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Chapter 1

Introduction

Boundary value problems arise in several branches of scienti�c and engineering
problems. For example problems involving the wave equation are often stated as
boundary value problems. A large class of important boundary value problems are
the Sturm−Liouville ones. There are many boundary value problems in mathe-
matical physics corresponding to second order equations, e.g., in the studies of
vibrations of a membrane one has to solve a homogeneous boundary value problem.
Some model problems and most common general forms are presented in [8].

A boundary value problem consists of a di�erential equation on a given interval
and an explicit condition (or conditions) that a solution must satisfy at one or
several points. A simple and common form for a two point boundary value problem
is

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x), x ∈ (a, b),

y(a) = α1, y(b) = α2

where α1, α2 and the endpoints a, b are known constants. Traditional methods
for approximate solution of boundary value problems are �nite di�erence method
which only gives a discrete solution, and collocation method with polynomial
splines. Many aspects of �nite di�erence methods are introduced in [17, 20]. Quite
a number of authors have studied collocation based on polynomial functions. Poly-
nomial splines of order m (or degree m− 1) are piecewise polynomials and usually
de�ned in such a way that they are m−2 times continuously di�erentiable over the
domain. Piecewise polynomials were used in approximation theory already in the
early 1900s but the terminology splinefunction was �rst introduced by Schoen-
berg in 1946 [49]. Schoenberg states that he started to use this terminology by
the connection of piecewise polynomials with a certain mechanical device called a
spline. This is a thin rod of some elastic material equipped with a groove and a
set of weights with attached arms designed to �t into the groove. It appears that
the use of piecewise polynomial functions o�ers signi�cant advantages - it is sim-
pler and more powerful (see, e.g., [14]). Piecewise polynomial functions are more
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adaptable to special problems too. Up until 1960 the theory of spline functions
had a rather modest development and prior to the mid-1960s there were only a
few papers which dealt with the problem of how well classes of smooth functions
can be approximated by piecewise polynomials or splines.

For the collocation method quite general results about stability and conver-
gence with polynomials for boundary value problems are obtained in [59, 60].
Piecewise polynomials are used as approximate solution for the same problem in
[44]. Cubic spline approximation at the solution of the two point boundary value
problem for second order linear di�erential equation is treated in [6, 10, 22] and also
for fourth order boundary value problems in [23]. Collocation with some higher
order splines for the second order boundary value problems is studied in [1]. Some
surveys about other numerical methods for boundary value problems in ordinary
di�erential equations could be found in [5, 28, 29]. Collocation procedures using
piecewise polynomial functions with Gauss collocation points are applied to two
quasilinear second order di�erential equations in [56]. Collocation for systems of
boundary value problems with nonlinear di�erential equations are studied in [45]
and linear systems of �rst order ordinary di�erential equations are considered with
a regular singularity at one endpoint, under some assumptions on the smoothness
of the coe�cients that appear in the equations and in the boundary conditions in
[13]. In [7] collocation by piecewise Hermite cubic polynomials is made for two
point boundary value problem and uniform convergence together with some su-
perconvergence for the derivatives is obtained. These problems are dealt with in
several books about spline theory [12, 53] and numerical solution of di�erential
equations. Several interpolatory approximations for collocation solutions to sys-
tems of two point boundary value problems are studied in [42]. Among others
we refer the reader to [8] for thorough treatment and comprehensive bibliography
and to works by Stechkin and Subbotin [57] and Schumaker [55] which give a
comprehensive treatment of the theory of numerical analysis of polynomial spline
functions. The paper [43] contains 93 references and is also useful as an introduc-
tion to the extensive literature on projection methods for the numerical solution
of two point boundary value problems. For quadratic and cubic spline collocation
method the convergence rate O(h2) is known [30, 39]. In some cases, the actual
error is less for the quadratic splines and in other cases, the error is less for the
cubic splines, see [39].

In the early 1900s there was also quite extensive development of interpolation
using the piecewise polynomials. Interpolation is the most simple way to recon-
struct a function according to discrete data. In a typical interpolation problem we
suppose that we have n distinct datapoints a = x1 < . . . < xn = b and values yi,
i = 1, . . . , n. We look for a continuous function f from a given class of functions in
a way such that the graph of f passes through the given set of data points, that is,
it satis�es f(xi) = yi, i = 1, . . . , n, and the points xi are called the interpolation
nodes. The intensive development of the theory of interpolating splines began in
the early 1960s. It led to achieving error bounds. Some of the early contributors
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are Ahlberg and Nilson [2], Birkho� and de Boor [11], Ahlberg, Nilson, and Walsh
[3, 4], Atkinson [9], Schoenberg [50, 51, 52].

Let us mention that O(h2) convergence rate of quadratic spline collocation for
boundary value problems is based on superconvergence property of interpolating
splines. This was discovered in [30] and developed extensively in [35, 39]. It was
shown in [39] that the main part of error at quadratic spline collocation is actually
several times less than was obtained in [30].

There is also the possibility of using piecewise rational functions. The �rst
development of nonlinear spline spaces with the rational functions and generali-
zations of them was carried out by Schaback [46] and byWerner [61]. A very general
space of rational splines was also de�ned by Schumaker [54]. A generalization for
the results of [46] is presented in [16]. Since then various classes of rational splines
have been studied. For example in [18] a class of rational C2 quadratic/quadratic
and in [19] a class of C1 cubic/cubic splines for interpolation are considered. In
[34] algorithms for interpolation by rational splines containing, as a special case,
parabolic splines and piecewise-linear interpolation is discussed. A class of rational
C2 cubic/quadratic splines is studied in [24]. The accuracy O(h3) or O(h4) is
achieved. These splines may have some advantages over rational linear/linear and
quadratic/linear splines because of their possibly larger choice of coe�cients but
low degree rational splines are simpler and more convenient to use. They do not lose
the accuracy too. For a smooth function y and interpolating linear/linear rational
spline S it is known that ‖S − y‖∞ = O(h3), see, e.g., [25, 37]. For consistent
data, the linear/linear rational spline interpolant of class C1 always exists and is
unique [37, 38]. In [25], the expansions on subintervals via the derivatives of the
smooth function to interpolate could be found. They give the superconvergence
of the spline values and its derivatives in certain points. In interpolation the
linear/linear rational splines of class C1 have the same accuracy as the classical
quadratic splines and none of them have advantage in comparison of real errors
[25, 32]. In such circumstances, it is natural to pose the question about relation
between convergence rates of quadratic and linear/linear rational spline collocation
for boundary value problems. This is one of the main topics of this thesis. In
collocation with quadratic spline S it is known that ‖S − y‖∞ = O(h2), where
y is the solution of the problem. For the proof see, e.g., [30, 39]. We will study
such a problem in the case of linear/linear rational spline. We will also study
a quadratic/linear rational spline collocation for boundary value problems and
compare it to the cubic spline case. For the latter one the convergence rate O(h2)
is known as well. Let us point out that quadratic/linear rational interpolating
splines of class C2 have the same accuracy as the classical cubic interpolating
splines [37]. In some cases, the error is less for the cubic splines and in some cases,
the error is less for the quadratic/linear rational splines. For a strictly convex
(or strictly concave) smooth function y and interpolating quadratic/linear rational
spline S it is known that ‖S− y‖∞ = O(h4), see, e.g., [36, 37]. A quadratic/linear
rational spline interpolant of class C2 exists and is unique and strictly convex for
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any strictly convex data [47]. It should be e�ective to use these splines in seeking
the solutions with singularities of di�erential and integral equations. For the cubic
splines, the expansions on subintervals via the derivatives of the smooth function
to interpolate could be found, e.g., in [58]. They give the superconvergence of the
spline values and its derivatives in certain points. We will study such a problem
in the case of quadratic/linear rational spline interpolation.

While the interpolation problem is a linear one, the linear/linear rational spline
interpolation as well as quadratic/linear rational spline interpolation is, in nature,
a nonlinear method because it leads to a nonlinear system with respect to the
spline parameters. Nevertheless, the complexity of these rational spline inter-
polation methods is the same as in polynomial spline case. It was shown in [15]
that any strict convexity preserving interpolation method having certain regularity
properties cannot be linear. Hopefully, similar result should also hold for strict
monotonicity preservation. The problem of shape preserving interpolation has
been considered by several authors [18, 19, 21, 24, 41, 48]. Firstly they have kept
in mind monotonicity and convexity. A review with 164 references of shape preserv-
ing approximation methods and algorithms for approximating univariate functions
or discrete data is given in [31]. Main ideas about the methods of solving nonlinear
systems of equations could be found in [40].

We can say about the linear/linear rational spline collocation method that it
is, in nature, a nonlinear method and it does not work in the case of nonmonotone
solution. Fortunately, the method proposed in this thesis could be implemented
so that it has the same complexity as collocation with quadratic splines, e.g., each
step of Newton's method requires the solution of linear system with banded matrix
and the number of steps is limited (relatively small). The practical solution process
could be organized in such a way that on each step of Newton's iteration one has
to solve a linear system having diagonal dominance in rows of its banded matrix.
The solution of these systems, e.g., by Gaussian elimination, is known to be stable
with respect to small errors in calculations and such kind of stability concerns
also Newton's method itself. In opposite situation an adaptive strategy where in
the region of strict monotonicity rational pieces and elsewhere polynomial pieces
are used is a reasonable approach. Then once again the solution by adaptive
method could give considerably better result at the same starting information
(mainly the values of functions in di�erential equation). This procedure has the
same complexity as quadratic spline collocation. However, to prove the existence
of this combined spline as approximate solution in collocation method and to
�nd an adequate error estimate is a challenge beyond this thesis. The theory
of adaptive interpolation is developed, e.g., in [47] with cubic polynomial and
quadratic/linear rational splines and in [38] for any data with quadratic polynomial
and linear/linear rational splines. In [47] cubic polynomial and quadratic/linear
rational pieces to retain strict convexity in the regions of strict convexity of data
are used. The existence of such a coconvex spline interpolant is proved if data
have weak alternation of second order divided di�erences on cubic sections. It
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is remarkable that the existence of those adaptive interpolating splines was quite
complicated to prove. At spline collocation for boundary value problems this
adaptive strategy needs to be investigated in future. It is natural that this research
can be based on the results about rational spline collocation. Keeping this in mind,
the main purpose of this thesis is to show the existence of linear/linear rational
spline and quadratic/linear rational spline as approximate solution in collocation
method for boundary value problems and also comparison of error estimates with
respect to quadratic and cubic spline collocation respectively.

In the following we give a brief overview of the dissertation by chapters. The
present work consists of eight chapters.

In Chapter 1 we already gave an overview of boundary value problems, ex-
amples of applications and a short review of main books and papers on spline
collocation method with polynomial and rational splines.

In Chapter 2 we present the linear/linear rational splines and give three dif-
ferent representations: by spline values and �rst moments, by spline values and
�rst derivatives in midpoints of subintervals and by spline values. There is also
given the number of free parameters and some general remarks about linear/linear
rational splines.

In Chapter 3 there are given two representations for quadratic/linear ratio-
nal splines (by spline values and �rst moments and by spline values and second
moments) as well as some general comments.

Chapter 4 is devoted to linear/linear rational spline interpolation problem.
Firstly, the description of the method is given where linear/linear rational spline
representation by spline values is used. In this chapter we show that for the
interpolating linear/linear rational splines we obtain ‖S(xi) − y(xi)‖∞ = O(h4)
on uniform mesh xi = a + ih, i = 0, . . . , n, and prove also the superconvergence
of order h3 for the �rst derivative and of order h2 for the second derivative of
S in certain points. In the end of the chapter, for comparison, the expansions
of quadratic spline S and its derivatives are given. The results of Chapter 4 are
published in [25].

In Chapter 5 we investigate the interpolation with quadratic/linear rational
splines. As in previous chapter we start by giving the description of the method.
In this chapter a representation by spline values and second moments is used. On
a uniform mesh xi = a + ih, i = 0, . . . , n, in the case of su�ciently smooth func-
tion y the expansions of interpolating quadratic/linear rational spline S and its
derivatives are obtained. They give the superconvergence of order h4 for the �rst
derivative, of order h3 for the second derivative and of order h2 for the third deriva-
tive of S in certain points. We compare the results with cubic spline interpolation
method. The results of Chapter 5 are published in [26].

Chapter 6 is devoted to the study of the linear/linear rational spline collocation
method. We use the spline representation by spline values and at �rst we repre-
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sent the collocation method. Then the necessary transformations are established
and the use of the Bohl-Brouwer �xed point theorem is shown. The convergence
estimates using the special interpolation points are �nally achieved and stated
in Theorem 6.1. For the linear/linear rational spline S on uniform mesh it holds
‖S−y‖∞ = O(h2), where the solution y of the boundary value problem is a strictly
monotone function. Established bound of error for the collocation method gives
a dependence on the solution of the boundary value problem and its coe�cients.
We prove also convergence rates ‖S′− y′‖∞ = O(h2), ‖S′′− y′′‖∞ = O(h) and the
superconvergence of order h2 for the second derivative of S in certain points. The
results of this chapter have been submitted for publication in [27].

In Chapter 7 we investigate the quadratic/linear rational spline collocation
method. As in previous chapter we start by introducing the collocation method
with quadratic/linear rational splines. At this time the spline representation by
spline values and �rst moments is used. For the quadratic/linear rational spline
S on uniform mesh with the solution y of the boundary value problem which is a
strictly convex (or strictly concave) function it holds ‖S−y‖∞ = O(h2). We prove
also convergence rates ‖S′ − y′‖∞ = O(h2) and ‖S′′ − y′′‖∞ = O(h2).

In Chapter 8 there are given numerical tests which totally support the theo-
retical analysis.
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Chapter 2

Representation of linear/linear
rational splines

In this chapter we introduce three representations for linear/linear rational splines.

Consider a uniform partition of the interval [a, b] with knots xi = a + ih,
i = 0, . . . , n, h = (b − a)/n, n ∈ N. We also need the points ξi = xi−1 + h/2,
i = 1, . . . , n.

Linear/linear rational spline is a function S ∈ C1[a, b] of the form

S(x) = ai +
ci(x− ξi)

1 + di(x− ξi)
, x ∈ [xi−1, xi], (2.1)

where 1 + di(x− ξi) > 0. Let us point out that, in general, a linear/linear rational
function on each particular interval [xi−1, xi] may have the form

S(x) =
âi + b̂ix

ĉi + d̂ix
,

where ĉi + d̂ix < 0 or ĉi + d̂ix > 0, but it could be transformed into (2.1).

Note that a straightforward reasoning shows that if there are two representa-
tions for function S on interval [xi−1, xi], i.e.,

S(x) = ai +
ci(x− ξi)

1 + di(x− ξi)

and

S(x) = āi +
c̄i(x− ξi)

1 + d̄i(x− ξi)

with arbitrary ξi ∈ [xi−1, xi], then āi = ai and c̄i = ci. If, in addition, c̄i = ci 6= 0,
then d̄i = di.
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According to the representation (2.1) we have 3n parameters to determine for
constructing the spline. We require for C1 continuity of S on [a, b] which involves
2(n− 1) conditions, namely that S and S′ must be continuous at all interior knots
x1, . . . , xn−1. That means the number of free parameters is 3n− 2(n− 1) = n+ 2.

Observe at once that on [xi−1, xi] we have

S′(x) =
ci

(1 + di(x− ξi))2
, (2.2)

which means that S being in C1[a, b] is strictly increasing or strictly decreasing or
constant on [a, b].

2.1 Representation by spline values and �rst moments

Let S(ξi) = Si, i = 1, . . . , n, and S′(xi) = mi, i = 0, . . . , n. We call by �rst
moments the parameters mi. From (2.1) and (2.2) we get

Si = ai,

mi−1 =
ci(

1− hdi
2

)2 ,
mi =

ci(
1 +

hdi
2

)2 .
Consider the case mi−1,mi > 0 or mi−1,mi < 0. Otherwise we have mi = 0,

i = 0, . . . , n, and the spline S is constant.

From previous system we can uniquely express the parameters

ai = Si,

ci =
4mi−1((mi−1

mi

)1/2
+ 1
)2 ,

di =
2
((mi−1

mi

)1/2
− 1
)

h
((mi−1

mi

)1/2
+ 1
) .

Replacing them in (2.1) we obtain for x ∈ [xi−1, xi]

S(x) = Si +
4hmi−1(x− ξi)((mi−1

mi

)1/2
+ 1

)(
h
((mi−1

mi

)1/2
+ 1
)

+ 2
((mi−1

mi

)1/2
− 1
)

(x− ξi)

) .
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Setting x = xi−1 + τh, τ ∈ [0, 1], the representation of linear/linear rational spline
by spline values and �rst moments is

S(x) = Si +
hmi−1(2τ − 1)((mi−1

mi

)1/2
+ 1
)(

1 + τ
((mi−1

mi

)1/2
− 1
)) , x ∈ [xi−1, xi]. (2.3)

This also gives

S′(x) =
mi−1(

1 + τ
((mi−1

mi

)1/2
− 1
))2 ,

S′′(x) = −
2mi−1

((mi−1
mi

)1/2
− 1
)

h
(

1 + τ
((mi−1

mi

)1/2
− 1
))3 .

The continuity of S′ is guaranteed by the notation S′(xi) = mi, i = 0, . . . , n.
From (2.3) we get

S(xi − 0) = Si +
hmi( mi

mi−1

)1/2
+ 1

and

S(xi + 0) = Si+1 −
hmi( mi

mi+1

)1/2
+ 1

,

so the continuity of S at the interior knots, i.e., S(xi−0) =S(xi+0), i = 1, . . . , n−1,
leads to the internal equations

mi

(
1( mi

mi−1

)1/2
+ 1

+
1( mi

mi+1

)1/2
+ 1

)
=
Si+1 − Si

h
, i = 1, . . . , n− 1.

2.2 Representation by spline values and �rst derivatives
in midpoints of subintervals

Using the notations S(xi) = Si, i = 0, . . . , n, S′(ξi) = mi, i = 1, . . . , n, we get
from (2.1) and (2.2)

mi = ci,
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Si−1 = ai −
hci

2− hdi
= ai −

hmi

2− hdi
, (2.4)

Si = ai +
hci

2 + hdi
= ai +

hmi

2 + hdi
. (2.5)

Again, we assume that the spline is strictly increasing or strictly decreasing, other-
wise it is constant and mi = 0, i = 1, . . . , n.

Firstly, for expressing the parameters ai, bi and ci, we �nd Si − Si−1. That is
by (2.4) and (2.5)

Si − Si−1 = ai +
hmi

2 + hdi
−
(
ai −

hmi

2− hdi

)
=

hmi

2 + hdi
+

hmi

2− hdi
.

We obtain immediately

di = ±2

h

(
1− mi

Si − Si−1
h

)1/2

.

Then from (2.5) we get

ai = Si −
hmi

2

(
1±

(
1− mi

Si − Si−1
h

)1/2)

and, in addition,

ci = mi.

Replacing ai, ci, di, i = 1, . . . , n, in (2.1) we have the representation by spline
values and �rst derivatives in midpoints of subintervals

S(x) = Si −
hmi

2± 2

(
1− mi

Si − Si−1
h

)1/2
+

mi(x− ξi)

1± 2

h

(
1− mi

Si − Si−1
h

)1/2

(x− ξi)

,

x ∈ [xi−1, xi],

or setting x = xi−1 + hτ , τ ∈ [0, 1],

S(x) = Si −
hmi(1− τ)(

1±

(
1− mi

Si − Si−1
h

)1/2)(
1±

(
1− mi

Si − Si−1
h

)1/2

(2τ − 1)

) .

(2.6)
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This also gives us

S′(x) =
mi(

1±

(
1− mi

Si − Si−1
h

)1/2

(2τ − 1)

)2
, (2.7)

S′′(x) =

∓4mi

(
1− mi

Si − Si−1
h

)1/2

h

(
1±

(
1− mi

Si − Si−1
h

)1/2

(2τ − 1)

)3
.

The continuity conditions of S′ can be written as S′(xi − 0) = S′(xi + 0) or
with the help of (2.7) in the form

mi(
1±

(
1− mi

Si − Si−1
h

)1/2)2
=

mi+1(
1∓

(
1− mi+1

Si+1 − Si
h

)1/2)2
, (2.8)

i = 1, . . . , n− 1.

Note that in this representation we have two di�erent splines with same para-
meters Si−1, Si and mi, one with + and the other with − in the representation
(2.6).

2.3 Representation by spline values

Let S(xi) = Si, i = 0, . . . , n, and S(ξi) = S̄i, i = 1, . . . , n. We assume that the
spline is strictly increasing or strictly decreasing. We get from (2.1)

S̄i = ai,

Si−1 = ai −
hci

2− hdi
,

Si = ai +
hci

2 + hdi
.
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This allows to express uniquely ai, ci and di via the spline values as

ai = S̄i,

ci =
4(Si − S̄i)(S̄i − Si−1)

h(Si − Si−1)
,

di =
2(2S̄i − Si−1 − Si)
h(Si − Si−1)

.

After replacing the obtained parameters in (2.1) we have the representation by
spline values

S(x) = S̄i +
4(Si − S̄i)(S̄i − Si−1)(x− ξi)

h(Si − Si−1) + 2((S̄i − Si−1)− (Si − S̄i))(x− ξi)
, x ∈ [xi−1, xi],

(2.9)

or by setting x = xi−1 + hτ , τ ∈ [0, 1],

S(x) = S̄i +
(Si − S̄i)(S̄i − Si−1)(2τ − 1)

(2τ − 1)S̄i − τSi−1 + (1− τ)Si
.

This also gives for x ∈ [xi−1, xi]

S′(x) =
4h(Si − S̄i)(S̄i − Si−1)(Si − Si−1)

(h(Si − Si−1) + 2((S̄i − Si−1)− (Si − S̄i))(x− ξi))2
, (2.10)

S′′(x) = −16h(Si − S̄i)(S̄i − Si−1)(Si − Si−1)((S̄i − Si−1)− (Si − S̄i))
(h(Si − Si−1) + 2((S̄i − Si−1)− (Si − S̄i))(x− ξi))3

. (2.11)

When the continuity of S is guaranteed by the representation (2.9), the conti-
nuity of S′ i.e., S′(xi − 0) = S′(xi + 0), i = 1, . . . , n− 1, at interior knots with the
help of (2.10) leads to the internal equations

(Si − S̄i)(Si − Si−1)
S̄i − Si−1

=
(S̄i+1 − Si)(Si+1 − Si)

Si+1 − S̄i+1
, i = 1, . . . , n− 1. (2.12)
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Chapter 3

Representation of
quadratic/linear rational splines

In this chapter we introduce two representations for quadratic/linear rational
splines.

Consider a uniform partition of the interval [a, b] with knots xi = a + ih,
i = 0, . . . , n, h = (b− a)/n, n ∈ N.

Quadratic/linear rational spline is a function S ∈ C2[a, b] and on each parti-
cular subinterval has the form

S(x) = ai + bi(x− xi−1) +
ci

1 + di(x− xi−1)
, x ∈ [xi−1, xi], (3.1)

where 1 + di(x − xi−1) > 0. In general, a quadratic/linear rational function may
have the form by �ve parameters

S(x) =
âi + b̂ix+ ĉix

2

d̂i + êix
, x ∈ [xi−1, xi],

where d̂i + êix < 0 or d̂i + êix > 0, but it could be transformed into (3.1).

From (3.1) we have for x ∈ [xi−1, xi]

S′(x) = bi −
cidi

(1 + di(x− xi−1))2
(3.2)

and

S′′(x) =
2cid

2
i

(1 + di(x− xi−1))3
(3.3)

which means that S or −S is strictly convex or �rst degree polynomial.
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Let us note that if there are two di�erent representations for function S on
interval [xi−1, xi], i.e.,

S(x) = ai + bi(x− xi−1) +
ci

1 + di(x− xi−1)

and

S(x) = āi + b̄i(x− xi−1) +
c̄i

1 + d̄i(x− xi−1)

then in the assumption c̄i = ci 6= 0 it follows d̄i = di. In the case d̄i = di 6= 0 we
get āi = ai, b̄i = bi, c̄i = ci and if d̄i = di = 0, then b̄i = bi, but ai and ci are not
determined uniquely.

