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English-Estonian Machine Translation: Evaluation Across Different 

Models and Architectures. 

Abstract: 

This thesis is based on three main objectives: at first, the implementation of RNMT+ archi-

tecture with Relational-RNN model. This is an interaction between this architecture and the 

RNN model. Secondly, train three different translation models based on RNMT+, Trans-

former, and sequence to sequence architectures.  Previously, we have witnessed the perfor-

mance comparison among RNMT+ with LSTM, Transformer, seq2seq, etc. Finally, evalu-

ate the translation model based on training data. When implementing RNMT+, the core idea 

was to use a newer type of Recurrent Neural Network (RNN) instead of a widely used LSTM 

or GRU. Besides this, we evaluate the RNMT+ model with other models based on state-of-

the-art Transformer and Sequence to Sequence with attention architectures. This evaluation 

(BLEU) shows that neural machine translation is domain-dependent, and translation based 

on the Transformer model performs better than the other two in OpenSubtitle v2018 domain 

while RNMT+ model performs better compared to other two in a cross-domain evaluation. 

Additionally, we compare all the above-mentioned architectures based on their correspond-

ing encoder-decoder layers, attention mechanism and other available neural machine trans-

lation and statistical machine translation architectures. 

Keywords: 

Neural Machine Translation, Natural Language Processing, LSTM, Relational-RNN, 

RNMT+, Transformer, Sequence-to-Sequence, Py-Torch, Encoder-Decoder, Attention, 

Evaluation. 

CERCS: P176 Artificial Intelligence 
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Inglise-eesti masintõlge: hindamine erinevate mudelite ja arhitektuuri 

vahel. 

Lühikokkuvõte: 

See lõputöö põhineb kolmel põhieesmärgil: alguses RNMT + arhitektuuri rakendamine 

Relatsioon-RNN-mudeli abil. See on interaktsioon selle arhitektuuri ja RNN-mudeli vahel. 

Teiseks, koolitage kolme erinevat tõlkemudelit, mis põhinevad RNMT +, Trafo ja 

järjestusearhitektuuridel. Varem oleme olnud tunnistajaks RNMT + jõudluse võrdlusele 

LSTM, Transformeri, seq2seq jne abil. Lõpuks hinnake tõlkemudelit koolitusandmete 

põhjal. RNMT + rakendamisel oli peamine idee kasutada laialdaselt kasutatava LSTM või 

GRU asemel uuemat tüüpi korduvat närvivõrku (RNN). Lisaks hindame RNMT + mudelit 

koos teiste mudelitega, mis põhinevad tipptehnoloogial Transformer ja Sequence to 

Sequence koos tähelepanu arhitektuuridega. See hinnang (BLEU) näitab, et neuraalne 

masintõlge on domeenist sõltuv ja muunduril Transformer põhinev tõlge toimib paremini 

kui ülejäänud kaks OpenSubtitle v2018 domeenis, samal ajal kui RNMT + mudel toimib 

paremini kui ülejäänud kaks domeenidevahelist hindamist. Lisaks võrdleme kõiki 

ülalnimetatud arhitektuure nende vastavate kodeerija-dekoodri kihtide, tähelepanu 

mehhanismi ja muude saadaolevate närvi masintõlke ning statistiliste masintõlke 

arhitektuuride põhjal.  

Võtmesõnad: 

Neuraalne masintõlge, loomuliku keele töötlemine, LSTM, relatsiooniline-RNN, RNMT +, 

trafo, jada-järjestus, Py-taskulamp, kooder-dekooder, tähelepanu, hindamine. 

CERCS: P176 Tehisintellekt 
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1 Introduction 

Machine translation is a type of automated software that translates a source language into a 

target language. Machine translation has evolved with time from rule-based systems to sta-

tistical machine translation and then neural machine translation, which has further been ad-

vanced into better systems that combine features from different models and building new 

system architecture.  

Based on the method of evaluation, machine translation can be classified into ruled based 

machine translation systems, hybrid machine translation systems, statistical machine trans-

lation systems, example-based machine translation, and neural machine translation systems. 

Rule-based machine translation being the first type of translation system invented, which 

was based on grammar rules, a bilingual or multilingual lexicon to process the rules. This 

type of system is highly dependent on human effort to code all of the linguistic resources.  

In this thesis, we evaluate neural machine translation systems and statistical machine trans-

lation systems. 

Neural machine translation is a translation model that translates one language to another 

using artificial neural networks. The artificial neural network helps the system to predict the 

probability of a sequence of words. With Google Neural Machine Translation (GNMT) be-

ing one of the best performing neural machine translation advancement followed by Mi-

crosoft Neural machine translation.   

Other advancements in neural machine translation include the Seq2seq translation model, 

Transformer model, and RNMT+ which is one of the most recent advancements in the neu-

ral machine translation system. This system was introduced by Google Ai in 2018. 

In this thesis, we evaluate three neural machine translation systems and one statistical ma-

chine translation system and evaluate the results of the system based on the BLEU score. 
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2 Background 

Natural language translation is one of the challenging processes in the field of artificial in-

telligence. Every year researchers apply their knowledge and experience to make the trans-

lation process more robust and performant. When working on machine translation, it’s im-

portant to know the architecture and model development process. There are many architec-

tures to follow, among those we choose four latest methods, develop translation models, and 

finally compare the architecture and performance. 

The evaluation of MT is vital because it helps us to decide the performance and effectiveness 

of existing systems. Besides, it helps us develop a more robust system. In this thesis, we 

evaluate the translation model based on BLEU [1] score. BLEU score evaluation is not per-

fect still the de facto standard of evaluation. However, in the early stage of MT evaluation, 

it was human rating based on fluency, informativeness, and intelligibility [2]. 

To develop a translation model, at first, we need a corpus. There are two types of corpus, 

parallel and monolingual. A parallel corpus contains two monolingual corpora. To start, we 

define a corpus, which is a large set of text, mainly billions of words which are generated 

by real users of a given language and which are used to analyze how words, phrases, and 

language, in general, are used. The main users of the corpus include linguists and experts in 

natural language processing. Corpus can be classified into a monolingual corpus which con-

tains text only in one language, a parallel corpus which is made up of two monolingual 

corpora where one corpus is the translation of the other corpora, multilingual corpora is 

more like parallel corpus, however, multilingual corpora contain texts in several languages 

which are all translations of the same text and are aligned in the same way as parallel cor-

pora. 

Related to parallel corpora are comparable corpora. This type of corpora is made up of texts 

which are similar in content, however, the content is not parallel. In my thesis, I used a 

parallel corpus collected from a different movie and TV subtitles, which is collected in 
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OpenSubtitles v20181. For the untokenized raw English-Estonian corpus, there were 446612 

documents and 3.2G tokens for English. On the other hand, 28837 documents and 168.2M 

token for Estonian. This collection is efficient over general communication since a linguistic 

perspective, subtitles cover a wide and interesting breadth of genres, from colloquial lan-

guage or slang to narrative and expository discourse (as in e.g. documentaries) [3]. 

The encoder is a recurrent neural network model that takes a machine translation input se-

quence as input and encodes it into a fixed size that is referred to as a context vector. A 

context vector is a fixed-length vector representation. The decoder takes a context vector as 

input in a machine translation system and generates an output sequence. 

Bilingual Evaluation Understudy (BLEU) this is a machine translation evaluation method 

that evaluates the precision score of a candidate machine translation against a reference hu-

man translation. The source codes2 of this project are publicly available on GitHub. 

 

 

1 http://opus.nlpl.eu/OpenSubtitles-v2018.php 

2 https://github.com/rezwanshubh/machine-translation.git 

http://opus.nlpl.eu/OpenSubtitles-v2018.php
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3 Machine Translation 

Machine translation includes all the process which translate a text or speech from one lan-

guage to another. Usually, translation is done in sentence level. This task is managed by 

source sentences (eg: English) and target sentences (eg: Estonian). Machine translation as-

sumes a word segmentation from its input. It is achieved by a process called ‘tokenization’. 

