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1. INTRODUCTION 
 
As acknowledged by the Intergovernmental Panel on Climate Change, vulne-
rability of Greenland and Antarctica to on-going global warming and related 
discharge feedbacks remains a major source of uncertainty in projected sea-
level rise. To understand this uncertainty, determining the responses of past ice 
sheets to climate changes, their expansion and demise histories and effect on 
deglacial sea-level change are of utmost importance. The behaviour of global 
ice volume during the Last Termination is recorded in sea-level fluctuations in 
response to the collapse of ice sheets caused by warming (Fairbanks 1989; 
Yokoyama et al. 2000; Tarasov & Peltier 2005; Clark et al. 2009). However, 
the exact chronology, origin and consequences of these ice-sheet melting episo-
des remain unclear (Carlson & Clark 2012; Deschamps et al. 2012), partly 
because of temporally poorly constrained ice volume and coverage models and 
because of different behaviour of individual ice sheets. As improvements in the 
modelling of ice sheets is possible only through the improved constraints on the 
ice margin histories (Lambeck et al. 2010; Shepherd et al. 2012), further work is 
needed to understand available chronologies and to build new, direct (if pos-
sible) ones. The current thesis contributes to these activities by reviewing 
available and adding new chronometric data to the knowledge about the beha-
viour of ice sheets on the East European Plain during the Weichselian Cold 
Stage, with the aim of better understanding of the unified history and forcing 
mechanisms of Scandinavian Ice Sheet (SIS). The study area of the thesis 
encompasses the SE sector of the SIS between the Baltic Sea and the Last 
Glacial Maximum (LGM) position in the western part of the East European 
Plain.  

The Weichselian Glaciation is most extensively studied. Still, the occurrence 
of Early to Middle Weichselian glaciation in this region remains controversial 
because the advancing ice sheet has a great destructive potential for soft 
unconsolidated sediments and most of the sediments of former glaciations have 
been removed. However, evidence of glacial sediments attributed to the Middle 
Weichselian has been found in several sites in northern, central and eastern 
Europe: southern Finland (Nenonen 1995), Estonia (Liivrand 1991), Latvia 
(Zelčs & Markots 2004), Lithuania (Molodkov et al. 2010), Poland (Marks 
1998, 2004) and Denmark (Houmark-Nielson 2007). Nevertheless, opinions 
about the extent of the SIS during the Middle Weichselian glaciation are contra-
dicting. Some studies claim that the SIS reached the western part of the East 
European Plain during MIS 4 (74–59 ka) (Arslanov 1993; Zarrina 1991), but 
others suggest that the SIS did not extend beyond the Baltic Sea depression and 
Russian Karelia during that time (Chebotareva & Macarycheva 1982; Demidov 
et al. 2004; Guobyte & Satkūnas 2011; Velichko et al. 2004, 2011). Since the 
chronological data concerning the glaciation during the Middle Weichselian in 
the study area are also scanty, especially from the region close to the Valdai 
Upland at the LGM position, further research is required to improve the chrono-
logy of the SIS advance.  
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More is known about the last glaciation as many studies have focused on the 
timing of the Late Weichselian ice advance and deglaciation. Most of these 
studies, however, are country-based contributions and chronological data are 
therefore unevenly distributed. For this reason the timing of the advance of the 
last SIS and its arrival at the position of the LGM are continuously debated. 
According to the most widely accepted view (Demidov et al. 2006; Rinterk-
necht et al. 2006; Wysota et al. 2009; Marks 2010), the SIS did not reach the 
LGM position isochronously and occurred at different times in the southeastern 
area of the Scandinavian glaciation.   

More data have been published on the recession of the last SIS than on its 
advance. However, studies do not cover the entire SE sector of the Scandinavian 
glaciation. Many authors (Kalm 2006, 2012a; Rinterknecht et al. 2006, 2007, 
2008; Raukas 2009; Satkūnas et al. 2009; Guobytė & Satkūnas 2011; Zelčs et 
al. 2011; Bitinas 2012) have provided ages for ice recession stadials in the 
western part of the East European Plain over the years, but opinions concerning 
the positions of ice-marginal zones, their ages and correlations are controversial. 
The problem could partly stem from the variety of dating methods and dated 
material/sediments as most of the methods are indirect and reflect rather the age 
limits.  

