffered Output
}
#check if the errors are clearly larger than MCerror
errors
#yes, MC error is 0.01, but the computed errors are above 0.05. So we can assume that the
numbers we see describe accurately the part of the error that comes from m
#What is the convergence rate?
nls(log(errors)~log(c)-g*log(m values),start=list (c=1,g=1))
#it is higher than the weak convergence rate. I got 0.86. It can be proved that actually it
is 1. To see that, we should do computations with larger value of m and smaller value of MC
error, but it
#takes too much time.

-3-

H:\MC\MC12\lab4.R 10. aprill 2012. a. 16:46

m=ceiling (2*Cbar/total error)

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47

MC2=function (g, Xgen,error,alpha) {
N=10000#the number of variables to be generated in one go
sum y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
error estimate=error+l# Make the estimate to be large than the given error to start the
while cycle
n=0 #the number of values generated so far
while (error estimate>error) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_ y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated values
error estimate=-gnorm(alpha/2)*sdY/sqgrt(n) #the estimate of the error of the mean
value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum y/n

#exercise 1

#fgenerator for constant volatility
#Euler's method (actually not needed for this lab)
S _euler=function(n,S0,m, T, mu, sigma) {
dt=T/m
S=matrix (S0, nrow=m+1,ncol=n)
t=seqg (0, T, length.out=m+1)
for(i in 1:m){
Xi=rnorm(n, sd=sqgrt (dt))
S[i+1,1=S[1i,]1* (l+mu*dt+sigma*Xi)
}
return (S[m+1,1])
}
#Milstein's method, constant volatility
S Milstein=function(n, S0, m, T, mu, sigma) {
dt=T/m
S=matrix (S0, nrow=m+1,ncol=n)
t=seqg (0, T, length.out=m+1)
for(i in 1:m){
Xi=rnorm(n, sd=sqgrt (dt))
S[i+1,1=S[i,1*(l+mu*dt+sigma*Xi+1/2*sigma**2* (Xi**2-dt))
}
return (S[m+1,1])
}
#weakly second order method, constant mu and sigma
#define first functions needed in the method
Llmu=function (t, s) {
return (s*mu**2)
}
L2mu=function (t, s) {
return (s*sigma*mu)
}
Llsigma=function (t, s) {
return (s*mu*sigma)

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47

}

L2sigma=function (t, s) {

return (s*sigma**2)
}
#define the method. Since functions work only if sigma and mu are correctly defined outside
of the funciton
#write this function also so that it takes sigma and mu from outside (do not use
corresponding arguments)
S_secondorder=function (n, S0, m,T) {
dt=T/m
S=matrix (S0, nrow=m+1,ncol=n)
t=seqg (0, T, length.out=m+1)
for(i in 1:m){
Xi=rnorm(n, sd=sqgrt (dt))
terml=S[1i,]* (l+mu*dt+sigma*Xi)
term2=1/2* (L1lmu(t[1i],S[1i,]) *dt**2)
term2=term2+1 /2% (L2mu (t[1],S[i,])+Llsigma(t[i],S[1,])) *dt*Xi
term2=term2+1/2*L2sigma (t[1],S[1i,])*(Xi**2-dt)
S[i+1l,]=terml+term?2 #can also be written as one long expression

}

return (S[m+1,1])
}
__
fexercise 2 : finding strong convergence rates

#define functions that compute the differences between approximate final stock prices and
fexact stock prices for the same Brownian motion
#similar to what we did in Lab 3
S Milstein error=function(n,S0,m,T,mu, sigma) {
dt=T/m
S=matrix (S0, nrow=m+1,ncol=n)
t=seqg (0, T, length.out=m+1)
B=matrix (0, nrow=m+1,ncol=n)
for(i in 1:m){
Xi=rnorm(n, sd=sqgrt (dt))
S[i+1,1=S[i,1*(l+mu*dt+sigma*Xi+1/2*sigma**2* (Xi**2-dt))
B[i+1,]1=B[i,]+Xi
}
BT=B[m+1,] #for comparison we have to compute the exact value for the same brownian
motion, so we need the final value
S_exact=S0*exp ((mu-sigma**2/2) *T+sigma*BT) # the exact value of S(T)
return(S[m+1,]1-S exact)
}
#the same for the weakly second order method
S_secondorder error=function(n,S0,m,T,mu, sigma) {
dt=T/m
S=matrix (S0, nrow=m+1,ncol=n)
t=seqg (0, T, length.out=m+1)
B=matrix (0, nrow=m+1,ncol=n)
for(i in 1:m){
Xi=rnorm(n, sd=sqgrt (dt))
terml=S[1i,]* (l+mu*dt+sigma*Xi)
term2=1/2% (Limu(t[1],S[1i,]) *dt**2)
term2=term2+1 /2% (L2mu (t[1],S[i,])+Llsigma(t[i],S[1i,])) *dt*Xi

2.