According to the representation (3.1) there are 4 parameters on each subinterval
to determine, so altogether we have 4n parameters to determine for constructing
the spline. From C2 continuity of S on [a, b], namely that S, S′ and S′′ must be
continuous at all interior knots x1, . . . , xn−1, we get 3(n−1) additional conditions.
That means the number of free parameters is 4n− 3(n− 1) = n+ 3.

3.1 Representation by spline values and �rst moments

Let us consider a subinterval [xi−1, xi], i = 1, . . . , n. Using

S(xi−1) = Si−1, S(xi) = Si, S′(xi−1) = mi−1, S′(xi) = mi

we get from (3.1) and (3.2) a system to determine the parameters ai, bi, ci and di.
Namely,

Si−1 = ai + ci,

Si = ai + bih+
ci

1 + dih
,

mi−1 = bi − cidi,

mi = bi −
cidi

(1 + dih)2
,

which gives

ai = Si−1 −
(Si − Si−1 − hmi−1)

2(hmi − (Si − Si−1))
(2(Si − Si−1)− h(mi−1 +mi))2

,

bi = mi−1 +
(Si − Si−1 − hmi−1)

2

h(2(Si − Si−1)− h(mi−1 +mi))
,
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ci =
(Si − Si−1 − hmi−1)

2(hmi − (Si − Si−1))
(2(Si − Si−1)− h(mi−1 +mi))2

,

di =
2(Si − Si−1)− h(mi−1 +mi)

h(hmi − (Si − Si−1))
.

Denote

ei =
(Si − Si−1 − hmi−1)

2

h(2(Si − Si−1)− h(mi−1 +mi))2

and replace ai, bi, ci and di in (3.1). Then we obtain a representation by spline
values and �rst moments

S(x) = Si−1 − h(hmi − (Si − Si−1))ei

+ h(mi−1 + ei)(2(Si − Si−1)− h(mi−1 +mi))(x− xi−1)

+
h2(hmi − (Si − Si−1))2ei

h(hmi − (Si − Si−1)) + (2(Si − Si−1)− h(mi−1 +mi))(x− xi−1)
,

x ∈ [xi−1, xi].

By changing the variable x = xi−1 + τh, τ ∈ [0, 1], we get

S(x) = Si−1 + τh(mi−1 + ei)h(2(Si − Si−1)− h(mi−1 +mi))

− h(hmi − (Si − Si−1))ei (3.4)

+
h(hmi − (Si − Si−1))2ei

hmi − (Si − Si−1) + τ(2(Si − Si−1)− h(mi−1 +mi))
.

From that we can �nd

S′(x) = mi−1 + (2(Si − Si−1)− h(mi−1 +mi))ei

− (hmi − (Si − Si−1))2(2(Si − Si−1)− h(mi−1 +mi))ei
(hmi − (Si − Si−1) + τ(2(Si − Si−1)− h(mi−1 +mi)))2

and

S′′(x) =
2(hmi − (Si − Si−1))2(2(Si − Si−1)− h(mi−1 +mi))

2ei
h(hmi − (Si − Si−1) + τ(2(Si − Si−1)− h(mi−1 +mi)))3

. (3.5)

The representation of S in terms of Si and mi ensures the continuity of S and
S′. The continuity of S′′ in the interior knots can be expressed by

S′′(xi − 0) = S′′(xi + 0), i = 1, . . . , n− 1,
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or with the help of (3.5) as

(hmi − (Si − Si−1))2

Si − Si−1 − hmi−1
=

(Si+1 − Si − hmi)
2

hmi+1 − (Si+1 − Si)
, i = 1, . . . , n− 1. (3.6)

3.2 Representation by spline values and second mo-
ments

Let us use the notation S(xi) = Si and S′′(xi) = Mi, i = 0, . . . , n. We call the
parameters Mi second moments. From (3.1) and (3.3) we get

Si−1 = ai + ci,

Si = ai + bih+
ci

1 + dih
,

(3.7)

Mi−1 = 2cid
2
i ,

Mi =
2cid

2
i

(1 + dih)3
.

Consider at �rst the case Mi 6= 0. Then also Mi−1 6= 0 and di 6= 0. From (3.7)
it follows immediately that

ci =
Mi−1
2d2i

,

ai = Si−1 −
Mi−1
2d2i

,

bi =
1

h
(Si − Si−1) +

Mi−1
2di(1 + dih)

.

Now, by replacing the obtained parameters ai, bi, and ci in (3.1) we can represent
the quadratic/linear rational spline as

S(x) = Si−1 −
Mi−1
2d2i

+

(
Si − Si−1

h
+

Mi−1
2di(1 + dih)

)
(x− xi−1)

(3.8)

+
Mi−1

2d2i (1 + di(x− xi−1))
, x ∈ [xi−1, xi].
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This also gives for x ∈ [xi−1, xi]

S′(x) =
Si − Si−1

h
+

Mi−1
2di(1 + dih)

− Mi−1
2di(1 + di(x− xi−1))2

, (3.9)

S′′(x) =
Mi−1

(1 + di(x− xi−1))3
(3.10)

and

S′′′(x) = − 3diMi−1
(1 + di(x− xi−1))4

. (3.11)

The continuity of S and S′′ is guaranteed by the representation (3.8). The
continuity of S′, i.e., S′(xi − 0) = S′(xi + 0), i = 1, . . . , n− 1, by using (3.9) leads
to the equations

Si − Si−1
h

+
Mi−1h

2(1 + dih)2
=
Si+1 − Si

h
− Mih

2(1 + di+1h)
.

From last two equations of (3.7) we get

1 + dih =
(Mi−1
Mi

)1/3
and, thus, we have the internal equations

M
2/3
i

(
M

1/3
i−1 +M

1/3
i+1

)
=

2

h2
(Si−1 − 2Si + Si+1), i = 1, . . . , n− 1. (3.12)

These equations hold naturally in the case Mi = 0 (then Mi−1 = 0 and Mi+1 = 0)
because then the spline is a linear function and (3.12) expresses the fact that its
second order divided di�erence is equal to zero.
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Chapter 4

Linear/linear rational spline
interpolation

The interpolation problem with linear/linear rational splines is similar to that
with quadratic splines. In the latter case the expansions on subintervals via the
derivatives of the smooth function y to interpolate could be found, e.g., in [32, 33].
They give the superconvergence of the spline values and its derivatives in certain
points. In this chapter we study such a problem in the case of linear/linear rational
spline interpolant. First we give the description of the interpolation method, then
we analyze the obtained nonlinear system and transform it to a more suitable form
in order to get the expansions of the interpolant. Finally, this allows us to receive
the superconvergence results.

4.1 Description of the method

Let a = x0 < x1 < . . . < xn = b be a uniform partition of the interval [a, b] with
knots xi = a + ih, i = 0, . . . , n, h = (b − a)/n, n ∈ N. We also need the points
ξi = xi−1 + h/2, i = 1, . . . , n.

In interpolation with linear/linear rational spline S, for a given data ȳi,
i = 1, . . . , n, let us require that the interpolation conditions

S(ξi) = ȳi, i = 1, . . . , n, (4.1)

are satis�ed. Since the number of free parameters (see Chapter 2) is n + 2 it is
necessary to give two more conditions. So, in addition, we impose

S(a) = α1, S(b) = α2 (4.2)

or

S′(a) = α1, S′(b) = α2. (4.3)
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A combination with one boundary condition from (4.2) and another from (4.3) at
di�erent endpoints is also allowed.

In this chapter we use the linear/linear rational spline representation by spline
values (see Section 2.3). Replacing the values S̄i, i = 1, . . . , n, from (4.1) in the
internal equations (2.12) and considering them with two boundary conditions we
obtain a nonlinear system with respect to the unknowns S0, . . . , Sn. The nonlinear
system can successfully be solved by the ordinary iteration method, Gauss-Seidel
method or Newton's method.

For a smooth function y and interpolating linear/linear rational spline S it is
known that ‖S−y‖∞ = O(h3) (see, e.g., [37]). It is also known, that a linear/linear
rational spline interpolant exists, is unique and preserves the monotonicity of the
data only if y is strictly monotone or constant everywhere (see, e.g., [37, 38]).

4.2 Transformation of the system

First, we analyze the nonlinear system with respect to the unknowns S0, . . . , Sn.

Suppose that we have a function y : [a, b] → R to interpolate and ȳi = y(ξi),
i = 1, . . . , n. Denote yi = y(xi), i = 0, . . . , n, similar notation will be used in the
case of derivatives.

Let us write equations (2.12) with replaced values S̄i from (4.1) in the form

ϕi(Si−1, Si, Si+1) = (Si − ȳi)(Si − Si−1)(Si+1 − ȳi+1) (4.4)

− (ȳi+1 − Si)(Si+1 − Si)(ȳi − Si−1) = 0, i = 1, . . . , n− 1,

introducing at the same time functions ϕi. In our further discussion we use the
boundary conditions (4.2). We can write the system consisting of the boundary
conditions and the internal equations (4.4) in the form

h2(y′0)
2(S0 − α1) = 0,

ϕi(Si−1, Si, Si+1) = (Si − ȳi)(Si − Si−1)(Si+1 − ȳi+1)

−(ȳi+1 − Si)(Si+1 − Si)(ȳi − Si−1) = 0,

i = 1, . . . , n− 1,

h2(y′n)2(Sn − α2) = 0.

(4.5)

Performing the Taylor expansion for (4.4) gives
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ϕi(Si−1, Si, Si+1) = ϕi(yi−1, yi, yi+1) +
∂ϕi
∂Si−1

(yi−1, yi, yi+1)(Si−1 − yi−1)

+
∂ϕi
∂Si

(yi−1, yi, yi+1)(Si − yi) (4.6)

+
∂ϕi
∂Si+1

(yi−1, yi, yi+1)(Si+1 − yi+1) +
ϕ′′i
2!

(ξλ)h̄2 = 0

with the di�erence vector h̄ = (Si−1 − yi−1, Si − yi, Si+1 − yi+1), some λ ∈ (0, 1)

and ξλ = (yi−1, yi, yi+1) + λh̄. Our next aim is to �nd
∂ϕi
∂Si−1

(yi−1, yi, yi+1),

∂ϕi
∂Si

(yi−1, yi, yi+1),
∂ϕi
∂Si+1

(yi−1, yi, yi+1) and then ϕi(yi−1, yi, yi+1). From (4.4) we

get the partial derivatives for i = 1, . . . , n− 1, namely,

∂ϕi
∂Si−1

= −(Si − ȳi)(Si+1 − ȳi+1) + (ȳi+1 − Si)(Si+1 − Si),

∂ϕi
∂Si

= (Si − Si−1)(Si+1 − ȳi+1) + (Si − ȳi)(Si+1 − ȳi+1)

+ (Si+1 − Si)(ȳi − Si−1) + (ȳi+1 − Si)(ȳi − Si−1),

∂ϕi
∂Si+1

= (Si − ȳi)(Si − Si−1)− (ȳi+1 − Si)(ȳi − Si−1).

Suppose in the following that y ∈ C4[a, b]. Let us expand yi−1, ȳi, ȳi+1 and yi+1

at the point xi by Taylor formula up to the forth derivative as

yi−1 = yi − hy′i +
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi + o(h4),

ȳi = yi +
h

2
y′i −

h2

8
y′′i +

h3

48
y′′′i −

h4

384
yIVi + o(h4),

ȳi+1 = yi +
h

2
y′i +

h2

8
y′′i +

h3

48
y′′′i +

h4

384
yIVi + o(h4),

yi+1 = yi + hy′i +
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi + o(h4)

with the rest terms O(h4+α) in the case yIV ∈ Lip α, 0 < α ≤ 1. Then direct
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calculations yield

∂ϕi
∂Si−1

(yi−1, yi, yi+1) =
h2

4
y′2i +

h3

4
y′iy
′′
i +O(h4),

∂ϕi
∂Si

(yi−1, yi, yi+1) =
3

2
h2y′2i +O(h4), (4.7)

∂ϕi
∂Si+1

(yi−1, yi, yi+1) =
h2

4
y′2i −

h3

4
y′iy
′′
i +O(h4).

Similarly, from

ϕi(yi−1, yi, yi+1) = (yi − ȳi)(yi − yi−1)(yi+1 − ȳi+1)

− (ȳi+1 − yi)(yi+1 − yi)(ȳi − yi−1) = 0, i = 1, . . . , n− 1,

we get with the help of Taylor formula as shown above

ϕi(yi−1, yi, yi+1) =
h6

64

(
(y′i)

2yIVi − 4y′iy
′′
i y
′′′
i + 3(y′′i )3

)
+ o(h6). (4.8)

The entries in the matrix ϕ′′i are consisting of the second order partial derivatives
of ϕi as follows:

∂2ϕi
∂S2

i−1
= 0,

∂2ϕi
∂Si−1∂Si

=
∂2ϕi

∂Si∂Si−1
= −(Si+1 − ȳi+1)− (Si+1 − Si),

∂2ϕi
∂Si−1∂Si+1

=
∂2ϕi

∂Si+1∂Si−1
= −(Si − ȳi) + (ȳi+1 − Si),

∂2ϕi
∂S2

i

= 2(Si+1 − ȳi+1)− 2(ȳi − Si−1),

∂2ϕi
∂Si∂Si+1

=
∂2ϕi

∂Si+1∂Si
= (Si − Si−1) + (Si − ȳi) + (ȳi − Si−1),

∂2ϕi
∂S2

i+1

= 0.

They are of order O(h). Recall that ‖S−y‖∞ = O(h3). This means ‖h̄‖∞ = O(h3)
and altogether ϕ′′i (ξλ)h̄2 = O(h7). Taking now into account (4.7), (4.8) and the
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order of the rest term in (4.6), system (4.5) reduces to

h2(y′0)
2(S0 − α1) = 0,

h6

64

(
(y′i)

2yIVi − 4y′iy
′′
i y
′′′
i + 3(y′′i )3

)
+
(h2

4
(y′i)

2 +
h3

4
y′iy
′′
i +O(h4)

)
(Si−1 − yi−1)

+
(3

2
h2(y′i)

2 +O(h4)
)

(Si − yi)

+
(h2

4
(y′i)

2 − h3

4
y′iy
′′
i +O(h4)

)
(Si+1 − yi+1) + o(h6) = 0,

i = 1, . . . , n− 1,

h2(y′n)2(Sn − α2) = 0.

(4.9)

We assume that y′(x) > 0 for all x ∈ [a, b] or y′(x) < 0 for all x ∈ [a, b]
which means that y is strictly monotone (recall that a linear/linear rational spline
interpolant exists only if y is strictly monotone or constant everywhere). Consider
now (4.9) as a linear system with respect to the unknowns Si − yi, i = 0, . . . , n.
Then its matrix has the diagonal dominance in rows for su�ciently small h. We
look for the solution such that

Si = yi + h4[ψ(y)]i + βi, i = 0, . . . , n, (4.10)

where the continuous function ψ(y) and numbers βi will be speci�ed later. Note,
that the continuity of ψ(y) gives [ψ(y)]i−1 = [ψ(y)]i+o(1), [ψ(y)]i+1 = [ψ(y)]i+o(1).
Let us look more precisely the internal equations of (4.9). Replacing there Si− yi,
i = 0, . . . , n, with (4.10) we get

h6

64

(
(y′i)

2yIVi − 4y′iy
′′
i y
′′′
i + 3(y′′i )3

)

+
(h2

4
(y′i)

2 +
h3

4
y′iy
′′
i +O(h4)

)
(h4[ψ(y)]i + βi−1)

+
(3

2
h2(y′i)

2 +O(h4)
)

(h4[ψ(y)]i + βi)

+
(h2

4
(y′i)

2 − h3

4
y′iy
′′
i +O(h4)

)
(h4[ψ(y)]i + βi+1) + o(h6) = 0.

Determine now the function ψ(y) so that the coe�cient at h6 is equal to 0, i.e.,

1

64

(
(y′i)

2yIVi − 4y′iy
′′
i y
′′′
i + 3(y′′i )3

)
+ 2(y′i)

2[ψ(y)]i = 0
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and it gives

[ψ(y)]i = − 1

128

(
yIVi − 4

y′′i y
′′′
i

y′i
+ 3

(y′′i )3

(y′i)
2

)
, i = 1, . . . , n− 1. (4.11)

Extend (4.11) for i = 0 and i = n as well, then choose β0 = o(h4) and
βn = o(h4) (e.g., it may be β0 = βn = 0). This determines the values of α1

and α2. Thus, we pose the boundary conditions (4.2) in the form

S(a) = y(a)− h4

128

(
yIV (a)− 4

y′′(a)y′′′(a)

y′(a)
+ 3

(y′′(a))3

(y′(a))2

)
+ o(h4),

(4.12)

S(b) = y(b)− h4

128

(
yIV (b)− 4

y′′(b)y′′′(b)

y′(b)
+ 3

(y′′(b))3

(y′(b))2

)
+ o(h4).

Therefore, we may write the system (4.9) as follows

h2(y′0)
2β0 = o(h6),(h2

4
(y′i)

2 +
h3

4
y′iy
′′
i +O(h4)

)
βi−1

+
(3

2
h2(y′i)

2 +O(h4)
)
βi

+
(h2

4
(y′i)

2 − h3

4
y′iy
′′
i +O(h4)

)
βi+1 + o(h6) = 0, i = 1, . . . , n− 1,

h2(y′n)2βn = o(h6).

This system has the matrix form Aβ = g(β), where β = (β0, . . . , βn). The ma-
trix A has a diagonal dominance in rows and the components of g are depending
continuously on β. The equivalent system β = A−1g(β) has a solution by Bohl-
Brouwer �xed point principle because A−1g maps a set K = [−ch4, ch4]n+1 for
some c > 0 into itself due to the fact that, for β = O(h4), we have g(β) = o(h6).
Recall that the solution of the interpolation problem is unique and, consequently,
β is uniquely determined. Thus, it holds βi = o(h4), i = 0, . . . , n, and in total,
(4.10) is now

Si = yi −
h4

128

(
yIVi − 4

y′′i y
′′′
i

y′i
+ 3

(y′′i )3

(y′i)
2

)
+ o(h4), i = 0, . . . , n. (4.13)

It could be also transformed into the form

Si = yi −
h4

128

(
y
′
i

(y′′′
y′

)′
i
− 3y′′i

(y′′
y′

)′
i

)
+ o(h4), i = 0, . . . , n.
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4.3 Expansions of the interpolant

In this section we establish the expansions of interpolant S and its �rst and second
derivatives on the whole particular interval.

We write the representation (2.9) with obvious notations A and B in the fol-
lowing form

S(x) = S̄i +
A

B
= y(x) +

A− (y(x)− S̄i)B
B

.

In the fractional term
A− (y(x)− S̄i)B

B
we use S̄i = ȳi and Taylor expansions at

ξi, i.e.,

Si = yi −
h4

128
ψi + o(h4)

= ȳi + ȳ′i
h

2
+
ȳ′′i
2

(h
2

)2
+
ȳ′′′i
6

(h
2

)3
+
ȳIVi
24

(h
2

)4
− h4

128
ψ̄i + o(h4),

Si−1 = yi−1 −
h4

128
ψi−1 + o(h4)

= ȳi − ȳ′i
h

2
+
ȳ′′i
2

(h
2

)2
− ȳ′′′i

6

(h
2

)3
+
ȳIVi
24

(h
2

)4
− h4

128
ψ̄i + o(h4),

y(x) = ȳi + ȳ′ith+
ȳ′′i
2

(th)2 +
ȳ′′′i
6

(th)3 +
ȳIVi
24

(th)4 + o(h4).

This gives us for x ∈ [xi−1, xi]

S(x) = y(x) +
t(1− 4t2)

48
h3
(

2ȳ′′′i − 3
(ȳ′′i )2

ȳ′i

)

+
t2

48
h4
(
− (1 + 2t2)ȳIVi + 6

ȳ′′i ȳ
′′′
i

ȳ′i
− 6(1− t2)(ȳ′′i )3

(ȳ′i)
2

)
+ o(h4), (4.14)

with x = ξi+th, t ∈ [−1/2, 1/2]. Clearly, the expansion (4.14) at x = xi or t = 1/2
coincides with (4.13).

For the �rst derivative, proceeding similarly, i.e., using the form S′(x) = y′(x)+
A

B
and same Taylor expansions at ξi we get from (2.10)

S′(x) = y′(x) +
1− 12t2

48
h2
(

2ȳ′′′i − 3
(ȳ′′i )2

ȳ′i

)

− t

24
h3
(

(1 + 4t2)ȳIVi − 6
ȳ′′i ȳ
′′′
i

ȳ′i
+ 6(1− 2t2)

(ȳ′′i )3

(ȳ′i)
2

)
+ o(h3). (4.15)
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For the second derivative we obtain from (2.11)

S′′(x) = y′′(x) + th
(
ȳ′′′i +

3

2

ȳ′′2i
ȳ′i

)

+
h2

24

(
− (1 + 12t2)ȳIVi + 6

ȳ′′i ȳ
′′′
i

ȳ′i
− 6(1− 6t2)

(ȳ′′i )3

(ȳ′i)
2

)
+ o(h2), (4.16)

where, as before, x = ξi + th, t ∈ [−1/2, 1/2].

Same technique allows to establish the expansions (4.13)−(4.16) in the case of
boundary conditions (4.3) as

S′(a) = y′(a)− h2

12

(
y
′′′

(a)− 3

2

(y′′(a))2

y′(a)

)
+ o(h3),

(4.17)

S′(b) = y′(b)− h2

12

(
y
′′′

(b)− 3

2

(y′′(b))2

y′(b)

)
+ o(h3).

We have proved the following

Theorem 4.1. Let y be a strictly monotone function and y ∈ C4[a, b]. Then the
linear/linear rational spline S of smoothness class C1 satisfying interpolation con-
ditions (4.1) and boundary conditions (4.12) or (4.17) expands like (4.13)−(4.16).
Remark 4.1. If yIV ∈ Lip α, 0 < α ≤ 1, then in previous formulae all the rest
terms written as o(hk) for some k could be replaced by O(hk+α).

4.4 Superconvergence rates

We derive our superconvergence rate results basing on the expansions of the inter-
polant (4.14)−(4.16) from the previous section.

It is clear that from (4.14) we get S(xi) = y(xi) +O(h4), i = 0, . . . , n. Expan-
sion (4.15) yields S′(x) = y′(x) + O(h3) in points x = ξi + th, corresponding to
t = ±

√
3/6, and lastly (4.16) gives S′′(ξi) = y′′(ξi) +O(h2), i = 1, . . . , n.

The numerical experiments presented in Chapter 8 con�rm the convergence
rates predicted by the theory.

Similar results for quadratic splines were known earlier. They are given, e.g.,
in [32] in a slightly di�erent form

S(x) = y(x)− t(1− t)(1− 2t)

12
h3y′′′(x)

− (1− 2t)2(1 + 4t− 4t2)

128
h4yIV (x) + o(h4),

31



S′(x) = y′(x)− 1− 6t− 6t2

12
h2y′′′(x)− t(1− t)(1− 2t)

6
h3yIV (x) + o(h3),

S′′(x) = y′′(x) +
1− 2t

2
hy′′′(x)− 1− 6t− 6t2

6
h2yIV (x) + o(h2),

x ∈ [xi−1, xi], x = xi−1 + th, t ∈ [0, 1].

We see that the superconvergence takes place in points xi, i = 0, . . . , n, for
quadratic spline interpolant S, in x = ξi ± (

√
3/6)h, i = 1, . . . , n, for S′ and in ξi,

i = 1, . . . , n, for S′′, that means in the same points as for linear/linear rational
spline interpolants.
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Chapter 5

Quadratic/linear rational spline
interpolation

The interpolation problem with quadratic/linear rational splines is similar to that
with cubic splines, to which the expansions on subintervals via the derivatives of
the smooth function to interpolate could be found, e.g., in [58]. We will study such
a problem in the case of quadratic/linear rational spline interpolation. This needs
expansions of a quadratic/linear rational spline interpolant with special boundary
conditions and the establishment of them is the main purpose of this chapter. At
�rst we give the description of the quadratic/linear rational spline interpolation
method. Then we analyze the obtained nonlinear system and transform it to a more
suitable form. In the end of this chapter we get the expansions of the interpolant
and receive the superconvergence results.