A persistent problem in glacial geology and geomorphology has been the 
acquisition of suitable material for dating and the accuracy of obtained ages. 
The usage of the radiocarbon (14C) method is limited because very often datable 
organic material is lacking in glacial terrain or specific landforms and only ages 
up to ~45 ka can be obtained with this method. Recent advent of optical lumi-
nescence and cosmogenic dating resolves the necessity to find organic material 
and instead the age of the deposition of sediments and erratic boulders is eva-
luated. Radiocarbon, optically stimulated luminescence (OSL), thermolumine-
scence (TL) and cosmogenic beryllium (10Be) dates were available for the 
current review to evaluate the chronology of the Weichselian glaciation in the 
SE part of the SIS. However, the distribution of dates is uneven in both spatial 
and temporal sense in the study area; the interpretations of the ice sheet beha-
viour are conflicting. 

These uncertainties have necessitated the revision of the chronological data. 
The main goal of the current thesis was to assess the behaviour of the SIS 
during the Weichselian Glaciation on East European Plain through the col-
lection, review and synchronozation of all available chronological data.  
 

The specific objectives of this research were: 
 to determine the duration of the ice-free period before the last glaciation;  
 to establish an overall chronology for the last SIS advance;  
 to refine a deglaciation chronology in conjunction with the current under-

standing of the ice-flow pattern;  
 to determine overall rates of ice-sheet advance and recession necessary for 

understanding the subglacial processes and further modelling of ice sheets. 
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2. BACKGROUND 

2.1. Last glacial cycle and extension of the Scandinavian 
Ice Sheet in its southeastern sector 

The last, best-studied glacial cycle is a key period for understanding the Earth’s 
response to orbital (Milankovitch events) and other forcing of the climate 
(Mangerud 1991). This cycle started about 130 ka years ago with a warm stage, 
named the Eemian interglacial stage in central and northern Europe (Mikulino 
in eastern Europe) and is traditionally correlated with Marine Isotope Stage 
(MIS) 5e (Fig. 1). During this interglacial stage the Eemian Sea covered a larger 
area than the present Baltic, White and Barents seas. This has been explained by 
the greater extent and thickness of the Saalian ice sheets compared to the 
Weichselian ice sheets and the different deglaciation histories of these periods 
(Ehlers 2007). 

 

 

Fig. 1. Stacked marine oxygen isotope record of the last glacial cycle from Martinson et 
al. (1987) with marine isotope stages (MIS) and correlation with terrestrial chronostrati-
graphy of the last glacial cycle in central, northern and eastern Europe. Compiled ac-
cording to Behre (1989), Mangerud (1991), Arslanov (1993) and Velichko et al. (2011). 

 
The last cold stage, known as the Weichselian in northern Europe, Würm in 
central Europe (Alps) and Valdai in eastern Europe, started about 117 ka ago 
and is correlative with the Wisconsin Glaciation in North America. During the 
Weichselian Glaciation, which lasted about 105 ka, the SIS advanced several 
times further from the glaciation centre in the northern Bothnia Bay area in 
Scandinavia, covering the whole of Fennoscandia, northwestern Russia and 
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northern continental Europe, and coalesced with the Barents and British Ice 
Sheets. The Weichselian Cold Stage (Weichselian Glaciation) is usually divided 
into the Early (Lower) Weichselian (MIS 5d-5a), Middle Weichselian (MIS 4 
and 3) and Late (Upper) Weichselian (MIS 2) Substages. The climate fluctuated 
throughout the Weichselian Glaciation with several cold (stadial) and warm 
(interstadial) periods (Fig. 1).  

The first advance of the SIS after the Eemian interglacial to the Russian 
mainland occurred as early as 80–100 ka in the Early Weichselian (MIS 5d and 
5b), blocking all drainage and damming huge lakes in West Siberia and the 
northwestern part of Russia (Fig. 2).  

 
 

 

Fig. 2. Extent of the Early Weichselian (MIS 5d and 5b) glaciation in northern Eurasia 
(Ehlers et al. 2013). 

