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Introduction

For a metric space X, a function f : X → X is called

• nonexpansive, if for each x and y in X we have
d
(
f(x), f(y)

)
≤ d(x, y);

• noncontractive, if for each x and y in X we have
d
(
f(x), f(y)

)
≥ d(x, y);

• an isometry, if for each x and y in X we have
d
(
f(x), f(y)

)
= d(x, y).

We call a metric space plastic if every nonexpansive bijection from this
space onto itself is an isometry. Equivalently, a metric space is plastic if
every noncontractive bijection from this space onto itself is an isometry. The
first systematic study of this property was carried out by S. A. Naimpally,
Z. Piotrowski, and E. J. Wingler in 2006 [5]. The central result concerning
the property is that every totally bounded metric space is plastic. This result
has been known for a while, the proof can be found even in a 1936 article by
H. Freudenthal and W. Hurewicz [2]. The mentioned result is also a major
source of motivation for studying the property.

In 2016, B. Cascales, V. Kadets, J. Orihuela, and E. J. Wingler proved the
plasticity of the unit ball of a strictly convex Banach space and posed the
question of whether unit balls of all Banach spaces are plastic [1]. The latter
remains an open question as of today. However, numerous partial positive
results have been obtained since then. So far, the plasticity of the unit ball
has been proved for the following spaces:

• strictly convex spaces
(B. Cascales, V. Kadets, J. Orihuela, and E. J. Wingler; 2016);

• the space ℓ1
(V. Kadets and O. Zavarzina; 2016);

• ℓ1-sums of strictly convex spaces
(V. Kadets and O. Zavarzina; 2018);
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• spaces whose unit sphere is the union of all its finite-dimensional poly-
hedral extreme subsets
(C. Angosto, V. Kadets, and O. Zavarzina; 2018);

• the space c

(N. Leo; 2022);

• spaces ℓ1 ⊕2 R and X ⊕∞ Y for strictly convex X and Y

(R. Haller, N. Leo, and O. Zavarzina; 2022).

The thesis at hand is based upon the article concerning the plasticity of the
unit ball of a strictly convex space, the article that started the whole series.
The proof presented in this article is brief, missing many of the tedious details.
We aim to fill in these details and provide all the necessary preliminaries for
understanding the proof.

The thesis is divided into two major sections. The first section provides the
reader with all the necessary definitions and results of convex analysis with
complete proof. We define the notions of extreme point and strictly convex
Banach space, prove the existence of directional derivative of a convex function
and its sublinearity, apply the latter to the norm function, define the notion
of smooth point and demonstrate its connection to the derivative of the norm.

In the second section, we demonstrate the results presented in the aforemen-
tioned paper. We study the properties of extreme points and the properties of
nonexpansive bijections on the unit ball in general and in the strictly convex
case. At the end, we demonstrate the main theorem of this thesis, which states
that a nonexpansive bijection on the unit ball of a strictly convex Banach
space is an isometry.
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1 Preliminaries

In this section, we shall list the preliminaries. Given that the research paper
that this thesis is based upon is rich in results from convex analysis, we will
present all the essentials in the required depth.

From this point onwards, X stands for a real Banach space. We denote by
SX and BX the unit sphere and the closed unit ball of X.

1.1 Extreme points and strictly convex spaces

Definition 1.1. Subset A ⊂ X is called a convex set if, for any x, y ∈ A, the
line segment [x, y] connecting x and y is included in A, or more formally,

tx+ (1− t)y ∈ A for all t ∈ [0, 1].

Convex sets contain a subset of exceptional interest, namely the set of extreme
points. Extreme points possess numerous distinctive properties, which we will
rely on in future investigations.

Definition 1.2. Let A ⊂ X be a convex set. A point z ∈ A is called an
extreme point of A if there does not exist x, y ∈ A and 0 < t < 1 such that
x ̸= y and z = tx + (1 − t)y, or equivalently, if for every y ∈ X\{0} either
z + y /∈ A or z − y /∈ A. We will denote the set of all extreme points of A by
ext(A).