5.1 Description of the method

Consider a uniform partition of the interval [a, b] with knots xi = a + ih,
i = 0, . . . , n, h = (b−a)/n, n ∈ N. In this chapter we use the spline representation
by spline values and second moments (Section 3.2).

Assume that there is given data yi, i = 0, . . . , n. In interpolation with
quadratic/linear rational splines we look for a spline S ∈ C2[a, b] such that

S(xi) = yi, i = 0, . . . , n. (5.1)

In addition, we set two boundary conditions

S′(a) = α1, S′(b) = α2 (5.2)

or
S′′(a) = α1, S′′(b) = α2 (5.3)
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for given α1 and α2, which we will specify later. After replacing the values Si,
i = 0, . . . , n, from (5.1) in the internal equations (3.12) and considering them
with two boundary conditions we obtain a nonlinear system with respect to the
unknowns M0, . . . ,Mn.

For a strictly convex (or strictly concave) smooth function y and interpolating
quadratic/linear rational spline S it is known that ‖S − y‖∞ = O(h4), see, e.g.,
[36, 37]. In [46] it is proven, that a quadratic/linear rational spline interpolant of
class C2 exists and is unique and strictly convex for any strictly convex data.

5.2 Transformation of the system and second moments
of the interpolant

In this section we study the nonlinear system with respect to the unknowns
M0, . . . ,Mn.

Suppose that we have a su�ciently smooth function y : [a, b] → R to interpo-
late. Denote yi = y(xi), i = 0, . . . , n, similar notation will be used in the case of
derivatives.

Firstly we write the equations (3.12) with replaced values Si from (5.1) in the
following form

ϕi(Mi−1,Mi,Mi+1) = M
2/3
i

(
M

1/3
i−1 +M

1/3
i+1

)
− 2

h2
(yi−1 − 2yi + yi+1) = 0,

(5.4)

i = 1, . . . , n− 1,

introducing at the same time functions ϕi. Now we consider the boundary condi-
tions (5.3) and internal equations (5.4) in the form

M0 − α1 = 0,

ϕi(Mi−1,Mi,Mi+1) = M
2/3
i

(
M

1/3
i−1 +M

1/3
i+1

)
− 2

h2
(yi−1 − 2yi + yi+1) = 0,

i = 1, . . . , n− 1,

Mn − α2 = 0.

This system can be transformed with the help of Taylor expansion at (5.4) into
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

M0 − α1 = 0,

ϕi(y
′′
i−1, y

′′
i , y
′′
i+1) +

∂ϕi
∂Mi−1

(y′′i−1, y
′′
i , y
′′
i+1)(Mi−1 − y′′i−1)

+
∂ϕi
∂Mi

(y′′i−1, y
′′
i , y
′′
i+1)(Mi − y′′i )

+
∂ϕi

∂Mi+1
(y′′i−1, y

′′
i , y
′′
i+1)(Mi+1 − y′′i+1) +

ϕ′′i
2!

(ξλ)h̄2 = 0,

i = 1, . . . , n− 1,

Mn − α2 = 0

(5.5)

with the di�erence vector h̄ = (Mi−1 − y′′i−1,Mi − y′′i ,Mi+1 − y′′i+1), some number
λ ∈ (0, 1) and ξλ = (y′′i−1, y

′′
i , y
′′
i+1) + λh̄. Now let us investigate ϕi(y′′i−1, y

′′
i , y
′′
i+1)

and the partial derivatives as well as the rest term in (5.5). We calculate from
(5.4) for i = 1, . . . , n− 1

∂ϕi
∂Mi−1

(Mi−1,Mi,Mi+1) =
1

3

( Mi

Mi−1

)2/3
,

∂ϕi
∂Mi

(Mi−1,Mi,Mi+1) =
2

3

((Mi−1
Mi

)1/3
+
(Mi+1

Mi

)1/3)
, (5.6)

∂ϕi
∂Mi+1

(Mi−1,Mi,Mi+1) =
1

3

( Mi

Mi+1

)2/3
.

Suppose in the following that y ∈ C4[a, b]. We assume that y′′(x) > 0 for all
x ∈ [a, b] or y′′(x) < 0 for all x ∈ [a, b] which means that y or −y is strictly convex.
Let us expand yi−1, yi+1, y′′i−1 and y′′i+1 at the point xi by Taylor formula up to
the forth derivative as

yi−1 = yi − hy′i +
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi + o(h4),

yi+1 = yi + hy′i +
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi + o(h4),

y′′i−1 = y′′i − hy′′′i +
h2

2
yIVi + o(h2),

y′′i+1 = y′′i + hy′′′i +
h2

2
yIVi + o(h2).

First two expansions give for ϕi(y′′i−1, y
′′
i , y
′′
i+1)

2

h2
(yi−1 − 2yi + yi+1) = 2y′′i +

1

6
h2yIVi + o(h2).

35



Next, y′′i together with y′′i−1 gives

y′′i
y′′i−1

= 1 + h
y′′′i
y′′i
− h2

2

yIVi
y′′i

+ h2
(y′′′i )2

(y′′i )2
+ o(h2)

and y′′i with y′′i+1

y′′i
y′′i+1

= 1− hy
′′′
i

y′′i
− h2

2

yIVi
y′′i

+ h2
(y′′′i )2

(y′′i )2
+ o(h2).

Then by (5.6) with the help of expansions (1 + x)2/3 = 1 +
2

3
x− 1

9
x2 + o(x2) and

(1 + x)−1/3 = 1− 1

3
x+

2

9
x2 + o(x2) direct calculations yield

∂ϕi
∂Mi−1

(y′′i−1, y
′′
i , y
′′
i+1) =

1

3
+

2

9
h
y′′′i
y′′i
− 1

9
h2
yIVi
y′′i

+
5

27
h2
(y′′′i
y′′i

)2
+ o(h2),

∂ϕi
∂Mi

(y′′i−1, y
′′
i , y
′′
i+1) =

4

3
+

2

9
h2
yIVi
y′′i
− 4

27
h2
(y′′′i
y′′i

)2
+ o(h2),

∂ϕi
∂Mi+1

(y′′i−1, y
′′
i , y
′′
i+1) =

1

3
− 2

9
h
y′′′i
y′′i
− 1

9
h2
yIVi
y′′i

+
5

27
h2
(y′′′i
y′′i

)2
+ o(h2).

From (5.4) we get

ϕi(y
′′
i−1, y

′′
i , y
′′
i+1) =

1

6
h2yIVi −

2

9
h2

(y′′′i )2

y′′i
+ o(h2)

which we replace in (5.5).

We look for the solution of the obtained system such that

Mi = y′′i + h2[ψ(y)]i + βi, i = 0, . . . , n, (5.7)

where we suppose the function ψ(y) to be continuous. Then [ψ(y)]i−1 = [ψ(y)]i+o(1)
and [ψ(y)]i+1 = [ψ(y)]i + o(1).

The entries in the matrix ϕ′′i as second order partial derivatives of ϕi could be
calculated from (5.6):

∂2ϕi
∂M2

i−1
= −2

9

( Mi

Mi−1

)2/3 1

Mi−1
,

∂2ϕi
∂Mi−1∂Mi

=
∂2ϕi

∂Mi∂Mi−1
=

2

9

( Mi

Mi−1

)2/3 1

Mi
,
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∂2ϕi
∂Mi−1∂Mi+1

=
∂2ϕi

∂Mi+1∂Mi−1
= 0,

∂2ϕi
∂M2

i

= −2

9

((Mi−1
Mi

)1/3
+
(Mi+1

Mi

)1/3) 1

Mi

∂2ϕi
∂Mi∂Mi+1

=
∂2ϕi

∂Mi+1∂Mi
=

2

9

(Mi+1

Mi

)1/3 1

Mi+1
,

∂2ϕi
∂M2

i+1

= −2

9

( Mi

Mi+1

)2/3 1

Mi+1
.

We see, that they contain a multiplier M−1j , j = i − 1, i, i + 1, of the expressions
in (5.6) and are of order O(1) provided we suppose, e.g., that βi = O(h). Then,
in the case βi = O(h2), due to the three-diagonality of the matrix ϕ′′i , we have
ϕ′′i (ξλ)h̄2 = O(h4) and the system (5.5) could be written as

y′′0 + h2[ψ(y)]0 + β0 − α1 = 0,

1

6
h2yIVi −

2

9
h2

(y′′′i )2

y′′i

+
(1

3
+

2

9
h
y′′′i
y′′i
− 1

9
h2
yIVi
y′′i

+
5

27
h2
(y′′′i
y′′i

)2)
(h2[ψ(y)]i + βi−1)

+
(4

3
+

2

9
h2
yIVi
y′′i
− 4

27
h2
(y′′′i
y′′i

)2)
(h2[ψ(y)]i + βi)

+
(1

3
− 2

9
h
y′′′i
y′′i
− 1

9
h2
yIVi
y′′i

+
5

27
h2
(y′′′i
y′′i

)2)
(h2[ψ(y)]i + βi+1) + o(h2) = 0,

i = 1, . . . , n− 1,

y′′n + h2[ψ(y)]n + βn − α2 = 0.
(5.8)

Determine the function ψ(y) so that the coe�cient at h2 in interior equations
is equal to 0. This gives

ψ(y) = − 1

12

(
yIV − 4

3

(y′′′)2

y′′

)
. (5.9)

Let us choose α1 and α2 so that β0 = o(h2) and βn = o(h2) (e.g., it may be
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β0 = βn = 0), thus, we pose the boundary conditions (5.3) in the form

S′′(a) = y′′(a)− h2

12

(
yIV (a)− 4

3

(y′′′(a))2

y′′(a)

)
+ o(h2),

(5.10)

S′′(b) = y′′(b)− h2

12

(
yIV (b)− 4

3

(y′′′(b))2

y′′(b)

)
+ o(h2).

Finally, we get from (5.8) a system of the form Aβ = Φ(β) with respect to the
unknowns β = (β0, . . . , βn) having the matrix A with diagonal dominance in rows
and the components of Φ depending continuously on β. The equivalent system
β = A−1Φ(β) has a solution by Bohl-Brouwer �xed point principle because A−1Φ
maps a set K = [−ch2, ch2]n+1 for some c > 0 into itself due to the fact that, for
β = O(h2), we have Φ(β) = o(h2). Recall that the solution of the interpolation
problem is unique and, consequently, β is uniquely determined. Thus, it holds
βi = o(h2), i = 0, . . . , n, and we arrive at the estimate

Mi = y′′i −
h2

12

(
yIVi −

4

3

(y′′′i )2

y′′i

)
+ o(h2), i = 0, . . . , n. (5.11)

Note that in the case yIV ∈ Lip α, 0 < α ≤ 1, we have the error terms O(h2+α)
instead of o(h2) in all earlier expansions and estimates.

5.3 Expansions of the interpolant

In this section the expansions of interpolants on the whole particular interval will
be established.

Setting x = xi−1 + th, t ∈ [0, 1] and replacing Si−1 and Si in (3.8), (3.9), (3.10)
as well as (3.11) by yi−1 and yi, respectively, we write them in the form

S(x) = yi−1 −
t(1− t)h2Mi−1

2(1 + dih)(1 + dith)
, (5.12)

S′(x) =
yi − yi−1

h
+

(t− 1 + t(1 + dith))hMi−1
2(1 + dih)(1 + dith)2

, (5.13)

S′′(x) =
Mi−1

(1 + dith)3
(5.14)

and

S′′(x) =
−3Mi−1di
(1 + dith)4

. (5.15)
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Using 1 + dih = (Mi−1/Mi)
1/3 and (5.11) we establish with the help of Taylor

formula the expansion

1 + dith = 1 + t
(
− h

3

y′′′i
y′′i

+ h2
(1

6

yIVi
y′′i
− 1

9

(y′′′i
y′′i

)2))
+ o(h2).

Similarly we can express (1 + dith)2, (1 + dith)3, (1 + dith)4 and di needed in
(5.12), (5.13), (5.14), (5.15). Finally, by direct calculations, the Taylor expansion
in x ∈ [xi−1, xi] gives

S(x) = y(x)− t2(1− t)2

24
h4
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+ o(h4), (5.16)

S′(x) = y′(x)− t(1− t)(1− 2t)

12
h3
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+ o(h3), (5.17)

S′′(x) = y′′(x)− 1− 6t(1− t)
12

h2
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+ o(h2), (5.18)

S′′′(x) = y′′′(x) +
1− 2t

2
h
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
+ o(h). (5.19)

Note that (5.18) at x = xi coincides with (5.11).

The boundary conditions (5.2) have to be used in the form

S′(a) = y′(a) + o(h3), S′(b) = y′(b) + o(h3). (5.20)

Recall that we assumed y ∈ C4[a, b]. Suppose now that y ∈ C5[a, b]. The
reasoning of Section 5.2 gives then (5.11) with the rest term o(h3) instead of o(h2).
Doing once more the calculations, we obtain

1 + dith = 1 + t
(
− h

3

y′′′i
y′′i

+ h2
(1

6

yIVi
y′′i
− 1

9

(y′′′i
y′′i

)2)

+ h3
(
− 1

36

yVi
y′′i

+
1

108

y′′′i y
IV
i

(y′′i )2
+

1

81

(y′′′i
y′′i

)3))
+o(h3)

and then for x ∈ [xi−1, xi] we get the expansions

S(x) = y(x)− t2(1− t)2

24
h4
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
(5.21)

− t(1− t)(1− 2t)(1 + 3t(1− t))
180

h5
(
yV (x)− 10

3

y′′′(x)yIV (x)

y′′(x)
+

20

9

(y′′′(x))3

(y′′(x))2

)
+ o(h5),
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S′(x) = y′(x)− t(1− t)(1− 2t)

12
h3
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
− 2− 45t2(1− t)2

360
h4yV (x) +

1− 24t2(1− t)2

54
h4
y′′′(x)yIV (x)

y′′(x)
(5.22)

− 2− 51t2(1− t)2

162
h4

(y′′′(x))3

(y′′(x))2
+ o(h4),

S′′(x) = y′′(x)− 1− 6t(1− t)
12

h2
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
(5.23)

+
t(1− t)(1− 2t)

6
h3
(
yV (x)− 4

y′′′(x)yIV (x)

y′′(x)
+

28

9

(y′′′(x))3

(y′′(x))2

)
+ o(h3),

S′′′(x) = y′′′(x) +
1− 2t

2
h
(
yIV (x)− 4

3

(y′′′(x))2

y′′(x)

)
(5.24)

+
1− 6t(1− t)

12
h2
(
yV (x)− 16

3

y′′′(x)yIV (x)

y′′(x)
+

44

9

(y′′′(x))3

(y′′(x))2

)
+ o(h2).

The boundary conditions (5.2) have to be speci�ed now as

S′(a) = y′(a)− h4
( 1

180
yV (a)− 1

54

y′′′(a)yIV (a)

y′′(a)
+

1

81

(y′′′(a))3

(y′′(a))2

)
+ o(h4),

(5.25)

S′(b) = y′(b)− h4
( 1

180
yV (b)− 1

54

y′′′(b)yIV (b)

y′′(b)
+

1

81

(y′′′(b))3

(y′′(b))2

)
+ o(h4).

We have proved the following

Theorem 5.1. Let y (or −y) be a strictly convex function. In the case y ∈ C4[a, b]
the quadratic/linear rational spline S of smoothness class C2 satisfying interpola-
tion conditions (5.1) and boundary conditions (5.10) or (5.20) expands as shown
in (5.16)−(5.19). If y ∈ C5[a, b] the expansions (5.21)−(5.24) hold provided the
boundary conditions (5.10) with the rest terms o(h3) instead of o(h2) or (5.25) are
used.

Remark 5.1. If yIV ∈ Lip α or yV ∈ Lip α, 0 < α ≤ 1, then in previous formulae
all the rest terms written as o(hk) for some k could be replaced by O(hk+α).
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5.4 Superconvergence rates

Basing on expansions (5.17)−(5.19) it is now immediate to obtain superconver-
gence assertions.

From (5.17) we get S′(x) = y′(x)+O(h4) in points x = xi and x = (xi−1+xi)/2,
(5.18) yields S′′(x) = y′′(x) + O(h3) in points x = xi + th, corresponding to
t = (3±

√
3)/6 and (5.19) gives S′′′(x) = y′′′(x) +O(h2) in points (xi−1 + xi)/2.

In Chapter 8 there are numerical experiments which con�rm the theoretical
convergence rates.

The expansions for cubic spline interpolants, which were known earlier could
be found, e.g., in [58]. In the case y ∈ C5[a, b], for x ∈ [xi−1, xi]

S(x) = y(x)− t2(1− t)2

24
h4yIV (x)

− t(1− t)(1− 2t)(1 + 3t(1− t))
180

h5yV (x) + o(h5),

S′(x) = y′(x)− t(1− t)(1− 2t)

12
h3yIV (x)− 2− 45t2(1− t)2

360
h4yV (x) + o(h4),

S′′(x) = y′′(x)− 1− 6t(1− t)
12

h2yIV (x) +
t(1− t)(1− 2t)

6
h3yV (x) + o(h3),

S′′′(x) = y′′′(x) +
1− 2t

2
hyIV (x) +

1− 6t(1− t)
12

h2yV (x) + o(h2).

We see that the superconvergence takes place in the same points as well for
quadratic/linear rational and cubic spline interpolants.
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Chapter 6

Linear/linear rational spline
collocation

In this chapter we will study the linear/linear rational spline collocation method
for a boundary value problem of second order ordinary linear di�erential equation.
Before, let us describe the problem and assumptions about it with corresponding
consequences.

We consider the di�erential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x), x ∈ (a, b), (6.1)

with boundary conditions

y(a) = α, y(b) = β. (6.2)

Suppose that the problem has a solution y ∈ C2[a, b]. Let p, q, f be continuous
and q(x) ≤ q < 0, x ∈ (a, b). Then the solution of problem (6.1), (6.2) is unique.
Let us prove that.

We show that the homogeneous problem corresponding to (6.1), (6.2), i.e.,

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, x ∈ (a, b), (6.3)

y(a) = 0, y(b) = 0 (6.4)

has only the trivial solution.

Firstly, let p ∈ C1[a, b]. We use the change of variable

y(x) = e−
1
2

∫
p(x)dxz(x).

Then

y′(x) = e−
1
2

∫
p(x)dx(−1

2
p(x)z(x) + z′(x)),

y′′(x) = e−
1
2

∫
p(x)dx(

1

4
p2(x)z(x)− p(x)z′(x)− 1

2
p′(x)z(x) + z′′(x)).
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After replacing the obtained derivatives in (6.3), we have

z′′(x) +
(
− 1

2
p′(x)− 1

4
p2(x) + q(x)

)
z(x) = 0, x ∈ (a, b), (6.5)

z(a) = 0, z(b) = 0.

Let z be the solution to (6.5). Now multiply the equation (6.5) by z and integrate.
Then ∫ b

a
z′′(x)z(x)dx+

∫ b

a
(−1

2
p′(x)− 1

4
p2(x) + q(x))z2(x)dx = 0

which gives us with the help of integration by parts

−
∫ b

a
(z′(x))2dx+

∫ b

a
p(x)z(x)z′(x)dx− 1

4

∫ b

a
p2(x)z2(x)dx+

∫ b

a
q(x)z2(x)dx = 0.

Note that∫ b

a
(z′(x))2dx−

∫ b

a
p(x)z(x)z′(x)dx +

1

4

∫ b

a
p2(x)z2(x)dx

=

∫ b

a
(
1

2
p(x)z(x)− z′(x))2dx ≥ 0

and
∫ b
a q(x)z2(x)dx ≤ 0. So we get

∫ b
a q(x)z2(x)dx = 0 which implies z = 0 a.e. in

[a, b] and it follows z = 0. This, in turn, gives y = 0 for the solution of (6.3), (6.4).

Secondly, let p /∈ C1[a, b], but p ∈ C[a, b]. We can take pn ∈ C1[a, b] so that
‖pn − p‖C → 0. Now let

y(x) = e−
1
2

∫ x
a pn(x)dxzn(x),

y(x) = e−
1
2

∫ x
a p(x)dxz(x)

which gives

zn(x) = e
1
2

∫ x
a pn(x)dxy(x),

z(x) = e
1
2

∫ x
a p(x)dxy(x)

and ‖zn − z‖C → 0. Then zn is the solution of the counterpart of (6.5) with pn
and we get by the same discussion as in �rst part of the proof that zn = 0. Thus,
z = 0 and y = 0.

Note that in this reasoning it is su�cient to suppose that q(x) < 0 a.e. in [a, b].
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6.1 Description of the spline collocation method

A mesh a = x0 < x1 < . . . < xn = b will be used representing the spline knots
xi = a + ih, i = 0, . . . , n, h = (b − a)/n, n ∈ N. We de�ne the collocation points
ξi = xi−1 + h/2, i = 1, . . . , n.

In our discussion we use again the linear/linear rational spline representation
by spline values (Section 2.3). We remind that in this representation we have the
notations S(xi) = Si, i = 0, . . . , n, and S(ξi) = S̄i, i = 1, . . . , n.

In collocation we require the spline S to satisfy the di�erential equation at
points ξi and the boundary conditions:

S′′(ξi) + p(ξi)S
′(ξi) + q(ξi)S(ξi) = f(ξi), i = 1, . . . , n, (6.6)

S(a) = α, S(b) = β. (6.7)

Internal equations (2.12) together with equations (6.6) and (6.7) form a nonlinear
system with respect to the unknowns S̄1, . . . , S̄n, S0, . . . , Sn.

Note, that the collocation problem is similar for quadratic spline case. The
convergence rate O(h2) for quadratic spline collocation method is known [30, 39].
Let us mention that O(h2) convergence rate is based on superconvergence property
of interpolating splines. This was discovered in [30] and developed extensively in
[35, 39]. It was shown in [39] that the main part of error at quadratic spline
collocation is actually several times less than was obtained in [30]. We will study
such a problem in the case of linear/linear rational splines.

6.2 Transformation of the system and main properties
of the derivatives

Let us start our investigation by transforming the system (2.12), (6.6), (6.7) to a
suitable form in order to establish some estimates which will be used in the proof
of existence of solution.

Likewise to (4.4) in linear/linear rational spline interpolation discussion let us
introduce functions ϕi and write equations (2.12) in the form

ϕi(Si−1, S̄i, Si, S̄i+1, Si+1) = (Si − S̄i)(Si − Si−1)(Si+1 − S̄i+1) (6.8)

− (S̄i+1 − Si)(Si+1 − Si)(S̄i − Si−1) = 0, i = 1, . . . , n− 1.

Observe that if y is the solution of (6.1) we may write for i = 1, . . . , n

y′′(ξi) + p(ξi)y
′(ξi) + q(ξi)y(ξi) = f(ξi). (6.9)
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Using (2.10) and (2.11) at point ξi in (6.6) we get for i = 1, . . . , n

−16(S̄i − Si−1)(Si − S̄i)(2S̄i − Si−1 − Si)
h2(Si − Si−1)2

(6.10)

+ p(ξi)
4(S̄i − Si−1)(Si − S̄i)

h(Si − Si−1)
+ q(ξi)S̄i = f(ξi).

Now subtract equation (6.10) from (6.9) and multiply the result by
h2(Si − Si−1). This gives the following equations:

ψi(Si−1, S̄i, Si)

= 16(S̄i − Si−1)(Si − S̄i)(2S̄i − Si−1 − Si) + h2(Si − Si−1)2y′′(ξi)

− p(ξi)(4h(S̄i − Si−1)(Si − Si−1)(Si − S̄i) + h2(Si − Si−1)2y′(ξi)) (6.11)

− h2q(ξi)(Si − Si−1)2(S̄i − y(ξi)) = 0, i = 1, . . . , n,

where we also introduce functions ψi.

