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1. INTRODUCTION 

For decades, scientists have concentrated on determining how various environ-
mental pollutants affect organisms. The adverse effects of these chemicals on 
health have been established, among others, in tumorigenesis, impairments in 
immune system and reproduction, although investigations on the precise 
mechanisms are still ongoing. Many of these contaminants were identified to act 
as agonists of the aryl hydrocarbon receptor (AHR), which is widely expressed 
in the organism. Upon ligand binding, AHR translocates to the nucleus and 
modulates the expression of its target genes, including those responsible for the 
degradation of these chemicals. Initially, AHR was considered to act solely as a 
mediator of environmental stimuli. However, later studies using knockout models 
have attributed AHR a role in cellular homeostasis clarifying that it is more than 
a xenobiotic-interacting protein. To date, a large number of AHR modulators, 
both exogenous and endogenous, has been identified. Importantly, published data 
provide evidence that different ligands exert distinct effects in terms of gene 
expression and this may additionally depend on cell type and model organism. 
Apart from activity modulation, the expression of AHR itself is subject to various 
signals. Although this has gained less attention, the need for research in this 
specific field is evident, as overexpression of AHR has been observed in various 
tumours. Hence, alteration of AHR expression, in addition to activity modulation, 
has potential therapeutic value. 

The role of AHR in female reproduction has been elucidated concerning 
xenobiotic AHR agonists acting as endocrine disruptors. Ahr is also known to 
modulate the expression of aromatase (Cyp19a1) and follicle stimulating hormone 
receptor (Fshr) in the ovarian granulosa cells (GCs) endogenously i.e. without 
exogenous ligands. Importantly, Ahr expression itself is fluctuating largely in rat 
granulosa cells during oestrous cycle, referring to the importance of Ahr 
regulation. Considering this, the present thesis is focused on delineating the 
mechanisms that control Ahr expression in mouse GCs. Both upregulation during 
follicular maturation as well as downregulation following luteinising hormone 
(LH) surge are addressed. Moreover, the interactions between Ahr and Fshr 
promoter are characterised in detail. 

The first part of the thesis demonstrates that Ahr is upregulated in vivo in GCs 
during ovarian follicle maturation and this requires both FSH and LH signalling. 
The increase of Ahr levels is intrinsic to large antral follicles. This involves 
reduction of protein kinase A (PKA) signalling, as exemplified by decreased  
p-Creb levels, and is regulated by chromatin remodelling. The second part 
focuses on how Ahr is downregulated in preovulatory GCs following LH-surge. 
The mechanism includes PKA dependent decrease of Ahr transcription resulting 
from reduced chromatin accessibility. The third part concentrates on identifying 
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the region of Fshr promoter that is responsive to Ahr. Binding of Ahr to the  
E-box motif is determined. Further, Ahr interacts directly with Fshr promoter 
rather than via other proteins, supported by the fact that its DNA binding ability 
is crucial to activate Fshr promoter. Finally, evidence is provided that TCDD 
regulates Fshr positively. 
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2. LITERATURE OVERVIEW 

2.1. Aryl hydrocarbon receptor 

The ligand-dependent transcription factor – aryl hydrocarbon receptor (AHR) – 
was initially identified as the mediator by which 2,3,7,8-tetrachlorodibenzo-para-
dioxin (TCDD), an environmental pollutant, exerts its toxic effects. In 1976 it 
was established that TCDD, along with 23 another chemicals, induced the hepatic 
CYP1A1 activity through a protein, which was named aromatic/aryl hydrocarbon 
receptor – AHR (Poland & Glover 1976). Since then, there are numerous publi-
cations investigating the toxicological role of AHR in various tissue and cell 
types, including cancer. The identification of novel xenobiotic ligands as well as 
investigations in their mode of action are still ongoing. Recent advances in the 
field have expanded our knowledge on the role of AHR. The finding of endo-
genous AHR ligands has paved way in our understanding that AHR is more than 
a xenobiotic interacting protein and it has essential roles in the organism without 
activation by exogenous ligands. AHR has been shown to be important in normal 
cellular homeostasis and aberrations in its signalling pathway are associated with 
various health conditions. 

To date, the expression of AHR has been determined in most cell types, sug-
gesting it has a central role in cellular processes. Apart from its role in the 
induction of xenobiotic metabolizing enzymes such as classical targets CYP1A1 
and CYP1B1, AHR has been shown to regulate numerous genes involved in 
cellular homeostasis (e.g. p27, p16) but also interact with proteins like RB, E2F1, 
NFκB etc. (Frauenstein et al. 2013; Ge & Elferink 1998; Marlowe et al. 2008; 
Ray & Swanson 2004; Tian et al. 1999; Vogel et al. 2013). The importance of 
AHR has been underscored in development as embryonic and hematopoietic stem 
cells as well as and neural progenitors are affected by AHR activity (Boitano et 
al. 2010; Ko et al. 2016; Latchney et al. 2011). Further publications have, among 
others, described the role of AHR in female reproduction, liver homeostasis and 
immune system (Baba et al. 2005; Barnett et al. 2007a; Lu et al. 2015; Quintana 
et al. 2008). More importantly, latest advances in the field have emphasised the 
modulation of AHR activity in cancer treatments involving immunomodulatory 
checkpoint inhibitors. 

 
 

2.2. The structure of AHR 

Human AHR is located on the seventh chromosome (chromosome 12 in mouse). 
It consists of 11 exons coding for a 6243 bp mRNA (5548 bp in mouse) 
(Ensembl.org a, b). This mRNA is translated into 848 (805 in mouse) amino acid 
residue protein with the approximate molecular weight of 96 kDa (~90 kDa in 
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mouse) (Uniprot.org a, b). AHR belongs to the basic helix-loop-helix-PER/ 
ARNT/SIM (bHLH-PAS) family of proteins. The highly conserved N-terminus 
contains nuclear localisation and export sequences (Figure 1) (Ikuta et al. 1998, 
2000). The bHLH domain includes basic residues responsible for AHR inter-
action with DNA and a HLH motif required for dimerization with ARNT (Schulte 
et al. 2017). Adjacent to these sequences are serine residues, which are targets of 
protein kinase C (PKC). Phosphorylation of these amino acids has been reported 
to inhibit AHR nuclear import (Ikuta et al. 2004). The PAS domain, also present 
in PER, ARNT and SIM proteins, consists of two inverted repeats – PAS-A and 
PAS-B. In general, PAS-A binds HSP90 in the cytoplasm. In the nucleus, 
however, this domain is responsible for heterodimerisation with ARNT. PAS-B, 
in turn, is essential for ligand binding and for interactions with its cytoplasmic 
binding partners HSP90, AIP/XAP2/ARA9 (AHR-interacting protein/X-asso-
ciated protein 2/AHR-associated protein 9) and p23 (Bell & Poland 2000; Kaz-
lauskas et al. 1999; Perdew 1988). Next to PAS domains lies the inhibitory 
domain (ID) that suppresses target gene activation (Ma et al. 1995). The C-terminus 
of AHR varies among species accounting for differences in protein length. It 
contains a glutamine rich domain responsible for transactivation of its target 
genes as well as binding sites for various cofactors like p300, RIP140 and SMRT 
(Kumar & Perdew 1999; Rushing & Denison 2002; Tohkin et al. 2000). 

For a long time AHR was refractory to crystallisation. Thus, homology studies 
were performed utilising the similarity with other proteins containing PAS 
domains. Recently, however, there have been publications describing the AHR/ 
ARNT dimer in complex with DNA (Schulte et al. 2017; Seok et al. 2017). This 
advancement allows identification of novel AHR agonists/antagonists as the need 
for identification of novel AHR ligands is growing in both toxicological aspects 
as well as therapy. 
 

Figure 1. Schematic representation of AHR. The N-terminal bHLH domain harbours 
nuclear localisation sequence (NLS), nuclear export sequence (NES) and DNA binding 
sequence. PAS-A domain is responsible for heterodimerisation, whereas PAS-B contains 
the ligand-binding pocket and interacts with HSP90. Next to the PAS domains lies the 
inhibitory domain (ID), which suppresses target gene activation. The C-terminal 
transactivation domain (TAD) is responsible for target gene activation and cofactor 
binding. 

 

PAS-A PAS-B TADbHLH

NESNLS

ID

DNA binding
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2.3. AHR signalling pathway 

The unliganded or resting AHR resides in the cytoplasm in complex with AIP, 
p23 and two molecules of HSP90. Activation of AHR by ligands results in 
conformational changes exposing the nuclear localisation signal to importin β 
(Petrulis et al. 2003). Subsequently, AHR translocates to the nucleus where it is 
freed from its cytoplasmic chaperones, which inhibit AHR binding to DNA (Heid 
et al. 2000; Lees & Whitelaw 1999). HSP90 is displaced by ARNT forming a 
heterodimer (McGuire et al. 1994; Soshilov & Denison 2008). This complex is 
capable to recognise and bind specific sequences in the regulatory region of AHR 
target genes. The AHR/ARNT dimer then recruits additional cofactors to modulate 
target gene expression, followed by ubiquitination, nuclear export and degrada-
tion in 26S proteasome pathway (Figure 2) (Ma & Baldwin 2000). Apart from 
this cascade of events, termed genomic AHR pathway, the existence of non-
genomic pathway has been described. Although it has gained less attention, 
studies indicate that the non-genomic pathway includes elevated intracellular 
calcium levels, release of the tyrosine kinase c-Src from the activated AHR, focal 
adhesion kinase activation and subsequent increase in cell migration (Tomkiewicz 
et al. 2013). 

The classical consensus sequence for AHR/ARNT binding – XRE/DRE/AHRE 
(xenobiotic/dioxin/AHR response element) – consists of the nucleotides 5’-
TNGCGTG-3’ (Denison et al. 1988). It has been shown that the TNGC half-site 
is bound by AHR, whereas ARNT binds GTG. Additional publications have 
emphasised the importance of adjacent nucleotides in the flanking regions of the 
consensus binding site (Shen & Whitlock 1992). More precisely, A and T have 
been shown to be important in target gene transactivation at positions +1 and +3 
downstream of XRE, respectively as mutations in these positions rendered the 
promoter uninducible by TCDD (Matikainen et al. 2001; Shen & Whitlock 1992). 
In addition, recent publications have described novel AHR binding sites as genes 
regulated by AHR lack the classical XRE motif. One study has provided evidence 
that AHR binds directly a tetranucleotide motif 5’-GGGA-3’ without ARNT 
(Huang & Elferink 2012). It was later established that AHR heterodimerises with 
the tumour suppressor Kruppel-Like Factor 6 (KLF6) expanding the list of 
mechanisms by which AHR influences gene expression (Wilson et al. 2013). 
Additional ChIP-Seq experiments have revealed that indeed AHR and ARNT 
binding sites do not overlap completely, indicating that AHR influences target 
gene activation independently (Lo & Matthews 2012). Apart from binding DNA 
directly, AHR has also been demonstrated to influence target gene expression via 
other proteins. It has been shown that AHR binds rat Cyp1a2 enhancer via an 
unknown protein (Sogawa et al. 2004). Supporting this, AHR/ARNT complex was 
found to bind DNA motifs previously known as AZF1, FOXA1 and SP1 response 
elements possibly exerting its effect via these proteins (Lo & Matthews 2012). 
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Figure 2. Genomic AHR signalling pathway. In an inactive state, the AHR is located 
in the cytoplasm in complex with its molecular chaperones p23, AIP and two units of 
HSP90 (1). Upon ligand (TCDD) binding, the AHR translocates to the nucleus, sheds its 
chaperones (2) and dimerises with its nuclear partner ARNT (3). This heterodimer then 
binds AHR response elements (AHRE) located in the regulatory regions of its target 
genes (4), thereby inducing their expression (5). Subsequently the 26S proteasome 
pathway degrades AHR (6). The AHR-induced CYP1A1 is responsible for degradation 
of AHR ligands (7). 

 
 

2.4. Regulation of AHR 

Initially, the majority of studies regarding AHR concentrated on its activation by 
various environmental chemicals having affinity to AHR. With the identification 
of endogenous ligands, the role of AHR in the organism has expanded signi-
ficantly. However, this has also resulted in many contradicting findings as the 
effects on target gene expression are often dependent on the specific ligand but 
more importantly vary between distinct cell types and organisms. Apart from the 
modulation of AHR activity, the expression of AHR itself, although ubiquitous, 
varies in time and across tissues. High AHR expression has been determined, 
among others, in lung, liver, placenta, thymus and kidney, ascribing it an 
important role in cellular homeostasis (Manchester et al. 1987; Mason & Okey 
1982).  

