TARTU STATE UNIVERSITY

ORGANIC REACTIVITY

English Edition
of

Реакционная способность органических соединений

Vol. XXI
ISSUE 3(75)
November 1984

TARTU STATE UNIVERSITY

ORGANIC REACTIVITY

English Edition of
Реакционная способность органических соединений

Vol. XXI
ISSUE 3(75)
November 1984

TARTU

The Editorial Board:

V. Palm, Rditor-in-Chief
A. Talvik
I. Koppel

Title of original:
РЕАЕЦИОННАЯ СПОСОБНОСТЬ ОРГАНИЧЕСКИХ СОЕДННЕНИИ. ToM. XI. B世木. 3(75). Ноябр5 I984.

(C) Translation into English. Tartu State University, 1985

REACTIVITY OF AROMATIC AND HEPEROCYCLIC HYDRAZITE derivatives

II. REACPION KINETICS OF ACYLATION 2-CHLORINE-5--SULPAMOYLBENSOIC ACID HYDRAZIDE DERIVATIVES TITH BETZOYL CHLORIDE IN CHLOROFORM
E.N. Svechnikova, A.H. Gaidukevich, E.V. Dynnik , and S.G. Leonova

Kharkor State Pharmaceutical Institute, Kharkov, the Ukrainian SSR.

Received September 26, 1984

> The reaction kinetice of acylation of 2-chlorine-- 5 - sulfamoylbensoic acid hydrazides with bensoyl chloride in chloroform has been studied in the temper ature range 288-328 K. It was shown that the process obeye the second order kinetic equation for irreversible reactions. Rate constants, activation onergies, enthalpies, entropies as well as free aotivation energies were calculated. The influence of the nature and position of substituents in the hydraside molecule on the kinetic parameters of acylation reaction was studied.

In our previous contribution of this series the reaction kinetice of acylation of chlorosubstituted aromatic carboglic acid hydrazides with bensoyl chloride in chlorofore was studied and the rate constante and activation parameters of the reaction were calculated.

In the present paper the reactivity of 2 - chloro - 5-- sulfamoylbenzoic acid hydrazine derivatives, having a great future with respect to biology, has been studied in order to establiah the probable relationship between its pharmacologic-
al effect and reactivity. Another goal of the work is to find optimum synthesis conditions for the dorivatives of 2-- chlorine - 5- sulfamoylbensole acid hydrazide. To solve these problems, we have chosen the reaction of acylation of hydrazides with benzoyl chloride in chloroform which obeys the following equation:

Rate constants of hydrazides benzoylation reaction were determined by nitritometric potentiometric titration ${ }^{2}$. Inter action of arylhydrazides and benzoylchloride is quantitative and irreversible.

The reaction is described by the second order kinetic equation which is confirmed by the stability of rate constant values (Table 1) calculated according to the equation:

$$
\begin{aligned}
k= & \frac{I}{2 B t} \cdot\left(\frac{I}{a-x}-\frac{I}{a}\right) \\
& \ln \frac{2 x+\Delta}{2 x}-\ln \frac{2 a+\Delta}{2 a}
\end{aligned}
$$

$$
k=
$$

$$
\Delta \mathrm{Bt}
$$

where k is the rate constant (1. mol ${ }^{-1} \mathrm{sec}^{-1}$);
a - the initial concentration of benzoyl chloride (M);
\mathbf{x} - the concentration of bensoyl chloride (K) at the moment of time t (sec);
B - the correction which takes into account the change in the concentration of reagents with

Kinetic Parametere of Reactions

the thermal extention of chloroform while going from 293 K up to the temperature of the experiment.
Δ - the difference between the initial concentration of arylhydrazide and that of the doubled initial concentration of benzoylchloride (M).
While the concentration a of benzoylchloride was two times lower than that of hydraside, rate constant k was calculated according to eq. 1 . In its turn, eq. 2 was used if the ratio of the reagenta deviated from the stoichiometric one. Values k calculated according to these equations, coincide within the error range of the experiment.

The polyterms of rate constants are described by the Arrenius equation which confirms the atability of reaction meohanisa within the temperature range studied. This enabled us to calculate the values of activation energiea (keal/mol), pre-exponential factor A (according to the Arrhenius equation), as well as the thermodyamic activation parameters (enthalps $\Delta H^{\mu}\left(\right.$ kcal/mol), entrops ΔS^{\dagger} (e.u.), and free activa-

The data of Table 1 shows that the introduction of electron - withdrawing substituents into the benzene ring of an arylhydraside molecule leads to considerable decrease in the reaction rate. Still, with the increase of temperature, the hydrazide molecules sensitivity to the substituent effect in benzene ring drope elightly (the relative variation of the rate constants of compounds 1,3 and 4,5 decresses with the growth of temperature). The introduction of electron releasing aubstituents in the sulfamoyl - group of the nucleophile molecule alightly increases the reaction rate (compounds 1,4) of molecules with nonsubstituted H - atom in poaition 4. The insignificance of this increase can probably be explained by the remoteness of sulfamide group from the reaction center of the molecule. With the decrease of arylhydrazide nucleophile reactivity (because of conducting the electron - withdrawing chlorine atom into position 4) the senaitivity of arylhydraside molecule to the substituent effect of sulfamide group on the acylation reaction rate drops

Table 2

Thermodyramic Activation Parameters of the Reaction

to sero. This agrees with other reports ${ }^{4}$.
The analogical changes can be observed with the activation parametere of the reaction (Table 2). It should be pointed out that the variation of enthalpy ΔH^{f}, free energy ΔG^{*} and activation onergy E_{A} are more sensitive to the substituent effect in an axylhydrazide molecule than of activation onthrops $\triangle S^{\ddagger}$, which retain close values Whin the wole series of the compound etudied.

Experimental
The derivatives of 2 - chloro - 5 - aulfamoybensoic acid hydraside were synthesized accoring to the lnown methods ${ }^{5,6}$ and were purified by multiple recrystalligation up to the permanent melting point (Table 3). Bensorl chloride and chlorofor were purified according to metbode described earlier'. The kinetic measuremente were carried out analogous$1 y^{2}$.

The concentration of hydrazides was deternined by potentiometric titration using a pH-meter pH-121 with a 0.01 m solution of sodium nitrate with platinum ETPL-01 M and chlorosilver EVL-/M/ electrodes in the presence of potassiun bromide as the catalyst and the mediator: 0.001 M solutions $\mathrm{K}_{4}\left[\mathrm{Pe}(\mathrm{CN})_{6}\right]$ and $\mathrm{K}_{3}\left[\mathrm{Pe}(\mathrm{CN})_{6}\right]$.

The reaction retes were measured at $288,298,308,318$, 328 K . The experiments were repeated three times and thr included 6-8 measurementa. The initial concentration of the hydrazides (the variation range of benzoylchloride is 0.004--0.0002 M) was in some series stoichiametric but in other series its deviation from the stoichiometric one was A $\ddagger-0.0001-0.0001 \mathrm{M}$. The precision of the obtained values was assessed by the method of mathematical statiatics (the confidence level being 0.95$)^{7}$. The thermodynamic activation parameters were calculated according to the well-known least - squares method ${ }^{4}$. The precision of the calculated kinetic parameters was characterized by the value of the mean-squares deviation.

Myrmzides of 2-Chlorine - 5-Sulfamoylbensoic Acid Derivatives

No	12	R_{1}	R_{2}	$\begin{gathered} \text { Melting } \\ \text { point } \\ \mathrm{C} \end{gathered}$	Found \%		Bruttoformula	Calculated	\%
					N	S		N	S
1.	H	H	H	131-183	17.00	12.87	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{CIN}_{3} \mathrm{O}_{3} \mathrm{~S}$	16.83	12.84
2.	H	CH_{3}	Cl	207-209	14.22	10.89	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{CI}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	14.09	10.75
3.	4	H	Cl	198-200	14.51	11.26	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{CI}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	14.79	11.29
4.	CH_{3}	CH_{3}	H	175-177	15.18	11.48	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{CIN}_{3} \mathrm{O}_{3} \mathrm{~S}$	15.13	11.55
5.	CH_{3}	CH_{3}	Cl	181-183	13.60	10.33	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{Cr}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	13.46	10.27
6.	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	Cl	161-162	12.51	9.53	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{CI}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	12.35	9.42

Reforences

1. B. ${ }^{\text {. SVechnikova, A.N. Gaidukovich, E.Ya. Levitin, }}$ A.A. Krarchenko, S.G. Leonova, and E.V. Djnnik, Organic Reactivity, 21, 76(1984).
 251(1961).
2. S. Glaastone, K. Laidler, and H. Byring, The Theory of Rate Processes (Russ.transl.,) "Inostrannaja Literatura", Moscow, 1948.
3. A.M. Grekor and V.A. Veselov, Playsical Chesistry of Eydrasine (in Rusø.) "Makova dumka", Kiev, 1979.
4. E. Zimer, J. Org. Chem., 24, 1140(1959).
5. A.M. Gulkov and V.Ya. Veselov, Zh. org. kh. (in Ruse.), 13, 107(1977).
6. K. Doeffel, Statiatica in Analytical Chemiatry (in Russ.) "Myn, Moscon, 1969.

> PROGRAM PACKAGE POR COMPUTER STORAGE AHD AUTOMATIC SEARCH OP CORRELATION EQUATIONS ARD FOR CALCULATIOM OF RATE AKD BQUILIBRIU COMSTAITS: 1. DIGITAL CODIM SYSTEA OF EQUATIOIS OF CHEICCLI REACPIOIS T.J. Juriado and V.A. Pale Tartu State University, Department of Chomiatry, 202400 Tartu, Estonian S.S.R.

Received Ootober 15, 1984

Abstract

A program package for compact computer atarege and search of the parameter of correlatice equations and for calculation of rate and equilibrim constants of hotarolytio organic reactions on the ground of these parametere has been compiled. The package was reallaed on an BC 10-60 computer. The paraneters of approximately 2000 correlation equations have been inserted into the data arrays of the program. A numerical syetem is proposed for coding of chemical equations, where the latter are presented as certain sequences of model electrophiles and nucleophilen with variable subetituente.

Introduction
The atorage of large data arrays and automatic search of the data from these arrays is an important branch of computer usage. For exact sciences, it means the compilation of (experimental) data banks for computer storage and cration of programe connected with these sets for search and information output of randomly selected pieces of thia information.

For the purposes of organic chematry, the etorage of standard reference data on some parameters (comstants) of
organic compounds has certain practical importance. The rate and equilibrium constants of readions with covalently bonded compounde have an especially important place among auch parameters. Indeed, the values of all needed rate and equilibrium constants of the given processes contain sufficient information about their chemical nature.

Naturally, theoretical calculations as woll as the experimental study may be the sources of information on the value of rate and equilibrium constanta. Certainly, the computed estimation is to be preferred if one has sufficiently general, adequate and efficient (in the sense of the capacity of calculations) theoretical models, which is especially impurtant for organic chomistry. It is easy to show that the number of different types of the coopounds belonging to a certain class of organic substarces tends to infinity. As there is more than one compound participating in any reaction and the reaction conditions (temperature, solyent, catalyst etc.) are also variables, the total number of rate and equilibrium constants for different processes is by no doubt infinity, too. Thus, it is practically impossible te get comprehensive experimental information about the rate and equilibrium constants of all possible reactions.

On the other hand, up to now we lack a sufficiently exact theoretical model enabling computational estimation of all these constanta.

Nevertheless, the calculation of the values of constants for a number of reactions can be performed in the framework of formal approach which is realized in the form of correlation equations (see Ref. 1 for review and Ref. 2 for short summary).

The correlation equations give a possibility to use the known values of rate and equilibrium constants of some basic reactions for the computational estimation of a much larger number of analogical (concerning certain aets of attributes) reactione having no experimental valuea of these sonstanta . Thus, the parmeters of correlation equations for eatimation of the rate and equilibrimm constants of corresponding
reactions can be considered as the arrays of experimental data to be used like any other atandard reference data. It enables dense etorage of the experimental data already available. On the other hand, the number of reactions for which the values of constante can be estimated would be larger by several orders of magnitude. In most cases, the precision of the constant estimation by means of the formal approach is satisfactory for calculation of the sufficiently adequate dets. Thus, it would be reasonable to add the set of the parameters of correlation equations and corresponding caloulation acheme to the bank of experimental data. Such a possibility has been realized in Tables ${ }^{2}$. Obvicuely, the forn of tables for storage and non-computational calculations heavily reetricts both the possibilities of the operative addition of new data to information stored and the facilities for the check of correctness of the oalculations in the framework of correlation equations. The guaranteed correctness is an additional argument in favor of automatic computation uaing the stored values of correlation parameters.

The computer storage of the parameters of correlation equations and the use of them for calculation of rate and equilibrium constants requires one or another solution of the problem of coding of chemical reactions and structures. Por the input, storage and search of the set of the experimental data of rate and equilibrium constanta, the universal language of linear coding of topologically given structures (LINKS) was created ${ }^{3,4}$. The tranaformation of input LINKS code into a corresponding marked graph is the foundation of the information storage on the bases of this language.

However, the use of the LINKS - language for coding of reactions needs some special skill. Furthermore, those reaction codes do not always obviously and immediately reflect the logic of the estimation of reaction series with variable structure as adopted by the formal approach. Thue, it turned out to be expedient to apply another method of nutupercal coding of reactions and structures which was less genezal but easier for practical use and directly connected with the logic of correlation equations. The version described below
usen numerical coding an input language to propare the ore dera for conetant oalculation. Later on it io possible to complement the sybter with corresponding code tablen for tranelation of either LIIISS - codes or any othor language baced on etructure formulare into numerical codes used in our ayntom.

The liste of the reaction series included, the typen of correlation equatione and their paranoters correspond to the data pronented in Tables ${ }^{2}$.

Such a syetem can be supplenonted with further reaction sote and with more sophiationted and general correlation equatione. The program package was conpiled in the Fortral language and realised on an EC 10-60 computer in the oom puting conter of Tartu State Oniveraity. The main principle of its work is based on initialized arraite with the parametern of nearly 2000 correlation equations from Tablee ${ }^{2}$ for the following reaction typer ${ }^{\text {E }}$: $1 /($ dissociation of hydrogen acide), $2 /($ protion tranefor), $3 /$ (nucleophile substitution at non-aromatio conter), 4/ (bimolecular nucleophild io substitution at saturated oenter), 6/ (addition to multiple bonde), $8 /($ hydrolyaie of carborylic estera), $9 /($ reaom tions of carbonyl compounde), 10/(electrophilic subetitution in aromatic ring), $11 /$ (nucleophilic substitution at aromatic oarbon atom), the tables of substituent and solvent constante as well as program onabling the search of more general reaction types as woll as the actual reactions making use of a special numerical code, search of solvente on the baees of coding eyetem used in Tables ${ }^{5}$, search of temperature, determination of the indexes of correlation equations by means of the result of the above mentioned soarch, the computation of rate and equilibrium constants on the virtue of equation index as well as the output (print) of constante calculated and the additional comente, if necessary.

The functioning of the program package is organized in the overlay-mode, the program occupies 210 kilobytes of computer's memorv.
The Indexation of Tables ${ }^{2,5}$ was used

The information srraje of the package can be supplementod with new data without any diflicultien. It is poseible to add new types of correlation equations without changee in the system of the search of reactions.

Digitel Coding System of Bquations of Chosical Ronotiona

1. Genersl Hotes

The program ejetem described below must be foasible for any chonist. Thus, it turned out to be suitable to complle not entirely waiversal but aufficiently mambiguous and simple method for coding of chemical etructures and resotion equations, proceeding actually from the logio of correlation analyois. To our mind, the somewhat limited degree of goner ality is not en essential shortcoming as the majority of cases with real practical meaning are involved. Moreover, the syatem can be extended ading some simple rules which do not bring along any changes in the exdsting segment: of the program. It should be mentioned that the etructures with highly branched substituents do not have apecial meaning in the framework of correlation equations on which the described program syeten is based.
2. General Principles

The method accepted arises from the following general principles:
2.1. The most appropriate code for the users because of the simplicity of the program is a nuerical code.
2.2. Any reaction equation of the types mentioned above could be represented as follows:

$$
E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3} \longrightarrow \text { product } E_{1}
$$

where K_{i} ie electropositive leaving group (or electre phile $\mathrm{E}_{1} \Delta{ }^{+}$if the corresponding Y_{i} is absent) and Y_{i} denotes electronegative leaving group (or nucleophile $Y_{1}:^{\Delta 一 ⿻^{-}}$if the corresponding E_{i} is absent); any E_{i} or Y_{i} can be absent in certain cases. Our syetem excludes only the simultaneous absence of both E_{1} and Y_{1} (or if there are two reagente partioipating also the simultaneous absence of both Σ_{2} and I_{2}).

The demand for presenting of reaction equation in these terms is one of the major reasons why our system cannot be used for coding of some special reaction types (e.g. the elimination reactions with increasing unsaturation) and needs some supplementary rules.
2.3. All given chemical reactions of the named types could be represented in these terms using a restricted number of model E_{i} and Y_{i} which, as a rule, include one or more variable substituents, e.g. model $E_{i} X C(=0)-, X_{2} C:^{-}=C X_{1}-$, $E X_{1} X_{2} X_{3}-, N X_{3} X_{4} C X_{1} X_{2}$ etc., and model $Y_{i} X C \equiv C-, X_{2} N=N X_{1}=$, ${ }^{+} X_{1} X_{2} X_{3}-, C^{-\frac{1}{X}}{ }_{3} X_{4}\left(X_{1} X_{2}\right.$-etc., where X_{i} is a variable substituent. Some model E_{i} and Y_{i} include a bivalent variable substituent, e.g. $E_{i} \bar{X}=C_{\text {arom. }}$ and Y_{1} ($\mathrm{X} \mathrm{N}_{\mathrm{N}}^{\mathrm{ar}}$ - $\mathrm{m}_{\text {. }}$ etc. A two-digit numerical code corresponds to any such structural unit. Our system includes 47 model E_{i} and 62 model Y_{i}. Their list could be complemented with addisional units. The model E_{i} and $Y_{i}\left(E_{i} \Delta^{+}\right.$and $\left.Y_{i}:^{\Delta-}\right)$ as well as their numerical codes are given in Tables 1 and 2.
2.4. Variable substituents connected with model E_{i} and Y_{i} could be represented as compiled from model bridges (fragments) and secondary substituents. Another limitation is included in order to further aimplify the coding system, which, however, cannot be essential by the correlation approach, where, masinly, the simple substituents are included: the secondary aubstitution is allowed at the terminal bridge, only.

Examples:

- substituent

Cl is formed from bricges phenyl - methylene- methyleno pheny: and of secondary substituents $2-\mathrm{NO}_{2}, 4-\mathrm{Cl}$ and $5-\mathrm{CH}_{3}$; bridge is described.

Trivalent model bridges (the fragments, as a rule) correspond to the bivales variable substituenta connected with $\operatorname{model} E_{i}$ and Y_{i} (see 2.3...

A tnree-digit numerical cule is associated with every typical bridge or secondary substituent.Model bridges and see-
ondary substituents as well as their digital codes are given in Tables 3 and 4.
2.5. Practically all reactions of the mentioned types (ercept the reactions with extremely complicated substituents) could be coded by means of the codes of model nucleophiles and electrophiles and the included variable aubstituents atrictly.
3. General Form of Reaction Code (GFRC)

The GFRC consist of one eight-figure and one fourmdigit constant. The former includes the codes of $\mathrm{B}_{1}, \ldots, \mathrm{Y}_{1}, \mathrm{~F}_{2}$ and Y_{2} and the latter the codes of E_{3} and $Y_{3} .00$ muat be written instead of a miseing otructure unit.

Examples:

- reaction $\underbrace{\mathrm{CX}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{H}}_{Y_{1}} \mathrm{~B}_{1} \mathrm{Y}_{2}\left(\mathrm{OH}^{-} \rightarrow \mathrm{CX}_{1} \mathrm{X}_{2} \mathrm{X}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}\right.$

Codes: $\mathrm{E}_{1}(\mathrm{H}-)=1, Y_{1}\left(\mathrm{CX}_{1} \bar{X}_{2} X_{3}-\right)=2$ and $Y_{2}\left(X_{8}{ }^{-}\right)=25$
GFRC 10200250
GFRC can also be written uaing the inverse sequence of reagente, i.e. 2501020_{8}

- reaction $\underbrace{\mathbf{X}_{1} \mathrm{COOX}_{2}}+\underbrace{\mathrm{H}_{2} \mathrm{O}}_{\mathrm{HOH}}+\mathrm{H}^{+} \rightarrow \mathrm{X}_{1} \mathrm{COOH}+\mathrm{X}_{2} \mathrm{OH}+\mathrm{H}^{+}$

$$
\begin{array}{llll}
E_{1} & Y_{1} & E_{1} Y_{2} & E_{3}
\end{array}
$$

Codes: $\mathrm{E}_{1}(\mathrm{XCO})=8, \mathrm{Y}_{1}\left(\mathrm{XO}:^{-}\right)=Y_{2}=25, \mathrm{E}_{2}(\mathrm{H}-)=\mathrm{E}_{3}=1$
GFRC 8250125100
or 1250825100
Note:
In the framework of the reaction types under discussion, the third reagent is always a catalyet whose code is to be written the last. If in a catalytic reaction only one compound is participating besides the catalyat, the code of the catalyst can be written either at the firat or at the second position. Nevertheless, it is recomended, is all cases, to follow the system of Tables ${ }^{2,5}$, i.e. the firgt vergion of our examplea, to make the functioning of the program more effective.