 
Drainage was diverted southwards towards the Caspian Sea and the Black Sea. 
Although the Early Weichselian SIS was most extensive in the east, a few traces 
of this ice sheet are also found in the western regions (Ehlers et al. 2013). 
Nevertheless, the SIS did not reach the western and southern parts of Finland 
(Lunkka et al. 2004). The Early Weichselian Substage included two inter-
stadials, Brörup (MIS 5c) and Odderade (MIS 5a), when climate became 
slightly milder.   

About 60 ka BP (MIS 4), the second advance of the SIS occurred, as the 
Middle Weichselian Ice Sheet covered large parts of Fennoscandia and northern 
areas in NW Russia and Siberia (Ehlers et al. 2013; Fig. 3). The knowledge of 
Middle Weichselian climatic events (MIS 4 and 3) and the extent of the SIS in 
eastern Europe and European Russia is quite limited and the evidence of its 
timing is still rather sparse (Saks 2010). Opinions about the extent of the SIS 
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during the Middle Weichselian glaciation are contradicting. Some studies claim 
that the SIS reached the western part of the East European Plain during MIS 4 
(Zarrina 1991; Arslanov 1993), others, however, suggest that the SIS did not 
extend beyond the Baltic Sea depression and Russian Karelia during that time 
(Chebotareva & Macarycheva 1982; Demidov et al. 2004; Guobyte & Satkūnas 
2011; Velichko et al. 2004, 2011). 

 
 

 

Fig. 3. Extent of the Middle Weichselian glaciation (MIS 4) (Ehlers et al. 2013). 

 
Nevertheless, evidence of the Middle Weichselian (MIS 4) glaciation  has been 
reported from several sites in northern, central and eastern Europe: southern 
Finland (Nenonen 1995), Estonia (Liivrand 1991), Latvia (Zelčs & Markots 
2004), Lithuania (Molodkov et al. 2010), Poland (Marks 1998, 2004) and 
Denmark (Houmark-Nielson 2007). The subsequent warm period, namely MIS 
3 ‘megainterstadial’ in European Russia (Oerel to Denekamp interstadials in 
central Europe), is characterized by alternating warm and cold phases, while the 
glaciation was mostly restricted to the Scandinavian mountains mostly (Ehlers 
2007; Velichko et al. 2011).  

The Late Weichselian glaciation in northern Eurasia started about 28 ka ago. 
In the eastern part of the SIS it was restricted to the shelf areas of the Barents 
and Kara seas (Fig. 4). In the western part of the SIS, this was the most exten-
sive Weichselian glaciation. Rapid ice-advances of the SIS across southern and 
central Finland into the western part of the East European Plain took place after 
25 ka (Johanson et al. 2011), covering central and northern Europe and Euro-
pean Russia (Ehlers 2007; Ehlers et al. 2013).  
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Fig. 4. Extent of the Late Weichselian (MIS 2) glaciation in northern Eurasia (Ehlers et 
al. 2013).   

