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Phrase similarity measures based on Word Mover’s Distance

Abstract:
Measuring semantic similarity between texts is necessary for successfully solving

natural language document classification tasks. However, not always base the problems
that can potentially be solved using semantic similarity on texts with the length of
multiple sentences. Sometimes the decision has to be made only seeing a single sentence
or a phrase from that sentence.

In this thesis, Word Mover’s Distance (WMD), which essentially is a document
similarity measure, is applied to three different problems where only short phrases are
given. The first problem, predicting omitted word by the given context, is a made up
problem and the goal is to assess the goodness of the measure and its suitability for such
tasks. The results are good and show that it is possible to do some semantic separation of
phrases using WMD.

Other two problems are examples of practical cases. Firstly, the method is used
to detect adverse drug reactions from the patients’ epicrises. Secondly, the method is
applied to the analysis of syntax parser errors. The goal is to predict phrases that parser
fails to tag correctly. For different reasons, which are also analyzed on this thesis, the
results were not good for neither of the problem.

Keywords: natural language processing, semantic similarity, Word Mover’s Distance

CERCS: P170 Computer science, numerical analysis, systems, control
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Word Mover’s Distance algoritmil põhinevad fraasisarnasusmõõdud

Lühikokkuvõte:
Loomuliku keele tekstide vahelise semantilise sarnasuse mõõtmisel on oluline osa

tekstide klassifitseerimisülesannete lahendamisel. Samas probleemid, mida saaks potent-
siaalselt lahendada kasutades semantilise sarnasuse mõõtmist, ei põhine alati pikkadel,
mitmetest lausetest koosnevatel tekstidel. Mõnikord tuleb märgendamisotsus teha ainult
ühe lause või fraasi põhjal.

Käesolevas töös kasutatakse tekstide sarnasuse mõõtmise meetodit Word Mover’s
Distance (WMD) kolme erineva probleemi lahendamisel, kus otsus tuleb teha lühikeste
fraaside põhjal. Esimene probleem, milleks on puuduva sõna konteksti põhjal ennustami-
ne, on välja mõeldud probleem, mille eesmärk on hinnata meetodi headust ja sobivust
lühikestele fraasidele. Saadud tulemused on head ja näitavad, et WMD võiks sobida
fraaside eraldamiseks semantilise sarnasuse põhjal.

Ülejäänud kaks probleemi ilmestavad meetodi praktilisi kasutusvõimalusi. Esimesel
juhul kasutatakse seda patsientide epikriisidest ravimi kõrvalmõjude tuvastamiseks.
Teisel juhul rakendatakse meetodit süntaksiparseri vigade analüüsiks. Viimasel juhul
on eesmärgiks ennustada fraase, mida parser ei oska õigesti märgendada. Erinevatel
põhjustel, mida samuti on käesolevas töös analüüsitud, ei olnud saadud tulemused
kummalgi juhul head.

Võtmesõnad: loomuliku keele töötlus, semantiline sarnasus, Word Mover’s Distance
algoritm

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaat-
juhtimisteooria)
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1 Introduction
Having a good semantic similarity measure between texts is crucial for successfully
solving natural language document classification and clustering tasks. However, not
always base the problems that could potentially be solved with measuring semantic
similarity on texts with the length of multiple sentences. Sometimes the decision has to
be made only seeing a single sentence or only a phrase from that sentence.

In this work we are searching for a similarity measure that would perform well on
solving different phrase-based problems. More specifically, we are going to measure and
apply semantic similarity for solving following problems:

1. separating words that are used in a similar context only by seeing the context;

2. detecting drug adverse effects from the patient epicrises;

3. analyzing errors made by syntax parser.

The first problem in the list should give us an understanding about how well the
chosen methods work in nearly ideal conditions where the data is well-structured and
contains fewer errors. The results should also give an intuition about what to expect from
later experiments and also something to compare those results with.

In the second problem, we use contexts of the words that could potentially be drug
adverse reactions to decide whether that word was related to some adverse effect or not.

The third problem is somewhat different from the previous two. Here we are doing
error analysis of the syntax parser that does not always produce correct syntax tags. We
are mostly interested in whether it is possible to separate correctly tagged phrases from
incorrectly tagged phrases by the semantic meaning. We are trying to predict an output
of the parser as well (whether the phrase will be tagged correctly or not).

All these three problems can be solved using the same methodology which consists
of three steps:

1. defining and extracting phrases;

2. labelling some of the phrases;

3. extending the labelling using semantic similarity between phrases.

Having formulated the methodology for solving our problems, some questions still
remain unanswered. Firstly, we need to give a formal definition to the semantic similarity
that we are going to use in our work. Secondly, the goodness of that similarity measure
must be evaluated somehow and the methods for that must be chosen. Finally, we need to
decide how to get from the simple semantic similarity to the labelling extension decision.
All these concerns will be discussed in this work as well.
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2 Background
This section gives an overview of methods that our work bases on, including Word2Vec
word embedding, Word Mover’s Distance similarity measure and Support Vector Machine
classification algorithm. It also provides an description of cluster analysis methods that
are mainly used in our work to evaluate the goodness of similarity metric. Lastly, two
dimensionality reductions algorithms are describes that we will be using for visualization
purposes.

2.1 Word2Vec
Since many machine learning algorithms are incapable of processing natural language
in the form of plain text, it must to be converted into more suitable form. One common
approach is to map words to vectors of real numbers. These vectors are called word
embeddings and there exist many different techniques for producing such vectors, for
example Latent Semantic Indexing and Latent Dirichlet Allocation [DDF+90, BNJ03]
which are originating from topic modeling, and different neural models, for instance the
one proposed by Bengio et al. [BDVJ03].

One popular method is Word2Vec that was described by Mikolov et al. [MCCD13].
The method became popular because it had much lower computational complexity than
competitive neural models [BDVJ03, MKB+10]. Their experiments also showed that
Word2Vec models had as good accuracy of answering different types of semantic and
syntactic questions as more complex models.

In their paper, Mikolov et al. proposed two model architectures for computing
continuous vector representations of words [MCCD13]. Both models are similar to
a shallow neural network with one hidden layer but the non-linearity from the hidden
layer is removed, resulting in a log-linear model. The first architecture, continuous
bag-of words model, is trained to predict a probability of a word given a context. Second
architecture, continuous skip-gram model, is very similar to the first one but instead of
predicting current word, it predicts the context given a work.

2.2 Word Mover’s Distance
Word Mover’s Distance (WMD) is a distance function between two lists of words such
as text documents. It utilizes the property of word embeddings that distances between
embedded word vectors are to some degree semantically meaningful. The distance
between two documents is measured as the minimum cumulative distance that all words
in one document need to travel to exactly match the other document. The metric was
introduced by Kusner et al. [KSKW15].

Let d and d′ be normalized bag-of-word (nBOW) vectors of two text documents.
More precisely, if word i appears ci times in the document, then di = ci∑n

j=1 cj
. The
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distance between d and d′ is obtained by solving following linear program [KSKW15]:

minimize
T≥0

n∑
i,j=1

Tijc(i, j)

subject to
n∑
j=1

Tij = di ∀i ∈ 1, ..., n

n∑
i=1

Tij = d′i ∀j ∈ 1, ..., n

(1)

In Equation 1, T ∈ Rn×n is a matrix where Tij ≥ 0 denotes how much of word i in
d travels to word j in d′ and c(i, j) is a cost associated with traveling from one word to
another. Cost is defined as Euclidean distance between two word vectors in vector space,
that is, c(i, j) = ‖xi − xj‖2. The two constraints in Equation 1 ensure that the entire
outgoing flow from word i equals its nBOW representation di, that is,

∑
j Tij = di and

incoming flow to word j must match d′j , that is,
∑

iTij = d′j .
Kusner et al. also showed that WMD leads to unprecedented low k-nearest neigh-

bour document classification error rates when compared to other state-of-the-art met-
rics [KSKW15]. These results are interesting in our context as well since we are looking
for a metric that would represent semantic similarity between phrases.