The mechanisms regulating AHR signalling are highly dependent on cell type 
and the modulator itself. However, the importance of AHR repressor (AHRR) 
has been underscored in AHR-dependent gene expression. AHRR expression is 
induced by AHR ligands like TCDD and 3-methylcholanthrene through direct, 
although low-affinity, binding of AHR/ARNT to its response elements. The low 
affinity was reported to be due to varying nucleotides flanking the XRE (Baba et 
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al. 2001). The N-terminus of AHRR is comparable to AHR but it does not bind 
ligands (Korkalainen et al. 2004; Mimura et al. 1999). Additionally, it was found 
that the transactivation domain varies significantly, rendering AHRR unable to 
activate target gene expression. AHRR competes with AHR for mutual cofactors 
like ARNT, binds the XRE motif, inhibits AHR target gene expression and results 
in nuclear export, ubiquitination and degradation of AHR via 26S proteasome 
pathway (Ma & Baldwin 2000; Mimura et al. 1999). This mechanism, however, 
is also tissue-specific, as AHRR induction has been reported to vary in different 
cell types and its expression does not necessarily correlate with xenobiotic-induced 
CYP1A1 levels (Bernshausen et al. 2006). 

Previous publications have reported that AHR expression was elevated in rat 
and mouse liver, prostate and hepatocytes in vivo after TCDD administration, 
although this tended to vary depending on the dose and duration of treatment 
(Chang et al. 2005; Franc et al. 2001a,b; Sommer et al. 1999). On the other hand, 
there are data that TCDD significantly reduces the amount of AHR protein e.g. 
in mouse hepatoma cells and human keratinocytes in vitro (Chen et al. 2005; Ray 
& Swanson 2004). The downregulation of AHR protein was dependent on a 
cycloheximide-sensitive factor, influencing the half-life of AHR (Ma et al. 2000). 
It was later established that the TCDD-inducible poly(ADP-ribose) polymerase 
(TiPARP) was responsible for the decline of AHR protein levels (MacPherson et 
al. 2013). TiPARP expression is induced by activated AHR. It binds AHR directly 
and enhances its proteolytic degradation thereby silencing AHR target gene 
expression. 

Apart from regulation of AHR by its ligands, there are data emphasising the 
role of other factors modulating AHR expression. For example, TGF-β, a multi-
functional cytokine expressed in a variety of cells, has been shown to influence 
AHR expression. More precisely, TGF-β-dependent downregulation of AHR in 
lung carcinoma cells and upregulation in hepatoma cells by downstream SMAD 
2, 3, 4 and TGIF were observed, respectively (Wolff et al. 2001). In addition,  
IL-4, IL-13, lipopolysaccharides (LPS) and WNT/β-catenin have been shown to 
induce AHR expression in B cells and prostate cancer, respectively (Chesire et 
al. 2004; Marcus et al. 1998; Tanaka et al. 2005). A landmark phenotype resulting 
in foetal TCDD exposure is cleft palate (Mimura et al. 2003). This, however, has 
been shown to be reversed by TGF-β, which may be due to downregulation of 
AHR expression and ablation of the toxic effect by its ligand TCDD (Thomae et 
al. 2005). AHR expression has also been reported to decline during aging. 
Published studies have indicated that AHR expression is downregulated in older 
rat liver and prostate, compared to younger animals indicating that this may play 
a role in diseases during aging (Mikhailova et al. 2005; Sommer et al. 1999). 
Additional dynamic fluctuations in AHR expression have been observed by 
Chaffin and colleagues in rat oestrous cycle (Chaffin et al. 2000). By analysing 
ovarian AHR expression, they noticed initial upregulation during maturation of 
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ovarian follicles followed by downregulation at later stages after luteinising 
hormone (LH) surge. The latter downregulation was also evident in liver samples, 
emphasising that the response to xenobiotics, their degradation and thus toxic 
effects may severely depend on hormonal signalling.  

Recent advances in investigating the regulation of AHR have identified that 
its expression is regulated through epigenetic mechanisms. Mulero-Navarro and 
colleagues identified that AHR promoter contains CpG islands that are targets of 
DNA methylation (Mulero-Navarro et al. 2006). They found that AHR is down-
regulated in acute lymphoblastic leukaemia (ALL) and chronic myeloid 
leukaemia (CML) cell lines and this was due to methylation of AHR promoter as 
treatment with the DNA methyl transferase inhibitor 5-Aza-2’-deoxycytidine 
restored AHR expression. Importantly, AHR was significantly methylated in 
primary ALL similarly to tumour suppressors like p53, p16 and p73. Additional 
mechanisms regulating AHR have been identified at the post-transcriptional 
level. In addition to AHR regulating the expression of miRNAs, AHR itself has 
been shown to be downregulated by miR-124 (Huang et al. 2011). AHR expres-
sion reversely correlated with the expression of miR-124 in neuroblastoma, one 
of the most common solid tumours in children, and miR-124 was shown to 
directly supress AHR expression by targeting its 3’-UTR. Inhibition of miR-124 
resulted in cell differentiation, cell cycle arrest and apoptosis, suggesting a 
potential AHR-dependent therapeutic avenue in neuroblastoma therapy as AHR 
activation has additionally been shown to impair neuroblastoma progression and 
metastasis (Wu et al. 2019). Efforts in uncovering the regulation of AHR have 
discovered another post-transcriptional mechanism. The adenosine-to-inosine 
RNA editing elicited by adenosine deaminase acting on RNA 1 (ADAR1) has 
been shown to edit the 3’-UTR of AHR mRNA in hepatocellular carcinoma cells 
(Nakano et al. 2016). This created a de novo binding site for miR-378, which 
bound AHR mRNA resulting in downregulation of AHR protein levels. 
Importantly, AHR protein and mRNA levels did not correlate positively in a panel 
of human liver samples, whereas miR-378 showed an inverse correlation with 
AHR protein levels. 

Collectively, the evidence on the control of AHR expression underscores a 
diversity in AHR regulation, depending on the cell type, experimental conditions 
and the biological factors used. Thus, there seems to be no rigorous or unified 
mechanism that governs AHR expression across the organism. 
 
 

2.5. AHR ligands 

Initially, AHR was considered to interact solely with environmental contaminants. 
Thus, early studies concentrated mainly on the toxicological aspects of AHR 
activation. Later studies have established several phytochemicals and medical 
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drugs as AHR ligands. The analyses of AHR-dependent gene expression as well 
as the use of AHR knockout models also indicated existence of endogenous 
ligands. The identification of these endogenous ligands enabled characterisation 
and broadening of the AHR role in normal homeostasis as well as disease. In 
addition to ligands acting as AHR agonists, there are data about antagonists – 
compounds that have been determined to typically inhibit TCDD-dependent 
AHR target gene activation. Importantly, the modulation of AHR activity is not 
always straightforward, as distinct ligands may have different effects in terms of 
target gene expression and this is dependent on the animal model as well as cell 
type tested. 

The best-characterised environmental contaminant AHR ligands belong to the 
groups of halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic 
hydrocarbons (PAHs) generated as side products in the chemical industry as well 
as during combustion (Figure 3). HAHs that have affinity to AHR are dibenzo-
furans (e.g. 2,3,7,8-tetrachlorobibenzofuran, TCDF), biphenyls (3,3’,4,4’,5-
pentachlorobiphenyl, PCB126) and dibenzo-p-dioxins, including TCDD, which 
has the highest known affinity for AHR (Farrell et al. 1987; Jones & Anderson 
1999; Poland & Glover 1976). PAHs comprise of a large group of chemicals 
containing at least four benzene rings, including well-characterised AHR ligands 
benzo[a]pyrene, 3-methylcholanthrene, 7,12-dimethylbenzanthracene (Jones & 
Anderson 1999; Piskorska-Pliszczynska et al. 1986). Although activation of AHR 
by its ligands results in induction of several xenobiotic degrading enzymes and 
subsequent elimination from cells, the metabolised ligands are capable to produce 
PAH-DNA adducts and are thus potent carcinogens. In addition, several drug 
compounds in use and in clinical trials have been shown to modulate AHR 
activity. The anti-allergy drug Tranilast and neuroimmunomodulator Laquinimod 
activate AHR (Hu et al. 2013; Kaye et al. 2016; Ott et al. 2019). The anti-malarial 
drug primaquine has been shown to activate AHR (Backlund & Ingelman-
Sundberg 2004). In contrast Vemurafenib, which is used to treat late-stage mela-
noma has been shown to antagonise AHR (Hawerkamp et al. 2019). 

Apart from the anthropogenic chemicals, many natural and endogenous AHR 
ligands have been determined to date. Indigo and indirubin, compounds that have 
been historically used for colouring but also found in humans, are reported to 
activate AHR (Adachi et al. 2001). The arachidonic acid metabolite lipoxin A4 
as well as prostaglandin G2, heme metabolites bilirubin and biliverdin have been 
shown to activate AHR (Phelan et al. 1998; Schaldach et al. 1999; Seidel et al. 
2001). In addition, tryptophan metabolites are known to activate AHR. Ultraviolet 
(UV) radiation has been shown to generate 6-formylindolo[3,2-b]carbazole 
(FICZ), which bound AHR with high affinity (Fritsche et al. 2007). Another 
tryptophan metabolite kynurenine (Kyn), generated by tryptophan-2,3-dioxy-
genase 2 (TDO2) and indoleamine-2,3-dioxygenase 1 (IDO1), has been found to 
activate AHR and has recently gained much attention for its role in tumour 
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promotion and immune escape (Mezrich et al. 2010; Opitz et al. 2011). In 
addition, several metabolites of the downstream Kyn metabolism pathway, like 
kynurenic acid, xanthurenic acid and cinnabarinic acid, act as AHR agonists 
(DiNatale et al. 2010; Lowe et al. 2014). The dietary uptake of glucobrassicin, 
abundant in cruciferous vegetables like broccoli and cauliflower, results in 
production of indole-3-carbinol, indole-3-acetonitrile and downstream 3,3’di-
indolylmethane and indolo[3,2-b]carbazole (ICZ), all of which activate AHR 
(Bjeldanes et al. 1991; Ito et al. 2007). Further, ITE (2-(19H-indole-39-carbonyl)-
thiazole-4-carboxylic acid methyl ester) has been identified to activate AHR 
(Song et al. 2002). Although the origin of ITE, whether dietary, endogenous or a 
by-product of its extraction, remains elusive, its potential as an anticancer drug 
has been established in endometrial, ovarian and triple-negative breast cancer 
(Bian et al. 2019; Piwarski et al. 2020; Wang et al. 2013). 

A lot of effort has been put into identifying AHR antagonists, which inhibit 
AHR nuclear import and target gene activation. Common methods for this are 
inhibition of TCDD-induced CYP1A1 induction and competitive binding to 
TCDD-bound AHR. Although initial studies have determined a number of com-
pounds acting as antagonists, later reports have revealed that the actual mechanism 
is much more complicated, as TCDD displacement and CYP1A1 induction do not 
completely reflect the AHR status. Studies have shown that AHR can be selectively 
modulated i.e. it translocates to the nucleus and influences gene expression but 
does not bind the canonical XRE or induce CYP1A1 expression (Murray et al. 
2010). Accordingly, the plant polyphenol resveratrol, abundant in grapes and red 
wine, has been demonstrated to suppress TCDD-induced CYP1A1 expression, 
although AHR translocated to the nucleus and bound XRE (Casper et al. 1999). 
There is also data about the agonist-selectivity of AHR antagonists as CH223191 
inhibited HAH-, but not PAH- or indirubin-dependent AHR signalling (Zhao et 
al. 2010). Importantly, it was revealed that the known antagonists 3′-methoxy-4′-
nitroflavone and 6,2′,4′,-trimethoxyflavone also exhibit species-selectivity. In 
contrast, the synthetic antagonist GNF351 has been reported to act as a complete 
antagonist and silence the effects of various AHR ligands (Smith et al. 2011). 
Additionally, StemRegenin 1 (SR1) has been shown to antagonise AHR and 
promote hematopoietic stem cell proliferation in vitro (Boitano et al. 2010). 

Collectively, the diverse repertoire of AHR ligands is broad and expanding 
constantly. The agonistic and antagonistic effects that various compounds exert 
on AHR signalling are complicated and thus need to be confirmed by versatile 
experimental procedures in more detail. Considering the important role AHR 
plays in health and disease, it is, however, important to continue identifying novel 
AHR modulators, both exogenous as well as endogenous. 
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Figure 3. Examples of classes of chemicals and specific compounds known to act as 
AHR ligands. 
 
 

2.6. AHR in cancer 

As stated above, the repertoire of chemicals with AHR activity modulation 
characteristics is broad. Since the identification of AHR as a target of environ-
mental contaminants with tumour-promoting potential, the role of AHR in cancer 
has been studied extensively in various cancer types in both animal models as 
well as humans. The constitutive activity of AHR has been reported to promote 
hepatocarcinogenesis and induce stomach tumours (Andersson et al. 2002; 
Moennikes et al. 2004). Despite, there seems to be no uniform role of AHR in 
tumorigenesis as both pro- and anti-tumour effects have been reported. Thus, 
AHR seems to have a dual role in carcinogenesis, which is highly dependent on 
the ligand, cancer type, as well as conditions in which the function of AHR is 
tested. 