 
The SE sector of the Late Weichselian SIS reached its maximum extent between 
21 and 19 ka (MIS 2) synchronously with the global record of ice volume 
changes, but in the SW sector of the SIS the maximum extent was reached 
earlier during MIS 4 and 3 (Houmark-Nielsen 2011). Thus, it is clear that the 
various sectors of vast continental ice sheets like the SIS exhibit complex 
responses to the global climate signal, with the global LGM being only one of a 
series of major advances of varying size (Hughes et al. 2013). Furthermore, also 
the SE sector of the SIS did not reach the LGM position isochronously. The 
LGM has been estimated to have occurred at different times: 18 OSL ka BP in 
the Vologda area, NW Russia (Lunkka et al. 2001); not earlier than 22.3 cal. 14C 
ka in NW Belarus and 19.2 cal. 14C ka BP in NE Belarus (Rinterknecht et al. 
2007); 18.3 10Be ka in Lithuania (Rinterknecht et al. 2008) and not earlier than 
26–20 TL ka in SE Lithuania (Guobyte & Satkunas 2011); 22–20 ka BP (OSL 
and cal. 14C dates) in Denmark (Houmark-Nielsen 2004, 2008); 18–20 TL ka 
and 19.7 36Cl ka in NE Poland close to the SW Lithuanian and NW Belarus 
border (Krywicki 2002;  Dzierżek & Zreda 2007) and 24–19 ka BP (cal. 14C and 
10Be ages) in Poland (Marks 2010). This is explained by the different ice 
streams and their complexes operating in the SE sector of the SIS during the 
Late Weichselian (Kalm 2012a; Fig. 5).  
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Fig. 5. Ice lobes and marginal positions of the last SIS southeast of the Baltic Sea (Kalm 
2012a). Ice streams and their complexes are: Baltic ice stream complex (B) with Neman 
(B4) and Riga (B5) ice streams and Usma (B5-1), Vadakste (B5-2) and Zemgale (B5-3) 
sub-ice-streams; Peipsi–Pskov ice stream (D); Võrtsjärv ice stream (V); Karelian ice  
stream complex (E) with Ladoga–Ilmen–Lovat’ ice stream (F) and Lubana (F1), 
Velikaja (F2), Kunja (F3) and Msta (F4) sub-ice-streams; White Sea ice stream complex 
(G) with Onega (G1) ice stream and Beloye Ozero (G1-1) and Kubenskoye (G2-1) sub-
ice-streams. Rybinsk (R) ice stream is located outside of the estimated LGM limit. Ice-
marginal zones are: 1 – LGM (Gruda in Lithuania), 2 – Baltija (= Pomeranian or 
Vepsian in Karelia and western Russia), 3 – South Lithuanian (Sebezha and Krestets in 
Russia and Karelia), 4 – Middle Lithuanian, 5 – North Lithuanian (Haanja and Luuga in 
Latvia, Estonia and Russia), 6 – Otepää, 7 – Sakala (Valdemarpils in Latvia), 8 – 
Pandivere (Neva in Russia and Karelia), 9 – Palivere, 10 – Salpausselkä I (Rugozero in 
Karelia). Names of major highlands are shown in white colour.  

 
 

The SIS began to retreat soon after the LGM and by the end of the Bölling–
Alleröd interstadial (12 cal. 14C ka BP) the area between the Salpausselkä I ice-
marginal zone in southern Finland and the LGM position in the western part of 
the East European Plain was deglaciated. During the last demise major ice sheet 
stagnations appeared, which can also be seen in the present topography where 
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different authors have distinguished up to eight ice-marginal zones in the SE 
sector of the SIS (Fig. 5) (Guobytė & Satkūnas 2011; Karabanov & Matveyev 
2011; Zelčs et al. 2011, Kalm 2012a). Most reconstructions of the last 
deglaciation of the SIS show the ice limits as unbroken lines extending up to 
several hundreds of kilometres (Lundqvist & Saarnisto 1995; Raukas 1992; 
Rattas & Kalm 2005; Kalm 2012a). However, correlation of deposits and land-
forms associated with particular limits is difficult and conflicts exist between 
many interpretations. 
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3. MATERIAL AND METHODS 

3.1. Study area 

The study area encompasses the southeastern sector of the last Scandinavian Ice 
Sheet between the Baltic Sea and the LGM position in the western part of the 
East European Plain (Fig. 6).  

The topography of the study area is rather flat, with average elevations 
between 100 and 200 m above sea level (a.s.l) and with maximum heights of 
about 353 m a.s.l in the Valdai region. Current glacial accumulative topography 
has mostly been designed by the last, Late Weichselian glaciation. Meridionally 
oriented glacial depressions mark the footprints of major ice lobes (Kalm 
2012a), while ice divides in between are marked by the radial series of insular-
like uplands. In the northern part plinth-type uplands with an outstanding 
bedrock core and thin (<10 m) Quaternary cover are lower (100–175 m) than 
the maximum of around 300 m, characteristic of the glacial-accumulative 
heights with a thick Quaternary cover located in the central and southern parts 
of the SIS extension area. A series of outstanding uplands mark also the LGM 
zone of the SIS. 