Definition 1.3. A set A ⊂ X is called strictly convex, if all of its boundary
points are extreme points.

Definition 1.4. Banach space X is called strictly convex, if BX is strictly
convex set.

1.2 Convex functions on real Banach spaces

Let D be a nonempty open convex subset of X.

Definition 1.5. A function f : D → R is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
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whenever x, y ∈ D and t ∈ (0, 1).

Definition 1.6. A function p : X → R is said to be subadditive if, for all
x, y ∈ X, we have p(x+ y) ≤ p(x) + p(y).

Definition 1.7. A function p : X → R is said to be positively homogeneous
if, for all α > 0 and x ∈ X, we have p(αx) = αp(x).

Note that a positively homogeneous function p : X → R satisfies p(0) = 0;
this follows from positive homogeneity:

p(2 · 0) = 2p(0) =⇒ p(0) = 2p(0) =⇒ p(0) = 0.

Definition 1.8. A sublinear functional is a function p : X → R that is
subadditive and positively homogeneous.

Lemma 1.9 ([6, Lemma 1.2]). Let f : D → R be a convex function and let x
be a point of D. Then for each y ∈ X there exists a one-sided finite limit

lim
t→0+

f(x+ ty)− f(x)

t
,

which we will call the directional derivative of f at x along y and denote by
df(x)(y). Moreover, for fixed x, the function df(x) : X → R, y 7→ df(x)(y)

turns out to be a sublinear functional, which we will call the derivative of f
at x.

Proof. Let y ∈ X. Note that, since D is open, f(x + ty) is defined for
sufficiently small t > 0. The difference quotient f(x+ty)−f(x)

t
is nonincreasing

as t → 0+, and bounded below.

If 0 < t < s (and they are sufficiently small), then we can rewrite x+ ty =

t/s(x+ sy) + (1− t/s)x, and then use the convexity of f to obtain:

f(x+ ty)− f(x)

t
≤

t/sf(x+ sy) + (1− t/s)f(x)− f(x)

t

=
f(x+ sy)− f(x)

s
,

which proves the monotonicity. Applying this to −y in place of y, we see that
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−
f(x− ty)− f(x)

t

is nondecreasing as t → 0+. Moreover, by convexity of f , for every sufficiently
small t > 0, we have

2f(x) ≤ f(x− ty) + f(x+ ty),

and therefore

−
f(x− ty)− f(x)

t
≤

f(x+ ty)− f(x)

t
,

which shows that the right-hand side is bounded below and the left-hand side
is bounded above as t → 0+. Thus both limits

lim
t→0+

f(x− ty)− f(x)

t
and lim

t→0+

f(x+ ty)− f(x)

t

exist and are finite; the left-hand one is −df(x)(−y) and we have

−df(x)(−y) ≤ df(x)(y).

It is a simple consequence that df(x) is positively homogeneous: for all α > 0

and y ∈ X, we have

df(x)(αy) = lim
t→0+

f(x+ t(αy))− f(x)

t

= lim
t→0+

α
f(x+ (tα)y)− f(x)

tα

= αdf(x)(y).

To see that df(x) is subadditive, we use convexity of f again to obtain first
that, for all (sufficiently small) t > 0 and y1, y2 ∈ X, we have

f(x+ t(y1 + y2))− f(x)

t
≤

f(x+ 2ty1)− f(x)

2t
+

f(x+ 2ty2)− f(x)

2t
,

and then take the limits as t → 0+.

Definition 1.10. A function f : D → R is said to be Gateaux differentiable
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at x ∈ D provided that the two-sided limit

lim
t→0

f(x+ ty)− f(x)

t

exists and is finite for each x ∈ X.