We write the boundary conditions (with the help of notations ϕ0 and ϕn for
the left side of equations) as

ϕ0(S0) = h2(S0 − α) = 0, ϕn(Sn) = h2(Sn − β) = 0. (6.12)

Let S = (S0, S̄1, S1, . . . , S̄n, Sn). We point out, that although we denote by
S a spline and the vector of its knot values, from the context it is clear which
object we deal with. Now the internal equations (6.8), collocation equations (6.11)
and boundary equations (6.12) together form a nonlinear system F (S) = 0 with
F : R2n+1 → R2n+1 and F (S) = (ϕ0(S), ψ1(S), ϕ1(S), . . . , ψn(S), ϕn(S)) (here
and in the sequel we allow the whole vector of spline knot values S in ϕi(S) and
ψi(S) instead of some particular components as in (6.8), (6.11) and (6.12)). The
system F (S) = 0 will be considered as basic system and it contains all the require-
ments on spline values. Our aim is to show that this system has an appropriate
solution and then obtain the convergence results.

In order to establish our goals we need to use the linear/linear rational spline
interpolant S satisfying (4.1) and (4.12) for the solution y of problem (6.1), (6.2).
Denote this special interpolant by S∗ and de�ne its vector of values by
S∗ = (S∗(x0), S∗(ξ1), S∗(x1), . . . , S∗(ξn), S∗(xn)) ∈ R2n+1. It occurs that around
the vector S∗ we succeed in �nding a set with su�ciently small size containing the
vector of values of approximate solution.

Let us assume now and in the sequel that the solution y of (6.1), (6.2) is such
that y ∈ C4[a, b] and y′(x) > 0 for all x ∈ [a, b] or y′(x) < 0 for all x ∈ [a, b]. In
addition, let p′, q ∈ C[a, b] and q(x) ≤ q < 0, x ∈ [a, b]. Our aim is to estimate
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F (S∗) and F ′(S∗). Let yi = y(xi), i = 0, . . . , n, and ȳi = y(ξi), i = 1, . . . , n,
similar notation will be used in the case of derivatives and other functions. Based
on (4.13) and using for the special interpolant S∗ the Taylor expansions up to the
fourth derivative in the rest

S∗i−1 = ȳi −
h

2
ȳ′i +

h2

8
ȳ′′i −

h3

48
ȳ′′′i +

h4

384
ȳIVi −

h4

128
ρ̄i + o(h4),

S∗i = ȳi +
h

2
ȳ′i +

h2

8
ȳ′′i +

h3

48
ȳ′′′i +

h4

384
ȳIVi −

h4

128
ρ̄i + o(h4),

where

ρ = yIV − 4
y′′y′′′

y′
+ 3

(y′′)3

(y′)2
,

straightforward calculations give

ψi(S
∗) = h6

(
− 1

24
(ȳ′i)

2ȳIVi +
1

4
ȳ′iȳ
′′
i ȳ
′′′
i −

1

4
(ȳ′′i )3+ p(ξi)

( 1

24
(ȳ′i)

2ȳ′′′i −
1

16
ȳ′i(ȳ

′′
i )2
))

+ o(h6). (6.13)

Due to (2.12) or (6.8) we have ϕi(S∗) = 0, i = 1, . . . , n − 1. In addition, special
boundary conditions (4.12) for S∗ assure ϕ0(S

∗) = o(h6) and ϕn(S∗) = o(h6).
Thus, we can conclude that ‖F (S∗)‖∞ = O(h6).

Next, we are interested in the matrix F ′(S∗). In the rows corresponding to
equations (6.11) there are

∂ψi
∂Si−1

= 16(Si − S̄i)((Si − S̄i)− 2(S̄i − Si−1))− 2h2(Si − Si−1)ȳ′′i

+ p(ξi)(4h(Si − S̄i)((S̄i − Si−1)− (Si − Si−1))− 2h2(Si − Si−1)ȳ′i)

+ 2h2q(ξi)(S̄i − ȳi)(Si − Si−1),

∂ψi
∂S̄i

= − 16((S̄i − Si−1)− (Si − S̄i))2 + 32(S̄i − Si−1)(Si − S̄i)

− 4hp(ξi)((Si − Si−1)((Si − S̄i)− (S̄i − Si−1)))− h2q(ξi)(Si − Si−1)2,

∂ψi
∂Si

= 16(S̄i − Si−1)((S̄i − Si−1)− 2(Si − S̄i)) + 2h2(Si − Si−1)ȳ′′i

− p(ξi)(4h(S̄i − S1−1)((Si − Si−1) + (Si − S̄i)) + 2h2(Si − Si−1)ȳ′i)

− 2h2q(ξi)(S̄i − ȳi)(Si − Si−1).
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They give

∂ψi
∂Si−1

+
∂ψi
∂S̄i

+
∂ψi
∂Si

= −h2q(ξi)(Si − Si−1)2. (6.14)

Using again the Taylor formula at the point ξi we may write

−h2q(ξi)(S∗i − S∗i−1)2 = −h4q(ξi)(ȳ′i)2 +O(h5)

and, in addition, have the partial derivatives for i = 1, . . . , n in the form

∂ψi
∂Si−1

(S∗) = − 4h2(ȳ′i)
2 + h3p(ξi)(ȳ

′
i)
2

− h4
(1

3
ȳ′iȳ
′′′
i −

3

4
(ȳ′′i )2 − 1

2
p(ξi)ȳ

′
iȳ
′′
i

)
+O(h5),

∂ψi
∂S̄i

(S∗) = 8h2(ȳ′i)
2 + h4

(2

3
ȳ′iȳ
′′′
i −

3

2
(ȳ′′i )2 − p(ξi)ȳ′iȳ′′i − q(ξi)(ȳ′i)2

)
+O(h5),

(6.15)

∂ψi
∂Si

(S∗) = − 4h2(ȳ′i)
2 − h3p(ξi)(ȳ′i)2

− h4
(1

3
ȳ′iȳ
′′′
i −

3

4
(ȳ′′i )2 − 1

2
p(ξi)ȳ

′
iȳ
′′
i

)
+O(h5).

It is now immediate to verify that, for small h, we get the diagonal dominance in
rows corresponding to the collocation equations. Namely (recall the assumption
q(x) ≤ q < 0, x ∈ (a, b))∣∣∣∂ψi

∂S̄i
(S∗)

∣∣∣− ∣∣∣ ∂ψi
∂Si−1

(S∗)
∣∣∣− ∣∣∣∂ψi

∂Si
(S∗)

∣∣∣ = −h4q(ξi)(ȳ′i)2 +O(h5).

In the rows of matrix F ′(S∗) corresponding to equations (6.8) we calculate the
derivatives
∂ϕi
∂Si−1

= −(Si − S̄i)(Si+1 − S̄i+1) + (S̄i+1 − Si)(Si+1 − Si),

∂ϕi
∂S̄i

= −(Si − Si−1)(Si+1 − S̄i+1)− (S̄i+1 − Si)(Si+1 − Si),

∂ϕi
∂Si

= (Si − Si−1 + Si − S̄i)(Si+1 − S̄i+1) + (S̄i − Si−1)(S̄i+1 − Si + Si+1 − Si),

∂ϕi
∂S̄i+1

= −(Si − Si−1)(Si − S̄i)− (S̄i − Si−1)(Si+1 − Si),

∂ϕi
∂Si+1

= (Si − Si−1)(Si − S̄i)− (S̄i − Si−1)(S̄i+1 − Si).
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Obviously, then

∂ϕi
∂Si−1

+
∂ϕi
∂S̄i

+
∂ϕi
∂Si

+
∂ϕi
∂S̄i+1

+
∂ϕi
∂Si+1

= 0. (6.16)

Observe also that, for z = (S0, S̄1, S1, . . . , S̄n, Sn), (6.16) yields∑
j

∂2ϕi
∂zj∂zk

= 0 (6.17)

and ∑
j

∂3ϕi
∂zj∂zk∂zl

= 0

for all i, k, l.

Using S∗i = yi −
h4

128
ρi + o(h4) and S̄∗i = ȳi we perform the following Taylor

expansions

S∗i−1 = yi − hy′i +
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi −

h4

128
ρi + o(h4),

S̄∗i = yi −
h

2
y′i +

h2

8
y′′i −

h3

48
y′′′i +

h4

384
yIVi + o(h4),

S̄∗i+1 = yi +
h

2
y′i +

h2

8
y′′i +

h3

48
y′′′i +

h4

384
yIVi + o(h4), (6.18)

S∗i+1 = yi + hy′i +
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi −

h4

128
ρi + o(h4)

which in all give

∂ϕi
∂Si−1

(S∗) =
1

4
h2(y′i)

2 +
1

4
h3y′iy

′′
i + h4(

1

48
y′iy
′′′
i +

7

64
(y′′i )2) +O(h5),

∂ϕi
∂S̄i

(S∗) = −h2(y′i)2 −
1

2
h3y′iy

′′
i − h4(

1

3
y′iy
′′′
i −

1

8
(y′′i )2) +O(h5),

∂ϕi
∂Si

(S∗) =
3

2
h2(y′i)

2 + h4(
5

8
y′iy
′′′
i −

15

32
(y′′i )2) +O(h5), (6.19)

∂ϕi
∂S̄i+1

(S∗) = −h2(y′i)2 +
1

2
h3y′iy

′′
i − h4(

1

3
y′iy
′′′
i −

1

8
(y′′i )2) +O(h5),

∂ϕi
∂Si+1

(S∗) =
1

4
h2(y′i)

2 − 1

4
h3y′iy

′′
i + h4(

1

48
y′iy
′′′
i +

7

64
(y′′i )2) +O(h5).
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Clearly, by (6.19), there is no diagonal dominance in rows of F ′(S∗) corres-
ponding to the internal equations. Let us mention that, instead of (6.18) and
(6.19), we could use shorter expansions to detect this nondominance but we need
them in such a form later.

Because of the absence of diagonal dominance in rows of F ′(S∗) corresponding
to the internal equations we replace the equations (6.8) in F (S) = 0 by equations

ϕ̃i(S) = −1

2
ψi(S) +

16

3
ϕi(S)− 1

2
ψi+1(S) = 0 (6.20)

and, thereby, transform the basic system into the form F̃ (S) = MF (S) = 0, where

the entries of M are mi,i−1 = mi,i+1 = −1

2
, mii =

16

3
in rows corresponding to

the internal equations, mii = 1 in other rows and mij = 0 elsewhere. This assures
‖M‖∞−→∞ ≤ const and ‖M−1‖∞−→∞ ≤ const which we will use later.

Basing on (6.15) and (6.19) we calculate∣∣∣∂ϕ̃i
∂Si

(S∗)
∣∣∣− ∣∣∣ ∂ϕ̃i

∂Si−1
(S∗)

∣∣∣− ∣∣∣∂ϕ̃i
∂S̄i

(S∗)
∣∣∣− ∣∣∣ ∂ϕ̃i

∂S̄i+1
(S∗)

∣∣∣−∣∣∣ ∂ϕ̃i
∂Si+1

(S∗)
∣∣∣

= −h4q(xi)(y′i)2 +O(h5).

Thus, for small h, the matrix F̃ ′(S∗) has the diagonal dominance in rows. This
implies the invertibility of F̃ ′(S∗) and hence, of F ′(S∗). All in all, we achieve
‖(F̃ ′(S∗))−1‖∞−→∞ = O(h−4) and ‖(F ′(S∗))−1‖∞−→∞ = O(h−4).

6.3 Application of �xed point principle

In this section we use the Bohl-Brouwer �xed point theorem to show the existence
of solution of the basic system (6.8), (6.11), (6.12) which we denoted in previous
section by F (S) = 0. Firstly, we transform the basic system to an equivalent form
and then carry out an analysis with the help of Taylor expansion.

Consider the equation S = G(S) where G(S) = S − (F ′(S∗))−1F (S). Then G
is continuous. The equation F (S) = 0 is equivalent to S = G(S). Let us introduce
the sets K =

∏2n
i=0Ki, Ki = [S∗i − ch2, S∗i + ch2] and

K̃ = {S ∈ K | | (S̄i − S∗(ξi))− (Si−1 − S∗(xi−1)) |≤ c̃h3,
| (Si − S∗(xi))− (S̄i − S∗(ξi)) |≤ c̃h3, i = 1, . . . , n}

with numbers c > 0 and c̃ > 0 independent of h and which will be speci�ed later.
It is clear that the set K̃ is convex and compact. Our main purpose is now to show
that G : K̃ → K̃. This allows us to use Bohl-Brouwer �xed point theorem.
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To begin with we show that G : K̃ → K. The Taylor expansion of F (S) at
point S∗ gives

G(S)− S∗ =− (F ′(S∗))−1F (S∗)− 1

2
(F ′(S∗))−1F ′′(S∗)(S − S∗)2 (6.21)

− 1

6
(F ′(S∗))−1F ′′′(S∗)(S − S∗)3.

From the previous section we already know that ‖(F ′(S∗))−1‖ = O(h−4) and
‖F (S∗)‖ = O(h6). It follows ‖(F ′(S∗))−1F (S∗)‖ ≤ c0h2 for some c0 > 0.

In order to estimate the terms with second and third derivatives in (6.21) we
state the following technical result.

Lemma 6.1. Suppose A = (aij) is a n × n matrix with
∑n

j=1 aij = 0, i = 1, . . . , n,

and
∑n

i=1 aij = 0, j = 1, . . . , n. Then (Ax, x) = (ABz,Bz) = (BTABz, z) for all
x ∈ Rn with z1 = 0, zi = xi − xi−1, i = 2, . . . , n, and B = (bij) with bij = 1 for
i ≥ j and bij = 0 for i < j.

Proof. We have

(Ax, x) =

n∑
i=1

( n∑
j=1

aijxj

)
xi =

n∑
i=1

( n∑
j=1

aij(xj − x1)
)
xi =

n∑
i=1

( n∑
j=1

aij(

j∑
k=1

zk)
)
xi

=
n∑
i=1

n∑
j=1

aij(Bz)jxi = (ABz, x) = (Bz,ATx) = (Bz,ATBz) = (ABz,Bz).

In order to estimate (F ′(S∗))−1F ′′(S∗)(S−S∗)2 we point out, that the compo-
nents of F ′′(S∗)(S−S∗)2 are ϕ′′i (S∗)(S−S∗)2 or ψ′′i (S∗)(S−S∗)2. Any symmetric
matrix ϕ′′i (S

∗), i = 1, . . . , n− 1, has only one 5x5 nonzero diagonal block with the
property (6.17). Let us use now Lemma 6.1, where we take A = ϕ′′i (S

∗). Then
BTAB has only one 4x4 nonzero diagonal block with entries of order O(h). By
the inclusion S ∈ K̃ we can conclude ϕ′′i (S

∗)(S − S∗)2 = O(h7), i = 1, . . . , n − 1.
Clearly, ϕ′′0 = ϕ′′n = 0.

For the ψ′′i (S∗)(S − S∗)2 we calculate from (6.14)

∂2ψi
∂S2

i−1
+

∂2ψi
∂S̄i∂Si−1

+
∂2ψi

∂Si∂Si−1
= 2h2q(ξi)(Si − Si−1),

∂2ψi
∂Si−1∂S̄i

+
∂2ψi
∂S̄2

i

+
∂2ψi
∂Si∂S̄i

= 0,

∂2ψi
∂Si−1∂Si

+
∂2ψi
∂S̄i∂Si

+
∂2ψi
∂S2

i

= −2h2q(ξi)(Si − Si−1).
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Let us split ψ′′i (S∗) as A0+A1 where A0 has only a 3x3 nonzero diagonal block of

second order derivatives of ψi except
∂2ψi
∂S2

i−1
replaced by

∂2ψi
∂S2

i−1
−2h2q(ξi)(Si−Si−1)

and
∂2ψi
∂S2

i

replaced by
∂2ψi
∂S2

i

+ 2h2q(ξi)(Si − Si−1). Then A0 has the property of

zero sum of entries by rows and columns needed in Lemma 6.1. In this case
BTA0B has a 2x2 nonzero diagonal block with entries of order O(h) and hence
A0(S−S∗)2 = O(h7) due to S ∈ K̃. The matrix A1 has only two nonzero entries of
order O(h3) and A1(S−S∗)2 = O(h7) by S ∈ K. Thus, ψ′′i (S∗)(S−S∗)2 = O(h7).
Again, due to ‖(F ′(S∗))−1‖ = O(h−4) we establish the estimate

‖(F ′(S∗))−1F ′′(S∗)(S − S∗)2‖ ≤ (c2 + c̃2c
2)h3

for some c2, c̃2 > 0 and all S ∈ K̃ (c2 appears from the estimate of A1(S − S∗)2).

Similar reasoning allows to show ‖(F ′(S∗))−1F ′′′(S∗)(S−S∗)3‖ ≤ (c3+ c̃3c
3)h4

for some c3, c̃3 > 0 and all S ∈ K̃.

All estimates together yield that it holds G(S) ∈ K for all S ∈ K̃ if

c0h
2 +

1

2
(c2 + c̃2c

2)h3 +
1

6
(c3 + c̃3c

3)h4 ≤ ch2 (6.22)

which takes place if we choose, e.g., c = 2c0 and then h su�ciently small. All in
all, G : K̃ → K.

Our next goal is to show that G(S) ∈ K̃ for S ∈ K̃. We know already that
G(S) ∈ K. Additional conditions in K̃ concern adjacent components. Consider
now (6.21) as G(S) − S∗ = Ax where A = (F ′(S∗))−1 = (aij) and x ∈ R2n+1,
‖x‖ = O(h6). Then we have

[Ax]i − [Ax]i+1 =
∑
j

(aij − ai+1,j)xj

and in the case of aij − ai+1,j = O(h−2) we get

| [Ax]i − [Ax]i+1 | ≤
∑
j

| aij − ai+1,j | | xj | = O(h3)

as needed for G(S) ∈ K̃. Actually, here we will transform the basic system
F (S) = 0 into the form F̃ (S) = MF (S) = 0 with some regular suitable ma-
trix M having the property that ‖M‖ and ‖M−1‖ are bounded uniformly in n
(therefore in h). It turns out that we get the suitable matrix M if we replace the
equations ϕi(S) = 0, i = 1, . . . , n− 1, by the equations

ϕ̃i(S) =
1

2
ψi(S) + 8ϕi(S) +

1

2
ψi+1(S) = 0.

51



Then we see the entries of F̃ ′(S∗) from (6.15) and (6.19) as

∂ϕ̃i
∂Si−1

(S∗) = h3(4y′iy
′′
i +

1

2
pi(y

′
i)
2)

+ h4(−1

2
y′iy
′′′
i +

3

4
(y′′i )2 − 1

4
piy
′
iy
′′
i −

1

4
p′i(y

′
i)
2) +O(h5),

∂ϕ̃i
∂S̄i

(S∗) =− 4h2(y′i)
2 − 8h3y′iy

′′
i

+ h4(−4

3
y′iy
′′′
i +

5

4
(y′′i )2 − 1

2
piy
′
iy
′′
i −

1

2
qi(y

′
i)
2) +O(h5),

∂ϕ̃i
∂Si

(S∗) = 8h2(y′i)
2 + h4(

11

3
y′iy
′′′
i − 4(y′′i )2 +

3

2
piy
′
iy
′′
i +

1

2
p′i(y

′
i)
2) +O(h5),

(6.23)

∂ϕ̃i
∂S̄i+1

(S∗) =− 4h2(y′i)
2 + 8h3y′iy

′′
i

+ h4(−4

3
y′iy
′′′
i +

5

4
(y′′i )2 − 1

2
piy
′
iy
′′
i −

1

2
qi(y

′
i)
2) +O(h5),

∂ϕ̃i
∂Si+1

(S∗) = h3(−4y′iy
′′
i −

1

2
pi(y

′
i)
2)

+ h4(−1

2
y′iy
′′′
i +

3

4
(y′′i )2 − 1

4
piy
′
iy
′′
i −

1

4
p′i(y

′
i)
2) +O(h5)

together with those obtained from (6.12). For (6.23), we observe the diagonal
dominance in rows with the di�erence −h4qi(y′i)2 +O(h5).

It follows now that G(S) − S∗ = (F ′(S∗))−1x = (F̃ ′(S∗))−1Mx with
‖Mx‖ = O(h6) and we can use the Bohl-Brouwer �xed point theorem, by which
the set K̃ contains a �xed point of the function G which is also a solution of the
basic system.

To complete this section we need to prove the following lemma for the matrix
A = (F̃ ′(S∗))−1 = (aij)

Lemma 6.2. It holds | aij − ai+1,j | = O(h−2).

Proof. We give the proof in the case of p = 0 in equation (6.1) which simpli�es
considerably the writings.

Dividing the equations ψi(S) = 0 by 4h2(ȳ′i)
2 we transform the derivatives in
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(6.15) into the form

− (1 + h2ri) +O(h3),

2(1 + h2(ri − si)) +O(h3), (6.24)

− (1 + h2ri) +O(h3),

where ri =
1

12

ȳ′′′i
ȳ′i
− 1

4

( ȳ′′i
ȳ′i

)2
, si =

1

8
q̄i.

We will eliminate in the equations of F̃ ′(S∗)A = I (I being identity matrix)
containing the derivatives from (6.23) the �rst and the last ones. For that, let us
expand (6.15) and also (6.15) for i+1 at the point xi. The standard elimination and
division by 4h2(y′i)

2 gives the equations with coe�cients of the form (6.24) with

ri =
7

12

y′′′i
y′i
− 11

16

(y′′i
y′i

)2
+

1

8
qi and si =

1

8
qi. Dividing also equations (6.12) by h2 we

will study the equation F̃ ′(S∗)A = I with the entries of F̃ ′(S∗) of the form (6.24)
in interior rows and show that here, for A = (aij), it holds | aij − ai+1,j |= O(1).

For simplicity in writings we suppose that the rows and columns of A have the
indices from 1 to n. We omit in (6.24) and in calculations the terms of O(h3) (see
the remark at the end of the proof).

Let us start with the �rst column of F̃ ′(S∗)A. Clearly, a11 = 1. From

−(1 + h2r2)a11 + 2(1 + h2(r2 − s2))a21 − (1 + h2r2)a31 = 0

we obtain

a21 −
1

2
(1 + h2s2)a31 =

1

2
(1 + h2s2) (6.25)

and

a21 − a31 =
1

2
(−1 + h2s2)a31 +

1

2
(1 + h2s2).

Straightforward calculations lead to the equalities

ai1−
i− 1

i
(1 +h2(bi2s2 + . . .+ biisi))ai+1,1 =

1

i
(1 +h2(ci2s2 + . . .+ ciisi)) (6.26)

and

ai1 − ai+1,1 =
1

i
(−1 + h2((i− 1)bi2s2 + . . .+ (i− 1)biisi))ai+1,1

+
1

i
(1 + h2(ci2s2 + . . .+ ciisi)), i = 2, . . . , n− 1. (6.27)

In (6.25) we have b22 = c22 = 1. Successive increasing of index i allows to establish
the relations

bij =
i− 2

i
bi−1,j , j = 2, . . . , i− 1, bii =

2(i− 1)

i
,

cij = ci−1,j + bij , j = 2, . . . , i− 1, cii = bii.
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Then, for i ≥ 2,

(i− 1)
i∑

j=2

bij = (i− 1)
( i−1∑
j=2

bij + bii

)
= (i− 1)

( i−1∑
j=2

i− 2

i
bi−1,j +

2(i− 1)

i

)

= 2
i− 1

i
(i− 1) +

i− 1

i

(2(i− 2)

i− 1
(i− 2) +

i− 2

i− 1
(i− 3)

i−2∑
j=2

bi−2,j

)
< 2((i− 1) + (i− 2) + . . .+ b22) = i(i− 1).

Thus,
i∑

j=2

bij ≤ i ≤ n and, consequently,

h2
i∑

j=2

bijsj = O(h) with

i∑
j=2

bij sj < 0. (6.28)

Similarly, we establish

i∑
j=2

cij ≤ i(i− 1) and h2
i∑

j=2

cij sj = O(1). (6.29)

Write (6.26) in the form

ai1
i− 1

= (1 + bi)
ai+1,1

i
+

1

(i− 1)i
(1 + ci) (6.30)

where bi = h2
∑i

j=2 bijsj and ci = h2
∑i

j=2 cijsj . Denote now zi =
ai1
i− 1

,

i = 2, . . . , n. Evidently, an1 = 0 and zn = 0. By (6.29), from (6.30) we get

| zn−1 | ≤
C1

(n− 2)(n− 1)
with some constant C1. Then, successively using (6.30),

(6.28) which implies 1 + bi ≤ 1, and also the estimate of zn−1, we have

| zn−i | ≤ C2

( 1

(n− i− 1)(n− i)
+ . . .+

1

(n− 2)(n− 1)

)
≤ C,

C2, C being positive constants. We have shown that (recall that a11 = 1 and
an1 = 0)

ai1
i− 1

= O(1), i = n− 1, . . . , 2. (6.31)

Now (6.27) with the help of (6.28), (6.29) and (6.31) yields

| ai1 − ai+1,1 | = O(1), i = 1, . . . , n− 1. (6.32)

The calculations in the second column of F̃ ′(S∗)A are almost identical. E.g.,
a12 = 0 and formula (6.26) is replaced by

ai2 −
i− 1

i
(1 + h2(bi2s2 + . . .+ biisi))ai+1,2 =

1

i
(1 + h2(ci2s2 + . . .+ ciisi − r2))
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with corresponding di�erence in (6.27). The counterpart of (6.32) holds.