GFRC 172539260 or 392617250

- reaction $X_{1} X_{2} C=\mathrm{CX}_{3} X_{4}+\mathrm{Br}_{2}-\mathrm{X}_{1} X_{2} \mathrm{CBrCBr}_{3} \mathbb{X}_{4}$

Y_{1}	E_{2}	Y_{2}
3	21	42

GFRC $32142 \quad 0$ or 214200030
4. Codes of Variable Substituents Belonging to Model Tucleophiles and Electrophiles (CVS)

The CVS have been put into the identification arrays etrictly in order of the increase of the indexes of electrophiles and nucleophiles, i.e. the substituents of the electrophile F_{1} are listed Pirst, then those of nucleophile I_{1},otc. Within the range of one structure unit (i.e. electrophile or nucleophile), the arrangement of the CVS is determined by the syatem of indexation of variable substituents in electrophiles and nucleophiles (if substituents are not in equivalent positions). In case the substituents are in equivalent ponitions, the progran guarantees the reliability of operation by any arrangement of CVS. However, in the described vereion, a certain arrangement is used for the latter codes, too.

There are no codes for reactions with certain substituents in the identification arrays but the coies of reaction series which correspond to correlation equations, i.e. as a rule, in a single (as well as in two or three) substituent, there is variable secondery substituent (VSS). In the identification arrays for substituents in equivalent positions, the substituents with VSS are alwaye at the inal place, the other CVS are entered in the oxder of growth of the aubstituente complexity.

Every CVS containg from 3 to ten integers. The subatituente which could be coded using more than ten numbers, are
excluded from our sygten. The oode includes the indexes of bridges (IB) (Table 3), the olosing eymbol of IB (-1), the total number of secondary nubstituente (IS) and the inderes of secondary subetituents (IS) (Table 4) or the indexen of eecondary substituente. With the indioation of the poaition of aubetituent: (if the lat bridge hae more than one eoceptable position of aubatitution), including the VSS oode without indication of the position of eccondary eubetitution (always takes the final poaition of IS). The VSS ia ooded as followe
-1 - VSS in the phenyl (aromatic) Ming.
-2 - saturated alkl.
-3 - functional groups ae woll as vingl and other unsaturated groups, phenyl etc.,
-4 - VSS of the $\mathrm{CX}_{1}(1=1, n)^{H_{3-n}}$ type (methyl derivativea), where X is a functional group etc.,
-5 - VSS of mixed" type (combined data proceseing for the substituent types -2 and -4).

5. Representation of the CVS in Ueer' Order for Progran

This representation has an eseentisl meaning for a program uecr. The data is used for the reaction identification as well as for the search of the corresponding correlation equation and the computing on the basie of this equation of needed rate and equilibrium constants.

The GFRC representation is identical to the code of iden tification arraye given in clauce 3.

The representation of CVS hat ome differences if compared
with the system given in aubiviaion 4 becauee there are the codea of reaotion eriea in the identification array while the codes of the actual reactions with definite vubotituente are represented in user's ordern.

The CVS of the ueer's onder containg the indezes of bridges (IB) and the closing ejabol (-1) of IB followed by the inderes of secondary aubetituents with/without the indication of the mbatitution poaitions and the cloaing syabol of the codes of secondary mbetitution (-1).
5.1. The Regulations for Using of Bridge Indexes.

The bxidges could be devided into the following groups (the inderes of Table 3 are indicated in brackets):
a) nothrlene and ethrlene bridges (1-2).
b) the cycles with more than one acceptable poaition of secondary substitution /CXPS/ (3-40),
c) the cycles with one aingle position of aecondary substitution, only /COPS/ (41-100),
d) other bridges /OB/ (101-150).

The methylene bridge can be used without any restrictions.
The ethylene bridge can be used only in case the pinal fragment of a substituent is written as $-C X_{1} X_{2} C X_{3} X_{4}$ but the $-\mathrm{CX}_{1} \mathrm{X}_{2}$ - bridge is misming in the bridge codes list. The application of the ethylene bridge is unacceptable in any case when connected with odering of alkyl substituents.

The CKPS could have some positions of secondary substitution but only as being the terminal bridge. Acceptable po-日itions are indicated in Table 3. If the GMPS code is used for the bridges in another position, one should see the second column of Table 3, which indicates the whole set of fragments really represented in identification arraye. The correaponding CMPS cannot be used as an intermediate bridge in case the necessary fragment in missing in the colum.

The positions accepted for COPS are presented in Table 3. Some COPS cannot be used as the terminal bridge (see bridges 57-60, 81, 85).

There are also $O B$ that cannot function as terminal or penultimate bridge. The aame appliea to those belonging to secondary substituenta. The latter should be used as the
terainal bridge only if the oorrenponding oonpilated secondary substituent is missing in Table 4. If ther are sone ioubts, the order must be given for both variante to grarantee the positive output.
5.2. The Regulations for Ueing the Order of Secoadary Substituents.
A. mentioned above, the secondary eubetitution is allow ed by the terminal bridge, exclueively. When ordering the alkyl substituents presented in Table 4 one should not be taken as consisting of bridges and secondary aubetituente. B.g. neopenjl mast be ordered an substituent 14 but not ae bridge $1+$ substituent 13. The same, although less strictly, is valid for componente containing bridges (e.g. $76-86$, 96-103 etc.).

For the secondary substituents in GMPS, the peeition of substitution must always be indicated es

$$
i_{\text {total }}=1000 \times i_{\text {position }}+i_{\text {subatituont }}
$$

where $i_{\text {total }} i_{\text {poaition }}$ and $i_{\text {aubstituent ase the total }}$ index, the position index and the index of the substituent, respectively.

In the COPS, the secondary substituente can be ordered with/without indicating the poaitions. In the firet case, the acceptable position is automatically regarded to be ordered, in another variant the correctness of the position is checked up. In case of divergence from the acceptable poaition a corresponding message should be printed.
5.3. The Examples of Writing the Codes of Substituents (comma has been put between separate digital codes).

The codes of some substituents should be written as follows:

	IB	IS
-H	-1,	$1,-1$
$-\mathrm{CH}_{3}$	-1,	$2,-1$
$-\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}$	$18,-1$	
$-\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	-1,	$3,4,4,-1$

5.4. The Examples of Writing Reaction Codes Including Substituent

Reaction code 46410000 O
Substituent coder (in B_{p}): $\begin{array}{llll} & \mathrm{X}_{1} & 3,-1,4105,-1 \\ X_{2} & 22,-1,1,-1\end{array}$

Reaction code 44200120
Substituent codes (in K_{1}): $\mathrm{X}_{1} \quad-1,1,-1$

$$
\begin{aligned}
& x_{2} \quad-1,1,-1 \\
& x_{3}-1,51,-1 \\
& \text { (in } Y_{2} \text {): } \begin{array}{cccc}
X_{1} & 3, & -1,2054,4054,6054,-1 \\
x_{2} & -1,1,-1 \\
x_{3} & -1,145,-1
\end{array} \\
& \text { (or 3, -1, 1, -1) }
\end{aligned}
$$

Or reaction code 1204420 , further $/ Y_{1} /=/ Y_{2} /$ and $/ B_{2} /=$ = / $\mathrm{B}_{\mathrm{q}} /$.
$\underbrace{-\mathrm{COCl}}_{\mathrm{I}_{1}}+\underbrace{\mathrm{Y}_{1}}_{\text {or }} \underbrace{\underbrace{O}_{\mathrm{Y}_{2}-\mathrm{S}_{2}}}_{\mathrm{Y}_{2}}+\underbrace{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COM}\left(\mathrm{CH}_{3}\right)_{2}}_{\mathrm{Y}_{3}}$
Reaction code 84101160037 /or 1160841 0037/ or $84100110037 /$ or 110841 0037/
Substituent codes ($\ln \mathrm{g}_{1}$): $\mathrm{I}_{1}-1,145,-1$ (or 3,-1,1,-1)
(in Y_{2}): $X_{1} \quad-1,1,-1$
I_{2} 3, -1, 3054, -1
$\left(\ln \mathrm{X}_{3}\right): \mathrm{X}_{1} \quad-1,3,-1$
$x_{2}-1,2,-1$
-

$$
\left(H_{2}=-H\right)
$$

Reaction code 10904423500 (or 44201093509)

Substituent codes ($\ln y_{1}$): $X_{1} 6,-1,3054,5054,-1$

$$
\begin{array}{lllll}
\left(\ln E_{2}\right): & x_{1} & -1, & 1, & -1 \\
& x_{2} & -1, & 2, & -1 \\
& x_{3} & -1, & 2, & -1 \\
& \text { in } \left.E_{3}\right): & x_{1} & -1, & 54, \\
& x_{2} & -1, & 54, & -1 \\
& x_{3} & -1, & 54, & -1 \\
& x_{4} & -1, & 54, & -1
\end{array}
$$

Table 1
Model Hectrophiles is $\Delta+$, Corresponding Leaving Groups E- and Their Digital Codes

Table 1 continued

Typical Nucleophiles Y: Δ^{-}and Correeponding
Leaving Groups Y- and Their Digital Codea

5) X - Pragment of aromatic ring
Code Y Y $\quad Y: \Delta-$
18. $\mathrm{C}^{-}=\mathrm{H}^{+}$
19. $0=\mathrm{H}$
$0=N:^{-}$
20. $\mathrm{O}_{2}^{\mathrm{N}}-$
$\mathrm{O}_{2} \mathrm{IN:}^{-}$
21. $\mathrm{N}_{3}-$
N_{3}^{-}
22
. $\mathrm{x}^{\mathrm{N}}{ }^{+}$arom.
X Niem。
(3)
23.

5)
24. $0^{+} X_{1} X_{2}-$
$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{O}_{8}$
25. OX -

10:
see also nucleophiles 26-36 and 56
26. x^{680}
27. $\mathrm{xt}^{8} \mathrm{O}-$
28. $\mathrm{NX}_{1} \mathrm{X}_{2} \mathrm{O}=$
29. $\mathrm{O}_{2} \mathrm{NO}-$
30. ONXO^{+}-
31. $\mathrm{x}_{1} \mathrm{x}_{2}{ }^{\text {畐 }}$ -
32. $\times P(\mathrm{OH}) \mathrm{O}$ -
33. $\mathrm{XP}^{\mathrm{P}}\left(0^{-}\right) 0=$
34. xAs $(\mathrm{OH}) 0^{-}$
35. XAR $\left(0^{-}\right) 0$ -
36. $\mathrm{BX}(\mathrm{OH}) \mathrm{O}^{-=}$
37. $\mathrm{NX}_{2} \mathrm{X}_{3}-\mathrm{C}\left(\mathrm{X}_{1}\right)=\mathrm{O}^{+}-$
38. $\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{C}=\stackrel{+}{0}$ -
39. $X_{1} X_{2} S=0^{+}-$

Table 3
Codes of Bridge Pragments
Code

Table 3 continued
12

Table 3 continued
(2)

Table 3 continued
(1)

82

$1 \quad 6 \quad 5$

OB

101 -GHMe
$102-\mathrm{CH}\left(\mathrm{CP}_{3}\right)=$
103 - Cle_{2} -
104
$-\mathrm{C}(\mathrm{OH})\left(\mathrm{CF}_{3}\right)-$
111 H
112
${ }^{\mathrm{H}} \backslash_{\mathrm{C}}=\mathrm{C}_{\mathrm{H}}^{\prime}$

113

114

217

118

119 - C ㅍ -
$120-\mathrm{C}=\mathrm{NSO}_{2} \mathrm{Ph}$

Not accepted as the terminal or penultimate bridge before the methylene fragment (respec. tively, the nethylene and ethylene should be used)

Codes of Secondary Subetituente

Sable 4 oentinued

Table 4 continued

References

1. V.A. Paln, Poundations of Quantitative Theory of Organic Reactions, "Khimia", Leningrad, 1977 (in Russ.).
2. Tables of Rate and Equilibrium Constanta of Heterolytic Organic Reactions. Vol.5(II), VINIqI, Moscow, 1979.
3. J.X. Kiho, Reakts.aposobn.organ.boedin., I, 94(1970).
4. J.K. Kiho, 1bid., I, 547(1970)
5. Tablea of Rate and Equilibrium Constants of Heterolytic Organic Ręactions. Vol.1-5(I), VINITI, Mosccw, 1975-1978

REACTIVITY OF AROMATIC AND HETEROLYTIC HYDRAZINE DERIVATIVES
 III. REACTION KINETICS OF ACYLATION OP 9-HYDRAZINOAKRIDINE DERIVATIVES WITH BENZOYL CHLORIDE IN CHLOROFORM
 A.N. Gaidukerich, E.N. Svechnikova, G.P. Eazakov, V.V. Pinchuk, and E.Ya. Levitin
 Kharkov State Pharmaceutical Institute, Kharkov, the Ukrainian S.S.R.

Received Oct ober 19, 1984

The reaction kinetice of acylation of 9-hydraainoakridine derivatives with benaoyl chloride in chloroform has been studied in the temperature range $25-55^{\circ} \mathrm{C}$. The activation parameters were calculated. Correlation of the rate constanta logarithme, activation energies and enthalpies with substituent constants has been carried out. It has been eatablished that the reaction series under discussion belonge to the enthalpy-control type isokinetic reactions.

In the course of our research with the aim of establishing relationship between the structure, reactivity and biological activity of hydrazine derivatives, was studied the acylation reaction kinetice of 9-hydrazinoakridine derivatives (Table 1) with benzoylchloride in chloroform in the temperature range $25^{\circ}-55^{\circ}$. The reaction proceeded according to the following equation:

Changes in the concentration of bensoylchloride in time were determined by argentometric potentiometric titration? The choice of benzoyl chloride as the acjlating reagent was caused by its high reactivity as well as by the absence of the autocatalytic effect in the reactions with aryl- and aroylhydrasines. ${ }^{8}$

The reaction of acylating 9-hydrazinoakridines with bensojl chloride is irreversible and is described by the second order kinetic equation which is confirmed by the stability of rate constants (fable 2) calculated according to equation :
$k=\frac{1}{2 B \tau}\left(\frac{1}{a-x}-\frac{1}{a}\right)$
where $k=$ the rate constant ($1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{sec}^{-1}$);
a - the initial concentration of benzoyl chlaride (M);
x - the concentration of benzoyl chloride (M) at the moment of time t (sec);
B - the correction which takes into account the change in the concentration of reagents when chloroform extends thermally from 293K up to the temperature of the experiment.
The reaction obeys the Arrhenius equation, thus, for 2-methyl-6-chlorine-9-hydrazinoakridine can be observed the Pollowing relationship:
Compound
No $\quad \mathrm{R}$

$$
\begin{gathered}
\log k=(3.47 \pm 0.07)-(33.1 \pm 0.9) 10^{2} \frac{1}{T} \\
(r=0.991 \quad B=0.021)
\end{gathered}
$$

It is possible to calculate the activation energy B (kcal/mol) and the pre-exponential factor a according to the Arrhenius equation and the thermodynamic parameters of activation enthalpy $\Delta H^{\prime \prime}\left(\right.$ rcal/mol), enthropy $\Delta S^{\prime}\left(e u_{0}\right)$, and free activation energy $\Delta G^{(j)}$ kcal/mol) according to $\mathrm{By}^{(}$ ring ${ }^{10}$ (Table 3).

The values for acylation rate constants depend on the nature and position of aubstituents in the molecule of arylhydrazide. The introduction of electron-withdrawing substituents to the latter leads to a decrease in the reactivity of hydrazide group as well as in the reaction sensitivity on the nature of substituont effect, which hes been observed earlier with carbozillc acid hydrazides. ${ }^{1,3}$ Blectron-donor substitum ent causes a contrary effect. The introduction of substituents leads to certain changes in the reaction paramoters of energy: electron - withdrawing substituents increase onergy $\left(B_{A}\right)$, onthalpy $\left(\Delta H^{\neq}\right)$and free activation energy (ΔG^{\neq}), but decrease the activation entropy (ΔS^{\dagger}) values. Blectron -releasing substituents have an opposite effect. Great negative values of activation enthropy indicate a highly organized structure of the transition state, as compared to arylhydrazides ${ }^{1}$.

Quantitative estimation of substituent offect on the reactivity of arylhydrazides was given according to the Hamett equation. The logarithms of the reaction rate constants, enorgy (B_{Λ}) and activation onthalpy ($\Delta \mathrm{H}^{\boldsymbol{f}}$) correlate with the quinoline substituent constants 6^{5}. Reaction constant values in eq.e. l-4 (Table 4) refor to the low susceptibility of the reaction series studied to the changes in the structure of 9-hydrazinoakridine molecule. It is noteworthy that the higher the temperature, the lower the ρ values, 1.0. , the reaction becomes less sensitive to the subatituent offect .

The existence of the isokinetic relationship in the reaction series under discussion is confirmed by the following

Table 2
Kinetic Parameters of Reactions

Compound No	$\underset{\mathrm{kOsl} / \mathrm{mol}}{\triangle \mathrm{H}^{f}}$	$-\Delta s_{s^{p}}$	$\begin{gathered} \Delta G \\ \mathrm{kcal} / \mathrm{mol} \\ (23 \mathrm{~K}) \end{gathered}$	$\begin{gathered} E_{A} \\ \operatorname{konl} / \mathrm{mol} \end{gathered}$	10 A
I	3.90 ± 0.08	48.0 ± 2.7	17.8	4.27 ± 0.16	5.96 ± 0.19
II	.6.76 ± 0.11	42.4 ± 3.6	19.4	6.86\#0.31	8.34 ± 0.51
III	6.36 ± 0.09	43.4 ± 1.9	19.3	6.57 ± 0.18	8.00 ± 0.17
IV	6.26 ± 0.12	43.8 ± 2.1	19.3	6.48 ± 0.07	7.82 ± 0.11
v	6.17 ± 0.17	43.8 ± 2.2	19.2	6.38 ± 0.15	7.85 ± 0.24
VI	4.75 ± 0.14	47.0 ± 0.5	18.8	5.06 ± 0.12	6.38 ± 0.20
VII	7.28 ± 0.24	42.0 ± 2.5	19.8	7.42 ± 0.17	8.79 ± 0.09

Teble 4
Correlation Paremetery of Reaotion of Acylation 9 - Hydrasinoakridine with Benzoyl Chloride

Correlation equations	r	S	equation number
$\log k^{298}=(-1.411 \pm 0.008)+(-1.278 \pm 0.017) \sigma$	0.994	0.071	1
$\log \mathrm{k}^{308}=(-1.258 \pm 0.013)+(-1.123 \pm 0.077) \sigma$	0.963	0.028	2
$\log k^{318}=(-1.094 \pm 0.020)+(-1.009 \pm 0.024) \sigma$	0.990	0.016	3
$\log k^{328}=(-0.960 \pm 0.013)+(-0.987 \pm 0.019) \sigma$	0.995	0.010	4
$E_{A}=(6.78 \pm 0.09)+(4.40 \pm 0.03) \sigma$	0.990	0.015	5
$\Delta H^{*}=(6.61 \pm 0.06)+(4.75 \pm 0.04) \sigma$	0.991	0.013	6

data:

1. Extrapolated Arrhenius graphs intersect at $T=480 \pm 5^{\circ} \mathrm{K}$.
2. According to the equation of temperature dependence of reaction constants $\rho 6,7$:

$$
\begin{gathered}
\rho=(2.01 \pm 0.08)+(-973 \pm 26) \frac{1}{T} \\
r=0.992 \quad 8=0.04
\end{gathered}
$$

ρ values equal zero at $484^{\circ} \mathrm{K}$.
3. Enthalpy (ΔH^{f}) and enthropy $\left(\Delta S^{\dagger}\right)$ of the studied reaction series are linearly interrelated 6,7 with slope $480^{\circ} \mathrm{K}$:

$$
\begin{aligned}
\Delta H^{f}= & (27.0 \pm 0.4) 10^{3}+(480 \pm 9) \Delta S^{\ddagger} \\
r=0.986 \quad & =0.012
\end{aligned}
$$

4. $\Delta \mathrm{H}^{\text {values are linear functions of rate constant }}$ logarithms ${ }^{8}$:

$$
\begin{gathered}
\Delta H^{\neq}=(5.89 \pm 0.9)-(0.285 \pm 0.011) \log k^{298} \\
r=0.980 \quad \mathbf{s}=0.060
\end{gathered}
$$

5. The logarithms of reaction constants 9 at different temperatures correlate well:

$$
\begin{aligned}
& \log k^{298}-(-14.6 \pm 0.4)+(-15.0 \pm 0.7) \log k^{328} \\
& r=0.990 \quad 8=0.02
\end{aligned}
$$

The abovementioned criteria evidence about the existence of isokinetic relationship between the studied series and $T_{\text {isoline. }}=480^{\circ} \mathrm{K}$, which exceeds the temperature range of the experiment. Thus, the reactions of acylating arylhydrasines are characterised by the enthalpic control of rate constant changes at the variation of aubstituents.

Experimental

Heagente. The purification and drying of chloroform and benzoyl chloride were described earlier. ${ }^{1}$

9-hydresinoakridines were obtained according to known method ${ }^{10,11}$ and were purified by multiple recrystallisation.