Clearly, a convex function f : D → R is Gateaux differentiable at x ∈ D if
and only if df(x)(−y) = −df(x)(y) for each y ∈ X. Moreover, it turns out
that if a convex function f : D → R is Gateaux differentiable at x ∈ D, then
the function df(x), the derivative of f at x, is a linear functional. This follows
from the next lemma.

Lemma 1.11. Let p : X → R be a sublinear functional. Then p(−x) = −p(x)

for every x ∈ X if and only if p is linear.

Proof. It is clear that if a function p is linear, then p(−x) = −p(x) for
every x ∈ X. Now, let us show the converse. First, we demonstrate that
p(x1 + x2) = p(x1) + p(x2) for all x1, x2 ∈ X. From the sublinearity of p we
get p(x1 + x2) ≤ p(x1) + p(x2), hence it suffices to show that p(x1) + p(x2) ≤
p(x1 + x2). Multiplying both sides of the latter inequality by −1, we obtain
an equivalent inequality:

−p(x1)− p(x2) ≥ −p(x1 + x2).

Since −p(x1) = p(−x1), −p(x2) = p(−x2), and −p(x1 + x2) = p(−x1 − x2)

by the assumption, the latter inequality can be rewritten as

p(−x1) + p(−x2) ≥ p(−x1 − x2).

The latter is, in turn, a straight consequence of the subadditivity of p.

It remains to prove the homogeneity of p. Let α ∈ R and x ∈ X be arbitrary.
Our aim is to show that p(αx) = αp(x). For α ≥ 0, the equality follows from
the positive homogeneity of p. Now, let us consider the case α < 0. Rewrite
p(αx) as p(−|α|x) and use the assumption to obtain p(−|α|x) = −p(|α|x).
Then, use the positive homogeneity of p to obtain p(|α|x) = |α|p(x). We have
now obtained the following chain of equalities:

p(αx) = p(−|α|x) = −p(|α|x) = −|α|p(x) = αp(x).
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We see now that p(αx) = αp(x), as was needed.

To sum up, we have the following result.

Lemma 1.12. A convex function f : D → R is Gateaux differentiable at
x ∈ D if and only if the function df(x) is linear.

1.3 Derivative of the norm

Consider the norm function ∥ · ∥ : X → R, x 7→ ∥x∥. It is an easy consequence
that this function is convex:

∥tx+ (1− t)y∥ ≤ ∥tx∥+ ∥(1− t)y∥ = |t|∥x∥+ |1− t|∥y∥ = t∥x∥+ (1− t)∥y∥

for all x, y ∈ X and t ∈ (0, 1). So by Lemma 1.9 the “right hand” directional
derivative of the norm function ∥ · ∥ exists at any x ∈ SX along any y ∈ X,
i.e., the one-sided limit

lim
t→0+

1

t

(
∥x+ ty∥ − ∥x∥

)
exists and is finite for any x ∈ SX and y ∈ X. We are going to denote
this limit by x∗(y). Moreover, Lemma 1.9 says that, for a fixed x ∈ SX , the
function x∗ : X → R, y 7→ x∗(y), is a sublinear functional on X. That is, for
all y ∈ X and α > 0, we have

x∗(αy) = αx∗(y),

and, for all y1, y2 ∈ X, we have

x∗(y1 + y2) ≤ x∗(y1) + x∗(y2).

If in the latter inequality we take y1 = y and y2 = −y, we obtain a special
case:

x∗(y) ≥ −x∗(−y). (1)

It turns out that the function x∗ admits the following estimation: for all
x ∈ SX and y1, y2 ∈ X, we have

|x∗(y1)− x∗(y2)| ≤ ∥y1 − y2∥. (2)
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To show this, we use the definition of directional derivative and the triangle
inequality:

x∗(y1)− x∗(y2) = lim
t→0+

1

t

(
∥x+ ty1∥ − ∥x∥

)
− lim

t→0+

1

t

(
∥x+ ty2∥ − ∥x∥

)
= lim

t→0+

1

t

(
∥x+ ty1∥ − ∥x+ ty2∥

)
≤ lim

t→0+

1

t
∥x+ ty1 − x− ty2∥ = ∥y1 − y2∥.

