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Acta et Commentationes Universitatis Tartuensis,
893. 1990, p. 3-10.
ON LARGE DEVIATIONS FOR. A SUM OF TYPE Lf(T3t)

G.Misevi&ius

1. Introduction and statement of results.

Let Tt be a mapping of [0,1] into itself defined by

Tt = {2t} - the fraction of 2t. If we express t in the form
g (t) e (t)

t = + ...+ = [el(t),cz(t)...],then Tt = [ez(t),

£ (t)...]. The coefficients are independent r.v.s.
with respect to the Lebesgue measure and they also are sta-
tionary. If the function f(t) is periodic with period 1, the

relation f(Tt) = f(2t) takes place. We denote
1
S =5 (t) =T £(2%), Ef(t) = JT(t)dt =0,
3=1

o
1

B? = Ds_ = [s®(t)dt,
n n

n

and let mes{...} signify the me:sure of the set of t € [0,1]
for which the condition in curly brackets is valid. As usu-
ally,®(x) denotes the standard normal distribution function.
o indicates the end of the proofs.

The first limit theorem for Sn was proved by Fortet and
Kac. I.A.Ibrahimov has given the optimal conditions for
validity of that theorem. D.A.Moskvin established the first
theorem for large deviations. In this paper some statements
about large deviations for a class of unbounded functions
will be proved.

Iheorem 1, Let f(t) be a measurable function of bounded
variation and
1
E[£()|® = fl£(t)|Fdt < (p—Z)!HOHP'z, (1)

o
where p = 3,4,...,5 + 2, HO,H are the constants and

1
§ < (B {n(Inn)™")2 = s .
Then, for 1 £ x < {§, the following relations for large
deviations hold:

mes{S > xB }
1-%(x) = exp{(L(x)(1 + }, (2)



mes{S < -xB } ~ R 1
— = exp{(L(x)(1 + e f (x) — 1},
50 5

where fJ(x), 1=1,2 is a bounded function, and power

I :
series L(x) = L x**® converges for |x| < IZAn/2I3. In this

circle which :—%he relation Ii(x) = 5|x| /44 is valid. The
coefficients 1 ,k=0,1..., can be expressed by cumulants and
for k £ 5-3 these coefficients coincide with the coeffi-
cients of well known series of Cramer-Petrov.

Theorem 2. If for a function of bounded variation f(t)

the estimation
1

Jif(e) f¥de = Hz(k!)1+r -2 3

is valid for k=3,4,..., then for 0 = x < H({n) the
following relations for large deviations hold

mes{S > xB } X+
—IEm exp{L (x)(1 + © £ (x) —3; 1, (4)

mes{S < -xB } x+1
e exp{l (-x)(1 + o f (x) =1}

where f (x) is a bounded function and
L(x) = £ AX*+ e(X/Ar)S, p = r>

S-x<P L r=0.

Theorem 3. If the conditions of the Theorem 2 hold,
then
1/¢1+27)

_ (5)
in
2. Auxilary statements.

At first we shall introduce some notations. Put

() - uy _ 6
[f]J (t) [f]J (6)
(a conditional mean value) and
() ca £J+l
Wiz 4 AL L+ 7)
nJ 2 *+ 22 U ¢
The r.v.s. n‘’, 3=1,2,... form a Markov

chain.



Proof. It ias evident that every n;“’ defines a unique

gset of € ,...,¢ . Therefore, G-algebra F generated by
3 J+u u
variables n;“’,...,ng“’ coincides with G-algebra generated
1 1
by & . Usaing definition of the conditional pro-

bability and definition of Markov chain, now the lemma fol-
lows from the equality
£".‘I-.‘l +u}

J}dt. = mes{t € A, n;“’m}

&
L4+ ... b ——
23—_114-14

2

which is valid for all A€ F and 4 < 3. O

Thus, variables [f]:“> are connected into the Markov
chain.

Further, let F‘b be the minimal G-algebra generated by
M™’; a<m= b} and the space of the values of n;“’.The
coefficient of ergodicity is equal to

= 1 - sup sup |mes{A|n;“’} - mes{Aln;“)}l. (8)

()
Ase Fm nl 'nl;e n:|.

In this case we have

- <
uiu) = { 0 for m 1 u, (9)
rm 1 form-21>u+1,

(u)

because cl,sz,... are independent. At the same time nl are
u-independent. Put
2 = (1) - i, 8- = £ [£14.
3 J n 3
a=1
Lemma 2. The following relations are valid:
=D8_=G*n+cC, , (10)
(11)
16 - 6,1 £ ®s/,u/2. (12)
It is easy to prove (see [2]) that
E|f(t) - 0 |* < (var f£)*279, (13)
in particular
E|f(t) - < g% 279, (14)

The last relation makes it possible to apply the calculus in
[4] to obtain (10), (11) and (12). o



Examine the summ S° = L [f].1 . We must evaluate the
1=1 .
cumulants I'(S°) expreassed by formula

r (s = T r({f [£1°%%), (15)
1 x

waare I'([£ ...,[f]i“’) are mixed cumulants. For this pur-

1
pose we use the formula of Statulevicius

rereai®. .., ¢ =

1 k
k 1 ~
= £ (-1) L N (I mE ([£1) (16)
V=1 v : »=1 )
UI-=I
DEL P

where the second summation is taken over all the partitions

{11""‘Iv} of the set I. The integers Nv(11""'1v) 0 =
- Nv(I1""'Iv) =< (v-1)!, depend on the set {11,...,Iv} and
if Nv{II,....Iu} > 0, then

v

max (t\—t ) 2 max (t -t ).

The symbol EY1"'Yk is defined recursively by

x-1 .
EY ...Y =EYY ...Y - EY ... Y EY ...Y for k*2
1 x 12 x 1 3 I+1 ®
and EY_ = EY_.
1 1
If we put
mes {x iA} = mea{n‘®e Ant*? = x 1},
k- st t t
3-1" "3 3-1 3 3-1 3
then
u) _ (a) ) -
E[f]I = E([f]t ...[f]t ) =
= f...fgt (xt )mest {dxt } x
1 1 1 1
i dx ) (dx_ ))
x T g (x )(mes (x ;dx - mes X ,
3=z -J -J tJ—lltJ tJ—l 3 - tJ tJ

where mes (B) = mes{n;“’e B} and gt(x) is a Ft—measurable
function.
As in [7], let

n -
A (a;w): = max{l, max I a'Y(s,t)}.
n 1585w t=8

Lepma 3. Under the conditions of Theorems 1 and 2 the

estimation



1+
r (s7) < (k!) *H (B )* Zu*2 (18)
k n [o] 1
takes place.
Proof, Following the reasoning on pages 94-95 of [7],
we get from (9) that

© -1

n a:l./w( l(p) , l(p))
=1 3 J+1

&

-~ x -
E(£15< m!® ¢, . 1H P
t ]I 1 r, ] 3

where 0 £ £ =k , w> 1, HOZ 0, H2> 0, 1 <p=<v, 1<vc=<Kk,
- .
from which we deduce

Lri) < nk!sk‘lﬂt‘”A:'l(a;w),

w=(1,2,...,n).
In our case, putting €« = 1, w = 1, we see that
< P 1Yk Ak-1
IT (B )] = n(k)™HT A% (a,1).