The palaeogeographic situation before the LGM is not well documented in 
northern Europe, because the last glaciation has removed most of the sediments 
of former glaciations. The SIS did not reach the East European Plain during the 
Early Weichselian (MIS 5d–a) and interstadial deposits have been found and 
dated in few sections from of the study area (Ehlers et al. 2011). According to 
modelling, in the Middle Weichselian the SIS reached only the NW part of the 
study area along the Baltic Sea coast (Fig. 6), but the evidence of its timing and 
extent is still rather sparse. More is known about the Late Weichselian 
glaciation. The ice sheet model of the LGM shows that the thickness of the SIS 
was about 2200 m at the southern shores of the Baltic Sea and 100–500 m at the 
LGM position (Svendsen et al. 2004; Zuzevičius 2010). Two major ice stream 
complexes (ISC) were operating during the Late Weichselian in the study area: 
the Baltic ISC about 1200 km long in western Estonia, western Latvia, Lithua-
nia and northwestern Belarus and the Karelian ISC about 800 km long in 
eastern Estonia, eastern Latvia, northeastern Belarus and Russia (Punkari 1997; 
Boulton et al. 2001; Karukäpp 2004; Kalm 2012a). The ice sheet advanced to 
the LGM position generally from the northwest and deglaciated in the opposite 
direction. The Baltic ice stream first followed the Baltic Sea depression to the 
southwest and later advanced to the southeast, to the western part of the East 
European Plain (Boulton et al. 2001; Kalm 2012a). The bedrock in the study 
area was not frozen throughout the last glacial advance and the base of the SIS 
probably thawed during the Late Weichselian (Jõeleht 1998; Jirakova et al. 
2011). This supposition is also supported by distribution of Weichselian 
subglacial landforms in Estonia and Latvia, which could have been formed only 
in unfrozen conditions under the ice sheet (Rattas 2004; Saks 2010). Such 
conditions probably accelerated both the advance and decay of the last SIS 
(Jirakova et al. 2011). 
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Fig. 6. Map showing the maximum extent of Weichselian glaciations in Fennoscandia 
and on the East European Plain (Ehlers & Gibbard 2004; Ehlers et al. 2012; Kalm 
2012a) together with indication of the study area.  Zones A and B, are used to simplify 
the data handling in the study area. Ages of the LGM are based on Rinterknecht et al. 
(2007). The red line denotes the azimuth line as the general direction of ice flow. Red 
dots show new investigated sites: Ä = Äntu; N = Nõuni; Ku = Kurenurme; D = Drei-
manis and Ki = Kileshino.  
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The present relief of the study area clearly reflects the topography of the 
bedrock surface as all larger ice streams followed the bedrock depressions 
(Kalm 2012b). Major ice sheet stagnations can be seen in the present topo-
graphy as the zones of ice-marginal landforms. Different authors have 
distinguished up to eight ice-marginal zones (Guobytė & Satkūnas 2011; Kara-
banov & Matveyev 2011; Zelčs et al. 2011; Kalm 2012a) in the study area. 

 

3.2. Fieldwork and sampling 

Fieldwork and sampling were performed in 2009–2011. The Kileshino outcrop 
close to the LGM in the Valdai Upland was described, sampled and photo-
graphed, lithofacies were distinguished and sediment colour was identified 
according to Munsell’s colour system chart (1998). Four cores (Äntu, Kure-
nurme, Dreimanis, Nõuni) from Estonia and Latvia were studied in order to 
obtain additional chronological data (Fig. 6). From all studied sites 23 samples 
were taken for radiocarbon and 4 samples for OSL age determination. Sixteen 
AMS samples were analysed in Poznań Radiocarbon Laboratory, Poland and 7 
AMS samples in the Beta Analytic Radiocarbon Dating Laboratory, Florida, 
USA. The OSL samples were measured by the Risø TL-DA-12 reader and 
equivalent doses were estimated using a single-aliquot regenerative-dose (SAR) 
protocol (Murray & Wintle 2000) in the Laboratory of Chronology, University 
of Helsinki. 

3.3. Chronological data 

This thesis is based on the collected chronological data, which are organized 
into a database. Some portions of the earlier data have been submitted also to 
the DATED database (Gyllencreutz et al. 2007). Since the year 2007 the author 
of this thesis has been responsible since the year 2007 for collecting the chrono-
logical data and upgrading the database regularly on the basis of previously and 
newly published articles. The database includes different types of dates (14C, 
OSL, TL, ESR, 10Be) from published and unpublished (Äntu, Nõuni, Kure-
nurme, Dreimanis, Kileshino) sources. For the moment about 670 dates with 
inclusive information about the dating method, geographical coordinates, dated 
material and its depth from the surface, superposition, etc. are available for the 
time range of 74–11.7 cal. 14C ka BP (Middle and Late Weichselian). Neverthe-
less, not all collected dates could be used for establishing chronology, primarily 
the dates concerning the development of the last glaciation. Therefore the data 
needed a critical revision and selection was made based on different characte-
ristics as discussed below.  

