E. V. TARTU ÜLIKOOL ÕLIKIVIDE UURIMISE LABORATOORIUM

OIL SHALE RESEARCH LABORATORY UNIVERSITY OF TARTU, ESTONIA

BULLETIN No. 2

November 1930

PHYSICAL PROPERTIES OF ESTONIAN SHALE OILS

BY

P. N. KOGERMAN AND A. KÕLL

TARTU

PUBLISHED BY THE OIL SHALE RESEARCH LABORATORY

E. V. TARTU ÜLIKOOL ÕLIKIVIDE UURIMISE LABORATOORIUM

OIL ŜHALE RESEARCH LABORATORY UNIVERSITY OF TARTU, ESTONIA

BULLETIN No. 2

November 1930

PHYSICAL PROPERTIES OF ESTONIAN SHALE OILS

BY BY

P. N. KOGERMAN AND A. KÕLL

TARTU

PUBLISHED BY THE OIL SHALE RESEARCH LABORATORY

OLIKIVIDE UURIMISE LABORATOORIUM OIL SHALE RESEARCH LABORATORY UNIVERSITY OF TANTLE ESTOMA

November 193

BULLETIN No. 2

PHYSICAL PROPERTIES OF ESTONIAN SHALE OILS

LION A ONA KOLL Tartu Riikliku Ülikooli Raamatukogu 11907

Physical Properties of Estonian Shale Oils

By

P. N. Kogerman and A. Kõll

The crude Estonian shale oil differs in many respects from well petroleum, although well petroleum itself varies in composition from field to field. The shale oil might be classified as an asphalt base oil, but because of its fairly high contents of phenols it stands about midway between typical asphalt base oils and low-temperature lignite and coal tars. The difference in chemical composition affects to a certain extent the physical properties of the oil. The purpose of the present research was to help the refinery engineer in his calculations, by supplying him with reliable data.

The following physical properties of the crude shale oil and its fractions have been determined :

(1) specific gravity;

(2) viscosity;

(3) surface tension;

(4) thermal properties:(i) coefficient of expansion;

(ii) specific heat;

and (iii) heat of vaporisation.

The electrical properties, i. e. dielectric constants of neutral oils, were determined by V. Koern, and have been published in this Journal. (Vol. XXXV, 3-4, 1928).

Experimental

A freshly distilled sample of Kohtla shale oil was used for the determination of physical properties.

The crude oil is a dark-brown liquid with a green fluorescence and a characteristic odour.

The sample used for the experiment contained 1.19% of moisture; its sp. gravity was 1.008 at 18°C; flash point (Martens-Pensky), 91°, and viscosity (Engler) 6.4 at 50°.

The fractionation of the oil was carried out in a 5 litre copper flask, provided with still head, 26 cm in height. To avoid the cracking of the oil at higher temperatures, a reduced pressure, 50 mm Hg, was maintained in the system during distillation. The rate of distillation was about 2 drops per sec. Table I shows the particulars of fractionation. The first fraction up to 150° contained 36.0 g or 1.17% of water. The fractions were dried and filtered.

Table I

raction	up to 150°	42.5	g	or	1.38%	
	$150^{0} - 175^{0}$	9.0	97	ada ,,	0.29%	
	$175^{0} - 200^{0}$	15.0	99	10 V 37	0.49%	
	$200^{0} - 225^{0}$	35.5	3 9		1.17%	
	$225^{0} - 250^{0}$	133.5	99	97	4.42%	
	250^{0} -275 ⁰	166.5	"	33	5.51%	
	2750-3000	225.0	77	37	7.45%	
	the second state of the se	and the second s	1000	State of the second sec		

F

Total up to 300° 20.71%

Specific Gravity and Coefficient of Expansion

A. Specific gravities were determined by means of a pyknometer and a Mohr's balance. For maintaining a constant temperature a water thermostat was used. The particulars of determination are given in Table II and Graph I (Fig. 1) below. It is seen from the graph that the specific gravities of the oils are nearly linear functions of the temperature.