By exchanging the roles of y1 and y2, we obtain

x∗(y2)− x∗(y1) ≤ ∥y1 − y2∥.

Together these two inequalities imply |x∗(y1)− x∗(y2)| ≤ ∥y1 − y2∥.

Moreover, by taking y1 = y and y2 = 0, we obtain a special case:

|x∗(y)| ≤ ∥y∥. (3)

The latter is valid for all x ∈ SX and y ∈ X.

We also notice that by definition we have x∗(x) = 1 for every x ∈ SX :

x∗(x) =
(
∥x+ tx∥ − ∥x∥

)
= lim

t→0+

1

t
∥x∥

(
|1 + t| − 1

)
= ∥x∥.

Since x∗ is sublinear, we also get x∗(αx) = α for every α > 0.

The main theorem of this thesis makes use of smooth points. The following is
the standard definition of a smooth point.

Definition 1.13. A point x ∈ SX is called smooth if there is a unique f ∈ X∗

such that ∥f∥ = 1 and f(x) = 1.

The notion of a smooth point turns out to have a connection to the derivative
of the norm. The following theorem establishes this relation.

Theorem 1.14 ([4, Theorem 5.4.17]). A point x ∈ SX is smooth if and only
if the norm of X is Gateaux differentiable at x.

As was pointed out in Lemma 1.12, the assertion that the norm is Gateaux
differentiable at x is equivalent to the assertion that x∗ is a linear function.
Therefore, we obtain the following corollary.
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Corollary 1.15. A point x ∈ SX is smooth if and only if the derivative of
the norm at x is a linear function.

The following result about smooth points is crucial to the proof of the main
theorem of this thesis.

Theorem 1.16 (cf. [3, Theorem 20F]). If X is a separable Banach space,
then the set of smooth points is dense in SX .
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2 Main results

In this section, we present and prove the main result of the thesis: the unit
ball of a strictly convex Banach space is plastic. This theorem is due to
B. Cascales, V. Kadets, J. Orihuela, and E. J. Wingler [1].

2.1 Properties of extreme points

Let us begin by showing some of the properties of extreme points. We use
these properties later to study nonexpansive bijections.

For any x ∈ SX and a ∈ (0, 1), let

D(x, a) = aBX ∩
(
x+ (1− a)BX

)
.

Lemma 2.1 ([1, Lemma 2.1]). For every x ∈ SX and a ∈ (0, 1), one has

D(x, a) = a
{
x+ y ∈ BX : x−

a

1− a
y ∈ BX

}
. (4)

If x ∈ SX is an extreme point of BX , then D(x, a) = {ax} for every a ∈ (0, 1).
If x ∈ SX is not an extreme point of BX , then D(x, 1

2
) consists of more than

one point.

Proof. Fix x ∈ SX and a ∈ (0, 1). We begin by showing the equality (4). We
have to show that z ∈ D(x, a) if and only if z = a(x+ y) with x+ y ∈ BX

and x− a
1−a

y ∈ BX . To prove this, consider an element y ∈ X. Clearly,

a(x+ y) ∈ D(x, a) ⇐⇒ a(x+ y) ∈ aBX ∩
(
x+ (1− a)BX

)
⇐⇒

(
a(x+ y) ∈ aBX

)
∧
(
a(x+ y) ∈ (x+ (1− a)BX)

)
⇐⇒

(
(x+ y) ∈ BX

)
∧
(a(x+ y)− x

1− a
∈ BX

)
⇐⇒

(
x+ y ∈ BX

)
∧
(
−x+

a

1− a
y ∈ BX

)
⇐⇒

(
x+ y ∈ BX

)
∧
(
x− a

1− a
y ∈ BX

)
.