Interstadial MIS 3.1., with the time range of 35–28 cal. 14C ka BP, was 
followed by a glaciation (MIS 2, 28–11.7 cal. 14C ka BP), when the last SIS 
expanded from the glaciation centre into the Baltic Sea depression and further to 
our study area (Lambeck et al. 2010). Dates between 35.0 and 11.7 cal. 14C ka 
BP, marking, respectively, the MIS 3.1. and the Holocene boundary, were 
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preliminarily chosen for the development of the last SIS chronology. Although 
several dates in the database might reflect the Middle Weichselian or Late 
Weichselian ages, some mismatch is observed when these ages are considered 
together with the stratigraphical position of sediments in the geological section 
(for example, sediments dated to the Late Weichselian age lying below the Late 
Weichselian till). To obtain more reliable results, dates from sediments, which 
presumably were contaminated with old carbon (MacDonald et al. 1991) (lake 
marl, carbonate-rich sediments), were not used because of their possible age 
overestimation. While handling the data, the accuracy of some dates in com-
parison with others from the same area, became questionable. For this reason 
not all available dates were used. The causes of under- and overestimation of 
ages and their rejection from further analysis are discussed in more detail in 
PAPER III. It should be noticed that radiocarbon dates reflect the timing of 
organic sedimentation synchronous with vegetation development and therefore 
give an indirect age for both the advance and decay of the glacier. The OSL and 
10Be dates directly reflect the deposition of sediments and erratic boulders if 
assuming that the requirements for accurate dating are adequate. In conjunction, 
these dating methods cover the whole time range of interest, while the radio-
carbon dating method is limited to ~45 ka.   

Dates from key sites, which are directly relevant for the developed chrono-
logy are reported below, in Chapter 4.2. and are presented with the indication of 
the dating method in the discussion. All currently used radiocarbon dates were 
calibrated with the IntCal09 calibration curve (Reimer et al. 2009) and the 
OxCal v.4.1 program (Bronk Ramsey 2009), reported here with 1σ uncertainty 
and rounded to the nearest 100 years.  

 

3.4. Ice-flow pattern and data handling 

As two different ice streams were operating during the Late Weichselian in the 
western part of the East European Plain and the last SIS did not reach the LGM 
synchronously, the study area was tentatively divided into two parts, where ages 
and ice sheet dynamics were analysed separately. The western part, the Baltic 
ISC area, is considered as zone A and the eastern part, the Karelian ISC area, as 
zone B (Fig. 6). For the chronological reconstructions of the ice margin dyna-
mics, the geographical location of all used dates was marked on the map. Based 
on their distance and location between ice-marginal zones, the dates were 
converted proportionally to an overall deglaciation and probable glaciation 
onset azimuth line (Boulton et al. 2001; Kalm 2012a) in tentative zones A and 
B, separately (Fig. 7). The results are displayed as time-distance diagrams 
(Chapter 4.2. and PAPER III), where medians of the ages are shown and used 
further in the discussion.  
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Fig. 7. Sketch illustrating how the dates were converted proportionally to an overall 
deglaciation azimuth (red) line on the basis of their distance and location between ice-
marginal zones. Red dots mark the location of dated sites, red arrows show the distance 
and blue lines indicate tentative ice-marginal zones.    
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4. RESULTS AND DISCUSSION 

The duration of the ice-free period in the study area before the last Scandinavian 
glaciation was determined based on detailed sedimentological and chronological 
study at the Kileshino outcrop in the Valdai Upland (PAPER I) and on available 
Middle Weichselian dates (PAPERS II and III). The chronology of the last 
glaciation for the study area is based on the published dataset together with 
several new dated sites (PAPERS II and III).   
 

4.1. Ice-free interval before  
the last Weichselian glaciation in the western part  

of the East European Plain 

The presence of non-glacial palaeoenvironments during the Early Weichselian 
has been determined everywhere in the study area (Ehlers et al. 2011). Data 
about the Middle Weichselian are not so straightforward because the last 
glaciation probably removed most of the sediments of former glaciations and 
the incomplete record of this time period has complicated the study of the SIS 
extent, especially in the Valdai Upland.  