Table II

Specific Gravities at Various Temperatures

ecus n	Specific gravities of fractions					Crude oils			
Tempe- rature	Up to 150 ⁰	$150^{0}-$ -175 ⁰		$200^{\circ} - 225^{\circ}$	$225^{0} - 250^{0}$	$250^{\circ}-$ - 275 [°]	275^{0} - 300°	From Kohtla retort	From David- son ret.
	$\begin{array}{c} 0.8126 \\ 0.8049 \\ 0.7968 \\ 0.7896 \end{array}$	$\begin{array}{c} 0.8298 \\ 0.8220 \\ 0.8139 \\ 0.8066 \end{array}$	$\begin{array}{c} 0.8382 \\ 0.8303 \\ 0.8230 \\ 0.8149 \end{array}$	$\begin{array}{c} 0.8507 \\ 0.8430 \\ 0.8356 \\ 0.8280 \end{array}$	$\begin{array}{c} 0.8694 \\ 0.8620 \\ 0.8548 \\ 0.8480 \end{array}$	0.8905 0.8830 0.8758 0.8694	0.9257 0.9187 0.9116 0.9047 0.8980 0.8910	0.9844	0.9376 0.9288 0.9218 0.9148 0.9061 0.8993

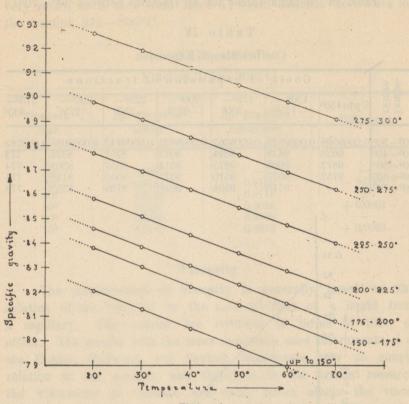


Figure 1.

B. The coefficients of expansion were calculated from the equation

$$a = \frac{a-b}{b(t'-t)} \cdot \ldots \quad (1)$$

where a and b are sp. gravities corresponding to temp. t' and t. The calculated mean values are given in Table III below:

T	a b	l e	III
---	-----	-----	-----

	M	lean	Coeff	ficient	s of E	xpansion
--	---	------	-------	---------	--------	----------

Fractions	Sp. gravities at 20 ⁰ C	Mean coeff. of expansion
Up to 150° $150^{\circ}-175^{\circ}$ $175^{\circ}-200^{\circ}$ $200^{\circ}-225^{\circ}$ $225^{\circ}-250^{\circ}$	$\begin{array}{c} 0.8204 \\ 0.8375 \\ 0.8459 \\ 0.8582 \\ 0.8770 \end{array}$	$\begin{array}{c} 0.0009712\\ 0.0009523\\ 0.0009393\\ 0.0009027\\ 0.0008677\end{array}$
$250^{\circ}-275^{\circ}$ $275^{\circ}-300^{\circ}$	0.8977 0.9257	0.0008226 0.0007716

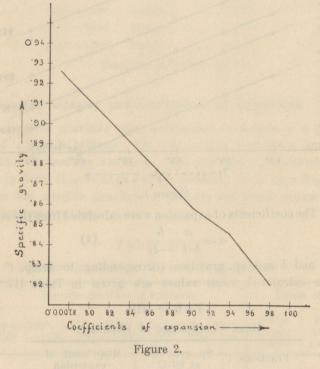

5

Table IV contains values for all fractions between 20°-70° C.

Table IV

Coefficients of Expansion	(Coe	fficie	nts (of	Expa	insion
---------------------------	---	-----	--------	-------	----	------	--------

-0-	an internal	Coeff.	ofexpa	nsion	of fract	tions.	The second
Tempe- rature	Up to 150º	150^{0}	175^{0} -200 ⁰	$200^{\circ}225^{\circ}$	225^{0} 250^{0}	250°	$275^{\circ}-$
$20^{0} - 30^{0}$ $20^{0} - 40^{0}$ $20^{0} - 50^{0}$ $20^{0} - 60^{0}$ $20^{0} - 70^{0}$	9628 9872 9752		9394 9275 9510	9015 9014 9275		8324 8303 8138	773 774 771

From the coefficients of expansion one can calculate the values of specific gravities by solving the equation (1) with respect to b:

$$b = \frac{a}{a(t'-t)+1} \cdot \dots \cdot (2)$$

The difference between the observed and the calculated values is

very small, as is seen from Table V, which contains the values for the fraction 275-300° C.