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47
term2=term2+1/2*L2sigma (t[1],S[1i,])*(Xi**2-dt)
S[i+1,]=terml+term2
B[i+1,]1=B[i,]1+Xi

}

BT=B[m+1,] #for comparison we have to compute the exact value for the same brownian
motion, so we need the final wvalue
S _exact=S0*exp ((mu-sigma**2/2)*T+sigma*BT)# the exact value of S(T)
return(S[m+l,]-S exact)
}
#define parameters
S0=100
T=0.5
mu=0.1
sigma=0.6
m values=c(5,10,20,40,80)
errors=rep (0, length(m values))
#Strong convergence rate for Milsteins method
#define generator of differences between exact and approximate prices
generator=function (n) {
return(S Milstein error(n,S0,m,T,mu, sigma))
}
#find mean absolute errors for different m
for(i in l:length(m values)) {
m=m values[i]
errors[1]=MC2 (abs, generator,error=0.01,alpha=0.05)[1]
print (m)
}
#find the convergence rate
nls(log(errors)~log(c)-g*log(m values),start=list (c=1,g=1))
#observed rate is close to 1 (theoretically is equal to 1)

#the same for the second order method
#define generator of differences between exact and approximate prices
generator=function (n) {
return(S_secondorder error (n,S0,m,T,mu,sigma))
}
m values=c(5,10,20,40,80)
errors=rep (0, length(m values))
for(i in l:length(m values)) {
m=m values[i]
errors[1]=MC2 (abs, generator,error=0.01,alpha=0.05)[1]
print (m)
}
nls(log(errors)~log(c)-g*log(m values),start=list (c=1,g=1))
#rate close to 1, strongly first order (like Milsteins method)
#conclusions: both Milstein's and the weakly second order method
#fapproximate final stock prices better than Euler's method
#the weakly second order method does not approximate final stock prices significantly better
than Milstein's method

#fexercise 3: weak convergence rates
#define data

E=100

T=1

r=0.05

S0=100

-3-

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47
D=0
mu=r-D #when pricing options, we take the trend parameter to be r-D

sigma=0.5
#function for the put option price for constant sigma
Put=function(S,E, T, r,sigma, D, t=0) {
tau=T-t
dl=(log(S/E)+ (r-D+sigma**2/2)*tau)/ (sigma*sqgrt (tau))
d2=dl-sigma*sqgrt (tau)
value=-S*exp (-D*tau) *pnorm (-dl)+E*exp (-r*tau) *pnorm(-d2)
return (value)

#fcompute the exact wvalue
exact=Put (SO,E, T, r,sigma, D, t=0)
m values=c(3,6,12,24)
errors=rep (0, length(m values))

#weak convergence of the Milstein's method
#we need the generator for stock prices
generator=function (n) {
return(S Milstein(n,S0,m, T, mu=r-D,sigma))
}
p_put=function (S, E) {
pmax (E-S,0) #note that the function is pmax (from parallel maximum), not Jjust max
}
foption price is the expected value of the discounted payoff, so define the corresponding
function
g=function (x) {
return(exp (-r*T) *p put (x,E))#the values of the parameters r,T,E have to be defined
outside of any function
}
for(i in l:length(m values)) {
m=m values[i]
errors[i1]=MC2 (g,generator,0.01,0.05) [1]-exact
print (m) #to see how many computations are finished. In R console you should choose menu
Misc und uncheck Buffered Output
}
#check if the errors are clearly larger than MCerror
errors
#yes, MC error is 0.01, but the computed errors are above 0.03. So we can assume that the
numbers we see describe accurately the part of the error that comes from m
#What is the convergence rate?
nls(log(abs(errors))~log(c)-g*log(m values),start=list (c=1,g=1))
#close to 1, theoretically 1
#so Milsteins's method is not better than Euler's method when computing option prices. Weak
convergence rates are the same
#repeat for the second order method
#converges very fast, so can not use many values of m so that MC error is smaller than
observed error
m values=c(l,2,4,8) #the theoretical convergence rate is valid for large enough m, but we
can not use large values of m because computations become too slow
errors=rep (0, length(m values))

generator=function (n) {
return(S_secondorder (n,S0,m,T))

}

for(i in l:length(m values)) {

4-

H:\MC\MC12\lab5.R 10. aprill 2012. a. 16:47

m=m values[i]
errors[i1]=MC2 (g,generator,0.01,0.05) [1]-exact
print (m) #to see how many computations are finished. In R console you should choose menu
Misc und uncheck Buffered Output
}
#check if the errors are clearly larger than MCerror
errors
#the last error is not more than 2 times larger than the MC error, so we should repeat the
last comptation with smaller MCerror
#since the computations were quite slow, we just drop the last value before estimating the
convergence rate
#of cause the estimate is not very accurate, if a small number of computations is used
errors=errors[-4] #everything except the fourth value
m values=m values[-4]
nls(log(abs(errors))~log(c)-g*log(m values),start=list (c=1,g=1))
#the observed convergence rate was close to 2. The theoretical weak convergence rate is 2
#this method is better than Euler's and Milstein's methods in terms of the weak convergence
rates
#fusually a relatively small m is needed to obtain a very high accuracy. Each time we double
the value of m, the error is reduced approximately 4 times

#hint for homework: define functions sigma, dsigma (derivative of sigma) and d2sigma (the
second derivative) as functions of s

#then define Llmu, L2mu, Llsigma,L2sigma using those functions

#also modify the definition of the method S secondorder so that it works when sigma is a
function of s

5.