Due to (9), A* = u. Remembering the Lemma 2, we get asser-
tion (18). o
Lemma 4 (Rudzkis, Saulis, Statulevi&ius, [7]1). Let r.v.
= 0 and E¢2= 1 satisfy

Ir ()] < (k-2)!1/8%7%, k = 3,4,...,5+2,

where S is even and S < 2A%2. Then for x, 0 < x < {S /3fe,
the following relations concerning large deviations are
valid

1-F (x) ~ -
- exp{L(x)}[l + o f (x) ﬂ]
1-%(x) R 1}
(19)
F.(-x) - ~
_— = exp{L(x)}[l + e f (x) x+11
&(-x) 22 5

where

117 + 965 exp{~ (1 - 3fe x/{5)s*’*}
f (x) = ,
I (1 - 3fe x/{5) .,

o

3=1,2; L(x) lkxk+s and this power series converges when

k=0
x| < 42 a/3fe. In this circle |L(x)| < 5|x|3/4A. The coef-
ficients 1&’ k = 0,1,2... may be expressed by the first r. =
= min{k+3,5} cumulants of r.v. &, for k =< S-3 the coef-
ficients being identical with classic series of Cramer-
Petrov.

Lemma 5 (the same authors as in Lemma 4): If r.v. ¢
with Ef = 0 and E¢%= 1 satisfies

2%



IT ()] < (k)¥™/a%"2, k = 3,4,... (20)
then in interval 0 X x < the following relations for
large deviations hold

1-F,(x)
Z r x+11
——— L 1 +ef ’
Py exp{L, (x)} , £ (%) 8,
F,(-x) .
4 - N x+11
__;?t;; = exp{L,( X)}Ll + e f (x) )
where
B0(1 + 104% exp{-(1-x/ar){&r}
f,(x) = 1 - x/&r _ =12,
. £ oA s {l/r—l. ¥ >0
. (X) = + o(x/48)7, p = _ ,
4 a<i<p ¥ 14 o =0
2 (16}
< E [A_:] ((+1)!) , k = 3,4,... |o | =1, 1-1,2,
and
-x%/a, = L,($x) < (x2/2) (x/x + 8a,).
Lemma 6 [7]. If for r.v. £ the condition (20) holds,
then

= 1
sup [Fy (x) - &(x)| < 18/A,, & = c A

3. Proofs of the Theorems.
If we put in (9)

u=46Inn,

then the estimation (12) gives us
|6 -G | £c/m®

which is eguivalent to

EM (£ |* < EM*[£(¢)| + Varf n”

E|[£1®|* < 8% %k!, 3=1,2,...

(21)

(22)

(23)

Proof of the Theorem 1. Under the conditions of this

theorem, in virtue of (18) and (23), we have

(s’ 1l v g f6 H 1n n}*"%
roo—= 1= (k)™ _—
I lc & °l ¢ 4n J

(24)



G 4n
—a___
Slln n
the large deviation for S5°/G {n. For the +transition to
§ /G{n we evaluate the difference |Sn/GIn - S’/Gufnl.
By the inequalities of Tchebychev and Hélder

I+ -6

1 u
where 62 =6 - 61 - 2.
The obvious estimations are valid:

Thus we can use the Lemma 4 with & = Az = and obtain

1 c
> 3 } = —-53 (25)
n 1 2

|2(x + &) - 8(x)| = c & exp i- % } (26)
for £ > 0 and x 2 1,
2
———— = (1 - #(x))exp {§ } (27)
4d2n (x+1)

for x 2 0. If we choose 61> 2 and 6 > 4 (in (21)) we can
state that

a
|mes{S /GIn < x} - mes{S /G dn < x+es }| = , (28)
n n u n 2z

c
where =

2/n_.
z
Having in mind that |L(x)| < 5|x|3/44, the evaluations

above give us the statement of the Theorem 1. o

Broof of the Theorem . The proof is based on the Lemma
5 and uses the same manipulations as in Theorem 1. o

Broof of the Theorem 3 The statement of this theorem
follows from the Lemma 6 and (28). We get from Lemma 6 the
estimation in the Central Limit Theorem for S°/G {n:

In =y17(1+27)
sup|mes{§ /G {n < x} - &(x)| £ ¢ [ ]
n" u v

The rest is evident. o
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0 BOJILIMK YKJOHEHMR JJii CYMM THOA Lf(T7t).

I'.MUcaBu4oC

PeswmMme

B pa6GoTe o606manTcH pe3yabTaTH J.A.MockBMHa M aBToOpa
ANA GONBEMX YKJIOHEHMM CYMM BHJa zf(TJt), a Takxe NPHBOAHUTCH
OLeHKa B LEHTPaJAbHOM nNpelledbHON TeopeMe.

Hccaeaywrcss OGOYHKUMHM OrPAHMYCHHON BapHauuM. B yCHOBHAX
(1) MMEenT MeCTO COOTHONEHMH GOJBEMX YKAOHEHMH (2), a B ycao-
BUAX (3) - cooTHomeHus (4) u (5).

Received November 1989
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MOMENTS AND CUMULANTS OF MULTIVARIATE
ELLIPTICAL DISTRIBUTION WITH SOME AFPLICATIONS

- I.Traat

Many statistical problems having simple solutions in the
class of normal distributions, but being very complicated in
the general case, appear to be gquite easily solvable in the
class of elliptical distributions too. This is caused by the
fact that elliptical distributions have many common prop-
erties with multivariate normal distribution, which itself
is a member of this class. For instance, the expressions of
moments and cumulants of the elliptical distribution are
similar in some sense. The fixed order central moments and
cumulants of different elliptical distributions have the
same functional relationship through second order cumulants.
The difference appears in the constant multiplier only,
which is determined by the concrete elliptical distribution.
So the known expressions of central moments of multivariate
normal distribution may be used for the representation of
moments and cumulants of any multivariate elliptical distri-~
bution up to the constant multiplier.

The random p-vector x is said to have an elliptical dis-
tribution Ep(p,V) if its density function is of the form

f(X)=aprl_1’2 h[(x-u)TV" 3 (x-p) ] (1)

for some function h, where V is a positive definite matrix,
ap is a normalizing constant.

The characteristic function of the elliptical distri-
bution has the form

p(t)=exp(itTu)w(tTVt) (2)
for some function w.