Tempera- ture	Sp. gravities found	Sp. gravities calculated	Difference
200	0.9257	12.0 72.0 12.0 10.0	- 908 - 909
300	0.9257	0.9186	- 0.0001
400	0.9116	0.9116	_
500	0.9047	0.9048	+0.0001
600	0.8980	0.8980	· · · ·
700	0.8910	0.8913	+0.0003

Table V

Viscosity

The measurement of viscosity is generally based on the relation of the viscosity to the time of efflux of a liquid from a capillary. The results are recorded in terms of time of efflux. The results with the more commonly used instruments, i. e. the Engler, Redwood, and Saybolt viscometers, bear no simple relation to one another, and therefore, in the present research the viscometer of Ostwald was used, which allows the viscosity to be recorded in "absolute units". Pure distilled water was used as the standard liquid; its coefficient of viscosity $[\eta]$ equals almost exactly 0.01 at 20.2° C (one centipoise), and densitv = 0.9982.

For regulating the temperature the water thermostat was used as before.

The values for η were calculated by means of the equation $\eta: \eta_0 = \frac{st}{s_0 t_0}, \ \eta_0, s_0 \text{ and } t_0 \text{ being values of water.}$

Blank experiment with water

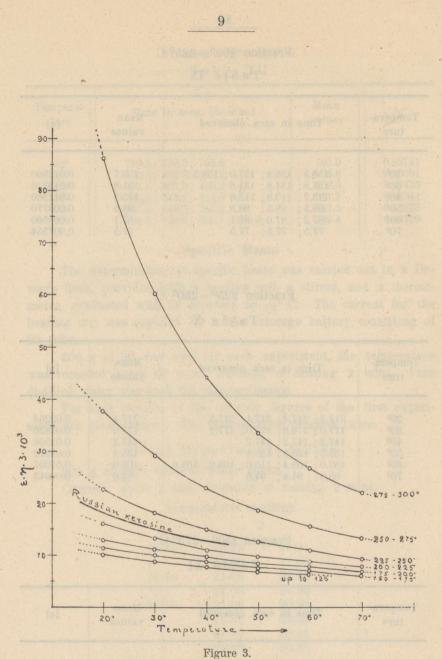
With the viscometer 5 cc. of water at 20.2° C showed the following times of transpiration: 84.3; 84.4; 84.4; 84.4 secs. Mean value 84.4 secs.

Fraction up to 150° C

Table VI

Tempera- ture	Time in secs. observed	Mean values	[η]
20 ⁰ 30 ⁰	103.3; 102.5; 103.3; 102.5 90.0; 90.0; 90.0;	102.8 90.0	0.010011 0.008681
400	79.8; 79.8; 79.8;	79.8	0.007624
50 ⁰ 60 ⁰ 70 ⁰	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72.5 65.0	0.006857 0.006092

Fraction 150°-175° C


Table VII

Tempera- ture	Time in secs. observed	Mean values	[η]
200	114.1; 114.5; 113.0; 114.5	114.0	0.011300
30 ⁰ 40 ⁰	100.7; 99.6; 100.2; 101.0 87.7; 87.9; 87.5;	100.4 87.7	0.009889 0.008557
50^{0} 60^{0} 70^{0}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78.1 71.0 63.0	$\begin{array}{c} 0.007545 \\ 0.006798 \\ 0.005973 \end{array}$