H:\MC\MC12\lab6.R 10. aprill 2012. a. 16:47

MC2=function (g, Xgen,error,alpha) {
N=1000#the number of variables to be generated in one go
sum y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
error estimate=error+l# Make the estimate to be large than the given error to start the
while cycle
n=0 #the number of values generated so far
while (error estimate>error) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_ y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated wvalues
error estimate=-gnorm(alpha/2)*sdY/sqgrt(n) #the estimate of the error of the mean
value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum y/n

H:\MC\MC12\lab7.R 10. aprill 2012. a. 16:48

MC2=function (g, Xgen,error,alpha) {
N=1000#the number of variables to be generated in one go
sum y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
error estimate=error+l# Make the estimate to be large than the given error to start the
while cycle
n=0 #the number of values generated so far
while (error estimate>error) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_ y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum _y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated values
error estimate=-gnorm(alpha/2)*sdY/sqgrt(n) #the estimate of the error of the mean
value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum y/n

#exercise 1

#fgenerator for constant volatility

#Euler's method (actually not needed for this lab)

S_importance=function(n,S0,T,mu, sigma,eta=0) {
BT=rnorm(n, sd=sqrt (T))
S=S0*exp ((muteta*sigma-sigma**2/2) *T+sigma*BT)
return (cbind (S, BT))

}

g=function (X) {
return (exp (-r*T-eta*X[,2]-eta**2*T/2)*p call(X[,1],E))
}

S0=50

E=100

r=0.1

sigma=0.5

D=0.0

T=1

MCerror=0.01
p_call=function(S,E) {

return (pmax (S=-E, 0))
}
generator=function (n) {return(S_ importance(n, S0, T,mu, sigma,eta))}
print ("search for the best eta value")
for (eta in seqg(l,3,by=0.1)){
answerl=MC2 (g, generator,MCerror, 0.05)
print (c(eta,answerl[1],answerl[2]))

}

fexercise 2
S0=50

E=100

r=0.1
sigma=0.5

H:\MC\MC12\lab7.R 10. aprill 2012. a. 16:48
D=0.0
T=1
S strat=function(n,S0,r,D,sigma,T, i, k){
U=runif (n,min=(i-1)/k, max=1i/k)
BT=sqrt (T) *qnorm (U) #normally distributed under the condition, that the value is in Ai
S=S0*exp ((r-D-sigma**2/2) *T+sigma*BT)

return (S)
}
p_call=function (S, E) {
return (pmax (S=-E, 0))
}
g=function (x) {return(exp (-r*T)*p call(x,E))}
MCerror=0.01
#fuse stratified sampling, simple approach
for(k in c(5,10,20,40)){
price=0#here we add the contribution of each stratum
n=0#the total number of generated values
generator=function (n) {
return(S_strat(n,s0,r,D,sigma,T,i,k))
}
for(i in 1:k){
answer=MC2 (g, generator, sqrt (k) *MCerror, 0.05) #the error in the stratum should be the
desired error divided by the probability of the stratum.
price=price+l/k*answer[1]
n=n+answer[2]
}
print (c(price, k,n))
}
#as k increases, the number of generated variables gets smaller
#for this problem (out of the money option) the importance sampling with the best eta is
better than the simple stratified sampling
#but it is possible to use a better version of the stratified sampling or to combine the
methods

2

H:\MC\MC12\lab8.R 10. aprill 2012. a. 16:49

fexercise 1
MC stratified=function(g,Xgen,C,p 1i){#p i is the probability of the stratum, C is a positive
constant
N=100#the number of variables to be generated in one go
sum y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
sdY=1 #any opositive number to make sure that the while cycle starts
n=0 #the number of values generated so far
while (n<C*p i*sdy) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_ y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum _y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated values
}
return(c(sum_y/n,n,sdy**2)) #the estimate of EY is sum y/n, instead of the estimated
variance we could return for example p 1 times the standard deviation
}
ffexercise 2
r=0.1
sigma=0.4
T=0.5
D=0
E=100
S0=100
#HAHHEHE AR
C=1000
alpha=0.05
k=10
S strat=function(n,S0,r,D,sigma,T, i, k) {
U=runif(n,min=(i-1)/k, max=1i/k)
BT=sqrt (T) *qnorm(U) #normally distributed under the condition, that value is in Ai
S=S0*exp ((r-D-sigma**2/2) *T+sigma*BT)
return (S)
}
price C=function (C, g, k) {
generator=function (n){ #Since we want to change i inside the function, we have to define
the generator here
return(S_strat(n,s0,r,D,sigma,T,i,k))
}
price=0 #here we add the contribution of each stratum
n=0#the total number of generated values
Dz=0 #for error estimate
for(i in 1:k){
p_i=1/k #the probability of i-th stratum
answer=MC stratified(g,generator,C,p i)
price=price+l/k*answer[1]
n=n+answer[2]
DZ=DzZ+p_ i**2*answer[3]/answer[2] #if the MC stratified returns
p_i*standard deviation, then the last term is answer[3]**2/answer[2]
}
error estimate=-gnorm(alpha/2)*sqgrt (Dz)

return(c(price,error estimate))

H:\MC\MC12\lab8.R 10. aprill 2012. a. 16:49

price C(,g,10)

2

H:\MC\MC12\lab9.R 10. aprill 2012. a. 16:49
#task 1
Brown stratified=function(k,m,T) {#k-the number of stratums, m- the number of time steps,
T-the final time
v=rep(l,m) #for the final value, we Jjust sum the increments