All the punctuation symbols, words, or numbers are considered separate tokens. In a few 

cases, an aggressive tokenization technique can separate compound words for the tokeniza-

tion in sub-word and characters. 

3.1 Neural and Statistical Machine Translation 

Unlike the traditional phrase-based translation [4] which consists of many small sub-

components that are tuned separately, neural machine translation models are a system that 

attempts to build and train a single, large neural network that read a sentence and output a 

correct translation, with most of the proposed neural machine translation models belonging 

to a family of encoder-decoder [5]. 

 

Figure 3.1: History of NMT [6] 

Figure 3.1 shows the various advancement in Neural machine translation. With RNMT+ 

architecture being the most recent advancement in Neural machine translation, which was 

first introduced by Google AI in 2018. 

In recent years neural machine translation has outperformed statistical machine translation 

(SMT). Previously, the field of machine translation was dominated by SMT models. An 
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SMT model is driven by analyzing human translation which is called bilingual text corpora. 

In general, an SMT system is not developed for a specific pair of languages. It just structured 

like a rule-based or example-based translation system. Unlike NMT, an SMT can be 

developed on both parallel and monolingual data. 

On the other hand, in a neural machine translation system is based on an artificial neural 

network. Within a single integrated model, a sequence of words is predicted. This model is 

developed based on parallel corpora of source and target languages. There are a few 

advantages to develop an NMT system over SMT [7].  

• An NMT system considers word similarities during training. 

• NMT can handle word order, morphology, and agreement better. 

• During training, NMT considers the whole sentence. Which ensures better results. 

• It can learn and develop the model based on the complexity of sentences. 

In NMT, the encoder-decoder layer and attention mechanism are important concepts. In this 

work, we evaluated three NMT models, among those only the Transformar model is not 

based on any encoder-decoder model, rather it fully depends on the attention mechanism. 

Moreover, an encoder-decoder model with an attention mechanism is the powerhouse of 

GNMT [8]. 

3.2 Encoder-Decoder 

In a machine translation system, an encoder-decoder is text generation units. The encoder 

encodes the text sequences into a context vector. This context vector is used by the decoder 

to generate the output sequence. 

Many translation architectures are solely based upon an RNN encoder-decoder model. 

Though attention mechanism along with the encoder-decoder layer improves the perfor-

mance, it’s also efficient without attention. For example, the sequence to sequence model 

first been implemented only RNN based encoder-decoder model. The encoder is responsible 

to encode the input sequence while the decoder decodes the output from the encoder. 

The ability to train a single end-to-end model based on source and the target language is the 

basic advantage of using an encoder-decoder model in machine translation. 
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3.3 Attention 

An attention mechanism refers to a type of translation model where the quality of translation 

is improved by focusing on sub-parts of the sentences. It produces an output sequence based 

on an input sequence. The attention mechanism is useful for not only language processing 

but also for image processing. There are different types of attention mechanisms are used to 

develop NMT architectures used in this work, here are few [9],  

• Local Attention: Focuses on the subset of the source words. It’s efficient when con-

sidering long sentences. 

• Global Attention: Focuses on all sources words. It considers all encoder hidden 

states to find the context vector. 

• Self Attention: Self-attention mechanism relating different positions of a single se-

quence in order to compute a representation of the same sequence. 

• Multi-Head Attention: Multi-Head attention consists of several attention layers in 

parallel. Multi-Head attention joint information from different positions [10].  

All those attention mechanisms are explained in the respective architecture narration. 
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4 Recurrent Neural Network (RNN) 

Recurrent Neural Network (RNN) is a type of Neural Network where the output from the 

previous step is fed as input to the current step [11]. In traditional neural networks, all the 

inputs and outputs are independent of each other, but in a case like when it is required to 

predict the next word of a sentence, the previous words are required and hence there is a 

need to remember the previous words. Thus, RNN comes into existence, which solves this 

issue with the help of a hidden layer. The hidden state is the most important feature of RNN. 

 

Figure 4.1: Recurrent Neural Network (RNN) [11]. 

Recurrent neural networks have a memory that remembers all the information about what 

has been calculated. This model uses the same parameters for each input as it performs the 

same task on all the input or hidden layers to produce the output. The use of a hidden state 

helps to reduce the complexity of parameters, unlike other neural networks.  

The formula for calculating the current state of RNN 

ℎ𝑡 = 𝑓(ℎ𝑡−1 , 𝑥𝑡) 

Where: 

ℎ𝑡 =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒  

ℎ𝑡−1 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑆𝑡𝑎𝑡𝑒 

𝑥𝑡 = 𝐼𝑛𝑝𝑢𝑡 𝑆𝑡𝑎𝑡𝑒 
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Tanh Activation 

This is used to regulate the values flowing through the network. Tanh activation does this 

by squishing values to always be between −1 𝑎𝑛𝑑 1. 

When vectors flow through neural networks, they undergo many transformations due to 

various mathematical operations. This leads to some values being extremely large, causing 

other values to seem insignificant. Therefore, the tanh function ensures that the values stay 

between −1 𝑎𝑛𝑑 1, thus regulating the output of the neural network. 

The formula for applying activation function (tanh) of RNN 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎℎ𝑡−1 ,    𝑊𝑥ℎ𝑥𝑡) 

Where: 

𝑊ℎℎ = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑒𝑢𝑟𝑜𝑛 

   𝑊𝑥ℎ = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛 

The formula for calculating output of RNN 

𝑌𝑡 = 𝑊ℎ𝑦(ℎ𝑡) 

Where: 

𝑌𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡 

𝑊ℎ𝑦 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟 

Training Through RNN 

• A single time step of the input is provided to the network. 

• Then calculate its current state using set of current input and previous states. 

• The current ℎ𝑡 becomes ℎ𝑡−1 for the next time step. 

• One can go as many times steps according to the problem and join the information 

from all the previous states. 

• Once all the time steps are completed the final current state is used to calculate the 

output. 

• The output is then compared to the actual output i.e. the target output and the error 

is generated. 
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• The error is then backpropagated to the network to update the weights and hence the 

network (RNN) is trained. 

Advantages of Recurrent Neural Networks 

• An RNN remembers each and every information through time. It is useful in time 

series prediction only because of the feature to remember previous inputs as well. 

This is called Long Short-term Memory. 

• The recurrent neural network, are even used with convolutional layers to extend the 

effective pixel neighborhood. 

Disadvantages of RNN 

• Gradient vanishing and exploding problems. 

• Training an RNN is a very difficult task. 

• It cannot process very long sequences if using tanh or rely upon as an activation 

function. 

To solve the limitations of Recurrent Neural Networks more advanced RNN have been de-

veloped, this includes; LSTM, GRU, and Relational-RNN. 

There are different types of RNN but here among those LSTM and GRU are very popular. 

However, here we would also explain another type which is Relational-RNN. 

4.1 Long Short-Term Memory (LSTM) 

LSTM is a special type of RNN, capable of learning long-term dependencies. Introduced by 

Hoch Reiter & Schmid Huber (1997) [12]. Explicitly designed to avoid long-term depend-

ency. LSTM has similar control flow as a recurrent neural network with the main difference 

being its operations within the LSTM’s cells. It processes data passing on information as it 

propagates forward. 

The building blocks of LSTM’s are the cell state and its various gates. The cell state act as 

a transport highway that transfers relative information down the sequence chain while the 

gates are different neural networks that decide which information is allowed on the cell state. 

The gates can learn what information is relevant to keep or forget during training. 
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Figure 4.2: LSTM Gates & Cell State [13]. 

Sigmoid 

Each gate of LSTM contains sigmoid activations, which is similar to the tanh activation in 

recurrent neural networks. Sigmoid activation squishes values between 0 𝑎𝑛𝑑 1 instead of 

−1 𝑎𝑛𝑑 1 as in tanh activation in RNNs. This is helpful in the sense that any number getting 

multiplied by a 0 is 0, causing the value to disappear or be “forgotten” while any number 

multiplied by 1 is the same value, therefore, that value stays the same or is  “kept.” This 

enables the LSTM network to be able to learn which data is not important therefore, it can 

be forgotten or which data is important to keep. 