Let us discuss more generally columns with indices k = 2, . . . ,
n+ 1

2
(observe

that in our reasoning n is actually odd number and due to the symmetrical struc-

ture of F ′(S∗) there is no need to consider k >
n+ 1

2
because we could start from

the right bottom of A with ann = 1). We have a1k = 0 and get

aik −
i− 1

i
(1 + h2(bi2s2 + . . .+ biisi))ai+1,k = 0, i < k, (6.33)

which implies
∣∣∣ aik
i− 1

∣∣∣ ≤ ∣∣∣ai+1,k

i

∣∣∣, i = 1, . . . , k − 1. From (6.33) it follows

aik − ai+1,k =
1

i
(−1 + h2((i− 1)bi2s2 + . . .+ (i− 1)biisi))ai+1,k, i < k. (6.34)

Again, direct calculations give

aik −
i− 1

i
(1 + h2(bi2s2 + . . .+ biisi))ai+1,k (6.35)

=
k − 1

i
(1 + h2(ci2s2 + . . .+ ciisi − rk)), i = k, . . . , n− 1,

and this implies

aik − ai+1,k =
1

i
(−1 + h2(bi2s2 + . . .+ biisi))ai+1,k (6.36)

+
k − 1

i
(1 + h2(ci2s2 + . . .+ ciisi − rk)), i = k, . . . , n− 1.

Denoting here zi =
aik
i− 1

, i = 2, . . . , n, we have zn = 0. The recursion (6.35)

has the form

zi =
k − 1

(i− 1)i
(1 + ci) + (1 + bi)zi+1, i = k, . . . , n− 1. (6.37)

Basing again on (6.29), it holds | 1 + ci | ≤ C1 | and | zn−1 | ≤
k − 1

(n− 1)(n− 2)
C1.

Successive use of (6.37) gives in this case for i = 2, . . . , n− k

| zn−i | ≤ C2(k − 1)
( 1

(k − 1)k
+ . . .+

2

(n− 2)(n− 1)

)
.

But

n−1∑
i=k

1

(i− 1)i
≤

∞∑
i=k−1

1

i2
≤
∫ ∞
k−1

dx

x2
=

1

k − 1
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and hence, we have shown that∣∣∣ aik
i− 1

∣∣∣ = O(1), i = 2, . . . , n− 1.

This, in turn, by (6.34) and (6.36) gives

| aik − ai+1,k | = O(1), i = 1, . . . , n− 1,

which was the assertion of Lemma 6.2.

Remark. We can observe that the rest terms in (6.15) and (6.23) and those
occurring in calculations do not spoil the reasoning. Namely, if F̃ ′(S∗) = A + B,
‖B‖ = O(h5) with ‖A−1‖ = O(h−4) and | [A−1x]i − [A−1x]i+1 |= O(h3) for
‖x‖ = O(h6), then (F̃ ′(S∗))−1x = A−1(I − (BA−1)(I + BA−1)−1)x and we have
also | [(F̃ ′(S∗))−1x]i − [(F̃ ′(S∗))−1x]i+1 | = O(h3). The described elimination
means that we replace F (S) = 0 by (I + E)F (S) = 0, E being a diagonal matrix
with entries of order O(h). Thus, the matrix M = I + E is suitable.

This completes the proof of Lemma 6.2.

6.4 Convergence estimates

In this section we establish in uniform norm the convergence rates of collocation
method (6.6), (6.7) with linear/linear rational splines for boundary value problem
(6.1), (6.2).

Let us remind, that in previous section we proved that the set K̃ contains a
�xed point of the function G which is also a solution of the basic system (6.8),
(6.11), (6.12). Denote by S here the linear/linear rational spline having as knot
values this vector in K̃. Recall that S∗ is a special linear/linear rational spline
interpolant to the solution y of (6.1), (6.2). From [25] we know (see also Chapter
4), that

‖ S∗ − y ‖∞= O(h3) (6.38)

and
‖ S′∗ − y′ ‖∞= O(h2). (6.39)

Firstly, we determine c0 for the convergence estimate. The constant c0 is ob-
tained from the estimate of (F̃ ′(S∗))−1F̃ (S∗) where F̃ (S) = MF (S) with suitable
matrix M . Suppose we divide (6.11) by −h4q(ξi)(ȳ′i)2 and (6.20) by −h4q(xi)(y′i)2
which we include into the matrix M . Then the matrix F̃ ′(S∗) has the diagonal
dominance in rows with the di�erence 1 and, consequently, ‖ (F̃ ′(S∗))−1 ‖ ≤ 1.
Then, on the other hand, as ϕi(S∗) = 0, by (6.20) the estimate of ψ̃i(S∗) reduces
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to the estimate of ψi(S∗) which, by (6.13), gives that

c0 =
1

24
max
1≤i≤n

∣∣∣∣∣
yIV − py′′′ − 6

y′′′y′′

y′
+ 6

(y′′)3

(y′)2
+

3

2
p

(y′′)2

y′

q
(ξi)

∣∣∣∣∣. (6.40)

Note that, instead of points ξi, i = 1, . . . , n, we could use in determination of c0
knots xi, i = 1, . . . , n− 1.

Before achieving in uniform norm the convergence rates, we need some auxiliary
results. If we take c = c0 + c1h with su�ciently large c1 > 0 then (6.22) holds.
This means that

|S(xi)− S∗(xi)| ≤ c0h2 + o(h2), i = 1, . . . , n− 1, (6.41)

and
|S(ξi)− S∗(ξi)| ≤ c0h2 + o(h2), i = 1, . . . , n. (6.42)

Now from the estimate |S(ξi) − y(ξi)| ≤ |S(ξi) − S∗(ξi)| + |S∗(ξi) − y(ξi)| we get
by (6.42) and (6.38)

|S(ξi)− y(ξi)| ≤ c0h2 + o(h2). (6.43)

Proposition 6.1. For the solution S of the problem (6.6), (6.7) having the vector
of values in K̃ it holds ‖S(k)‖∞ = max1≤i≤n maxxi−1≤x≤xi |S(k)(x)| ≤ Ck, k ≥ 1.

Proof. From (2.1) we obtain

S(k)(x) =
(−1)k−1k!cid

k−1
i

(1 + di(x− ξi))k+1
, x ∈ [xi−1, xi].

We indicated in Section 2.3 that ci and di could be expressed via the spline values
at xi and ξi. Namely,

ci =
4(Si − S̄i)(S̄i − Si−1)

h(Si − Si−1)
, di =

2(2S̄i − Si−1 − Si)
h(Si − Si−1)

.

Then, by (6.41), (6.42) and (6.38), we �nd that ci = 1+O(h) and di = O(1) which
implies the assertion.

Next, we show the superconvergence of order h2 for S′′ in certain points.

From the equalities

(S − S∗)(xi)− (S − S∗)(ξi) = O(h3)

and
(S − S∗)(xi−1)− (S − S∗)(ξi) = O(h3),
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we obtain

(S′ − S′∗)(ξi) =
(S − S∗)(xi)− (S − S∗)(xi−1)

h
+O(h2) = O(h2).

Therefore, due to (6.39) we have

S′(ξi)− y′(ξi) = O(h2). (6.44)

By (6.1) and (6.6)

S′′(ξi)− y′′(ξi) + p(ξi)(S
′(ξi)− y′(ξi)) + q(ξi)(S(ξi)− y(ξi)) = 0

which, with the help of (6.43) and (6.44) gives

S′′(ξi)− y′′(ξi) = O(h2). (6.45)

The Taylor expansion for x ∈ [xi−1, xi]

S′(x)− y′(x) = S′(ξi)− y′(ξi) + (S′′(ξi)− y′′(ξi))(x− ξi) +
1

2
(S′′′− y′′′)(ηi)(x− ξi)2

due to (6.44), (6.45) and Proposition 6.1 implies

max
a≤x≤b

|S′(x)− y′(x)| = O(h2). (6.46)

The expansion

S′′(x)− y′′(x) = S′′(ξi)− y′′(ξi) + (S′′′ − y′′′)(η̄i)(x− ξi), x ∈ [xi−1, xi],

(6.45) and Proposition 6.1 gives

max
a≤x≤b

|S′′(x)− y′′(x)| = O(h). (6.47)

Finally, the expansion for x ∈ [xi−1, xi]

S(x)− y(x) = S(ξi)− y(ξi) + (S′ − y′)(ζi)(x− ξi)

and (6.46) thanks to (6.43) yields

max
a≤x≤b

|S(x)− y(x)| ≤ c0h2 + o(h2). (6.48)

We have proved as our main result in this chapter the following

Theorem 6.1. Let the solution y ∈ C4[a, b] of boundary value problem (6.1), (6.2)
be strictly monotone. Then, for su�ciently small h, the collocation problem (6.6),
(6.7) has a linear/linear rational spline S as solution with convergence estimates
(6.48) (c0 is determined in (6.40)), (6.46), (6.47) and (6.45). The rest term o(h2)
in (6.48) is actually O(h2+α) in the case yIV ∈ Lip α, 0 < α ≤ 1.
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In collocation with quadratic splines, see, e.g., [39], it is known the estimate

‖S − y‖∞ ≤
h2

24
max
1≤i≤n

∣∣∣yIV − py′′′
q

(ξi)
∣∣∣+ o(h2).

Let us point out, that in comparison to (6.48), the additional members in c0 could
make the main part of the estimate for rational splines smaller or greater than in
case of quadratic splines. In Chapter 8 there is a numerical example in which the
rational splines have really considerably smaller error.
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Chapter 7

Quadratic/linear rational spline
collocation

Chapter 7 is dedicated to quadratic/linear rational spline collocation method. At
�rst we introduce the method.

As in previous chapter we consider the di�erential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x), x ∈ (a, b), (7.1)

with boundary conditions

y(a) = α, y(b) = β. (7.2)

Suppose that the problem has a solution y ∈ C4[a, b]. Let p, q, f be continuous
and q(x) ≤ q < 0, x ∈ (a, b). Then the solution of problem (7.1), (7.2) is unique
as we showed in Chapter 6.

7.1 Description of the spline collocation method

Let a = x0 < x1 < . . . < xn = b be a uniform partition of the interval [a, b] with
knots xi = a+ ih, i = 0, . . . , n, h = (b− a)/n, n ∈ N.

We use the quadratic/linear rational spline representation by spline values and
�rst moments (Section 3.1). In this representation we have the notations S(xi) =Si
and S′(xi) = mi, i = 0, . . . , n.

In collocation we require the spline S to satisfy the di�erential equation at
points xi and the boundary conditions:

S′′(xi) + p(xi)S
′(xi) + q(xi)S(xi) = f(xi), i = 0, . . . , n, (7.3)

S(a) = α, S(b) = β. (7.4)
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Internal equations (3.6) together with equations (7.3) and (7.4) form a nonlinear
system with respect to the unknowns S0, . . . , Sn, m0, . . . ,mn.

Let us mention, that this collocation problem is similar to cubic spline case. The
convergence rate O(h2) with adequate error estimate for cubic spline collocation
method is known [39]. We will study such a problem in the case of quadratic/linear
rational splines.

7.2 Transformation of the system

We start by transforming the system (3.6), (7.3), (7.4) to a more appropriate form.

Calculating S′′(xi) with the help of (3.5) at point xi on subinterval [xi−1, xi]
we have

2(hmi − (Si − Si−1))2

h2(Si − Si−1 − hmi−1)
+ p(xi)mi + q(xi)Si = f(xi), i = 1, . . . , n. (7.5)

Similarly, S′′(xi) calculated on subinterval [xi, xi+1] gives

2(Si+1 − Si − hmi)
2

h2(hmi+1 − (Si+1 − Si))
+ p(xi)mi + q(xi)Si = f(xi), i = 0, . . . , n− 1. (7.6)

Note that if y is the solution of (7.1) we may write for i = 0, . . . , n

y′′(xi) + p(xi)y
′(xi) + q(xi)y(xi) = f(xi). (7.7)

Let us now subtract (7.7) from (7.5) and from (7.6), then multiply the results by
h2(Si − Si−1 − hmi−1) and by h2(hmi+1 − (Si+1 − Si)), respectively. This gives

2(hmi − (Si − Si−1))2 − h2(Si − Si−1 − hmi−1)y
′′(xi)

+ h2p(xi)(mi − y′(xi))(Si − Si−1 − hmi−1) (7.8)

+ h2q(xi)(Si − y(xi))(Si − Si−1 − hmi−1) = 0, i = 1, . . . , n,

and

2(Si+1 − Si − hmi)
2 − h2(hmi+1 − (Si+1 − Si))y′′(xi)

+ h2p(xi)(mi − y′(xi))(hmi+1 − (Si+1 − Si)) (7.9)

+ h2q(xi)(Si − y(xi))(hmi+1 − (Si+1 − Si)) = 0, i = 0, . . . , n− 1.
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Adding the last two equations for i = 1, . . . , n− 1, we have

ψi(Si−1,mi−1, Si,mi, Si+1,mi+1)

= 2((hmi − (Si − Si−1))2 + (Si+1 − Si + hmi)
2)

− h2(h(mi+1 −mi−1)− (Si+1 − 2Si + Si−1))y
′′(xi) (7.10)

+ h2p(xi)(mi − y′(xi))(h(mi+1 −mi−1)− (Si+1 − 2Si + Si−1))

+ h2q(xi)(Si − y(xi))(h(mi+1 −mi−1)−(Si+1 − 2Si + Si−1)) = 0,

where we introduce the functions ψi, i = 1, . . . , n− 1.

We also introduce the functions ϕi, i = 1, . . . , n − 1, and write the equations
(3.6) in the form

ϕi(Si−1,mi−1, Si,mi, Si+1,mi+1) = (hmi − (Si − Si−1))2(hmi+1 − (Si+1 − Si))

− (Si+1 − Si − hmi)
2(Si − Si−1 − hmi−1) = 0. (7.11)

We write the boundary conditions (7.4) (with the help of notations ψ0 and ψn
for the left side of equations) as

ψ0(S0) = h2(S0 − α) = 0, ψn(Sn) = h2(Sn − β) = 0. (7.12)

Let us de�ne the function ϕ̃0 by (7.9) in the case of i = 0 and ϕ̃n by (7.8) in
the case of i = n. More precisely,

ϕ̃0(S0,m0, S1,m1) = 2(S1 − S0 − hm0)
2 − h2(hm1 − (S1 − S0))y′′(x0)

+ h2p(x0)(m0 − y′(x0))(hm1 − (S1 − S0)) (7.13)

+ h2q(x0)(S0 − y(x0))(hm1 − (S1 − S0)) = 0

and

ϕ̃n(Sn−1,mn−1, Sn,mn) = 2(hmn−(Sn−Sn−1))2−h2(Sn−Sn−1−hmn−1)y
′′(xn)

+ h2p(xn)(mn − y′(xn))(Sn − Sn−1 − hmn−1) (7.14)

+ h2q(xn)(Sn − y(xn))(Sn − Sn−1 − hmn−1) = 0.

De�ne also ϕ̃1 by (7.8) in the case i = 1 and similarly ϕ̃n−1 by (7.9) in the case of
i = n− 1, i.e.,

ϕ̃1(S0,m0, S1,m1) = 2(hm1 − (S1 − S0))2 − h2(S1 − S0 − hm0)y
′′(x1)

+ h2p(x1)(m1 − y′(x1))(S1 − S0 − hm0) (7.15)

+ h2q(x1)(S1 − y1)(S1 − S0 − hm0) = 0
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and

ϕ̃n−1(Sn−1,mn−1,Sn,mn) =

2(Sn−Sn−1 − hmn−1)
2−h2(hmn − (Sn−Sn−1))y′′(xn−1)

+ h2p(xn−1)(mn−1 − y′(xn−1))(hmn − (Sn − Sn−1)) (7.16)

+ h2q(xn−1)(Sn−1 − y(xn−1))(hmn − (Sn − Sn−1)) = 0.

Then de�ne ϕ0 = ϕ̃0 − ϕ̃1 and ϕn = ϕ̃n − ϕ̃n−1.

Denote S = (S0, . . . , Sn) and m = (m0, . . . ,mn). Let us point out, that al-
though we denote by S a spline and the vector of its knot values, from the context
it is clear which object we deal with. Now the collocation equations (7.10),
internal equations (7.11), boundary equations (7.12), equations ϕ0(S,m) = 0 and
ϕn(S,m) = 0 together form a system Φ(S,m) = 0 and Ψ(S,m) = 0 with functions
Φ :R2n+2→Rn+1 and Ψ :R2n+2→Rn+1, where Φ(S,m) = (ϕ0(S,m), . . . , ϕn(S,m))
and Ψ(S,m) = (ψ0(S,m), . . . , ψn(S,m)) (here and in the sequel we allow the
whole vector of spline knot values S and derivative values m in ϕi(S,m) and
ψi(S,m) instead of some particular components as in (7.10)−(7.16)). The system
Φ(S,m) = 0, Ψ(S,m) = 0 will be considered as basic system and it contains all
the requirements on spline values and its derivatives. Our aim is to show that this
system has an appropriate solution and obtain the convergence results.

In order to establish our results we have to use the quadratic/linear ratio-
nal spline interpolant S satisfying (5.1) and (5.25) for the solution y of problem
(7.1), (7.2). Denote this special interpolant by S∗. De�ne its vector of values by
S∗ = (S∗(x0), . . . , S∗(xn)) ∈ Rn+1 and let m∗ = (S′∗(x0), . . . , S

′
∗(xn)) ∈ Rn+1. It

occurs that around the vector (S∗,m∗) we succeed in �nding a set with su�ciently
small size containing the vector of values and derivatives of approximate solution.
We know that S∗i = yi and m∗i − y′i = o(h3) ([26] or see Chapter 5). If y ∈ Lip α,
0 < α ≤ 1, then

m∗i − y′i = O(h3+α). (7.17)

We transform the basic system to an equivalent form and then carry out an
analysis.

7.3 Estimate of the error of approximate solution

In this section we estimate the error in the case of the solution of basic system.

The Taylor expansion of Ψ(S,m) at point (S∗,m) gives

Ψ(S,m) = Ψ(S∗,m) + ΨS(S∗,m)(S − S∗) +
1

2
ΨSS(S − S∗)2 (7.18)
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where we use the notation ΨS(S,m) = (ψ0S(S,m), . . . , ψnS(S,m)), and, in turn,

with the components ψiS(S,m) = (
∂ψi
∂S0

(S,m), . . . ,
∂ψi
∂Sn

(S,m)), but any compo-

nent ψiSS of ΨSS is a matrix consisting of second order partial derivatives by
variables Si, i = 0, . . . , n. If the matrix ΨS(S∗,m) is invertible then due to (7.18)
the equation Ψ(S,m) = 0 is equivalent to

S − S∗ = −Ψ−1S (S∗,m)(Ψ(S∗,m) +
1

2
ΨSS(S − S∗)2). (7.19)

Suppose that
Si − S∗i = O(h2), i = 1, . . . , n− 1, (7.20)

(Si−1 − S∗i−1)− 2(Si − S∗i ) + (Si+1 − S∗i+1) = O(h4), i = 1, . . . , n− 1, (7.21)

2h(mi −m∗i )− ((Si+1 − S∗i+1)− (Si−1 − S∗i−1)) = O(h5), i = 1, . . . , n− 1, (7.22)

h(m0 −m∗0)− (S1 − S∗1) = O(h4), (7.23)

h(mn −m∗n)− (Sn−1 − S∗n−1) = O(h4). (7.24)

In those assumptions, in the case of su�ciently small h, the basic system has a
solution which we will show later. Thus, in estimation of the error we may use
(7.20)−(7.24).

Let us add that in those assumptions also, for i = 1, . . . , n− 1,

h(mi −m∗i )− ((Si+1 − S∗i+1)− (Si − S∗i )) = O(h4), (7.25)

h(mi −m∗i )− ((Si − S∗i )− (Si−1 − S∗i−1)) = O(h4) (7.26)

where (7.25) is obtained by subtracting (7.21) from (7.22) and (7.26) comes by
adding (7.21) and (7.22).

Let us assume without loss of generality that y′′(x) > 0, x ∈ [a, b] (see Intro-
duction) (in the case y′′(x) < 0, x ∈ [a, b], the changes in the following text are
obvious).

The main problem in (7.19) is the study of interior equations with indices
i = 1, . . . , n−1. Let us start with the study of ΨS(S∗,m). As before, let yi = y(xi),
i = 0, . . . , n, similar notation will be used in the case of derivatives and other
functions.
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From (7.10) we get

∂ψi
∂Si−1

= 4(hmi − (Si − Si−1)) + h2y′′i − h2pi(mi − y′i)− h2qi(Si − yi),

∂ψi
∂Si

= − 4(Si+1 − 2Si + Si−1)− 2h2y′′i + 2h2pi(mi − y′i) + 2h2qi(Si − yi)

(7.27)
+ h2qi(h(mi+1 −mi−1)− (Si+1 − 2Si + Si−1)),

∂ψi
∂Si+1

= 4(Si+1 − Si − hmi) + h2y′′i − h2pi(mi − y′i)− h2qi(Si − yi).

With the help of the following Taylor expansions

S∗i−1 = yi − hy′i +
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi + o(h4),

S∗i+1 = yi + hy′i +
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi + o(h4),

(7.28)

m∗i = y′i − hy′′i +
h

2
y′′′i −

h2

6
yIVi + o(h3),

m∗i+1 = y′i + hy′′i +
h

2
y′′′i +

h2

6
yIVi + o(h3)

we can calculate

hm∗i − (S∗i − S∗i−1) =
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi + o(h4),

hm∗i+1 − (S∗i+1 − S∗i ) =
h2

2
y′′i +

h3

3
y′′′i +

h4

8
yIVi + o(h4),

(7.29)

S∗i − S∗i−1 − hm∗i−1 =
h2

2
y′′i −

h3

3
y′′′i +

h4

8
yIVi + o(h4),

S∗i+1 − S∗i − hm∗i =
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi + o(h4)

and then

h(mi+1 −mi−1)− (S∗i+1 − 2S∗i + S∗i−1)

= h(mi+1 −m∗i+1)− h(mi−1 −m∗i−1) + h(m∗i+1 −m∗i−1)− (S∗i+1 − 2S∗i + S∗i−1)

= h(mi+1 −m∗i+1)−h(mi−1 −m∗i−1) + hm∗i+1−(S∗i+1−S∗i )+(S∗i −S∗i−1−hm∗i−1)

= h2y′′i +
1

4
h4yIVi + h(mi+1 −m∗i+1)− h(mi−1 −m∗i−1) + o(h4). (7.30)
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We get from (7.27) due to (7.29) and (7.30)

∂ψi
∂Si−1

(S∗,m) = 4(hm∗i − (S∗i − S∗i−1)) + 4h(mi −m∗i ) + h2y′′i

− h2pi(mi − y′i)− h2qi(S∗i − yi)

= 3h2y′′i −
2

3
h3y′′′i +

h4

6
yIVi +4h(mi −m∗i )−h2pi(mi − y′i) + o(h4),

∂ψi
∂Si

(S∗,m) =− 4(S∗i+1 − 2S∗i + S∗i−1)− 2h2y′′i + 2h2pi(mi − y′i)

+ 2h2qi(S
∗
i − yi) + h2qi(h(m∗i+1 −m∗i−1)−(S∗i+1 − 2S∗i + S∗i−1))

+ h2qi(h(mi+1 −m∗i+1)− h(mi−1 −m∗i−1))

= − 6h2y′′i −
h4

3
yIVi + h4qiy

′′
i + 2h2pi(mi − y′i)

+ h2qi(h(mi+1 −m∗i+1)− h(mi−1 −m∗i−1)) + o(h4),

∂ψi
∂Si+1

(S∗,m) = 4(S∗i+1 − S∗i − hm∗i )− 4h(mi −m∗i ) + h2y′′i

− h2pi(mi − y′i)− h2qi(S∗i − yi)

= 3h2y′′i +
2

3
h3y′′′i +

h4

6
yIVi −4h(mi −m∗i )−h2pi(mi − y′i) + o(h4).