Their purification level was checked chromatografhically, by element analyaia determining melting points (Table 1). Kinetic studies were carried out according to methods. The concentration of benzoyl chloride was determined by potentiometric titration with a 0.02 M solution of sodium nitrate with platinum ETPI-0.1 M and chlorosilver EVL-IMI electrodes. The kinetics of acylation reactions was measured at 298,308 , $318,328 \mathrm{~K}$. Each experiment was repeated three times and it in cluded 6-8 measurements. The preciaion of the obtained values was assessed by the method of mathematical statistics (the confidence level being 0.95$)^{12}$. The thermodynamic activation parameterg were calculated according to the well-known least-squares method ${ }^{4}$.

References

1. E.N. Svechnikova, A.N. Gaidukevich, E.Ya. Levitin, A.A. Kparchenko, S.G. Leonova, and E.V. Dynnik, Organic Reactivity, 2l, 76 (1984).
2. A.P. Grekov and V.Ya. Veselov, Zh. organ. khimil, B, 297(1972).
3. A.P. Grekov, and V.Ya. Veselov, Physical Chemistry of Hydrazine (in Rusa.), Naumkova dumka, Kiev, 1979.
4. S. Glasstone, K. Laidner, and H. Eyring, The Theory of Rate Processes (Russ.transl.), "Inostrannaya Literatura", Moscow, 1948.
5. Handbook of Chemistry (in Russ.), vol.3, "Khimiya", Moscow, 1964.
6. J.E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions, Wiley, New York-London, 1963.
7. V.A. Palm, Foundations of Quantitative Theory of Organic Reactions.(in Russ.), "Khimiya", Leningrad, 1977.
8. C.D. Ritchie and W.J. Sayer in book "Contemporary Problems of Physical Organic Chemistry" (in Russ.), "Mir", Mogcow, I967.
9. O. Bener, Collsction Czeohoslovat Chem.Commun. 29. 1094 (1964).
10. A.B. Albert, The Akridinee, E. Arnold, London, 1966.
11. A.A. Martynoveky, A.A. Shtojko, I.A. Mazur, V.V. Dunaer, V.R. Steta, and O.H. Lushchinakaya, Farm. zh., 4,40 (1984).
12. E. Doarfel, Statietica in Analytical Chemietry (in Rugn.), MCir", Moscow, 1969.

KINEIICS OF NUCLEOPHILIC ADDIFIOM OF PIPRRIDETE AID

G. Gavenas, G. Dienje, and O. Adomenione

Vilnius State University, Cheaistry Department Finterprise for Science and Production "Fermentas", Vilnius, Lithuanian s.S.R.

Received Octoleer 25, 1984
The rate constants of nucleophilic addition of piperidine and glycine (in the farn of glycinate anion) to 24 H-substituted and H, H-dieubstituted acrylamides in water at 25° were determined. It was denonstrated, that modified Taft equation including inductive ($\sigma^{\text {n }}$) and steric (g_{y}) constants describes satisfactorily separate reaction series of n-substituted and H, I-disubstituted acrylamides. Iquation including inductive $\left(\sigma^{5}\right)$, steric (I_{n}^{0}) and hyperconjugative ($n_{\text {He }}$) parameters describes satisfactorily rate constants of both M-substituted and H,M-disubetituted acrylanides.

Kinetics of the nucleophilic adition of aliphatic andnes to activated ethylenic bond is studied well enough. ManJ papers deal with addition of anines ${ }^{1-4}$ and amino acids ${ }^{5-9}$ to acrylonitrile. The reaction series of addition of amines to acrylonitrile ${ }^{4}$, acrylanide ${ }^{10}$, p-mothoxyphenylvinjlketone ${ }^{4}$ p-tolylvinyleulphone ${ }^{11}$ were studied. It was demonstrated that the reactivity of aliphatic anines in these series can be correlated by the two parameter equation including inductive and steric parameters.

The influence of activating group on the reactivity of conjugated ethylenic bond is considerably less studied 7,12 . It seems that the correlation analjais of such rate constants have not been undertaken jet.Introduction of substituents at nitrogen atom of acrylamde opens wide poasibili. ties for variation of activating group.

We have synthesized 24 such compounds (Table 1) and studied the kinetics of their interaction with piperidine and glycinate:

II

$$
\begin{equation*}
\underset{\text { IV }}{\stackrel{-00 C \mathrm{CH}_{2} \mathrm{NH}_{2}}{ }+\mathrm{II} \longrightarrow \mathrm{OOCCH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CONR}_{1} \mathrm{~K}_{2}} \tag{2}
\end{equation*}
$$

Experimental

Materials. N-Substituted and N,N-disubstituted acrylamides were synthesized from acryloyl chloride and corresponding amines according to ${ }^{13}$. Structures of compounds obtained were confirmed by $N M$ spectra. Sec-butyl amine was synthesized from sec-butyl bromide ${ }^{14}$. Azetidine was synthesized by reduction of cyclic p-tolylsulphamide, obtained from l,3-dibrompropane, with sodium in isoamyl alcohol ${ }^{15}$. N-methylpiperazine was obtained by cyclization of diethanolamine and methylamine hydrochloride ${ }^{16}$.

Kinetic measurements. Kinetics of reactions $(1,2)$ was studied in water at $25 \pm 0.1^{\circ}$ in thermostated cell of SF-16 spectrophotometer, at 255 nm for N -substituted- and 260 nm for $\mathrm{N}, \mathrm{N}-\mathrm{disubstituted}$ acrylamides. Kinetics of reactions (2) was studied in alcaline solutions at several pH and rate constants were calculated for anion $00 \mathrm{CHH}_{2} \mathrm{NH}_{2}$ according to method ${ }^{5}$. All reactions were run with 15 to $15000-\mathrm{Pold}$ excess of nucleophile and rate constants were calculated by the equation of pseudo-first order kinetics ${ }^{4} .6$ to 12 kinetic experiments with different concentrations of reagents were run for each reaction. Rate constant was found as a mean of values obtained in all these experiments.Rate constants were calculated at a TI-58 programmed calculator, correlation calculations were performed, using an ES 1033 computer with standard program of multi.ple linear regression.
Results and discussion

Fate constants of reactions $(1,2)$ are given in Table 1.

Table 1
Rate Constants (l.mol ${ }^{-1} \cdot \mathrm{sec}^{-1}$) of the Addition of Piperidine and Glycinate to N -substituted and N, N-disubstituted Acrylamides $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CONR}_{1} \mathrm{R}_{2}$ in Water at 25°

Table 1 (continued)

1	2	3	4	5	6	7	8
17	$-\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}$	4.77 ± 0.40	12.60 ± 0.53	-0.26	$2.04{ }^{\text {c }}$	2.44	4.8
18	$-\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{CH}_{\left(\mathrm{CH}_{3}\right)}^{2}\right]_{2}$	6.84 ± 0.20	11.06 ± 0.56	-0.25	$2.47{ }^{\text {d) }}$	2.87	4.8
19	\cdots - ${ }^{\text {a }}$	19.20 ± 0.9	76.20 ± 0.7	-0.24	0.06	0.46	4.8
20	- ${ }^{-}$	12.66 ± 0.85	26.11 ± 1.38	-0.26	0.51	0.91	4.8
21		7.35 ± 0.37	14.40 ± 0.37	-0.18	0.79	1.19	4.8
22		9.68 ± 0.60	20.25 ± 1.87	$-0.20{ }^{\text {b }}$	1.10	1.50	4.8
23	$-\mathrm{N}^{2} \mathrm{O}$	44.80 ± 3.0	41.10 ± 2.4	0.67	0.79 ${ }^{\text {P) }}$	1.19	4.8
24	$-\mathrm{N}^{\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{2}}$	131.0 ± 10.0	512.0 ± 37.0	1.60	2.118)	2.51	4.8
25	$-\mathrm{N} \mathrm{CN}^{2}-\mathrm{CH}_{3}$	24.40 ± 0.6	85.20 ± 8.4	-	-	-	-

a) - atandard deviatione of 6 - 12 parallel experimente are given
b) - Irom 4
c) irom 20
d) - from 21
e) - irom 22
P) - assumed that E_{N} of morpholine is equal to E_{N} of piperidine
g) - asoumed that E_{N} of $N, N-d i c y a n e t h y l a c r y l a m i d e ~ i s ~ e q u a l ~ t o ~ E_{N}$ of $N, N-d i p r o p y l a c r y l a m i d e$

By means of addition of piperidine and glycine to l-methylacrylamide and N, N-dimethylacrylamide it was possible to show that reactions $(1,2)$ are practically irreversible and follow first order kinetics for every reactant.

In the case of addition of glycinate the next stage proceeds according to the following reaction (2):

We did not take into consideration the contribution of the process (3) when calculating rate constants of reactions (2) like in 4,10 , since we used manyfold excess of nucleophile reagent. It may be expected that rate constante of reactions (3) are somewhat greater than those of reactions (2) ${ }^{4}$, but there are also opposite results ${ }^{5}$.

Somewhat unexpected conclusion follows from the rate constant values, presented in Table l: the introduction of one alkyl substituent into amino group of acrylamide decreases the rate of addition approximately tenfolds, but introduc tion of two alkyl substituents results in only 2 to 5-fold decrease.

Contradictory information is given in literature on the sequence of reactivity of substituted and unsubstituted acrylamides: for addition of alcoholates: $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CONHR}<\mathrm{CH}_{2}=$ $=\mathrm{CH}-\mathrm{CONH}_{2}<\mathrm{CH}_{2}=\mathrm{CH}_{-\mathrm{CONR}}^{2}{ }^{17}$, for addition of ethanolamine: $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}<\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COHHCH}\left(\mathrm{CH}_{3}\right)_{2}<\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CONH}_{2}{ }^{18}$.

In order to evaluate quantitatively the simultaneous influence of inductive and steric effects of substituents in substituted acrylamides II we performed correlation of rate constants presented in Table 1 according to the modified raft equation, with isosteric constants R_{N} or $g_{N}^{0} 4,10$:

$$
\begin{equation*}
\log k=\log x_{0}+\varrho \sum \sigma^{x}+\delta_{g_{\mathbb{N}}} \tag{4}
\end{equation*}
$$

Correlation was poor when all available rate constants were used (table 2, series 1,9). When separate reaction series of N-substituted and H, N-disubstituted acrylamịdes were considered satisfactory correlations were obtained after exclu-

Results of Correlation of Reactivity of N-substituted and N,N-disubstituted Acrylamides by Equation (4)

No of series	Nucleophile		Rate constants	$-\log k_{0}$	ρ	δ	R	s
1	Piperidine	24	$1-24^{\text {x }}$	2.202	0.414	0.021	0.496	0.149
2	n	12	1-12	2.604	0.859	0.206	0.866	0.033
3	"	11	1-12 No 7 excluded	2.639	0.924	0.264	0.922	0.022
4	"	10	2-12 No 7 excluded	2.538	0.814	0.337	0.951	0.015
5	117	9	2-12 No 4 and 7 excluded	2.561	0.778	0.270	0.952	0.009
6	"	13	1-and 13-24	1.756	0.634	0.148	0.948	0.021
7	"	12	$13-24$	1.672	0.723	0.185	0.979	0.009
8	"	11	13-24 No 21 excluded	1.635	0.711	0.197	0.987	0.006
9	Glycinate	24	$1-24$	3.983	0.463	-0.016	0.479	0.185
10	"	12	1-12	4.503	0.996	0.074	0.854	0.039
11	"	11	1-12 No 7 excluded	4.549	1.083	0.151	0.945	0.016
12	"	10	1-12 No 2 and 7 excluded	4.419	1.018	0.255	0.989	0.003
13	"	13	1 and 13-24	3.353	0.641	0.117	0.829	0.080
14	"	12	1 and 13-24 No 19 excluded	3.701	0.722	0.042	0.895	0.050
15	"	11	13-24 No 19 excluded	3.568	0.827	0.101	0.944	0.030
16	"	10	13-24 No 19 and 23 excluded	3.487	0.895	0.129	0.963	0.020

[^0]Results of Correlation of Reactivity of N-substituted and $N, N=d i s u b s t i t u t e d$ Acrylamides by Equation (5)

[^1]sion of l-2 most deviating points (table 2, series 4,7,12 and 16). No further improvement was obtained by the exclusion of other relatively more leviating constants. Unsubstituted acrylamide did not fit any of reaction series. Correlation equations obteined using isosteric constants E_{N}°, without any hyperconjugation component, are similar to those of Table 2.

In order to cover unsubstituted, N-substituted and N.Ndisubstituted acrylamides by one correlation equation we used equation (5) including hyperconjugation parameter,like in 23,24 :

$$
\begin{equation*}
\log k=\log k_{a}+a_{1} \sum \sigma^{3}+a_{2} E_{N}^{0}+a_{3} n_{H C} \tag{5}
\end{equation*}
$$

where $n_{H C}=n_{H}+0.4 n_{C}, n_{H}$ and n_{C} are numbers of $C-H$ and $C-C$ bonds, which take place in hyperconjugation.

Correlation was unsatisfactory when all available rate constants were used (table 3, series 1,7). But satisfactory correlation was obtained after exclusion of 4-5 most deviating rate constants (acrylamide, N-methyl-, N-sec-butyl-, N, N-dimethylacrylamides, acryloylazetidine, table 3, series $6,12)$. Thus, we succeed to correlate the rate constants of N -substituted and N, N-disubstituted acrylamides using equation (5).

> References

1. Y. Ocata, M. Okano et al., J.Am. Chem.Soc., 78, 5426 (1956).
2. M.Wronski,J.Bogdanski, Zeczyty Nauk.Univ.Lodz., 14, 153 (1963).
3. G.Dienvs and L.Archipova et al., Reakts. sposobn. orgari. soedin., 2, 345 (1972).
4. G.Dienys, L.J.J. \{unskaite, A.Vaitkevicius, and A. Klimavicius, Orcanic Reactivity,12, 275 (1975).
5. M. Friedman and J.S.Wall, J.Am. Chem.Soc.,86, 3735 (1969).
6. M. Friedman, J.P.Cavins, and J.S.wall, J.Am.Chem.Soz., 87, 3672 (1965).
7. M. Friedian and J.S.Wall, J. Org. Chem., 31, 2988 (1966).
8. Mí. Prídman, J. Am. Chem.Soc., 89, 4703 (2967).
9. M. Friedman and J.A.Romersberger, J.Org. Chem., 33, 154 (1968).
10. M.Danileviciute, G.Dienys, and O. Adomeniene, Organic Reactivity, 16, 434 (1979).
11. S.T.MciDowell and C.J.M.Stirling, J.Chem.Soc.(B), 1967, 343.
12. H.Shenhav, Z.Rappoport, and S.Petai, J.Ghem.Soc.(B), 1970. 469.
13. M.M.Koton, T.A.Sokolove et al., Zh. Obshch. Khim., 2l, 2239 (1977).
14. J.Houben, Methoden der organischen Chemie, Bd. II, T.1, Aufl., Stuttgart, Georg Thieme Verlag, 1940, S. 478.
15. J.M. Yanbikov, Zh.Obshch. Khim., 8, 1545 (1938).
16. K. Mayako, Japan J. Pharm. Chem., 30, 46 (1958). USA Pat. No 3270004, (1966), Ref.2h. Khim., 21 H 36217 (1yo8).
17. R.N.Ring, G.G. Tesoro, and D.R.Moore, J. Org. Chem., 32, 1091 (1972).
18. D.Rozenthal, G.Brandrup et al., J. Org. Chem., 30, 3689 (1965).
19. Hundbook of chemistry (in Russian), vol.3, 1964, p. 954.
20. L.M.Litvinenko, A.F.Popov, and Z.P.Gelbina, Dokl.Akad. Nauk SSSR, 203, 343 (1972).
21. C. Hansch and A.Leo, Substituent Constants for Correlation Anslysis in Chemistry and Biology. "John Wiley \& Sons, Inc." 1979.
22. L. M. Litvinenko, A.F. Popov, and Z. P. Gelbina, Dokl.Akad. Nauk SSSR, 189, 546 (1969).
23. A. Uri, Organic Reactivity, 20, 444 (1983).
24. J.Shorter, Correlation Analysis of Organic Reactivity. "Research Studies Press", 1982, p. 73.

Organic Reactivity

KINETIC STUDY OF ALKALINE HYDROLYSIS OF SUBSTITUTED PHBTYL TOSYLATES.
IIII. RESULTS OF KINETIC MEASUREMENTS IN 80% AQUBOUS DIMETHYLSULPOXIDE
V. Hummert and M. Bek

Laboratory of Chemical Kinetice and Catalysis, Tartu State Univeraity, 202400 Tartu U.S.S.R.

Received October 25,1984
The rate constants of the alkaline hydroliysis of substituted phenyl tosylates $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}-\mathrm{X}$ in $80 \%(\mathrm{~V} / \mathrm{v})(50.3 \mathrm{~K} \%$) aqueous dimethylsulfoxide (DMSC) at 25,50 and $75^{\circ} \mathrm{C}$, whereas $\mathrm{X}=\mathrm{H}, 3-\mathrm{Cl}, 3-\mathrm{NO}_{2}, 4-\mathrm{NO}_{2}$ and at $75^{\circ} \mathrm{C}$ when $\mathrm{X}=4-\mathrm{CH}_{3}$ and $\mathrm{X}=4-\mathrm{F}$ were measured. The rate constarte for 4-fluoro phenyl toaylate in water and phenyl tooylate in 50% (V / V) (34.1 M\%) DMso-water mixture at $75^{\circ} \mathrm{C}$ were determined also.

The investigation of the kinetice of the alkaline hydrolyais of substituted phenyl toaylates in 80% DMSO-water mixture is of interest aince one has some reason to assume that in the case of this reaction series it is posible to study the solvent dependent aubstituent effecte in a wide temperature range.

The rate of the alkaline hydrolysis of aubstituted phenyl benzoates in water is considerably higher than that in the case of substituted phengl tosylates. The log k values in water at $50^{\circ} \mathrm{C}$ for phenyl benzoate and phenyl toaylate equal 0.238^{1} and -2.940^{2} respectively. The rate of the alkaline hydrolyais of phenyl benzoates considerably increases while paseing from water to 80% aqueous DMso mixture (at $25^{\circ} \mathrm{C}$ for phenyl benzoate log $k=0.498^{3}$ comparing with log $k=$
$=-0.367^{3}$ in water at the same temperature). The study of the kinetics of this reaction with raried substituent at higher temperatures requires the use of the experimental methods adopted for the monitoring fast reactions, (e.q.the method of atopped flow).

In the present work the kinetics of the alkaline hydrolyais of aubstituted phenyl toaslatea $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}-\mathrm{X}$ in $80 \%(v / v)\left(50.3\right.$ m (DMSO-water mixture at 25,50 and $75^{\circ} \mathrm{C}$ whereas $\mathbb{X}=\mathrm{H}, 3-\mathrm{Cl}, 3-\mathrm{NO}_{2}, 4-\mathrm{HO}_{2}$ and at $75^{\circ} \mathrm{C}$ when $\mathbb{X}=4-\mathrm{CH}_{3}$ and 4-F was investigated. The kinetics of 4- fluorophenyl tosylate in water and phenyl benzoate in $50 \%(v / v)$ (34.1 (4) aqueous Duso were studied at $75^{\circ} \mathrm{C}$ as well.

As the reagent tetra-n-butylammonium hydrocide ($n-\mathrm{Bu}_{4} \mathrm{HOH}$) was used. 4-Fluorophonyl tosylate was synthesized according to Ref. 4 and was several times recrystallised from Btoliz. $\mathrm{m}_{\text {. }}$ $58.7-59.1^{\circ} \mathrm{C}$.

The preparation of other phensl toaylates, the purificam tion of hydrozide and dimethylsulforide and the technique of kinetic measuremente are desoribed in Refa.l-3 of this semes.

For the kinetic measuremente the spectrophotometric method wae applied, The wave lengths used are given in Table 1.

The kinetic measuremente were carried out under psoudomonomolecular conditions at more than 15 time alkali excess . Rate conetants for each phenyl to日jlate were measured at 4-14 various hydroxide concentrations. The measurements at each hydroxide concentration were repeated mainly $2-6$ times and the arithmetic means of the corresponding psendo-firet order rate constants k_{1} were calculated. The second order rate constante were calculated as alopes of the corresponding regression plote of the paeudo-firet order rate constante v. the hydroxde concentration.

When calculating the k_{2} values according to the following equation:

$$
\begin{equation*}
k_{1}=k_{2} \cdot c_{\mathrm{OH}^{-}}+\text {const } \tag{1}
\end{equation*}
$$

both the k_{1} values for all parallel measuremente at each hydroxide concentration and the corresponding arithmetic mans at each hydroxide concentration were applied.

Fig.1. Relationship between k_{1} and hydroxide concentration for 3-nitrophenyl tosylate in 80% DMSO at $25^{\circ} \mathrm{C}$.

Pig. 2. Relationship between k_{1} and hydroxide concen-t-ation for 3-nitropheny 1 tosylate in 90% DMSO st $75^{\circ} \mathrm{C}$.