LSTM Gates 

LSTM’s have three types of gates that regulate information flow in an LSTM cell. Figure 

3.5 shows the various gates which include; 

• A forget gate 

• Input gate 

• Output gate 

Forget Gate 

This gate decides which information should be kept per not kept. Information from previous 

hidden states and information from the current input is passed through the sigmoid function. 
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The output of sigmoid is valued between 0 𝑎𝑛𝑑 1 with the closer to 1  meaning to keep and 

those close to 0 meaning to forget. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑓) 

Input Gate 

This gate is used to control any new information that is added to a cell state from the current 

input. To update the cell state, we first pass the previous hidden state and current input into 

a sigmoid function. This decides which value will be updated by transforming the values 

between 0 𝑎𝑛𝑑 1. With 1  meaning important and 0 meaning not important. The hidden 

state and current input are then passed through tanh function to squish values between 

−1 𝑎𝑛𝑑 1, which helps to regulate the network. Finally, the sigmoid output is multiplied 

with tanh output with the sigmoid output deciding which information is important to keep 

from the tanh output. 

 

Figure 4.3: Structure of LSTM Neural Network [14]. 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑖) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑐) 

Memory Update or Cell State 
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The cell state aggregates the two components i.e. the old memory through forget gate and 

new memory through the input gate. This gives enough information to be able to calculate 

the cell state. First, the cell state gets pointwise multiplied by the forget vector, with a 

possibility of dropping values in the cell state if it gets multiplied by a value near 0. Then a 

pointwise addition of the output of the input gate is performed, which updates the cell state 

to a new, values that the neural network finds relevant. That gives us a new cell state. 

𝐶𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐𝑡̃ 

Output Gate 

The output gate decides what to output from the memory. i.e. what the next hidden state 

should be. This is carried out by first passing the previous hidden state and the current input 

into a sigmoid function. Then the newly modified cell state is passed into the tanh function. 

The tanh output is then multiplied with the sigmoid output to decide what information the 

hidden state should carry. The resulting output is the hidden state. The new cell state and 

the new hidden state is then carried over to the next time step. 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡 

4.2 Gated Recurrent Unit (GRU) 

GRU is a newer generation of RNN and is pretty similar to an LSTM. GRU’s were first 

introduced by Cho, et al [15]. in 2014. However, GRU’s don’t use cell states for transfer of 

information like LSTM, instead of their use of the hidden state to transfer information. 

GRU’s have two gates a reset gate and an update gate. 

GRU structure allows it to adaptively capture dependencies from large sequences of data 

without discarding information from earlier parts of the sequence. It achieves this through 

the gating units which are similar to the ones in LSTMs, which solve the vanishing/explod-

ing gradient problem of traditional RNNs. The gates are responsible for regulating the in-

formation to be kept or discarded at each time step. 

Reset Gate of GNU 
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This gate is derived and calculated using both the hidden state from the previous time step 

and the input data at the current time step. 

This is done by multiplying the previous hidden state and current input with their respective 

weights and summing them before passing the sum through a sigmoid function [16]. The 

sigmoid function is used to transform the values to fall between 0 𝑎𝑛𝑑 1, allowing the gates 

to filter between the most important and less important information in the subsequent 

steps. −1 𝑎𝑛𝑑 1 [17] 

𝑔𝑎𝑡𝑒𝑟𝑒𝑠𝑒𝑡 = 𝜎(𝑊𝑖𝑛𝑝𝑢𝑡𝑟𝑒𝑠𝑒𝑡
𝑥𝑡 + 𝑊ℎ𝑖𝑑𝑑𝑒𝑛𝑟𝑒𝑠𝑒𝑡

ℎ𝑡−1) 

When backpropagation is used in training the entire network the weights in the equation are 

updated such that the vector learns to retain only the useful features. The previous hidden 

state first been multiplied by a trainable weight and then undergoes an element-wise multi-

plication (Hadamard Product) with the reset vector. This operation decides which infor-

mation is to be kept from the previous time steps together with the inputs. At the same time, 

the current input will also be multiplied by a trainable weight before being summed with the 

product of the rest vector and previous hidden state. Lastly, a non-linear activation tanh 

function is applied to the final result to obtain r in the equation below [16]. 

𝑟 = 𝑡𝑎𝑛ℎ(𝑔𝑎𝑡𝑒𝑟𝑒𝑠𝑒𝑡⨀(𝑊ℎ1. ℎ𝑡−1) + 𝑊𝑥1. 𝑥𝑡) 

Update Gate of RNN 

This gate is computed using the previous hidden state and current input data. This gate de-

termines how much of the previous hidden state is to be retained and what portion of the 

new proposed hidden state (derived from the reset gate) is to be added to the final hidden 

state. 

Both the reset and update gate vectors are created using the same formula, but the weights 

multiplied with the input and hidden state are unique to each gate, which means that the 

final vectors for each gate are different. 

𝑔𝑎𝑡𝑒𝑢𝑝𝑑𝑎𝑡𝑒 = 𝜎 (𝑊𝑖𝑛𝑝𝑢𝑡𝑢𝑝𝑑𝑎𝑡𝑒
𝑥𝑡 +  𝑊ℎ𝑖𝑑𝑑𝑒𝑛𝑢𝑝𝑑𝑎𝑡𝑒

ℎ𝑡−1) 

The updated vector then undergoes element-wise multiplication with the previous hidden 

state to obtain u which is used to compute the final output. 
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𝑢 = 𝑔𝑎𝑡𝑒𝑟𝑒𝑠𝑒𝑡⨀ℎ𝑡−1𝑡 

Final Output Computations 

In this stage, we take the element-wise inverse version of the same updated vector and do 

an element-wise multiplication with the output of the reset gate r. This ensures the update 

gate determines which portion of the new information should be stored in the hidden state. 

Lastly, the above result will be summed with the output of the update gate u, which will 

then give us our new and updated hidden state. 

ℎ𝑡 = 𝑟 ⨀ (1 − 𝑔𝑎𝑡𝑒𝑟𝑒𝑠𝑒𝑡) + 𝑢 

Comparison Between GRUs and LSTMs 

GRUs are faster to train as compared to LSTMs due to the fewer number of weights and 

parameters to update during training. This is attributed to the fewer number of gates in the 

GRU cell as compared to the 3 gates in LSTMs. 

LSTMs have cell state while GRUs don’t have cell state. With LSTMs using the cell state 

to store its longer-term dependencies in the cell state and short-term memory in the hidden 

state, the GRUs stores both in a single hidden state. 

4.3 Relational-RNN 

Relational-RNN combines the advantages of LSTMs in sequence modeling and the power 

of attention mechanism. It does this by extending the LSTM architecture and introducing 

interactive memory blocks using Multi-Head Dot Product Attention inside of the LSTM 

block. Relational-RNNs can simplify memory-based recurrent neural networks that can per-

form relational reasoning between input entries over time. They are based on iterative in-

formation selective storing into blocks and computing interactions between them. With most 

of the Relational-RNNs block contains several memory slots where the pertinent infor-

mation is stored. Relational-RNN are characterized by: 

• Per block information storing. 

• Relational reasoning. 

• No distance constrained analysis. 

• Different focusing. 
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Generally, work on the principle of slicing the memory and the inputs into slots while the 

head, on the other hand, is provoking interactions between them. During this process, each 

of the memory slots is updated stepwise based on memory-memory attention and memory-

input attention. 

 

Figure 4.4: Basic of Relational Recurrent Neural Network [18]. 

Memory-Memory attention 

Each memory slot attends over the other memory slots. This captures the interactions and 

dependencies in the stored information [18]. 