The equality (4) is now proved.
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Assume that x ∈ ext(BX). We show that D(x, a) = {ax}. By the equality (4),
every element in D(x, a) is in the form of a(x + y) with x + y ∈ BX and
x − a

1−a
y ∈ BX . Let y ∈ X be such that x + y ∈ BX and x − a

1−a
y ∈ BX .

Since BX is convex, the line segment [x + y, x − a
1−a

y] entirely lies in BX .
Notice that point x is contained in the interior of that line segment because

x = a(x+ y) + (1− a)(x− a

1− a
y).

However, by definition, an extreme point of BX cannot be in the interior of
a nontrivial line segment that lies in BX ; hence the line segment consists of
just one point x, i.e., y = 0. Consequently, the set D(x, a) is a singleton set
consisting of ax only.

Finally, assume that x ∈ SX\ext(BX). Since x is not an extreme point of
BX , by definition, there is an element y ∈ X\{0} such that x+ y ∈ BX and
x− y ∈ BX . Then both the points 1

2
(x+ y) and 1

2
(x− y) belong to BX , and

therefore also to D(x, 1
2
) by the equality (4). Consequently, the set D(x, 1

2
) is

not a singleton set

Let us consider another useful collection of sets. For any x ∈ SX , let

D1(x) = (x+BX) ∩ (−x+BX).

Now we show a virtue of a statement similar to the previous one.

Lemma 2.2 ([1, Lemma 2.2]). For every x ∈ SX , one has

D1(x) = −x+ {x+ y ∈ BX : x− y ∈ BX}. (5)

If x ∈ SX is an extreme point of BX , then D1(x) = {0}.

Proof. Let x ∈ SX . The equality (5) is proved by the following equivalences:

y ∈ D1(x) ⇐⇒ y ∈ (x+BX) ∩ (−x+BX)

⇐⇒
(
y ∈ (x+BX)

)
∧
(
y ∈ (−x+BX)

)
⇐⇒

(
y − x ∈ BX

)
∧
(
x+ y ∈ BX

)
⇐⇒

(
x− y ∈ BX

)
∧
(
x+ y ∈ BX

)
.
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Suppose now that x ∈ ext(BX). By the definition of an extreme point, there
is no such element y ∈ X\{0} satisfying both x+ y ∈ BX and x− y ∈ BX .
Therefore

{x+ y ∈ BX : x− y ∈ BX} = {x},

and it follows that D1(x) = −x+ {x} = {0}.

2.2 Properties of nonexpansive bijections

The following theorem lists some main properties of a nonexpansive bijection
on the unit ball of a Banach space.

Theorem 2.3 ([1, Theorem 2.3]). Let F : BX → BX be a nonexpansive
bijection. Then the following hold:

(1) F (0) = 0;

(2) F−1(SX) ⊂ SX ;

(3) F (D(x, a)) ⊂ D(F (x), a) for all x ∈ F−1(SX) and a ∈ (0, 1);

(4) if F (x) is an extreme point of BX , then F (ax) = aF (x) for all a ∈ (0, 1);

(5) if F (x) is an extreme point of BX , then x is an extreme point of BX ;

(6) if F (x) is an extreme point of BX , then F (−x) = −F (x).

Moreover, if X is strictly convex, then

(i) F maps the sphere SX bijectively onto itself;

(ii) F (ax) = aF (x) for all x ∈ SX and a ∈ (0, 1);

(iii) F (−x) = −F (x) for all x ∈ SX .

Proof. (1) Let us show that 0 cannot be mapped to any other point other
than 0. Suppose that F (0) ̸= 0 and let α = ∥F (0)∥. Then α > 0. By the
bijectivity of F , there exists a point x ∈ BX such that F (x) = − 1

α
F (0). Then

∥F (0)− F (x)∥ = ∥F (0) +
1

α
F (0)∥ = ∥F (0)∥

∣∣1 + 1

α

∣∣
= α

(
1 +

1

α

)
= α + 1 > 1 ≥ ∥0− x∥.
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The obtained inequality ∥F (0)−F (x)∥ > ∥0− x∥ clearly contradicts the fact
that F is nonexpansive.