Fraction 175°-200° C

Table VIII

Tempera- ture	Time in secs. observed	Mean values	[η]
20 ⁰ 30 ⁰	129.6; 129.3; 129.9 111.1; 110.7; 110.9	129.6 110.9	0.013013 0.011033
40^{0} 50^{0} 60^{0} 70^{0}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96.0 85.4 75.8 68.0	$\begin{array}{c} 0.009461 \\ 0.008343 \\ 0.007332 \\ 0.006517 \end{array}$

Fraction 200°-225° C

Table IX

Tempera- ture	Time in secs. observed	Mean values	[η]
200	156.5; 156.8; 157.0; 156.5	156.7	0.015960
300	131.8; 131.8; 131.8	131.8	0.013310
400	113.2; 113.8; 113.6	113.5	0.011360
500	98.5; 98.5; 98.5	98.5	0.009770
600	87.2; 87.0; 87.1	87.1	0.008560
700	77.5; 77.6; 77.5	77.5	0.007554

Fraction 225°-250° C

.

Table X

Tempera- ture	Time in secs. observed	Mean values	[η]
20 ⁰ 30 ⁰	217.3; 217.4; 217.4; 217.5	217.4	0.02263
40°	177.0; 176.8; 177.0; 177.2 147.2; 147.2; 147.2	$177.0 \\ 147.2$	$0.01826 \\ 0.01506$
500	125.2; 125.5; 125.4	125.4	0.01272
600	109.0; 108.4; 110.0; 109.0; 108.9	109.0	0.01097
700	95.0; 94.4; 94.6	94.6	0.00943

Fraction 250°-275° C

Table XI

Tempera- ture	Time in secs. observed	Mean values	[η]
200	356.8; 356.4; 356.0; 356.8	356.5	0.03799
300	276.6; 276.6; 276.4; 276.8	276.6	0.02924
400	219.6; 219.8; 219.7	219.7	0.02303
500	178.3; 178.4; 178.3	178.3	0.01853
600	150.5; 150.8; 150.6	150.6	0.01554
700	128.4; 129.0; 129.5	1290	0.01320

Fraction 275⁰—300⁰ C Table XII

Cempera- ture	Time in secs. observed	Mean values	[η]
200	795.5; 796.0; 795.0	795.0	0.08741
300	558.6 : 558.9 : 558.2	558.6	0.06091
400	411.1 ; 407.5 ; 409.0	409.0	0.04426
500	310.2; 312.2; 311.0	311.1	0.03341
600	247.2; 248.0; 247.4	247.5	0.02638
700	198.8; 198.8; 200.5; 199.8	199.4	0.02109

Specific Heats

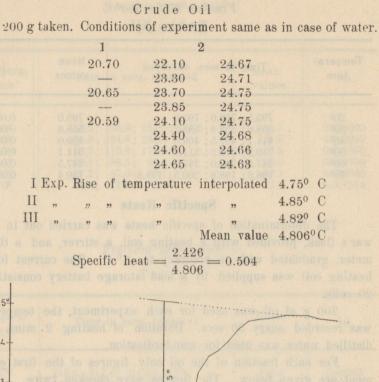
The determination of specific heats was carried out in a Dewar's flask, provided with a heating coil, a stirrer, and a thermometer, graduated with an accuracy to $\frac{1}{10}$ ° C. The current for the heating coil was supplied by a lead storage battery consisting of 20 cells.

200 g of oil was used for each experiment, the temperature was recorded every 30 secs. Duration of heating 2 mins. Pure distilled water was used for standardisation.

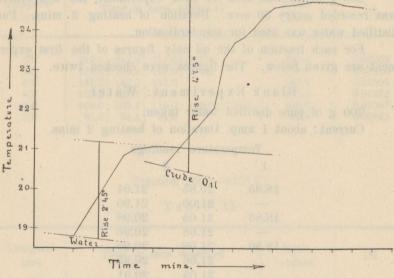
For each fraction of the oil only figures of the first experiment are given below. The figures were checked twice.

Blank Experiment: Water

200 g of pure distilled water taken.


Current: about 1 amp. Duration of heating 2 mins.