Memory-input attention 

Each memory slot attends over the input embedding slots. Attention enables us to decide 

which information from the input would be stored in adequate memory slots based on its 

relation to what is already contained in the memory [18]. 
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Figure 4.5: Architecture of Relational Memory Core [19]. 

Multi-Head Dot Product Attention (MHDPA) 

Within each Relational-RNN block, linear projections of the previous memory 𝑀𝑡 is used 

and the input embedding 𝐸𝑚𝑏𝑡 at each time step 𝑡 to generate the queries  𝑄𝑡
𝑙 = 𝑀𝑡𝑊𝑙

𝑄, 

keys 𝐾𝑡
𝑙 = [    𝑀𝑡; 𝐸𝑚𝑏𝑡  ] 𝑊𝑙

𝐾 and values 𝑉𝑡
𝑙 = [    𝑀𝑡; 𝐸𝑚𝑏𝑡  ] 𝑊𝑙

𝑉 ∙

[    𝑀𝑡; 𝐸𝑚𝑏𝑡  ] which are used to denote the row-wise concatenation of 𝑀𝑡 and 𝐸𝑚𝑏𝑡.  We 

then use multiple attention heads to enable the memory slots to share different information 

and represent different interactions. Which generates h sets of queries, keys, and values 

for 𝑙 = 1. . . . . ℎ using different projection matrices. 

The memory is updated using multi-head dot product attention over the other memory slots 

and the current input embedding: 

𝑀̃𝑙
𝑡+1 = 𝐴(𝑄𝑙

𝑡 ∙ 𝐾𝑙
𝑡 ∙ 𝑉𝑙

𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑙

𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝐾𝑙
𝑡)

√𝑑𝑘
) 𝑉𝑙

𝑡 

Where: 

𝑀̃𝑙
𝑡+1= is an update of the memory where each slot is a weighted sum of the projections of 

the previous memory slots and the projections of the current embedding input. 

𝑑𝑘= is a scaling factor that corresponds to the dimensionality of the key vectors. 
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This attention operation is applied to each head. The resulting memory 𝑀̃𝑙
𝑡+1 is the column-

wise concatenation of the memories 𝑀̃𝑙
𝑡+1 for 𝑙 = 1. . . . . ℎ. 

Residue connection is then employed around MHDPA followed by an MLP then a second 

residue connection. These operations are encapsulated into an LSTM cell. And therefore, 

the resultant memory block is gated and used as the next memory state 𝑀𝑙
𝑡+1 

Input Embedding 

In Relational-RNN, the model of the source language is first embedded, then the encoder 

learns the source language and captures the dependencies in the input data using the Rela-

tional Memory Core (RMC) block. For each iteration, the RMC is fed with the previous 

memory matrix 𝑀𝑡 and the current scene embedding 𝐸𝑚𝑏𝑡 and to provoke the interaction 

between memory and input slots, the Multi-Head Dot Product Attention (MHDPA) is used. 

MHDPA operates by projecting each memory and input slot using row-wise shared weights 

i.e. 𝑊𝑙
𝑄, 𝑊𝑙

𝐾, 𝑊𝑙
𝑉 to generate the queries 𝑄𝑡, keys 𝐾𝑡 and values 𝑉𝑡 respectively. The 

MHDPA module is then followed by a row-wise multilayer perceptron (MLP), then, the 

resultant memory is gated to form the next memory state and the output vector is then fed 

to the decoder at 𝑡𝑜𝑏𝑠. The decoder which is composed of Relational-RNN’s outputs the 

predicted sequence. 

As previously mentioned that RNMT+ architecture was first introduced by Google AI in 

2018. It proposed a hybrid model combining Sequence to Sequence and RNN architecture. 

RNMT+ architecture has 6 bidirectional encoder layers and 8 unidirectional decoder layers. 

With most RNMT+ implemented using LSTM. However, in my thesis, I implemented 

RNMT+ using Relational-RNN. 
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5 Sequence to Sequence with Attention and PyTorch 

Sequence to Sequence is a model that was first introduced by Google in 2014. This model 

tries to map input text with fixed length to output text fixed-length where the length of input 

and output to the model may differ. It does so by using more advanced versions of recurrent 

neural networks (RNN) mainly LSTM or GRU. This is because Recurrent neural networks 

(RNN) suffer from the problem of vanishing gradient. LSTM is used in the version proposed 

by Google. 

The approach involves two recurrent neural networks, one to encode the input sequence, 

called the encoder, and a second to decode the encoded input sequence into the target se-

quence called the decoder [20]. The system also incorporates the attention mechanism which 

helps to solve the translation of long sequences. The issue with long sequence translation is 

due to the challenge for the encoder to memorize the entire sequence into a fixed-size vector 

and to compress all the contextual information from the sequence. 

 

Figure 5.1: A sequence to sequence architecture with attention [21]. 

General Working of Seq2Seq Architecture 

The encoder reads the input sequence and summarizes the information into internal state 

vectors. If the LSTM is used in the architecture, hidden state and cell state vectors will be 

generated. The output of the encoder is then discarded and only the internal states are 

preserved.x` 
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The LSTM decoder, initial states are then initialized to the final states of the LSTM encoder. 

With the available initial states, the decoder starts generating the output sequence. To 

overcome the problem of long sequence memorization of the encoder, the concept of 

attention mechanism is incorporated into the architecture. Attention mechanism a specific 

part of a sequence is given more importance instead of the entire sequence to predict that 

word. In this mode, the intermediate from the encoder state is utilized to generate context 

vector from all states so that the decoder gives output results. Instead of going through the 

entire sequence the attention mechanism only pays attention to specific words from the 

sequence and gives out the result based on that. 

The attention layers are made up of; 

1. Alignment layer 

2. Attention weights 

3. Context vector 

Alignment Layer 

This is made up of an alignment score that maps how well the inputs around position ’j’ and 

the output at position ’I’ match. With the score based on the previous decoder’s hidden 

states, just before predicting the target word and the hidden state of the input sentence. 

On the other hand, the decoder decides which part of the source sentence to pay attention 

to, instead of having the encoder encode all the information of the source sentence into a 

fixed-length vector. The alignment vector and source sequence have the same length and 

are computed at every time step of the decoder. 

Attention Weights 

To obtain the attention weights, a SoftMax activation function is performed on the alignment 

scores. The SoftMax function gives a probability whose sum will always be equal to 1. This 

helps to represent the weight of the influence for each of the input sequences. With the 

higher the attention weights of the input sequence, the higher will be its influence on 

predicting the target word. 

Context Vector 
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This is used to compute the final output of the decoder. Where the context vector is the 

weighted sum of the attention weights and the encoder hidden states, which maps to the 

input sentence. 

To predict the next target word, the decoder uses; the context vector, decoder’s output from 

the previous time step, and the previous decoder’s hidden state. 

Attention-Based Models 

Two types of attention mechanisms can be used in the sequence to sequence model. The 

attention mechanism used will depend on how context vector information you need to 

compress from the input sequence. Common to these two attention mechanisms is the fact 

that at each time step 𝑡 in the decoding phase, both approaches first take hidden state ℎ𝑡 as 

input at the top layer of a stacking LSTM with the goal generating a context vector 𝐶𝑡 that 

captures relevant source-side information to help predict the current target word 𝑦𝑡. The two 

mechanisms differ in the way they generate the context vector 𝐶𝑡 however, they share the 

same subsequent steps [22]. 

Specifically, given the target hidden state ℎ𝑡 and the source-side context vector 𝐶𝑡, a simple 

concatenation layer is employed that combines the information from both vectors to produce 

an attentional hidden state [22]. 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝐶𝑡; ℎ𝑡]) 

The attention vector ℎ̃𝑡 which is then fed via the SoftMax layer to generate the predictive 

distribution formulated as; 

𝑝(𝑦𝑡|𝑦 < 𝑡, 𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠ℎ̃𝑡) 

Global Attention 

This attention mechanism model considers all the hidden states of the encoder when 

generating the context vector 𝐶𝑡. 
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Figure 5.2: Global Attentional Model [22] 

This model derives a variable-length alignment vector 𝑎𝑡, whose size equals the number of 

time steps on the source site. The variable-length alignment vector 𝑎𝑡 is derived by 

comparing the current target hidden state ℎ𝑡 with each source hidden state ℎ̌𝑠. 