(2) We are required to check that a point from the interior of BX cannot
be mapped to SX . Notice that any point x from the interior of BX satisfies
∥x∥ < 1. From (1) and from nonexpansiveness of F we deduce that

∥F (x)∥ = ∥F (0)− F (x)∥ ≤ ∥0− x∥ < 1,

which means that no point x from the interior of BX can be mapped to SX .
Thus F−1(SX) ⊂ SX .

(3) Let x ∈ F−1(SX) and a ∈ (0, 1). We need to show that F (D(x, a)) ⊂
D(F (x), a). Fix z ∈ D(x, a). By definition, ∥z∥ ≤ a and ∥x − z∥ ≤ 1 − a.
Since F is nonexpansive, ∥z∥ = ∥z − 0∥ ≥ ∥F (z) − F (0)∥ and ∥x − z∥ ≥
F (x)− F (z)∥, and since F (0) = 0 by (1), we conclude that ∥F (z)∥ ≤ a and
∥F (x)− F (z)∥ ≤ 1− a, that is, F (z) ∈ D(F (x), a) by definition.

(4) Fix a ∈ (0, 1). Assume that F (x) ∈ ext(BX). We need to show that
F (ax) = aF (x). By the assumption, Lemma 2.1 implies that D(F (x), a) =

{aF (x)}. On the other hand, for every y ∈ SX by definition we clearly have
that ay ∈ D(y, a), and therefore also aF (x) ∈ D(F (x), a). Thus F (ax) =

aF (x).

(5) Assume that F (x) ∈ ext(BX). We need to show that x ∈ ext(BX) where
x ∈ SX is the unique preimage of the element F (x). By Lemma 2.1 it suffices
to show that D(x, 1

2
) is a singleton set. From (3) it immediately follows

that F (D(x, 1
2
)) ⊂ D(F (x), 1

2
). Since D(F (x), 1

2
) is a singleton set by our

assumption and Lemma 2.1, the injectivity of F implies that D(x, 1
2
) may

consist of only one point.

(6) Assume that F (x) ∈ ext(BX). We need to show that F (−x) = −F (x)

where x ∈ SX is the unique preimage of the element F (x). To show this,
we will use the set D1(F (x), for which we know by our assumption and
Lemma 2.2 that it is a singleton set, D1(F (x) = {0}. By the surjectivity
of F there is a y ∈ SX such that F (y) = −F (x). Clearly, ∥x − y∥ ≤ 2, i.e.,
1
2
∥x−y∥ ≤ 1. Consider the point z = 1

2
(x+y) ∈ BX . Since F is nonexpansive

and ∥x− z∥ = 1
2
∥x− y∥ ≤ 1 and ∥y − z∥ = 1

2
∥x− y∥ ≤ 1, we have

∥F (x)− F (z)∥ ≤ ∥x− z∥ ≤ 1

16



and
∥F (y)− F (z)∥ ≤ ∥y − z∥ ≤ 1.

Thus F (x)− F (z) ∈ BX and F (z) + F (x) = F (z)− F (y) ∈ BX . From this
we obtain that F (z) ∈ D1(F (x)) because, by Lemma 2.2 again,

F (z) = −F (x) +
(
F (x) + F (z)

)
∈ −F (x) + {F (x) + u ∈ BX : F (x)− u ∈ BX} = D1(F (x)).

Hence F (z) = 0, i.e., z = 0 by (1), which means that y = −x, and it follows
that F (−x) = −F (x).

We assume in the following that X is strictly convex, thus ext(BX) = SX .