Note that in the case of mi −m∗i = O(h2) and due to (7.17) we have for small
h the diagonal dominance in rows, namely∣∣∣∂ψi

∂Si
(S∗,m)

∣∣∣− ∣∣∣ ∂ψi
∂Si−1

(S∗,m)
∣∣∣− ∣∣∣ ∂ψi

∂Si+1
(S∗,m)

∣∣∣ = −h4qiy′′i + o(h4).

In addition, for ψ0 and ψn we have the diagonal dominance in rows as well. This
implies the invertibility of ΨS(S∗,m).

Now, let us proceed with the study of Ψ(S∗,m). With the help of the �rst
equality of (7.29) we get

hmi − (S∗i − S∗i−1) = h(mi −m∗i ) +
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi + o(h4) (7.31)

and the last one from (7.29) gives

S∗i+1 − S∗i − hmi = −h(mi −m∗i ) +
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi + o(h4). (7.32)
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Then (7.28) implies

S∗i+1 − 2S∗i + S∗i−1 = h2y′′i +
h4

12
yIVi + o(h4). (7.33)

Due to (7.30), (7.31) and (7.32) by direct calculations we have (7.10) as

ψi(S
∗,m) =

1

9
h6(y′′′i )2 − h6

12
y′′i y

IV
i + 4h2(mi −m∗i )2

− 4

3
h4y′′′i (mi −m∗i )− h2y′′i (h(mi+1 −m∗i+1)− h(mi−1 −m∗i−1))

+ h4piy
′′
i (mi −m∗i ) + o(h6). (7.34)

Next, we are interested in the components of ΨSS . From (7.27) we get the
second derivatives

∂2ψi
∂S2

i−1
= 4,

∂2ψi
∂Si−1∂Si

= −4− h2qi,
∂2ψi

∂Si−1∂Si+1
= 0,

∂2ψi
∂Si∂Si−1

= −4− h2qi,
∂2ψi
∂S2

i

= 8 + 4h2qi,
∂2ψi

∂Si∂Si+1
= −4− h2qi,

∂2ψi
∂Si+1∂Si−1

= 0,
∂2ψi

∂Si+1∂Si
= −4− h2qi,

∂2ψi
∂S2

i+1

= 4.

Therefore

1

2
ψiSS(S − S∗)2 = 2((Si−1 − S∗i−1)− (Si − S∗i ))2 + 2((Si − S∗i )− (Si+1 − S∗i+1))

2

− h2qi(Si − S∗i )((Si−1 − S∗i−1)− 2(Si − S∗i ) + (Si+1 − S∗i+1))

and taking into account (7.20) and (7.21) then

1

2
ψiSS(S − S∗)2 = 2((Si−1 − S∗i−1)− (Si − S∗i ))2

+ 2((Si − S∗i )− (Si+1 − S∗i+1))
2 +O(h8). (7.35)

Let us now study Ψ(S∗,m) +
1

2
ΨSS(S − S∗)2. Observe that basing on (7.25)
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and (7.26) we can write

4h2(mi −m∗i )2 + 2((Si − S∗i )− (Si−1 − S∗i−1))2 + 2((Si+1 − S∗i+1)− (Si − S∗i ))2

− 4h(mi −m∗i )((Si+1 − S∗i+1)− (Si − S∗i ) + (Si − S∗i )− (Si−1 − S∗i−1))

+ 4h(mi −m∗i )(Si+1 − S∗i+1 − (Si−1 − S∗i−1))

= 2(h(mi −m∗i )− ((Si+1 − S∗i+1)− (Si − S∗i )))2

+ 2(h(mi −m∗i )− ((Si − S∗i )− (Si−1 − S∗i−1)))2

4h(mi −m∗i )(Si+1 − S∗i+1 − (Si−1 − S∗i−1))

= 4h(mi −m∗i )(Si+1 − S∗i+1 − (Si−1 − S∗i−1)) +O(h8).

This with (7.34) and (7.35) leads to

ψi(S
∗,m) +

1

2
ψiSS(S − S∗)2 =

h6

12

(4

3
(y′′′i )2 − y′′i yIVi

)
(7.36)

− h2y′′i (h(mi+1 −m∗i+1)− h(mi−1 −m∗i−1))−
4

3
h4y′′′i (mi −m∗i )

+ h4piy
′′
i (mi −m∗i )+4h(mi −m∗i )(Si+1−S∗i+1−(Si−1 − S∗i−1)) + o(h6).

Replacing 2h(mi −m∗i ) in (7.36) by Si+1 − S∗i+1 − (Si−1 − S∗i−1) + O(h5) and
due to (7.22) we see that (7.36) reduces to

ψi(S
∗,m) +

1

2
ψiSS(S − S∗)2

=
h6

12

(4

3
(y′′′i )2 − y′′i yIVi

)
− h2y′′i (h(mi+1 −m∗i+1)− h(mi−1 −m∗i−1))

+
(
− 2

3
h3y′′′i +

h3

2
piy
′′
i + 2(Si+1 − S∗i+1−(Si−1−S∗i−1))

)
(Si+1−S∗i+1−(Si−1−S∗i−1))

+ o(h6). (7.37)

Consider now (7.19) in the form

ΨS(S∗,m)(S − S∗) = −(Ψ(S∗,m) +
1

2
ΨSS(S − S∗)2). (7.38)

For the de�niteness, let us assume that yIV , p, q ∈ Lip 1 (if only yIV , p, q ∈ C[a, b],
the obvious appropriate changes should be made in the text). We have already
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studied ΨS(S∗,m) and Ψ(S∗,m) +
1

2
ΨSS(S − S∗)2. Now (7.38) has the matrix

form A(S − S∗) = b, where we take the components(
− 2

3
h3y′′′i +

h3

2
piy
′′
i + 2(Si+1 − S∗i+1−(Si−1−S∗i−1))

)
(Si+1−S∗i+1−(Si−1−S∗i−1))

(coming from (7.37)) to the left hand side. Then

ai,i−1 = 3h2y′′i +
1

6
h4yIVi − h2pi(mi − y′i) +O(h5),

ai,i = −6h2y′′i −
1

3
h4yIVi + 2h2pi(mi − y′i) + h4qiy

′′
i +O(h5), (7.39)

ai,i+1 = 3h2y′′i +
1

6
h4yIVi − h2pi(mi − y′i) +O(h5)

and

bi =
h6

12

(
y′′i y

IV
i −

4

3
(y′′′i )2

)
+ h2y′′i (h(mi+1 −m∗i+1)− h(mi−1 −m∗i−1)) +O(h7).

(7.40)

In the matrix A, in interior rows for 1, . . . , n − 1, we observe the diagonal
dominance in rows with the di�erence −h4qiy′′i +O(h5).

Denote for brevity ui = Si − S∗i , vi = 2h(mi − m∗i ), i = 0, . . . , n, and
wi = 2h(mi − m∗i ) − ((Si+1 − S∗i+1) − (Si−1 − S∗i−1)), i = 1, . . . , n − 1. Then
wi = vi− (ui+1−ui−1) and vi = wi+(ui+1−ui−1), i = 1, . . . , n−1. Later we need
also w0 = v0− 2u1 and wn = vn− 2un−1. Now we can write the interior equations
of A(S − S∗) = b as

(3h2y′′i + αi)ui−1 − (6h2y′′i + 2αi − h4qiy′′i )ui + (3h2y′′i + αi)ui+1

=
1

2
h2y′′i (ui+2 − 2ui+1 + ui) + h2y′′i (ui+1 − 2ui + ui−1) (7.41)

+
1

2
h2y′′i (ui − 2ui−1 + ui−2) + cih

6 +
1

2
h2y′′i (wi+1 − wi−1) +O(h7)

where αi =
1

6
h4yIVi − h2pi(mi − y′i) and ci =

1

12

(
y′′i y

IV
i −

4

3
(y′′′i )2

)
.

Taking h2y′′i (ui+1 − 2ui + ui−1) to the left hand side of the equation, we get
therein

(2h2y′′i + αi)ui−1 − (4h2y′′i + 2αi − h4qiy′′i )ui + (2h2y′′i + αi)ui+1

or

(2h2y′′i + αi)(ui−1 − (2− h2qi)ui + ui+1).
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Now we can write (7.41) for i = 2, . . . , n− 2 as

(2h2y′′i + αi)(ui−1 − (2− h2qi)ui + ui+1)

=
1

2
h2y′′i ((ui − (2− h2qi+1)ui+1 + ui+2) + (ui−2 − (2− h2qi−1)ui−1 + ui))

− 1

2
h2y′′i (h2qi−1ui−1−2h2qiui+h

2qi+1ui+1)+cih
6+

1

2
h2y′′i (wi+1 − wi−1)+O(h7).

Dividing the last equation by h2qiy′′i and denoting zi = ui−1− (2− h2qi)ui + ui+1,
i = 1, . . . , n− 1, we have

−1

2

zi−1
qi

+ (2 + α̃i)
zi
qi
− 1

2

zi+1

qi
= c̃ih

4 +O(h5)

with α̃i = O(h) and

c̃i =
1

12

yIVi −
4

3

(y′′′i )2

y′′i
qi

. (7.42)

Note that, e.g.,
zi−1
qi

=
qi−1
qi

zi−1
qi−1

=
(

1+
qi−1 − qi

qi

)zi−1
qi−1

= (1+O(h))
zi−1
qi−1

which

gives for i = 2, . . . , n− 2

−1

2
(1 +O(h))

zi−1
qi−1

+ (2 + α̃i)
zi
qi
− 1

2
(1 +O(h))

zi+1

qi+1
= c̃ih

4 +O(h5). (7.43)

Remark. Dividing the interior equations for i = 1, . . . , n − 1 of the system
A(S − S∗) = b by −3h2y′′i , �rst and last equations by h2, we obtain a system
Ã(S − S∗) = b̃ with the matrix Ã where its entries are as in (6.24) for
i = 1, . . . , n − 1. Basing on the proof of Lemma 6.2, we have for Ã−1 = (aij)
that | aij−ai+1,j | = O(1). This implies for the solution (S,m) of the basic system

(Si − S∗i )− (Si−1 − S∗i−1) = O(h3), i = 1, . . . , n. (7.44)

Next, we will focus our attention to the study of ϕ̃0(S,m). Using the Taylor
expansion at point (S,m∗) we have

ϕ̃0(S,m) = ϕ̃0(S,m
∗) + ϕ̃0m(S,m∗)(m−m∗) +

1

2
ϕ̃0mm(m−m∗)2

and therefore, by the following Taylor expansions at (S∗,m∗)

ϕ̃0m(S,m∗)(m−m∗) = ϕ̃0m(S∗,m∗)(m−m∗) + ϕ̃0mS(m−m∗)(S − S∗),
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∗) = ϕ̃0(S

∗,m∗) + ϕ̃0S(S∗,m∗)(S − S∗) +
1

2
ϕ̃0SS(S − S∗)2,



the equation ϕ̃0(S,m) = 0 is equivalent to

− ϕ̃0m(S∗,m∗)(m−m∗)− ϕ̃0S(S∗,m∗)(S − S∗) (7.45)

From (7.13) we calculate

∂ϕ̃0

∂S0
= −4(S1 − S0 − hm0)− h2y′′0 + h2p0(m0 − y′0),

∂ϕ̃0

∂S1
= 4(S1 − S0 − hm0) + h2y′′0 − h2p0(m0 − y′0),

∂ϕ̃0

∂m0
= −4h(S1 − S0 − hm0) + h2p0(hm1 − (S1 − S0)),

∂ϕ̃0

∂m1
= −h3y′′0 + h3p0(m0 − y′0)

and then

∂2ϕ̃0

∂S2
0

= 4,
∂2ϕ̃0

∂S0∂S1
= −4,

∂2ϕ̃0

∂S1∂S0
= −4,

∂2ϕ̃0

∂S2
1

= 4,

∂2ϕ̃0

∂m0∂S0
= 4h+ h2p0,

∂2ϕ̃0

∂m0∂S1
= −4h− h2p0,

∂2ϕ̃0

∂m1∂S0
= 0,

∂2ϕ̃0

∂m1∂S1
= 0,

∂2ϕ̃0

∂m2
0

= 4h2,
∂2ϕ̃0

∂m0∂m1
= h3p0,

∂2ϕ̃0

∂m1∂m0
= h3p0,

∂2ϕ̃0

∂m2
1

= 0.

Thus, using obtained partial derivatives, (7.13) and (7.28) by direct calculations
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1

2
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1

2
ϕ̃0mm(m−m∗)2.



we have (7.45) as

(2h3y′′0 +
2

3
h4y′′′0 −

h4

2
p0y
′′
0 +O(h5))(m0 −m∗0) + (h3y′′0 + o(h5))(m1 −m∗1)

− (3h2y′′0 +
2

3
h3y′′′0 +

h4

6
yIV0 +O(h5))(S1 − S∗1) (7.46)

= −h
6

24

(
y′′0y

IV
0 −

4

3
(y′′′0 )2

)
+ 2(S1 − S∗1)2 + 2h2(m0 −m∗0)2 +O(h7).

Recall that u1 = S1−S∗1 , v0 = 2h(m0−m∗0), w0 = v0−2u1, v1 = 2h(m1−m∗1)
and w1 = v1 − 2u2 with the property u2 − 2u1 = O(h4). Then we have
h3

3
y′′′0 (v0 − 2u1) =

h3

3
y′′′0 w0 = O(h7) and we can write (7.46) as

(h2y′′0 −
h3

4
p0y
′′
0 +O(h5))v0 +

1

2
(h2y′′0 + o(h5))v1

− (3h2y′′0 +O(h5))u1 = −C0 + 2u21 +
1

2
v20 +O(h7), (7.47)

where C0 =
h6

24

(
y′′0y

IV
0 −

4

3
(y′′′0 )2

)
.

Note that it holds
1

2
v20 = 2u21 +O(h7). Thus, altogether

(h2y′′0 −
h3

4
p0y
′′
0 +O(h3))v0 +

1

2

(
h2y′′0 +O(h3)

)
v1−(3h2y′′0 +O(h3))u1

= −C0 +O(h7). (7.48)

Next, we are interested in ϕ̃1(S,m). From (7.15) we get

∂ϕ̃1

∂S0
= 4(hm1 − (S1 − S0)) + h2y′′1 − h2p1(m1 − y′1)− h2q1(S1 − y1),

∂ϕ̃1

∂S1
=− 4(hm1 − (S1 − S0))− h2y′′1 + h2p1(m1 − y′1) + h2q1(S1 − y1)

+ h2q1(S1 − S0 − hm0).

Then, by (7.17) and (7.29) we have

∂ϕ̃1

∂S0
(S∗,m∗) = 3h2y′′0 +

7

3
h3y′′′0 + h4yIV0 + o(h4),

∂ϕ̃1

∂S1
(S∗,m∗) = −3h2y′′0 −

7

3
h3y′′′0 − h4yIV0 +

h4

2
q0y
′′
0 + o(h4).
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Now we can calculate the second derivatives

∂2ϕ̃1

∂S2
0

= 4,
∂2ϕ̃1

∂S0∂S1
= −4− h2q1,

∂2ϕ̃1

∂S1∂S0
= −4− h2q1,

∂2ϕ̃1

∂S2
1

= 4 + 2h2q1

and by direct calculations

ϕ̃1SS(S − S∗)2 = 4u21 +O(h8). (7.49)

From (7.15) we �nd also

∂ϕ̃1

∂m0
= h3y′′1 − h3p1(m1 − y′1)− h3q1(S1 − y1),

(7.50)

∂ϕ̃1

∂m1
= 4h(hm1 − (S1 − S0)) + h2p1(S1 − S0 − hm0)

and then by using (7.17) and (7.29)

∂ϕ̃1

∂m0
(S∗,m∗) = h3y′′0 + h4y′′′0 +O(h5),

∂ϕ̃1

∂m1
(S∗,m∗) = 2h2y′′0 +

4

3
h4y′′′0 +

h4

2
p0y
′′
0 +O(h5).

Partial derivatives (7.50) give

∂2ϕ̃1

∂m2
0

= 0,
∂2ϕ̃1

∂m0∂m1
= −h3p1,

∂2ϕ̃1

∂m1∂m0
= −h3p1,

∂2ϕ̃1

∂m2
1

= 4h2.

Now we can calculate

ϕ̃1mm(m−m∗)2 = 4h2(m1 −m∗1)2 +O(h7). (7.51)

Similarly we get from (7.50)

∂2ϕ̃1

∂m0∂S0
= 0,

∂2ϕ̃1

∂m0∂S1
= −h3q1,

∂2ϕ̃1

∂m1∂S0
= 4h− h2p1,

∂2ϕ̃1

∂m1∂S1
= −4h+ h2p1
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and, thus,

ϕ̃1mS(m−m∗)(S − S∗) = O(h7). (7.52)

Also we calculate from (7.15) with the help of (7.29)

ϕ̃1(S
∗,m∗) = −h

6

24

(
y′′0y

IV
0 −

4

3
(y′′′0 )2

)
+O(h7). (7.53)

Due to Taylor expansion the equation ϕ̃1(S,m) = 0 is equivalent to

ϕ̃1(S,m
∗) + ϕ̃1m(S,m∗)(m−m∗) +

1

2
ϕ̃1mm(m−m∗)2 = 0

which, with the help of expansions

ϕ̃1(S,m
∗) = ϕ̃1(S

∗,m∗) + ϕ̃1S(S∗,m∗)(S − S∗) +
1

2
ϕ̃1SS(S − S∗)2,

ϕ̃1m(S,m∗)(m−m∗) = ϕ̃1m(S∗,m∗)(m−m∗) + ϕ̃1mS(m−m∗)(S − S∗),

gives

ϕ̃1m(S∗,m∗) + ϕ̃1S(S∗,m∗)(S − S∗) = −ϕ̃1(S
∗,m∗)− 1

2
ϕ̃1SS(S − S∗)2

− ϕ̃1mS(m−m∗)(S − S∗)− 1

2
ϕ̃1mm(m−m∗)2.

This can now be written as

(h3y′′0 + h4y′′′0 +O(h5))(m0 −m∗0)

+ (2h2y′′0 +
4

3
h4y′′0 +

h4

2
p0y
′′
0 +O(h5))(m1 −m∗1)

− (3h2y′′0 +
7

3
h3y′′′0 + h4yIV0 +

h4

2
q0y
′′
0 + o(h4))(S1 − S∗1)

=
h6

24
(y′′0y

IV
0 −

4

3
(y′′′0 )2)− 2u21 − 2h2(m1 −m∗1)2 +O(h7)

or

1

2
(h2y′′0 + h3y′′′0 +O(h4))v0 + (h2y′′0 +

2

3
h4y′′0 +

h3

4
p0y
′′
0 +O(h4))v1

− (3h2y′′0 +
7

3
h3y′′′0 + h4yIV0 +

h4

2
q0y
′′
0 +O(h5))u1

= C0 − 2u21 − 2u21 +O(h7) (7.54)
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where C0 is de�ned in (7.47).

Note that
1

2
v0 +

2

3
v1 −

7

3
u1 = O(h4), −h

3

4
p0y
′′
0v0 = −h

4

4
p0y
′′
0v1 + O(h7) and

−h
2

2
q0y
′′
0u1 = −h

4

4
q0y
′′
0v0 +O(h8). Therefore, if we add (7.47) and (7.54) we get

(3

2
h2y′′0 −

h4

4
q0y
′′
0

)
v0 +

3

2
h2y′′0v1 − 6h2y′′0u1 = O(h7). (7.55)

Observe here the diagonal dominance in rows with the di�erence −h
4

4
q0y
′′
0 . Let us

point out that we use this equation later as equation [B(m−m∗)]0 = d0(S,m).

Also, for i = 1, equation (7.41) is

(3h2y′′1 + α1)u0 − (6h2y′′1 + 2α1 − h4q1y′′1)u1 + (3h2y′′1 + α1)u2

= c1h
6 + h2y′′1(h(m2 −m∗2)− h(m0 −m∗0)) +O(h7) (7.56)

where α1 =
1

6
h4yIV1 − h2p1(m1 − y′1) and c1 =

1

12

(
y′′1y

IV
1 −

4

3
(y′′′1 )2

)
.

Basing on (7.48) and using again the notations wi, ui, i = 0, . . . , 3, we transform
the right hand side of (7.56) as

c1h
6 +

1

2
h2y′′1 c̃0 +

1

2
h2y′′1(w2 +

1

2
w1 + u3 − u1 +

1

2
u2 − 3u1) +O(h7)

=
5

4
c1h

6 +
1

2
h2y′′1(w2 +

1

2
w1) +

1

2
h2y′′1(u3 − 2u2 + u1) + h2y′′1(u2 − 2u1 + u0)

+
1

4
h2y′′1(u2 − 2u1) +O(h7)

where c̃0 =
C0

h2y′′0
. Next we move h2y′′1(u2−2u1+u0) to the left hand side. Then we

are able to write (7.56) (taking into account that u0 = 0) as

−(4h2y′′1+2α1 − h4q1y′′1)u1 + (2h2y′′1 + α1)u2

=
5

4
c1h

6 +
1

2
h2(u3 − 2u2 + u1) +

1

4
h2y′′1(u2 − 2u1) +O(h7)

or

(2h2y′′1 + α1)(u0 − (2− h2q1)u1 + u2) =
1

2
h2y′′1(u1 − (2− h2q2)u2 + u3)

+
1

4
h2y′′1(u2 − (2− h2q1)u1) +

5

4
c1h

6 + h4y′′1(q1u1 −
1

2
q2u2) +O(h7),
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which with the help of notation zi = ui−1 − (2− qih2)ui + ui+1, i = 1, 2, gives(7

4
h2y′′1 + α1

)
z1 −

1

2
h2y′′1z2 =

5

4
c1h

6.

Divide the last equation by
5

4
h2q1y

′′
1 , then, because of

z2
q1

= (1 +O(h))
z2
q2
, we get

(7

5
+O(h)

)z1
q1
− 2

5

(
1 +O(h)

)z2
q2

= c̃1h
4 (7.57)

where c̃1 has the same meaning as was for i = 2, . . . , n− 2.

Due to the diagonal dominance in rows with the di�erence 1 + O(h) in the
system consisting in (7.43), (7.57) and the counterpart of (7.57) for i = n − 1, it
holds ∣∣∣zi

qi

∣∣∣ ≤ max
1≤i≤n−1

| c̃ih4 | + O(h5).

Now
ui−1 − (2− h2qi)ui + ui+1 = zi

or
1

qi
ui−1 − (

2

qi
− h2)ui +

1

qi
ui+1 =

zi
qi
, i = 2, . . . , n− 2. (7.58)

Here we can calculate the di�erence of domination as∣∣∣ 2

qi
− h2

∣∣∣− ∣∣∣ 1

qi

∣∣∣− ∣∣∣ 1

qi

∣∣∣ = h2.

If i = 0, then ui = 0 (S0 − S∗0 = 0).

If i = 1, we can take ai,i−1 = 0 in (7.39) and divide the equation (7.41) by 3y′′1 .
This gives

(−2h2 +O(h4))u1 + (h2 +O(h4))u2 = O(h6). (7.59)

Observe here the diagonal dominance in rows with the di�erence h2 +O(h4).

The system (7.58), (7.59) and its counterpart for i = n − 1 allows to get the
estimate

| ui | ≤
1

h2
max

1≤i≤n−1

∣∣∣zi
qi

∣∣∣ ≤ max
1≤i≤n−1

c̃ih
2 + O(h3), i = 1, . . . , n− 1.