The optimization problem that WMD aims to solve is a special case of the Earth
Mover’s Distance metric (EMD). The linear optimization problem underlying EMD is a
well-studied transportation problem for which specialized solvers have been developed.
However, the best average time complexity scales O(p3 log p), where p is the number of
unique words in the documents, thus prohibiting it’s usage for large datasets, but this
concern is not relevant for our problems since we are working with short phrases.

Word Mover’s Distance is entirely unsupervised and not specific to any of the tasks it
can be used for. Yet the measure of similarity could be very different for different tasks,
for example, classifying news articles by sentiment or by topic. To address this problem,
Huang et al. [HGS+16] proposed an algorithm that incorporates supervision into the
WMD. Supervised Word Mover’s Distance (S-WMD) is a metric learning algorithm that
aims to improve the distance so that the documents that share the same label are close and
those with different labels are far apart. The algorithm learns linear transformations of
word embeddings together with word-specific importance weights by minimizing leave-
one-out classification error rate under the WMD metric. The results of their experiments
showed the superiority of their method across 26 baseline methods.

In this work, we will not implement S-WMD but the method itself is still relevant
in our context. As we focus on short phrases, each word has a rather large influence on
distance calculation and S-WMD could possibly provide adjustment.
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2.3 Dimensionality Reduction
Dimensionality reduction is the process of reducing the dimensions of the feature set.
It has two main goals. First is to prevent machine learning algorithms to overfit on
the training data and second is to visualize high-dimensional data. In our work we use
dimensionality reduction algorithms for visualization purpose.

2.3.1 Principal Component Analysis

Principal component analysis (PCA) is one of the most broadly used dimensionality
reduction algorithm. Its common applications are dimensionality reduction, feature
extraction and data visualization [Bis06].

The algorithm seeks linear combinations of variables such that the maximum variance
is extracted from the variables. These uncorrelated linear combinations weighted by their
contribution to explaining the variance in a particular orthogonal dimension are called
principal components (PCs).

The first PC is chosen to minimize the total distance between the points and their
projection onto the PC, or in other words, to maximize the sum of the squared distances
from the projected points to the origin. The second and subsequent PCs are selected
similarly but with the requirement that they must be orthogonal with all previous PCs.

In our work we would like to use PCA to perform qualitative evaluation of our
distance measure but the problem is that we do not know the coordinates of our data
points but only distances between them. This problem can be solved by using kernel-
PCA [SSM99] with the kernel that requires only distances between instances in the input
space, for example, RBF-kernel.

Kernel-PCA is an extension of PCA that maps the data into a higher dimensional
feature space, which is nonlinearly related to the input space, and performs PCA in that
space. It is also useful in cases where data is not linearly separable in input space as
in higher dimensional space it will become linearly separable. However, this is not so
relevant in our case.

2.3.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a non-linear dimensionality reduction method that,
given a table of distances between datapoints, maps these datapoints into (preferably
low) p-dimensional space by preserving these distances as well as possible.

There are two types of multidimensional scaling: metric MDS and non-metric MDS.
Metric MDS seeks to find an optimal representation of the data by directly comparing
distances between the points in (low) p-dimensional space with the original dissimilarity.
The goodness-of-fit is measured by a stress [BG05]:
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σr(X) =
∑
i<j

(dij − δij)2 , (2)

where X is a set of coordinates, dij is the distance between points xi and xj in p-
dimensional space and δij is the original dissimilarity. A popular method for minimizing
stress is SMACOF algorithm, which was introduced by de Leeuw [Lee77].

Non-metric MDS, on the other hand, aims to find a configuration such that the new
distances are in the same rank order as they were originally [BG05]. This method can be
used in cases where dissimilarities between the objects are not known but their order is
known.

In our work we are only using metric MDS to visualize distances between phrases.

2.4 Spectral Clustering
The decision to use spectral clustering bases on the work of Roosalu [Roo17], where it
was concluded that this algorithm is best for clustering textual data.

Given affinity matrix A = (aij), the algorithm defines D = (dij) to be the diagonal
matrix whose di,i = ai1 + · · · + ain element in the sum of A’s i-th row, and constructs
normalized Laplacian matrix:

L = D−1/2AD−1/2 (3)

It then finds k largest eigenvectors of L and uses them to represent points in k-
dimensional space where they are clustered using k-means clustering [NJW02].

There are several methods to transform given distance graph to affinity graph. One
such method is ε-neighbourhood graph, where only points whose pairwise distance
is smaller than ε are connected but without using weights. Alternatively, k-nearest
neighbour graph can be used where a vertex has undirected weighted connection only
with its k-nearest neighbours. Third option is to use the fully connected graph where
all points are connected with positive similarity. It is common to use RBF kernel as a
similarity function. In our work, however, we transformed distances to similarities using
following equation after normalizing distances:

similarity = 1− distance (4)

During the analysis of clustering results we did some clustering experiments using
RBF kernel as similarity function as well, to see whether it would improve the results,
but it did not.

10



2.4.1 Methods for measuring quality of clustering

Purity and coverage. To compute purity, each cluster is assigned to the class which is
most frequent in the cluster and then the accuracy is measured by counting the number of
correctly assigned documents and dividing by total number of documents. High purity is
easy to achieve when the number of clusters is large and thus cannot be used for choosing
the number of clusters [MRS08].

Large number of clusters can be penalized with coverage which is the ratio of intra-
cluster edges to the total number of clusters. As opposed to purity, coverage becomes 0
when each datapoint is assigned to its own cluster.

ROC curve and AUC. In our work the goal of clustering is to cluster the contexts in
such a way that different semantic contexts are assigned to different clusters. That is,
each cluster represents one semantic context. The question that we then would like to
answer is that to what level are these groups of contexts word-specific.

We can measure this by calculating the ratio of positive instances for each cluster.
We can then define some threshold and assign positive label to all instances that belong
to a cluster above the treshold. Next, similarly to a binary classification task, we can
count true positives and false negatives and visualize the tradeoff with ROC curve.

ROC curve is a common method for visualizing the performance of binary classifier
with different thresholds. To do that, we need to rank our phrases by some score where
higher score means higher evidence of positive instance, as described by Flach [Fla12].
We can use the ratio of positive instances in a cluster as a score and assign it to each of
its phrase.

The ranking of phrases can be visualized with coverage plot by plotting positives and
negatives to vertical and horizontal axes, respectively, on decreasing order. With this plot
we can visualize the tradeoff of choosing different scores as thresholds by marking the
results on the plot. These results form a curve called a coverage curve. After normalizing
the axes of the plot to [0,1] we obtain a ROC plot and coverage curve becomes ROC
curve.

The area under the ROC curve (AUC) is the ranking accuracy that can be seen as
an estimate of the probability that an arbitrary positive-negative pair is ranked correctly
Flach [Fla12].

Silhouette. Another way of detecting the quality of the clustering is using silhouettes.
Silhouette score measures how similar is an instance to its own cluster compared to its
neighbouring cluster. Silhouette of instance xi is defined as following:

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(5)
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In the equation above, b(xi) is the average distance of xi to the data points in its
neighbouring cluster and a(xi) is the average distance to the points in its own cluster.
The difference is normalized to obtain a number between −1 and 1.

Since it is also possible that a(xi) > b(xi), that is, the average distance to neighbour-
ing cluster is smaller than to own cluster, we take maximum value from a(xi) and b(xi)
to get a normalized value [Fla12].

Silhouette scores can be visualized by sorting the scores and grouping by cluster. The
method can also be used for determining the number of clusters in a data set.

Silhouette score for the entire dataset is obtained by taking the mean silhouette over
all instances.

2.5 Classification
In this section we are going to describe the tools that we will use for solving classification
tasks that our three problems essentially are. We will treat all our problems as binary
classification tasks, where probabilities are not interesting to us. We will also describe
how we are going to apply classification algorithms to distances instead of feature vectors
as is usually required.