Temperature readings


1	2	3
18.85	20.85	21.01
	21.00	21.00
18.83	21.05	20.98
-	21.08	20.96
18.80	21.08	20.95
	21.06	20.93
	21.05	20.91
	21.03	20.90

Ι	Exp.	Rise	of	temperature	interpolated	2.45° C
II	39 10	· · · ·	"	will "	w day mor	2.425° C
III	22	27	22	beitten sev		2.415° C
					Mean value	2.426° C

11

254

Figure 4.

Fraction up to 150°

Blank experiment with water in this case showed the mean rise 2.31° C. (This experiment was carried out at the end of the other series of experiments).

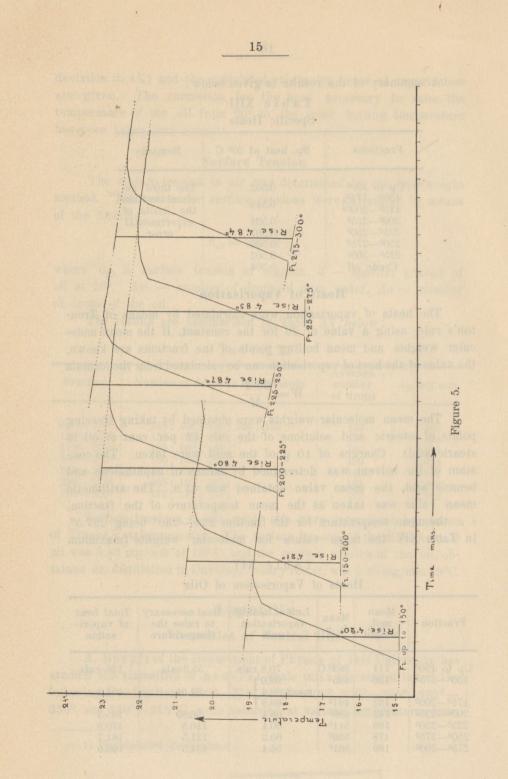
1		2	
14.94	18.20	18.89	18.71
	18.70	18.86	18.69
14.94	18.80	18.84	
	18.90		
14.94	18.95	18.80	
	18.94	18.76	
	18.91		

Ι	Exp.	Rise	of	temperature	interpolated	4.20° C
II	37	>2	99		d0 8 m	4.16° C
III	"	>>	27	»»	10	4.18° C
					Mean value	4.18° C
				9 91	4	

Specific heat $=\frac{2.31}{4.18}=0.552$

Fraction 150°-200°

1		2	
16.55	19.70	20.58	20.36
	20.30		-
16.55	20.49	20.53	20.31
OFTER !	01-50	OF TO	
16.55	20.55	20.48	
	1000		
	20.60	20.44	
		20.40	


I Exp. Rise of temperature interpolated 4.21°C 4 21°C

Fraction 200°-225°

1	2012	2
18.30	21.80	22.90
8 <u></u> 8	22.50	22.88
18.30	22.70	22.86
e - a	22.80	22.84
18.30	22.87	22.81
	22.90	22.80
	22.90	22.78

Ι	Exp.	Rise	of	temperature	interpolated	4.800	С
II	99	"	"	,,	"	4.82°	С
111	.,,	"	? ?	"		4.81°	С
					Mean value	4.810	C

Specific heat $=\frac{2.426}{4.81}=0.504$ Fraction 225°-250° 2 1 22.70 23.08 22.91 18.70 22.00 22.88 22.50 23.06 ____ 18.68 22.85 23.01 22.81 23.00 22.98 22.79 18.60 23.05 22.96 22.74 I Exp. Rise of temperature interpolated 4.87° C " 4.80° C II " 189 16. " 4.78° C III 22 37 22 Mean 4.82° C Specific heat $=\frac{2.426}{4.82}=0.503$ Fraction 250°-275° 1 2 17.60 22.03 22.17 21.10 21.90 22.16 22.00 ____ 17.60 22.00 22.15 21.99 22.10 22.11 21.91 17.60 22.14 22.10 21.90 22.17 22.05 21.87 I Exp. Rise of temperature interpolated 4.85° C " 4.84° C II " Mean 4.845° C Specific heat $=\frac{2.426}{4.845}=0.500$ Fraction 275°-300° 1 2 18.15 21.20 22.48 22.37 21.90 22.48 22.34 22.25 22.46 18.10 22.30 22.40 22.43 22.26 18.07 22.45 22.40 I. Exp. Rise of temperature interpolated 4.84° C . 4.82° C II. 99 Mean value 4.83° C Specific heat $=\frac{2.426}{4.83}=0.502$