𝑎𝑡(𝑠) = 𝑎𝑙𝑖𝑔𝑛(ℎ𝑡, ℎ̌𝑠) 

=
exp (𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ̌𝑠))

∑ exp (𝑠𝑐𝑜𝑟𝑒(ℎ𝑡, ℎ̌𝑠)𝑠′

 

In this model score is defined as the content-based function for which we consider three 

different alternatives; 

Local Attention 

This attention mechanism tries to solve the drawback of the global attention mechanism (i.e. 

global attention mechanism has to attend to all words on the source side for each target 

word, which is expensive and can potentially render it impractical to translate longer 
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sequences). To address this deficiency, a local attention mechanism is used that chooses to 

focus only on a small subset of the source positions per target word [22]. 

This approach selectively focuses on a small window of context and is differentiable. The 

local attentional mechanism comes to switch the advantage of avoiding the expensive 

computation incurred in soft attention and at the same time, is easier to train than the hard 

attention approach. 

 

Figure 5.3: Local Attentional Model [22]. 

In concrete details, the local attentional mechanism first generates an alignment position 𝑝𝑡 

for each target word at time 𝑡. The context vector 𝐶𝑡 is then derived as a weighted average 

over the set of source hidden states within the window [𝑝𝑡 − 𝐷, 𝑝𝑡 + 𝐷]; with D empirically 

selected unlike the global approach, the local alignment vector 𝑎𝑡 is now fixed-dimensional 

[23]. The same alignment equation is used in both mechanisms. 

𝑎𝑡(𝑠) = 𝑎𝑙𝑖𝑔𝑛(ℎ𝑡, ℎ̌𝑠) =
exp (𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ̌𝑠))

∑ exp (𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ̌𝑠)𝑠′
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Prepare Train, Dev and Test Dataset 

A machine learning algorithm learns from data. In a supervised translation system, data is 

the base of all resources which sometimes referred to as labels. After training a model we 

expect to translate any unknown sentences. In this case, we split the OpenSubtitle v2018 

into 3 parts. The first one is for the training dataset, contains 29,194,732 sentence pairs. It’s 

used to train the model. The second one is for the validation or development dataset. It 

contains 1,500 sentence pairs. This part provides an unbiased evaluation of the model fit on 

the training dataset while tuning model hyperparameters [24]. The final part is for model 

testing. It consists of 3,000 sentence pairs. We used another pair of a dataset for testing on 

the EU-law domain which consists of 1,314 sentence pairs. Test data is important for an 

unbiased evaluation of the model. 

Train Model Using GPUs 

A graphics processing unit (GPU) is a specialized electronic circuit that performs rapid 

mathematical calculations, primarily to render images. A GPU is more powerful than a CPU 

because of its high bandwidth, easily programmable register, and the ability of hiding la-

tency in thread parallelism. 

In this thesis, all three NMT architectures and their implementations are GPU enabled. 

Which means we can use GPU extensively. For all pre-processing and training, I used al-

most the same configuration. We can use GPU by slurm commands. ‘sbatch’ submits a batch 

script to Slurm. The batch script is given to sbatch through a file name on the command line, 

or maybe sbatch can read in a script from standard input. The batch script may contain op-

tions preceded with "#SBATCH" before any executable commands in the script. sbatch will 

stop processing further #SBATCH directives once the first non-comment non-whitespace 

line has been reached in the script3. 

 

 

3 https://slurm.schedmd.com/sbatch.html 

https://slurm.schedmd.com/sbatch.html
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#!/bin/bash 

# 

#SBATCH --job-name=train_model 

#SBATCH --partition=gpu 

#SBATCH --gres=gpu:tesla:1 

#SBATCH --time=7- 

#SBATCH --cpus=1 

#SBATCH --mem-per-cpu=120000 
 

• SBATCH: submit a batch script to slurm. 

• --job-name: the specified name will appear along with the job id number 

when querying running jobs on the system. 

• --partition: request a specific partition for the resource allocation. 

• --gres: Specifies a comma-delimited list of generic consumable resources. 

The format of each entry on the list is "name[[:type]:count]". 

• --time: set a limit on the total run time of the job allocation. 

• --cpus: advise Slurm that ensuing job steps will require ncpus processors 

per allocated GPU. 

• --mem-per-CPU: minimum memory required per allocated CPU.  

Data Pre-Processing and Training 

Here is a sample script4 to pre-process and train data. This source code is based on example 

[25] of PyTorch: Translation with Sequence to Sequence Network and Attention. After run-

ning this script, text in Estonian is saved in a file. 

python ./seq2seq_translate.py 
 

In this case, the hidden size is 512. Training run until 350,000 steps.  

 

 

4 https://github.com/rezwanshubh/machine-translation/tree/master/seq2seq 

https://github.com/rezwanshubh/machine-translation/tree/master/seq2seq
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6 Transformer Model with OpenNMT-py 

The Transformer model consists of 6 identical layers in Encoder and 6 identical layers in 

Decoder. Each layer of encoder has two sub-layers. The first sublayer being the multi-head 

self- attention mechanism while the second layer is the position-wise fully connected feed-

forward network. There is a residual connection around each of the two sub-layers, which 

is followed by a normalization layer. 

The decoder layer also has two sub-layers and incorporates a third sub-layer which conducts 

multi-head attention over the output of the encoder stack. Each of decoders sublayer is also 

surrounded by residual connections followed by normalization. To prevent positions from 

attending to subsequent positions, the self-attention layer in the decoder stack is modified.  

 

Figure 6.1: Transformer Architecture [10]. 

The Attention function involves mapping a query and a set of key-value pairs to an output 

[26]. The query, keys, values, and output are all vectors. The weighted sum of the values 

forms the output. The weight that’s assigned to each value is calculated by a compatibility 
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function of the query with the corresponding key [26]. The Transformer architecture is 

shown in figure 6.1 above. 

Attention is a mechanism in which the decoder can decide to attend to the hidden states of 

the input. i.e. the decoder can go back and look at the input. the way the decoder decides on 

what to look at is like an addressing scheme in any neural machine translation model. 

Attention is mainly used to reduce path length, which reduces the number of computation 

steps thus attention is expected to work better. 

Important Features of Transformer 

The Transformer model is fully based on the attention mechanism. Like RNMT+ or 

sequence to sequence, no RNN (eg: LSTM, GRU) is involved with an encoder or decoder 

layer. It introduces the concept of the multi-head attention mechanism. It describes a new 

way of positioning words (to remember the order of the words) by using an explicit position 

encoding that I added to the input integrations. The Transformer solves the difficulty in 

parallelizing and in learning long-range dependencies within the input and output sequences 

which are found in RNN and seq2seq models. 

The Transformer uses layer normalization and residual connections to facilitate 

optimization. It achieves impressive results (41.8 BLEU score) when using the WMT 2014 

English-French and English Deutsch datasets. 

Analysis of Transformer Architecture 

In figure 6.1 the left side is the encoder layers and the right side is the decoder layers. The 

encoder block is made up of one layer of a Multi-Head Attention followed by another layer 

of Feed Forward Neural Network. The decoder, on the other hand, is made up of an extra 

Masked Multi-Head Attention. The encoder and decoder blocks are multiple identical 

encoders and decoders stacked on top of each other [10]. 
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Figure 6.2: Encoder and Decoder of a Transformer model [10]. 

Working of Encoder-Decoder Stack 

The word embeddings of the input sequence are passed to the first encoder, which is then 

transformed and propagated to the next encoder. The output from the last encoder in the 

stack is then passed to all the decoders in the decoder stack.  

An additional layer called encoder-decoder attention is incorporated in the decoder which 

helps the decoder to focus on the appropriate parts of the input sequence. 