2.5.1 Support Vector Machine

Support Vector Machine (SVM) is a linear classification method that, if the classes are
linearly separable, finds a separating model that maximises the margin - distance between
the decision boundary and the closest instances. Following description of the algorithm
is referred from Flach and Manning et al. [Fla12, MRS08].

In SVM the scoring classifier is defined as ŝ(x) = w · x− t, which predicts positive
class if ŝ(xi) > 0 and negative class otherwise. The margin m of an example is c(x)ŝ(x)
where c(x) is +1 for positive examples and -1 for negative examples.

Therefore a true positive xi has margin w · xi − t > 0 and a true negative xj has
margin −(w · xj − t) > 0.

For convenience it is assumed that the margin m of each example is at least 1.
Examples with margin 1 are then the closest to the decision boundary and are called
support vectors. There must exist at least one such example for each class. The margin
of the classifier or, in other words, the width of separation between support vectors of
two classes in such case is 2

‖w‖ which SVM aims to maximize. This is the same as
minimizing 1

2
‖w‖. The optimization problem has the following form:

minimize
w,t

1

2
‖w‖2

subject to yi(w · xi − t) ≥ 1, 1 ≤ i ≤ n
(6)
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Figure 1. The geometry of a SVM classifier [Fla12]

This optimization problem is solved with the method of Lagrange multipliers and
usually involves constructing and solving its dual form:

maximize
α1...αn

− 1

2

n∑
i=1

n∑
j=1

αiαjyiyjxixj +
n∑
i=1

αi

subject to αi ≥ 0, 1 ≤ i ≤ n and
n∑
i=1

αiyi = 0

(7)

2.5.2 Soft margin SVM

An extension to the SVM model, Soft margin SVM, can be used if the training data is
not linearly separable. This allows decision margin to make a few mistakes, such as
letting some points to be inside or on the wrong side of the margin. The cost of mistake is
measured with a slack variable ξi and the optimization problem is changed as following:

minimize
w,t,ξi

1

2
‖w‖2 + C

∑
i

ξi

subject to yi(w · xi − t) ≥ 1− ξi, and ξi ≥ 0, 1 ≤ i ≤ n

(8)

Here C is user defined parameter that trades off margin maximization against slack
variable minimization. Higher value of C means a smaller margin will be accepted if
it results in better training accuracy. A lower C allows more margin errors in order to
achieve larger margin and thus a simpler decision function [Fla12].
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In practice, proper C is chosen with parameter tuning.

2.5.3 Nonlinear SVM

While soft margin SVM allows some errors on the data that would otherwise be linearly
separable, nonlinear SVM can be used on the data set that would not be possible to
classify using linear classifier even with allowing errors. Nonlinear SVM maps the data
onto a higher dimensional space where it becomes linearly separable and applies the
linear classifier in that space.

As show in Equation 7, the SVM classifier relies on pairwise dot products xi · xj
between training instances. If every datapoint is mapped into a high-dimensional space
via some transformation Φ : x→ φ(x), the dot product becomes φ(xi) ·φ(xj). However,
as computation of φ(xi) for each instance is not needed in order to train and classify
datapoints, kernel functions are used to direcly calculate dot products in high dimensional
space. A kernel function is some function κ that computes the dot product in higher
dimensional space in terms of the original data [MRS08]:

κ(xi,xj) = φ(xi) · φ(xj) (9)

The value of function in Equation 9 is then used in Equation 7 instead of xi · xj .
With kernel functions it also becomes possible to use infinite-dimensional feature

space as we never have to compute mapping φ(xi) explicitly.

2.5.4 SVM with RBF kernel

Radial basis function (RBF) kernel is given by

κ(xi,xj) = exp(−γ‖xi − xj‖2) , (10)

where γ is a positive parameter that controls the width of the kernel.
In other words, γ controls how similar two instances are to each other in the kernel

space. RBF function with large γ will result in low values and means that two instances
will be considered different even they are close to each other in terms of the distance.
Small γ means that even instances that are far from each other will be treated as similar.

In terms of SVM, γ defines how far the influence of a single training example reaches,
with large values meaning ’close’ and small values meaning ’far’ [skla]. Therefore with
large γ more instances are treated as support vector in order to classify training instances
correctly. However, the model is able to correctly classify only instances very close to
support vectors, resulting in overfitting.

On the other hand, with small γ the influence of a single training instance is large and
less support vectors needs to be chosen which results in more simple decision function,
however, the model can suffer from underfitting.
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If γ → 0, all instances will be considered equally similar and thus a majority class
will be assigned to the test instance. If γ →∞, all examples will be considered equally
different. Therefore, with sufficiently large γ values the model uses only some small
number of closest instances to make the decision. From this it can be concluded that
SVM with RBF kernel does a tradeoff between majority voting and KNN.

2.5.5 Handling class imbalance

The problem with SVM is that it is sensitive to the class imbalance. SVM with imbalanced
data tends to produce sub-optimal models which are skewed towards the minority class
and can cut the performance with respect to the minority class [HM12].

This weakness is caused by the fact that the same misclassification cost is assigned to
all the training examples (see Equation 8). Since the density of majority class examples
is also higher near the boundary region, the separating hyperplane is shifted towards the
minority class, in order to reduce the total number of misclassifications [HM12].

There exist many different methods to handle the problem. For example, various data
preprocessing methods can be applied before training SVM model including data under-
and oversampling and ensemble methods, such as bagging.

Alternatively, some algorithmic modifications to the SVM algorithm have been
proposed. In our work we use a method described by Veropoulos et al. for imbalanced
data. It is a cost-sensitive learning method, where different miclassification cost is
assigned to positive and negative instances [VCC99]. Besides that there exists a method
called z-SVM that adjust the separating hyperplane of a model that is already trained on
an imbalanced data so that the skew towards the minority class is reduced [IMTK06].
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3 Hypotheses
Reasoning about the similarity of a set of words is a task that is actively being tried to
solve using continuous vector-space representations of words. Some models, for example
BART [LCH12], learn relations from the examples, and are successful in modelling
first-order comparative relations, such as larger and smaller.

Alternatively, the representations of words themselves could encode semantic proper-
ties that can be used to infer relations between words. This has been shown to be to some
extent true for word embeddings learned with neural networks, but as well for Word2Vec
and GloVe embeddings [MYZ13, MCCD13, PSM14].

It has been demonstrated that using simple vector arithmetic, such embeddings can
be used for answering analogy questions. For instance, the question man is to king as
woman is to ... can be answered with operation

v = vking − vman + vwoman

and resulting vector v will be similar to vqueen [MYZ13]. However, it is still not
well understood how and to what extent such semantic relations are encoded into the
embeddings. Chen et al. evaluated different types of semantic relations and found that
some relations are better captured than others [CPG17].

In our work we are going to lift this similarity problem to phrases, i.e. we want
to capture similarity of phrases such that semantically more similar phrases are close.
This would make it possible to detect phrases by some synonymous meaning. Since
Estonian has free word order, that is, the meaning of the phrase does not depend on word
order, the similarity measure should be invariant under permutations. We could take
an average from all the word vectors but this is too crude. WMD, on the other hand,
provides necessary alignment and can be visualized as well.

Kusner et al. showed in their experiments that WMD constantly outperforms other
state-of-the-art document similarity measures in KNN classification task [KSKW15].
However, WMD gives a distance that does not have a simple representation in vector
space. That is, there is no simple embedding that would capture WMD distance. We can
overcome this limitation with RBF scaling which provides an infinity dimensional space
to embeddings and with small kernel width reduces to KNN as well (see Section 2.5.4).

The problems that we are going to try to solve using WMD as a similarity measure
are as follows.

Predicting omitted word. We are trying to predict omitted word, given only the
contexts of the word. Our hypothesis is that, to some level, it is possible to predict
the omitted word, even when the words are semantically very similar. However, as the
phrases can be constructed in many different ways, we now formulate two hypotheses
about phrase construction that we think will perform better than simple context window.
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• Forming phrases using syntax tree fragments will improve the results achieved
with using simple context window.

• Forming phrases by removing most common words and extending the context will
improve the results achieved with using simple context window.