A summary of the results is given below:

Table XIII

Specific Heats

Fractions	Sp. heat at 20° C	Remarks
Up to 150° 150°-175° 175°-2000 220°-225° 225°-250° 250°-275° 275°-300° Crude oil	$\begin{array}{c} 0.552 \\ 0.548 \\ 0.504 \\ 0.507 \\ 0.500 \\ 0.502 \\ 0.504 \end{array}$	The third de- cimal is within the limits of experimental error

Heats of Vaporisation

The heats of vaporisation were calculated by means of Trouton's rule, using a value of 20 for the constant. If the mean molecular weights and mean boiling points of the fractions are known, the value of the heat of vaporisation can be calculated from the formula

$W = \frac{20 T}{M}$

The mean molecular weights were obtained by taking freezing points of stearic acid solutions of the oils (2 per cent of oil in stearic acid). Charges of 10 g of the acid were taken. The constant of the solvent was determined by means of naphthalene and benzoic acid, the mean value obtained was 41.8. The arithmetic mean value was taken as the mean temperature of the fraction, *i. e.* the mean temperature for the fraction $225-250^{\circ}$ being 237.5° . In Table XIV the mean values for molecular weights (maximum

Table XIV

Heats	of	Vapo	risation	10	Oils	

Fraction	Mean mol. weight	Mean b. p.	Latent heat of vaporisation cals	Heat necessary to raise the temperature	Total heat of vapori- sation
Up to 1500 1500—1750	111 126	393 ⁰ C 435 ⁰	70.8 cals. 69.0 mean 69.4	55.2 cals.	126 cals.
$175^{0} - 200^{0}$	132	4610	69.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$200^{0} - 225^{0}$	142	4860	68.4	96.89	165.3
$225^{0} - 250^{0}$	169	5110	60.4	110.5	170.9
2500-2750	178	5360	60.2	121.5	181.7
$275^{0} - 300^{0}$	199	5610	56.4	134.5	190.9

deviation $\pm 4\%$) and the calculated values for heats of vaporisation are given. The correction for the heat necessary to raise the temperature of the oil from 20° to the mean boiling temperature has been taken into account.

Surface Tension

The surface tension to air was determined by the drop-weight method. The values for surface tensions were calculated by means of the formula:

$$\sigma_{z0} = 7.30 \ d \frac{Aw}{Ao},$$

where σ_{20} is surface tension in mg/mm, d — specific gravity of oil at 20°. Aw — number of drops of pure water, Ao — number of drops of the oil.

The results are summarised in Table XV below:

Fraction	Number of drops in experiments	Average number of drops	σ_{20} mg/mm
Up to 150 ⁰ 150 ⁰ —175 ⁰ 175 ⁰ —200 ⁰ 200 ⁰ —225 ⁰ 225 ⁶ —250 ⁰ 250 ⁰ —275 ⁰ 275 ⁰ —300 ⁰	156; 156; 157; 156; 156; 156; 158; 157; 159; 160; 160; 160; 160; 160; 160; 160; 160	156 158 160 159 160 165 172	$\begin{array}{c} 2.802 \\ 2.824 \\ 2.818 \\ 2.876 \\ 2.931 \\ 2.899 \\ 2.868 \end{array}$

Table XV

Surface tensions of the crude oils were determined by means of Traube's stalagmometer. The surface tension of the Kohtla crude oil was 3.38 mg/mm at 18° C, and the surface tension of the oil, obtained on distillation in Davidson rotary retort, was 2.88 mg/mm 18°C.