The results of the preliminary kinetic data treatment are given in Table l: the arithmetic means of the pseudo first order rate constants at each hydrozide concentration $\left(k_{1}\right)$; number of runs at a certain hydroxide concentration considered $\left(n_{1}\right)$; the values of the second order rate conatants calculated according to equation (1), including the k_{1} values for all parallel measuraments at each concentration ($k_{2}(1)$), and those of $k_{2}(2)$ calculated according to Eq. (1) when the corresponding arithmetic means were embraced.

The Fige. 1-6 illustrate the plots of the arithmetic means of the pseudofiret order rate constants k_{q} ve. hydroxide concertration for 3-nitrophenyl,3-chlorophenyl and phenyl toaylat 3 a at 25 and $75^{\circ} \mathrm{C}$.

One can se: that at considerably higher hydroxide concentrations the printe deviate from the linear plot.

For eatimat $L o n$ of "true" rate constants extrapolated to infinite dilution of hydroxide solution the second order rate constants were calculated as follows:

The arithmetke means of the firwt order rate constants k_{1} were divided by the hydroxide concentration; the obtained values of k_{2}^{\prime} were treated according to equation:

$$
\begin{equation*}
\log k_{2}^{\prime}=\log k_{2}^{0}+B \cdot C_{\mathrm{OH}^{-}} \tag{2}
\end{equation*}
$$

where k_{2}^{0} is the second order rate constant for the infiniteiy dilutes colution. Equation (2) is a Setchenow ${ }^{5}, 6^{\text {type for }}$ mula for akjing into account influence of the neutral electrolyte concuntration in case of reactions between ions and neur tral mole:ules.

Table 2 lists the reaults of the data treatment according to equation (2) for the alkaline bydrolyais of phenyl toaylates in 80% aqueous DMSO.

As it is seen from the data in Table 2 coefficient B before the $\mathrm{C}_{\mathrm{OH}^{-}}$in equation (2) is in general atatiatically aignificant and the application of this equation for calculation of the "true" second order rate constants ehould be considered reasonable.

Both the logarithinic values of the second order rat. constants k_{2} (1) and $k_{2}(2)$ found according to equation (1) vith-

Fig. 3. Relationship between \mathbf{k}_{1} and hydroxide concentration for 3-chl or opheny 1 torylate in 80\% at $25^{\circ} \mathrm{C}$.

Fig. 4. Relationship between $\mathbf{k}_{\boldsymbol{q}}$ and hydroxide concentration for 3-chlorophensl tosylate in 80% y at $75^{\circ} \mathrm{C}$.

Fig. 5. Relationship between k_{1} and hy drozide concentration for phenyl tosylate in 80\% Duso at $25^{\circ} \mathrm{C}$

Pig. 6. Relationship between \mathbf{k}_{q} and hydroxide concentration for phenyl tosylate in 80% DMSO at $75^{\circ} \mathrm{C}$.

Results of the Preliminary Kinetic Data Treatment According to
$\mathrm{Eq} \cdot(1) \mathrm{k}_{1}=\mathrm{k}_{2} \cdot{ }^{\mathrm{C}} \mathrm{OH}^{-}+$const for the Alkaline Hydrolysis of Substituted Phenyl Tosylates $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}-\mathrm{X}$ in 80% (v/v) DMSO-Water Mixture
${ }^{6} \mathrm{OH}^{-}$- Concentration of hydroxide n-Bu4 NOH
k_{1} - Arithmetic means of the pseudo-firet order rate constants
n_{1} - Number of measurements at the hydroxide concentration considered
$K_{2}(1)$ - The values of the second order rate constants calculated according to Eq . (1) when the k_{q} values for all parallel measurements at each hydroxide concentration are included
$k_{2}(2)$ - The values of the second order rate constants calculated according to Rq. (1) when the arithmetic means of the k, values at each hydroxide concentration are included
n / n_{0} - The denominator reflects the total number of data, involved in regression data processing and the numerator equals the number of remaining points after excluding eignificantly deviating points
λ - Wave lengths used at messurements

$\begin{aligned} & \mathbf{x} \\ & \text { and } \end{aligned}$	$\begin{gathered} \text { Tempera- } \\ \text { ture }^{o_{\mathrm{G}}} \\ \hline \end{gathered}$	$10^{3} \cdot \mathrm{C}_{\mathrm{OH}^{-}}$ (M)	$\begin{aligned} & 10^{3} \cdot \mathbf{k}_{1} \\ & \left(\mathrm{sec}^{-1}\right) \end{aligned}$		$\begin{aligned} & 10^{3} \cdot k_{2}(1) \text { and } \\ & 10^{3} \cdot k_{2}(2) \\ & \left(1^{-1} \cdot \sec ^{-1}\right) \end{aligned}$	n / n_{0}	10 ${ }^{3}$. const (in Eq.(1))
1	2	3	4	5	¢	7	8
H	25	29.30	0.0573 ± 0.0001	1	2.56 ± 0.08	12/12	-0.01 ± 0.01

303

Table 1 continued

Table 1 continued

1	2	3	4	5	6	7	8
H	75	10.03	0.293 ± 0.010	2	27.3 ± 0.8	5/5	0.03 ± 0.04
(50\% DMESO)		49.87	1.42 ± 0.01	1	27.3 ± 0.3	3/3	. 0.03 ± 0.01
299		99.23	2.73 ± 0.09	2			
		174.4	$5.77 \pm 0.13^{\text {² }}$	2			
3-61	25	9.838	0.283 ± 0.002	2	47.8 ± 0.4	15/21	-0.23 ± 0.02
308		20.21	0.728 ± 0.025	4	48.1 ± 1.4	9/9	-0.28 ± 0.08
		40.19	1.64 ± 0.01	2			
		41.38	1.53 ± 0.04	2			
		66.34	3.06 ± 0.09	4			
		73.27	3.00 ± 0.10	2			
		79.88	3.60 ± 0.03	2			
		87.58	3.92 ± 0.01	2			
		104.6	4.84 ± 0.02	1			
		119.6	$6.14 \pm 0.01^{\text {¹ }}$	2			
		119.7	$5.73 \pm 0.03^{\text {² }}$	1			
		132.7	$7.00 \pm 0.10^{\text {x }}$	2	-		
		145.6	$7.93 \pm 0.05^{\text {\% }}$	2			
		147.6	7.62 ± 0.06^{3}	1			
	50	3.917	0.140 ± 0.002	3	275 ± 1	16/22	-0.48 ± 0.03
		5.844	1.14 ± 0.04	4	280 ± 3	7/7	-0.56 ± 0.08

Table 1 continued

1	2	3	4	5	6	7	8
		8.014	2.64 ± 0.05	2			
		11.68	2.48 ± 0.12	3			
		29.70	8.06 ± 0.05	1			
		50.03	13.3 ± 0.1	4			
		70.30	19.2 ± 0.4	5			
		89.52	$26.9 \pm 0.5^{\text {m }}$	5			
	75	4.030	4.42 ± 0.32	4	1335 ± 17	16/22	-0.18 ± 0.22
		8.016	11.0 ± 0.2	4	1413 ± 18	6/6	-0.87 ± 0.27
		8.030	20.7 ± 0.2	3			
		16.08	21.4 ± 1.3	3			
		22.52	30.7 ± 0.7	5			
		30.09	41.9 ± 2.1	3			
$3-\mathrm{NO}_{2}$	25	4.972	2.06 ± 0.02	2	311 ± 3	10/15	-0.68 ± 0.08
450		19.88	5.42 ± 0.08	5	314 ± 7	4/4	-0.50さ0.01
		39.69	11.3 ± 0.2	4			
		60.01	18.4 ± 0.5	4			
		80.22	$27.8 \pm 0.4^{\text {m }}$	5			
		99.33	$34.6 \pm 0.2^{\text {x }}$	4			
		123.8	$45.6 \pm 0.6^{\text {T }}$	5			
		145.8	$60.7 \pm 1.7^{\text {T }}$	5			

Table 1 continued

1	2	3	4	5	6	7	8
	50	3.828	5.50 ± 0.08	5	1693 ± 13	16/20	-1.03 ± 0.16
		9.82	15.7 ± 0.3	3	1709 ± 10	5/5	-1.19さ0.17
		16.14	26.2 ± 0.2	4			
		23.73	39.2 ± 0.6	5			
		30.35	51.0 ± 0.8	3			
	75	1.686	10.4 ± 0.7	5	6287 ± 246	13/19	-0.98 ± 0.86
		3.189	19.6 ± 0.5	4	6681 ± 561	4/4	
		4.426	$24.9 \div 0.4$	5			
		5.977	39.9 ± 0.7	5			
$4-\mathrm{NO}_{2}$	25	4.101	1.55 ± 0.08	3	505 ± 2	32/48	-0.88 ± 0.06
424		5.035	1.73 ± 0.18	4	497 ± 3	9/13	-0.30 ± 0.01
		8.824	3.46 ± 0.29	2			
		10.01	4.39 ± 0.14	4			
		16.62	7.15 ± 0.24	5			
		19.68	8.70 ± 0.14	4			
		24.52	11.5 ± 0.1	2			
		39.11	17.2 ± 0.4	2			
		40.15	20.3 ± 0.5	4			
		43.90	19.6 ± 0.5	6			
		58.72	28.7 ± 0.3	2			

			L	$20^{\circ} 0750^{\circ} 9$	t0＊02		
10＊ $0 \div 95^{\circ} 0$	9／9	（z） $5 \mp+1 z$	2	$90^{\circ} \mathrm{O} \mp 05^{\circ} \mathrm{L}$	$90^{\circ} \mathrm{Z}$ L		$\bigcirc \mathrm{O}_{2}$
cT ${ }^{\circ} 0 \div 58^{\circ} 0$	$08 / 5 T$	（ L$) \pm 498$	2	10＊O \ddagger OT＊τ	$99{ }^{*} \downarrow$		d－${ }^{\text {d }}$
			\dagger	$*^{\circ} \mathrm{T}$＋ $6^{\circ} \mathrm{*}$	9 10＊${ }^{\text {¢ }}$		
			5	$5^{\circ} 0 \mp \dagger^{*} 62$	$926^{\circ} \mathrm{Z}$		
$0 \dagger^{\circ} 0_{+} s \varepsilon^{*}$－	t / \dagger	OLT \％08ETK	\dagger	$と^{\circ} 0 \mp$ 2 $^{*} 9 \tau$	LてL＊		
とT＊0\％9S＊${ }^{\circ}$	LT／OT	OL \ddagger OTLOT	\dagger	七 ${ }^{\circ} 0$	$88 T 5^{\circ} 0$	SL	
			T	$\varepsilon^{\circ} 0 \mp 0^{\circ} 8 \downarrow$	$86^{*} 6 \tau$		
			9	$8^{\circ} 0 \mp S^{\circ} 9 \downarrow$	L6＊6T		
			ε	$8^{\circ} 0 \mp \varsigma^{*}$ 㲺	$89^{\circ} \mathrm{LT}$		
			\dagger	$2^{\circ} 0 \mp \varsigma^{\circ} 0 \varepsilon$	TL＊てし		
			5	$8^{\circ} 0 \mp{ }^{\circ} \mathrm{C}$	LどてT		
			5	$\bullet^{\circ} 0 \mp$－${ }^{\circ}$	2T＊TT		
			\downarrow	$L^{\circ} 0 \mp 0{ }^{\circ} \mathrm{BL}$	く50＊8		
$2 L^{\circ} \mathrm{O}_{+}^{-08 *}{ }^{\circ} \mathrm{T}$	6／8	$65 \mp L L \downarrow 2$	\dagger		TLL＊＊		
$09^{\circ} 0 \Psi_{+} 28^{\circ} \mathrm{T}$	SE／OE	TS ¢ 09ヶて	ε	T1＊O \ddagger ¢ ${ }^{*}$－9	L6L＇z	OS	
			G	$*^{*} \tau$	OT＊96		
			τ		2T＊乌6		
			2		28＊8L		
			9	$9^{\circ} 0 \mp L^{*} 6 \varepsilon$	TS＊ $2 L$		
8	L	9	5	7	E	2	\downarrow

penurquos τ etaqi

Table 1 continued

1	2	3	4	5	6	7	8
		40.12	20.7 ± 0.3	5			
		60.27	16.4 ± 0.2	5			
		80.25	22.4 ± 0.4	5			
		99.97	$29.5 \pm 0.7^{\text {m }}$	5			
		124.8	$38.1 \pm 0.3^{\text {m }}$	4			
		146.0	$41.4 \pm 0.8^{\text {K }}$	5			
4-F	75	10.17	0.154 ± 0.009	2	6.80 ± 0.23	11/11	-0.18 ± 0.04
$\mathrm{H}_{2} \mathrm{O}$		39.99	0.526 ± 0.028	2	6.80 ± 0.16	6/6	0.19 ± 0.03
300		69.70	0.716 ± 0.079	2			
		99.09	1.26 ± 0.02	2			
		198.4	1.84 ± 0.23	2			
		338.2	2.40 ± 0.15	2			
		496.2	3.60 ± 0.23	2			
$4-\mathrm{CH}_{3}$	75	9.93	0.602 ± 0.021	2	67.7 ± 1.0		
312		29.71	1.95 ± 0.02	2	69.9 ± 1.4	$5 / 5$	-0.15 ± 0.07
		49.81	3.16 ± 0.03	2			
		69.74	4.73 ± 0.01	2			
		89.49	6.17 ± 0.23	2			

Results of Data Treatment According to Eq. (2)
$\log k_{2}=\log k_{2}^{0}+B \cdot C_{\mathrm{OH}^{-}}$
for the Alkaline Hydrolyeis of Substituted Phenyl Tosylates $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}-\mathrm{X}$
in $80 \%(\nabla / v)$ DMSO-Water Mixture

I	Temperature 06	$\log \mathrm{k}_{2}^{\circ}$	B	s
H	25	-2.686 ± 0.019	0.799 ± 0.259	0.028
	50	-1.760 ± 0.021	1.079 ± 0.288	0.032
	75	-0.925 ± 0.008	0.667 ± 0.157	0.021
H (50% DMSO)	75	-1.557 ± 0.015	0.331 ± 0.183	0.022
3-61	25	-1.448 ± 0.010	1.195 ± 0.113	0.016
	50	-0.714 ± 0.017	2.369 ± 0.291	0.034
	75	-0.083 ± 0.018	2.318 ± 1.274	0.028
$3-\mathrm{NO}_{2}$	25	-0.627 ± 0.013	1.733 ± 0.189	0.024
	50	0.165 ± 0.008	2.186 ± 0.526	0.011
	75	0.770 ± 0.047	4.775 ± 11.41	0.036
$4-\mathrm{NO}_{2}$	25	-0.385 ± 0.009	2.060 ± 0.214	0.025
	50	0.315 ± 0.017	3.675 ± 1.432	0.025
	75	0.776 ± 0.042	71.78 ± 18.31	0.047
4-F	75	-0.558 ± 0.009	0.167 ± 0.143	0.020
$4-\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)$	75	-1.938 ± 0.040	-0.519 ± 0.224	0.098
$4-\mathrm{CH}_{3}$	75	-1.216 ± 0.007	0.632 ± 0.145	0.009

Comparison of the $\log \mathbf{k}_{2}$ Values Caloulated by Various Methode $k_{2}(1)$ and $k_{2}(2)$ - See at rable 1.
k_{2}° - Values of k_{2} caloulated aceording to Iq.(2)
$\log k_{2}=108 k_{2}^{\circ}+B \cdot C_{\mathrm{OX}^{-}}$

I	Tomperature ${ }^{\circ} \mathrm{C}$	$108 \mathrm{k}_{2}(1)$	108 $k_{2}(2)$	$\log k_{2}^{0}$
H	25	-2.592 ± 0.014	-2.588 ± 0.015	-2.686 ± 0.019
	50	-2.633 ± 0.004	-1.620 ± 0.013	-1.760 ± 0.021
	75	-0.880 ± 0.002	-0.860 ± 0.003	-0.925 ± 0.008
H (50\% imso)	75	-1.564 ± 0.012	-1.564 ± 0.005	-1.557 ± 0.015
3-61	25	-1.321 ± 0.003	-1.318 ± 0.013	-1.448 ± 0.010
	50	-0.561 ± 0.002	-0.553 ± 0.005	-0.714 ± 0.017
	75	0.126 ± 0.006	0.150 ± 0.006	0.083 ± 0.018
$3-\mathrm{NO}_{2}$	25	-0.500 ± 0.004	-0.503 ± 0.009	-0.627 ± 0.013
	50	0.229 ± 0.003	0.233 ± 0.002	0.165 ± 0.008
	75	0.798 ± 0.017	0.825 ± 0.035	0.770 ± 0.047
$4-\mathrm{HO}_{2}$	25	-0.297 ± 0.002	-0.303 ± 0.002	-0.385 ± 0.009
	50	0.391 ± 0.009	0.394 ± 0.010	0.315 ± 0.017
	75	1.030 ± 0.003	1.056 ± 0.007	0.776 ± 0.042
4-F	75	-0.573 ± 0.005	-0.562 ± 0.008	-0.558 ± 0.009
4-P ($\mathrm{H}_{2} \mathrm{O}$)	75	-2.163 ± 0.015	-2.168 ± 0.011	-1.938 ± 0.040
$4-\mathrm{CH}_{3}$	75	-1.169 ± 0.008	-1.156 ± 0.009	-1.216 ± 0.007

out taking into account the influence of the hydroxide concentration and the values of log $k \rho$ calculated by equation (2) for the infinitely diluted solution are presented in Fable 3. As it is seon, taking into account the cepondence of k_{2} on hydrozide concentration leade to a considerable correctione in this value.

The dependence of $\log \mathrm{K}_{2}$ on $\mathrm{C}_{\mathrm{OH}}{ }^{-}$for the alraline hydro1ysis of 3-chlorophenyl tosylate at $25^{\circ} \mathrm{C}$ is Bhow in Fg. 7 .

Fig. 7. Dopendence of lag k_{2}^{\prime} an hydraxide concentration for 3-chlorophengl toaylate in 80\% duso at $25^{\circ} \mathrm{C}$.

Discussion of the obtained kinetic data will be publiehed separately in one of the fortheoning publications.

Reforences

1. T. Plisea, V. Fumert (Maremb), and V. Palm, Roakts. sposobn.organ.soodin., 2, 697(1972).
2. V. Maremáe and V. Palm, Roakte.sposobn. argan.eoedin., I(2) 85(1964).
3. V. Numert, M. Bak, and M. Piirsalu, Organic Reactivity, 18, 363(1981).
4. S.e. Hazlet, J. Amor. Ghem. Soc., 59, 287 (1937).
5. J. Setachenow, 2. phys. Ghen., 4, 117(1889)
6. J. Sotechenow, Ann. Chim. Phys., 25, 226(1892).

Organic Reactivity
Vol.21. 3(75) 1984
NON-ELECTROITTE EFFECTS ON THE STRUCTURE OF THE LITHIUM CHLORIDE SOLUTIONS IN ETHANOL.
II. APROTIC SOLVENTS.
M.M. Karels on and H. Kuura

Laboratory of Chemical Kinetics and Catalysis, Tartu, Betonian S.S.R., U.S.S.R.

Received November 27, 1984

The reaults of the differential-conductometric measurements of the aprotic solvent influence on the electrical conductivity of lithium chloride ethanolic solutions are presented. The specific molar solution "restructurization" volumes V_{g} were calculated for these solvents. The dependence of V_{a}-parameters on the structure of addition molecules is discussed.

In the previous article of this series ${ }^{1}$ the results of the differential-conductometric measurements of the influence of some hydroxylic solvents on the electrical conductivity of lithiua chloride ethanolic solutions were given. This article deals with the results of the siwilar measurements mads with various aprotic solvents (acetonitrile, dimethyl sulfoxide, dimethyl formanide, and dicxane).

In the differential conductometry a quantity

$$
\begin{equation*}
I=\frac{k \cdot 10^{3}}{C_{s}}\left(\frac{1}{R_{0}+\Delta R}+\frac{1}{R_{x}}\right) \tag{1}
\end{equation*}
$$

is found. In this formula k denotes the conductometric cell constant $\left(\mathrm{cm}^{-1}\right), \mathrm{C}_{8}$ is the molar concentration of the swall addition ($\sim 10^{-2}$ mole/1) of the substance investigated, and R_{0} and R_{x} are the resistances (Ω) of the solution before
and after adding this substance, respectively. Quantity $\triangle R$ accounts the change of the resistance of the solution due to the dilution in the process of addition. Therefore the quantity I is the change of the specific conductivity of the solution $\Delta \mathfrak{X}$ per mole of added substance, i.e.

$$
\begin{equation*}
I=\frac{\Delta X}{G_{s}} \tag{2}
\end{equation*}
$$

It was shown ${ }^{2,3}$ that this quantity is simply related to the specific "restructurization" volume of the substance added, V_{B} :

$$
\begin{equation*}
F=v_{B} \cdot \chi, \tag{3}
\end{equation*}
$$

where \mathscr{C} is the specific conductivity of the pure solution at the given electrolyte concentration. Volume ∇_{3} is a specific parameter for a given substance and describes its influence on the structure of solvent. Namoly it is equal to the statistically mean volume around the molecule of this substance, where the solvent structure is fully perturbed (1.e. transformed either to ideally ordered structure or to the entirely disordered form).

Bxperimental

Sthanol (grade "Pure for analysis") was dried an the CaO and distilled. The fraction used had b. p. $78.4^{\circ} \mathrm{C}$ (760 mm Hg) and $\mathrm{d}^{25}=0.7898$.