The expressions of cumulants of E (p,V) can be obtained
by finding the partial derivatives of In ¢(t). After the

differentiation we get the formulae (the cumulants up to the
fourth order are given in [4])

Ex=p , cov(x)=(nid)=kzv , (3)

3
(4)

34 11



LTI S ME S (5)
105

% siabea=Ba & % %o ®eq - (8)
where the summation 1s carried out over all different
products of %, like shown in (4). Note that the given sums
present the central moments of order 4, 6, and 8 of the
multivariate normal distribution with covariances %

The constants k are depending on the derivatives of w(u)
with respect u, u=t Vt, in the following way:

k,=-2v' (0), (M
k,-¥"(0)/v'*(0)-1, . (8)
k,=[¥™(0)-3¥" (0)¥’ (0)1/¥'"(0)+2, (9)

I, =[¥™(0) - 4™ (0)w’ (0)-3¥"(0)+12" (0)¥’'*(0)1/v** (0)-6. (10)-

The expressions of central moments of elliptical distri-
bution can be found with the help of general relations
between moments and cumulants (see [2],[3]), from which we

get:
H- mE (11)
Higa™Cq L %% » (12)
15
“LJ]:lub < L x\.jxklxub ’ (13)
105
Hprabed™Ca L %0 %ap¥ed (14)
where
c‘=k.+1 , (15)
c =k +3k +1 , (16)
Cg =k, *4k +3K +EK +1 | (17)

We can see that the central moments of an elliptical dis-
tribution depend on its second cumulants in the same way as
its higher cumulants do. Hereby all the mixed central
moments of order r differ from the corresponding mixed
cumulants of the same order c /k times.

Using the expressions (7)-(10) it appears from (15)-(17)
that the constants c¢_ have the following simple form in
terms of derivatives of the characteristic function w(u):

12



e, " (0)/°%(0), (18)
e =™ (0)/p*%(0), (19)

cg=¥™(0) /¥ *(0), (20)

If the distribution Ep(u,V) is fixed,then the constant c
(or kr) is the same for all rrorder mixed moments (or cumu-
lants), i.e., the same for the r-order marginal moments too.
This property allows us to find the constant c, with the
help of one-dimensional elliptical density function as de-
scribed in Example 3.

Example 1. In the case of normal distribution with the
characteristic function

w(u)=exp(~u/2), u=t'vt,
we get from (7)-(10) and (15)-(17) the following values of
constants:

kz=1, kr=0, r=2, c‘=c6=c.=1.

Example 2. In the case of e-contaminated normal
distribution with the characteristic function

w(u)-¢ exp(-u/2)+(1-¢)exp(-o"u/2),
the constants depend on £ and ¢ in the following way:

k, +o” (1-&),

k =[e+o® (1-)1/K"-1,

k =[e+0° (1-£)1/K" -3[e+0” (1-£)1/K"+2,

ky=[e+0° (1-)1/k" -4[e+0° (1-) /K" ~3[e+0* (1-£) 17 /k*+

+12[e+o” (1-£)1/K"~6.

Example 3. Let us see the p-variate elliptical t-distri-
bution on n degrees of freedom with the density function

r&e) - nte

£(x) = V] 1 () TV (k)] 2 21)
r(g) (a7 * 17l n : (

The central moments of this distribution, if they exist, are
expressed by the formulae (11)-(14), where the constants

kz, c,: G4, ¢, are found with the help of marginal density

function of (21):

r(atly (x~(u) )2 - —
14— 1

. = n nv
F(;)Jnnv ii

13



Denoting » . =x, VTV, r-order marginal moment

iTH the formulae (11)-(14) take the form:

: 5 y6=c6'15n

uz=az=k2vi ' H4_c4-3a 2 ! uazca-IDS“;
Using these relations and, on the other hand, finding the

integrals
[+ 1]

p=f(x-) . (x)dx , r=2,...,8
—00
we get the constants c, for the multivariate t-distribution:

°z=kh=3:2 , n»2 ,
n-2

°4=E:E , n>»4d ,

- . (n-2)%

6_(n-4)(n-6) , n>6 )

- (n-2)°

s (oD (n-6)(n-8) * 28 -

Example 4, Very often elliptical distributions are used

to generalize the limiting distributions or Edgeworth
expansions of some statistics obtained in the case of normal
population. For this purpose the cumulants of observed
statistic are necessary to be expressed for the elliptical
population case. In the multivariate analysis the most
usable statistics are various functions of sample covariance
matrix. Hence with the help of the general expressions in
[3] we give here the expressions of second and third
cumulants of sample covariances s.. when the sample is taken
from the elliptical population:

E(s; ;=) (s, -%,) =" ke o+ e +1) (oo 4 2 ) J+o(n™),

E(s. ')(Skx_”kl)(sab_”ab)zn_z[ks"u“kL“ab+
-2
+(k t3K H1E s 2 o(k +2k O * 2 o, J+o(n ")
Example 5. Fujikoshi [1] has given the Edgeworth expan-
sion of the distribution function of d{n (1) /e, where

1 and are the i-th largest latent roots of the sample
and population covariance matrices. For elliptical popula-
tion case the Fujikoshi’'s result has the following simple

form:

14



P{dn(l -x )/o¢y 1=2(y)-n"3{a o728V (y)ra o7 P (y) 1+
+n" (b +a%/2)07 28 ) (y)+(b +a a_)o %@ (y)+
2 a 13
+a%07%8¢%) (y)/2}+0(n™Y),
where #¢?%(y) is the j;-th derivative of the standard normal
distribution function #(y) and
_ x y-1 - A3
el—(k4+1)K12 KJ(K1 XJ) s 8y (15k8+36k‘+8) 1/6 ,
=2 _ 2 _ -1 2¢ 22 _x )2
bz )\1[31‘4/2 3(k8 k4+k4)z xd(Ki AJ) +(k4+1) z J( 1 J)
54 2 2_ A2
b4-K1(35kB/B+15kS+12k4+18k‘+2) , & (3k‘+2) K
with summation over 3, s#i.

Example 6. The matrix form of the multivariate Edgeworth
expansion, where the moments are organized into vectors, is
given by Traat [5]. The vectors of the 4th and 6th order
central moments of Np(u,V) are:

(vecVevecV), usszJs(vecVevecVevecV) s

where ) Js are the expressions from permutation matri-
ces I
P.qQ

J =] a + 1 2®I + I 3, J_.=I e + I z®I 2] + I zel
ER PP P ».P 3 p ] P.P B ] D

Jd=Ie + I 29I 3 + I s®l 2 + I a®I + I 5 .
z 'p P.P ) P.p P p.p ) )

»

From Ho, oy follow the cumulants u‘, kz and central moments
of elliptical distribution E (&,V) in the vector form:
£_ &_, = & £ _
n4-k‘u‘ ’ “s-ksus » HomCH, 0 HgRCHg
the elements of which are all 4th and 6th order mixed cumu-
lants and moments respectively.
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MOMEHTH M KYMYJIAHTH MHOI'OMEPHOI'O SJUMINTHYIECKOI'O
PACNIPEREJIEHNA C HEKOTOPHMH ITPMMEHEHMSMHA

H.Tpaat

Pe3oMe

IIPUBOAATCS BHPAXEHUS CMENAHHHX KYMYJAAHTOB M LUEHTPAaJbHHX
MOMEHTOB JO BOCBMOrO NOpPAJlKa MHOT'OMEPHOT'O SJIAUNTHUYECKOrO
pacnpefieleHMs. B npuMepaXx pacCMATPUBAKNTCA HEKOTODHE KOHK-
peTHHEe >AIAUNTHUYeCKHE pacnpefileleHus, KYMYyJAAHTH BHGODOYHHX
KOBapHaluii M pa3ioXeHUWe pacnpelieleHHMs CO6CTBEHHOrO0 3HadYeHus
BHGODOYHOHA KOBAPMALMOHHOA MATPHMUH B CiAydYae ASAIUNTUYECKH
pacnpefie 1IeHHON T'eHepalbHOi COBOKYMHOCTH.