Appendix

Viscosities of Neutral Oils

A. Berg¹) of the Department of Physics of this University has studied the viscosities of neutral shale oils; the viscosities of the following five fractions 250° — 275° , 275° — 300° , 300° — 325° , 325° — 350° , and 350° — 375° C, were recorded at various temperatures from

Patie Frences

1) Unpublished dissertation.

 0° to 100° C. A specially designed capillary viscometer was used for the measurements of viscosity. Length of the capillary 16.68 cm, diameter 35.327 mm.

By plotting the observed values of viscosities of each fraction against temperature on a logarithmic scale, straight lines were obtained. The relation between viscosity and temperature might be expressed by the following equation:

$$\eta = \frac{C}{(T+\tau)} n - A,$$

where C and A and τ are constants.

To suit the equation the calculated values of the constants must be slightly different for each fraction, as is seen from Table XVI.

Fractions	C o	nstants	3	Time of efflux in secs.*)
	п	A	τ	Time of entity in secs.)
anai 102 (mm	mber	ments nu		Fraction Number of drops in
$250 - 275^{\circ}$	1.417	0.09×10^{-2}	490	$773 (20^{\circ}); 513 (50^{\circ}); 384 (90^{\circ})$
$275 - 300^{\circ}$	1.452	0.18×10^{-2}	470	802 (19 ⁰); 518 (52 ⁰); 417 (93 ⁰)
300-3250	1.483	0.25×10^{-2}	420	899 (24°); 704 (53°.2); 490 (93°.8)
325-3500	1.525	0.31×10^{-2}	360	1237 (220.1); 1036 (510); 554 (910)
$350 - 375^{0}$	1.549	0.36×10^{-2}	280	1866 (180.5); 975 (500); 650 (890)

Table XVI

*) Note: The values given are merely illustrations, the observations were recorded at about 16 different temperatures, between 0^0-100^0 for each fraction of the neutral oil.

Viscosities of crude oils in Engler degrees were as follows:

(1) Kohtla crude shale oil $E_{20^{\circ}} = 33.2$; $E_{50^{\circ}} = 1.9$.

(2) Crude from Davidson retort $E_{20^{\circ}} = 3.5$; $E_{50^{\circ}} = 1.2$.

Summary

(1) Physical constants of the crude Estonian shale oil and its seven fractions have been determined.

(2) A close similarity is observed between the constants of the shale oils and those of crude petroleum and its distillates.

(3) The coefficients of expansion are slightly higher than those found in the case of petroleum products.

(4) The values for heats of evaporisation of the shale oils are very close to the figures obtained in the case of oils from lignite tars.

Literature

P. N. Kogerman, The Oil Shale Industry of Estonia, Tartu 1927.

V. Koern, This Journal, Vol. XXXV (3, 4), 1928, pp. 155-173.

L. Gurwitsch, Wissenschaftliche Grundlagen der Erdölverarbeitung, Berlin 1924.

W. A. Gruse, Petroleum and its Products, New York 1928. C. Engler, Das Erdöl, Bd. I, Leipzig 1912.

D. Engrei, Das Endoi, Du. 1, Leipzig 1912.

D. Holde, Kohlenwasserstofföle und Fette, Berlin 1924.

Ostwald-Luther, Physiko-chemische Messungen, Leipzig 1925.

K. Arndt, Handbuch der physikalisch-chemischen Technik, Stuttgart 1915.

Landolt-Börnstein-Roth, Physikalisch-chemische Tabellen, Berlin 1912.

Kohlrausch, Lehrbuch d. praktischen Physik, Leipzig 1925.

D. T. Day, A Handbook of the Petroleum Industry, New York 1922.

E. H. Zeitfuchs, Specific Heats, Heats of Vaporization, and Critical Temperatures of California Petroleum Oils. *Ind. Eng. Chem.*, Vol. 18, 1926, p. 79 sq.