Breast cancer is one of the leading cancer types diagnosed in women. In 
mammary tumours, the tumour suppressor gene BRCA1 has often acquired 
mutations or is downregulated(Wilson et al. 1999). In addition, several factors 
like diet and environmental contaminants have been implicated in the onset of 
breast cancer linking it to the environmental sensor AHR. Indeed, AHR has been 
demonstrated to positively regulate the expression of tumour suppressor BRCA1 
without xenobiotic AHR ligands (Hockings et al. 2006). AHR was shown to bind 
DNA directly via XREs present in the promoter region and interact with ERα. 
More importantly, the toxic AHR ligands TCDD and benzo(a)pyrene displaced 
coactivators from BRCA1 promoter and reduced its expression. Interestingly, 
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similar results were obtained when using an AHR antagonist, implying a diverse 
ligand-dependent regulation of gene expression by AHR. 

Skin cancer is one of the most common cancer types in Caucasians and the 
incidence is increasing (Leiter et al. 2014). In addition to the established role of 
ultraviolet (UV) radiation, various carcinogenic chemicals (e.g. PAHs) present in 
particulate matter and ambient air pollution are reported to cause skin cancer 
(Siddens et al. 2012). Many of these chemicals are shown to activate AHR, 
implicating a role for AHR in skin cancer (Gualtieri et al. 2011; Matsumoto et al. 
2007). Previous reports have shown that UVB radiation induces the expression 
of AHR target genes CYP1A1/1B1 (Katiyar et al. 2000; Mukhtar et al. 1986). 
The underlying mechanisms were characterised in a study showing UVB-
dependent formation of the tryptophan catabolite 6-formylindolo[3,2-b]carbazole 
(FICZ), an AHR agonist, and subsequent AHR activation (Fritsche et al. 2007). 
The activated AHR was further shown to downregulate the expression of the cell 
cycle inhibitor p27, resulting in survival of UVB-damaged cells (Frauenstein et 
al. 2013). In contrast, when AHR activity was inhibited, p27 expression increased 
leading to apoptosis of damaged cells. Moreover, in a recent work it was estab-
lished that AHR activation represses the repair of mutagenic DNA photoproducts 
induced by UVB radiation (Pollet et al. 2018). Silencing of AHR, in turn, 
enhanced DNA repair coupled with an increase in DNA double-strand breaks and 
apoptosis. Thus, it seems that AHR activation enhances UVB- and possibly PAH-
induced skin carcinogenesis. Inhibition of AHR activity, in turn, may have 
therapeutic values. 

Glioblastoma is a neurological cancer with limited treatment options and high 
lethality. Although the aetiology of glioblastomas is unclear, the role of AHR in 
this type of disorder has been characterised. One study identified two single 
nucleotide polymorphisms in the AHR gene correlating with PAH-DNA adduct 
formation contributing to the risk of glioblastoma (Gu et al. 2012). Consistent 
with this, these SNPs also correlated with higher incidence of lung cancer in 
tobacco smokers (Chen et al. 2009). Additionally, nuclear accumulation of AHR 
has been detected in human glioblastomas in vivo and silencing of AHR signalling 
resulted in reduced clonogenic survival and invasiveness (Gramatzki et al. 2009; 
Guastella et al. 2018). Further investigations identified kynurenine (Kyn), a 
tryptophan metabolite generated by the neuron- and liver-specific enzyme 
tryptophan-2,3-dioxygenase (TDO), as a tumour-promoting AHR agonist (Opitz 
et al. 2011). The Kyn-AHR pathway was active in glioblastomas and contributed 
to tumour cell survival, motility and suppression of anti-tumour immune response. 

The immunosuppression elicited by tumour cells via Kyn-AHR signalling has 
been further elucidated in hepatocellular carcinoma (HCC). The IL-6-inducible 
intestine-specific homeobox transcription factor (ISX), implicated in HCC, was 
found to promote a feedforward mechanism thereby enhancing tumourigenicity 
and evasion of immune cell surveillance (Wang et al. 2017). More specifically, 
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ISX was found to induce the expression of indoleamine-2,3-dioxygenase 1 (IDO1) 
and TDO2 resulting in elevated levels of Kyn and subsequent AHR activation, 
which in turn enhanced ISX expression (Figure 4). Additionally, ISX elevated 
the expression of programmed death ligand 1 (PD-L1) and programmed death 1 
(PD-1) proteins in HCC. Accordingly, HCC patient samples with high ISX 
expression also had enhanced expression of IDO1, TDO2, AHR and PD-L1. 
More importantly, high expression of these genes correlated with shorter survival 
time of patients after surgical resection of HCC. PD-L1 and PD-1 interaction acts 
as an “off switch” keeping cytotoxic T-lymphocytes (CTLs) from attacking other 
cells in the body. Importantly, some cancers express high levels of PD-L1 thereby 
enabling them to hide from immunosurveillance. 
 

Figure 4. An established schematic model of Kyn-dependent immune escape of 
cancer cells. A) ISX-IDO-Kyn-AHR positive feedforward mechanism in cancer cells, 
resulting in PD-L1 upregulation. B) Kyn produced in cancer cells is transported into 
CD3+CD8+ immune cells via SLC36A4 and SLC7A8 transporters, resulting in AHR-
dependent upregulation of PD-1, SLC36A4 and SLC7A8. 
 
Recently, the Kyn-dependent crosstalk between tumour and immune cells has 
been further elucidated. Liu and colleagues found, that CTLs stimulate tumour 
cells to release high levels of Kyn, which was transported into CTLs via SLC7A8 
(solute carrier family 7 member 8) and SLC36A4 (solute carrier family 36 
member 4) transporters resulting in activation of AHR (Liu et al. 2018b). AHR 
then bound to the regulatory regions of PD-1, SLC7A8 and SLC36A4 genes 
thereby inducing their expression and resulting in suppression of immune 
response on tumour cells (Figure 4). Conversely, inhibition of AHR activity 
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downregulated these genes and enhanced the anti-tumour effect of CTLs. This 
regulatory network was confirmed in both animal models and human lung, colon 
and breast cancer patient samples providing evidence for future immunotherapy 
strategies. The impact of Kyn signalling has also been implicated in pancreatic 
cancer. It was established, that nitric oxide, produced by nitric oxide synthase 2 
(NOS2), regulated RUNX3 transcription factor (Wang et al. 2020). RUNX3 then 
bound the promoter of IDO1 upregulating its expression resulting in elevated Kyn 
levels. Kyn activated AHR thereby promoting cancer growth and invasiveness. 
These results correlated well with poor patient survival and are in accordance 
with a previous publication reporting NOS2-dependent enhancement of pancreatic 
cancer progression (Wang et al. 2016). 
 
 

2.7. AHR in stem cells 

The function of AHR has been characterised, by using its ligands or knockout 
models, in many cell types with high developmental potential i.e. stem cells. In 
mouse, AHR is expressed already at 1-cell stage (Wu et al. 2002). At 2- and  
8-cell stage AHR expression is silenced followed by upregulation in later stages 
(Peters & Wiley 1995; Wu et al. 2002). The expression pattern of AHR was 
further characterised by Ko and colleagues, who found that AHR is basically 
absent in pluripotent mouse embryonic stem (mES) cells and its expression was 
recovered during non-directed differentiation into embryonic bodies (EB) (Ko et 
al. 2014). They uncovered that AHR is repressed by the core pluripotency factors 
Oct4, Nanog and Sox2, which bound Ahr distal promoter thereby inhibiting gene 
expression. Indeed it is known, that in ES cells, the transcription factors Oct4, 
Nanog and Sox2 act on their target genes by promoting self-renewal and silencing 
differentiation thus implicating a role of Ahr in differentiation (Boyer et al. 2005; 
Loh et al. 2006). It was later established that AHR regulates pluripotency, cell 
fate decision by restricting cardiogenesis and commitment towards neuroglia (Ko 
et al. 2016). Additionally, AHR repression was found to promote mES cell 
mitotic progression, thereby maintaining pluripotency.  

Data about the role of AHR in pluripotent human embryonic stem (hES) cells 
is scarce. A recent article reported that AHR is indeed expressed in hES cells 
(Yamamoto et al. 2019). Moreover, they found that AHR is activated by its 
endogenous ligand kynurenine (Kyn), a metabolite of tryptophan, produced by 
indoleamine 2,3-dioxygenase 1 (IDO1). Inhibition of IDO1 activity and 
tryptophan catabolism resulted in reduced proliferation but not differentiation. 
Indeed it has been shown that tryptophan deprivation from cell culture media 
results in inhibition of cell growth and decreased cell numbers (Shiraki et al. 
2014). Importantly, they observed diminished AHR expression during neural 
differentiation. Kyn levels and thus probably AHR activity were also reduced 
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during ectodermal differentiation underscoring the role of AHR in hES cell 
differentiation. Accordingly, in our experiments using the hES cell line H9, we 
observed that AHR is indeed expressed (Teino et al., manuscript in preparation). 
During non-directed differentiation into EBs, we observed downregulation of 
AHR, demonstrating a profound difference in AHR expression pattern and thus 
function between human and mouse ES cells. Further, during directed neural 
differentiation, AHR expression is initially downregulated followed by upregu-
lation at later time points. Endodermal differentiation resulted in more profound 
repression of AHR expression in all time points tested. Mesodermal cells, in turn, 
seemed to lack AHR. This differential expression of AHR between lineages 
emphasises that AHR indeed has an important and distinct role during hES cell 
differentiation. 

Nowadays, the therapeutic potential of pluripotent stem cells is widely accepted. 
However, the use of hES cell lines has many disadvantages as they are not autolo-
gous and more importantly accumulate a burden of cancer-associated mutations 
in the cell culture (Merkle et al. 2017). By whole exome sequencing of 140 hES 
cell lines collected from laboratories around the world, mutations in TP53 were 
identified that conferred selective advantage. Thus, there is a need for patient-
specific induced pluripotent stem (iPS) cells, generation of which, however, has 
been expensive and relatively inefficient. The reprogramming of somatic cells to 
pluripotency is under thorough investigation. Previously, the use of miRNAs has 
been described in cellular reprogramming. More precisely, exogenous expression 
of hES cell-specific miRNA cluster 302–367 resulted in efficient generation of 
iPS cells (Anokye-Danso et al. 2011; Suh et al. 2004). The miRNA-302, however, 
has been shown to be inducible by AHR (Hu et al. 2013). Activation of AHR by 
an anti-allergy drug Tranilast as well as other AHR agonists facilitated the miR-
302-dependent reprogramming of mouse embryonic fibroblasts to pluripotency. 
In accordance with this, we detected AHR binding in close proximity upstream 
of miRNA-302 in hES cell genome by ChIP-Seq experiments (Teino et al., 
manuscript in preparation). 

In addition to embryonic stem cells, the role of AHR has also been established 
in adult stem cells with lower developmental potential. Hematopoietic stem cells 
(HSC) are one of the best-characterised adult stem cells. Although they have high 
therapeutic value, their expansion in vitro is limited. Advances in this field have 
identified a small molecule compound StemRegenin 1 (SR1), which affects HSCs 
(Boitano et al. 2010). It was uncovered that SR1 antagonises AHR, thereby pro-
moting proliferation and maintaining their undifferentiated status. Accordingly, 
Musashi-2 (MSI2), an RNA binding protein, induced HSC self-renewal (Hope et 
al. 2010). It was later established that MSI2 exerts its effect via attenuation of 
AHR signalling with downregulation of CYP1B1 being the key mechanism 
(Rentas et al. 2016). Thus, the role of AHR in HSC is well established. To date, 
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the SR1 expanded HSC (MGTA-456) are in clinical trials for patients undergoing 
hematopoietic stem cell transplantation (ClinicalTrials.gov). 

Toxicological studies have provided evidence on adverse outcomes following 
TCDD exposure in mesodermal differentiation. TCDD-dependent AHR signalling 
resulted in impaired mesoderm formation as outlined by reduced mesoderm-
specific marker gene expression (Fu et al. 2019; Neri et al. 2011). It was also 
found that TCDD disrupts differentiation embryonic stem cells into cardio-
myocytes, concordant with the adverse effects of dioxins on heart development 
and function (Carreira et al. 2015; Humblet et al. 2008; Jokinen et al. 2003). 
Interestingly, the derailment of mesoderm differentiation was evident only if hES 
cells were treated with TCDD prior differentiation (Fu et al. 2019). This indicates 
that activation of AHR may influence the epigenetic landscape of hES cells 
consistent with its interaction with the nucleosome remodelling complex NuRD 
(nucleosome remodelling and deacetylation) and modulation of gene methylation 
(Gialitakis et al. 2017; Wu et al. 2004). The neurotoxic effects of TCDD have 
been investigated for decades. Studies on laboratory animals have shown several 
defects in brain development (Collins et al. 2008; Hays et al. 2002; Jiang et al. 
2014; Mitsuhashi et al. 2010). Recently, it was found that TCDD treatment 
influenced human neuronal differentiation from hES cells (Sarma et al. 2019). 
More precisely, TCDD led to increased tyrosine hydroxylase-positive neuronal 
cell differentiation with concomitant downregulation of endo- and mesoderm-
specific marker genes. 

Collectively, the data emphasise that AHR has a crucial role in the regulation 
of cells with high developmental potential. However, much more work needs to 
be done in order to further elucidate the impact of AHR activity modulation 
during cell differentiation, whether by endogenous or exogenous ligands. 