The hypotheses will be evaluated in terms of both, supervised and unsupervised learning
methods. We have one additional hypothesis about classification algorithms:

• Kernel-SVM with RBF-kernel will have better classification accuracy than KNN.

Adverse drug reaction detection. In this experiment we are going to use contexts of
the words that could potentially describe drug adverse reactions to decide whether the
word was actually related to some adverse effect or not.

Analysis of syntax parser errors. Here we are going to analyse the phrases that are
incorrectly tagged by the syntax parser. We are interested in whether it is possible to
separate correctly tagged phrases from incorrectly tagged phrases by semantic meaning.

First problem is a made up problem to assess the suitability of the method for phrases.
Last two problems are examples of practical cases. Therefore it only makes sense to
apply WMD to last two problems if we solve the first problem successfully, that is, we
show that it is possible to do semantic separation of phrases using WMD. In Section 4,
where the results of the first problem are discussed, we see that to some level it indeed is
possible to do that. Thus it is interesting to apply the method to the practical cases as
well.

Other practical applications where method could be useful include inferring word
sense from given context, detecting synonyms, extracting sub-meanings or automatically
classifying word usages.
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4 Predicting missing word

4.1 Word removal test
To carry out this experiment, we are going to use a special kind of method, which we
will call a word removal test. Essentially, we are using this method to avoid manually
labelling hundreds of phrases by some semantic meaning. Word removal test is a test
where two different but semantically slightly similar words are removed from their
contexts and the omitted word is used as a semantic label for the context. The phrases
are then either clustered or used for learning a binary classifier that would predict the
missing word.

In terms of cluster analysis, the expected result is that phrases are clustered by their
semantic meaning and that each semantic meaning is relevant to only one word from
two possible. That is, each cluster contains phrases that have the same label. This would
mean that it is possible to decide which word was used in a context without knowing the
word itself.

Ideally, all the clusters would be pure but we do not expect that to happen since the
data will probably contain phrases that would be difficult to label even for a human. We
are satisfied if easily labelable data is located in pure clusters and hardly labelable data is
put into impure clusters. In other words, we are expecting to see a set of pure clusters
together with a set of impure clusters. Ideally, the number of impure clusters would be as
small as possible.

The shortcoming of this test is that there is no human baseline available to compare
the results. It could be that accuracy of 55% for some cases is the best that can be
achieved but we do not know that.

4.2 Data
The experiment is carried out on the data from etTenTen corpus [Mui16] which is an
Estonian language corpus made up of texts collected from the Internet. We decided to use
etTenTen because the language used there is less formal and contains many errors which
is closer to medical texts that we will be also be working with. The corpus contains more
than 600 000 text files that were converted into JSON format and linguistically analysed
with EstNLTK [OPT+16] version 1.6_b [Ora18].

4.2.1 Defining word pairs

As word removal test bases on semantically similar word pairs, we need to somehow
define those pairs. We decided to form the pairs by their level of semantic similarity:
one pair of semantically very similar words, one of somewhat similar words and one
of different words. We are assuming that it is more difficult to label contexts of similar
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words and easier to label contexts of different words. Therefore we are expecting to see
improvement in clustering quality while the level of similarity between words decreases.

To ensure that the results on a single word pair are not random and can be generalized
to any word pair having the same characteristics, we chose three pairs of words for each
level of similarity. The exact word pairs are shown in Table 1. As a result, we have three
test sets, each containing words pairs with different similarity. We will hereafter refer to
these testsets as õun-testset, auto-testset and arst-testset.

Very similar Somewhat similar Different

õun-puuvili õun-kivi õun-auto
auto-buss auto-lennuk auto-koer

arst-psühholoog arst-advokaat arst-vend

Table 1. Word pairs that were used in word removal tests

In õun-testset we have 597 phrases for each word, in auto-testset the number is 800
and in arst-testset it is 692. The number depends on how many sentences there are in the
corpus for each word but is not larger than 800.

4.2.2 Constructing phrases

We used three different phrase generation methods in our experiments. All phrases were
formed using lemmatized words, regardless of the method. Ambigous lemmas were left
as they were, to the form of lemma1|lemma2, since Word2Vec model that we used for
embeddings is trained on lemmatized data and also contains ambigous lemmas.

The consequence of using lemmatized forms instead of grammatical forms is that
some semantic information gets lost. As it shortly can be seen, it is much more easier
for a human to understand the meaning of a phrase when it is in its grammatical form
instead of in lemmatized form. On the other hand, using grammatical forms would mean
that we would have more words that are unknown to the model and must be left out.

Context window based phrases. We used symmetric contexts windows with size 3
(three words from left and three words from right). Punctuation and conjunctions were
omitted.

Syntax tree based phrases. Syntax parsing was done with EstNLTK MaltParser. We
did not have much knowledge about what would be the best way to construct the phrases,
so the goal was to explore syntactic structure of the sentences and find a meaningful way
to do that.
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We started by examining syntactic functions of test words. Since they were nouns,
the distribution of syntax tags was similar for all words. By observing some impure
clusters from baseline results we found that phrases that are difficult to separate tend to
contain many attribute words that did not seem to help with deciding the right label and
are missing words with other syntactic functions. Table 2 contains õun-kivi phrases from
one such cluster.

One possible solution to that problem was to form the phrase from words that had
more meaningful syntactic functions: subject, object, finite main verb, adverbial, and a
root word. If the resulting phrase was longer than 6 words, as quite often happened, we
chose 6 words that were closest to the test word. Examples of syntax based phrases are
shown in Table 3. Sentences from which the phrases were extracted are in Table 3 same
as in Table 2.

As it can be seen, some contexts have become much shorter and the words they
contain carry less word specific meanings. On the other hand, some phrases now contain
words that could possibly make it easiser to label the data correctly. Such words are, for
example, word laud in the second sentence and word veeretama in the last sentence.

õun
kivi

(a) baseline

õun
kivi

(b) no stop words

Figure 2. MDS visualizations of distances between õun-kivi phrases

Removing stop words. Another problem with the baseline phrases that was revealed
after performing dimensionality reduction on the data and visualizing the results (Figures
2a and 3a), was that there was a large group of phrases that were notably closer to each
other than to other phrases. It turned out that these were the phrases that contained one
or more identical words. Examples of such sentences can be seen in Table 4.
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Since the distance between identical words is zero, the distance between these phrases
becomes smaller and they end up in the same clusters, regardless on which word these
phrases originally contained. This suggested that by removing most common words, or
stop words, as they are called, could improve the clustering quality. Figures 2b and 3b
show that indeed removing stop words also removed the gap in distances.

õun
kivi

(a) baseline

õun
kivi

(b) no stop words

Figure 3. Kernel-PCA visualizations of distances between õun-kivi phrases

In our experiment we used a predefined list of Estonian stop words [Uib18] to decide
which words to remove and extended the context until the length of the phrase was up to
six words. As a results, the phrases were not symmetric anymore, containing one to six
words, as shown in Table 5.