Both the encoder has a self-attention layer. This self-attention layer is an attention 

mechanism relating to different positions of a single sequence to compute a representation 

of the sequence. 

Attention 

An attention function can be described as mapping a query and a set of key-value pairs to 

an output, where the query, keys, values, and output are all vectors [10]. The output is always 

computed as a weighted sum of the values, where the weight assigned to each value is 

computed by a compatibility function of the query with the corresponding keys [10]. 
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Multi-Head Attention 

 

Figure 6.3: Multi-Head Attention [10] 

Multi-Head Attention allows the model to jointly attend to information from different 

representation subspaces at different positions. With a single attention head, averaging 

inhibits this. 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ⋯ , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 

𝑊ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉) 

 

In "encoder-decoder attention" layers, the queries come from the previous decoder layer, 

and the memory keys and values come from the output of the encoder. This allows every 

position in the decoder to attend overall positions in the input sequence. This mimics the 

typical encoder-decoder attention mechanisms in sequence-to-sequence models [10]. 

The encoder contains self-attention layers. In a self-attention layer, all of the keys, values 

, and queries come from the same place, in this case, the output of the previous layer in the 

encoder. Each position in the encoder can attend to all positions in the previous layer of the 

encoder [10]. 

Similarly, self-attention layers in the decoder allow each position in the decoder to attend to 
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all positions in the decoder up to and including that position. We need to prevent leftward 

information flow in the decoder to preserve the auto-regressive property. We implement this 

inside of scaled dot-product attention by masking out (setting to −∞) all values in the input 

of the SoftMax which correspond to illegal connections [10]. 

Position Encoding 

Considering an RNN model, the words are feed sequentially to the model, each token being 

aware of how it was ordered. However, multi-head attention computes the output of each 

item in the sequence independently with no notion of word order. It is inefficient to model 

the sequence information without any special order or position. To account for the order of 

the words in the input sequence, the Transformer model adds a vector to each input 

embedding called Positional Encoding. Where positional Encoding from the Transformer 

model is computed by sine and cosine functions of different frequencies as: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

(10000)
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

(10000)
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) 

𝑤ℎ𝑒𝑟𝑒 

𝑖 = 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 𝑤𝑒 𝑎𝑟𝑒 𝑙𝑜𝑜𝑘𝑖𝑛𝑔 𝑎𝑡 

𝑝𝑜𝑠 = 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝑑𝑚𝑜𝑑𝑒𝑙 = 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 

With each dimension of the position encoding forming a sinusoid and which allows the 

model to be generalized to longer sequence lengths. Where 𝑃𝐸𝑝𝑜𝑠+𝑘 can be determined by 

a linear function of 𝑃𝐸𝑝𝑜𝑠  with an offset K, which makes the relative position between 

different embeddings. 

Embeddings and SoftMax 
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To convert the input tokens and output tokens to vectors of dimension 𝑑𝑚𝑜𝑑𝑒𝑙, learned 

embedding is used. Moreover, SoftMax function and linear transformation are also used to 

convert the decoder output to predicted next-token probabilities. In this model, we share the 

weight matrix between the two embeddings layers and the pre-SoftMax linear 

transformation. This embeddings layer is finally multiplied with √𝑑𝑚𝑜𝑑𝑒𝑙 

Position-Wise Feed-Forward Network 

In addition to the attention sub-layer, each of the layers in the encoder and decoder contains 

a fully connected feed-forward network, which is applied to each position separately and 

identically. This consists of two linear transformations with a REL activation in between 

[10]. 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2 

Limitations of the Transformer 

• Attention can only deal with fixed-length text strings. The text has to be split into a 

certain number of segments or chunks before being fed into the system as input. 

• This chunking of text causes context fragmentation. For example, if a sentence is 

split from the middle, then a significant amount of context is lost. In other words, 

the text is split without respecting the sentence or any other semantic boundary. 

Open NMT 

It is a community of projects supporting easy adoption neural machine translation [27]. 

Open MT has currently three main implementations; 

▪ OpenNMT-lua 

This is the original project developed in Touch 7. Full-featured, optimized, and stable code 

ready for quick experiments and production [27]. 

▪ OpenNMT-py 

This is an OpenNMT-lua clone using PyTorch. Initially created by Adam Leer and the 

Facebook AI research team as an example, this implementation is easy to extend and 

particularly suited for research [27]. 
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▪ OpenNMT-tf 

This is an implementation following the style of TensorFlow. This is a newer project 

focusing on large scale experiments and high, performance model serving using the latest 

TensorFlow features [27]. 

OpenNMT-py 

OpenNMT-py is a PyTorch port for NMT. A sharing mechanism is implemented for data 

loading which enables training on extremely large datasets that cannot fit into memory, and 

for back-propagation, which reduces memory footprints during training. Training a 

translation model using OpenNMT-py is easy and very efficient. 

 

Figure 6.4: Schematic Overview of OpenNMT-py code [27] 

Tokenizer and Detokenizer 

It is evident that tokenization reduces vocabulary size and rise the number of examples of 

each word. Tokenization is important to understand the word size within a token. Because 

it changes the meaning of the sentences. For example, separately the English words 'there' 

and 'fore' has different meanings than together 'therefore'. That's why correct tokenization 

improves translation quality. Neural machine translation frequently relies on RNN and it’s 
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encoder-decoder unit. Mainly the source is projected into an encoded step then translated it 

using a particular translation model and finally projected into a decoder step [28]. 

In an encoding system, each word of a sentence is projected linearly to a fixed size vector 

along with an embedding matrix. After embedding, these words are fed into a bidirectional 

LSTM network. Thus, a sequence of annotations is developed by merging the hidden states 

from all the forward and backward layers [28]. 

SentencePiece 

In this thesis, we used SentencePiece5 as a tokenizer and detokenizer. It’s a simple and easy 

to use unsupervised tokenizer and detokenizer mainly used for the neural network-based 

translation system. 

SentencePiece includes four main components, which are Normalizer, Trainer, Encoder, 

and Decoder [29]. Normalizer normalizes semantically equivalent Unicode characters into 

the right forms. Trainer trains the subword segmentation model from the normalized corpus. 

Encoder internally normalizes the input text and tokenizes it into a subword sequence with 

the subword model trained by Trainer. The decoder converts the subword sequence into the 

normalized text [29]. 

SentencePiece is a language independent preprocessing technique. Any language-dependent 

pre-processor has several problems like the following one. 

• Row text: Hello world. 

• Tokenized: [Hello] [world] [.] 

But in this case, the sequences are not reversibly convertible. We can see a ‘space’ does 

exist between [world] and [.] after tokenization.  

On the other hand, SentencePiece implements a decoder system which is equivalent to in-

verse of the encoder. For example, 

 

 

5 https://github.com/google/sentencepiece 

https://github.com/google/sentencepiece
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Decode(Encode(Normalize(text))) = Normalize(text) 
 

This is lossless tokenization [29]. The main idea is to treat the input text as a sequence of 

Unicode characters. In SentencePiece, ‘white space’ is also considered a symbol. For exam-

ple, 

• Raw text: Hello_world. 

• Tokenized: [Hello] [_wor] [ld] [.] 

Here ‘white space’ is considered as segmented text that why when detokenized, we can 

replace ‘_’ with space ‘ ’. 

Using SentencePiece gives us a performance gain in NMT over other sentence processors 

like Subword-NMT or Moses in different language pairs [29]. During all three NMT trans-

lation models in this thesis, I used SentencePiece as a standard tokenizer and detokenizer. 

To install SentencePiece using pip, we can run the following command. 

pip install sentencepiece 
 

To encode and decode the raw text into sentence pieces. 

#encoder 

% spm_encode --model=<model_file> --output_format=piece < input > output  

 

#decoder 

% spm_decode --model=<model_file> --input_format=piece < input > output 

 
 

Data pre-processing 

Here is a sample script to pre-process data using OpenNMT-py. This following script6 has 

been run on the HPC rocket cluster, falcon1 node. 