 
 

2.8. AHR in ovarian granulosa cells 

Initial studies identifying several environmental contaminants acting as endocrine 
disrupting chemicals led to the investigation of the role of AHR in ovarian 
homeostasis using known xenobiotic AHR ligands. With the establishment of 
AHR knockout mouse models, the endogenous role of AHR was further charac-
terised ascribing it a central role in the development of ovary as well as regulation 
of ovarian processes. 

During embryonic development, the primordial germ cells proliferate rapidly 
forming germ cell nests that are surrounded by somatic cells called pre-granulosa 
cells (Figure 5) (Guigon & Magre 2006). Following mitotic arrest and meiotic 
entry, the germ cells are called oocytes (McLaren 2000). Subsequently, approxi-
mately 70% of oocytes undergo apoptosis, which is thought to aid breakdown of 
germ cell nest and formation of the surviving oocytes into primordial follicles 
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(Pepling & Spradling 2001). These primordial follicles comprise of an oocyte 
surrounded by a single layer of flattened granulosa cells and constitute the limited 
reproductive pool of the female organism.  

The next steps in follicle maturation are categorised as initial and cyclic 
recruitments (McGee 2000). The initial recruitment is thought to be a continuous 
process during life and comprises of different stages of follicle maturation. First, 
a number of primordial follicles grow into primary follicles. This process encom-
passes growth of the oocyte, whereas the granulosa cells gain a cuboidal shape 
(Makabe et al. 2006). During formation of the preantral follicle, granulosa cells 
proliferate and the oocyte acquires zona pellucida – a ring of proteins secreted by 
the oocyte. Additionally, stromal cells surround the follicle and form a flattened 
layer of theca cells. The continuing growth of the follicle results in influx of fluids 
forming the antrum and antral follicles. The primary pathway of these antral 
follicles is to undergo degeneration, a process called atresia. However, after 
pubertal onset, a number of follicles are saved from apoptosis and enter the cyclic 
recruitment controlled by gonadotropins FSH (follicle stimulating hormone) and 
LH (luteinising hormone). (McGee 2000) 

During cyclic recruitment, the FSH is responsible for rescuing a number of 
antral follicles from atresia. Among this cohort of growing follicles emerge the 
dominant follicles (one in humans), which grow faster and are more sensitive to 
FSH, due to increased Fsh receptor (Fshr) and Lhcgr expression (Bao et al. 1997; 
Evans & Fortune 1997; Xu et al. 1995). The dominant follicles express higher 
levels of oestradiol (E2) and inhibins, which downregulate pituitary-expressed 
FSH, thereby suppressing the growth of the remaining antral follicles that 
eventually undergo atresia (Chetkowski et al. 1986; Farnworth et al. 1988). By 
the end of the growth, the follicles reach the preovulatory stage and are mature 
for ovulation. Ovulation results from rapid increase in LH levels (termed LH 
surge) secreted by the pituitary followed by breakdown of the follicle and release 
of the oocyte and its surrounding cumulus granulosa cells. The remaining theca 
and mural granulosa cells, which surrounded the antrum, constitute the corpus 
luteum and express progesterone to primarily maintain pregnancy. 

The maturation of ovarian follicles is under tight control of the hypothalamus-
pituitary-ovary axis. Gonadotropin releasing hormone (GnRH) is synthesised and 
secreted in the hypothalamus. GnRH acts on gonadotroph cells located in the 
anterior pituitary. These cells, upon GnRH stimulation, express and secrete the 
gonadotropins FSH and LH. The secreted FSH and LH are transported to the 
ovary where they bind their corresponding receptors FSH receptor (Fshr) and 
LH/chorionic gonadotropin receptor (Lhcgr). Fshr expression is confined to 
granulosa cells at all stages of follicular maturation. Lhcgr, in turn, is expressed 
on granulosa cells of antral follicles and theca cells (Richards et al. 1976). The 
theca cells form a layer surrounding the follicular granulosa cells and the oocyte. 
These cells produce androgens, which diffuse into granulosa cells and are then 
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converted into the major female sex hormone E2 by Cyp19a1. The expression of 
Cyp19a1 is controlled by FSH that, through regulating E2 levels, supports the 
proliferation of granulosa cells and growth of follicles (Fitzpatrick & Richards 
1991; Hsueh et al. 1984). Binding of FSH to its receptor Fshr activates adenylate 
cyclase to elevate cAMP levels. This, in turn, results in activation of the protein 
kinase A (PKA) pathway, subsequent phosphorylation of cAMP response element 
binding protein (Creb) and modulation of gene expression (Mukherjee et al. 
1996). Similar events take place during LH binding to Lhcgr following LH surge 
prior to ovulation, although the outcome in terms of gene expression regulation 
differs drastically. 

Figure 5. Stages of ovarian follicle maturation. 
 
The role of AHR in the ovary has been established in different cell types and 
various developmental stages. AHR-KO mice, although fertile, had difficulties in 
maintaining conceptuses and fewer pups (Abbott et al. 1999; Baba et al. 2005). 
Additionally, it was found that significantly less pups survived lactation. During 
early stages of follicle formation AHR is expressed and seems to be responsible 
for inducing apoptosis. It has been found that foetal ovaries from AHR-KO mice 
have increased numbers of non-apoptotic oocytes in germ cell nests (Robles et al. 
2000). In accordance with this, the AHR-KO neonatal ovaries harboured more 
primordial follicles compared to wild-type littermates (Benedict 2000; Robles et 
al. 2000). 

Several environmental contaminants are known to cause oocyte destruction, 
ovarian failure and early menopause. Accordingly, the classical PAH and AHR 
ligand dimethylbenz(α)anthracene, but not TCDD, was shown to induce apoptosis 
of both mouse and human primordial follicles through induction of the pro-
apoptotic Bax gene expression (Matikainen et al. 2001, 2002). It has also been 
reported that treatment with the Ahr agonist 3-methylcholanthrene results in 
degradation of oocyte DNA, reduced numbers of follicles in each stage of matura-
tion and an Ahr antagonism can reverse this effect (Rhon-Calderón et al. 2016).  

Further studies have broadened the role of AHR in follicular maturation. 
Experiments using adult AHR-KO mice have found that the lack of AHR results 
in slower growth and fewer number of antral follicles, but does not influence 
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atresia, compared to their wild type littermates (Benedict 2000; Benedict et al. 
2003). These findings were corroborated by Barnett and colleagues, who also 
noted slower growth of AHR-KO follicles (Barnett et al. 2007b). This was 
reported to be due to decreased granulosa cell proliferation, resulting from reduced 
levels of cell cycle regulators cyclin-dependent kinase 4 (CDK4) and cyclin D2 
(CCND2). CCND2 is known to be crucial for FSH-induced granulosa cell pro-
liferation, as disruption of this gene results in infertility (Sicinski et al. 1996). 
Both CCND2 and CDK4 have, however, been shown to be influenced by AHR 
(Barhoover et al. 2010; Jung et al. 2010). 

In addition, the AHR-KO mice had reduced levels of E2, but not its precursor 
testosterone, and treatment of these mice with E2 restored the growth comparable 
to wild type mice (Baba et al. 2005; Barnett et al. 2007b). E2, which stimulates 
granulosa cell proliferation, is synthesised by Cyp19a1 in the granulosa cells. 
Cyp19a1, in turn, has been shown to be directly regulated by AHR and is 
decreased in AHR-KO mice (Baba et al. 2005). Similar results were obtained in 
vitro using an Ahr antagonist (Bussmann et al. 2006). As proper E2 levels are 
required for normal oestrous cycle, reduced levels of E2 seem to account for 
follicular disturbances observed in AHR-KO mice (Baba et al. 2005). Further 
investigations have attributed AHR a role in gonadotropin responsiveness. AHR-
KO mice had reduced ovarian weight, less corpora lutea and ovulated ova when 
immature mice were induced to ovulate by the classical superovulation scheme 
using pregnant mare serum gonadotropin (PMSG) and human chorionic 
gonadotropin (hCG) (Barnett et al. 2007a). This was found to be due to decreased 
expression of Fshr and Lhcgr. Importantly, AHR was shown to bind the promoter 
region of Fshr, but not Lhcgr, implicating direct regulation.  

Although many studies have concentrated on the role of Ahr in ovarian 
processes, less attention has been paid on if and how Ahr itself is regulated. An 
earlier study established that AHR is downregulated in ovaries of immature rats 
following maternal TCDD exposure in vivo, probably accounting from one side 
for the adverse effects of xenobiotic Ahr ligands on reproduction (Chaffin & Hutz 
1997). Accordingly, ligand-dependent downregulation of Ahr protein levels was 
observed in vitro in granulosa cells and this included the 26S proteasome pathway 
(Bussmann & Barañao 2006). More importantly, this study found that Ahr 
expression is reduced in cultured granulosa cells following FSH and E2 treatment. 
During the oestrous cycle, Ahr expression has been reported to fluctuate in the 
ovary (Chaffin et al. 2000). The levels of AHR showed a positive increasing trend 
as follicular maturation proceeded followed by downregulation at the time of LH 
surge and ovulation. Interestingly, similar pattern was observed in hepatic Ahr 
expression expanding the significance of Ahr regulation in organ homeostasis. 
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3. AIMS OF THE STUDY 

Initially the majority of studies investigating Ahr focused on its role in toxicity 
by various environmental contaminants i.e. its ligands. Later, the importance of 
Ahr was established in cancer as well as homeostasis of various cell and tissue 
types, including reproductive tissue. To date, a variety of endogenous Ahr ligands 
have been ascertained broadening our understanding on the role of Ahr in the 
organism. In the face of numerous publications and ongoing research projects, 
relatively little attention has been paid on how Ahr itself is regulated. One 
previous study has delineated the differential expression of Ahr during the 
maturation of rat granulosa cells in the ovarian follicle (Chaffin et al. 2000). 
Another has implicated the regulation of Fshr expression by Ahr (Barnett et al. 
2007a). Thus, we aimed to expand the knowledge about Ahr in the granulosa cells 
of mice further. Considering this, the aims of this thesis were: 
1. To determine the regulation of mouse Ahr during maturation of granulosa 

cells and elucidate the possible mechanisms. 
2. To investigate if and how Ahr is regulated during the preovulatory stage 

following Lhcgr stimulation. 
3. To characterise the interplay between Ahr and Fshr promoter. 
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4. RESULTS AND DISCUSSION 

4.1. The upregulation of Ahr during follicular  
maturation involves silencing of PKA signalling and 

chromatin remodelling (I) 

Although attention has been paid on the role of Ahr in the female reproductive 
system, there is little data looking into the regulation of Ahr itself. Chaffin and 
colleagues demonstrated that in normally cycling rats the expression of Ahr 
fluctuates (Chaffin et al. 2000). More precisely, they observed a modest upregu-
lation of ovarian Ahr mRNA during granulosa cell (GC) differentiation. Regard-
ing this, we aimed to investigate, whether similar pattern can be observed in a 
mouse model with the perspective of elucidating the underlying mechanisms. 
 
 

4.1.1. Both FSH and LH are required for upregulation of Ahr 

Pregnant mare serum gonadotropin (PMSG) is a known surrogate classically used 
to induce maturation of high numbers ovarian follicles. PMSG has intrinsic FSH 
activity, but additionally its residual LH activity has been reported (Combarnous 
et al. 1984). In order to clarify, if PMSG has any effect on Ahr expression and 
whether it is due to its FSH-like activity, we injected immature female mice with 
5 IU PMSG, 5 IU FSH or vehicle. After 48 h, ovaries were excised, granulosa 
cells harvested and gene expression patterns analysed. Western blot analyses 
showed that following PMSG treatment Ahr protein levels are significantly 
elevated compared to vehicle treatment. Similar pattern was observed in Ahr 
mRNA expression concordant with previously published data on rats (Chaffin et 
al. 2000). Injection of FSH, however, failed to influence the amount of Ahr 
protein in GCs. Interestingly, FSH was able to increase the expression of Ahr 
mRNA significantly, though to a smaller extent compared to PMSG (I, Figure 1 
a–c). This referred to the importance of LH signalling in Ahr regulation. Indeed, 
it is known that LH is important in follicle maturation and its actions on GCs 
differ from FSH (Ruman et al. 2005). We also assessed the effects of LH and 
hCG (human chorionic gonadotropin – LH analogue) on Ahr expression but 
observed none (I, Supplementary Figure S1 a). This was somewhat expected as 
FSH is the main initiator of GC differentiation bringing about the upregulation of 
Lhcgr. 