B=matrix (0, nrow=m+1,ncol=k) f#trajectories are in columns
a=sqrt (T/m) #the standard deviation of increments
v_norm=sqrt (sum(v**2))
for(i in 1:k){
W=a*v norm*gnorm(runif (1, min=(i-1)/k,max=i/k)) #the value for B(T) in the stratum
Z=rnorm(m, sd=a)
X=W/v_norm**2*v+Z-(t(v)$*%2)/v_norm**2*yv f#increments of Brownian motion
B[2: (m+1),i]=cumsum (X)
}
t=seqg (0, T, length.out=m+1)
matplot (t,B,type="1")
}
#task 2
#v has to be a vector of lenth m (the number of time steps)
S euler stratified=function(n,s0,m,T,mu,sigma,i,k,v) {
dt=T/m
S=matrix (S0, nrow=m+1,ncol=n)
t=seqg (0, T, length.out=m+1)
#fcompute the vector of increments
a=sqrt (T/m) #the standard deviation of increments
v_norm=sqrt (sum(v**2))
W=a*matrix(v_norm*gnorm(runif (n,min=(i-1)/k,max=1i/k)),nrow=1)
#final values in the stratum
Z=matrix (rnorm(m*n, sd=a) , nrow=m)
X=1/v_norm**2*yS*SW+z- (vS* 3t (v) $*%2) /v_norm**2
for(i in 1:m){
S[i+1,1=S[i,1*(l+mu*dt+sigma (t=t[i],s=S[i,])*X[1i,])
}
return (S[m+1,1])
}
#now can use the method from the previous lab to price options
MC stratified=function(g,Xgen,C,p 1i){#p i is the probability of the stratum, C is a positive
constant
N=100#the number of variables to be generated in one go
sum_y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
sdY=1 #any opositive number to make sure that the while cycle starts
n=0 #the number of values generated so far
while (n<C*p i*sdy) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum_y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated values
}
return(c(sum_y/n,n,sdY**2)) #the estimate of EY is sum y/n, instead of the estimated
variance we could return for example p i times the standard deviation
}
#data
r=0.06

D=0.03

H:\MC\MC12\lab9.R 10. aprill 2012. a. 16:49
T=0.5

S0=105

E=100

alpha=0.05

mu=r-D

sigma=function (t, s) {
return (95/ (95+s))
}
#for call option
p_call=function(S,E) {
return (pmax (S=-E, 0))
}
g=function (x) {return(exp (-r*T)*p call(x,E))}

#the function for computing the price and error estimate for a given C by the optimal
stratified sampling
price C=function (C, g, k) {
generator=function (n){ #Since we want to change i inside the function, we have to define
the generator here
return(S_euler stratified(n,SO,m,T,mu,sigma,i,k,v))
}
price=0 #here we add the contribution of each stratum
n=0#the total number of generated values
Dz=0 #for error estimate
for(i in 1:k){
p_i=1/k #the probability of i-th stratum
answer=MC stratified(g,generator,C,p i)
price=price+l/k*answer[1]
n=n+answer[2]
DZ=DzZ+p_ i**2*answer[3]/answer[2] #if the MC stratified returns
p_i*standard deviation, then the last term is answer[3]**2/answer[2]
}
error estimate=-gnorm(alpha/2)*sqgrt (Dz)

return(c(price,error estimate))

}

#compute price for a given m

m=10

v=rep(l,m) #v has to be of length m
C=1000

price C(C,qg,100)

#Computing with a given accuracy

total error=0.01

m0=>5

#First computation with given C

C=1000

m=m0

v=rep(l,m) #we have to change v whenever we change m in order to use the current generator
answerl=price C(C,g,100)

Vl=answerl[1]

m=2*m0

v=rep(l,m)

answer2=price C(C,g,100)

V2=answer2[1]

#For optimal MC, the answers are computed with the same MC error eps0O as before

#This is not a problem, we just have to use the sum of estimated errors when we before used
2*epsO

#fare the computations accurate enough to get a reasonably good estimate of the convergence

2.

H:\MC\MC12\lab9.R 10. aprill 2012. a. 16:49

reate parameter C?

abs (V2-V1)>2* (answerl [2]+answer2[2])

#the result was FALSE, so we may get a quite bad estimate of m. So it may be a good idea to
make C larger (giving better estimates). Fut first check how large is the "bad" estimate of
m we get

#if it turns out to be relatively small, then it does not make sense to spend time for more
accurate estimates

#estimate C (valid for first order methods with weak convergence rate 1)

Cbar=2*m0* (abs (V1-V2)+answerl[2]+answer2[2])

m=ceiling(2*Cbar/total error)

m

#I got 182, so it is quite large. Let us try to get a better estimate for m. The
computations were very farst, so we may multiply C by a relatively last number

#If we multiply C by x, the computation time increases approximately x times. For very farst
computations, we may try to multiply by relatively large x, say 100

C=100*1000

m=m0

v=rep(l,m) #we have to change v whenever we change m in order to use the current generator
answerl=price C(C,g,100)

Vl=answerl[1]

m=2*m0

v=rep(l,m)

answer2=price C(C,g,100)

V2=answer2[1]

#For optimal MC, the answers are computed with the same MC error eps0O as before

#This is not a problem, we just have to use the sum of estimated errors when we before used
2*epsO

#fare the computations accurate enough to get a reasonably good estimate of the convergence
reate parameter C?

abs (V2-V1)>2* (answerl [2]+answer2[2])

#the result was still FALSE, so we may still get a quite bad estimate of m. So it may be a
good idea to make C larger again (giving better estimates). Fut first check how large is the
"bad" estimate of m we get

#if it turns out to be relatively small, then it does not make sense to spend time for more
accurate estimates

#estimate C (valid for first order methods with weak convergence rate 1)