Dimethy1 ${ }^{25}$ sulfoxide(grade "Pure for analysis") was dried on the BaO and bidistilled from the mixture with CaH_{2} in the argon atmosphere. The fraction used had b.p. $64.0^{\circ} \mathrm{C}$ ($6 \mathrm{~mm} \mathrm{Hg}_{\mathrm{g}}$) and $d_{25}^{25}=1.10105$.

Dimethyl formamide ("grade Pure for analysis") was dried on the CaO and bidistilled. The fraction used had b.p. $39.7-40.0^{\circ} \mathrm{C}(20 \mathrm{mmg})$ and $\mathrm{d}_{25}^{25}=0.9492$.

Acetonitrile (grade "Pure for analysis") was treated with KOH , distilled. The main fraction was treated with CaH_{2}
and Practionally dietilled. The fraction used had b.p. $81.5^{\circ} \mathrm{C}$ (760 Hs) and $d_{25}^{25} 0.7791$.

Dioxane (grade "Pure for analysis") was treated with HCl and KOF, dried and then boiled with sodium. Pinally the fractional distillation was carried out. the fraction used had b. p. $101.5^{\circ} \mathrm{C}(760 \mathrm{Hg})$ and $\mathrm{d}_{4}^{20}=1.0329$. The conductometric measuremente were carried out on the apparatus described elsewhere ${ }^{4}$. Ail the measurements were made at the temperature $25.0 \pm 0.1^{\circ} \mathrm{C}$, hold constant with the precision of $\pm 0.001^{\circ} \mathrm{C}$. The conductivity cell was isolated from the surrounding atmosphere with CaO tubes to prevent the absorption of water. ine cell constant was k=19.60 cm^{-1}. Constant resistance $R_{p}=9907.0 \Omega$ was used in parallel joint to the conductivity cell in case of dilute solutions.

Dilution tern $\Delta \mathrm{R}$ in Eq . (1) was calculated according to the procedure, described previously ${ }^{1}$.

Discussion

The mumerical values of quantity I for different aprotic compounds in the wide range of lithium chloride concentration in ethanol are given in Tables 1 and 2. The dependence of these quantities on the pecific conductivity of the pure electrolyte solutions is illustrated on Fig. I (acetonitrile, diozane, and dinethyl formanide) and Fig. 2. (dinothyl sulfoxide). It is obvious that the linear relationshipf according to the If. (3) are valid for the firet three compounde wherese a significant curvature in the region of the concentrated electrolyte solutions is observable for the dimethyl sulfoxide. Therefore the parameter V_{s} for this compound is estimated from the initial slope of the dependence between I and specific conductivity \mathscr{C}. The values of V_{B} parametera for all substences investigeted are given in Tables 1 and 2 , too.

The enall intercept for dioxane could be caused by the enall uncontrolled ionic adrixture in this substance.

Table 1

Differeatial-conductometric quantitien I for wome aprotic solvents in the ethanolic olutiong of lithiw chloride $\left(25^{\circ} \mathrm{C}\right)$.

0.025	0.053	-0.116	-0.111	-0.037
0.087	0.131	-0.282	-0.264	+0.007
0.107	0.154	-0.278	-0.288	0.034
0.146	0.182	-0.402	-0.370	0.037
0.283	0.279	-0.532	-0.512	0.064
0.529	0.390	-0.695	-0.651	0.085
0.717	0.441	-0.747	-0.791	0.119
$\mathrm{V}_{\text {E }}$		$\begin{gathered} -162.1^{\dagger} \\ 9.4 \end{gathered}$	$\begin{gathered} -166.2^{\ddagger} \\ 6.9 \end{gathered}$	$\begin{gathered} 34.9 \pm \\ 4.0 \end{gathered}$

Table 2
Differential-conductometric quantitiea I for the dimethyl aulfoxide in the ethanolic solutions of lithim chloride

$\begin{aligned} & \text { Cicl } \\ & \text { (mole/1) } \end{aligned}$	$\begin{aligned} & x \cdot 10^{2} \\ & \left(\Omega^{-1} c^{-1}\right) \end{aligned}$	I	$\begin{aligned} & C_{\text {IiCl }} 2.10^{2} \\ & \left(\text { nole/1) }\left(C^{-1} \mathrm{~cm}^{-1}\right)\right. \end{aligned}$		I
0.0146	0.035	-0.069	0.551	0.397	-0.564
0.0985	0.141	-0.272	0.706	0.437	-0.600
0.133	0.170	-0.316	0.710	0.433	-0.598
0.180	0.212	-0.401	1.127	0.493	-0.482
0.267	0.268	-0.464	1.281	0.501	-0.462
0.340	0.311	-0.529	1.315	0.503	-0.442
			$\mathrm{V}_{6}{ }^{\text {² }}$		-0.190

(偪. Fron the initial slope of the $I-X$ dependence.

In earlier works simple linear relationships between V_{g} and intrinsic volume of the molecule were obtained for hydroxylic compounds in hydroxylic solvents (water,ethanol), However, it was noted that in aqueous solutions 6 ome compounds - presumably cyclic or aprotic organic substances are characterized by the $V_{s}-v a l u e s$ lesser than of the ali= cyclic hydroxylic compound of the same intrinaic volume. The same is true for the ethanolic solutions of cyclic (dioxane) or aprotic compounds (dimethyl formamide, acetonitrile, dimethyl sulfoxide). It is intereating that the deviation of the dioxane point from the linear relationship between V_{s} and intrinaic volumes of molecules defined for the hydroxylic compounde are practically equal in case of aqueous and ethanolic solutions ($\Delta V_{\mathrm{B}} \equiv 75^{\mathrm{cm}} \mathrm{c}^{3} / \mathrm{mole}$) (See Fig.3). The aprotic organic compounds have approximately equal y_{s} value in ethanol findependently of their intrinsic volume. $\left(\mathrm{V}_{\mathrm{g}} \cong-160-190^{\mathrm{cm}^{3}} /\right.$ mole $)$. The negative value of V_{B} corresponds to the structure-breaking effect of these compounde on the ethanol. Only dioxane has a relativeiy small struc-ture-making effect $\left(V_{g}=+35\right)$. The $V_{s}-v a l u e ~ o f ~ d i m e t h y l ~ s u l f o-~$ xide decreases in the more concentrated electrolyte solutions.

This decrease is almost linear from the molar concentration of the electrolyte in solution. (See Fig. 4.) Therefore the relationship (Eq.(3)) can be rewritten as

$$
\begin{equation*}
I=V_{\tilde{E}}^{0}(1+\alpha c) x \tag{4}
\end{equation*}
$$

in case of dimethyl sulfoxide $\left(V_{B}^{0}\right.$ is the restructurization volume e^{4} zero electrolyte concentration). The parameter

$$
\begin{equation*}
\alpha=-86.1 \pm 2.7 \tag{5}
\end{equation*}
$$

in Em : (4)
This exceptional behavior of dimethyl sulfoxide indi= cates that there is some differert mechanism of its influ-
(r) calculated as the sum of corresponding bond refractions in the molecule $\left(\Sigma_{D}\right)^{5}$ 。

Fig. 1. The linear relationship between the differential - conductometric quantities Y and the specific conductivity $\mathscr{L}\left(\Omega^{-1} \mathrm{~cm}^{-1}\right)$ of the pure lithium chloride ethanolic solution. Notations: 1-dimethyl formamide, 2 - acetonitrile, 3 - dioxane.

Fig. 2. The dependence of the differential-conductometric quantities Y of dimethyl sulforide on the specific conductivity $\mathscr{(\Omega ^ { - 1 } \mathrm { cm } ^ { - 1 }) \text { of the pure lithium }}$ chloride ethanolic solution.

Hig. 3. The dependence of V_{8}-parameters on the intrinaic volumes of addition molecules in the ethanolic solutions. ($(\bigcirc$-hydrasglic compounds, l-dimethyl formanide, 2-acetonitrile, 3-diacane, 4-dimethyl sulfe ordde).

Fig. 4. The dependence of ∇_{g}-parameter of dimethyl sulforde on the molar concentration of litilum chloFide in ethanol.
ence on the structure of ethanol in comparison with other substances. Anslogous cases with other compounds are needed for the further investigation of such effects.

References.

1. MoM. Kareleon and H. Kuura, This journal, 20, ITo 3(71), 397 (1983)
2. M.M. Karelson, This joumal, 13,No 4(48), 530 (1976)
3. M.M. Karelson, This joumal, 14, No 1 (49), 74 (1977)
4. U. Haldna and V.A. Palm, Dokl. Akad. Nauk. USSR, 135. 667 (1960)
5. Handbook of Chomiatry, Part I (in Rumaian), Moscow-Leningrad, GCHI, 1962

A STRUCTURAL THEORY OF THE ELECTROLYTE SOLUTIONS. II. ACTIVITY COEFPICIENTS OF 1:? . RLECTROLYTES IN AQUEOUS SOLUTIONS.

M.M. Karelson and T. Sepp.

Laboratory of Chemical Kinetice and Catalysis, Tartu State University, 202400 Tartu, Estonian S.S.R., U.S.S.R .

Received November 29, 1984

> A systematic treatment of the activity coefficients of $1: 1$ electrolytes in aqueous solum tions is proceeded according to the simple lattice theory of electrolyte solutions ${ }^{l}$. The statistical parameters of this treatment are favorably compared with the results obtained by the use of extended Debye-Huckel equations.

> A preliminary discussion of the ion-solvent interaction parameter B_{i} structural dependence is also presented. The simple LPER-type dependences are found for the $1: 1$ electrolyte series with common cation.

The validity of the simple structural theory of the electrolyte solutions was discussed in the previous article ${ }^{1}$. Proceeding from the lattice model of the solutions, a theoretical description of the partial excess molar free energy and therefore, activity coefficients of solutions were finally obtained. The internal structure of the theory predicts no serious limits to the nature of the solution and experimental conditions (temperature, concentration, pressure), at whet it is valid in principle. However, the experimental verification of the theory on the basis of the actual experimental data is of paramount importance.

Therefore the present article is the first in the series,
where the data about different properties of electrolyte solutions in the whole range of variability is statiatically treated according to the basic equations of the atructural electrolyte theory. For the activity coefficients of 1:1electrolytes the following equation is valid ${ }^{l}$:

$$
\begin{equation*}
\ln \gamma^{\prime} \pm a_{t} \sqrt[3]{c}+B_{i} c \tag{1}
\end{equation*}
$$

where c is the molar concentration.
The parameter

$$
\begin{equation*}
a_{t}=\frac{d^{A_{M}}}{\mathcal{E R T}} \tag{2}
\end{equation*}
$$

(where A_{M} is the Madelung constant for the given lattice type in solution, α-energy standardization constant, \mathcal{E} dielectric permittivity of the solvent, R - universal gas constant and T - absolute temperature), represents the univereal multiplier in the theoretical electrostatic interaction term.

The parameter

$$
\begin{equation*}
B_{i}=2 R T V_{B(i)} \tag{3}
\end{equation*}
$$

characterizes the specific interaction between electrolyte and solvent through the $\mathrm{V}_{\mathrm{G}(1)}$ - constant, which is the volume in solution, where the solvent structure is totally perturbed by the solute (electrolyte ions).

The least-aquares treatment of the activity coefficient logarithme was made in two ways.

First, the two parameter equation (1) was used in form

$$
\begin{equation*}
\ln \gamma_{ \pm}=\Delta \ln \gamma_{ \pm}+a_{t} \sqrt[3]{c}+B_{i} c \tag{4}
\end{equation*}
$$

where a_{t} and B_{i} were the parameters to be found. It is essential to use the intercept $\Delta \ln \gamma \pm$. This is only natural, because almost all the published activity coefficients are standardized against the infinite dilution according to some function from square-root of electrolyte concentration on ionic force. Therefore, the expected zero value ($\ln \gamma \pm=1$), corresponding to Eq . (4) is shifted by a small quantity

Table 1
The Results of the Least-Squares Treatment of the Activity Coefficienta of Uni-univalent Electrolyte Aqueous Solutions at $25^{\circ} \mathrm{C}$ According to Eq . (4)

	$\begin{aligned} & \text { EIectro- } \\ & \text { lyte } \\ & \hline \end{aligned}$	$\operatorname{sln} x^{ \pm}$	a_{t}	B_{1}	$\mathrm{r}^{\mathbf{a}}$	$8^{\text {b }}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{~s} \\ 0 \\ 0 \end{array}$	
1	LiCl	$\begin{aligned} & 0.127^{ \pm} \\ & 0.026 \end{aligned}$	$\begin{gathered} -0.818^{ \pm} \\ 0.037 \end{gathered}$	$\begin{aligned} & 0.446^{ \pm} \\ & 0.009 \end{aligned}$	0.999	0.0161	0.0096	2.
2.	LiCl	$\begin{aligned} & 0.062^{ \pm} \\ & 0.011 \end{aligned}$	$\begin{gathered} -0.756 \pm \\ 0.020 \end{gathered}$	$\begin{aligned} & 0.439 \pm \\ & 0.007 \end{aligned}$	0.999	0.0095	0.0103	3.
3.	LiCl	$\begin{aligned} & 0.031^{\ddagger} \\ & 0.010 \end{aligned}$	$\begin{gathered} -0.654^{ \pm} \\ 0.017 \end{gathered}$	$\begin{aligned} & 0.392^{ \pm} \\ & 0.006 \end{aligned}$	0.999	0.0041	0.0057	4.
4.	LiCl	$\begin{aligned} & 0.059^{ \pm} \\ & 0.017 \end{aligned}$	$\begin{gathered} -0.547 \pm \\ 0.047 \end{gathered}$	$\begin{aligned} & 0.328^{ \pm} \\ & 0.027 \end{aligned}$	0.995	0.1210	0.0245	5.
5.	LiBr	$\begin{aligned} & 0.199^{ \pm} \\ & 0.036 \end{aligned}$	$\begin{gathered} -0.957 \pm \\ 0.051 \end{gathered}$	$\begin{aligned} & 0.569 \pm \\ & 0.012 \end{aligned}$	0.999	0.0221	0.0100	.
6.	LiBr	$\begin{aligned} & 0.055^{ \pm} \\ & 0.012 \end{aligned}$	$\begin{gathered} -0.712^{ \pm} \\ 0.021 \end{gathered}$	$\begin{aligned} & 0.477^{\ddagger} \\ & 0.007 \end{aligned}$	0.999	0.0051	0.0071	6.
7.	LiBr	$\begin{aligned} & 0.165^{ \pm} \\ & 0.064 \end{aligned}$	$\begin{gathered} -0.883^{ \pm} \\ 0.093 \end{gathered}$	$\begin{aligned} & 0.524^{\ddagger} \\ & 0.025 \end{aligned}$	0.999	0.0200	0.0194	5.
8.	LiBr	$\begin{aligned} & 0.032 \pm \\ & 0.017 \end{aligned}$	$\begin{gathered} -0.722^{ \pm} \\ 0.031 \end{gathered}$	$\begin{aligned} & 0.529 \pm \\ & 0.020 \end{aligned}$	0.999	0.0251	0.0083	7.
9.	LiI	$\begin{aligned} & 0.062^{ \pm} \\ & 0.031 \end{aligned}$	$\begin{gathered} -0.655 \pm \\ 0.051 \end{gathered}$	$\begin{aligned} & 0.558^{ \pm} \\ & 0.018 \end{aligned}$	0.999	0.0132	0.0132	2.
10	LiI	$\begin{aligned} & 0.068^{+} \\ & 0.038 \end{aligned}$	$\begin{gathered} -0.691 \pm \\ 0.054 \end{gathered}$	$\begin{aligned} & 0.570^{ \pm} \\ & 0.019 \end{aligned}$	0.999	0.0127	0.0133	4.
	LiNO_{3}	$\begin{aligned} & 0.115^{ \pm} \\ & 0.021 \end{aligned}$	$\begin{gathered} -0.803 \pm \\ 0.028 \end{gathered}$	$\begin{aligned} & 0.436^{ \pm} \\ & 0.006 \end{aligned}$	0.999	0.0143	0.0062	8.
	LiNO_{3}	$\begin{gathered} -0.069^{ \pm} \\ 0.015 \end{gathered}$	$\begin{gathered} -0.453^{ \pm} \\ 0.022 \end{gathered}$	$\begin{aligned} & 0.244 \pm \\ & 0.005 \end{aligned}$	0.999	0.0098	0.0100	2.
	LiNO_{3}	$\begin{aligned} & 0.028^{ \pm} \\ & 0.008 \end{aligned}$	$\begin{gathered} -0.656^{4} \\ 0.014 \end{gathered}$	$\begin{aligned} & 0.390^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0036	0.0059	9.
	LiNO_{3}	$\begin{aligned} & 0.067 \pm \\ & 0.026 \end{aligned}$	$\begin{gathered} -0.70 \AA^{ \pm} \\ 0.033 \end{gathered}$	$\begin{aligned} & 0.411 \pm \\ & 0.007 \end{aligned}$	0.999	0.0047	0.0055	10
	LiClO_{4}	$\begin{aligned} & 0.161 \pm \\ & 0.039 \end{aligned}$	$\begin{gathered} -0.878^{ \pm} \\ 0.063 \end{gathered}$	$\begin{aligned} & 0.693 \pm \\ & 0.020 \end{aligned}$	0.999	0.0184	0.0125	2.
16	LiOH	$\begin{gathered} -0.013^{ \pm} \\ 0.013 \end{gathered}$	$\begin{gathered} -0.718^{ \pm} \\ 0.019 \end{gathered}$	$\begin{aligned} & 0.096^{ \pm} \\ & 0.005 \end{aligned}$	0.998	0.0075	0.0144	2.

Table 1 continued

12	3	4	5	6	7	8	9
17. $\mathrm{L1OH}$	$\begin{aligned} & 0.022^{ \pm} \\ & 0.010 \end{aligned}$	$\begin{gathered} -0.714^{t} \\ 0.018 \end{gathered}$	$\begin{aligned} & 0.097^{\ddagger} \\ & 0.006 \end{aligned}$	0.999	0.0086	0.0127	11
18. LiOH	$\begin{gathered} -0.032^{ \pm} \\ 0.013 \end{gathered}$	$\begin{gathered} -0.530^{ \pm} \\ 0.021 \end{gathered}$	$\begin{aligned} & 0.191^{+} \\ & 0.006 \end{aligned}$	0.997	0.0066	0.0239	9.
19. $\mathrm{LiCH}_{3} \mathrm{COO}$	$\begin{aligned} & 0.054^{ \pm} \\ & 0.010 \end{aligned}$	$\begin{gathered} -0.742^{ \pm} \\ 0.012 \end{gathered}$	$\begin{aligned} & 0.105^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0021	0.0097	10.
20. NaF	$\begin{aligned} & 0.041^{ \pm} \\ & 0.005 \end{aligned}$	$\begin{gathered} 0.688^{\ddagger} \\ 0.011 \end{gathered}$	$\begin{aligned} & 0.093^{ \pm} \\ & 0.006 \end{aligned}$	0.999	0.0010	0.0041	12.
21. NaCl	$\begin{aligned} & 0.071^{ \pm} \\ & 0.012 \end{aligned}$	$\begin{gathered} -0.720^{ \pm} \\ 0.017 \end{gathered}$	$\begin{aligned} & 0.247 \pm \\ & 0.004 \end{aligned}$	0.999	0.0073	0.0122	2.
22. NaCl	$\begin{aligned} & 0.036 \pm \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.663^{\ddagger} \\ 0.006 \end{gathered}$	$\begin{aligned} & 0.229^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0022	0.0082	3.
23. NaCl	$\begin{aligned} & 0.035^{ \pm} \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.661^{\ddagger} \\ 0.008 \end{gathered}$	$\begin{aligned} & 0.229 \pm \\ & 0.003 \end{aligned}$	0.999	0.0023	0.0093	4.
24. HaCl	$\begin{aligned} & 0.044^{ \pm} \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.691^{ \pm} \\ 0.009 \end{gathered}$	$\begin{aligned} & 0.240^{+} \\ & 0.003 \end{aligned}$	0.999	0.0032	0.0115	13.
25. NaCl	$\begin{aligned} & 0.037^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{gathered} -0.655^{ \pm} \\ 0.007 \end{gathered}$	$\begin{aligned} & 0.198^{ \pm} \\ & 0.020 \end{aligned}$	0.999	0.0005	0.0027	14.
26. NaCl	$\begin{aligned} & 0.046^{ \pm} \\ & 0.007 \end{aligned}$	$\begin{gathered} -0.679^{ \pm} \\ 0.011 \end{gathered}$	$\begin{aligned} & 0.236^{ \pm} \\ & 0.003 \end{aligned}$	0.999	0.0035	0.0125	15.
27. NaCl	$\begin{aligned} & 0.043^{ \pm} \\ & 0.007 \end{aligned}$	$\begin{gathered} -0.682^{ \pm} \\ 0.012 \end{gathered}$	$\begin{aligned} & 0.237 \pm \\ & 0.003 \end{aligned}$	0.999	0.0034	0.0129	16.
28. NaCl	$\begin{aligned} & 0.027 \pm \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.607^{\star} \\ 0.016 \end{gathered}$	$\begin{aligned} & 0.207 \pm \\ & 0.058 \end{aligned}$	0.999	0.0016	0.0084	17.
29. NaBr	$\begin{aligned} & 0.073 \pm \\ & 0.012 \end{aligned}$	$\begin{gathered} -0.735^{ \pm} \\ 0.018 \end{gathered}$	$\begin{aligned} & 0.313^{ \pm} \\ & 0.005 \end{aligned}$	0.999	0.0076	0.0081	2.
30. NaBr	$\begin{aligned} & 0.038^{ \pm} \\ & 0.007 \end{aligned}$	$\begin{gathered} -0.688^{ \pm} \\ 0.011 \end{gathered}$	$\begin{aligned} & 0.290^{ \pm} \\ & 0.003 \end{aligned}$	0.999	0.0034	0.0074	6
31. NaBr	$\begin{aligned} & 0.047 \pm \\ & 0.007 \end{aligned}$	$\begin{gathered} -0.692^{t} \\ 0.013 \end{gathered}$	$\begin{aligned} & 0.300^{\dagger} \\ & 0.004 \end{aligned}$	0.999	0.0046	0.0105	3.
32. NaBr	$\begin{aligned} & 0.023^{+} \\ & 0.021 \end{aligned}$	$\begin{gathered} -0.595^{ \pm} \\ 0.041 \end{gathered}$	$\begin{aligned} & 0.244^{ \pm} \\ & 0.015 \end{aligned}$	0.987	0.0156	0.065	18.
33. NaBr	$\begin{aligned} & 0.050^{ \pm} \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.692^{ \pm} \\ 0.008 \end{gathered}$	$\begin{aligned} & 0.300^{\dagger} \\ & 0.002 \end{aligned}$	0.999	0.0035	0.0052	19.
34. NaBr	$\begin{aligned} & 0.046^{ \pm} \\ & 0.008 \end{aligned}$	$\begin{gathered} -0.683^{ \pm} \\ 0.013 \end{gathered}$	$\begin{aligned} & 0.297^{t} \\ & 0.004 \end{aligned}$	0.999	0.0038	0.0081	20.
35. NaI	$\begin{aligned} & 0.122^{ \pm} \\ & 0.026 \end{aligned}$	$\begin{gathered} -0.816^{ \pm} \\ 0.037 \end{gathered}$	$\begin{aligned} & 0.430^{ \pm} \\ & 0.009 \end{aligned}$	0.999	0.0154	0.0106	2.
36. NaI	$\begin{aligned} & 0.040 \pm \\ & 0.016 \end{aligned}$	$\begin{gathered} -0.670^{ \pm} \\ 0.026 \end{gathered}$	$\begin{aligned} & 0.376 \pm \\ & 0.008 \end{aligned}$	0.999	0.0069	0.0117	6.