Received July 1989
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ON THE EXISTENCE AND WEAK CONVERGENCE
OF k-CENTRES IN BANACH SPACES

K.Parna

Summary

Let P be a probability measure on a separable Banach
space B. Any subset A = {al,..., < B is called the
k-centre for P if it minimizes a criterion. The reflexity of
B is shown to be a sufficient condition for the existence of
the k~centre for any P from a wide class of measures. Also,
the weak convergence of k-centres, corresponding to certain
weakly converging sequence of measures, has been studied.

1.Introduction

The problem of k-centres arises if there is a need for
the discretization of a random variable. A well-known
example is the quantization of continuous signal in order to
transfer it through a discrete channel which is capable of
admitting only k different values of the signal. Also, the
optimal allocation of resources in order to meet a given
distribution of needs may be regarded as a problem of that
kind.

In recent years several papers have appeared where the
problem is treated in terms of Banach spaces (see e.g. [1,
2]) or metric spaces [4,5].

To be more precise, let B be a real separable Banach
space, P a probability measure on B and k - a fixed positive
integer number. Let us define a measure of goodness of the
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approximation of the measure P by a finite set A = {a ,...,
ak} < B:
W(A,P) = [ min o(fx - a_||) P(dx). (1)
aieA *
We shall assume that the function p satisfies the following
requirements:

Al) e:{0,) » {0,m),

AZ2) o is continuous,

A3) ¢ is nondecreasing,

A4) o(n) = 0 iff r = 0,

A5) there exists a constant A such that e(2r) =
= A p(r) for each r = 0 (Az—property). Also, it is assumed
that

[ el P(dx) < o, (2)

which can be regarded as a restriction on the dispersion of
the measure P. Further, let

W (P) = inf {W(A,P): |A] = k},
.#*(P) = {A: W(A,P) = wk(P)' 1A] = k).

Any A € #*(P) we shall call the k-centre of the measure P.

The first problem here is the problem of the existence
of k-centres. We are revealing a class of spaces, as large
as possible, where the existence of a k-centre can be proved
for any measure with property (2). Show first that the class
of metric spaces is too large to prove that. Indeed, con-
sider the metric space T = {xl,x2
tances d(xi,xa) = 1(a#y3), d(xl,yn) =5 - 1/(n+10),
d(xz,yn) = d(xa,ya) = + 1/(n+10) (nz1), and d(yn,ym) =
= 0.8 (n#m). Put P(x_ ) = P(x ) = P(xa) = 1/3. Then, de-
fining W(a,P) = [ d(x,a) P(dx), a « T, we have

.xa,yl,yz,...} with dis-

N o

W(xi,P) = 2/3, 1=1,2,3,...
W(yn,P) = 1/2 + 1/3(n+10), n=1,2,...

Hence Wl(P)*= 1/2, but the infimum is not attainable in
T, that is # (P) = @.

It is easy to generalize the counterexample above to
the case of k>1. Simply copy the space T k times defining
the distance between points from different copies equal to
100 (say) and P-measure of each x-point equal to 1/3k. Then
#*P) = o.

The counterexample given above shows that while study-
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ing the existence problems of k-centres, it is reasonable to
limit oneself with a more restrictive class of spaces,
the Banach spaces. For k=1, the existence of 1l-centres has
been proved by Herrndorf [2] for a wide class of Banach
spaces (so called IP-spaces). ©Still, it seems +that his
method of proof cannot be generalized to the case of
arbitrary k. Cuesta and Matran [1] showed a way for proving
the existnce of k-centres for uniformly convex (u.c.) Banach
spaces. Our aim here is to cover somewhat wider (as compared
with u.c.) class of B-spaces, the class of reflexive
B-spaces. Recall some examples of such spaces: R™, 1 (p>1),
Lp[O,l] (p>1).

Besides the existence theorem we prove the convergence
of k-centres of the measures Pn. assuming that {Pn} is a
weakly convergent sequence, Pn » P. This result generalizes
a recent theorem from [I] (Th. 10), since 1) we cover more
general spaces, 2) we do not assume the uniqueness of the
k-centre of P and, 3) our sequence {P } is not necessarily
empirical. Several results concerning the strong convergence
of k-centres have been presented in [1,5,6].

The basic mathematical tool used in this paper is an
existence theorem from the optimization theory. That theorem
and some supporting lemmas will be presented in the next
section. Such a preliminary work enables us to prove the
main theorem (Theorem 2 in Section 3) very quickly.

2. Some preliminarv results

This paper relies significantly on the following theo-
rem from the theory of optimization (see e.g. [7], p.49).

We recall that a function J(u),defined on a subset ¥ of
Banach space B is called weakly lower s em i-
continuous, if for any sequence {u } € U converging

w

weakly to some u € ¥ (shortly, u u) the inequality

lim J(u ) = J(u)
n n

holds.

We shall say that a sequence {u } € B converges weakly
to a subset < B if each subsequence {u ,} contains a
further subsequence {un"} converging weakly to an element of

U .
o
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Note that in the case when ﬂo consists of a unique
point uy the definition above reduces to the weak conver-
gence u_ q u in common sense.

Theorem 1. Let U be a weakly compact subset of Banach
space B and let the function J(u) be defined, finite and

weakly lower semicontinuous on U. Then J, = inf J(u) > -w,
ueld

the set = {u € U: J(u) = J*} is nonempty, weakly compact

and any minimizing 1’

sequence {u } converges weakly to ﬂ*.
In order to apply this theory, it is necessary +to
introduce a vector argument analogue for W(A,P): for every

= (a ) € B* let
1 x

W(A,P) = [ min o(|lx - & |)P(dx). (3)
B

Evidently, this new function is invariant w.r.t. the permu-
tations of the components of &.

We shall show now that the function W(K,P) satisfies
all the assumptions of Th.l.

As a first step, we prove that W(X,P) is finite on the
whole B*. Indeed, for any R = (al,...,ak) e B* we have

WA.P) = J min o(lx - a_lI) P(dx)
B
< [edx - alh Pdx) < fo(fx] + Ja [l Pdx

B B

= J ezlla ) B(dx) + J e2lx|) P(dx)
lixl<lia K f=t-ti= 1l

s e(zlla ) + A J eClxl) Bex) <

B
due to (2) and A5). Secondly, we verify the following
Lemma 1. The function W(Z,P) is weakly lower semicon-
tinuous on B*.
Proof, We have to show that from 2 Y 2% e B* (which
means that a® ¥ a, for 1=1,...,k) it follows that
lim W(A_,P) = w(k,p). (4)

n
if a® ¥ a,, then for each x € B we also have X - B:
—_— .