Cbar=2*m0* (abs (V1-V2)+answerl[2]+answer2[2])

m=ceiling(2*Cbar/total error)

m

#now the estimate is not very large (I got 57). So it is perfectly OK to use that m for
final computation. But let us see, if we can get a better estimate with reasonable time
#Previous computations were not very fast, so let us multiply C by 4 only

C=4*100*1000

m=m0

v=rep(l,m) #we have to change v whenever we change m in order to use the current generator
answerl=price C(C,g,100)

Vl=answerl[1]

m=2*m0

v=rep(l,m)

answer2=price C(C,g,100)

V2=answer2[1]

#For optimal MC, the answers are computed with the same MC error eps0O as before

#This is not a problem, we just have to use the sum of estimated errors when we before used
2*epsO

#fare the computations accurate enough to get a reasonably good estimate of the convergence
reate parameter C?

abs (V2-V1)>2* (answerl [2]+answer2[2])

-3-

H:\MC\MC12\lab9.R 10. aprill 2012. a. 16:49

#the result is no TRUE

#let us estimate m

Cbar=2*m0* (abs (V1-V2)+answerl[2]+answer2[2])
m=ceiling(2*Cbar/total error)

m
#It turned out for my current computations, that the more accurate estimate happened to be
the same as before (57), so we indeed did not gain much by the last repetition

#Let us compute the price with given accuracy. For this we have to use the m we found and
pick C so that MC error is less than total error/2

v=rep(l,m) #need to redefine v. Let us keep C the same as in the last computation (we could
make it smaller if the last computations were very slow and the error part of the

#answer2 is smaller than total error/2)

answer=price C(C,g, 100)

#the result was: price is 16.957282632, MC part of the error is 0.002405796

#the the answer is accurate enough (actually, the total error of the answer is smaller than
required, since MC part is less than total error/2.

#if the answer was not accurate enough, we should redefine C bu multiplying it by
(answer[2]/ (total error/2))**2 or a slightly large number, to be on the safe side. I would
recommend to use an additional

#factor 0f 1.1

4-

H:\MC\MC12\lab10.R

10. aprill 2012. a. 16:50

MC2=function (error,Xgenerator, g, alpha=) {
n0= #the number of values to generate in one go
n=n0

X=Xgenerator (n0)

Y=g (X)

sum_y=sum(Y)

sum_y2=sum (Y**2)

sd estimate=sqrt (abs(sum y2-sum y**2/n)/(n-1))

error estimate=-gnorm(alpha/2)*sd estimate/sqrt (n)

while (error estimate>error) {
X=Xgenerator (n0)
Y=g (X)
sum_y=sum_y+sum(Y)
sum_y2=sum_y2+sum(Y**2)

n=n+n0

sd estimate=sqrt (abs(sum y2-sum y**2/n)/(n-1))
error estimate=-gnorm(alpha/2)*sd estimate/sqrt (n)

}

return(c(sum y/n,error estimate,n))

gen Asial=function (S0, mu, sigma, T, m,n) {

dt=T/m
S=s0
A=
B=
for(i in 1:m){
A=A+S/m
dB=rnorm(n, sd=sqgrt (dt))
B=B+dB
t=i*dt

S=S0*exp ((mu-sigma**2/2) *t+sigma*B)
}
return (cbind (S, A))
}
mvalues=c(5,10,20,40)
m=mvalues|[l]

#exercise 1
#average strike
g=function (X) {
return (exp (=r*T) *pmax (X[, 1]1-X[,2]1,0))
}
gen=function (n) {
return(gen Asial (SO, mu,sigma,T,m,n))
}
pricel=MC2 (,gen, g,)
prices=rep(NA, length (mvalues))
MCerror=
for(i in 1:length(mvalues)) {

m=mvalues[i]

H:\MC\MC12\lab10.R 10. aprill 2012. a. 16:50

prices[i]=MC2 (MCerror,gen,qg,0.05) [1]
}
errors=prices[-length (mvalues)]-prices[-1]
errors
#find the convergence rate
nls (errors~C/mvalues[-length (mvalues)]**g*(1-1/2*%*q),start=1list (C=1,qg=1))
nls(log(errors)~log(C)-g*log(mvalues[-length (mvalues)])+log(l-1/2**qg),start=1list(C=1,g=1))
#fweak convergence rate is 1

#fcomputing option price with given accuracy

error=0.1

m=5

pricel=MC2 (MCerror,gen,qg,0.05) [1]

m=10

price2=MC2 (MCerror,gen,qg,0.05) [1]

abs (price2-pricel)>2*MCerror

#if TRUE, then OK, otherwise it may be a good idea to repeat
#the computations with smaller MCerror (therwise the final estimate of m may be too large)
Cbar=2*5%* (abs (price2-pricel)+2*MCerror)

ml=ceiling(Cbar/ (error/2))

m=ml

final price=MC2(error/2,gen,g,0.05)

2.