We next aimed to clarify, whether the different effects of PMSG and FSH on 
Ahr mRNA and protein might be due to the short half-life of FSH or if the specific 
activity of LH is required for Ahr upregulation. For this, we injected mice 4 times 
every 12 h with FSH alone or in combination with LH. Western blot analysis 
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indicated that FSH alone was again not able to influence Ahr protein levels. 
However, we observed a slight but significant increase in Ahr mRNA expression. 
Simultaneous injection of FSH and LH, in turn, resulted in significant upregu-
lation of both Ahr protein and mRNA indicating that both FSH and LH activities 
are needed to influence Ahr in GCs (I, Figure 1 d–f). The results are concordant 
with the fact that indeed both gonadotropins are known to be essential for the 
maturation of ovarian GCs. It has been determined that FSH-treatment without 
LH results in reduced number of large follicles and thus the follicular maturation 
is disturbed (Ruman et al. 2005). By analysing Fshr, Cyp19a1 and Lhcgr 
expression, we observed that these hallmark follicular maturation genes are 
upregulated only when mice received both FSH and LH (I, Supplementary Figure 
S1 c). The role of LH in influencing Ahr can additionally be attributed to its 
ability to affect protein levels post-transcriptionally e.g. by miRNAs (Bahrami et 
al. 2017; Khan et al. 2015). Additionally, miRNAs have been shown to control 
Ahr protein level (Huang et al. 2011; Liu et al. 2018a; Nakano et al. 2016). 

 
 

4.1.2. PMSG-dependent expression dynamics of Ahr and  
follicle maturation marker genes 

To understand the mechanism of how Ahr is regulated during follicular maturation 
in GCs, we sought to determine the temporal pattern of Ahr expression. Mice 
were injected with PMSG and granulosa cells harvested every 12 h up to 48 h 
time point. Western blot analysis indicated that Ahr protein levels start to increase 
24 h post-injection and continue to rise until 48 h after injection. We observed a 
similar pattern in mRNA expression, though significant differences were apparent 
36 h post-injection (I, Figure 2 a–c). 

It has been described previously that Ahr regulates the expression of Fshr and 
Cyp19a1 (Baba et al. 2005; Barnett et al. 2007a). We next determined the 
temporal expression patterns of the aforementioned GC differentiation markers 
and Lhcgr to validate our experimental setting of PMSG administration. More 
importantly, we aimed to gain insight into the possible interplay between these 
genes and Ahr. We observed a significant increase in Fshr expression 24 h post-
injection, coinciding with the expression of Ahr. The expression of Cyp19a1 and 
Lhcgr, however, started to increase 12 h post-injection, earlier than Ahr (I, Figure 
2 d–f). Considering that Ahr has been reported to regulate Cyp19a1, this seems 
contradicting. However, one should keep in mind that this superovulation 
scheme, using relatively high doses of PMSG, might not exactly mimic the events 
taking place in normally cycling adult mice and thus other proteins can fulfil the 
function of Ahr. Supporting this, it has been shown that high amounts of PMSG 
and hCG can rescue the ovarian phenotype common to Ahr-KO mice, as the 
ovarian weight, number of corpora lutea and ovulated ova were comparable to 
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that of wild-type mice (Barnett et al. 2007a). Another possibility is that the 
regulation of Cyp19a1 by Ahr is dependent on the degree of GC differentiation. 
Although initially induced by FSH signalling, the continued expression of 
Cyp19a1 may indeed depend on Ahr as the follicular maturation proceeds. 
Additionally, we cannot exclude the possibility that Ahr regulates Cyp19a1 on a 
basal level, since both genes are expressed in immature follicles. The relatively 
early upregulation of Lhcgr compared to Ahr, however, corroborates our notion 
that it might be involved in the control of Ahr protein levels as determined above 
(I, Figure 1). 
 
 

4.1.3. PMSG-dependent upregulation of Ahr occurs in large antral 
follicles and is caused by attenuation of PKA signalling 

Until now, there was little data about the spatial expression of Ahr in murine 
ovaries. Thus, our goal was to determine where Ahr is expressed in the ovary and 
to clarify in which GCs the upregulation of Ahr occurs. Mice were primed with 
PMSG or injected with vehicle. After 48 h, ovaries were excised and cryosections 
subjected to immunofluorescence with an Ahr-specific antibody. We found that 
PMSG treatment led to maturation of follicles, exemplified by the presence of 
large antral follicles. Importantly, the upregulation of Ahr took place exclusively 
in large antral follicles, more precisely in mural GCs, whereas the cumulus GCs 
and smaller follicles showed little or no Ahr expression (I, Figure 3). Our results 
are supported by a previously published study showing elevated Ahr mRNA 
expression in mural GCs of large antral follicles (Wigglesworth et al. 2015). 
Moreover, the same study showed higher Lhcgr expression in mural GCs 
additionally supporting our idea about its role in Ahr regulation. 

FSH initiates the maturation of ovarian follicles. It is known to activate 
adenylate cyclase resulting in higher cAMP formation and subsequent PKA 
activation (Ratoosh et al. 1987). PKA, in turn, phosphorylates Creb, making it a 
good surrogate to evaluate PKA activity (McNulty et al. 1994; Puri et al. 2016). 
In order to clarify if PKA might regulate Ahr, mice received PMSG and GCs 
were extracted 24 h later, at the time when Ahr expression starts to increase. The 
GCs were further cultured for 4 h in the presence of Forskolin, another known 
activator of PKA signalling, or vehicle alone. Western blot analysis revealed a 
robust downregulation of p-Creb protein levels in vehicle-treated cells. This was 
somewhat expected, considering the absence of external stimuli (e.g. FSH) 
present in vivo. Forskolin, in turn, increased the amount of p-Creb in cultured 
GCs. In terms of Ahr, the lack of external stimuli had a positive effect on Ahr 
protein levels. Forskolin treatment, however, influenced Ahr negatively (I, Figure 
4 a–c). This negative correlation led us to the notion that PKA pathway 
suppresses Ahr expression. Accordingly, FSH-dependent repression of Ahr 
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expression in vitro has been demonstrated previously in rats (Bussmann & 
Barañao 2006). Additionally, we measured the expression of Fshr, Cyp19a1 and 
Lhcgr and observed a rapid downregulation of these genes following in vitro 
culture, whereas Forskolin counteracted this effect indicating that in vitro culture 
indeed lacked PKA activation (I, Supplementary Figure S3). 

To assure further, that PKA signalling regulates Ahr, we next used the PKA 
inhibitor H89. GCs were cultured with or without Forskolin in the presence or 
absence of H89 for 4 h. We observed a significant Forskolin-dependent down-
regulation of Ahr expression. H89, however, abolished this effect efficiently, 
allowing us to assume that PKA indeed downregulates the expression of Ahr 
(I, Figure 4 d). Additional time course experiments revealed that Ahr expression 
continues to increase at least up to 24 h in culture. Forskolin, in turn, repressed 
Ahr in all corresponding time points tested (I, Supplementary Figure 4 a). In order 
to determine whether PKA controls Ahr expression in vivo we assessed the 
temporal pattern of p-Creb during 48 h of PMSG and vehicle treatment as 
previously with Ahr (I, Figure 2 a–c). We observed that p-Creb is present in 
vehicle-treated mice in every time point tested, indicating basal PKA activity and 
its possible constitutive repressive effect on Ahr expression. Importantly, two 
Creb response elements have been identified in the mouse Ahr promoter (Schmidt 
et al. 1993). PMSG-treatment in turn resulted in downregulation of p-Creb 
protein levels. More precisely, densitometry analysis revealed that p-Creb level 
is significantly lower 24 h after PMSG injection, at the time when Ahr expression 
starts to increase (I, Figure 4 e and f). This is in accordance with Maizels et al. 
who showed a reduction of p-Creb levels at the 24 h time point in rat GCs 
(Maizels et al. 2001). Although they observed decreased p-Creb protein levels 
also 48 h after PMSG treatment, our results did not reveal a significant difference 
in 36 and 48 h time points compared to vehicle treatment. More importantly, we 
observed high variability in p-Creb levels, which may be caused by varying 
numbers of maturing follicles in different mice. Collectively, these data indicate 
that Ahr expression in ovarian GCs during follicular maturation is controlled by 
PKA activity as shown by both in vitro as well as in vivo experiments. 
 
 

4.1.4. PMSG regulates chromatin accessibility at Ahr promoter 

To further characterise the regulation mechanisms of Ahr during follicular 
maturation, we next aimed to elucidate, how Ahr expression is regulated at the 
mRNA level. Gene expression can be influenced by both transcription rate and 
mRNA degradation. We first measured the levels of heteronuclear RNA 
(hnRNA), which is a surrogate method to evaluate transcription rate, in GCs of 
mice treated with PMSG or vehicle alone at different time points. By using 
specific primers complementary to the exon-intron junction and intron, we 
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detected the nascent unspliced Ahr hnRNA. Further analysis revealed that 
treatment of mice with PMSG increases the transcription rate of Ahr gene and 
this is comparable to mRNA and protein expression observed earlier (I, Figure 
5 a). Additionally, we examined whether PMSG might also affect Ahr mRNA 
stability. For this, GCs from PMSG-primed mice were cultured in vitro in the 
presence of PMSG or vehicle for 2 and 4 h. We found that PMSG led to increased 
expression of Ahr compared to vehicle treatment. When GCs were treated with 
the transcription inhibitor actinomycin D (ActD), we observed a robust decline 
in Ahr mRNA detection. However, there was no difference between PMSG or 
vehicle treatment (I, Figure 5 b). This led us to the conclusion that PMSG indeed 
influences Ahr transcription rate and not mRNA stability in maturing ovarian 
GCs. 

It is known that regulatory elements responsible for gene expression can be 
situated far from the transcriptional start site. However, previous studies charac-
terising Ahr promoter have defined a region necessary for its constitutive basal 
activity. Additionally, it has been shown that Ahr promoter contains several 
response elements for gonadotropin-dependent modulators (Fitzgerald et al. 1998; 
Garrison & Denison 2000). Thus, we aimed to determine if PMSG influences Ahr 
expression by modulating its promoter activity. GCs were transfected with a 1792 
bp Ahr promoter-reporter vector, treated with PMSG or vehicle and luciferase 
activity measured 48 h later. We were able to detect the activation of the reporter 
construct compared to empty vector in vehicle-treated cells. PMSG, however, had 
no effect on luciferase activity (I, Figure 5 c). This indicated that the regulatory 
elements responsible for Ahr regulation by PMSG might be situated further up-
stream. Another possible explanation might be the context of chromatin, which 
is not precisely mimicked by exogenous vectors. 

There are studies presenting epigenetic control of gene expression in the ovary 
and previous publications demonstrating epigenetic regulation of Ahr expression 
(DeManno et al. 1999; Garrison et al. 2000; Salvador et al. 2001; Zhang et al. 
1996). This led us to investigate whether PMSG-dependent upregulation of Ahr 
expression might be controlled by changes in chromatin structure – i.e. relaxation 
of chromatin – thus enabling accessibility to factors necessary for transcription. 
For this, we used CHART-PCR (chromatin accessibility by real-time PCR), 
which allows evaluation of chromatin condensation using nuclease digestion and 
detection of undigested DNA by specific primers. We concentrated on Ahr 
promoter region –176 to –77 bp upstream of transcriptional start site (TSS), as 
the proximity of this region to the TSS makes it essential for the binding of 
transcription machinery. Cyp19a1 and Pax7 were used as positive and negative 
controls, respectively. Analysis of PMSG vs vehicle-treated GCs revealed that 
chromatin at Cyp19a1 promoter is open following PMSG treatment, consistent 
with its mRNA expression. There were no significant changes in case of Pax7, a 
control gene not expressed in GCs (I, Supplementary Figure S5). Analysis of Ahr 
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promoter revealed a similar pattern to Cyp19a1, indicating that the expression of 
Ahr like Cyp19a1 is indeed regulated by chromatin remodelling at proximal 
promoter (I, Figure 5 d). There are studies describing direct phosphorylation of 
histones by FSH-PKA signalling, which resulted in decondensation of chromatin 
(DeManno et al. 1999; Salvador et al. 2001). Contrarily to this, others have 
provided evidence that PKA activity is required to maintain chromatin con-
densation and thus silencing of gene expression (Collas et al. 1999). Although it 
is reasonable that both processes are simultaneous, the latter seems to be 
responsible for regulation of Ahr in the ovarian GCs. 

Taken together, we have provided evidence that PMSG induces Ahr 
expression in large antral follicles during maturation of granulosa cells. This 
effect is elicited by reduction in PKA signalling and involves decondensation of 
chromatin at Ahr promoter (Figure 6). 

Figure 6. Schematic representation PMSG-dependent upregulation of Ahr expression. 
Ahr expression is repressed in GCs of immature ovarian follicles. Following PMSG 
treatment, PKA signalling is transiently silenced (pictured in white), enabling up- 
regulation of Ahr via opening of chromatin at its promoter. 

 
 

4.2. Lhcgr signalling represses Ahr expression in 
preovulatory granulosa cells by chromatin remodelling (II) 

Previously published data indicate that following LH surge Ahr is downregulated 
in preovulatory stage of the rat reproductive cycle in vivo (Chaffin et al. 2000). 
We sought to determine, whether this effect can be observed also in mouse 
granulosa cells. Moreover, we aimed to characterise the molecular mechanisms 
involved in Ahr downregulation. 
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4.2.1. Ahr protein and mRNA expression are repressed by hCG 

To determine the expression of Ahr in preovulatory GCs we used a classical 
superovulation scheme. This includes administration of PMSG to immature 
female mice, injection of hCG (LH analogue) or vehicle 48 h later followed by 
excision of ovaries after 12 h and harvesting of GCs. Western blot analysis 
revealed that hCG-treatment results in a robust downregulation of Ahr protein 
levels compared to vehicle-treated cells. Additionally, gene expression analysis 
revealed that Ahr mRNA is upregulated following PMSG-treatment as determined 
in Ref I but hCG injection renders Ahr mRNA to the levels of GCs from immature 
mice. We also determined Ahr expression in whole ovaries and observed a 
negative though statistically insignificant effect by hCG, which may be due to the 
cells other than GCs in the ovary that lack Lhcgr and thus do not respond to this 
stimulus (II, Figure 1 A and B). These results are in agreement with previous in 
vivo observations in rats, where downregulation of Ahr was evident prior to 
ovulation (Chaffin et al. 2000).  