All in all,
‖S − S∗‖∞ ≤ c0h2 +O(h3), (7.60)

where

c0 =
1

12
max

1≤i≤n−1

∣∣∣∣∣
yIVi −

4

3

(y′′′i )2

y′′i
qi

∣∣∣∣∣. (7.61)
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7.4 Transformation of internal equations

In this section we study the internal equations ϕi(S,m) = 0, i = 1, . . . , n− 1.

The Taylor expansion of Φ(S,m) at point (S∗,m) gives

Φ(S,m) = Φ(S∗,m)+ΦS(S∗,m)(S−S∗)+1

2
ΦSS(S∗,m)(S−S∗)2+

1

6
ΦSSS(S−S∗)3.

(7.62)

This with the help of the following Taylor expansions at (S∗,m∗)

Φ(S∗,m) = Φ(S∗,m∗) + Φm(S∗,m∗)(m−m∗) +
1

2
Φmm(S∗,m∗)(m−m∗)2

+
1

6
Φmmm(m−m∗)3,

ΦS(S∗,m) = ΦS(S∗,m∗) + ΦSm(S∗,m∗)(m−m∗) +
1

2
ΦSmm(m−m∗)2,

ΦSS(S∗,m) =
1

2
ΦSS(S∗,m∗) +

1

2
ΦSSm(m−m∗)

gives

Φm(S∗,m∗)(m−m∗) = −(Φ(S∗,m∗) +
1

2
Φmm(S∗,m∗)(m−m∗)2

+
1

6
Φmmm(m−m∗)3 +ΦS(S∗,m∗)(S − S∗)+ΦSm(S∗,m∗)(S−S∗)(m−m∗)

+
1

2
ΦSmm(S − S∗)(m−m∗)2 +

1

2
ΦSS(S∗,m∗)(S − S∗)2 (7.63)

+
1

2
ΦSSm(S − S∗)2(m−m∗) +

1

6
ΦSSS(S − S∗)3)

which we begin to study mainly for the components with indices i = 1, . . . , n− 1.

Note that in the interior components of Φ(S∗,m∗) it holds ϕi(S∗,m∗) = 0,
i = 1, . . . , n − 1, as S∗ is a quadratic/linear rational spline. If Φm(S∗,m∗) is
invertible then by writing (7.63) as ϕim(S∗,m∗)(m−m∗) = di(S,m) we get

m−m∗ = Φ−1m (S∗,m∗)d(S,m). (7.64)

Also, we use later ϕim(S∗,m∗)(m − m∗) = di(S,m) as equations in system
B(m−m∗) = d.
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We calculate from (7.11) the components of ϕim(S,m) as

∂ϕi
∂mi−1

= h(Si+1 − Si − hmi)
2,

∂ϕi
∂mi

= 2h(hmi − (Si − Si−1))(hmi+1 − (Si+1 − Si))
(7.65)

+ 2h(Si+1 − Si − hmi)(Si − Si−1 − hmi−1),

∂ϕi
∂mi+1

= h(hmi − (Si − Si−1))2.

With the help of (7.28) we get

∂ϕi
∂mi−1

(S∗,m∗) =
h5

4
(y′′i )2 +

h6

6
y′′i y
′′′
i +

h7

24
y′′i y

IV
i +

h7

36
(y′′′i )2 + o(h7),

∂ϕi
∂mi

(S∗,m∗) = h5(y′′i )2 +
h7

3
y′′i y

IV
i −

2

9
h7(y′′′i )2 + o(h7),

∂ϕi
∂mi+1

(S∗,m∗) =
h5

4
(y′′i )2 − h6

6
y′′i y
′′′
i +

h7

24
y′′i y

IV
i +

h7

36
(y′′′i )2 + o(h7).

Clearly, there is diagonal dominance in rows and this implies the invertibility of
Φm(S∗,m∗) if we have also appropriate transformations of equations ϕ0(S,m) = 0
and ϕn(S,m) = 0.

Similarly we calculate from (7.11) the components of ϕiS(S,m) as

∂ϕi
∂Si−1

= 2(hmi − (Si − Si−1))(hmi+1 − (Si+1 − Si)) + (Si+1 − Si − hmi)
2,

∂ϕi
∂Si

= −2(hmi − (Si − Si−1))(hmi+1 − (Si+1 − Si))− (Si+1 − Si − hmi)
2

(7.66)

+ (hmi − (Si − Si−1))2 + 2(Si − Si−1 − hmi−1)(Si+1 − Si − hmi),

∂ϕi
∂Si+1

= −2(Si − Si−1 − hmi−1)(Si+1 − Si − hmi)− (hmi − (Si − Si−1))2.

Note that
∂ϕi
∂Si−1

+
∂ϕi
∂Si

+
∂ϕi
∂Si+1

= 0.

Using again the Taylor expansions (7.28) we obtain

∂ϕi
∂Si−1

(S∗,m∗) =
3

4
h4(y′′i )2 +

h5

3
y′′i y
′′′
i +

5

24
h6y′′i y

IV
i −

h6

12
(y′′′i )2 + o(h6),
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∂ϕi
∂Si

(S∗,m∗) = −2

3
h5y′′i y

′′′
i + o(h6),

∂ϕi
∂Si+1

(S∗,m∗) = −3

4
h4(y′′i )2 +

h5

3
y′′i y
′′′
i −

5

24
h6y′′i y

IV
i +

h6

12
(y′′′i )2 + o(h6).

We calculate for ϕiS(S∗,m)

∂ϕi
∂Si−1

(S∗,m) =
∂ϕi
∂Si−1

(S∗,m∗) + 2h(mi −m∗i )(hm∗i+1 − (S∗i+1 − S∗i ))

+ 2h(mi+1 −m∗i+1)(hm
∗
i − (S∗i − S∗i−1))− 2h(mi −m∗i )(S∗i+1 − S∗i + hm∗i )

+ 2h2(mi −m∗i )(mi+1 −m∗i+1) + h2(mi −m∗i )2 +O(h5),

∂ϕi
∂Si

(S∗,m) =
∂ϕi
∂Si

(S∗,m∗)− (2h(mi −m∗i )(hm∗i+1 − (S∗i+1 − S∗i ))

+ 2h(mi+1 −m∗i+1)(hm
∗
i − (S∗i − S∗i−1)) + 2h2(mi −m∗i )(mi+1 −m∗i+1)

− 2h(mi −m∗i )(S∗i+1 − S∗i + hm∗i )− 2h(mi −m∗i )(hm∗i − (S∗i − S∗i−1)) (7.67)

+ 2h(mi−1 −m∗i−1)(S∗i+1 − S∗i − hm∗i ) + 2h(mi −m∗i )(S∗i − S∗i−1 − hm∗i−1)

− 2h2(mi−1 −m∗i−1)(mi −m∗i )) +O(h5),

∂ϕi
∂Si+1

(S∗,m) =
∂ϕi
∂Si+1

(S∗,m∗)− 2h(mi −m∗i )(hm∗i − (S∗i − S∗i−1))

+ 2h(mi−1 −m∗i−1)(S∗i+1 − S∗i − hm∗i ) + 2h(mi −m∗i )(S∗i − S∗i−1 − hm∗i−1)

− 2h2(mi−1 −m∗i−1)(mi −m∗i )− h2(mi −m∗i )2 +O(h5).

Second order partial derivatives are calculated from (7.65) and are

∂2ϕi
∂m2

i−1
= 0,

∂2ϕi
∂mi−1∂mi

= −2h2(Si+1 − Si − hmi),

∂2ϕi
∂mi−1∂mi+1

= 0,
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∂2ϕi
∂mi∂mi−1

= −2h2(Si+1 − Si − hmi),

∂2ϕi
∂m2

i

= 2h2(hmi+1 − (Si+1 − Si))− 2h2(Si − Si−1 − hmi−1),

∂2ϕi
∂mi∂mi+1

= 2h2(hmi − (Si − Si−1)),

∂2ϕi
∂mi+1∂mi−1

= 0,

∂2ϕi
∂mi+1∂mi

= 2h2(hmi − (Si − Si−1)),

∂2ϕi
∂m2

i+1

= 0.

They give

∂2ϕi
∂m2

i−1
(S∗,m∗) = 0,

∂2ϕi
∂mi−1∂mi

(S∗,m∗) = −h4y′′i +O(h5),

∂2ϕi
∂mi−1∂mi+1

(S∗,m∗) = 0,

∂2ϕi
∂mi∂mi−1

(S∗,m∗) = −h4y′′i +O(h5),

∂2ϕi
∂m2

i

(S∗,m∗) = O(h5),

∂2ϕi
∂mi∂mi+1

(S∗,m∗) = h4y′′i +O(h5),

∂2ϕi
∂mi+1∂mi−1

(S∗,m∗) = 0,

∂2ϕi
∂mi+1∂mi

(S∗,m∗) = h4y′′i +O(h5),

80



∂2ϕi
∂m2

i+1

(S∗,m∗) = 0.

From (7.66) we �nd also with the help of Taylor expansions

∂2ϕi
∂S2

i−1
(S∗,m∗) = h2y′′i +

2

3
h3y′′′i +

1

4
h4yIVi + o(h4),

∂2ϕi
∂Si−1∂Si

(S∗,m∗) = −h2y′′i −
4

3
h3y′′′i −

1

4
h4yIVi + o(h4),

∂2ϕi
∂Si−1∂Si+1

(S∗,m∗) =
2

3
h3y′′′i + o(h4),

∂2ϕi
∂Si∂Si−1

(S∗,m∗) = −h2y′′i −
4

3
h3y′′′i −

1

4
h4yIVi + o(h4),

∂2ϕi
∂S2

i

(S∗,m∗) =
8

3
h3y′′′i + o(h4),

∂2ϕi
∂Si∂Si+1

(S∗,m∗) = h2y′′i −
4

3
h3y′′′i +

1

4
h4yIVi + o(h4),

∂2ϕi
∂Si+1∂Si−1

(S∗,m∗) =
2

3
h3y′′′i + o(h4),

∂2ϕi
∂Si+1∂Si

(S∗,m∗) = h2y′′i −
4

3
h3y′′′i +

1

4
h4yIVi + o(h4),

∂2ϕi
∂S2

i+1

(S∗,m∗) = −h2y′′i +
2

3
h3y′′′i −

1

4
h4yIVi + o(h4)

and for every j, k

∑
j

∂2ϕi
∂Sj∂Sk

= 0,
∑
k

∂2ϕi
∂Sj∂Sk

= 0.

Similarly we get for every j, k, l

∂3ϕi
∂mj∂mk∂ml

= O(h3). (7.68)
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Let us start with the estimate of

ΦS(S∗,m)(S − S∗) = ΦS(S∗,m∗)(S − S∗) + ΦSm(S∗,m∗)(S − S∗)(m−m∗)

+
1

2
ΦSmm(S − S∗)(m−m∗)2.

Using (7.29) and

2h(mi −m∗i ) = vi = wi + (ui+1 − ui−1)

we can write due to (7.67)

∂ϕi
∂Si−1

(S∗,m) =
∂ϕi
∂Si−1

(S∗,m∗)

+ (wi + (ui+1 − ui−1))(
h3

6
y′′′i +

h4

12
yIVi + o(h4))

+ (wi+1 + (ui+2 − ui))(
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi + o(h4))

+ h(mi −m∗i )(wi+1 + (ui+2 − ui)) + h2(mi −m∗i )2 +O(h5),

∂ϕi
∂Si

(S∗,m) =
∂ϕi
∂Si

(S∗,m∗)

+ 2h2(mi −m∗i )((mi−1 −m∗i−1)− (mi+1 −m∗i+1))

− (wi + (ui+1 − ui−1))(
h4

6
yIVi + o(h4))

− (wi−1 + (ui − ui−2))(
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi + o(h4))

− (wi+1 + (ui+2 − ui))(
h2

2
y′′i −

h3

6
y′′′i +

h4

24
yIVi + o(h4)) +O(h5),

∂ϕi
∂Si+1

(S∗,m) =
∂ϕi
∂Si+1

(S∗,m∗)

+ (wi + (ui+1 − ui−1))(−
h3

6
y′′′i +

h4

12
yIVi + o(h4))

+ (wi−1 + (ui − ui−2))(
h2

2
y′′i +

h3

6
y′′′i +

h4

24
yIVi + o(h4))

− h(mi −m∗i )(wi−1 + (ui − ui−2))− h2(mi −m∗i )2 +O(h5).
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These partial derivatives allow to form the expression ϕiS(S∗,m)(S−S∗). In that

the terms in ϕiS(S∗,m)(S − S∗) with h2

2
y′′i wi give

h2

2
y′′i (wiui−1+wi+1ui−1−wiui−1−wiui+1+wi−1ui+1 + wiui+1−(wi+1 + wi−1)ui)

=
h2

2
y′′i (wi+1(ui−1 − ui) + wi−1(ui+1 − ui))

which we can estimate by cc3h10 (here and in the sequel, in similar reasonings, c
denotes a positive constant depending only on the boundary value problem).

We estimate other terms with wi by cc3h10 + cc3h
11.

Members with
h2

2
y′′i (ui+1 − ui−1) are

h2

2
y′′i ((ui+2 − ui)ui−1 + (ui − ui−2)ui+1 − (ui+2 − ui−2)ui)

=
h2

2
y′′i ((ui+2 − ui)(ui−1 − ui) + (ui − ui−2)(ui+1 − ui))

=
h2

2
y′′i ((−ui+2 + 2ui+1 − ui)(ui − ui−1)− 2(ui+1 − ui)(ui − ui−1)

+ (−ui−2 + 2ui−1 − ui)(ui+1 − ui) + 2(ui − ui−1)(ui+1 − ui))

which give cc2h9.

Similarly we can estimate other members in ϕiS(S∗,m)(S − S∗) by the term
ch9 + cc0h

9 + cc20h
9 + cc3h

10.

All in all,

| ϕiS(S∗,m)(S − S∗) | ≤ cc2h9 + ch9 + cc0h
9 + cc20h

9 + cc3h
10 + cc3h

11.

In
1

2
ϕimm(S∗,m∗)(m−m∗)2 members with

1

2
h4y′′i are

h4y′′i (mi −m∗i )
1

2h
(wi+1 − wi−1 + (ui+2 − 2ui+1 + ui)

+ 2(ui+1 − 2ui + ui−1) + (ui − 2ui−1 + ui−2))

and can be estimated by cc0c2h9 + cc3c0h
10.

Other terms in
1

2
ϕimm(S∗,m∗)(m−m∗)2 give cc20h9, thus,∣∣∣1

2
ϕimm(S∗,m∗)(m−m∗)2

∣∣∣ ≤ cc0c2h9 + cc20h
9 + cc3c0h

10.
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Because of (7.68) we have∣∣∣1
6
ϕimmm(m−m∗)3

∣∣∣ ≤ cc30h9.
For

1

2
ϕiSS(S∗,m∗)(S − S∗)2 we calculate

1

2
h2y′′i (−ui−1 + 2ui − ui+1)(ui+1 − ui−1)

+
1

3
h3y′′′i (ui−1 − 2ui + ui+1)

2 +
1

8
h4yIVi (−ui−1 + 2ui − ui+1)(ui+1 − ui−1)

in which the terms in the sum can be estimated by cc2h9 + cc2h
11 + cc2h

11, respec-
tively, therefore, ∣∣∣1

2
ϕiSS(S∗,m∗)(S − S∗)2

∣∣∣ ≤ cc2h9 + cc2h
11. (7.69)

Due to Lemma 6.1 the members in
1

2
ϕiSSm(S−S∗)2(m−m∗) can be estimated

by cc0h9.

Similar reasoning allows to show that∣∣∣1
6
ϕiSSS(S − S∗)3

∣∣∣ = |(ui+1 − ui)(ui − ui−1)(ui+1 − ui−1)| ≤ ch9.

7.5 Existence of the solution for collocation problem

In this section we use the Bohl-Brouwer �xed point theorem to show the existence
of solution of the basic system Φ(S,m) = 0, Ψ(S,m) = 0.

Consider the equations S = G(S,m), where

G(S,m) = S∗ −Ψ−1S (S∗,m)(Ψ(S∗,m) +
1

2
ΨSS(S − S∗)2)

and m = H(S,m) where

H(S,m) = m∗ + Φ−1m (S∗,m∗)(−Φ(S∗,m∗)− 1

2
Φmm(S∗,m∗)(m−m∗)2

− 1

6
Φmmm(m−m∗)3−ΦS(S∗,m∗)(S − S∗)−ΦSm(S∗,m∗)(S − S∗)(m−m∗)

− 1

2
ΦSmm(S − S∗)(m−m∗)2 − 1

2
ΦSS(S∗,m∗)(S − S∗)2

− 1

2
ΦSSm(S − S∗)2(m−m∗)− 1

6
ΦSSS(S − S∗)3)
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and which are equivalent to Ψ(S,m) = 0 and Φ(S,m) = 0, respectively.

Let F (S,m) = (G(S,m), H(G(S,m),m)) with F : R2n+2 → R2n+2 and let us
introduce the set

K = {(S,m) ∈ R2n+2 | S0 = α, Sn = β,

| Si − S∗i | ≤ c1h2, i = 1, . . . , n− 1,

| (Si−1 − S∗i−1))− 2(Si − S∗i ) + (Si+1 − S∗i+1) | ≤ c2h4, i = 1, . . . , n− 1,

| 2h(mi −m∗i )− ((Si+1 − S∗i+1)− (Si−1 − S∗i−1)) |≤ c3h5, i = 1, . . . , n− 1,

| 2h(m0 −m∗0)− 2(S1 − S∗1) | ≤ c̃3h4,

| 2h(mn −m∗n)− 2(Sn−1 − S∗n−1) | ≤ c̃3h4}

with numbers c1 > 0, c2 > 0, c3 > 0, c̃3 > 0 which will be speci�ed later. The set
K is convex and compact.

Our main purpose is now to show that F : K → K. This allows us to use Bohl-
Brouwer �xed point theorem. Let (S,m) ∈ K and S̄ = G(S,m), m̄ = H(S̄,m) =
H(G(S,m),m). We show that then (S̄, m̄) ∈ K.

Firstly, from the estimate (7.60) we obtain

‖S̄ − S∗‖∞ ≤ c0h2 +O(h3). (7.70)

If we choose e.g., c1 = 2c0, then c0h2 +O(h3) ≤ c1h2 holds with su�ciently small
value of h.

In Section 7.3 we showed that for i = 1, . . . , n− 1∣∣∣ z̄i
qi

∣∣∣ ≤ h4 max
1≤i≤n−1

| c̃i | + O(h5)

or
|z̄i| ≤ h4 | qi | max

1≤i≤n−1
| c̃i | + O(h5),

where
z̄i = ūi−1 − (2− h2qi)ūi + ūi+1, (7.71)

ūi = S̄i − S∗i and where c̃i is given in (7.42). From (7.71) we get

ūi−1 − 2ūi + ūi+1 = z̄i − h2qiūi

which due to (7.70) implies

| ūi−1 − 2ūi + ūi+1 | ≤ | z̄i | −h2 | qi || ūi | ≤ c2h4

with suitable choice of the constant c2.

In Section 7.3 we constructed a system A(S − S∗) = b with equations cor-
responding to (7.39), (7.40) and having indices i = 2, . . . , n − 2. Divide those
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equations by h2y′′i and move h(mi+1 −m∗i+1) − h(mi−1 −m∗i−1) to the left hand
side. Then the higher order term of the new system Ã(S−S∗) = b̃ in the left hand
side is

3ui−1 − 6ui + 3ui+1 −
1

2
(vi+1 − vi−1).

Similarly, after dividing the components with indices i = 1, . . . , n−1 in system

B(m−m∗) = d by
8

h4(y′′i )2
the main term in left hand side is vi−1 + 4vi + vi+1 −

6(ui+1 − ui−1) and we denote the obtained system by B̃(m−m∗) = d̃.

Let us form now the equation

[Ã(S − S∗)]i−1 − [Ã(S − S∗)]i+1

− 1

2
[B̃(m−m∗)]i−1 + 2[B̃(m−m∗)]i −

1

2
[B̃(m−m∗)]i+1 (7.72)

= b̃i−1 − b̃i+1 −
1

2
d̃i−1 + 2d̃i −

1

2
d̃i+1.

Then the main terms in the left hand side of the obtained equations give

(3ui−2 − 6ui−1 + 3ui −
1

2
(vi − vi−2))− (3ui − 6ui+1 + 3ui+2 −

1

2
(vi+2 − vi))

− 1

2
((vi−2 + 4vi−1 + vi)− 6(ui − ui−2)) + 2((vi−1 + 4vi + vi+1)− 6(ui+1 − ui−1))

− 1

2
((vi + 4vi+1 + vi+2)− 6(ui+2 − ui)) = 6(vi − (ui+1 − ui−1)) = 6wi.

Actually, we transformed and managed with the systems A(S̄ − S∗) = d(S,m)
and B(m̄ − m∗) = d(S̄,m), thus, we get 6w̄i in (7.72). Observe that the terms
together besides 6w̄i on the left hand side of (7.72) could be estimated by O(h5)
and we have already estimated b̃i and d̃i by O(h5) (See Sections 7.3 and 7.4). This
gives | w̄i | ≤ c3h5 for suitable choice of c3.

Next, the equation (7.55) allows to determine the equation [B(m−m∗)]0 = d0
participating in the formation of m = H(S,m). From

(
3

2
hy′′0 −

h2

4
q0y
′′
0)hw̄0 +

3

2
h2y′′0 w̄1 = d0(S̄,m)

provided we have w̄1 = O(h5) we get w̄0 = O(h4) because d0(S̄,m) = O(h6). To
prove w̄1 = O(h5) we use the ideas of the case i = 2, . . . , n − 2 and form the
equation

−[Ã(S−S∗)]2−
1

2
[B̃(m−m∗)]2 +[Ã(S−S∗)]1 +

5

2
[B̃(m−m∗)]1−3[B̃(m−m∗)]0

= −b̃2 −
1

2
d̃2 + b̃1 +

5

2
d̃1 − 3d̃0. (7.73)
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E.g., the main terms in the left hand side of (7.73) give 6w̄1.

All in all, F : K → K and we can use the Bohl-Brouwer �xed point theorem,
by which the set K contains a �xed point of the function F which is also a solution
of the basic system.

7.6 Convergence estimates

In this section we establish in uniform norm the convergence rates of collocation
method described in Section 7.1 with quadratic/linear rational splines for boundary
value problem (7.1), (7.2).

We remind that in previous section we proved that the set K contains a �xed
point of the function F which is also a solution of the basic system Φ(S,m) = 0,
Ψ(S,m) = 0. Denote now by S the quadratic/linear rational spline having as knot
values this vector in K and we also remind that S∗ is a special quadratic/linear
rational spline interpolant to the solution y of (7.1), (7.2). It is known, that

‖ S∗ − y ‖∞= O(h4) (7.74)

and
‖ S′∗ − y′ ‖∞= O(h3). (7.75)

Proposition 7.1. For the solution S of the problem (7.3), (7.4) having the vector
of values in K it holds ‖S(k)‖∞ = max1≤i≤n maxxi−1≤x≤xi |S(k)(x)| ≤ Ck, k ≥ 2.

Proof. From (3.1) we obtain (if k ≥ 2)

S(k)(x) =
(−1)kk!cid

k
i

(1 + di(x− xi−1))k+1
, x ∈ [xi−1, xi].

We indicated in Section 3.1 that ci and di could be expressed via the �rst moments
mi and spline values Si. Namely,

ci =
(Si − Si−1 − hmi−1)

2(hmi − (Si − Si−1))
(2(Si − Si−1)− h(mi−1 +mi))2

,

di =
2(Si − Si−1)− h(mi−1 +mi)

h(hmi − (Si − Si−1))
.

With the help of (7.25), (7.26) and (7.29) we �nd

di =
−1

6
h3y′′′i +O(h4)

h
(h2

2
y′′i +O(h3)

) = − y
′′′
i

3y′′i
+O(h)
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and then

cid
2
i =

h4

4
(y′′i )2 +O(h5)

h2
(h2

2
y′′i +O(h3)

) =
1

2
(y′′i +O(h))

which implies the assertion.

From (7.22) with the help of (7.44) we get

S′(xi)− S′∗(xi) =
(Si+1 − S∗i+1)− (Si−1 − S∗i−1)

2h
+O(h4) = O(h2).