H:\MC\MC12\lab11.R

10. aprill 2012. a. 16:50

MC2=function (error,Xgenerator, g, alpha=) {
n0= #the number of values to generate in one go
n=n0

X=Xgenerator (n0)

Y=g (X)

sum_y=sum(Y)

sum_y2=sum (Y**2)

sd estimate=sqrt (abs(sum y2-sum y**2/n)/(n-1))
error estimate=-gnorm(alpha/2)*sd estimate/sqrt (n)

while (error estimate>error){

X=Xgenerator (n0)

Y=g (X)

sum_y=sum_y+sum(Y)

sum_y2=sum_y2+sum(Y**2)

n=n+n0

sd estimate=sqrt (abs(sum y2-sum y**2/n)/(n-1))

error estimate=-gnorm(alpha/2)*sd estimate/sqrt (n)
}

return(c(sum y/n,error estimate,n))

gen Asial=function (S0, mu,sigma, T, m,n) {

}

dt=T/m
S=50
A=
B=
for(i in 1:m){
A=A+S/m
dB=rnorm(n, sd=sqgrt (dt))
B=B+dB
t=i*dt

S=S0*exp ((mu-sigma**2/2) *t+sigma*B)
}
return (cbind (S, A))

gen Asia2=function (S0, mu,sigma, T, m,n) {

}

dt=T/m
S=S50
A=

B=

for(i in 1:m){
dB=rnorm(n, sd=sqgrt (dt))
A=A+S/m* (1+mu*T/ (2*m) +sigma/2*dB)
B=B+dB
t=i*dt
S=S0*exp ((mu-sigma**2/2) *t+sigma*B)
}
return (cbind (S, A))

#exercise 1

H:\MC\MC12\lab11.R 10. aprill 2012. a. 16:50

E=

gen Asia2 strat=function(S0,mu,sigma,T,m,n,i,k,v){
dt=T/m
S=S0
a=sqgrt (dt)
v=matrix (v, m, 1)
vnorm=sqrt (sum(v**2))
W=matrix (a*vnorm*gnorm(runif (n,min=(i-1)/k,max=1i/k)),nrow=1,ncol=n) #rnorm(1l, sd=a*vnorm)
Z=matrix (rnorm(m*n, sd=a), nrow=m, ncol=n)
dB=1/vnorm**2*v%*SW+Z-vS* 3t (V) $*%$Z/vnorm**
A=
B=
for(j in 1:m){
#dB=rnorm (n, sd=sqrt (dt))
A=A+S/m* (1+mu*T/ (2*m)+sigma/2*dB[7,])
B=B+dB[7,]
t=9*dt
S=S0*exp ((mu-sigma**2/2) *t+sigma*B)
}
return (cbind (S, A))

MC strat opt=function(Xgenerator strat,g,pi,C){
n0= #the number of values to generate in one go
n=n0
X=Xgenerator strat (n0)
Y=g (X)
sum_y=sum(Y)
sum_y2=sum (Y**2)
sd _estimate=sqrt (abs(sum y2-sum y**2/n)/(n-1))
ferror estimate=-gnorm(alpha/2)*sd estimate/sqrt (n)
while (C*pi*sd estimate>n) {
X=Xgenerator strat (n0)
Y=g (X)
sum_y=sum_y+sum(Y)
sum_y2=sum_y2+sum(Y**2)
n=n+n0

sd _estimate=sqrt (abs(sum y2-sum y**2/n)/(n-1))

}
return(c(sum y/n,sd estimate,n))
}
pricel=function (C, k,g,Vv){
7=
DzZ=
n=

gen=function (n) {
return(gen Asia2 strat (SO,mu,sigma,T,m,n,i,k,v))}
for(i in 1:k){
pi=1/k
tmp=MC_ strat opt (gen,g,pi,C)
Z=Z+pi*tmp[1]
n=n+tmp[3]
DZ=DZ+pi**2*tmp [2]**2/tmp[3]
}
return (c(Z, -gnorm (alpha/?) *sqrt (DZ),n))

2

H:\MC\MC12\lab11.R 10. aprill 2012. a. 16:50
}

alpha=

#average strike call

g=function (X) {
return (exp (=r*T) *pmax (X[, 11-X[,2]1,0))

}

gen=function (n) {
return(gen Asia2 (SO,mu,sigma,T,m,n))

}

price mc=MC2 (,gen, g,)

Cc=

v=rep(l,m)

price opt=pricel (C, ,g,V)

price opt=pricel (C* (price opt[2]/ Y*2,40,9,Vv)

v=l-1:m/m

price opt2=pricel (C, ,g,V)

price opt2=pricel (C*(price opt2[2]/ Y*2,40,9,Vv)

v=1:m/m

price opt3=pricel(C,40,g,Vv)

price opt3=pricel (C*(price opt3[2]/ Y*2,40,9,Vv)

#average price put

g=function (X) {
return (exp (-xr*T) *pmax (E-X[,2]1,0))

}

gen=function (n) {
return(gen Asia2 (SO,mu,sigma,T,m,n))

}

pricel mc=MC2 (,gen, g,)

Cc=

v=rep(l,m)

price opt=pricel (C, ,g,V)

price opt=pricel (C*(price opt[2]/ Y*2,40,9,Vv)

v=l-1:m/m

price opt2=pricel (C, ,g,V)

price opt2=pricel (C*(price opt2[2]/ Y*2,40,9,Vv)

v=1:m/m

price opt3=pricel(C,40,g,Vv)

price opt3=pricel (C*(price opt3[2]/ Y*2,40,9,Vv)

pricel mc

price opt

price opt2

price opt3

3-

H:\MC\MC12\lab12.R

10. aprill 2012. a. 16:51

#
b=>
k=11
n=32

digits=k%/%b*(0:(n-1))%%b
sum(digits/b** (1:n))
###many numbers in one go

k=1:11
digits=outer (k,b*(0:(n=-1)),"%/%")%%b
digits%*$(1/b**(1:n))

Corput=function (nl,n2,b) {
n=32
k=nl:n2
digits=outer (k,b*(0:(n=-1)),"%/%")%%b
return (digits%*% (1/b**(1:n)))
}
plot (Corput(l,200,2),Corput(l,200,3))
plot (Corput(1,200,17),Corput(l,200,19))
#if b values get large, the unit square is not covered very well