Additional experiments revealed that Ahr expression continued to increase if 
mice received vehicle after 48 h of PMSG treatment. Importantly, we observed a 
similar pattern, including hCG-dependent downregulation, when the vehicle and 
hCG treatments were performed in vitro, ascribing the downregulation of Ahr 
specifically to Lhcgr signalling, rather than any possible secondary effects taking 
place in vivo. It was our next objective to determine the temporal pattern of Ahr 
in response to vehicle/hCG treatment. We again noted that Ahr expression 
continues to increase following vehicle treatment. However, downregulation of 
Ahr was evident 8 h and 12 h post hCG injection when compared to cells from 
mice that received PMSG for 48 h. More importantly, the hCG-dependent 
reduction of Ahr mRNA opposing the upregulation of vehicle treatment was 
evident already 4 h after injection (II, Figure 1 C and D). Hence, the down-
regulation of Ahr expression is rapid and under control of Lhcgr signalling. 

A previous publication has provided evidence that hCG and LH actions, 
although both binding the same receptor Lhcgr, result in somewhat different 
intracellular signalling pathways quantitatively and qualitatively (Casarini et al. 
2012). Concerning this, we also assessed the effect of LH on Ahr expression and 
observed similar outcomes compared to hCG (unpublished data). Therefore, we 
concluded that Lhcgr signalling, irrespective of its activator, reduces Ahr 
expression both in vivo and in vitro and this effect occurs in a rather rapid manner. 
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4.2.2. Downregulation of Ahr expression is dependent on PKA signalling 
and does not involve de novo protein synthesis 

It is known that Lhcgr signalling activates adenylate cyclase (AC) resulting in 
elevation of cAMP levels, which in turn results in PKA activation. PKA has been 
shown to modulate, among others, ERK1/2 (Extracellular Signal-Regulated 
Kinase 1/2) and modify chromatin proteins (DeManno et al. 1999; Puri et al. 
2016). In order to shed light on the possible mechanisms involved in hCG-
dependent downregulation of Ahr, GCs from PMSG-primed mice were cultured 
in vitro in various conditions. First, as seen previously, we observed a significant 
downregulation of Ahr mRNA when cell culture media was supplemented with 
hCG. Forskolin, which is another activator of adenylate cyclase, showed similar 
albeit more profound repressive effects on Ahr expression, consistent with previous 
publication presenting cAMP-dependent downregulation of Ahr (Fitzgerald et al. 
1996). Although we paid no attention to this, it may be caused by its direct action 
on AC rather than intermediate Lhcgr signalling by hCG. The activation of AC 
and subsequent cAMP formation led us to hypothesise that PKA pathway may be 
responsible for regulating Ahr. To test this, additional experiments using the PKA 
inhibitor H89 revealed the importance of PKA as the downregulation of Ahr was 
abolished. As PKA can also modulate ERK1/2 activity, we next aimed to test 
whether ERK1/2 participates in Ahr downregulation. Inhibition of ERK1/2 by its 
inhibitor U0126, however, had no effect on hCG/Forskolin (FSK)-dependent 
modulation of Ahr expression (II, Figure 2 A). Thus, Ahr seems to be under direct 
control of PKA. 

Since the onset of Ahr downregulation appeared rather fast (II, Figure 1 D), 
we next aimed to determine, whether this occurs via direct signalling or requires 
de novo protein synthesis. For this, GCs from PMSG-injected mice were cultured 
in vitro in the presence of vehicle or cycloheximide (CHX), a known inhibitor of 
new protein synthesis. After 1 h pre-treatment, either hCG, FSK or vehicle were 
added to the culture medium. Analysis of Ahr mRNA expression indicated that 
CHX treatment alone resulted in robust induction of gene expression. Although 
the mechanisms remain unknown, it is possible that CHX treatment resulted in 
elimination of inhibitory proteins tightly controlling Ahr expression. Concomitant 
treatment of GCs with FSK and hCG, however, counteracted this effect 
emphasising that repression of Ahr expression is independent of new protein 
synthesis and may occur via signal transduction between proteins (II, Figure 2 
B). Although we did not investigate this in detail, it is reasonable to argue that p-
Creb, a direct phosphorylation target of PKA, may be responsible for this in a 
similar way as identified in Ref I. 

Collectively, these results demonstrate that PKA pathway is involved in the 
downregulation of Ahr expression in preovulatory GCs. Modulation of ERK1/2 
activity, in turn, revealed that it does not participate in the repression of Ahr, 
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referring that PKA influences Ahr directly rather than through other downstream 
pathways. Moreover, we determined that CHX boosted Ahr expression 
underscoring the repression of Ahr by de novo protein synthesis at basal level. 
FSK/hCG counteracted the effects of CHX and therefore exerted their effect on 
Ahr independent of new protein synthesis. 

 
 

4.2.3. PKA represses Ahr expression by transcriptional silencing 

To characterise how PKA exerts its effect on Ahr expression we next aimed to 
elucidate, whether this occurs through reduced transcription rate or increased 
mRNA degradation – the two fundamental processes regulating mRNA abundance 
in cells. The results revealed that both hnRNA, indicative of transcription rate, 
and mRNA levels are reduced in a similar pattern following hCG treatment of 
PMSG-primed mice. This indicates that hCG indeed downregulates Ahr tran-
scription. Data on posttranscriptional regulation of Ahr is scarce. For example, 
regulation of Ahr by miR-124 has been determined (Huang et al. 2011). Addi-
tionally, a recent study demonstrated A-to-I RNA editing with subsequent miR-
378-dependent reduction of Ahr mRNA (Nakano et al. 2016). To corroborate our 
findings indicating reduced transcription rate rather than post-transcriptional 
control of Ahr, we aimed to evaluate whether hCG might have an effect on Ahr 
mRNA stability. For this, GCs from mice injected with PMSG were cultured in 
vitro in the presence of hCG or vehicle followed by addition of the transcription 
inhibitor actinomycin D (ActD). Analysis of the results revealed that there were 
no differences between hCG or vehicle treatment when de novo RNA synthesis 
was inhibited, eliminating the possibility of Ahr regulation by e.g. miRNAs (II, 
Figure 3 B and C). This led us to conclude that hCG does not influence Ahr 
mRNA stability and exerts its effect primarily through reduction of transcription. 
 
 

4.2.4. Chromatin remodelling at proximal promoter is involved  
in hCG-dependent downregulation of Ahr expression 

Previous studies have described the promoter of Ahr and identified the region and 
elements necessary for its expression (Fitzgerald et al. 1996; Garrison & Denison 
2000). In order to clarify, whether hCG might exert its effect on Ahr expression 
by some trans-acting factors, we used a reporter gene construct containing Ahr 
promoter as described in Ref I. GCs from PMSG-primed mice were transiently 
transfected with the reporter vector followed by hCG treatment. By analysing the 
results, we found that the reporter gene was indeed functional, as induction of 
luciferase expression was observed. When GCs were treated with hCG, however, 
we did not see any changes in promoter activity (II, Figure 3 D). Additionally, 
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we analysed the endogenous Ahr expression and noted downregulation as seen in 
our previous experiments (unpublished data). Considering that exogenous vectors 
do not precisely mimic the endogenous chromatin structure, we hypothesized that 
hCG may exert its effect on Ahr expression through modifications at the level of 
chromatin. 

Histone acetylation and deacetylation, among others, are processes that are 
responsible for open and closed chromatin structures, respectively. The use of 
histone deacetylase (HDAC) inhibitor enables to investigate, whether gene expres-
sion is downregulated via closing of chromatin. By using the HDAC inhibitor 
trichostatin A (TSA), we next aimed to elucidate the mechanisms behind hCG-
dependent downregulation of Ahr. GCs from PMSG-primed mice were cultured 
in vitro in the presence of TSA followed by addition of hCG/FSK. By quantifying 
Ahr mRNA we observed that hCG as well as FSK again repressed Ahr expression. 
Addition of TSA, however, reversed this effect indicating that chromatin 
remodelling may be involved in the regulation of Ahr expression. This finding is 
in accordance with previous studies, where inhibition of HDAC activity by TSA 
and n-butyrate counteracted Ahr repression (Garrison et al. 2000; Zhang et al. 
1996). 

One possibility to assess the state of chromatin is using CHART-PCR. In our 
experiments we focused on the promoter region –176 to –77 bp relative to TSS 
and the first intron far downstream (II, Figure 4 A). PMSG-primed mice were 
injected with hCG or vehicle and harvested GCs were subjected to CHART-PCR. 
We found that hCG did not influence the state of chromatin in the first intron as 
the amount of recovered DNA was the same as in vehicle treated GCs. This 
indicates that chromatin at the first intron is constantly open. Analysis of the 
promoter region, however, clearly demonstrated that hCG causes chromatin 
condensation as the recovered DNA was more abundant compared to vehicle 
treatment (II Figure 4 B). Thus, we concluded that following hCG surge, Ahr is 
downregulated by condensation of promoter chromatin. Indeed, comparable 
results have been obtained previously, where Cyp19a1 expression was reported 
to be controlled by similar mechanisms post-hCG stimulation (Nimz et al. 2010). 

Collectively, we demonstrated that Lhcgr signalling downregulates Ahr 
expression in preovulatory granulosa cells both in vitro and in vivo. This involves 
activation of PKA, but not ERK1/2 pathways, with subsequent reduction in Ahr 
transcription rate but not mRNA stability. Finally, we observed that the decrease 
in Ahr mRNA abundance was due to closing of chromatin at Ahr promoter 
thereby disabling the access of transcription factors necessary for gene expression 
(Figure 7). 
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Figure 7. Schematic representation of hCG/LH-dependent Ahr repression. LH/hCG 
stimulation results in PKA-dependent downregulation of Ahr expression via closing of 
chromatin at Ahr promoter. 
 

 
4.3. Ahr activates Fshr promoter via direct interaction  

with E-Box binding site (III) 

Previous experiments exploring the role of Ahr in female reproductive system 
have observed that the environmental contaminant and most potent Ahr ligand 
TCDD has negative effects on Fshr expression (Hirakawa 2000). On the contrary, 
experiments with Ahr knockout mice indicate that Ahr influences Fshr expression 
positively, as lack of Ahr resulted in reduced Fshr mRNA levels. Additionally, 
binding of Ahr on Fshr promoter was identified without exogenous ligands by 
chromatin immunoprecipitation (Barnett et al. 2007a). Therefore, we aimed to 
shed light on the interplay between Ahr and Fshr and elucidate the possible 
mechanisms behind this. 
 
 

4.3.1. Ahr and Arnt overexpression enhances  
Fshr reporter gene induction 

To clarify the mechanisms by which Ahr exerts its effect on Fshr expression we 
used a constitutively active Ahr (CA-AHR) expression vector. CA-AHR lacks 
ligand binding ability thereby resulting in constitutive transcriptional activity 
(McGuire et al. 2001). This allowed us to study the endogenous role of Ahr i.e. 
without exogenous ligands such as TCDD, which has been shown to inhibit Fshr 
expression. Additionally we were able to avoid any possible Ahr-independent 
adverse effects the Ahr ligands could exert on granulosa cells. First, we transiently 
transfected the murine granulosa cell line KK-1 with CA-AHR and ARNT 
expression vectors together with the luciferase reporter gene containing a 1553bp 
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Fshr promoter. We found that CA-AHR indeed was functional and able to induce 
the promoter activity of Fshr (III, Figure 1 A). 

The consensus motif XRE bound by Ahr/Arnt dimer consists of the sequence 
5’-TNGCGTG-3’, where TNGC and GTG are recognised by Ahr and Arnt, 
respectively. We next searched for transcription factor binding sites in the Fshr 
proximal promoter and identified a putative XRE site – TTGCCTG – differing 
from the consensus sequence by one nucleotide (underlined). Additionally, we 
identified AP-1 and E-box motifs. Previous studies have determined that Arnt 
homodimers are capable to bind E-box motifs and regulate gene expression 
(Arpiainen et al. 2007; Huffman et al. 2001). Thus, we next aimed to clarify 
whether Arnt homodimers rather than Ahr/Arnt complex might regulate Fshr 
promoter activity. For this, KK-1 cells were co-transfected with Fshr reporter 
vector and CA-AHR or Arnt expression vectors alone or their combination. We 
found that Arnt alone had no effect on Fshr promoter activity. Ectopic expression 
of CA-AHR modestly but statistically significantly activated Fshr promoter 
suggesting the possibility that endogenous Arnt may be the limiting factor in 
supporting the action of CA-AHR. Indeed, when CA-AHR and Arnt were co-
transfected, we observed a robust induction of Fshr promoter reporter gene (III, 
Figure 1 B).  