 

 

6 https://github.com/rezwanshubh/machine-translation/tree/master/transformer 

https://github.com/rezwanshubh/machine-translation/tree/master/transformer
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#!/bin/bash 

# 

#SBATCH --job-name=train_model 

#SBATCH --partition=gpu 

#SBATCH --gres=gpu:tesla:1 

#SBATCH --time=7- 

#SBATCH --cpus=1 

#SBATCH --mem-per-cpu=120000 

 

python ./preprocess.py \ 

-train_src ./en.train.enc \ 

-train_tgt ./et.train.enc \ 

-valid_src ./en.dev.enc \ 

-valid_tgt ./et.dev.enc \ 

-save_data ./data 
 

Training a model 

Here is a sample script to train a model using OpenNMT-py following Transformer archi-

tecture. This training run until 350,000 steps with hidden size 512 and batch size 4096. 

#!/bin/bash 

# 

#SBATCH --job-name=train_model 

#SBATCH --partition=gpu 

#SBATCH --gres=gpu:tesla:1 

#SBATCH --time=7- 

#SBATCH --cpus=1 

#SBATCH --mem-per-cpu=120000 

 

python ./OpenNMT-py/train.py -data ./data -save_model ./models/ \ 

-layers 6 -rnn_size 512 -word_vec_size 512 -transformer_ff 2048 \ 

-heads 8 -encoder_type transformer -decoder_type transformer \ 

-position_encoding -train_steps 350000 -dropout 0.1 -batch_size 4096 \  

-gpu_ranks 0 
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7 RNMT+ with Relational RNN 

RNMT+ is a hybrid architecture, developed combining all the successes in seq2seq, convo-

lution, and Transformer architecture [6]. To develop an RNMT+ model researcher proposed 

two ways. The first one is to identify different modeling and training techniques and apply 

them to basic RNN architecture. It results in a super performant RNMT+ architecture. The 

second procedure was combining the properties of all basic seq2seq architectures. A basic 

RNMT model consists of an RNN encoder unit and an RNN decoder unit coupled with an 

attention network. Source sentences directed into a set of vector in encoder then these en-

coded sequences are set through the attention mechanism of decoder.  

Usually, an LSTM or GRU network is used for RNMT+ architecture. However, we use the 

Relational-RNN network to implement this model. In this proposed version of RNMT+, we 

use 6 bidirectional Relational-RNN layers instead of 6 bidirectional LSTM layers in the 

encoder. On the other hand, in the decoder layer, we used 8 unidirectional Relational-RNN 

layers instead of 8 unidirectional LSTM layers. 

 

Figure 7.1: Model Architecture of RNMT+ [6] 

We trained our models on En-Et, consists of 29,194,732 sentence pairs based on 

OpenSubtitles v2018. Each word is tokenized with SentencePiece [29]. We used a shared 

vocabulary of size 16k sub-words.  
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RNMT+ architecture is shown in Figure 5.1. Google Translator is based on GNMT [8]. 

There are similarities and dissimilarities between GNMT and RNMT+. In GNMT, there is 

1 bidirectional LSTM layer followed by 7 unidirectional LSTM layers for the encoder. For 

the decoder, there are 8 unidirectional LSTM which is similar to the RNMT+. Single-head 

attention is used for GNMT while multi-head additive attention is used for RNMT+. Similar 

to GNMT, RNMT+ feeds the attention context to all decoder layers and then feed to the 

softmax. It’s essential for the quality of the models and also for the stabilities. The following 

regularization technique has been applied in RNMT+. These methodologies and processes 

would be the same for both Relational-RNN and LSTM. 

• Dropout: Dropout is used to prevent neural networks from overfitting. Thus ran-

domly fitted neurons are ignored during training. Dropout is applied on both embed-

ding layers and each Relational-RNN layer’s output before it is inserted into the next 

layer. Dropout is the most successful technique to regularize the neural network. 

Efficient uses of dropout can improve performance in machine translation, speech 

recognition, language modeling, and image caption generation [30].  

• Level smoothing: Smoothing is a way to smooth out data for presentation or make 

a forecast. Level smoothing has a positive impact on both RNMT+ and Transformer 

model [31]. 

• Weight decay: Weight decay is used in the corpus size of any language pair is 

smaller. We didn’t use it in the case of En-Et. 

 

  

 
 

Figure 7.2: Vertical and Horizontal mixing of Transformer and RNMT+ components in an 

encoder [6]. 
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An RNMT+ can be developed by applying new techniques of RNMT. Similarly, the 

approach of a hybrid model can be enhanced by merging with other available architectures 

like Transformer. In a hybrid model, the Transformer can be merged with RNMT+ either 

vertically or horizontally in encoder [Figure 5.2] and improve the performance. 

PyTorch 

In this proposed model Pytorch is used in training the model. PyTorch, which is a machine 

learning framework that was first introduced by Facebook in October 2016. it was designed 

to provide good flexibility and high speeds for deep neural network implementation. 

PyTorch uses a dynamic computation graph instead of static computational graphs, which 

are used in TensorFlow. In TensorFlow static computational graphs are defined before 

runtime while dynamic graphs in PyTorch are defined through the forward computation. 

Advantages of Using PyTorch 

In this thesis for all NMT models, I used PyTorch. OpenNMT also inherits the Torch 

machine learning library. There are many advantages to using PyTorch. 

• Pythonic nature of PyTorch: Python being one of the fastest-growing 

programming languages and with most of the machine learning and artificial 

intelligence-related works being done using python. It makes PyTorch have a wide 

community. 

• Easy to learn: just like the python language, PyTorch is considered relatively easier 

to learn due to its easy and intuitive syntax compared to other deep learning 

frameworks. 

• Strong community: Regardless, of its being new, it has developed a dedicated 

community of developers very quickly with well-organized documentation. 

• Easy debugging: Since PyTorch uses python, it can utilizing the debugging tools of 

python. 

Data pre-processing 

Data processing is a process to prepare raw data and make it suitable for a machine learning 

model. This is the first step to create a machine learning model. In the real world, raw data 

might have noise, unusable format, or missing data. Data pre-processing is important to get 
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rid of those abnormalities in data. Here is an example of a preprocessing script7 for RNMT+ 

with Relational-RNN. 

#!/bin/bash 

# 

#SBATCH --job-name=train_model 

#SBATCH --partition=gpu 

#SBATCH --gres=gpu:tesla:1 

#SBATCH --time=7- 

#SBATCH --cpus=1 

#SBATCH --mem-per-cpu=120000 

 

python ./preprocess.py \ 

-train_src ./en.train.enc \ 

-train_tgt ./et.train.enc \ 

-valid_src ./en.dev.enc \ 

-valid_tgt ./et.dev.enc \ 

-src_vocab ./en.vocab \ 

-tgt_vocab ./et.vocab \ 

-save_data ./data 
 

Training a model 

After data pre-processing, we can start to train the model. In this stage system train a model 

based on all available examples with minimum loss following the RNMT+ architecture. 

Here is an example of a training script. The final trained model is saved in a directory named 

‘models’. This training run until 350,000 steps with batch size 4096 and hidden size 512. 

 

 

7 https://github.com/rezwanshubh/machine-translation/tree/master/rnmt_plus 

https://github.com/rezwanshubh/machine-translation/tree/master/rnmt_plus
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#!/bin/bash 

# 

#SBATCH --job-name=train_model 

#SBATCH --partition=gpu 

#SBATCH --gres=gpu:tesla:1 

#SBATCH --time=7- 

#SBATCH --cpus=1 

#SBATCH --mem-per-cpu=120000 

 

python ./train.py -data ./data -save_model ./models/ 
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8 Result 

Machine translation can be evaluated in two different paradigms. 1. Glass Box evaluation, 

where quality is measured based on internal system architecture, and 2. Black Box evalua-

tion where quality is measured based on the result without considering the internal system. 