#for relatively small number of points

#task 2
S _euler=function(n,S0,m, T, mu, sigma) {

S=S0

dt=T/m

for(i in 1:m){

t=(1i-1)*dt
S=S* (l+mu*dt+sigma (S, t) *sqgrt (dt) *gqnorm (runif(n))) #rnorm(n))
}

return (S)
}
sigma=function (s, t) {

return(0.6-0.5%exp(=-0.01%*s))
}
m=o
r=0.1
D=0
mu=r-D
T=0.5
S0=105

gen=function (n) {
S euler(n,S0,m, T,mu, sigma)
}
g=function (3) {
return (exp (-r*T) *pmax (E-S, 0))

}

E=100
N=100000
S=gen (N)

mean (g (S))

S _euler gmc=function(n,S0,m,T,mu,sigma,b) {
S=S0
dt=T/m
for(i in 1:m){

H:\MC\MC12\lab12.R 10. aprill 2012. a. 16:51

t=(1i-1)*dt
S=S* (l+mu*dt+sigma (S, t) *sqgrt (dt) *qnorm (Corput (1,n,b[i]))) #frnorm(n))

}

return (S)
}
b=c(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, , ,
gen_gmc=function (n) {

S _euler gmc(n,S0,m,T,mu, sigma,b)
}
S=gen_gmc (N)
mean (g (S))

2

H:\MC\MC12\lab13.R 10. aprill 2012. a. 16:51
#task 1

#.1libPaths ("h:/rlibs™)

#install.packages ("rngWELL", 1ib="h:/rlibs")

#install.packages ("randtoolbox",lib="h:/rlibs")

#library (randtoolbox)
sobolpoints=sobol (200, 10)
pairs (sobolpoints)
haltonpoints=halton (200, 10)
pairs (haltonpoints)

#task 2
m=5
r=0.1
D=0
mu=r-D
T=0.5
S0=105
E=100

sigma=function (s, t) {
return(0.6-0.5%exp (=0.01%s))
}
#put option
g=function (S) {
return (exp (-r*T) *pmax (E=-S, 0))
}
#Euler's method for MC
S _euler=function(n,S0,m, T, mu, sigma) {
S=S0
dt=T/m
for(i in 1:m){
t=(i-1)*dt
S=S* (l+mu*dt+sigma (S, t) *sqgrt (dt) *gqnorm (runif(n))) #rnorm(n))
}
return (S)
}
S _euler gmc=function(n,S0,m,T,mu,sigma,grn gen) {
S=S0
dt=T/m
dB=sqgrt (dt) *gnorm(grn gen(n,m)) #matrix of increments, trajectories in rows
for(i in 1:m){
t=(i-1)*dt
S=S* (l+mu*dt+sigma (S, t) *dB[,1])
}
return (S)

}

m=o

mcError=rep (NA, 10)

gncError=rep (NA, 10)

exact=7.731

for(i in 1:10){
n=i*10000
mcError[i]=abs (mean(g(S_euler(n,S0,m,T,mu, sigma))-exact))
gmcError[i]=abs (mean(g(S euler gmc(n,S0,m,T,mu,sigma,halton))-exact))

m=20
mcError=rep (NA, 10)
gncError=rep (NA, 10)

H:\MC\MC12\lab13.R 10. aprill 2012. a. 16:51

exact=7.5
for(i in 1:10){
n=i*10000
mcError[i]=abs (mean(g(S_euler(n,S0,m,T,mu, sigma))-exact))
gmcError[i]=abs (mean(g(S euler gmc(n,S0,m,T,mu,sigma, sobol))-exact))

}

#
b=2
k=11
n=32

digits=ks/%bA(0: (n-1))%%b
sum(digits/b** (1:n))

###many numbers in one go

k=1:11
digits=outer (k,b*(0:(n=-1)),"%/%")%%b
digits%*$(1/b**(1:n))

Corput=function (nl,n2,b) {
n=32
k=nl:n2
digits=outer (k,b*(0:(n=-1)),"%/%")%%b
return (digits%*% (1/b**(1:n)))
}
plot (Corput(1,200,2),Corput (1,200, -
plot (Corput(1,200,17),Corput(l,200,19))
#if b values get large, the unit square is not covered very well

#for relatively small number of points

#task 2
S _euler=function(n,S0,m, T, mu, sigma) {
S=S0
dt=T/m
for(i in 1:m){
t=(1i-1)*dt
S=S* (l+mu*dt+sigma (S, t) *sqgrt (dt) *gqnorm (runif(n))) #rnorm(n))
}
return (S)
}
m=o
r=0.1
D=0
mu=r-D
T=0.5
S0=105

gen=function (n) {
S euler(n,S0,m, T,mu, sigma)
}
g=function (3) {
return (exp (-r*T) *pmax (E=-S, 0))
}
E=100
N=100000

2

H:\MC\MC12\lab13.R 10. aprill 2012. a. 16:51

S=gen (N)
mean (g (S))
S _euler gmc=function(n,S0,m,T,mu,sigma,b) {
S=S0
dt=T/m
for(i in 1:m){
t=(1i-1)*dt
S=S* (l+mu*dt+sigma (S, t) *sqgrt (dt) *qnorm (Corput (1,n,b[i]))) #frnorm(n))
}
return (S)
}
b=c(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, , , ,)
gen_gmc=function (n) {
S _euler gmc(n,S0,m,T,mu, sigma,b)
}
S=gen_gmc (N)
mean (g (S))