It can be seen that, in some cases it is now much easier for a human to decide the
correct label of a phrase because these phrases are containing words that are more label
specific.
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original phrase lemmatized phrase

pani mannile ühe _ peo peale teised panema mann üks _ peo|pidu peale teine

lk kõva köide _ passib patta panna lk kõva köide _ passima pada panema

andma pool kuningriik _ teine pool kohuke andma pool kuningriiki _ teise poole kohukese

ei jää ühtki _ teise peale mis ei jääma üks _ teine peale mis

on üks suur _ väiksemate peale tõstetud olema üks suur _ väiksem peale tõstetud|tõstma

joone tagant tuleb _ teise joone peale joon tagant tulema _ teine joon peale

Table 2. Examples of õun-kivi baseline phrases that are in the same cluster

original phrase lemmatized phrase

pööras ümber pani mannile _ peale teised tõstis pöörama ümber panema mann _ peale teine tõstma

268 _ passib patta panna lauale kanda 268 _ passima pada panema laud kandma

olin andma _ eest olema andma _ eest

tõesti jää _ teise peale mis kistaks tõesti jääma _ tema peale mis kiskuma

peal on _ peale peal olema _ peale

tõmmatakse kaks tagant tuleb _ peale veeretada tõmbama kaks tagant tulema _ peale veeretama

Table 3. Examples of õun-kivi syntax based phrases
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original phrase lemmatized phrase

tõestanud kuidas tuleb _ toime nii raske tõestama|tõestanud kuidas tulema _ toim|toime nii raske

tuleb katta rabarberite _ neile puistata pool tulema katma rabarber _ tema puistama pool

küpsenud siis tuleb _ vars katki lõigata küpsema|küpsenud siis tulema _ vars katki lõikama

sammuga on saapad _ liiva täis tuleb samm olema saabas _ liiv täis tulema

hukkunute arv tuleb _ vaid sel juhul hukkunu arv tulema _ vaid see juht

tuleb ära korjata _ hiljem oleks umbrohutõrjet tulema ära korjama _ hiljem olema umbrohutõrje

Table 4. Examples of õun-kivi baseline phrases that are in the same cluster

original phrase lemmatized phrase

teadus tõestanud _ toime raske ülesandega teadus tõestama|tõestanud _ toim|toime raske ülesanne

põhi katta rabarberite _puistata pakki tordipulbrit põhi katma rabarber _ puistama pakk tordipulber

punase õun küpsenud _ vars katki lõigata punane|punas õun küpsema|küpsenud _ vars katki lõikama

paari sammuga saapad _ liiva täis kaldal paar samm saabas _ liiv täis kallas

teksti hukkunute _ arv juhul teada täpne tekst hukkunu arv _ juht teadma täpne

korjata _ hiljem umbrohutõrjet kergem korjama _ hiljem umbrohutõrje kergem

Table 5. Examples of õun-kivi phrases without stop words

23



4.3 Results
We carried out three experiments in total. The baseline experiment was done with phrases
formed using simple context window. Second experiment used phrases that were formed
from syntax tree fragments and third experiment was carried out on phrases from which
stop words were omitted.

4.3.1 Cluster analysis

Deciding the number of clusters. The number of clusters depends on the number
of different meanings a word can have and the number of different contexts in which
the word is used. The latter number is unknown to us and can be only guessed. We
experimented with different number of clusters, ranging from 25 to 125 but none of these
did not seem to be significantly better than others. Table 6 shows average silhouette
scores for different cluster numbers from baseline experiment. The scores are close to 0
in all cases.

Silhouette score close to 1 for a single instance i would mean that i is much closer to
instances in its own cluster than to closest neighbouring cluster. Therefore instance i is
well-clustered as second best cluster is not nearly as good as current cluster [Rou87].

Silhouette close to−1 would mean that, on average, similarity to neighbouring cluster
is much larger than to its own cluster and therefore instance i has not been assigned to an
appropriate cluster [Rou87].

However, in our case the scores are close to zero. This indicates that average distance
to instances in its own cluster is approximately equal to average distance to closest
neighbouring cluster and it is not clear to which cluster i should have been assigned to,
that is, what is the correct cluster for i [Rou87].

Intuitively, high score would mean that the phrases are assigned to clusters in such a
way that each cluster contains phrases with some semantic meaning that is specific to
only phrases in that cluster. In this case we would have found the number of clusters that
corresponds to the number of different semantic meanings among the phrases (which is
unknown to us).

No. of clusters Avg. silhouette

25 0.024
50 0.018
75 0.022

100 0.012
125 0.008

Table 6. Average silhouettes
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For final evaluation the number of clusters was chosen to be 75.

Quality. Table 7 compares purity scores of different word pairs from all three experi-
ments. As it can be seen, removing stop words improved purity score, however, syntax
based phrases did not give the expected improvement.

Baseline Syntax No stop words

õun-auto 0.67 0.68 0.72
õun-kivi 0.70 0.65 0.75

õun-puuvili 0.67 0.67 0.71

auto-koer 0.66 0.64 0.68
auto-lennuk 0.63 0.63 0.66
auto-buss 0.61 0.63 0.67

arst-vend 0.71 0.68 0.74
arst-advokaat 0.69 0.70 0.72

arst-psühholoog 0.65 0.64 0.70

Table 7. Purity by word pair

We can also find the ratio of positive instances in each cluster and assign a positive
label to all instances in clusters with above some threshold. This converts our clusters
into a binary classifier and we can measure its performance with ROC curve and AUC
score (see Section 2.4.1 for more details about converting clustering to a classifier). In
our context, ROC curve is an important measure because it helps us to visualize the
trade-off between true positives and false negatives as we do not know how well the data
is clustered in terms of labelling and therefore what is a good choice for a threshold. AUC
can be interpreted as an estimation of the probability that an arbitrary positive-negative
pair is ranked correctly. Therefore it assess the choice of scoring.

Converting clustering into a classifier is especially relevant in practice, where the
data is often not labelled, but still some binary decision has to be made. In this case,
manual labelling of the whole dataset can be avoided by clustering the data and then
manually ordering clusters by relevance by only looking at a small subset of instances in
the clusters. Then a threshold can be chosen to separate the data into two classes. This
provides a trade-off between the amount of manual work and accuracy of the labelling.

Respective AUC scores are shown in Table 8 and ROC curves of õun-testset are
visualized in Figure 4. Again, it can be seen that there is not much difference in whether
baseline phrases or syntax based phrases were used, and the best results were achieved
with phrases without stop words.
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There could be different reasons why syntax based phrases did not work as well as
expected. Firstly, there are still clusters that are formed from phrases that contain some
common word with little semantic meaning. Such words are, for example, olema, tegema,
võtma, eest, pärast, kes. Secondly, perhaps by omitting words only on the basis of their
syntactic functions we also lost some words that carried useful semantic information.
As a result, some phrases could have become too general in order to be separated into
different clusters.

Baseline Syntax No stop words

õun-auto 0.75 0.76 0.81
õun-kivi 0.79 0.73 0.84

õun-puuvili 0.74 0.74 0.80

auto-koer 0.73 0.71 0.76
auto-lennuk 0.70 0.70 0.74
auto-buss 0.67 0.69 0.75

arst-vend 0.79 0.74 0.81
arst-advokaat 0.78 0.79 0.81

arst-psühholoog 0.71 0.71 0.78

Table 8. AUC by word pair

Omitting stop words clearly solved both problems mentioned above but the problem
of having clusters that are constructed from phrases that contain a mutual word stayed.
Although this time the mutual words are more meaningful, for example, aeg, vesi,
korjama, it results in smaller distances between phrases that might not otherwise be
similar. This seemingly larger similarity can be misleading for clustering algorithm. For
example, following two õun-kivi phrases tikker pohl jõhvikas _ külmutamine keev vesi
and põhjavesi tase purustama _ vesi tõstma ekskavaator ended up in the same cluster
although it is easy for a human to see that they have different labels.

4.3.2 Classification

In cluster analysis the labelling is not known for the algorithm and it must learn to group
the data in a meaningful way without any supervision, that is, without labels that would
indicate correct grouping. In classification tasks, however, labelled data is used to learn
a function that would correctly output the label of an unseen instance. A classification
algorithm analyzes available data with corresponding labels and produces a function that
would output correct labels for those instances.
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Figure 4. ROC curves comparing clustering quality of different experiments

Choosing the right parameters. Proper choice of penalty parameter C and RBF
kernel parameter γ are essential to the SVM’s performance. The best-performing combi-
nation of parameters was chosen using grid search. We used k-fold cross-validation with
k = 10 on every word pair to train SVM classifier with given combination of parameters
and evaluated the results on test set. Results of word pairs from õun-testset are shown in
Figure 5. It can be clearly seen that the level of semantic similarity between two words
affects the accuracy of the model. In the final model C was set to 1 and γ was chosen to
be 0.1.
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Figure 5. Choosing the proper parameters for RBF-SVM classifier

The number of neighbours in KNN algorithm was chosen to be 35 since it is approxi-
mately the square root of the train data size which is often used as a rule of thumb for
choosing k. Cross-validation with different numbers of k showed that the performance
of the algorithm was similar with any choice of k tested.