These results provide evidence that the constructed CA-AHR was functional 
i.e localised in the nucleus and induced target gene expression. Moreover,  
CA-AHR was capable to activate Fshr promoter and this was further enhanced 
with Arnt co-transfection. This indicates that Ahr/Arnt heterodimers, rather than 
Arnt homodimers, as shown previously, drive Fshr expression (Arpiainen et al. 
2007). The modest induction of Fshr reporter gene transfected with CA-AHR 
alone is probably due to endogenous Arnt expressed in these cells, although 
dimerization of Ahr with other proteins cannot be excluded. For example 
dimerization of Ahr with KLF6 has been reported (Wilson et al. 2013). However, 
the extensive induction of Fshr promoter activity by CA-AHR and Arnt co-
transfection indicates that indeed the Ahr/Arnt heterodimer is responsible for 
modulating Fshr expression. Considering this, all subsequent transfection 
experiments always included Arnt expression vector. 

 
 

4.3.2. Ahr regulates Fshr activity through an E-box motif 

It has been reported that the region necessary for Fshr promoter activity lies 
between –555 to –99 bp upstream of translational start site (Levallet et al. 2001). 
Considering this, we next aimed to specify the region essential for Ahr-dependent 
regulation. In addition to the 1553bp promoter reporter used in our previous 
experiments, we generated a series of reporter vectors harbouring 562bp, 209bp 
and 99bp of Fshr promoter. These constructs, together with CA-AHR and Arnt, 
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were transiently transfected into KK-1 and primary granulosa cells isolated from 
PMSG-primed mice. We observed that CA-AHR was able to induce the reporter 
genes containing 1553bp, 562bp or 209bp Fshr promoter constructs. However, 
the 99bp construct was unresponsive to CA-AHR (III, Figure 2). Thus, we 
identified that the region where Ahr exerts its effect on Fshr promoter lies within 
–209 to –99 bp upstream of translational start site. This is in accordance with a 
previous study, where binding of Ahr on the Fshr promoter in the same region 
was identified by chromatin immunoprecipitation (Barnett et al. 2007a). 

Barnett and colleagues stated that the Fshr proximal promoter contains Ahr 
response elements (Barnett et al. 2007a). As discussed above, our transcription 
factor binding site search resulted in only two motifs in the aforementioned 
region – AP-1 and E-box – similar to that found previously (Levallet et al. 2001). 
Additionally, a putative XRE site was present, differing only by one nucleotide – 
GCCTG (III, Figure 3 A). We next aimed to clarify, which of these regulatory 
elements may be important for Fshr promoter activation by Ahr. For this, 
mutations were introduced into each of the three sites in the 209bp reporter 
construct. The mutated vectors were then transfected into KK-1 cells as well as 
GCs together with CA-AHR and Arnt expression vectors. Further analysis of 
luciferase expression revealed that mutations in the putative XRE or AP-1 sites 
had no effect on CA-AHR-dependent Fshr promoter activity. The disruption of 
E-box, however, rendered the luciferase levels comparable to transfections 
without CA-AHR (III, Figure 3 B).  

We identified the minimal region of Fshr promoter responsive to Ahr-
dependent activation. To date, several varying binding sites for Ahr have been 
identified. Thus, it would not be surprising to discover that Ahr could interact 
with DNA distinct from its classical XRE sequence. Our results indicate that the 
putative XRE site indeed is irrelevant in Ahr-dependent activation of Fshr 
promoter as shown by site-directed mutagenesis. More importantly, Ahr seems 
to exert its effect via binding to E-box element. Strengthening this notion, a 
previous report has suggested interactions of Ahr and E-box element on the 
promoter of IL17 in Th17 cells, thereby activating its expression (Cui et al. 2011).  
 

4.3.3. Ahr interacts with the E-box motif on Fshr promoter 

The E-box motif is a binding site for various transcription factors. Among others, 
c-Myc/Max dimers are known to bind to E-box (Blackwell et al. 1993). More-
over, Usf1 has been identified to bind the E-box and regulate mouse Fshr 
expression (Hermann et al. 2008). To further characterise the interplay between 
Ahr and Fshr promoter, we next used DNA affinity precipitation assay (DAPA) 
to clarify whether Ahr binds E-box directly or may this be facilitated by other 
proteins e.g. Usf1. DAPA relies on the precipitation of nuclear protein and 
labelled DNA probe complexes, thus we first needed to determine the localisation 
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of Ahr in KK-1 and GCs. Cell fractionation and subsequent Western blot analysis 
revealed that in KK-1 cells Ahr is in an inactive form located in the cytoplasm 
and the nuclear fraction lacked Ahr. When cells were treated with TCDD, the 
highest affinity ligand, we observed a robust nuclear accumulation of Ahr. GC 
fractionation indicated that Ahr is mainly located in the cytoplasm. However, 
nuclear Ahr was also detected, indicating that GCs might produce endogenous 
Ahr ligands. Accordingly, the tryptophan metabolite kynurenine has been reported 
to be present in GCs (Dahiya et al. 2019). Interestingly, TCDD treatment resulted 
only in modest nuclear import of Ahr (III, Figure 4 A). Considering this, KK-1 
cells were pre-treated with TCDD in our next experiments. GCs from PMSG-
primed mice, in turn, were used without prior treatment to avoid possible side-
effects of TCDD. 

For DAPA experiments, we used biotinylated oligonucleotides harbouring the 
identified wild type or mutated transcription factor binding sites and flanking 
regions. AP-1 and E-box motifs were overlapping, thus on the same probe. First, 
DAPA experiments were performed with KK-1 cells. Nuclear lysates were 
incubated with biotinylated probes containing the E-box/AP-1 and putative XRE 
sites of Fshr promoter. Probes harbouring mutated binding sites served as controls. 
Analysis of precipitated proteins by Western blot revealed that both Ahr and Usf1 
bound the wild type E-box/AP-1 probe, whereas no binding was detected when 
E-box was mutated. Disruption of the AP-1 sequence did not abolish the binding 
of Ahr or Usf1 to the probe. We did not detect any Ahr or Usf1 protein when the 
putative XRE or its mutated probes were used indicating that this indeed is not a 
functional binding site for Ahr. To determine if Ahr binds to E-box via inter-
actions with Usf1 or vice versa, unlabelled competitor probes with Usf1 and XRE 
consensus sequence were used in 10-fold excess. The use of competitor containing 
the consensus XRE sequence abolished precipitation of Ahr with E-box probe. 
However, we still detected Usf1 indicating that Usf1 does not require Ahr for 
binding to E-box. Usf1 competitor abrogated the binding of Usf1 to the E-box 
probe, whereas it did not affect the binding of Ahr, indicating that Usf1 does not 
facilitate the binding of Ahr to the E-box probe containing Fshr promoter 
sequence (III, Figure 4 B). Similar experiments were performed with GCs. Again, 
we observed that both Ahr and Usf1 bound the intact E-box/AP-1 probe. The use 
of mutated E-box probe abrogated Ahr and Usf1 detection, whereas AP-1 
mutation resulted in no changes. Additionally, Usf1 competitor again displaced 
Usf1 but had no effect on the binding of Ahr to the wild type E-box probe (III, 
Figure 4 C). These results are in line with our previous experiments using mutated 
Fshr promoter constructs, where disruption of E-box sequence abolished the Ahr-
dependent activation of the reporter gene. 

At first, the interplay between Ahr and Usf1 on binding to E-box seems some-
what contradicting. Especially when using the Usf1 competitor, that contains the 
core E-box sequence CACGTG. This, however, can be explained by different 
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flanking nucleotides in the E-box probe vs Usf1 competitor, where A-to-G and 
T-to-C substitutions were introduced at +1 and +3 positions downstream of 
CACGTG, respectively. Indeed, previous publications have underscored the 
importance of these nucleotides in binding of Ahr to DNA (Matikainen et al. 2001; 
Shen & Whitlock 1992). In addition, the importance of flanking nucleotides has 
been emphasised in the binding of Arnt homodimers to the E-box element 
(Swanson & Yang 1999). Considering that Arnt without Ahr had no effect on Fshr 
promoter activity, we concluded that Ahr/Arnt heterodimer seems to interact with 
the E-box motif directly rather than via Usf1. 

 
 

4.3.4. Ahr DNA binding is necessary for transactivation  
of Fshr promoter 

Two previously published studies have described that specific mutations in Ahr 
sequence render it unable to bind DNA (Bunger et al. 2008; Levine et al. 2000). 
More precisely, insertion of glycine and serine between arginine-39 and aspartic 
acid-40 (AHR_DBD) and a substitution of alanine-78 to aspartic acid 
(AHR_A78D) rendered Ahr incapable to bind DNA. By exploiting this, we aimed 
to determine whether Ahr interacts with the E-box motif on Fshr promoter directly 
or via other proteins. We constructed two mutant CA-AHR expression vectors 
(CA-AHR_A78D and CA-AHR_DBD), transfected them into KK-1 cells and 
performed DAPA experiments. Following Western blot, we again observed that 
CA-AHR was binding the E-box probe, this did not require Usf1 as shown by 
Usf1 competitor, and mutation of the E-box motif abolished the binding of both 
proteins. When KK-1 cells were transfected with CA-AHR_A78D or CA-
AHR_DBD, no binding to the E-box probe was detected (III, Figure 5 A). This, 
however, did not influence the binding of Usf1 to the intact E-box probe 
indicating that Ahr and Usf1 interact independently with the E-box motif. 

Further reporter gene experiments using CA-AHR, CA-AHR_A78D and CA-
AHR_DBD were undertaken to ensure our notion that the DNA binding ability 
of Ahr is indeed obligatory for Fshr promoter activation. For this, GCs and  
KK-1 cells were transiently transfected with the respective expression vector and 
Fshr reporter gene. Analysis of luciferase expression revealed that CA-AHR 
again induced Fshr promoter activity in both cell types. When CA-AHR_A78D 
or CA-AHR_DBD were ectopically expressed, we observed a considerable 
reduction in Fshr promoter activity compared to CA-AHR, demonstrating that 
DNA binding of Ahr is essential for the induction of Fshr promoter (III, 
Figure 5 B). In GCs but not KK-1 cells, we observed a modest increase in Fshr 
promoter activation by mutant Ahr compared to empty vector transfection. This, 
however, can be explained by the activity of endogenous Ahr, as observed in 
fractionation experiments (I, Figure 4 A). Additionally, we cannot completely 
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exclude the option that CA-AHR_A78D or CA-AHR_DBD may have disturbed 
binding potencies with other proteins necessary for Fshr transcription. However, 
the results obtained from DAPA experiments with Usf1 competitors still strongly 
indicate that the binding and thus transactivation of Fshr promoter rely on the 
direct interaction between Ahr and E-box motif. 

A previous publication has emphasised that TCDD – the most potent ligand 
of Ahr – negatively regulates Fshr mRNA expression in cultured rat GC (Hirakawa 
2000). Barnett and colleagues and our data herein, however, ascribe an opposite 
function to Ahr in regard of mouse Fshr expression (Barnett et al. 2007b,a). Thus, 
we next aimed to clarify, whether this is due to species-specificity or due to 
different activation of Ahr i.e. endogenous/constitutive activity vs exogenous 
ligand (TCDD). For this, GCs from PMSG primed mice were transfected with 
Fshr promoter reporter constructs and wild type Ahr expression vector or 
respective controls. Analysis of luciferase expression revealed that TCDD alone 
significantly although to a small extent activates Fshr promoter (III, Figure 6). 
This seems to be in line with our experiments showing TCDD-dependent 
accumulation of endogenous Ahr in GCs (III, Figure 4 A). Small changes in 
reporter gene activity were observed when Ahr was overexpressed without 
TCDD treatment, indicating activation of Ahr by an endogenous ligand. How-
ever, when GCs were transfected with Ahr and received additionally TCDD, we 
observed a robust transactivation of Fshr promoter. Considering that ectopic 
overexpression of Ahr and subsequent activation by TCDD probably results in 
ubiquitous nuclear accumulation of Ahr, this was not surprising. Moreover, the 
TCDD-responsiveness of Fshr promoter is reinforced by the fact that it harbours 
A and T at positions +1 and +3 downstream E-box motif, respectively. These 
nucleotides have been shown to be essential for TCDD-induced target gene 
activation (Matikainen et al. 2001). 

Our results from reporter gene experiments differ from previously published 
data in rats. There is a slight possibility that these contradicting results stem from 
the differences in model organisms. However, the reason might also lie within 
different experimental protocols, as Hirakawa observed TCDD-dependent down-
regulation of Fshr expression in vitro in GCs derived from diethylstilbestrol 
(DES)-treated immature rats (Hirakawa 2000). As FSH/LH activities are needed 
to upregulate Ahr in GCs (I, Figure 1), it is reasonable to argue that DES-
treatment does not increase Ahr protein levels. Supporting this, oestradiol did not 
influence Ahr expression in rats (Chaffin et al. 2000). Thus, it is possible that the 
reduction in Fshr expression results from TCDD-induced silencing of Ahr 
signalling via Tiparp and/or Ahrr, rather than direct inhibitory action of Ahr. In 
our experiments with PMSG-primed mice, the Ahr levels are relatively high and 
potentially superior to these inhibitory signals. Our findings are supported by 
Barnett and colleagues, who also ascribed a positive role for Ahr in regulating 
Fshr expression (Barnett et al. 2007a).  