3-

H:\MC\MC12\lab14.R 10. aprill 2012. a. 16:52

MC2=function (g, Xgen,error,alpha) {
N=1000#the number of variables to be generated in one go
sum_y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
error estimate=error+l# Make the estimate to be large than the given error to start the
while cycle
n=0 #the number of values generated so far
while(error estimate>error) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_ y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum _y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated values
error_estimate=-gnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean
value of all generated Y values

}

return(c(sum_y/n,n)) #the estimate of EY is sum y/n

H:\MC\MC12\lab15.R 10. aprill 2012. a. 16:53

S0=100
E=100
T=0.5

D=0
r=0.05
sigma=0.5

#Task 1
#modification of MC so that answer is computed with a given relative error
MC2 relative=function (g, Xgen,error,alpha) {
N=1000#the number of variables to be generated in one go
sum_y2=0 #the sum of the squares of all generated Y values
sum_y=0 # the sum of the Y values generated so far
error estimate=error+l# Make the estimate to be large than the given error to start the
while cycle
n=0 #the number of values generated so far
EY=1 #to make sure the while cycle starts
while (error estimate/abs (EY)>error) {
X=Xgen (N) #new set of X values
Y=g (X) #corresponding Y values
n=n+N # the total number of generated values is increased by N
sum_y=sum_ y+sum(Y) #total sum of Y values
sum_y2=sum_y2+sum(Y**2) #the sum of squares of Y
sdY=sqgrt (abs (sum_y2-sum _y**2/n)/(n-1)) #estimate of the standard deviation of Y
based on all generated values
error_estimate=-gnorm(alpha/2)*sdY/sqrt(n) #the estimate of the error of the mean
value of all generated Y values
EY=sum_ y/n
}

return(c(EY,n)) #the estimate of EY is sum y/n

gener=function (n, S0, sigma) {#generator of stock prices according to the exact formula
B=sqgrt (T) *rnorm(n)
S=S0*exp ((r-D-(sigma”?)/2) *T+sigma*B)
return (S)

gen=function (n) {return (gener (n, S0, sigma))}
g=function (S) {return (exp (-r*T) *(S>=E) *(S/S0))} #for pathwise derivative

MC2 relative(g,gen, 0.01, 0.05)

#for likelyhood ratio method
g=function (S) {exp (-r*T) *pmax (S-E, 0) * (Log (S/S0) - (r-0.5*sigma*2) *T) / (SO* (sigma”2) *T) }
MC2 relative(g,gen, 0.01, 0.05)

#task 2

for binary option only the likelyhood ratio method from the current lab is suitable, since
the payoff function is not differentiable

g=function (S) {exp (-r*T) * (S-E>=0)* (1og (S/S0)-(r-0.5*sigma?2) *T) / (SO* (sigma”2) *T) }

MC2 relative(g,gen, 0.01, 0.05)

H:\MC\MC12\lab16.R 10. aprill 2012. a. 16:54
#lab 15
#pricing American options
#task 1
trajectories=function (n) {
dt=T/m
S=matrix (SO0, nrow=n,ncol=m+1)

V=matrix (V0, nrow=n,ncol=m+1)
for(i in 1:m){
S[,i+1]1=S[,1i]1*(1+(r-D) *dt+sqrt (V[,1]) *sgrt (dt) *rnorm(n))
V[,i+1]1=V[, i]l+kappa* (theta-V[,i]) *dt+xi*sqrt (V[,1]) *sqgrt (dt) *rnorm(n)
}
return (list (S=S,V=V))

X=trajectories (5)

#task 2

phil=function (s, v) {
return(s-E/2)

}

phi2=function (s, v) {
return (v-theta)

}

phi3=function (s, v) {
return ((s-E/2)*2)

}

phid=function (s, v) {
return ((s-E/2) * (v-theta))

}

phi5=function (s, v) {
return ((v-theta)*2)

}

n=

X=trajectories (n)

p=function (s, E) {
return (pmax (E-s, 0))

}

W=p (X$S[,m+1],E)

i=m #time t=t[m-1]

Si=X$S[, 1]

Vi=x$vi[,i]

Y=exp (-r*T/m) *W

in money=p(Si,E)>

Ci=Ilm(Y~phil(Si,Vi)+phi2 (Si,Vi)+phi3 (Si,Vi)+phi4 (Si,Vi)+phi5(Si, Vi), subset=in money)

#task 3

m=
X=trajectories (n)
W=p (X$S[,m+1],E)

H:\MC\MC12\lab16.R 10. aprill 2012. a. 16:54

for(i in m:2){
Si=X$S[, 1]
Vi=x$vi[,i]
Y=exp (-r*T/m) *W
in money=p(Si,E)>
Ci=lm(Y~phil(Si,Vi)+phi2 (Si,Vi)+phi3 (Si,Vi)+phi4 (Si,Vi)+phi5(Si, Vi), subset=in money)
W=Y
Cvalues=predict (Ci, newdata=data.frame (Si=Si,Vi=vi))
p_values=p(Si,E)
W[p values>Cvalues]=p values[p values>Cvalues]

}

W=exp (-r*T/m) *W #at t=0, the value of a trajectory is discounted value at t=t[1]
price=mean (W)

alpha=

MCerror=-gnorm(alpha/2) *sd (W) /sqgrt (n)

2