Results. Table 9 shows classification accuracy of SVM and KNN with different word
pairs in all three experiments. The table shows that, with both algorithms, phrases
without stop words achieved the best accuracy while results with syntax based phrases

27



were almost always lower than with baseline phrases. It is also clear that RBF-SVM
outperforms KNN.

We achieved at least 80 percent accuracy with RBF-SVM on semantically different
or somewhat different word pairs in all testsets. These results are promising and show
that the distances between phrases obtained with WMD contain enough information in
order to efficiently classify or cluster phrases by the semantic meaning they are carrying.
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SVM KNN

baseline syntax no stop words baseline syntax no stop words

õun-auto 0.87 0.83 0.90 0.81 0.77 0.86
õun-kivi 0.83 0.80 0.86 0.76 0.75 0.82

õun-puuvili 0.74 0.69 0.73 0.65 0.66 0.67

auto-koer 0.78 0.77 0.82 0.72 0.72 0.80
auto-lennuk 0.78 0.73 0.80 0.69 0.67 0.76
auto-buss 0.71 0.70 0.76 0.64 0.62 0.71

arst-vend 0.82 0.78 0.85 0.76 0.70 0.83
arst-advokaat 0.80 0.81 0.86 0.76 0.75 0.83

arst-psühholoog 0.74 0.71 0.78 0.65 0.65 0.74

Table 9. Classification accuracy by method and word pair
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5 Adverse drug reaction detection
In this section we apply WMD to phrases that are extracted from patients’ epicrises in
order to automatically detect adverse drug reactions (ADRs).

In medicine, epicrisis is a summary of a medical case history. As such the epicrisis is
a collection of structured data and free-text fields. Adverse drug reaction is an undesired
harmful effect resulting from medication. Medical personnel is instructed to report about
serious adverse reactions through structured diagnosis fields. However, sometimes the
adverse reaction is in so mild form that it occurs only in textual description of the patient
state. The textual description is also more nuanced than the rough formal categorisation.
Hence, semiautomatic extraction of ADR phrases is a meaningful fact extraction task.

The data is provided to us by STACC who has already done sentence tokenization of
the data (which is not a trivial task due to heavy use of domain-specific abbreviations
and missing spacings). STACC is also responsible for tagging potential ADRs in the
data. These potential ADRs were then manually labelled [Kre19].

5.1 The problem
We are going to treat ADRs detection problem as a binary classification task. Our guess
is that phrases that describe ADRs are semantically different from other phrases in the
texts and that dissimilarity is also reflected by WMD. This would make it possible to
separate ADRs from other phrases with a binary classifier.

The task is especially interesting to researchers in Geenivaramu who seek for connec-
tions between ADRs and genetic data. Being able to detect ADRs automatically would
reduce the amount of manual work that is done for the detection.

5.2 Data
The data contains 11 179 potential adverse effect mentions from 1052 different epicrises,
all of which have diagnose codes which contain at least one adverse effect diagnosis. So
we know that all the epicrises are related to the appearance of an adverse effect in some
way. Some examples from the dataset are shown in Table 10.

For each mention the sentence that contains that word and a label is known. The
data is manually labelled. For each tagged word it is known whether this specific word
describes adverse effect or not. Multiple tagged words could be described by identical
sentences since one sentence often contains more than one tagged word. Therefore
the number of different sentences in the dataset it actually smaller which also reduces
variability in phrases. In addition to that the original dataset contains duplicates due to
being merged from different tables.

The data is heavily unbalanced. Around 10% of all the examples are positive
instances, that is, they were used in the context of drug adverse effect. For the majority
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sentence ADR type is ADR drug

1 kuu tagasi tekkis lööve käsivartele, nahalööve yes fastum
kasutas paikselt Fastum-geeli põlvevalu tõttu /.../ liigesevalu no

/.../ patsient adekvaatne, liigub osakonnas peavalu no
ringi, käib suitsetamas.Kurdab peavalu, iiveldus no
iiveldust, oksendamist ei ole esinenud. iiveldus no

Tarvitanud Loratadini, leevendust saanud punetus yes N/A
vähe.Vasema labajala dorsaalpinnal punetav nahalööve yes N/A
laik.Plaanis UH ja biopsia, /.../

Table 10. Examples from drug adverse reaction dataset

of positive instances the drug that caused the adverse effect is also mentioned in the
sentence, however, not always.

5.2.1 Preprocessing

During the preprcessing duplicates were removed and the data was tokenized and lem-
matized. Similarly to word removal experiments punctuations and conjunctions were
omitted, but also cardinal numbers and abbreviations since they are frequent words in
the domain but carry little meaning in the context of our problem.

total no adverse effect adverse effect drug mentioned

original 11 179 9989 1190 883
no duplicates 7793 6969 824 602

Table 11. Dataset size and properties before and after removing duplicates

5.2.2 Constructing phrases

The phrases were constructed using the same method as with the word removal tests:
using context window of size 3 as a baseline method and removing stop words for the
comparison. The reaction itself was also included into the phrase in both cases. We
decided to experiment with baseline phrases as well, because we are unsure whether
removing stop words will improve the results as it did in word removal tests.

There are two reasons why it might not work. Firstly, the sentences are often very
long and contain many semantically different ideas, however the ideas are described with
rather short phrases. Extending the context too much could include words that are not
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related to the problem and obscure the meaning of interesting words. Secondly, some
most common stop words seem to be essential for deciding the label. For example, we
might not want to remove last two words from the phrase palavikku ei ole.

5.2.3 Sentences

In addition to previous concerns, there is a problem with labelling. In fact, is not perfect
for our task. The data is labelled so that, in case there is an adverse effect, all the related
reactions in the epicrisis are labelled as positives. This means that the decision is not
always made by looking at the local context but rather is global context used as well.
Since epicrises are usually multiple sentences long, it is even possible that relevant
information is not located in the same sentence.

In terms of our task it means that the data is faulty and contains false positives, as
we are assuming that the decision can be made by only seeing a short context near the
reaction. However, we do not know the extent of this problem and how this is affecting
the results but it can increase the number of false positives returned by the model (with
small γ). In fact, we do not even know what should be the size of the context that would
contain all the relevant information. It could be that the whole epicrisis must be included
into the decision making. However, we do know that the decision has always been made
based on the information in the texts.

All in all, it is worth a try to predict the label for the whole sentence as well. To
do that, we set the label of a sentence to positive if it contains at least one mention of
adverse effect and negative otherwise. In total we have 5259 different sentences among
which 500 are positive instances.

5.3 Results
We used SVM to classify the data. Grid search for choosing the parameters was done
on half of the data using stratified k-fold cross-validation with k=10. The results were
evaluated with F1 score and are shown in Figure 6.

We did not allow phrases from the same epicrises appear both in train and test/dev
set, because such phrases are often very similar. The model in this case would predict
the data it has already seen and the results would be misleading. Also, in real life we are
interested in predicting the results of epicrises that we have not seen before.

The class imbalance problem was handled with assigning different values of penalty
parameter C to positive and negative class. More specifically, we used balanced weighting
where parameter C is multiplied with class weight. For each class i the class weight was
calculated as following [sklb]:

weighti =
nsamples
nclasses · ni

, (11)
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Figure 6. Cross-validation F1 score of RBF-SVM adverse effect classifier

where nsamples is the number of samples, nclasses is the number of classes and ni is the
number of instances from class i.

Figure 7 visualizes cross-validation γ values. Each matrix is a sum of results of 10
test folds. Since the data is heavily unbalanced, each class is normalized by the number
of elements in that class for more visual interpretation. We can see that while model
with lower gamma gives us more positive instances, it also increases the number of false
positives, that is, recall is high but precision is low.
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Figure 7. Cross-validation confusion matrices for different values of γ

Larger gamma, on the other hand, manages to identify only a small amount of positive
instances but the number of false positives is also low, resulting in a high precision but
low recall, in term of a positive class. It is also clear that the model in this case is
overfitting. From these observations we can conclude that adverse drug reactions are not
easily separable from other phrases.