1> A sequence {u } is called minimizing if 1lim J(un) -

¥
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¥x-a , and a known property of weak convergence entails

lim Ix - a?" >Ix-a ., 1=1,....k. (5)
n

As the elements of any weakly converging sequence are uni-
formly bounded ([3], p.167), the limit on the left hand side
of (5) is finite. Then, since ¢ is monotonic, it follows
that
min @(lim [Ix - &™) 2 min e(flx - a | (6)
1 n
and then, by A2) and A3),

lim min o([lx - a®[]) 2 min e(fjx - 51“)' (7)
n 1 1
After the integration we have

J lim min e(fx - a®P(dx) > WE&,P). (8)
n i i
B
As a final step, we apply Fatou's Lemma to the left hand

side of (§). So we have
lim [ min o(fx - & [)P(dx) = WE&,P) ,
n i

which is equiva?ent to (4). The proof is completed.

Now we show a suitable weakly compact subset ¥ of Theo-
rem 1.

Lemma 2. Let P be not concentrated at any k-1 (or
fewer) points of B. Then, for any &, 0 < £ < 1(P) - Wk(P).
all the s-optimal k-vectors X are contained in the set

« = (Blx_ ,MD* < B*. (9)
If B is reflexive, then % is weakly compact in BE.

Proof. It is known (see [5]}, Lemma 2) that all the
£-optimal k-centres, i.e. k-sets A satisfying W(A,P) <
< Wk(P) + &£, are contained in some B[xO,M] with M depending
on £, provided that 0 < & < 1(P) - Wk(P). (It will be
proved in Appendix that the strict inequality wk(P) < 1(P)
holds as long as P is not concentrated at any k-1 or fewer
points; hence we can choose a positive £). Clearly, all
c-optimal vectors X then belong to (B[xo.M])k, and any such
an A contains exactly k different components.

1) B[x ,M] is the closed ball with centre x and radius M.
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Further, it is seen that the set % in (9) is a closed,
bounded, convex subset of the reflexive Banach space BX.
Since all such subsets are known to be weakly compact (see
{71, p.51), Lemma 2 follows.

3. The main results

As we prefer to formulate the weak convergence of
k-centres in terms of k-sets rather than k-dimensional vec-
tors, it is necessary to say what the weak convergence of
k-sets is.

Definition 1. We say that a sequence of k-sets A =

= {a:,a“,_..,a:} converges weakly to a k-set A = {a_,...,a }
(and we shall write A % A) if for some labeling al s -...8h
of the points in An, n=1,2,..., it happens that a:, w 5,
for § = 1,...,k.

Obviously, if the coordinate-wise convergence .4 b |
for certain k-vectors K,Kﬂ < B® (provided they all have k
distinct components) takes place, +then also An Y A where An
and A are k-sets consisting of the components of Kn and X,
respectively.

Definition 2. We say that the sequence of k-sets {An}
converges weakly to #, &a class of k-sets (and we write
An w ) if every subseguence {An,} admits a further sub-
sequence {A ,} converging weakly to a k-set from «.

Once again, if consists of a single k-set A the
latter definition is equivalent to the Definition 1 (see
Lemma 1 in [1]).

We formulate the main result of this paper.

Theorem 2. Let B be a real separable reflexive Banach
space. Then for each P satisfying (2)

1) the class is not empty,

2) if, in addition, P is not concentrated at any 1,
1<k, points, then any minimizing seguence {An} converges
weakly to #,(P).

Proof, First suppose that P is concentrated on scme
subset A = {a ,...,al} < B, l<k. Then the assertion 1) holds,
since #*(P) consists of all k-sets which include the points
&, ...8;. Obviously, in such a case Wk(P) = ... = Wl(P) = 0.
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If P is not concentrated on any l-set, 1<k, then Lemma
2 implies that the global infimum Wk(P) coincides with
inf{W(K,P}: e U}, where U is given by (89). According to
Lemma 1 the (finite) function W(X,P) is weakly lower semi-
continuous on %. Both statements of the theorem now follow

directly from Theorem 1. The proof is completed.

Remark, The reflexity of B cannot be ignored, at least
totally. It is seen from the following counterexample con-
cerning the space c . Let k=1, W(a,F) = Jlix - a§®P(dx), and

let P be concentrated at points 2e , Zez,... with P(2e1) =
= k™*. Then Wl(P) =1, a minimizing sequence 1is a =
= (,1,1,...,1,,0,0,...), n - 1,2, , but the infimum is not

attainablg in c,:

Observe that the second statement of Th.2 leaves the
nature of minimizing sequences {A } open. We show now a
special class of such sequences, defining An as a k-centre
for the measure P from a weakly convergent sequence.

Corollary 1. Let B be a real separable reflexive Banach
space and let P be a probability measure on B, not concen-
trated at any 1 (l<k) points. If the sequence {P } satisfies

cl) Pn -» P,

c2) the function e(|xf]) is uniformly integrable w.r.t.
{P_1,

n *
then for any A € # (P ) we have

A Y a%P), n s w (10)

Proof., Due to Lemma 3 (see Appendix) the measure P
verifies
Wl(P) > ... > Wk(P). (11)

Then, according to Corollary 1 from [5], each sequence A €
€ ), n = 1,2,..., is minimizing:

lim W(A ,P) = W (P).
n =k

Hence Theorem 2 applies and we obtain (10). The proof is
completed.

It is of worthy to point out that assumptions cl), c2)
have been shown to be weak enough to include the important
case of empirical measures P, correspond-
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ing to the measure P (see Section 3 in [5]). Some other

interesting particular cases of also can be given.

In this section we give sufficient conditions that
ensure inegualities (11) to hold. These conditions are
significantly milder as compared with those in our previous
result (see [4], Lemma 2): no more we need ¢ being strictly
monotonic, nor the existence of a l-centre for 1 =1,2,...,
k-1 is assumed. (In fact, all this enables us to reduce
assumptions to our results given in [4,[5]1).

The following lemma considers the spaces more general
than Banach ones. Let (T,d) be a separable metric space.
Define

W(A,P) = [ min e(d(x,a,))P(dx), A= {a,...,a }<T,
Ta€A 1 k
b8
- & generalization of (1). The Hausdorff distance between

two subsets of T is given by

h(A,B) = max {sup inf d(a,b), sup inf d(a,b)}.
a€A beB beB a€A
Lemmae 3. Let (T,d) be a separable metric space, P a
probability measure on T, not concentrated at any k-1 or
fewer points. Assume that Jb(d(x,yo))P(dx) < w for some
Y, < T. Then
W (P) > W (P) > ... > Wk(P).