Table 1 continued

12	3	4	$5 \quad 6$	7	8	9
37. NaNO_{3}	$\begin{aligned} & 0.013^{ \pm} \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.647^{ \pm} \\ 0.007 \end{gathered}$	$\begin{aligned} & 0.044^{ \pm} 0.999 \\ & 0.002 \end{aligned}$	0.0031	0.0040	9.
38. NaNO_{3}	$\begin{aligned} & 0.070^{ \pm} \\ & 0.015 \end{aligned}$	$\begin{gathered} -0.759 \pm \\ 0.021 \end{gathered}$	$\begin{aligned} & 0.129 \pm 0.998 \\ & 0.006 \end{aligned}$	0.0083	0.0085	10.
39. NaNO_{3}	$\begin{aligned} & 0.025 \pm \\ & 0.004 \end{aligned}$	$\begin{gathered} -0.656^{ \pm} \\ 0.005 \end{gathered}$	$\begin{aligned} & 0.045 \pm 0.999 \\ & 0.001 \end{aligned}$	0.0024	0.0033	2.
40. NaSCN	$\begin{gathered} -0.017^{\ddagger} \\ 0.008 \end{gathered}$	$\begin{gathered} -0.528^{ \pm} \\ 0.011 \end{gathered}$	$\begin{aligned} & 0.223^{ \pm} \\ & 0.003 \end{aligned}$	0.0048	0.0068	2.
41. NaSCN	$\begin{gathered} -0.011^{ \pm} \\ 0.006 \end{gathered}$	$\begin{gathered} -0.544^{ \pm} \\ 0.009 \end{gathered}$	$\begin{aligned} & 0.247 \pm 0.999 \\ & 0.003 \end{aligned}$	0.0027	0.0066	21.
42. NaOH	$\begin{aligned} & 0.058^{ \pm} \\ & 0.023 \end{aligned}$	$\begin{gathered} -0.713^{ \pm} \\ 0.033 \end{gathered}$	$\begin{aligned} & 0.258^{ \pm} \\ & 0.008 \end{aligned}$	0.0150	0.0199	2.
43. NaOH	$\begin{aligned} & 0.041^{ \pm} \\ & 0.013 \end{aligned}$	$\begin{gathered} -0.668^{ \pm} \\ 0.026 \end{gathered}$	$\begin{aligned} & 0.259 \pm 0.994 \\ & 0.011 \end{aligned}$	0.0105	0.0390	22.
$\text { 44. } \mathrm{NaCH}_{3} \mathrm{COO}$	$\begin{aligned} & 0.081 \pm \\ & 0.024 \end{aligned}$	$\begin{gathered} -0.766 \pm \\ 0.041 \end{gathered}$	$\begin{aligned} & 0.237 \pm 0.999 \\ & 0.006 \end{aligned}$	0.0059	0.0144	9.
45. KP	$\begin{gathered} -0.095^{ \pm} \\ 0.150 \end{gathered}$	$\begin{gathered} -0.457 \pm \\ 0.211 \end{gathered}$	$\begin{aligned} & 0.158 \pm 0.793 \\ & 0.048 \end{aligned}$	0.0967	0.1690	2.
46. KF	$\begin{aligned} & 0.040^{ \pm} \\ & 0.005 \end{aligned}$	$\begin{aligned} & -0.682 \pm \\ & 0.007 \end{aligned}$	$\begin{aligned} & 0.219 \pm 0.999 \\ & 0.002 \end{aligned}$	0.0022	0.0088	12.
47. KCl	$\begin{aligned} & 0.050^{ \pm} \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.693^{ \pm} \\ 0.008 \end{gathered}$	$\begin{aligned} & 0.168 \pm 0.999 \\ & 0.002 \end{aligned}$	0.0024	0.0094	2.
48. KCl	$\begin{aligned} & 0.012^{ \pm} \\ & 0.014 \end{aligned}$	$\begin{gathered} -0.536^{ \pm} \\ 0.037 \end{gathered}$	$\begin{aligned} & 0.133 \pm 0.986 \\ & 0.010 \end{aligned}$	0.0193	0.0461	23.
49. KCl	$\begin{aligned} & 0.039 \pm \\ & 0.001 \end{aligned}$	$\begin{gathered} -0.672^{ \pm} \\ 0.003 \end{gathered}$	$\begin{aligned} & 0.164 \pm \quad 0.999 \\ & 0.001 \end{aligned}$	0.0016	0.0034	24.
50. KCl	$\begin{aligned} & 0.035^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.672^{ \pm} \\ 0.005 \end{gathered}$	$\begin{aligned} & 0.166 \pm 0.999 \\ & 0.001 \end{aligned}$	0.0014	0.0061	25.
51. KCl	$\begin{aligned} & 0.031^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{gathered} -0.662^{ \pm} \\ 0.003 \end{gathered}$	$\begin{array}{ll} 0.161 \pm & 0.999 \\ 0.001 \end{array}$	0.0009	0.0040	26.
52. KCl	$\begin{aligned} & 0.029 \pm \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.658^{ \pm} \\ 0.004 \end{gathered}$	$\begin{aligned} & 0.161 \pm 0.999 \\ & 0.001 \end{aligned}$	0.0012	0.0053	27.
53. KCl	$\begin{aligned} & 0.026^{ \pm} \\ & 0.012 \end{aligned}$	$\begin{gathered} -0.679 \pm \\ 0.017 \end{gathered}$	$\begin{aligned} & 0.163 \pm 0.998 \\ & 0.004 \end{aligned}$	0.0041	0.0247	5.
54. KC1	$\begin{aligned} & 0.027 \pm \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.608 \pm \\ 0.003 \end{gathered}$	$\begin{aligned} & 0.051 \pm 0.999 \\ & 0.059 \end{aligned}$	0.0017	0.0022	17.
55. KBr	$\begin{aligned} & 0.033 \pm \\ & 0.002 \end{aligned}$	$\begin{gathered} -0.662^{ \pm} \\ 0.003 \end{gathered}$	$\begin{aligned} & 0.187 \pm 0.999 \\ & 0.001 \end{aligned}$	0.0010	0.0038	2.
56. KBr	$\begin{aligned} & 0.030 \pm \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.659 \pm \\ 0.005 \end{gathered}$	$\begin{aligned} & 0.190 \pm 0.999 \\ & 0.002 \end{aligned}$	0.0016	0.0080	0.

Table 1 continued

2	3	4	5	6	7	8	9
57. $\mathbf{K B r}$	$\begin{aligned} & 0.030^{ \pm} \\ & 0.004 \end{aligned}$	$\begin{gathered} -0.661^{\ddagger} \\ 0.007 \end{gathered}$	$\begin{aligned} & 0.184^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0022	0.0098	6.
58. KBr	$\begin{aligned} & 0.037 \pm \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.684^{ \pm} \\ 0.009 \end{gathered}$	$\begin{aligned} & 0.195^{ \pm} \\ & 0.003 \end{aligned}$	0.999	0.0033	0.0128	3.
59. KBr	$\begin{aligned} & 0.042^{\ddagger} \\ & 0.009 \end{aligned}$	$\begin{gathered} -0.688^{ \pm} \\ 0.018 \end{gathered}$	$\begin{aligned} & 0.204^{ \pm} \\ & 0.008 \end{aligned}$	0.999	0.0046	0.0195	18.
60. KI	$\begin{aligned} & 0.036^{\ddagger} \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.653^{ \pm} \\ 0.007 \end{gathered}$	$\begin{aligned} & 0.238^{ \pm} \\ & 0.007 \end{aligned}$	0.999	0.0028	0.0050	2.
61. KI	$\begin{aligned} & 0.017^{ \pm} \\ & 0.004 \end{aligned}$	$\begin{gathered} -0.629^{ \pm} \\ 0.007 \end{gathered}$	$\begin{aligned} & 0.230^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0022	0.0067	6.
62. KI	$\begin{aligned} & 0.181^{ \pm} \\ & 0.025 \end{aligned}$	$\begin{gathered} -1.086^{ \pm} \\ 0.037 \end{gathered}$	$\begin{aligned} & 0.296^{ \pm} \\ & 0.009 \end{aligned}$	0.994	0.0140	0.0308	5.
63. KNO_{3}	$\begin{aligned} & 0.099 \pm \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.848^{\ddagger} \\ 0.005 \end{gathered}$	$\begin{gathered} -0.049^{ \pm} \\ 0.002 \end{gathered}$	0.999	0.0013	0.0013	2.
64. KNO_{3}	$\begin{aligned} & 0.083 \pm \\ & 0.013 \end{aligned}$	$\begin{gathered} -0.836^{ \pm} \\ 0.022 \end{gathered}$	$\begin{gathered} -0.032^{t} \\ 0.008 \end{gathered}$	0.999	0.0050	0.0059	9.
65. KSCN	$\begin{gathered} -0.005^{ \pm} \\ 0.006 \end{gathered}$	$\begin{gathered} -0.591^{ \pm} \\ 0.009 \end{gathered}$	$\begin{aligned} & 0.113^{ \pm} \\ & 0.002 \end{aligned}$	0.998	0.0038	0.0127	2.
66. KSCN	$\begin{aligned} & 0.052^{ \pm} \\ & 0.007 \end{aligned}$	$\begin{gathered} -0.705^{ \pm} \\ 0.011 \end{gathered}$	$\begin{aligned} & 0.166 \pm \\ & 0.003 \end{aligned}$	0.999	0.0039	0.0160	21.
67. KOH	$\begin{aligned} & 0.038^{ \pm} \\ & 0.008 \end{aligned}$	$\begin{gathered} -0.700^{ \pm} \\ 0.011 \end{gathered}$	$\begin{aligned} & 0.370 \pm \\ & 0.011 \end{aligned}$	0.999	0.0051	0.0036	2.
68. KOH	$\begin{aligned} & 0.053^{ \pm} \\ & 0.008 \end{aligned}$	$\begin{gathered} -0.674 \pm \\ 0.013 \end{gathered}$	$\begin{aligned} & 0.359 \pm \\ & 0.004 \end{aligned}$	0.999	0.0042	0.0053	28.
69. KOH	$\begin{aligned} & 0.190^{ \pm} \\ & 0.034 \end{aligned}$	$\begin{gathered} -0.854^{ \pm} \\ 0.038 \end{gathered}$	$\begin{aligned} & 0.393^{\ddagger} \\ & 0.006 \end{aligned}$	0.999	0.0099	0.0059	10.
70. $\mathrm{KCH}_{3} \mathrm{COO}$	$\begin{aligned} & 0.124^{ \pm} \\ & 0.028 \end{aligned}$	$\begin{gathered} -0.848^{ \pm} \\ 0.048 \end{gathered}$	$\begin{aligned} & 0.588^{ \pm} \\ & 0.016 \end{aligned}$	0.999	0.0176	0.0127	9.
71. RbF	$\begin{gathered} -0.060^{ \pm} \\ 0.010 \end{gathered}$	$\begin{gathered} -0.465^{ \pm} \\ 0.017 \end{gathered}$	$\begin{gathered} 0.0176 \pm \\ 0.006 \end{gathered}$	0.995	0.0046	0.0308	2.
72. RbF	$\begin{gathered} -0.046^{ \pm} \\ 0.037 \end{gathered}$	$\begin{gathered} -0.514^{ \pm} \\ 0.060 \end{gathered}$	$\begin{aligned} & 0.193^{ \pm} \\ & 0.008 \end{aligned}$	0.981	0.0153	0.0793	29.
73. RbCl	$\begin{aligned} & 0.050 \pm \\ & 0.002 \end{aligned}$	$\begin{gathered} -0.719^{ \pm} \\ 0.002 \end{gathered}$	$\begin{aligned} & 0.167 \pm \\ & 0.001 \end{aligned}$	0.999	0.0010	0.0031	2.
74. RbCl	$\begin{aligned} & 0.033^{ \pm} \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.694^{ \pm} \\ 0.007 \end{gathered}$	$\begin{aligned} & 0.141^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0026	0.0084	30
75. RbCl	$\begin{aligned} & 0.041^{ \pm} \\ & 0.011 \end{aligned}$	$\begin{gathered} -0.710^{ \pm} \\ 0.007 \end{gathered}$	$\begin{aligned} & 0.169 \pm \\ & 0.004 \end{aligned}$	0.997	0.0060	0.0226	6.
76. RbCl	$\begin{aligned} & 0.039 \pm \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.700^{ \pm} \\ 0.007 \end{gathered}$	$\begin{aligned} & 0.163^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0026	0.0096	4
77. RbBr	$\begin{aligned} & 0.054^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{gathered} -0.727^{ \pm} \\ 0.004 \end{gathered}$	$\begin{aligned} & 0.170^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0014	0.0048	2.

Table 1 continued

1	2	3	4	$5 \quad 6$	7	8	9
78.	RbBr	$\begin{aligned} & 0.050 \pm \\ & 0.004 \end{aligned}$	$\begin{gathered} -0.725^{ \pm} \\ 0.005 \end{gathered}$	$\begin{aligned} & 0.170 \pm 0.999 \\ & 0.001 \end{aligned}$	0.0019	0.0070	30.
79.		$\begin{aligned} & 0.083 \pm \\ & 0.006 \end{aligned}$	$\begin{gathered} -0.792^{ \pm} \\ 0.009 \end{gathered}$	$\begin{aligned} & 0.204 \pm \pm 0.999 \\ & 0.003 \end{aligned}$	0.0034	0.0116	2.
80.	RbI	$\begin{aligned} & 0.079 \pm \\ & 0.006 \end{aligned}$	$\begin{aligned} & -0.794^{ \pm} \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.210 \pm 0.999 \\ & 0.002 \end{aligned}$	0.0032	0.0113	6.
81.		$\begin{aligned} & 0.072 \pm \\ & 0.021 \end{aligned}$	$\begin{gathered} -0.774^{+} \\ 0.032 \end{gathered}$	$\begin{aligned} & 0.210 \pm 0.999 \\ & 0.009 \end{aligned}$	0.0113	0.0405	30
82	RbNO_{3}	$\begin{aligned} & 0.130^{ \pm} \\ & 0.008 \end{aligned}$	$\begin{gathered} -0.921 \pm \\ 0.012 \end{gathered}$	$\begin{aligned} & -0.031 \pm 0.999 \\ & 0.004 \end{aligned}$	0.0039	0.0032	2.
83	RbNO_{3}	$\begin{aligned} & 0.098 \pm \\ & 0.006 \end{aligned}$	$\begin{gathered} -0.874 \pm \\ 0.011 \end{gathered}$	$\begin{aligned} & -0.050 \pm 0.999 \\ & 0.004 \end{aligned}$	0.0023	0.0027	30.
84.	$\mathrm{RbCH}_{3} \mathrm{COO}$	$\begin{aligned} & 0.049 \pm \\ & 0.012 \end{aligned}$	$\begin{gathered} -0.680^{+} \\ 0.021 \end{gathered}$	$\begin{aligned} & 0.486^{ \pm} 0.999 \\ & 0.007 \end{aligned}$	0.0052	0.0061	30.
85.	CeF	$\begin{gathered} -0.009 \pm \\ 0.034 \end{gathered}$	$\begin{gathered} -0.593^{+} \\ 0.057 \end{gathered}$	$\begin{aligned} & 0.292 \pm 0.996 \\ & 0.018 \end{aligned}$	0.0150	0.0372	29.
86.		$\begin{gathered} -0.036 \pm \\ 0.009 \end{gathered}$	$\begin{gathered} -0.584^{ \pm} \\ 0.014 \end{gathered}$	$\begin{aligned} & 0.281 \pm 0.999 \\ & 0.005 \end{aligned}$	0.0038	0.0129	2.
87.	CeCl	$\begin{aligned} & 0.112^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.866 \pm \\ 0.004 \end{gathered}$	$\begin{aligned} & 0.187 \pm 0.999 \\ & 0.001 \end{aligned}$	0.0019	0.0050	2.
88.	CsCl	$\begin{aligned} & 0.100 \pm \\ & 0.003 \end{aligned}$	$\begin{gathered} -0.858^{+} \\ 0.004 \end{gathered}$	$\begin{aligned} & 0.186 \pm 0.999 \\ & 0.001 \end{aligned}$	0.0015	0.0041	4.
89.	CsCl	$\begin{aligned} & 0.076 \pm \\ & 0.008 \end{aligned}$	$\begin{gathered} -0.824^{ \pm} \\ 0.014 \end{gathered}$	$\begin{aligned} & 0.169 \pm 0.999 \\ & 0.005 \end{aligned}$	0.0043	0.0096	31.
90.	CeCl	$\begin{aligned} & 0.080 \pm \\ & 0.002 \end{aligned}$	$\begin{gathered} -0.830 \pm \\ 0.003 \end{gathered}$	$\begin{aligned} & 0.171 \pm 0.999 \\ & 0.001 \end{aligned}$	0.0009	0.0021	32.
91.	CeBr	$\begin{aligned} & 0.120 \pm \\ & 0.006 \end{aligned}$	$\begin{gathered} -0.883^{+} \\ 0.009 \end{gathered}$	$\begin{aligned} & 0.195 \pm \\ & 0.002 \end{aligned}$	0.0031	0.0086	2.
92.	CsBr	$\begin{aligned} & 0.129 \pm \\ & 0.011 \end{aligned}$	$\begin{gathered} -0.912^{+} \\ 0.017 \end{gathered}$	$\begin{aligned} & 0.205 \pm 0.999 \\ & 0.004 \end{aligned}$	0.0060	0.0166	6.
93	CaBr	$\begin{aligned} & 0.123 \pm \\ & 0.007 \end{aligned}$	$\begin{gathered} -0.901 \pm \\ 0.011 \end{gathered}$	$\begin{aligned} & 0.202^{ \pm}-0.999 \\ & 0.003 \end{aligned}$	0.0038	0.0106	30.