(i) We argue by contradiction. Suppose, contrary to our claim, that F (SX) ̸=
SX . Let y ∈ SX be such that ∥F (y)∥ < 1. Clearly, F (y) ̸= 0 by (1). By
surjectivity of F there exists x ∈ X such that F (x) = 1

∥F (y)∥F (y). Notice that
such an x is in SX by (2). Since ∥F (x)∥ = 1, we have F (x) ∈ ext(BX) by our
assumption. Hence, by (4), F (ax) = aF (x) for every a ∈ (0, 1), and it follows
that

F (∥F (y)∥x) = ∥F (y)∥F (x) = ∥F (y)∥ 1

∥F (y)∥
F (y) = F (y).

This contradicts the injectivity of F since ∥F (y)∥x ̸= y, because ∥y∥ = 1,
whereas ∥∥F (y)∥x∥ = ∥F (y)∥ < 1.

Since ext(BX) = SX , assertions (ii) and (iii) are direct consequences of (4)
and (6), respectively.

2.3 Main theorem

Lemma 2.4 ([1, Lemma 2.4]). Let F : BX → BX be a bijective nonexpansive
mapping that satisfies (i), (ii), and (iii) of Theorem 2.3, and suppose that for
some x ∈ SX and y ∈ BX we have x∗(−y) = −x∗(y). Then (F (x))∗(F (y)) =

x∗(y).

Proof. If y = 0, then F (y) = 0 by item (1) of Theorem 2.3, and the equality
(F (x))∗(F (y)) = x∗(y) follows immediately from the definition.

Assume now that y ̸= 0. Let us show that (F (x))∗(−F (y)) ≤ x∗(−y). Accord-
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ing to the definition,

(F (x))∗(−F (y)) = lim
t→0+

1

t

(
∥F (x)− tF (y)∥ − ∥F (x)∥

)
.

By (i) we have ∥F (x)∥ = ∥x∥ and by (ii) we have tF (y) = F (ty) for every
t ∈ (0, 1). Thus

(F (x))∗(−F (y)) = lim
t→0+

1

t

(
∥F (x)− tF (y)∥ − ∥F (x)∥

)
= lim

t→0+

1

t

(
∥F (x)− F (ty)∥ − ∥x∥

)
≤ lim

t→0+

1

t

(
∥x− ty∥ − ∥x∥

)
= x∗(−y).

The last inequality follows directly from the fact that F is a nonexpansive
mapping.

Repeating the same argument for −y in the place of y, we also get

(F (x))∗(−F (−y)) ≤ x∗(y).

Note that the items (ii) and (iii) ensure that F (−y) = −F (y). Hence the
latter inequality takes the form

(F (x))∗(F (y)) ≤ x∗(y).

Therefore, it is left to show that (F (x))∗(F (y)) ≥ x∗(y). For this we use (1),
the inequality (F (x))∗(−F (y)) ≤ x∗(−y) obtained in the beginning of the
proof at hand, and the assumption x∗(−y) = −x∗(y):

(F (x))∗(F (y)) ≥ −(F (x))∗(−F (y)) ≥ −x∗(−y) = x∗(y).

The inequalities (F (x))∗(F (y)) ≤ x∗(y) and (F (x))∗(F (y)) ≥ x∗(y) yield the
equality we needed.

Lemma 2.5 ([1, Lemma 2.5]). Let F : BX → BX be a bijective nonexpansive
mapping that satisfies (i), (ii), and (iii) of Theorem 2.3. Then F is an
isometry.

Proof. Since we know that F is nonexpansive, it suffices to prove that for
arbitrary y1, y2 ∈ BX we have ∥y1 − y2∥ ≤ ∥F (y1)− F (y2)∥. If y1 = y2, the
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conclusion is immediate, so we can assume y1 ̸= y2. Fix arbitrary y1, y2 ∈ BX .
Let E = span{y1, y2}. Define W to be the set of smooth points of SE. By
the Mazur density theorem (Theorem 1.16), W is dense in SE (note that we
apply the theorem to E, which is finite-dimensional and hence separable).