The final model was trained on 90% of the data and tested on 10% of the data.
Parameter C was chosen to be 1. Parameter γ, assuming we want to optimize recall, that
is, detect as many positives as possible, was chosen to be 0.01. Results are shown in
Table 12. Figure 8 shows ROC curves on the same data.

Results show that there is not much difference on whether we remove stop words or
not. Observing the phrases revealed that removing stop words did not change the content
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accuracy precision recall

baseline 0.80 0.35 0.66
no stop words 0.80 0.35 0.65
sentences 0.87 0.38 0.71

Table 12. Results on test data

of the phrases as much as we had expected. This could mean that stop words are not
used very frequently near the potential adverse effect mentions. Another explanation is
that there is quite many words in the texts that are unknown to the Word2vec model and
therefore were simply left out from the phrases. These words include, for example, some
domain-specific words, misspelled words and drug names.

0.0 0.2 0.4 0.6 0.8 1.0
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1.0

sentences
baseline phrases
no stopwords phrases

Figure 8. ROC curves on test data

We can also see that predicting labels for sentences performs better than predicting
labels for phrases. This indicates that indeed larger context is needed for correct decision-
making.

Because the labelling of the data is not perfect for our task, it is not so straightforward
to reason about misclassification. However, one of the observation is that there exists a
set of reactions that the model almost always predicts as positive. These reactions are, for
example, punetus, sügelus and lööve and often appear in some combination, for instance,
punetav lööve. In addition to that, phrases containing words iiveldus and allergiline are
also mostly predicted as positives. All these words are among the most common adverse
reactions. At the same time, some phrases that are very similar are labelled differently.
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See Table 13 for some examples.
There is much less false negatives than false positives and it is hard to see any patterns

other than some of the most common false negative ADRs are turse and valu. Finally, as
can be seen in Table 13, given the short context it is very difficult to decide the label.

phrase true label predicted label

ülitugev iiveldus nõrkus jõuetus lisaprobleem ka 1 1

kui pearinglus tasakaaluhäire aeg-ajalt iiveldus 0 1

peavalu minestama peavalu püsima esinema iiveldus 0 0

viimane kuu süvenev jõuetus nõrkus turse jalg 0 0

kuu süvenev jõuetus nõrkus turse jalg anamnees 0 1

Table 13. Examples of potential ADR phrases

To sum up, it is clear that the extracted phrases do not contain information that is
needed to make the correct decision. We also know that the information needed for that
might not even be in the same sentence. Therefore it is not reasonable to predict label
for each potential ADR. On the other hand, we saw that predicting label for the whole
sentence somewhat improves the results.

We can see from Table 12 that for the majority of phrases the drug that caused
adverse reaction is known, that is, the drug was mentioned in the same sentence. We
could somehow try to make use of this information when extracting phrases, e.g, cut the
phrase towards the mention of the drug as it seems that interesting context is located near
and between the drug and the reaction.

However, as we do not want to predict label for each reaction, we could try to predict
the label for each mention of the drug instead. After detecting drugs from the data they
can be automatically labelled using the already available data. The disadvantage of this
is that the data will again be unbalanced but on the other hand, context might be more
meaningful for positive instances.

Alternatively, we could fix a list of potential ADRs and use WMD to extend that list.
This is potentially useful because the same ADR can be expressed with different words.
The phrases can then be compared with drug information. Comparing the relatedness of
potential ADRs to different drugs would then give an answer about which drugs most
often cause some specific ADR. As a result, we can say that some potential ADRs most
probably are not actually ADRs. This would reduce the amount of manual work that has
to be done to decide the final label.
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6 Analysis of syntax parser errors
In this section we use WMD to analyse the errors made by MaltParser [NHN+07] syntax
parser. We apply the distance metric to the phrases tagged by the parser and try to
separate correctly tagged phrases from incorrectly tagged phrases.

Parsing algorithm in MaltParser consists of parser configurations and transitions.
During parsing, transitions are used to map one non-terminal parser configuration to
another configuration until the whole sentence is parsed [NHN+07]. What is interesting
in our context, is that the choice of transition is nondeterministic, that is, there is
normally more than one transition applicable. Therefore the system is supplemented
with a classifier that predicts the next transition at each nondeterministic choice point.
This classifier is learned from the annotated treebank.

MaltParser gets accuracy around 80-85%, however, it overfits because the training
data is sparse. Because of that, it is infeasible to increase accuracy of the parser by
extensive labelling, as the troublesome cases are also sparse. To overcome that, a new
approach is needed that focuses on errors in the data. However, we can only work with
potential errors, as there is no gold annotation. This is where WMD becomes useful as
we could use it to try to separate true errors from false positives.

We already know that the potential errors are phrases with some specific structure.
There is around 20 such cases where MaltParser often makes errors. Each case affects
accuracy of the MaltParser around 0.5%, therefore successfully solving at least one of
the problem gives an improvement in the accuracy. The problem analyzed in this work is
one such case. More specifically, we only look at the errors with predicatives. Hence
the task is to predict based on MaltParser output whether parser makes an error. We can
evaluate the results with a small set of gold annotations [Sä].

6.1 The problem
The state-of-the-art MaltParser model for Estoninan language [Sä] quite often makes
mistakes in analysing sentences and produces incorrect syntactic parses for the sentences.
This does not mean that parse for the entire sentence is wrong, rather are some parts of
the sentences parsed correctly and some incorrectly.

One such part of a sentence where MaltParser often makes mistakes, is a predicative.
However, predicative is a single word and in order to analyze the problem with WMD,
we need to define a phrase, some context in which the predicative appears in. Analysis
of errors has shown that one problem with predicative is that MaltParser often confuses
subject and predicative. Moreover, it is also known that problematic cases are phrases
where both words are nouns or pronouns, that is, not adjectives. Thus we restrict our
analysis of potential errors to only predicatives for which the subject also exists. For
convenience, we define predicative fragment as a predicative in such specific context as
follows.
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Predicative fragment. Predicative fragment is a phrase that consists of a subject, a
verb, and a predicative such that verb is a parent of other two.

Figure 9 shows an example of predicative fragment. Defining more general context
for a predicative fragment would also significantly increase the noise among the possible
predicatives found by the parser. This will become more clear after we have described
the process of extracting phrases.

6.2 Data
The data contains 29767 sentences for which MaltParser syntax labelling and gold
labelling is known. Gold labelling is manually verified and contains true syntax parses.
MaltParser labelling is obtained through a cross-validation, where 9 folds are used for
training and one for predicting and the process is cycled to get predictions for all folds.
This is needed to counter extreme overfitting of MaltParser.

oli

ema

@SUBJ

rätsep

@PRD

(oli (ema@SUBJ, rätsep@PRD))

Figure 9. Predicative fragment

6.2.1 Constructing phrases

There are three types of mistakes MaltParser can do while detecting predicative fragments.
Firstly, it may tag a phrase as a predicative fragment when it actually is not. Secondly, it
may find the correct fragment but might not able to detect predicate correctly. Thirdly,
it may miss a predicative entirely by doing some nonsensical error. However, we can
not consider third problem because that would require us treating all possible phrases
as potential errors. We therefore restrict the set of possible errors to first two types of
mistakes. The amount of phrases this set covers then depends on how we define second
type of mistake.

On the basis of this discussion we define potential predicative fragment as follows.
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Potential predicative fragment. Potential predicative fragment is a phrase that is
extracted from the data that is tagged with MaltParser. It is a phrase that could potentially
be a predicative fragment according to the true labelling. It consists of three words that
could either be:

1. a verb, a predicative and a subject such that verb is a parent of other two;

2. a verb, and two subjects such that verb is a parent of other two.