Table 1 continued

2	3	4	5	6	7	8	9
94. CsI	$\begin{aligned} & 0.090^{ \pm} \\ & 0.004 \end{aligned}$	$\begin{aligned} & -0.824^{ \pm} \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.170 \pm \\ & 0.002 \end{aligned}$	0.999	0.0015	0.0042	2.
95. CsI	$\begin{aligned} & 0.081^{ \pm} \pm \\ & 0.023 \end{aligned}$	$\begin{gathered} -0.796^{+} \\ 0.040 \end{gathered}$	$\begin{aligned} & 0.144^{ \pm} \\ & 0.014 \end{aligned}$	0.999	0.0093	0.0199	6.
96. GsI	$\begin{aligned} & 0.083 \pm \\ & 0.003 \end{aligned}$	$\begin{aligned} & -0.820 \pm \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.169 \pm \\ & 0.00 \end{aligned}$	0.999	0.0010	0.0029	30.
97. CsNO_{3}	$\begin{aligned} & 0.114^{ \pm} \\ & 0.007 \end{aligned}$	$\begin{gathered} -0.891 \pm \\ 0.014 \end{gathered}$	$\begin{aligned} & -0.058^{ \pm} \\ & 0.008 \end{aligned}$	0.999	0.0017	0.0031	2.
98. CaNO_{3}	$\begin{aligned} & 0.106 \pm \\ & 0.008 \end{aligned}$	$\begin{gathered} -0.895 \pm \\ 0.017 \end{gathered}$	$\begin{gathered} -0.024 \pm \\ 0.008 \end{gathered}$	0.999	0.0021	0.0041	30.
99. CaOH	$\begin{aligned} & 0.062 \pm \\ & 0.005 \end{aligned}$	$\begin{gathered} -0.672 \pm \\ 0.011 \end{gathered}$	$\begin{aligned} & 0.400 \pm \\ & 0.006 \end{aligned}$	0.999	0.0013	0.0137	2.
100. Cs 04	$\begin{aligned} & 0.065^{ \pm} \\ & 0.008 \end{aligned}$	$\begin{gathered} -0.721 \pm \\ 0.023 \end{gathered}$	$\begin{aligned} & 0.437 \pm \\ & 0.016 \end{aligned}$	0.998	0.0060	0.0303	31.
$101 \mathrm{GaCH}_{3} \mathrm{COO}$	$\begin{aligned} & 0.106 \pm \\ & 0.030 \end{aligned}$	$\begin{aligned} & -0.807 \pm \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.612 \pm \\ & 0.018 \end{aligned}$	0.999	0.0123	0.0117	30.

a The correlation coefficient
b The etandard deviation
c The normalized standard deviation (See ${ }^{1}$).
(~0.1 units, see Table 1). .
The statistical fitness parameters were good for practically every individual electrolyte activity coefficients set (the standard deviation $s<0.005 \mathrm{~kJ} / \mathrm{mol}$, normalized st. error $^{1} 8_{0}<0.01$, the correlation coefficient $r>0.999$), see Table 1.

In some cases ($\mathrm{LiBr}, \mathrm{LiNO}_{3}$, or $\mathrm{KI}, \operatorname{eg}$.) a perceptible difference in data sets obtained by different authors or using different experimental methods is noticed.

The a_{t}-parameter is close to the theoretical value corresponding. to the sodium chloride type cubic lattice ($A_{M}=1.748$, and $a_{t}=0.6594$ in aqueous solutions at $25^{\circ} \mathrm{C}$).

That is why we proceeded the secondary statistical analysis of the activity coefficients according to the equation

$$
\begin{equation*}
\delta \ln \gamma_{ \pm}=\Delta \ln \gamma_{1 \pm}+B_{i} c, \tag{5}
\end{equation*}
$$

where the function is

$$
\begin{equation*}
\delta \ln \gamma_{ \pm}=\ln \gamma \pm-a_{t} \sqrt[3]{c} \tag{6}
\end{equation*}
$$

1.e. the activity coefficients logarithm is corrected by the theoretical electrostatic term. Due to the already mentioned reason (different standardization) the intercept $\Delta \ln \gamma_{ \pm}$is used again. The reaults of this treatment are given in Table 2. Eq. (5) represents a simple linear relationship, whose validity for some electrolytes is also illustrated in Fig.l. The existence of such relationships was already observed by some earlier authors 32,33 , who were using several semiempirical lattice models of electrolyte solutions. Therefore we once more have to underline the definite physical meaning of the B_{1} - parameter in the present theory.

Obviously the contraction of the number of parameters to be found in treatment does not influence noticeably the characteristics of the atatiatical fit (cf. Table l. and 2.) Moreover, the improvement of them can be observed incidentalIJ_{y}. Recalling the difference in the different data sets a conclusion, about the fit of the theory almost in the limits of

Table 2
The Results of the Least-Squarei Treatment of the Activity Coefficienta of Uni-univalent Blectrolyte Aqueous Solutions at $25^{\circ} \mathrm{C}$ Aocording to Eq . (5).

No	$\begin{aligned} & \text { Electro } \\ & \text { lyte } \end{aligned}$	$\Delta \ln \mathrm{y}^{ \pm}$	B_{1}	$r^{\text {a }}$.$^{\text {b }}$	8_{0}^{c}	Refer oncer
1	2	3	4	5	6	7	8
1.	LiCI	$\begin{aligned} & 0.023 \pm \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.411^{\ddagger} \\ & 0.004 \end{aligned}$	0.999	0.0236	0.0090	2.
2.	LiCl	$\begin{aligned} & 0.017^{\ddagger} \\ & 0.007 \end{aligned}$	$\begin{aligned} & 0.409 \pm \\ & 0.004 \end{aligned}$	0.999	0.0165	0.0090	3.
3.	LiCl	$\begin{aligned} & 0.038^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.396 \pm \\ & 0.001 \end{aligned}$	0.999	0.0040	0.0035	4.
4.	LiCl	$\begin{aligned} & 0.048^{ \pm} \\ & 0.060 \end{aligned}$	$\begin{aligned} & 0.437 \pm \\ & 0.012 \end{aligned}$	0.994	0.1682	0.0261	5.
5.	LiBr	$\begin{gathered} -0.005^{ \pm} \\ 0.015 \end{gathered}$	$\begin{aligned} & 0.500^{ \pm} \\ & 0.007 \end{aligned}$	0.998	0.0406	0.0130	2.
6.	LiBr	$\begin{aligned} & 0.028^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.462^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0062	0.0047	6.
7.	LiBr	$\begin{aligned} & 0.019^{ \pm} \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.468^{ \pm} \\ & 0.008 \end{aligned}$	0.999	0.0256	0.0159	5.
8.	LiBr	$\begin{gathered} -0.022^{ \pm} \\ 0.015 \end{gathered}$	$\begin{aligned} & 0.509^{ \pm} \\ & 0.006 \end{aligned}$	0.999	0.0475	0.0114	7.
9.	LiI	$\begin{aligned} & 0.068^{\ddagger} \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.561 \pm \\ & 0.004 \end{aligned}$	0.999	0.0126	0.0078	2.
10.	LiI	$\begin{aligned} & 0.053^{ \pm} \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.561^{ \pm} \\ & 0.004 \end{aligned}$	0.999	0.0122	0.0084	4.
11.	LiNO_{3}	$\begin{aligned} & 0.077 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 0.291 \pm \\ & 0.004 \end{aligned}$	0.999	0.0272	0.0134	8.
12.	LiNO_{3}	$\begin{aligned} & 0.016 \pm \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.407 \pm \\ & 0.003 \end{aligned}$	0.999	0.0227	0.0067	2.
13.	LiNO_{3}	$\begin{aligned} & 0.034^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.392^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0034	0.0027	9.
14.	LiNO_{3}	$\begin{aligned} & 0.034^{ \pm} \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.401^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0049	0.0037	10.
15.	LiClO_{4}	$\begin{aligned} & 0.031^{ \pm} \\ & 0.011 \end{aligned}$	$\begin{aligned} & 0.628^{ \pm} \\ & 0.007 \end{aligned}$	0.999	0.0252	0.0117	2.
16.	LiOH	$\begin{gathered} -0.049 \pm \\ 0.004 \end{gathered}$	$\begin{aligned} & 0.083^{ \pm} \\ & 0.002 \end{aligned}$	0.997	0.0093	0.0205	2.

Table 2 continued

12	3	4	5	6	7	8
17. LOH	$\begin{gathered} -0.004^{ \pm} \\ 0.004 \end{gathered}$	$\begin{aligned} & 0.081 \pm \\ & 0.003 \end{aligned}$	0.995	0.0105	0.0304	11.
18. LiOH	$\begin{gathered} -0.009^{ \pm} \\ 0.004 \end{gathered}$	$\begin{aligned} & 0.090^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0054	0.0154	10.
19. $\mathrm{LHCM}_{3} \mathrm{COO}$	$\begin{aligned} & 0.004^{ \pm} \\ & 0.010 \end{aligned}$	$\begin{aligned} & 0.243 \pm \\ & 0.003 \end{aligned}$	0.999	0.0129	0.0121	9.
20. NaF	$\begin{aligned} & 0.030^{\ddagger} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.080 \pm \\ & 0.002 \end{aligned}$	0.999	0.0013	0.0220	12.
21. NaCl	$\begin{aligned} & 0.034^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.235^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0095	0.0065	2.
22. NaCl	$\begin{aligned} & 0.037^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.230^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0021	0.0022	3.
23. NaCl	$\begin{aligned} & 0.037 \pm \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.230 \pm \\ & 0.001 \end{aligned}$	0.999	0.0022	0.0025	4.
24. NaCl	$\begin{aligned} & 0.030 \pm \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.232^{\ddagger} \\ & 0.001 \end{aligned}$	0.999	0.0044	0.0045	13.
25. NaCl	$\begin{aligned} & 0.039 \pm \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.230^{ \pm} \\ & 0.006 \end{aligned}$	0.998	0.0005	0.0239	14.
26. NaCl	$\begin{aligned} & 0.037 \pm \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.232^{t} \\ & 0.001 \end{aligned}$	0.999	0.0036	0.0037	15.
27. NaCl	$\begin{aligned} & 0.033^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.233^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0036	0.0040	16.
28. NaCl	$\begin{aligned} & 0.036 \pm \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.207 \pm \\ & 0.034 \end{aligned}$	0.939	0.0030	0.1544	17.
29. NaBr	$\begin{aligned} & 0.030^{ \pm} \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.296^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0108	0.0059	2.
30. NaBr	$\begin{aligned} & 0.036 \pm \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.289^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0033	0.0027	6.
31. NaBr	$\begin{aligned} & 0.033^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.292^{\star} \\ & 0.001 \end{aligned}$	0.999	0.0054	0.0045	3.
32. NaBr	$\begin{aligned} & 0.056^{ \pm} \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.269^{ \pm} \\ & 0.005 \end{aligned}$	0.999	0.0174	0.0182	18.
33. NaBr	$\begin{aligned} & 0.034^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.293^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0035	0.0029	19.
34. NaBr	$\begin{aligned} & 0.036 \pm \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.292 \pm \\ & 0.002 \end{aligned}$	0.999	0.0040	0.0033	20.
35. NaI	$\begin{aligned} & 0.020 \pm \\ & 0.008 \end{aligned}$	$\begin{aligned} & 0.394 \pm \\ & 0.004 \end{aligned}$	0.999	0.0225	0.0095	2.

Table 2 continued

12	3	4	5	6	7	8
36. NaI	$\begin{aligned} & 0.037^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.375^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0065	0.0051	6.
37. NaNO_{3}	$\begin{aligned} & 0.025^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.048^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0029	0.0083	9.
38. NaNO_{3}	$\begin{aligned} & 0.009 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.052^{ \pm} \\ & 0.006 \end{aligned}$	0.998	0.0126	0.0193	10.
39. NaNO_{3}	$\begin{aligned} & 0.031 \pm \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.047 \pm \\ & 0.001 \end{aligned}$	0.999	0.0026	0.0084	2.
40. NaSCN	$\begin{aligned} & 0.077 \pm \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.254^{ \pm} \\ & 0.003 \end{aligned}$	0.999	0.0167	0.0102	2.
41. NaSCN	$\begin{aligned} & 0.064^{ \pm} \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.282^{ \pm} \\ & 0.003 \end{aligned}$	0.999	0.0118	0.0103	21.
42. NaOH	$\begin{aligned} & 0.039 \pm \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.258^{ \pm} \\ & 0.003 \end{aligned}$	0.999	0.0099	0.0124	2.
43. NaOH	$\begin{aligned} & 0.025^{ \pm} \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.248^{ \pm} \\ & 0.003 \end{aligned}$	0.999	0.0156	0.0092	22.
44. $\mathrm{NaCH}_{3} \mathrm{COO}$	$\begin{aligned} & 0.023 \pm \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.318^{ \pm} \\ & 0.005 \end{aligned}$	0.999	0.0172	0.0148	9.
45. KP	$\begin{aligned} & 0.049^{ \pm} \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.204^{ \pm} \\ & 0.014 \end{aligned}$	0.968	0.0966	0.0667	2.
46. KP	$\begin{aligned} & 0.029 \pm \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.214^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0027	0.0029	12.
47. KCl	$\begin{aligned} & 0.033^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.160 \pm \\ & 0.001 \end{aligned}$	0.999	0.0034	0.0055	2.
48. KCl	$\begin{aligned} & 0.048^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.187 \pm \\ & 0.004 \end{aligned}$	0.998	0.0097	0.0192	23.
49. KCl	$\begin{aligned} & 0.036^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.162 \pm \\ & 0.002 \end{aligned}$	0.999	0.0019	0.0026	24.
50. KCl	$\begin{aligned} & 0.031 \pm \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.164 \pm \\ & 0.001 \end{aligned}$	0.999	0.0015	0.0022	25.
51. KCl	$\begin{aligned} & 0.033 \pm \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.162^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0009	0.0014	26.
52. KCl	$\begin{aligned} & 0.034^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.163^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0013	0.0020	27.
53. KCl	$\begin{aligned} & 0.017^{ \pm} \\ & 0.012^{\prime} \end{aligned}$	$\begin{aligned} & 0.159 \pm \\ & 0.001 \end{aligned}$	0.999	0.0040	0.0056	5.
54. KCl	$\begin{aligned} & 0.036 \pm \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.149 \pm \\ & 0.034 \end{aligned}$	0.890	0.0030	0.2040	17.

Table 2 continued

12	3	4	5	6	7	8
55. KBr	$\begin{aligned} & 0.035^{\ddagger} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.188^{\ddagger} \\ & 0.001 \end{aligned}$	0.999	0.0010	0.0011	2.
56. KBr	$\begin{aligned} & 0.034^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.191 \pm \\ & 0.001 \end{aligned}$	0.999	0.0016	0.0021	20.
57. KBr	$\begin{aligned} & 0.033^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.185^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0021	0.0024	6.
58. KBr	$\begin{aligned} & 0.027 \pm \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.189 \pm \\ & 0.001 \end{aligned}$	0.999	0.0039	0.0051	3.
59. KBr	$\begin{aligned} & 0.031^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.195^{ \pm} \\ & 0.002 \end{aligned}$	0.999	0.0048	0.0111	18.
60. KI	$\begin{aligned} & 0.043^{ \pm} \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.241^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0030	0.0021	2.
61. KI	$\begin{aligned} & 0.040^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.240^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0041	0.0038	6.
62. KI	$\begin{gathered} -0.081^{ \pm} \\ 0.025 \end{gathered}$	$\begin{aligned} & 0.194^{ \pm} \\ & 0.008 \end{aligned}$	0.989	0.0465	0.0412	5.
63. KHO_{3}	$\begin{gathered} -0.010^{ \pm} \\ 0.007 \end{gathered}$	$\begin{gathered} -0.108^{ \pm} \\ 0.005 \end{gathered}$	0.989	0.0146	0.0443	2.
64. KHO_{3}	$\begin{gathered} -0.015^{ \pm} \\ 0.013 \end{gathered}$	$\begin{gathered} -0.092^{ \pm} \\ 0.006 \end{gathered}$	0.982	0.0144	0.0661	9.
65. KSCN	$\begin{aligned} & 0.045^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.130^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0093	0.0114	2.
66. KSCN	$\begin{aligned} & 0.038^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.151^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0043	0.0053	21.
67. KOH	$\begin{aligned} & 0.022^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.362^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0064	0.0027	2.
68. KOH	$\begin{aligned} & 0.014^{\ddagger} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.357 \pm \\ & 0.001 \end{aligned}$	0.999	0.0041	0.0025	28.
69. KOH	$\begin{aligned} & 0.018^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.363 \pm \\ & 0.003 \end{aligned}$	0.999	0.0192	0.0081	10.
70. $\mathrm{KCH}_{3} \mathrm{COO}$	$\begin{aligned} & 0.018^{ \pm} \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.377 \pm \\ & 0.006 \end{aligned}$	0.999	0.0183	0.0119	9.
71. RbF	$\begin{aligned} & 0.060^{ \pm} \\ & 0.007 \end{aligned}$	$\begin{aligned} & 0.240 \pm \\ & 0.005 \end{aligned}$	0.997	0.0167	0.0226	2.
72. RbF	$\begin{aligned} & 0.046^{ \pm} \\ & 0.012 \end{aligned}$	$\begin{aligned} & 0.238^{4} \\ & 0.006 \end{aligned}$	0.998	0.0205	0.0259	29.
73. RbCl	$\begin{aligned} & 0.014^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.154 \pm \\ & 0.001 \end{aligned}$	0.999	0.0062	0.0066	2.

Table 2 continued

1	2	3	4	5	6	7	8
	RbCl	$\begin{aligned} & 0.015^{ \pm} \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.134^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0040	0.0052	30.
75.	RbCl	$\begin{aligned} & 0.012^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.157 \pm \\ & 0.001 \end{aligned}$	0.999	0.0074	0.0089	6.
76.	RbCl	$\begin{aligned} & 0.017 \pm \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.154^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0045	0.0059	4.
77.	RbBr	$\begin{aligned} & 0.013^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.155^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0065	0.0087	2.
	RbBr	$\begin{aligned} & 0.011^{ \pm} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.155^{ \pm} \\ & 0.001 \end{aligned}$	0.999	0.0065	0.0079	30.
		$\begin{aligned} & 0.002^{+} \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.181^{ \pm} \\ & 0.003 \end{aligned}$	0.998	0.0132	0.0155	2.
80.		$\begin{aligned} & -0.004^{ \pm} \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.177^{ \pm} \\ & 0.003 \end{aligned}$	0.999	0.0136	0.0147	6.
81.		$\begin{aligned} & 0.003 \pm \\ & 0.007 \end{aligned}$	$\begin{aligned} & 0.182 \pm \\ & 0.003 \end{aligned}$	0.998	0.0155	0.0164	30.
	RbNO_{3}	$\begin{gathered} -0.031 \pm \\ 0.010 \end{gathered}$	$\begin{gathered} -0.104^{ \pm} \\ 0.006 \end{gathered}$	0.989	0.0241	0.0575	2.
	RbNO_{3}	$\begin{gathered} -0.019 \pm \\ 0.009 \end{gathered}$	$\begin{gathered} -0.126 \pm \\ 0.007 \end{gathered}$	0.988	0.0166	0.0575	30.
84	$\mathrm{RbCH}_{3} \mathrm{COO}$	$\begin{aligned} & 0.041 \pm \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.387^{ \pm} \\ & 0.004 \end{aligned}$	0.999	0.0051	0.0034	30.
		$\begin{aligned} & 0.033 \pm \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.314^{ \pm} \\ & 0.005 \end{aligned}$	0.999	0.0156	0.0150	29.
		$\begin{aligned} & 0.054^{ \pm} \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.310 \pm \\ & 0.004 \end{aligned}$	0.999	0.0088	0.0095	2.
	CsCl	$\begin{aligned} & -0.024^{ \pm} \\ & 0.008 \end{aligned}$	$\begin{aligned} & 0.140 \pm \\ & 0.004 \end{aligned}$	0.995	0.0228	0.0265	2.
	GeCl	$\begin{gathered} -0.025^{ \pm} \\ 0.009 \end{gathered}$	$\begin{aligned} & 0.137 \pm \\ & 0.004 \end{aligned}$	0.996	0.0206	0.0273	4.
89.	CsCl	$\begin{gathered} -0.007 \pm \\ 0.009 \end{gathered}$	$\begin{aligned} & 0.111 \pm \\ & 0.006 \end{aligned}$	0.998	0.0177	0.0549	31.

Table 2 continued

Fig. 1. The linear relationship between function $\delta \ln \gamma \pm$ and molar concentration c for some electrolyte solutions.
experimental error, can be finally set.
However, the comparison with the reaults of the earlier activity coefficient atatistical analyses, based on the use of Debye-Hickel electrostatic solution theory is of utmost interest. Undernesth we present an analysis of some publish. ed statistical treatments on the basis of the extended Debye--Huckel equations. These treatments are characterized by standard deviation comparable to those obtained froa the treatmente according to Eq. (4) and (5) in this article. The concentration of electrolyte was varied in the wide range (up to saturated solutions, too.) Proceeding from Eq. (5), the lattice theory of electrolyte solutions has one empirically detected parameter for every electrolyte. In the compilation ${ }^{34}$ the following equation was used for activity coefficient analysia:

$$
\begin{equation*}
\ln \gamma_{ \pm}=\frac{-1 / 8_{+} Z_{-} / I}{1+\rho \sqrt{I}}+\frac{\left(B_{0} \cdots B\right) I}{(1+a I)^{n}}+B I \tag{7}
\end{equation*}
$$

where I is the ionic force in solution, $\mathrm{Zt}, \mathrm{Z}=-$ - the ionic charges of binary electrolyte, A - the theoretical Debye--HUckel slope, at infinite dilution, and ρ, a, n, B, B_{0} - some empirical parameters . Actually, only B- parameter was found by least-squares treatment for every individual electrolyte. The remaining parametere were estimated aubjectively, and the value of a, e.g., did not influence the description almost at all. The correlation fitness characteristics, got for Eq . (5) and Eq. (7) as mentioned above, are practically the same. Unfortunately the standard error of parameter B is not given in original work ${ }^{34}$. There is also no estimates to the errors of parameters a, n, B_{0} and . Obviously, Bq . (7) has less statistical degrees of freedom.in comparison with the basic equation of the lattice theory (5). The background of the use of second term in $\mathrm{Bq} .(7)$ is vague, too. Therefore the conclusion about the preference of lattice theory over the extended semiempirical Debye-Huckel theory in form of Eq . (7) can be made.