Glass box evaluation focuses upon an examination of the system’s linguistic coverage and 

the theories used to handle those linguistic phenomena [32] while on the other hand black-

box evaluation focus only on objective behavior of the system upon a predetermined evalu-

ation set. Black Box evaluation is based on two approaches intrinsic and extrinsic measures, 

which are used to evaluate the accuracy and usefulness of a machine-translation output. 

Where intrinsic measure evaluates quality based on the output of the MT and often involves 

quality comparisons between MT output and a set of reference translations that are prede-

termined to be of high quality [32]. On the other hand, extrinsic measures are focused on 

testing the effectiveness of an output of a machine translation (MT) model. 

Intrinsic measures can further be classified into Human intrinsic measures and Automatic 

intrinsic measures. Where human intrinsic measures, determine the quality through human 

subjective judgments of certain characteristics of the output such as fluency and adequacy 

[32]. Whereas, Automatic intrinsic measures. Use an easily computed sentence similarity 

measure to produce rankings among machine translation models by comparing the corre-

sponding machine-translation output against a fixed set of reference translations. Various 

types of Automatic intrinsic measures exist such as BLEU, NIST, METEOR, WER, PER, 

GTM, TER, and CDER. 

In this project, we shall use Bilingual Evaluation Understudy (BLEU) scoring to evaluate 

the three machine translation models. BLEU scoring evaluates translations by comparing 

machine translations to human-produced translations. BLEU gives scores between 0 and 1, 

with 1 being a perfect match to the human translation. These scores are classified into 

BLEU-1 for unigrams, BLEU-2 for bigrams, BLEU-3 for trigrams. And BLEU-4 for tetra-

grams. 

Mathematically BLEU score is given by; 
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𝐵𝐿𝐸𝑈 = 𝑚𝑖𝑛 (1, 𝑒𝑥𝑝 (1 −
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑙𝑒𝑛𝑡ℎ

𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑙𝑒𝑛𝑔𝑡ℎ
)) (∏ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

4

𝑖=1

)

1
4

 

With  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = (
∑ ∑ 𝑚𝑖𝑛(𝑚𝑐𝑎𝑛𝑑

𝑖 , 𝑚𝑟𝑒𝑓
𝑖 )𝑖∈𝑠𝑛𝑡𝑠𝑛𝑡∈𝐶𝑎𝑛𝑑−𝐶𝑜𝑚𝑝𝑢𝑠

𝑤𝑡
𝑖 = ∑ ∑ 𝑚𝑐𝑎𝑛𝑑

𝑖′
𝑖′𝜖𝑠𝑛𝑡′𝑠𝑛𝑡′𝜖𝐶𝑎𝑛𝑑−𝐶𝑜𝑟𝑝𝑢𝑠

) 

Where  

𝑚𝑐𝑎𝑛𝑑
𝑖 = is the count of i − gram in candidate matching the reference translation 

𝑚𝑟𝑒𝑓
𝑖 =  is the count of i − gram in the reference translation 

𝑤𝑡
𝑖 =   is the total number of i − grams in candidate translation 

The two main components of BLEU are n-gram precision and the length of the candidate 

sentences. In BLEU, precision measures the percentage of the correct n-gram in candidates. 

The trifling case is unigram (n = 1) accuracy which is just the proportion of the number of 

tokens shared between candidates and reference divided by the number of tokens in the 

candidates [1]. 

BLEU score evaluation using NLTK 

NLTK8 is a python toolkit to process natural language. Here we used the NLTK toolkit to 

evaluate the BLEU score. Mainly, the references and hypotheses would be compared. Ref-

erence is a human translated Estonian file which is a sequence of training data. On the other 

hand, the hypothesis is the machine-translated file. The source code9 is there in the reposi-

tory for better understanding. 

In the following tables, we show the calculated BLEU score in two different domains. In 

the first table, we tested the translation model based on similar type data which was 

generally used to train the model. The training dataset is a collection of En-Et, 

 

 

8 https://www.nltk.org/api/nltk.translate.html 

9 https://github.com/rezwanshubh/machine-translation/tree/master/evaluation 

https://www.nltk.org/api/nltk.translate.html
https://github.com/rezwanshubh/machine-translation/tree/master/evaluation
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OpenSubtitles10 v2018. There were 446,612 documents and 3.2G tokens for English and 

28,837 documents and 168.2M token for Estonian. In all three cases, the training steps were 

around 350,000. There were 29,194,732 sentence pairs for training each model. The training 

dataset in the movie subtitle domain and the EU-law domain contain 3,000 and 1,314 

sentence pairs respectively. The training took place on the falcon-1 node of the HPC rocket 

cluster11. 

Model BLEU 

Sequence to Sequence with Attention .51 

Transformer .76 

RNMT+ with Relational-RNN .59 

Google Translator12 .83 

Table 1: Model evaluation of the movie-subtitle (general) domain. 

We observe the Transformer mode shows a tremendous performance and very close to the 

performance of Google translate. We have to acknowledge that the comparison would not 

be accurate since the training data for Google Translator is not the same and definitely, they 

use a large collection of data set including all possible domains. 

Table 2 shows the BLEU score in the EU law domain for the same model.  

Model BLEU 

Sequence to Sequence with Attention .31 

Transformer .21 

RNMT+ with Relational-RNN .38 

Google Translator .64 

Table 2: Model evaluation of the EU-law domain. 

 

 

10 http://opus.nlpl.eu/OpenSubtitles-v2018.php 

11 https://hpc.ut.ee/rocket-cluster/ 

12 Training data for Google Translator is different. 

http://opus.nlpl.eu/OpenSubtitles-v2018.php
https://hpc.ut.ee/rocket-cluster/
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It means, we evaluated a similar model but test data was from the EU law domain which 

was not included in the training exclusively. 

In this case, we see dramatic changes in performance since RNMT+ and Sequence to 

Sequence model performed slightly better than the Transformer. It is also clear that to trans-

late sentences in any particular domain, our trained model needs to be shaped accordingly. 

That’s why we observe performance loss in all three models when used to translate the EU 

law. It’s also observed that based on all three models, the quality of translation is better in 

shorter sentences consists of six words or less. The batch size, hidden size, training steps, 

and other pre-processing and evaluation methodologies remained the same in all training to 

maintain consistency. 

 



49 

 

 

9 Future Work 

In this section, we present ideas for future works. 

Train a Model Using Unsupervised SMT 

As future works, we would consider developing an English-Estonian machine translation 

model based on Unsupervised Statistical Machine Translation [33]. Functionality-wise sta-

tistical machine translation can be compared with rule-based or example-based machine 

translation. This type of machine translation is quite hard for language pairs like English-

Estonian. Hence, developing an unsupervised statistical machine translation model for the 

English-Estonian language pair will be considerable future work. 

Improvement of RNMT+ Model 

From the evaluation, we could understand the overall performance of RNMT+ is poor com-

pared to the Transformer in a controlled environment. So, we have many scopes to improve 

this. In this case, we can organize our corpus with not only movie subtitles but also from 

different domains. 

Train Model 

Here I have trained a model using RNMT+ with Relational-RNN architecture. We also can 

focus on training models for other language pairs (eg: English-Finnish, English-Russian, 

etc). Since RNMT+ is one of the newest architectures, it would be interesting to train trans-

lation models based on different RNN (eg: Relational-RNN, LSTM, GRU) types. 
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10 Conclusions 

The advancement of the RNN model along with machine translation architectures helps us 

to find the right translation process. It is no longer a dream to develop a translation model 

for languages with low resources. A neural machine translation system is easy to implement 

and achieve amazing performance. The overall implementation process of a neural machine 

translation is simpler than statistical machine translation or rule-based machine translation. 

In this thesis, we observed how a new approach of the RNN model can be fit into an existing 

NMT architecture. Then we explored several architectures and processes to develop a trans-

lation model based on these. Finally, we demonstrated the result that a hybrid model like 

RNMT+ performs better in an unknown domain while the Transformer model outperforms 

others on OpenSubtitles v2018 En-Et training set. 
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