46 

Conclusively, published data indicate that Ahr has an important role in 
granulosa cells, as knockout mice have disordered oestrous cyclicity, reduced 
expression of Fshr, Cyp19a1 and decreased oestradiol levels (Baba et al. 2005; 
Barnett et al. 2007a,b). We, herein, provide evidence that Ahr regulates Fshr 
expression positively via direct interaction with the E-box motif (Figure 8). 
Although the effects various environmental pollutants, like TCDD, exert on 
reproduction may seem somewhat contradicting, future studies will shed light in 
this matter, as toxicological studies are still ongoing. 

Figure 8. Regulation of Fshr expression by Ahr. Ahr and Arnt directly interact with 
an E-box motif located in the promoter region of Fshr.  
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SUMMARY 

Initially, the aryl hydrocarbon receptor was studied in regard of its role in 
toxicology. Additionally, the Ahr gene was characterised, including its promoter 
and regulatory elements therein. Today, the majority of research investigating 
Ahr focuses on elucidating its role in normal physiology as well as disease, 
identifying its novel ligands and exploiting them to counteract health disorders. 
However, little attention is paid on how Ahr itself is regulated. Thus, the research 
presented in the current thesis aimed to delineate the mechanisms that regulate 
Ahr expression. Moreover, we intended to clarify how Ahr regulates its target 
gene devoid of the consensus response element in the regulatory region. For this, 
we used ovarian granulosa cells from mice, as fluctuations in Ahr levels and 
regulation of Fshr have been reported in these cells previously. 

In the first part of the thesis, we ascertained that Ahr is upregulated as 
follicular maturation of granulosa cells proceeds and this requires both FSH and 
LH activity. Moreover, Ahr protein levels increased in mural rather than cumulus 
GCs of large antral follicles. The temporal pattern of Ahr expression indicated 
that its upregulation coincides with Fshr, a gene reported to be regulated by Ahr. 
Cyp19a1, another Ahr target gene, however, was induced prior to changes in Ahr 
expression. Additional experiments revealed that PKA pathway inhibits Ahr 
expression. This was determined in vitro, as the use of PKA inhibitor recovered 
Ahr expression, and in vivo, where Ahr induction was observed when p-Creb 
levels decreased. We provide evidence that Ahr is upregulated via increased tran-
scription rate and not by changes in mRNA stability. This in turn appeared to be 
the result of the opening of chromatin at the Ahr promoter as revealed by 
CHART-PCR. 

In the second part of this thesis we determined that the upregulation of Ahr 
expression during follicular maturation is reversed in the preovulatory phase 
following LH surge. By using the LH analogue hCG, we observed a rapid 
decrease in Ahr expression at both mRNA and protein levels in vitro and in vivo. 
This effect was elicited directly by PKA, as de novo protein synthesis was not 
required and PKA inhibition abolished the downregulation of Ahr. Investigation 
into the possible mechanisms revealed that Ahr decrease is the result of reduced 
transcription rate and did not involve changes in mRNA stability. Additional 
experiments using the HDAC inhibitor exposed the importance of epigenetic 
modifications in the regulation of Ahr. In accordance with this, we provide 
evidence that Lhcgr signalling results in chromatin remodelling i.e. reduced 
accessibility at Ahr promoter but not in the first intron, as shown by CHART-
PCR experiments. 

The third part of the current thesis reveals that Ahr transactivates Fshr 
expression in GCs by direct binding to DNA at the E-box motif located in the 
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proximal promoter region. We first constructed a CA-AHR expression vector and 
verified its functionality. Deletion constructs of Fshr promoter reporter gene 
indicated that Ahr exerts its effect on Fshr promoter activity in the region –209 
to –99 bp relative to translational start site. Mutations of the transcription factor 
binding sites in this region underscored the importance of E-box motif but not 
AP-1 or a putative XRE. Further DAPA experiments indicated that Ahr binds  
E-box directly rather than via USF1. This was later confirmed with CA-AHR 
mutants incapable of DNA binding in both DAPA experiments as well as reporter 
gene assay where Fshr promoter activation was abolished. Finally, we established 
that TCDD-activated Ahr stimulates Fshr promoter induction, rather than inhibits 
its expression as observed previously. 

The upregulation of Ahr expression has been reported in cancer. Considering 
that the majority of recent studies regarding Ahr focus on the modulation of its 
activity, the results herein provide another means in disrupting its signalling, i.e. 
activation of PKA pathway, and thus adverse outcomes in disease. Additionally, 
the establishment of the E-box regulatory element as an Ahr binding site enables 
to identify novel Ahr target genes, thereby expanding our understanding of this 
controversial protein. 
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SUMMARY IN ESTONIAN 

Arüülsüsivesinike retseptor hiire munasarja granuloosarakkudes 

On teada, et paljud keskkonnas levinud saasteained, sealhulgas dioksiinid (nt 
TCDD) mõjutavad oluliselt inimese tervist, põhjustades muuhulgas vähki ja 
häireid immuunsüsteemis ning reproduktsioonis. Seetõttu on pikka aega uuritud 
nende ksenobiootiliste kemikaalide toimemehhanisme ning leitud, et mitmed 
neist avaldavad mõju läbi arüülsüsivesinike retseptori (AHR). AHR on transkript-
sioonifaktor, mis ligandi poolt aktiveerituna liigub raku tuuma ning aktiveerib 
mitmete märklaudgeenide transkriptsiooni. Nende hulka kuuluvad ka kseno-
biootikume lagundavate ensüümide geenid. Kui algselt arvati, et AHR-i pea-
miseks funktsiooniks on nende saasteainete metabolism, siis hilisemad uuringud 
on tõestanud, et AHR-il on ka oluline endogeenne ehk ksenobiootikumidest 
sõltumatu roll. Lisaks on tänaseks tuvastatud hulgaliselt AHR-i agoniste ning 
antagoniste, mida sünteesitakse organismis või omastatakse toiduga. Seejuures 
on oluline märkida, et erinevad ligandid võivad mõjutada geenide ekspressiooni 
erinevalt ning samuti võib see olla sõltuv rakutüübist ja mudelorganismist. Kuigi 
eelkõige on AHR-iga seotud uurimistööde põhifookuseks olnud AHR-i aktiiv-
suse muutumine, on teada, et ka selle ekspressioon võib varieeruda. Näiteks on 
tuvastatud kõrge AHR-i tase mitmetes vähitüüpides. Seega on AHR-i ekspres-
siooni moduleerimisel potentsiaalne terapeutiline väärtus. 

Mitmed keskkonnakemikaalid, mis avaldavad oma toimet läbi AHR-i, 
kutsuvad esile häireid reproduktiivsüsteemis. Teisest küljest on Ahr-il ka oluline 
endogeenne funktsioon, indutseerides aromataasi (Cyp19a1) ja folliikuleid 
stimuleeriva hormooni retseptori (Fshr) ekspressiooni granuloosarakkudes. 
Samuti on teada, et Ahr-i ekspressiooni dünaamika muutub emase roti munasarjas 
reproduktiivtsükli jooksul, viidates Ahr-i regulatsiooni olulisusele. Sellest tule-
nevalt oli käesoleva doktoritöö eesmärgiks selgitada, millised mehhanismid 
mõjutavad Ahr-i ekspressiooni hiire munasarja granuloosarakkude küpsemisel 
enne ja pärast ovulatsiooni stimuleerimist. Lisaks kirjeldati, milliste inter-
aktsioonide kaudu mõjutab Ahr Fshr-i promootori aktiivsust. 

Käesoleva doktoritöö esimene osa keskendus Ahr-i ekspressiooni regulat-
sioonile granuloosarakkudes folliikulite küpsemise käigus. Esmalt tehti kindlaks, 
et sarnaselt rotis täheldatule, suureneb Ahr-i ekspressioon granuloosarakkude 
diferentseerumise käigus ning see on sõltuv nii folliikuleid stimuleeriva hormooni 
(FSH) kui ka luteiniseeriva hormooni (LH) signaliseerimisest. Kõrge Ahr-i tase 
oli omane eelkõige suurte antraalsete folliikulite granuloosarakkudele. Ahr-i 
ekspressiooni dünaamikat vaadeldes selgus, et see on ajaliselt võrreldav Fshr-i 
ekspressiooni suurenemisega, mis on kooskõlas viimase regulatsiooniga Ahr-i 
poolt. See-eest teise Ahr-i märklaudgeeni – Cyp19a1 – ekspressioon indutseeriti 
ajaliselt varem. Järgnevalt selgitati, milline signaalirada võiks mõjutada Ahr-i 
ekspressiooni. Kasutades proteiinkinaas A (PKA) inhibiitorit in vitro, selgus, et 
PKA represseerib Ahr-i geeni avaldumist. Antud tulemust kinnitasid in vivo 
katsed, kus täheldati PKA märklaudvalgu fosforüleeritud vormi vähenemist 
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samaaegse Ahr-i induktsiooniga. Lisaks tehti kindlaks, et Ahr-i ekspressiooni 
suurenemine on tingitud mRNA sünteesi aktiivsuse suurenemisest, kuid mitte 
muutunud mRNA stabiilsusest. Viimaks selgitati, et antud efekt on põhjustatud 
Ahr-i promootorala kromatiini avanemisest. 

Doktoritöö teises osas kontsentreeruti Ahr-i regulatsioonimehhanismidele 
granuloosarakkudes pärast LH analoogi hCG (inimese koorini gonadotropiin) 
manustamist hiirtele. Selgus, et hCG mõjul väheneb Ahr-i ekspressioon kiirelt nii 
mRNA kui valgu tasemel. See oli tingitud otseselt PKA signaliseerimisest, mida 
tõendasid de novo valgusünteesi ja PKA inhibiitori katsed. Lisaks määratleti, et 
Ahr-i ekspressiooni vähenemine on põhjustatud mRNA sünteesi aktiivsuse 
langusest ja mitte mRNA stabiilsuse kahanemisest. Edasised katsed näitasid, et 
antud efekt on omakorda tingitud kromatiini struktuuri ümberkorraldustest. Nimelt 
leiti, et hCG mõjul sulgub kromatiin Ahr-i promootoralal, kuid mitte geenisiseselt. 

Antud doktoritöö kolmandas osas keskenduti Ahr-i ja Fshri-i promootorala 
interaktsioonide kirjeldamisele. Esmalt konstrueeriti konstitutiivselt aktiivse 
Ahr-i (CA-AHR) ekspressioonivektor ning valideeriti selle funktsionaalsus. 
Järgnevalt määratleti reportergeeni analüüsil, et Ahr-sõltuvaks Fshr-i promootori 
aktivatsiooniks on oluline piirkond, mis paikneb vahemikus –209 kuni –99 alus-
paari translatsiooni alguspunktist ülesvoolu. Antud piirkonnas paiknevaid 
transkriptsioonifaktorite seondumiskohti muteerides selgus, et Ahr-i toime avaldub 
läbi E-box motiivi. Seda kinnitasid ka DNA afiinsus-sadestamise meetodil saadud 
tulemused, mis osundasid, et Ahr seondub E-box motiivile pigem otseselt. Kinni-
tamaks, kas Ahr interakteerub otseselt DNA-ga või siiski mõne tuvastamata valgu 
vahendusel, konstrueeriti järgnevalt vektorid, millelt ekspresseeritakse Ahr-i 
variante, mis pole võimelised DNA-le seonduma. Edasistest katsetest selgus, et 
muteeritud Ahr valgud polnud võimelised Fshr-i promootorile seonduma ning 
seda aktiveerima. Seega järeldati, et Ahr seondub E-box motiivil otseselt DNA-
ga. Viimaseks uuriti TCDD mõju Fshr-i promootori aktiivsusele. Vastupidiselt 
varasemalt publitseeritule, kus täheldati Fshr-i ekspressiooni langust TCDD 
mõjul, ilmnes, et TCDD indutseerib Ahr-sõltuvalt Fshr-i promootori aktivatsiooni. 

Käesoleva doktoritöö uurimistulemuste põhjal võib üldistavalt väita, et PKA 
signaliseerimine represseerib Ahr-i ekspressiooni hiire munasarja granuloosa-
rakkudes. Arvestades, et kõrget AHR-i valgu taset on täheldatud mitmetes vähi-
tüüpides, on sellel leiul ka potentsiaalne rakenduslik väljund meditsiinis, kus 
PKA aktivatsiooni muutmine võiks olla üheks terapeutiliseks sihtmärgiks. Lisaks 
aitab antud doktoritöö käigus selgunud teadmine, et Ahr on võimeline inter-
akteeruma E-box motiiviga, tuvastada uusi Ahr-i märklaudgeene ning seeläbi 
laiendada arusaama selle valgu funktsioonidest organismis.  
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