As predicative can only appear together with some specific verbs, we further restrict
that verb must be from a following list: olema, paistma, tunduma, näima. In case it is
possible to form the fragment in both ways, the phrase matching the first rule is chosen.

Examples of potential predicative fragments can be seen in Tables 14, 15 and 16.
Table 14 shows examples of potential predicative fragments that are not actually predica-
tive fragments according to the gold labelling. As it can be seen, due do our definition of
predicative fragment some predicatives will remain unrecognized.

MaltParser labelling gold labelling

(pole (mõtet@PRD, spekuleerida@SUBJ)) (pole (mõtet@SUBJ (spekuleerida@<INFN)))

(on (Õunapuu@SUBJ, kunstnik@PRD)) (on (Õunapuu@ADVL, kunstnik@PRD))

(olema (täituvus@SUBJ, 50-55@PRD)) (olema (täituvus@SUBJ, 50-55@OBJ))

Table 14. Examples of potential fragments that are not actually predicative fragments

Table 15 shows examples of potential predicative fragments that indeed are pred-
icative fragments according to the gold labelling but the labelling is incorrect, that is,
predicate is not detected correctly.

MaltParser labelling gold labelling

(on (Eesti@SUBJ, koht@SUBJ)) (on (Eesti@SUBJ, koht@PRD))

(on (Riigid@SUBJ, Austria@PRD)) (on (Riigid@PRD, Austria@SUBJ))

Table 15. Examples of fragments with incorrect labelling

Finally, Table 16 shows some examples of potential fragments that are indeed pred-
icative fragments and MaltParser has also been able to detect predicative correctly.

As already mentioned and can be seen in Table 14, our extraction algorithm misses
some cases where MaltParser can make errors about predicatives. One such case is
phrases where subject is not given. Another case is phrases where verb is left out, for
example, in sentence Ta vist üsna mõistlik inimene.
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MaltParser labelling gold labelling

(on (kes@SUBJ, lumeuurija@PRD)) (on (kes@SUBJ, lumeuurija@PRD))

(on (seda@PRD, kindlustajariik@SUBJ)) (on (seda@PRD, kindlustajariik@SUBJ))

Table 16. Examples of fragments with correct labelling

6.3 Results
We label each potential predicative fragment with a flag that indicates whether the
potential predicative fragment is a true predicative fragment according to the gold
labelling. We add two additional flags to potential fragments for which the first flag is
true. First additional flag shows whether MaltParser has labelled subject and predicative
correctly. Second additional label states the direction of the fragment according to the
gold labelling - either subject appears before predicate in the fragment or vice versa.
Table 17 shows flags for fragments that were used in Tables 14, 15 and 16. In Table
17 the direction of the fragment is labelled with an arrow, where→ means that subject
appears before predicate and← means that predicate appears before in gold labelling.

MaltParser labelling PRD correct direction

(pole (mõtet@PRD, spekuleerida@SUBJ)) no

(on (Õunapuu@SUBJ, kunstnik@PRD)) no

(olema (täituvus@SUBJ, 50-55@PRD)) no

(on (Eesti@SUBJ, koht@SUBJ)) yes no →
(on (Riigid@SUBJ, Austria@PRD)) yes no ←
(on (kes@SUBJ, lumeuurija@PRD)) yes yes →
(on (seda@PRD, kindlustajariik@SUBJ)) yes yes ←

Table 17. Labelling examples

Table 18 shows the number of positive and negative instances for each of the flag. As
it can be seen, the data is quite unbalanced.

total yes no

PRD 2437 1999 438
correct 1999 1421 578
direction is→ 1999 1815 184

Table 18. Dataset size
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We use SVM with balanced class weight to predict first two flags. We can not predict
direction of the phrase with WMD because it hides word order. What could be predicted
is the dominant direction for the phrase. Parameter search was done from the same range
as in previous experiments. Reasonable choices for γ were 0.01 and 0.1 from which
latter was chosen.

Results are shown in Figure 10 and in Table 19. Precision and recall are calculated
with respect to the minority class, that is, negative class. For the comparison we have
added results of predicting same flags with extended context i.e., using the whole sentence.
We evaluated extended context as well because it is possible, as it was for ADR prediction,
that larger context is needed for correct decision-making.
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Figure 10. CV results of predicting first two flags (PRD and correct)

accuracy precision recall

Flag 1 (phrases) 0.71 0.32 0.57
Flag 1 (sentences) 0.71 0.31 0.47

Flag 2 (phrases) 0.58 0.36 0.57
Flag 2 (sentences) 0.60 0.36 0.48

Table 19. CV results of predicting first two flags (PRD and correct)

Results show that with given configuration there is not much difference in whether
we use phrases or sentences as results are not very good in neither of the cases. If we
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want to detect true negatives, that is, phrases found by MaltParser that actually are not
predicative fragments or are with wrong labelling, then phrases based prediction is better
as recall is higher. In terms of precision there is no difference.

There are two possible reasons why the method did not work for this particular
problem. Firstly, it could be, that phrases are close to each other by some semantic
meaning which is too general and does not allow to make the decision about label. Figure
11 shows visualizations of undersampled phrases. It can be seen that there is no visual
separation.

yes
no

(a) MDS

yes
no

(b) kernel-PCA

Figure 11. MDS and kernel-PCA visualization of the first label

Secondly, the data could be too sparse. To assess that, we found the closest neighbour
for each instance and counted the times when labels of both instances were same and
when they were different. For instances that are very close to each other, the ratio was
93:7, for instances with larger distance the ratio was not larger than 78:22. From the
instances that were very close, 75% had zero distance and the ratio among those was
95:5. Therefore global context is needed to decide the label at least for 5% of cases.
Among those with non-zero distance the ratio was 84:16. Such large difference in ratios
means that the data is sparse. It could be that we would have achieved better results if
that was not the case.
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7 Conclusion
The aim of this work was to find a similarity measure that would work well with
phrases. That is, we wanted to find a way to capture similarity between phrases such
that semantically more similar phrases are closer, so we could detect phrases by some
synonymous meaning.

We used Word Mover’s Distance (WMD) as a similarity measure as it has state-of-the
art performance in KNN document classification task. To overcome the limitation of
not having vector representations of phrases available, we scaled WMD to an infinity
dimensional space with RBF kernel. The measure was then used together with SVM to
solve three different phrase base problems.

The first problem, predicting the omitted word given only the context, was a made up
problem which we used to evaluate the goodness of the measure and its suitability for
phrase-based tasks. Results showed that indeed it is possible to do semantic separation
of phrases using WMD. We achieved best results with phrases where stop words were
omitted. Forming phrases using syntax tree fragments, on the other hand, did not perform
better than using simple context window.

We then proceeded with the task in medical text domain. The goal was to detect
adverse drug reactions from the patients’ epicrises using phrases that contain potential
adverse drug reactions. The task in this time was more difficult because the language was
more complex and the data itself heavily unbalanced. In addition to that, the labelling
was imperfect for our task as the decision for the label was made using global context,
however, our extracted phrases only included local context. We did not achieve good
results and concluded that larger context is needed to correctly decide the label. We
also suggested an alternative approach for solving the task with reasonable amount of
additional work.

As a third problem, we were interested in whether it is possible to predict phrases
that MaltParser has difficulties to parse correctly. However, we restricted the problem to
only errors with predicatives that appear in a specific context. For each such potential
predicative that MaltParser had found, we predicted two labels. Firstly, whether this
potential predicative is a true predicative according to the gold labelling, and secondly,
whether predicative in the phrase is tagged correctly. The results were not good for
neither of the cases. For the comparison we predicted same labels using global context
(sentence) as well instead of phrase but the results were slightly worse.

To conclude, we saw that it is possible to do some semantic separation of phrases
using WMD, however, the success depends on how semantic similarity is defined and
how the phrases are formed. Moreover, deciding what is the best way to form a phrase
depends on the problem. Finally, one of the disadvantage of the method is that, as phrases
are short, each word has a rather large influence on distance calculation. Therefore
phrases containing some identical words are in terms of WMD more similar to each other
than they might be by actual semantic similarity.
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