Proof. We prove this lemma for the case of k=3 only.
Other values of k can be treated similarly.
Consider a sequence {A_}, A_ = {a“,a:} being an (1/n)-

optimal 2-set for the measure P, i.e.
W_(P) < W(A ,P) < W_(P) + 1, (12)
2 n 2

There are two possibilities:
a) {A } converges in Hausdorff metrics to some 2-set,
b) {A } does not converge in H.m. to any 2-set.

T he case a), If, for some Ao = {a%,a%},
h(A ,Ao) -+ 0, then, due to the continuity of W(-,P) (see
[5], Lemma A2), we also have W(An,P) - W(AO,P). On the other
hand, (12) implies W(An,P) *‘WZ(P). Consequently,
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W(AD.P) = WZ(P).\ (13)

which means that Ao e d:(P).

Show now that there exist a point be T, b € AO, and an
s, 0 < 8« (1/3)'min(d(ao,b),d(ao,b)}, such that the open
sphere B(b,s) has positive- P-measure. The idea is that if
this b will be added to Ao one gets a triple AO which is
strictly better than A itself, in sense of W(-,P). Then the
needed result follows immidiately.

Indeed, since P is assumed to be not concentrated at
any 2 points, we have P(Ao) < 1. Then there exists an r>0
such that the closed set A = {x e T: min(d(x,a%),d(x,a%)] =
< r} also satisfies P(A:) < 1. (If for each r>0 P(A:) =1,
then by the continuity of P it follows that P(AD) = 1 - the
contradiction). Hence, the open set T ™ A® is P-positive. As
T is separable, there exists, for any s>0, a countable sys-
tem of spheres with centres in T ™ AT and of radius s, say
the system covering T ™ A¥. Choose an s so that 0 < s <
< r/3 and e(2s) > p(8). (It is an easy exercise to show,
using Al) to A5), that the latter inequality holds for
arbitrary small s). Now from P(T ™ A¥) > 0 it follows that
at least one sphere from B , say B(b,s), also satisfies
P(B(b,s)) > 0.

Show the set A' = {a°,a®,b} is strictly “better’ than
Ao' Let

8, = {x € T: o(d(x,b)) < e(d(x,8%)), 2=1,2}.
Observing that Sh contains the ©ball B(b,s) and that
d(x,a®) = 2s for all x € B(b,s), we have

W(A_,P) - W(A" P) = f [min e(d(x,8°)) - e(d(x,b))IP(dx)

Eb.‘l.=1.2
z [ [»(28) - p(s)]P(dx)
B(b.8)
= [e(28) - e(s)IP(B(b,s)) > O. (14)

Now, combining (13) and (14) with

W (P) < w(at.p),
we have
Wa(P) < WZ(P),
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which completes the proof in the case a).

The case b). Aszume that {An} does not con-
verge to any 2-set in Hausdorff metrics. Then for each
D = {b,c} € T there exists an r >0 such that at least one
ball, B(b,rn) or B(c,rn), does not contain any point from An
for infinitely many values of n. Say this ball is B(b,r )
Since for each b the radius r depends also on its pair-mate

.

c, we fix an arbitrary value of these r ‘s and denote it by

r , r >0.
) v
Thus we have

B(b,rb) n An, = 2 (15)

along some subsequence {n’}.

It turns out that the points b with property (15) cover
all T except, perhaps, a single peoint c,- Indeed, if there
were two such points, say C, and ¢ , then after putting D =
= {co,cl} one immidiately reaches the contradiction.

Further discussion exploits the ideas already used in
the case a). First define a covering for T =~ {co}, the sys-
tem of open balls

B = {B(b,sb): beT\™ {co}, 0 < s < rb/3. 9(23b) > e(s )},

with r, satisfying (15). Again, since T is separable, B con-
tains a countable subsystem also covering T {co}. But
T ™~ {co} is P-positive and hence at least one sphere from
that countable system, the sphere B(b,s), is also P-positive,
P(B(b,s)) > 0. Put A+, = {a?,a:,b}. By the same way as in
(14) we obtain that

W(A_,,P) - W(A',,P) = [p(2s) - #(s)IP(B(bis)) = a > 0, (16)

for all n* -» o, Now it suffices to choose an n’ > 1l/a and
recall that A , is (1/n’)-optimal to write

+ 1
Wa(P) < W(An..P) < W(An..P) -a< WZ(P)7+ T ac Wz(P)-

Thus Lemma 3 is proved.
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O CYMECTBOBAHWM ¥ CJABOR CHOIMMOCTH
k-IHEHTPOB B BAHAXKOBHX MNPOCTPAHCTBAX

K.[Iapna

Pe 3wMme

PaccMaTpuBaeTc 3ajava AMCKPeTHOM (KOHEYHOH) anmnpokcH-
MalliM BepPOATHOCTHHX pacnpelleleHuit, 3ajJlaHHNX Ha 6GaHAXOBHX
npocrpaHcTBax. IycTe P fBAAeTrcA BepOATHOCTHOM MepOM Ha cena-
patelbHOM 6GaHaxoBOM MNpocTpaHcrBe B. Jin6oe NoAMHOXecCTBO
A = } € B Ha3uBaerca K-UeHTPOM MepPH P, ecau oOHoO
MHUHMMH3UDYeT CISAYWMNUIA KPUTEePUin cpelHel OMMGKM annpokCHUMallMM:

\
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W(A,P) = [ min o(fx - a,DP(dx) » min . (1)
. |A]=k
OTHOCHTENbHO GYHKUMM @ NpeanolaraeTcd, 4To oHa 1° Henpepus-
Ha, 2° He y6mpaer, 3° ©:[0,®) » [0,w), 4° p(r) = 0 @ r = O,
5° Hapmerca A > 0 Takoe, uTo ®(2r) < X o(r), r > 0.

HaM npencTaBagT HMHTEepeC BOMNPOCH CYMEeCTBOBAHHUA K-LEeHT-
POB, a Takxe BOMNPOCH cxonu§OCTH nocAeROBATENbHOCTH K-LEHTPOB
COOTBETCTBYNHUX MepaM M3 CJA60 CXoAAMEeACHd NOociAelOBATeNbHOCTH

Teopema 2. NycTh B - BemecTBeHHOe cenapaGenbHoe pediex-
CHBHOE 6aHaxoBO npocrpaHcTeo. Torjza IAxa Kaxjoid Mepu P,
sazaHHod Ha B u ynosaerTsopammen ycaosun [e([lx])P(dx) < w,
CymecTBYeT XOoT# 6H oiAuWH Kk-ueHTp (k = 1,2,...).

Crencteue 1. IlycTh B - BemecTBeHHOe cenapaelbHoe pedp-
JeKCHBHOE® 6GaHAXOBO MPOCTPAHCTBO ¥ NYCTh Mepa P, 3ajaHHag Ha
B. He CKOHLUeHTpMpyeTCcd Ha HMKakux 1, 1<k, Toukax B. Ecxu
nocrenosaTelbHoCcTh Mep {P } yaoBleTBOpHeT ycCHoOBUAM 1) Pn - P
(caa6o), 2) e(||x]|) unrerpupyeMa paBHOMepHo no {P }, To xw6asn
nocrerosaTelbHoCcTh {A } K-lUeHTpoB Iad Mep P cxoauTcd craéo
K MHOXeCTBY BCeBO3MOXHHX K-L{eHTPOB MepH P:

W

A Y45P), n- o
n
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Exact samples for testing ANOVA procedures.