Let us first show the following equality:

∥y1 − y2∥ = sup{x∗(y1 − y2) : x ∈ W}.

Let y = y1− y2. From (3) it follows that for each x ∈ W we have x∗(y) ≤ ∥y∥.
Therefore, we have sup{x∗(y) : x ∈ W} ≤ ∥y∥. Now, we need to show that
∥y∥ ≤ sup{x∗(y) : x ∈ W}, for which it suffices to show that for each ε > 0

there exists x ∈ W such that |x∗(y) − ∥y∥| < ε. Since ∥y∥ = x∗(∥y∥x), the
expression |x∗(y) − ∥y∥| takes the form |x∗(y) − x∗(∥y∥x)|. Using (2), the
latter can be estimated from above by ∥y − ∥y∥x∥, which can be rewritten as
∥y∥∥ y

∥y∥ − x∥. Therefore, it suffices to show that for each ε > 0 there exists
x ∈ W such that ∥y∥∥ y

∥y∥ − x∥ < ε (or, equivalently, ∥ y
∥y∥ − x∥ < ε

∥y∥). But
this is a direct consequence of W being dense in SE. Indeed, since W is dense
in SE and y

∥y∥ ∈ SE, there should exist x ∈ W with ∥ y
∥y∥ − x∥ < ε

∥y∥ .

Now we have the equality ∥y1 − y2∥ = sup{x∗(y1 − y2) : x ∈ W}. Since W is
the set of smooth points of SE, Corollary 1.15 implies that x∗ is linear on E

for x ∈ W , hence the supremum sup{x∗(y1 − y2) : x ∈ W} can be rewritten
as sup{x∗(y1)− x∗(y2) : x ∈ W}. Furthermore, the linearity implies that for
x ∈ W we have x∗(−y1) = −x∗(y1) and x∗(−y2) = −x∗(y2), from which we
obtain equalities x∗(y1) = (F (x))∗(F (y1)) and x∗(y2) = (F (x))∗(F (y2)) using
the previous lemma. The expression sup{x∗(y1)−x∗(y2) : x ∈ W} is therefore
the same as

sup{(F (x))∗(F (y1))− (F (x))∗(F (y2)) : x ∈ W}.

According to (2), the latter can be estimated from above by ∥F (y1)− F (y2)∥.
To sum up, we have obtained the following chain of equalities and inequalities:

∥y1 − y2∥ = sup{x∗(y1 − y2) : x ∈ W}
= sup{x∗(y1)− x∗(y2) : x ∈ W}
= sup{(F (x))∗(F (y1))− (F (x))∗(F (y2)) : x ∈ W}
≤ ∥F (y1)− F (y2)∥.
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This shows that ∥y1 − y2∥ ≤ ∥F (y1)− F (y2)∥, as was needed.

Since for a strictly convex space the conditions (i), (ii), and (iii) from Theo-
rem 2.3 are satisfied, the last lemma immediately implies the main theorem.

Theorem 2.6 ([1, Theorem 2.6]). The unit ball of a strictly convex Banach
space is a plastic metric space.
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2016), pp. 723–727.

[2] H. Freudenthal and W. Hurewicz. “Dehnungen, verkürzungen, isometrien”.
In: Fundamenta Mathematicae 26.1 (1936), pp. 120–122.

[3] R. B. Holmes. Geometric functional analysis and its applications. Vol. 24.
Springer Science & Business Media, 2012.

[4] R. E. Megginson. An introduction to Banach space theory. Vol. 183.
Springer Science & Business Media, 2012.

[5] S. A. Naimpally, Z. Piotrowski, and E. J. Wingler. “Plasticity in metric
spaces”. In: Journal of Mathematical Analysis and Applications 313.1
(2006), pp. 38–48.

[6] R. R. Phelps. Convex functions, monotone operators and differentiability.
Vol. 1364. Springer, 2009.

21
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