Thus, we obtain from

|S′(xi)− y′(xi)| ≤ |S′(xi)− S′∗(xi)|+ |S′∗(xi)− y′(xi)|

by (7.75) that it holds
S′(xi)− y′(xi) = O(h2). (7.76)

From the estimate |S(xi)− y(xi)| ≤ |S(xi)− S∗(xi)|+ |S∗(xi)− y(xi)| we get
by (7.70) and (7.74)

|S(xi)− y(xi)| ≤ c0h2 +O(h3) (7.77)

where c0 is determined in (7.61).

Next, by (7.1) and (7.3) we may write

S′′(xi)− y′′(xi) + p(xi)(S
′(xi)− y′(xi)) + q(xi)(S(xi)− y(xi)) = 0

which, with the help of (7.77) and (7.76) gives

S′′(xi)− y′′(xi) = O(h2). (7.78)

The Taylor expansion for x ∈ [xi−1, xi]

S′(x)−y′(x) = S′(xi)−y′(xi)+(S′′(xi)−y′′(xi))(x−xi)+
1

2
(S′′′−y′′′)(ξi)(x−xi)2

thanks to (7.76), (7.78) and Proposition 7.1 gives

max
a≤x≤b

|S′(x)− y′(x)| = O(h2). (7.79)

Now our aim is to show ‖S′′ − y′′‖∞ = O(h2). Consider the expansion

y′′(x) = y′′(xi) + y′′′(xi)(x− xi) +O(h2), x ∈ [xi−1, xi],
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which, by setting x = xi−1 + τh, τ ∈ [0, 1], is

y′′(x) = y′′(xi) + (τ − 1)hy′′′(xi) +O(h2), τ ∈ [0, 1]. (7.80)

In (3.3) we �nd by using the representations for ci and di from Section 3.1 and
(7.29) that

cid
2
i =

(S−Si−1−hmi−1)
2

h2(hmi− (Si−Si−1))
=

h4

4
(y′′i )2− h

5

3
y′′i y
′′′
i +O(h6)

h2

2
y′′i −

h3

6
y′′′i +O(h4)

=
h2

2

(
y′′i −hy′′′i +O(h2)

)

and by di = − y
′′′
i

3y′′i
which we already obtained in proof of Proposition 7.1 we get

(1 + di(x− xi−1))3 = 1 + 3di(x− xi−1) +O(h2) = 1− y′′′i
y′′i

(x− xi−1) +O(h2).

Thus, we have for x ∈ [xi−1, xi]

S′′(x) =
h2y′′i − h3y′′′i +O(h4)

h2(1− y′′′i
y′′i

(x− xi−1) +O(h2))

= y′′i − hy′′′i + y′′′i (x− xi−1) +O(h2)

or by changing the variable x = xi−1 + τh, τ ∈ [0, 1]

S′′(x) = y′′i + (τ − 1)hy′′′i +O(h2).

This with expansion (7.80) implies

max
a≤x≤b

|S′′(x)− y′′(x)| = O(h2). (7.81)

But the expansion for x ∈ [xi−1, xi]

S(x)− y(x) = S(xi)− y(xi) + (S′ − y′)(ζi)(x− xi)

and (7.79) due to (7.77) yields (for y ∈ C4[a, b] as general case)

max
a≤x≤b

|S(x)− y(x)| ≤ c0h2 + o(h2). (7.82)

We have proved as our main result in this chapter the following

Theorem 7.1. Let the solution y ∈ C4[a, b] of boundary value problem (7.1),
(7.2) be strictly convex. Then, for su�ciently small h, the collocation problem
(7.3), (7.4) has a quadratic/linear rational spline S as solution with convergence
estimates (7.82) (c0 is determined in (7.61)), (7.79) and (7.81). The rest term
o(h2) in (7.82) is actually O(h2+α) in the case yIV ∈ Lip α, 0 < α ≤ 1.
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In collocation with cubic splines, see, e.g., [39], it is known the estimate

‖S − y‖∞ ≤
h2

12
max

1≤i≤n−1

∣∣∣yIV
q

(xi)
∣∣∣+ o(h2).

In comparison to (7.82), the additional members in c0 could make the main part
of the estimate for quadratic/linear rational splines smaller or greater than in case
of cubic splines. In Chapter 8 there is a numerical example in which the rational
splines have really considerably smaller error.
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Chapter 8

Numerical examples

In this chapter we present the numerical examples.

In the thesis we deal with quadratic, cubic, linear/linear and quadratic/linear
rational splines. We point out, that it would be easy to construct an example
of boundary value or interpolation problem whose exact solution is one of the
mentioned splines but is not any other of them. For example let a quadratic spline
be the exact solution of the test problem but not any other spline written above.
In comparison, this gives an advantage to quadratic splines because the error in
interpolation or collocation is automatically zero for them and di�erent from zero
for all other types of splines. Our aim in numerical examples is to take a simple
and ordinary function and show that in that case the rational splines have better
results.

We interpolated the function

y(x) =
1

x2

on the interval [−2,−1

5
].

The boundary value problem which we solved by collocation method is

y′′ − xy′ − 8x4y =
6

x4
+

2

x2
− 8x2, x ∈ (−2,−1

5
),

y(−2) =
1

4
, y(−1

5
) = 25

with the exact solution y(x) =
1

x2
.

The results could be found in the following sections and tables.

91



8.1 Linear/linear rational spline interpolation

We interpolated the test function by linear/linear rational spline S as described in
Section 4.1. The boundary conditions (4.2) with

α1 = y0 +
3

64
h4

1

x60
, α2 = yn +

3

64
h4

1

x6n

were used. The "three-diagonal" nonlinear system to determine the values of Si was
solved by Newton's method. The iterations were stopped at ‖Sk−Sk−1‖∞ ≤ 10−10,
Sk being the sequence of approximations to the vector S = (S0, . . . , Sn). The
errors εn = S(zi) − y(zi) and ε′′n = S′′(zi) − y′′(zi) were calculated in certain
superconvergence points zi. Results of numerical tests in Tables 8.1−8.2 support
the theory.

Table 8.1: Numerical results for εn = S(zi)− y(zi), i = 1, 2, 3.

z1 = −1.55 z2 = −1.1 z3 = −0.65

n εn εn
2
/εn εn εn

2
/εn εn εn

2
/εn

16 5.381 · 10−7 4.189 · 10−6 9.697 · 10−5

32 3.379 · 10−8 15.931 2.641 · 10−7 15.861 6.170 · 10−6 15.716
64 2.114 · 10−9 15.984 1.654 · 10−8 15.967 3.881 · 10−7 15.984
128 1.322 · 10−10 15.991 1.035 · 10−9 15.981 2.429 · 10−8 15.978
256 8.262 · 10−12 16.001 6.467 · 10−11 16.004 1.519 · 10−9 15.991

Table 8.2: Numerical results for ε′′n = S′′(zi)− y′′(zi), i = 1, 2.

z1 = a+b
2 −

h
2 z2 = a+b

2 + h
2

n ε′′n ε′′n
2
/ε′′n ε′′n ε′′n

2
/ε′′n

16 −2.602 · 10−3 −4.789 · 10−3

32 −7.639 · 10−4 3.406 −4.037 · 10−3 4.618
64 −1.066 · 10−4 3.697 −2.408 · 10−4 4.306
128 −5.370 · 10−5 3.847 −5.798 · 10−5 4.153
256 −1.369 · 10−5 3.923 −1.422 · 10−5 4.077
512 −3.522 · 10−6 3.964 −3.455 · 10−6 4.116

8.2 Quadratic/linear rational spline interpolation

We also interpolated the test function by quadratic/linear rational spline S as
described in Section 5.1. The boundary conditions (5.3) with

α1 = y′′0 +
2

3
h2

1

x60
, α2 = y′′n +

2

3
h2

1

x6n
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were used. Likewise to linear/linear rational spline case the "three-diagonal" non-
linear system to determine the values Mi was solved by Newton's method and the
iterations were stopped at ‖Mk −Mk−1‖∞ ≤ 10−10, Mk being the sequence of
approximations to the vector M = (M0, . . . ,Mn). The errors ε′n = S′(zi) − y′(zi)
and ε′′′n = S′′′(zi) − y′′′(zi) were calculated in certain superconvergence points zi.
Again, the results con�rm the convergence rates predicted by the theory.

Table 8.3: Numerical results for ε′n = S′(−1.1)− y′(−1.1)
n 16 32 64 128 256 512

ε′n 1.18 · 10−5 7.55 · 10−7 4.75 · 10−8 2.97 · 10−9 1.86 · 10−10 1.16 · 10−11

ε′n
2
/ε′n 15.6055 15.9101 15.9774 15.9938 16.0075

Table 8.4: Numerical results for ε′′′n = S′′′(zi)− y′′′(zi), i = 1, 2.

z1 = a+b
2 −

h
2 z2 = a+b

2 + h
2

n ε′′′n ε′′′n
2
/ε′′′n ε′′′n ε′′′n

2
/ε′′′n

16 −6.9813 · 10−3 −1.4140 · 10−2

32 −2.1037 · 10−3 3.3186 −3.0075 · 10−3 4.7017
64 −5.7679 · 10−4 3.6473 −6.8979 · 10−4 4.3600
128 −1.5091 · 10−4 3.8221 −1.6504 · 10−4 4.1796
256 −3.8583 · 10−5 3.9113 −4.0362 · 10−5 4.0889
512 −9.9922 · 10−6 3.8613 −9.7364 · 10−6 4.1454

8.3 Linear/linear rational spline collocation

We solved the test problem with linear/linear rational splines S as described in
the beginning of Chapter 6. The nonlinear system to determine the values of
Si and S̄i was solved by Newton's method and the iterations were stopped at
‖Sk − Sk−1‖∞ ≤ 10−10, Sk being the sequence of approximations to the vector
S = (S0, S̄1, S1, . . . , Sn, S̄n). In addition, we present the results for the test problem
by quadratic spline collocation method, see, e.g., [39]. In [39], for implementation,
B-splines are used. In following tests, we used the �rst moments for quadratic
spline S2. Given numbers in Table 8.5 in the upper row are the errors calculated
approximately on tenfold re�ned grid as

δn = max
1≤i≤n

max
0≤k≤10

|(S2 − y)(xi−1 + kh/10)|. (8.1)

Similarly to (8.1) we calculated εn as being the approximate values of ‖S − y‖∞
where S is the linear/linear rational spline. They are presented in the middle
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row of Table 8.5. The results show that the error is approximately ten times less
for linear/linear rational spline. Numbers in third row of Table 8.5 con�rm the
convergence rate O(h2) for linear/linear rational spline collocation established in
Chapter 6.

In our example we have the functions

g1(x) =

∣∣∣∣∣
yIV − py′′′ − 6

y′′′y′′

y′
+ 6

(y′′)3

(y′)2
+

3

2
p

(y′′)2

y′

q
(x)

∣∣∣∣∣ =
3(x2 + 4)

8x10
,

g2(x) =
∣∣∣yIV − py′′′

q
(x)
∣∣∣ =

3(5− x2)
x10

and they are increasing if x < 0. Then g2

(
− 1

5

)
/g1

(
− 1

5

)
=

992

101
which is

consistent with numerical results presented in Table 8.5.

Table 8.5: Numerical results for δn and εn
n 16 32 64 128 256 512

δn 8.60 · 10−1 3.13 · 10−1 8.70 · 10−2 2.20 · 10−2 5.60 · 10−3 1.40 · 10−3

εn 2.10 · 10−1 4.17 · 10−2 9.67 · 10−3 2.37 · 10−3 5.88 · 10−4 1.47 · 10−4

εn
2
/εn 5.048 4.308 4.089 4.027 4.009

We also calculated approximately the errors ‖S′ − y′‖∞ and ‖S′′ − y′′‖∞ on
tenfold re�ned grid as in (8.1) which we denote by ε′n and ε

′′
n, respectively. Results

of numerical tests presented in Table 8.6 support the established theoretical ones.

The errors δ′′n = S′′(zi) − y′′(zi) were calculated in certain superconvergence
points zi. Results of numerical tests are presented in Table 8.7 and they con�rm
convergence rate O(h2) predicted by theory.

Table 8.6: Numerical results for ε′n and ε′′n
n 16 32 64 128 256 512

ε′n 14.21 3.45 8.56 · 10−1 2.14 · 10−1 5.34 · 10−2 1.34 · 10−2

ε′n
2
/ε′n 4.122 4.026 4.006 4.002 4.0004

ε′′n 888.117 344.384 151.128 70.645 34.129 16.771
ε′′n

2
/ε′′n 2.579 2.279 2.139 2.070 2.035
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Table 8.7: Numerical results for δ′′n = S′′(zi)− y′′(zi), i = 1, 2.

z1 = a+b
2 −

h
2 z2 = a+b

2 + h
2

n δ′′n δ′′n
2
/δ′′n δ′′n δ′′n

2
/δ′′n

16 −3.675 · 10−1 −3.404 · 10−1

32 −7.400 · 10−2 4.966 −7.124 · 10−2 4.778
64 −1.722 · 10−2 4.297 −1.690 · 10−2 4.216
128 −4.214 · 10−3 4.087 −4.174 · 10−3 4.049
256 −1.046 · 10−3 4.028 −1.041 · 10−3 4.009
512 −2.607 · 10−4 4.012 −2.601 · 10−4 4.002

8.4 Quadratic/linear rational spline collocation

Finally, we solved the test problem with quadratic/linear rational splines S (see
Chapter 7). Again, we solved the arising nonlinear system by Newton's method and
the iterations were stopped at ‖mk−mk−1‖∞ ≤ 10−10 and ‖Sk−Sk−1‖∞ ≤ 10−10,
mk being the sequence of approximations to the vector m = (m0, . . . ,mn) and
Sk being the sequence of approximations to the vector S = (S0, . . . , Sn). For
comparison, we have solved the test problem with cubic spline collocation method,
where we used the representation by second moments [39].

The errors δn for cubic splines and εn for quadratic/linear rational splines were
calculated as in (8.1). The results in Table 8.8 show that the error is approximately
�fteen times less for quadratic/linear rational spline. Numbers in third row of
Table 8.8 con�rm the theoretical convergence rate for quadratic/linear rational
spline collocation method.

Here we have functions

g1(x) =

∣∣∣∣∣
yIV − 4

3

(y′′′)2

y′′

q
(x)

∣∣∣∣∣ =
1

x10
, g2(x) =

∣∣∣yIV
q

(x)
∣∣∣ =

15

x10

and they are increasing if x < 0. Then g2

(
− 1

5

)
/g1

(
− 1

5

)
= 15 and this is

consistent with numerical results presented in Table 8.8.

Table 8.8: Numerical results for δn and εn
n 16 32 64 128 256 512

δn 36.18 · 10−1 7.88 · 10−1 1.87 · 10−1 4.60 · 10−2 1.14 · 10−2 2.86 · 10−3

εn 2.04 · 10−1 4.98 · 10−2 1.23 · 10−2 3.06 · 10−3 7.63 · 10−4 1.91 · 10−4

εn
2
/εn 4.087 4.057 4.019 4.005 4.001
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We also calculated approximately the errors ‖S′ − y′‖∞ and ‖S′′ − y′′‖∞ on
tenfold re�ned grid as in (8.1) which we denote here by ε′n and ε′′n, respectively.
Results of numerical tests presented in Table 8.9 support the established theoretical
ones.

Table 8.9: Numerical results for ε′n and ε′′n
n 16 32 64 128 256 512

ε′n 4.18 1.18 3.06 · 10−1 7.73 · 10−2 1.94 · 10−2 4.85 · 10−3

ε′n
2
/ε′n 3.541 3.852 3.960 3.990 3.997

ε′′n 61.40 24.69 8.43 2.50 6.92 · 10−1 1.82 · 10−1

ε′′n
2
/ε′′n 2.487 2.928 3.377 3.608 3.797
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Kokkuvõte

Rajaülesannete lahendamine ratsionaalsplainidega
kollokatsioonimeetodil

Paljud matemaatika, füüsika ja teiste teadusalade probleemid on formuleeri-
tavad rajaülesannete kujul. Traditsioonilised meetodid rajaülesannete lahendami-
seks on võrgumeetod, mis annab ainult diskreetse lahendi, ja polünomiaalsete
splainidega kollokatsioonimeetod.

Käesolevas töös vaadeldakse hariliku teist järku diferentsiaalvõrrandi raja-
ülesande

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x), x ∈ (a, b),

y(a) = α, y(b) = β

lahendamist kollokatsioonimeetodil kasutades lineaar/lineaar ja ruut/lineaar ratsio-
naalsplaine.

Eeldatakse, et ülesandel on olemas lahend, mis on piisava siledusega ja p, q, f
on pidevad ning q(x) ≤ q < 0, x ∈ (a, b). Sellisel juhul on lahend ühene, mis on ka
peatükis 6 tõestatud.

Vaatleme ühtlase jaotusega lõiku [a, b] punktidega xi = a + ih, i = 0, . . . , n,
h = (b − a)/n, n ∈ N. Rajaülesande lahendamist ruut-ja kuupsplainidega kol-
lokatsioonimeetodil on uurinud mitmed autorid. On teada ka, et ruutsplainide
korral põhineb koonduvuskiiruse O(h2) tõestus interpoleerimise superkoonduvusel
[30, 35, 39]. Kuupsplainidega interpolatsiooniülesandes on antud sõlmedes xi,
i = 0, . . . , n, väärtused yi, i = 0, . . . , n, ja otsitakse splaini S, mis rahuldaks
tingimusi S(xi) = yi, i = 0, . . . , n. Ruutsplainidega interpolatsiooniülesandes on
antud väärtused ȳi, i = 1, . . . , n, sõlmedes ξi = (xi−1 + xi)/2, i = 1, . . . , n, ja nõu-
takse, et S(ξi) = ȳi, i = 1, . . . , n. Lineaar/lineaar ratsionaalsplainidega interpolat-
siooniülesande formuleering on sama nagu ruutsplainidega ja ruut/lineaar ratsio-
naalsplainidega interpolatsiooniülesandel nagu kuupsplainidega. Interpoleerimise
korral on teada, et ratsionaalsplainid lähendavad mõningaid funktsioone paremi-
ni kui polünomiaalsed splainid. Seetõttu võivad ratsionaalsplainid anda mõnedes
rajaülesannetes paremaid tulemusi. Käesoleva töö põhiprobleemiks ongi uurida ra-
jaülesannete lahendamist lineaar/lineaar ja ruut/lineaar ratsionaalsplainidega kol-
lokatsioonimeetodil. Tulemusi võrreldakse vastavalt ruut-ja kuupsplain-kollokat-
sioonimeetodite tulemustega.

Kuna lineaar/lineaar ratsionaalsplain on monotoonne ja ruut/lineaar ratsio-
naalsplain S (või −S) on kumer lõigus [a, b], siis on mõtet rajaülesannet selliste
splainidega ligikaudselt lahendada vaid siis, kui on teada, et rajaülesande täpne
lahend on sama omadusega.
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Kui vaadeldav ruut-ja kuupsplainidega rajaülesanne on lineaarne, siis ratsio-
naalsplainidega ülesanne on mittelineaarne, sest see viib mittelineaarse võrrandi-
süsteemi lahendamiseni.

Käesolev doktoritöö koosneb 8 peatükist. Esimeses peatükis antakse lühike üle-
vaade tööst, rajaülesande ja ratsionaalsplainide ajaloost ning tutvustatakse teiste
autorite artikleid antud valdkonna kohta.

Teises peatükis tutvustatakse lineaar/lineaar ratsionaalsplaine, kirjeldatakse
nende vabade parameetrite arvu ja üldisi omadusi. Töös antakse 3 erinevat esi-
tust: kõigepealt punktides xi leitud esimeste momentide ja splaini väärtuste kaudu
punktides ξi, teisena osalõikude keskpunktis arvutatud tuletise ja splaini väärtuste
kaudu punktides xi ning viimaseks splaini väärtuste abil punktides xi ja ξi.

Kaks esitust ruut/lineaar ratsionaalsplainide jaoks leiab töö kolmandast pea-
tükist. Nimelt on toodud esitus esimeste momentide ja splaini väärtuste abil
sõlmedes xi ja samuti teiste momentide ja splaini sõlmväärtuste kaudu. Samast
peatükist leiab ka üldisi tulemusi ruut/lineaar ratsionaalsplainide kohta.

Töö neljas peatükk käsitleb lineaar/lineaar ratsionaalsplainidega interpoleeri-
mist. Alustatakse interpolatsiooniülesande tutvustamisega ja kasutatakse splaini
esitust väärtuste kaudu. Näidatakse, et interpoleerivate lineaar/lineaar ratsionaal-
splainide S ja piisavalt sileda funktsiooni y jaoks kehtib ‖S(xi)−y(xi)‖∞ = O(h4)
ühtlase jaotusega lõigus punktidega xi = a + ih, i = 0, . . . , n. Tõestatakse ka h3

järku superkoonduvus splaini S esimeste tuletiste ja h2 järku teiste tuletiste jaoks
teatud punktides. Sarnased tulemused ruutsplainide kohta on teada varasemast,
võrdlus saadud lineaar/lineaar ratsionaalsplainide tulemustega on toodud peatüki
lõpus.

Viies peatükk on pühendatud interpoleerimisele ruut/lineaar ratsionaalsplaini-
dega. Siin kasutatakse splaini esitust teiste momentide ja väärtuste kaudu. Tões-
tatakse interpoleerivate ruut/lineaar ratsionaalsplainide S ja piisavalt sileda funkt-
siooni y jaoks ühtlase jaotusega lõigus h4 järku superkoonduvus splaini esimeste
tuletiste, h3 järku teiste tuletiste ja h2 järku kolmandate tuletiste jaoks teatud
punktides. Saadud tulemusi võrreldakse kuupsplainide tulemustega, mis on varase-
mast teada.

Kuuendas peatükis on uuritud kollokatsioonimeetodit lineaar/lineaar ratsio-
naalsplainidega. Peatüki algusest leiab meetodi kirjelduse ja võrdluse ruutsplain-
kollokatsioonimeetodiga. Edasi on tõestatud O(h2) koonduvuskiirus ühtlase jaotu-
sega lõigus lineaar/lineaar ratsionaalsplainidega kollokatsioonimeetodi jaoks.
Tõestus põhineb splainidega interpoleerimise superkoonduvuse tulemustele. Samu-
ti on saadud koonduvuskiirused ‖S′ − y′‖∞ = O(h2) ja ‖S′′ − y′′‖∞ = O(h)
lineaar/lineaar ratsionaalsplaini S ja rangelt monotoonse rajaülesande lahendi y
korral. Osutub, et kollokatsioonipunktides toimub splaini teiste tuletiste korral h2

järku superkoondumine.

Seitsmendas peatükis vaadeldakse ruut/lineaar ratsionaalsplainidega kollo-
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katsioonimeetodit. Nagu eelmises peatükis, alustatakse ka siin meetodi kirjelda-
misega ning võrreldakse seda kuupsplain-kollokatsioonimeetodiga. Uurimisel kasu-
tatakse splaini esitust esimeste momentide ja väärtuste kaudu ning tõestatakse, et
ruut/lineaar ratsionaalsplainide S jaoks ühtlase jaotusega lõigus rajaülesande la-
hendi y, mis on rangelt kumer (või rangelt nõgus), korral kehtib ‖S−y‖∞ = O(h2).
Samuti näidatakse ‖S′ − y′‖∞ = O(h2) ja ‖S′′ − y′′‖∞ = O(h2) kehtivust.

Viimasest peatükist leiab arvuliste katsete tulemused nii interpolatsiooni- kui
rajaülesande jaoks. On võetud tavaline lihtne funktsioon ning näidatud, et selle
korral annavad ratsionaalsplainid võrreldes ruut-ja kuupsplainidega paremaid tule-
musi. Saadud tulemused on ka täielikus kooskõlas töös toodud teoreetilistega.

Peatüki 4 tulemused on avaldatud artiklis [25] ja peatüki 5 tulemused artiklis
[26]. Publitseerimisele on suunatud peatüki 6 tulemused [27] ning dissertatsioonis
esitatut on tutvustatud viiel rahvusvahelisel teaduskonverentsil.
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