M.Vdhi

Today there exist many statistical packages +the users of
which want to be sure that the programs work accuratly and
correctly. A convenient possibility to check up statistical
programs is given by the method of the “"exact sample”
described in papers [1], [2] and [3].

The exact sample is an array of data with a special
structure the dimensions and identifying parameters of which
may be chosen freely. The values of necessary statistics are
calculated not by the usual algorithms but analytically by
the help of the identifying parameters.

Lower the rules for construction of exact samples for
checking algorithms of variance analysis will be constructed.
Only the balanced cross-models will be considered.

We shall construct the exact sample step by step.

1. = 1 ance

At first we shall learn the simplest model - the model
with one factor. We describe the construction of the. exact
sample and give the formulas for the calculation of the
necessary statistics.

In that case the data ¥ (the 3j-th measurement on i1-th
level of factor) are presented by the model

Vg = H ta +e ,
where u ~ the general mean,
a - the change caused by i-th level of factor,
ey " the random error of measurement.
The factor has k levels (1=1,2,...,k) and on each level n
measurements (3=1,2,...,n) are carried out. Hence we have

nk measurements in all. In an-essential way the data' are
devided into k groups - in the same group there are data
that which are measured on the same level of factor.

The necessary statistics for one-way analysis are the
following [4]:
a) the means

¥y . =g &€ Zv .

=1 j=1
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b)the variance components

2= En(y .-v..)%,

i=1
2. & = - .2
5= & E (v -y,.)7
i=1 J3=1
c) the F-ratio
82(N-k)
F=z=—or.
5%(x-1)

For the exact sample we shall presume that n is an odd
number. The structure of the exact sample only "imitates"
the described model. We introduce the "random error” with
the basic structure of the group and with a "variance para-
meter”. For the basic structure of the group we select the
following sequence with n elements:

n-1 n-1 n-1 . _
- Tt 1,..., 7= (n-1).

To get an exact sample, we determine the number of
measurements in group (n) and the number of the factor’'s
levels (k). We form the first group from the basic structure
by multiplying all its elements by the arbitrarily chosen
variance parameter u (u>0). We get the second group by
adding to all elements of the first group the freely chosen
parameter d. By this parameter we imitate the change of the
group mean. We get all following groups in the same way: by
adding parameter d to all elements of the preceding group.

The elements of such exact sample are determined by the

formula:
v, B u 4 w1+ da-1) (1)
where a=1,...,k; 3=1,...,n .

Example 1. Let the factor have 3 levels (k=3) and in the
group there are 5 elements (n=5). The variance parameter u=2
and the parameter of the mean’s change d=4. Then the basic
structure has the form:

-2, -1, 0, 1, 2 ;
the first group is

-4, -2, 0, 2, 4 ;
and the exact sample is following

-4, -2, 0, 2, 4, 0, 2, 4, 6, B, 4, 6, 8, 10, 12

It is easy to see that in such case the necessary statis-
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tics can be calculated by the parameters k, n, u and d in
the following way:
a) means

y1_=(:—1)d ’

Yooy ;an"- —Z
b) the variance components
d?N(x%-1)

12 ’
g%= u?®N(n?-1)

12

8=
1

c) the F-ratio
A%k (k+1)
u?(n+1)
Exsmple 2. For the data given in Example 1 the statistics
have the following values
y =0.y,=4, v =8, v =4,

F -

s?=160, 5%=120, F=8 .

2. Two-way ansalvsis of variance

In case of the two-way analysis we use the word “group"
for data corresponding to the certain combinations of levels
of factors. So Y is the j-th measurement on the h-th
level of the first and on the i-th level of the second fac-
tor. Let the first factor have k levels, the second factor
have m levels and in the group be n measurements. The
necessary statistics for the two-way analysis are the
following:

a) means

y...= N niy '
h=1 1=1 J=1

- 1 k n

Y.--° &7 E E Vpis ,

1=1 35=1

¥4 " m z ’
h=1

yh‘.._ n ’

b) the variance components
x

8i=mn L (¥.,.-v.. )7

%= kn £ (v...-¥.. )%,
h=1
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g2 =
1,2

n L

h=1

L (y

ha” 4
1=2

net

m
s L L, . -v. %
h=1 1=1 Jj=1 k3

c) the F-ratios

F =
1
S%mk(n-1)
P —
i -
5 N 2mk(n 1)
* 2 52(m-1)(n-1)
To get an exact sample, we determine the number of
measurements in group n (let it be an odd number) and the

number of levels for each factor k and m. Then we choose the
parameters u and d (the meaning of these parameters is the
same as in the preceding case) and generate by formula (1)
data for each group where the second factor has the first
level. Then we choose the parameter ¢, by this parameter we
imitate the change of the group mean caused by the second
factor. The elements for all the groups where the second
factor has h-th level we get by adding (h-1l)c to elements of
the first-level groups.

The elements of such an exact sample are determined by
the formula

u + u(j-1) + d(a-1) + c(h-1) (2)

Example 3. Let us choose the following values of the

parameters: k=3, m=2, n=3; u=l, d=4 and c=5. Then we get the

following exact sample

tha 2-nad the l1-at faoctor level

faoctor level 1 3
1 - 0 3, 4, 5 7 8 8
2 4, 5, 6 8, 9, .10 12, 13, 14

It is easy to see that for such an exact sample the

variance components are calculated by the formulas
ez d2N(k3-1)

1

12 ’

o2z cN(m*-1)

2

12

32




2 2
52- 1 N(n=-1)

For such an exact sample all the interactions
are equal to zero. For generating some interactions
to the elements of first and last group a parameter b. The
first 1is the group where all the factors have the first
the last is the group,

level,

12

the highest level.