We have to notice, that sonewhat better overall character istics of statiatical treatment of activity coefficients were obtained by K.S. Pitzer et al. 35,36 . They used the following equation based on the Guggenheim-Scatchard theory which is also an extensions of the original Debye-Huckel model:

$$
\ln \gamma_{ \pm}=/ Z_{+} Z_{-} / 1^{e l e c}(I)+2\left(\frac{\nu_{+} \nu_{-}}{\nu}\right) \mathrm{Bm}+\left[\left(2 \nu_{+} \nu_{-}\right)^{3 / 2} N\right) \mathrm{Cm}^{2}, \text { (8) }
$$

where ν_{+}and ν_{\ldots} are the numbers of corresponding ions in electrolyte molecule, respectively, and $\nu=\nu+\nu$. The molal concentration m is used in the given equation.

The function

$$
\begin{equation*}
f^{e l e c}(I)=-A\left[\frac{\sqrt{I}}{1+b \sqrt{I}}+\frac{2}{b} \ln (1+b \sqrt{I})\right] \tag{9}
\end{equation*}
$$

has the meaning of the electrostatic interaction energy between ions, and parameter

$$
\begin{equation*}
B=2 B^{(0)}+\frac{2 B^{(1)}}{\alpha^{2} I}\left[1-e^{-\alpha \sqrt{I}}\left(1+\alpha \sqrt{I}-\frac{\alpha^{2} I}{2}\right)\right] \tag{10}
\end{equation*}
$$

is a complicated function of ionic force. Three paranetere $-C, B^{(0)}$, and $B^{(1)}$ are found from the least-aquarea treatment. The quantities α and b have subjectively assumed values. Therefore much less degrees of freedol is present in the treatment by Eq. (8) compared to the lattice theory, the standard errors of parametere are also not given. This leaves opened the question about the reliability of multiparameter correlation parameters.

The underwater gtones here can be nicely seen from the results, presented in the compilations 37,39 . The statistical treatment was again performed according to the semiempirical Debye-Huckel-type equations there:

$$
\begin{align*}
& \ln \gamma_{ \pm}=-\frac{A \sqrt{I}}{1+B \sqrt{I}}+C m+D m_{m}^{2}+E m^{3}+\cdots \tag{1i}\\
& \ln \gamma_{ \pm}=-A \sqrt{I}+A_{2} I \operatorname{lnI}+\sum_{i=1}^{N} B_{i} m^{(i+1) / 2} \tag{12}\\
& \ln \gamma_{ \pm}=-A \sqrt{I}+\sum_{i=1}^{N} B_{i} m^{(i+1) / 2}
\end{align*}
$$

where A_{2}, B_{1}, C, D, E are the empirical parmeters. The number of them, to be fome in least-squares procedure varied from 3 to 7. However, the standard errors of these parameters are frequently the orders of magnitude greater than the overall standard error of the correlation. This fact indicates that the somcalled compensation or overpump effect between different correlation scales is present and there if an excess of empirical parameters. Thus the existence of corm relations according to $\mathrm{Eq}-\mathrm{s}(11-13)$ is only seeming. Pairiy enough, the authors do not give any physical significance to separate terms in these expansions. However, the extrapolations of activity coefficient data starting from Eq.-s (11-13) may not be reliable enough for that reason.

Consequently, there is no atatistically better description of the experimental activity coefficients of l:l electrolyte aqueous aolutions on the whole range of concentration on the basis of the Debye-Hickel-type equations in comparison with the simple lattice theory.

For the theoretical extension of the latter the analyais of B_{i}-parsmeters (cf. Eq. $(4,5)$), obtained from the treatment of experimental data could be useful. The recommended values of these parameters are given in Table 3.

Table 3.
Mean values of the B_{1}-parameters of uni-univalent aalta, obtained from the activity coefficients data.

Anion	F^{-}	Cl^{-}	Br^{-}	I^{-}	OH^{-}	NO_{3}^{-}	$\mathrm{CH}_{3} \mathrm{COO}$
Cation							
Li^{+}	-	0.403	0.477	0.561	0.086	0.401	0.243
Na^{+}	0.080	0.232	0.292	0.385	0.253	0.048	0.318
$\mathrm{~K}^{+}$	0.209	0.162	0.189	0.240	0.360	-0.100	0.377
Rb^{+}	0.239	0.149	0.155	0.180	-	-0.145	0.387
Ca^{+}	0.312	0.134	0.141	0.117	0.398	-0.176	0.406

One would like to find some regularity between the B_{i}-param= eters and some other properties of electrolytes or their ionic constituents. The main structural characteristics, which according to the lattice theory can describe the influence on the solvent structure, is the size of electrolyte molecule, indeed. Rather badly, it is obvious that there is not any relationship between the $B_{i}-8$ and the radiua of $1: 1$ electrolyte molecules, calculated as the sum of corresponding crystallographic ionic radiuses (See Pig. 2.).
The well-known fact is, that the thermodynamic properties of ions in solutions (e.g. the free energies, enthalpies and entropies of hydratation, electrostatic free energies etc.) are simple regular functions of their crystallographic radiuses. ${ }^{39}$ Therefore the expected linear iree energy relationships between the B_{i}-parameter and ionic thermodynamic prop-

Fig. 2. Nonexistence of the relationship between B_{1} parametera and the aize of electrolyte molecules.
erties cannot to be observed, either.
However, it is intereating to mention the aimple IFER type relationahips between the combinations of B_{i} - parameters belonging to the two electrolyte eeries having different common cation. Let's define the difference

$$
\begin{equation*}
\Delta B_{i j}\left(\text { Cat }_{0}\right)=B_{i j}-B_{o j} \tag{14}
\end{equation*}
$$

where j is the anion index, i and o denote the cation in the given and standard series, respectively. Tha choice of the reference cation, whose salts form the standard series, is arbitrary indeed. Independently of this choice, the linear relationships are also observable between the quantities $B_{i f}$ and the anion cryetallographic radiuses r_{j}^{41}. The examplea of such linearities corresponding to the potassium and cesium salte as references, are given in Fig. 3. and Fig. 4.The 2inear regression paraneters of these dependencess

$$
\begin{equation*}
\Delta B_{i j}=\alpha_{i}+B_{i} r_{j} \tag{15}
\end{equation*}
$$

for alkali aalts (Cs is taken as a reference) are presented in Table 4. The parametere α_{i} and B_{i} in the last equation are characteriatic to a given cation.

Pig. 3. The relationship between $B_{i j}$ and the anionic crystallographic radiuses (K salts taken as the reference).

The graphs at Pig. 3 and 4. have a singular point at $r_{j} \approx$ wl. $7^{\circ} \mathrm{A}$, where the straight lines deacribing the relationship (15) for salta with different alkali cations are crossing one another. This means that at this value of anion radius $\Delta B_{i j}$ value becomes ingensitive to the size of cation. In the formal LFRR theory such point is known as an isoparametric point. ${ }^{40}$ It can be an important characteriatic of the process or phenomenon the parameters of which have it.

Firet of all, its presence in case of relationships (15) Indicates that B_{1}-parameters are describing a homogenous

Fig. 4. The relationship between $\Delta B_{i j}$ and the anionic cryotallographic radiuses (Cs salts taken as the reforence).

Table 4
The Linear Regreasion Parameters of the Data Treatment According to $\mathrm{Eq} .(15)$ (Cs salts are the reference).

Cation	α_{i}	${ }_{1}$	$r^{\text {a }}$	$e^{\text {b }}$	8_{0}^{c}
Li	$\begin{gathered} -1.870^{ \pm} \\ 0.156 \end{gathered}$	$\begin{aligned} & 1.101^{ \pm} \\ & 0.084 \end{aligned}$	0.991	0.055	0.075
Na	$\begin{gathered} -0.993^{ \pm} \\ 0.053 \end{gathered}$	$\begin{aligned} & 0.586 \pm \\ & 0.030 \end{aligned}$	0.994	0.024	0.051
K	$\begin{gathered} -0.443^{ \pm} \\ 0.035 \end{gathered}$	$\begin{aligned} & 0.255^{ \pm} \\ & 0.019 \end{aligned}$	0.989	0.014	0.074
Hb	$\begin{gathered} -0.281 \pm \\ 0.028 \end{gathered}$	$\begin{aligned} & 0.160 \pm \\ & 0.015 \end{aligned}$	0.983	0.011	0.092
Cs (ref.)) 0	0	-	-	-

interaction between the electrolyte and solvent (water). Formally it also means that there is a linear dependence between numbers i and $i^{\text {for different alkall salts: }}$

$$
\begin{aligned}
& \alpha_{1}=(-0.006 \pm 0.004)-\left(1.693^{ \pm} 0.007\right) \beta_{1} \\
& r=0.999 \\
& 8=0.006 \\
& B_{0}=0.004
\end{aligned}
$$

Obviously the last relation is a proportionality between α_{i} and B_{i} (See Fig. 5, too).

Pig. 5. The proportionality between the α_{i} and B_{i} parameters from Eq. (15) for different alkali salt sets. (Cs taken as the reference).

Consequently, quantities $A B_{i j}$ are dependent on one cation parameter only (say, the β_{i} and Eq . (15) ould be rewritten as follows:

$$
\begin{equation*}
\Delta \mathrm{B}_{1 j}\left(\mathrm{Cat}_{0}\right)=3_{i}\left(r_{j}-1.693\right) \tag{17}
\end{equation*}
$$

An important property of B_{1} - parameters is that they are
approximately linearly dependent on the corresponding cation cryotsllographic radiuses r_{i} (See Fig. 6) with the following Innar regression parameters:

$$
\begin{align*}
B_{i}=-(0.032 \pm 0.051)+\left(1.014^{ \pm} 0.087\right) & \left(1.65-r_{1}\right) \tag{18}\\
r & =0.989 \\
& =0.074 \\
\theta_{0} & =0.085
\end{align*}
$$

Fig. 6. The relationship between the gi- paraneters
(Eq. 15) and the cation crystallographic radiusea r_{i}.
In a good approximation the last dependence (18) ie again a proportionality. The slope of the last relationship, practically equal to unity, has no special physical meaning and dependa on the scale of radiuses used. However, in ease of present acale (A), one can write for the $\Delta B_{1 j}$ (Ca):

$$
\begin{equation*}
\Delta B_{1 j}(C s)=\left(1.65-r_{i}\right)\left(r_{j}-1.693\right) \tag{19}
\end{equation*}
$$

on for genersl reference salts

$$
\begin{equation*}
\Delta B_{1 j}\left(\text { Cat }{ }_{0}\right)=\left(r_{0}-r_{1}\right)\left(r_{j}-1.693\right) \tag{20}
\end{equation*}
$$

where r_{0} is the crystallographic radius of the reference oation.

In the general case (scale of radiuses is not specified) the last equation is presented as frilows

$$
\Delta B_{1 j}\left(C z t_{0}\right)=\alpha\left(r_{0}-r_{1}\right)\left(r_{j}-r_{00}\right),
$$

where α and r_{00} are some universal constants depending on the choice of the acale or radiuses. There is a good correspondence between the calculated $\Delta \mathrm{B}_{1 \mathrm{j}}$ values (from Eq.(19)) and their "experimental" values, obtained from the differences (Eq. 14). (See Fig. 7)

Fig. 7. The relationship between the calculated (Eq.19) and experimental (Eq. 14) values of $\Delta \mathrm{B}_{1 \mathrm{f}}(\mathrm{Cs})$.

The mathematical form of the last two equations (19 and 20) indicates that the influence of ions on the structure of solvent presented by the $\Delta B_{i, f}$ values is substantially antisymmetrical in case of anions and cations. It is easy to see that cation radue is taken with negative sign in these formula whereas the anion radius is always positive. But
from these data it is difficult to conclude anything about the connexion between this antisymmetry and structure-making and structure-breaking effect of solutes in solution. The Bi parameters of other electrolytes and other electrolyte solution properties in warious aolvente ehould be analyzed for this aim.

Keeping in mind the practical equality of constants 1.65 and 1.693 in Eq. (19), the latter can be rewritten as follows:

$$
\begin{equation*}
\Delta B_{i j}=A_{0}+A_{1}\left(r_{i}+r_{j}\right)-r_{i} I_{j} \tag{21}
\end{equation*}
$$

or as a linearehip:

$$
\begin{equation*}
\Delta B_{i j}+r_{i} r_{j}=A_{0}+A_{i}\left(r_{i}+r_{j}\right) \tag{22}
\end{equation*}
$$

where A_{0} and Λ_{1} are some universal constants for uni-univalent electrolytes (presumably $A_{0}=A_{1}^{2}$). There is a splendid fit of the latter relationship (22), especially in comparison with the absence of any dependence of primary B_{i} - parameters from the electrolyte ion aize (cf. Fig. 2 and Fig. 8). The linear regression parameters of this relationship are as

Fig. 8. The linear relationship (22) for uni-univalent electrolytes in water $\left(25^{\circ} \mathrm{C}\right)$.
followe:

$$
\begin{array}{r}
\Delta B_{i j}+r_{i} r_{j}=(-2.800 \pm 0.038)+(1.666 \pm 0.012)\left(r_{i}+r_{j}\right) \tag{23}\\
r=0.999 ; s=0.030 ; s_{0}=0.007
\end{array}
$$

By no means this is not the final equation for the calculation. of B_{i} - parameters of $1: 1$ electrolyte aqueous solutions. The B_{1} - parameters can be found only by using the reference electrolyte $B_{i}-v a l u e s$. The dependence of the latter on the structural characteriatics of electrolytes is the subject of the further discussion which will be published separately. Again more data is needed for the final decisions.

However, it is interesting to notice that the anions have a unique isoparametric radius value (1.e. $r_{i p}=1.693 \mathrm{~A}$), whereas for every electrolyte series with constant cation the iso parametric cation radius is naturally that of the reference cation. Consequently there is no unique isoparametric radius for cations. For that reason the $\Delta B_{1 j}$ dependences on the cation radius r_{i} of the electrolyte series with common anion are more complex. (See Fig. 9).

Fig. 9. The relationahiw between $\Delta B_{1 j}$ and cation crystallographic radius r_{1} (Cl salts taken as a reference).

For monoatomic iona they seem to be approximately linear whereas for the polyatomic ions they have a significant curvature in the region of smaller cations. However the $\Delta B_{i j}$ values for different polyatomic anions are linearly dependent. The physical meaning of such phenomena remains opened in the framework of the present discuasion, too. There is no isoparametric point in these functions (See Fig. 9.).

The verification of the structural theory of electrolytes on the basis of more extended experimental data will be presented in the forthcoming communications of this series.

References.

1. M.M. Karelson, This journal, 21, 160(1984).
2. Handbook of Electrochemistry (in Russian), Ed. A.M. Sukhotin, Leningrad, 1981.
3. H.S. Harned, J. Amer. Chem. Soc., 51, (2), 416 (1929)
4. ReA. Robinaon and D.A. Sinclairis J. Amer. Chem. Soc.,.56. (9), 1830 (1934)
5. J.N. Pearce, J. Amer. Chem. Soc., 54, (9), 3544 (1932)
6. R.A. Robinson, J. Amer. Chem. Soc., 57, (7), 2161 (1935)
7. R.A. Robinson and H.J. McCoach, J.Amer. Chem.Soc., 69, (9), 2244 (1947.)
8. ReA. Robinson, J. Amer. Chem. Soc., 68, (11), 2402 (1946)
9. R.A. Robinson, J. Amer. Chem. Soc., 57, (7), 1165 (1935)
10. W. Kangro and A. Groeneveld, Z. phys. Chem. NF, 32, 110 (1962)
11. H.S. Harned and F.E. Swindella, J. Amer. Chem. Soc., 48, (1), 126 (1926)
12. R.A. Robinson, J. Amer. Chem. Soc., 63, (2), 628 (1941)
13. H.S. Harned and L.F. Nima, J. Amer. Chem. Soc., 54, (2), 423 (1932)
14. A.S. Brown and D.A. MacInnes, J. Amer. Chem. Soc., 57. (7), 1356 (1935)
15. R.P.Smith and D.S. Hirtle, J. Amer. Chem. Soc., 61, No 8, 1123(1939)
16. R.A. Robinton and D.A. Sinclair, J. Amer. Chem. Soc., 56, (9), 1834 (1934)
17. T. Shed loviky, J. Amer. Chem. Soe., 72, (8), 3680 (1950)
18. H.S. Harned and S.M. Douglas, J. Amer. Chem. Soc., 48, (12), 3095 (1926)
19. H.S. Harned, and C.C. Crawford, J. Amer. Chem. Soc., 59, (10), 1903 (1937)
20. RoA. Robinson, Trans. Farad. Soc., 35,(2), 1217 (1939)
21. R.A. Robinson, J. Amer. Chem. Soc., 62, (11), 3131(1940)
22. H.S. Harned, 2. phys. Chem., 117, (1), 1 (1925)
23. F. Shedioviky and D.A. MacInnes, J. Amer. Chem. Soc., 52, (3), 503 (1937)
24. F. Shedloveky and DaA. MacInnes, J. Amer. Chem. Soc., 52, (3), 504 (1937)
25. V.K. Leller and E. Hoonan, J. Amer. Chem. Soc., 61, No 10, 1487 (1939).
26. H.s. Harned, J. Franklin, Inst. 225, 623 (1938).
27. R. Caramazza, Gazz. chim. Ital., 20 , (12), 1721 (1960).
28. H.S. Harned and M.A. Cook, J. Amer. Chem. Soo., 59, (3), 496 (1937)
29. H. Ti Tien, J. Phys. Chem., 67, (2), 532 (1963)
30. ReA. Robingon, J. Amer. Chem. Soc., 52,(1), 84 (1937)
31. H.S. Harned and O.E. Schupp, Jr., J. Amer. Chem. Soc., 52, (10), 3886 (1930)
32. J.E. Desnoyere and B.E. Conway, J. Phys. Chem., 68, (8), 2305 (1964)
33. L. Bahe, J. Phys. Chem. , 76, (7), 1062 (1972)
34. LaA. Bromley, AIChk Journal, 12, (2), 313 (1973)
35. K.S. Pitzer, J. Phy日. Chem., 7I, (2), 268 (1973)
36. K.S. Pitzer, J. Phys. Chem., 77, (19), 2300 (1973)
37. B.R. Staples and R.L. Huttall, J. Phys. Chem. Ref. Data, 6, (2), 385 (1977)
38. R.F. Goldberg, and R.L. Huttall, J. Phyg. Chem. Ref.Data, 1,(1), 263 (1978)
39. G.A. Krestov, Thermodynamice of Ionic Processes in Solutions, Leningrad, "Khimiya", 1973
40. V.A. Palm, Fundamentals of the Quantitative Theory of Organic Reactions, Leningrad, "Khimiya", 1977
41. Handbook of Chemistry, Part I (in Russian), Mo, GCHI, 1962.

CO耳男界思

E．H．S S •chnikova，A．H．Gaidukevich，B．V．D ynnik，and S．G．L• 0 nova，Reactivityof Aromatic and Heterocyclic Hydrazine Derivative日．II．Reaction Kinetics of Acylation 2－Gnlorine－5－Sulfamoylbensoic Acid Hydrazide Derivatives with Ben－zoyl Chloride in Chloroform247
T．J．J K r 1 a d o and T．A．Pal Mrogran Package Por Computer Storage and Automatic Searoh of Correla－ tion Equations and for Galculation of Rate and Equi－ librium Constants．2．Digital Coding Systen of Rqua－ tions of Chemical Reactions． 255
A．P．Gaidukevich，E．N．Svechnikova， G．P．K a máov，V．V．Pinchuk，and E．Ya．Ie－ vitin，Reactivity of Aromatic and Heterolytic EJdrasine Derivatives．III．Reaction Kinetics of Acyl－ ation of 9－Hydrazinoakridine Derivatives with Bensoyl Ghloride in Ghlorofor 285
G．Gavénas，G．Dienja，and 0 ． 1 d 0 －- n 1 ene，Kinetice of Iucleophilic Addition of Piperidine and Glycine to N－Substituted and I，I－Di－ substituted Acrylanides， 295
 Iine Hydrolysis of Substituted Phenyl Tosylates． IIII．Resulte of Kinetic Measurements in 80% Aqueous Dimethylaulf oxide 304
 lyte Fffects on the Structure of the Inthium Chloride Solutions in Ethanol．II．Aprotic Solvente 320
M．M．K a rel on and T．S e p p， 1 Structural Theory of the Blectrolyte Solutions．II．Activity Coefficients of 1：1 Electrolytes in Aqueous Solutions． 328

PRAKЦ以OHRAЯ CIOCO
Ton. XII. Bum. 3(75). Hоябрs I984.

огветстволит редадтор в. Дады.

कор⿲ay 60r84/I6.
Буиага ппсчая.

Tupaz 400.

Jera 85 zon

[^0]: \bar{x} Numeration of compounds is the same as in table 1

[^1]: \bar{x} Numeration of compounds is the same as in table 1.