Exanple 4

where

Then we get the following exact sample:

all the factors

Consider the data from Example 3.

of factors

we

the 2-nd

1

factor laval

the l-eat feotor lavel

3

5, 6, 7

3, 4, 6

7,

8, 8

2

4, 5, 6

8 9 10

18,

19, 20

The elements of the exact sample are determined by the

formula

nij
where

n-1
2

r 1 3

lo,

It 1s easy to see that for such an exact sample the

u+u(J-l)+d(i-l)+c(h-1)+b(6h1611+6hm61k), (3)

necessary statistics may be calculated by formulas

a) means
=1 - - 2b
y...5 3 (d(k-1) + c(m-1)) + IE
d(k-1) b,
2 + *E (°h1+ ’
- cim b
d(i-1) + =g+ (& + étk) ,
s (2-1)d + (h-1l)c + b{6h1611+ 6hm51k
b) the variance components
g% = zn(k
F 12 km
~2 _ ¢ N(m -1) 2b n(m-2)
z 12 “km

2b n ((m-1)(k-1)+1)
N

uzN(nz-l) .
12

c) the F-ratios

24b

(k-2)

F = G mE(E+1)
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F - c®mkim+1)
u®(n+1) u®mkim-1)(n+1)

F

1.2 u®N(m-1) (k-1)(n+1)
Example 5. In the case of the data given in Example 4 the
necessary statistics have the following values

&) means
y...= 8,5 ; y =6 ; y = 11 ;
y...~55; v _.=65; vy .-13,6;
V.58 Vig-= 4 ; Vis-" 8
¥, =5 Vo, = 8 Ve 185

b) the variance components

5% = 228 ; 5% = 112,5 ;
1 2
2 . . 2 .
§7 = 108 5 8% =12
c) the F-ratios
F =114 ; F = 112,5; F = 54 .
1 2 1.2

3. Multi-wav analvais Oof variance

Usually in practic one iimits himself with the +three-way
analysis. But as in principle the number of factors is not
limited, we construct the exact sample for p factors.

In case of p-way analysis the group will mean the datea
corresponding to a certain combination of levels of all the
factors. Let the number of measurements in group be n, the
number of levels of factors be k1""'k . As in preceding
cases, u 1s a parameter of variance and d1""’d are the
parameters of the influence of the factors.

The exact sample i3 generated step by step. At the first
step we generate the exact sample for two factors by formula
(2). On the next step we include the third factor: the &i-
ready generated data corresponding to the first level of the
factor. We get the groups corresponding to the i-th level by
adding (1-1)d to that array. In the same way we continue un-
til all the factors are included. At last we add the para-
meter b to all the elements of the first and the last group.

The elements of such an exact sample are determined by
the formula

v == , whu(d-1)+ (1 -1)d +b[ ns o+ ne )4
1,001 2 heq B h h=1 i 1 h=1 1hth
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where j=1,...,n; 11=1,...,k1; 12=1,...,k2 :.p=l,...,,kp .

For such an exact sample the necessary statistics can be
calculated by formulas:
a)} means

= Lz (k,-1)a,) + 222

The grcup mean is calculated by the formula

- 1f % - (Y - &

v, = HE lldh] + (-4, + [61 R } :
[- 4 =1 & s &

where g=1,...,P;

and the mean on the fixed level some factors is calculated

by the formula

v, = %[hz (k,-1)4,] + EG, - b,
£ £, &) *
nee_ ,...,2
1 v
P
*N Jn1k: [4516 1+32161! x ] !
K] 3 1
where fl,...,fv are the fixed levels.

b) the variance components
2 1 2 2 2b2n2(kh—2)
8" = iz (Ndh (kh-l)) +

h N !
2 2
g2 o Zkﬁﬂ—[ n_(k_ -1) + (-1)”] ,
21-..:! J=1 £
v 3
82 = u?N(nZ-1) ;

c) the F-ratios
2 2
_ BdZ(k +1)  24b*n(k -2)
® w2n(n+l)  u®N(n+l)(k -1)
2
24b n[dﬂltk’ -1)+((-1)V]
F =
1 v ;
u N(n+1)3§1(k! 1)

Examplie 8. Let us choose the following values for the
parameters: k1=3, k2= k8=2, d1=1, d2:4, da=5’ n=3, u=1, b=2.
Then we get the following exact sample
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the 2-»rd| the 2-nd the l-at factor level
factor
level 1 2 3
1 1, 2, 8 0, 1, 2 1, 2, 3
1
2 3, 4, 5 4, b, 8 5, 6, 7
1 4, 5, 6 5, 6, 7 6, 7, 8
2
2 8, 9, 10 9, 10, 11 12, 13, 14

The means have the values:

y... =5 833 ; v, - =3,333 y,. =8,333.
y.,. =383 ; y  =7,833; vy. . =b;
y.., =% 5 ; y..g =7 V.. =1,667
Yip- =03 L =6 ; You- =10,667
Yg-q T9 7 Vi-2 =33 Yi-3 =4
Ypor =13 Vy.p T8 3 Y, s =1v ;
v.,, =35 y ., =35 ¥.,g 45
Y.,y 8 5 ; Y. 00 =7,5 ; Y08 =9,5 ;
Y111 =25 Yi12 =1 Yi1a =z
Vi21 =43 Vi22 =5 Yies =0 F
Y211 =0 3 Y212 =0 3 y21s =T
Yo21 7Y 3 Y222 =10 5 Y22 =13
The variance components:

a2 _ . a2 _ . a =
5] = 225 ; 57 = 144 ; 5, =
5% =4 ; 52 =6 ; 5

1,2 1.8 2.3

a2 - . a2 -
bl.z.s =2; 8°=24.
The F-ratios:
F =225; F_ =144 ; F_= 13 ;

1 2 s
F1.2= 4 F1.3= 35 Fz,s= 3 F1.2.3= 1
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KOHCTPYHPOBAHHE TOYHHX BHEOPOK
Ina TECTHPOBAHHS NPOLEAVP AHCIEPCHOHHOT'O AHAJH3A

M.Baxu
PeswmMme

Bce 6oxee mUpokoe MPUMEeHeHWe BHUYMCIMTEeNAbHHNX MAllMH WM nake-
TOB CTaTHCTUYEeCKO# 06pa6oTKM JaHHHX CO3ZaeT HeOo6XOAUMOCTH
KOHTPOXA KOPPEKTHOCTH M TOYHOCTH NPHUMeHSIEeMHX nporpamMMm. OZHUM
ME@TOAOM TECTUPOBAHUA CTATHUCTHHUECKUX NPOLeAyP fABAAETCH MeTOoXR
TOYHHX BHGOPOK.

B HacTtosmeNl cTaThe MNpPUBeAeHa ofmMas CXeMa IOCTPOEHMUS Todu-
HOl BHGOPKM MNOAXOAAmMENH AAS KOHTPOAS npoueayp AMCHEePCHOHHOIO
aHaxn3a # HopMyJla BHUYMUCACHMS CTATUCTHUK, MCXOAA K3 NapaMeTpoOs
3TOi BHGOPKH.

IIPM KOHCTPYMPOBAHMH TNOAXOAAMENA BHG6OPKM MCHOABLIYOT CACAY-
omMe NPoU3IBOJBHO 3ajaBaeMHe NapaMeTpPH: KOJAMYeCcTBO ©$aKTOpOB;
KOJIMYeCTBO H3MepeHUA B TCDPYyNne; KOoJAWYeCTBO YPOBHe# ¢akTopoB;
napaMeTp BHYTPUIDYNINOBO# pPACKOAMMOCTH; MNapaMeTPH BIUAHUSA
PakToOpPOB; napaMeTp COBAMAHUS. O6mMMA UYJEH KOHCTPYKLMHM BHUMUC-
AfgeTcqd no npeanucavuw (4).

Received June 1989.
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