The Valdai Upland in the NW part of Russia (Fig. 8) was chosen for the 
study because the chronological data from the area are still insufficient and 
there have been contradictory opinions about the SIS advance during the Middle 
Weichselian in this region.  

Detailed sedimentological studies at the Kileshino outcrop revealed nineteen 
lithofacies and in conjunction with dated samples, five main sedimentary units 
(SU1–SU5) were distinguished each expressing different climatic and 
sedimentological conditions (Fig. 9) (PAPER I). The lower portion of the 
section (SU1) comprises glaciolacustrine varved clay indicating cold periglacial 
conditions. However, as only one infinite 14C AMS date was available, the age 
of these sediments was interpreted as older than 43.5 cal. 14C ka BP. Dates (57.5 
OSL to 33.8 cal. 14C ka BP) from non-glacial sediments (SU2) resting on top of 
varved clay indicate that during MIS 3 the Kileshino site was ice-free and SU1 
could not have been deposited at that time. The OSL ages (72.2–40.8 OSL ka) 
obtained from the sedimentary unit SU3, which is believed to have been 
transported by the last SIS advance from the NW of Kileshino, express the ice-
free time also for the Kileshino site during MIS 4 and 3, as the general direction 
of the last SIS advance was from NW to SE. Thus the SIS could not have 
reached further to the Kileshino site while ice-free conditions still persisted in 
the NW. The lowest age available below the till layer (SU4) shows the Late 
Weichselian (Valdai) age and indicates that the last SIS overrode the studied 
area after 33.8 cal. 14C ka. The above leads to the conclusion that periglacial 
sediments, which have been recognized in the Kileshino outcrop in the lowest 
sedimentary unit (SU1), are older than 72.2 OSL ka. Thus the SIS did not reach 
the Kileshino site during MIS 4 (74 and 59 ka), while there ice-free conditions 
existed there between 72.2 OSL and 33.8 cal. 14C ka BP. 
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Fig. 8. Valdai Upland and location of the Kileshino outcrop near the Kileshino village 
on the left bank of the Sizhina River.  
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Findings from the Kileshino site and lithological data from the nearby areas 
(Arkhanglsk region, Karelia and Vologda area), where only one till has been 
found above Eemian interglacial sediments (Demidov et al. 2004) show that the 
SIS did not reach the western part of the East European Plain. This concerns 
also the areas to the south of our study site as only one Weichselian till has been 
found in northern Belarus and it is interpreted to be of Late Weichselian age 
(Karabanov & Matveyev 2011). 

Glacial sediments attributed to the Middle Weichselian have been found in 
Denmark (Houmark-Nielsen 2011), Poland (Marks 2004, 2011), Latvia (Zelčs 
et al. 2011), Estonia (Liivrand 1991) and Finland (Nenonen 1995). Propositions 
for the timing of possible Middle Weichselian glaciation in Lithuania and 
Latvia have been made by several authors on the basis of chronological data. 
Molodkov (2010) suggested that the SIS reached the coastal area of Lithuania 
during MIS 4 (74–59 ka) or could have even covered all of western Lithuania. 
Recent data from Lithuania shorten the possible time range for the Middle 
Weichselian glaciation as northern Lithuania was ice-free at least between 55 
and 33 ka (Satkunas et al. 2012). Zelčs et al. (2011) suggested a possible early 
Middle Weichselian glaciation in Latvia between 74 and 59 ka when the SIS 
probably reached only coastal plains and, possibly, the adjoining Northern 
Kursa Upland in central Latvia. Additional dates from western Latvia confirm 
ice-free conditions at least between 52 and 26 OSL ka (Saks 2010). Chrono-
logical data from Estonia (PAPER II) indicate ice-free conditions at least 
between 44 and 27 and together with Early Weichselian ice-free time, it leaves 
some 24 ka (68–44 ka) for possible early Middle Weichselian glaciation. How-
ever, this conclusion is tentative, as Molodkov et al. (2007) found no evidence 
in the Voka outcrop, northern Estonia, suggesting the presence of glacigenic 
sediments deposited during the period between 115 and 31 OSL ka. If that holds 
true, the question arises how the second till from the surface, which is widely 
distributed in central and southern Estonia, and overlying Eemian interglacial 
deposits (Raukas 1978; Kajak 1995), should be interpreted. It is notable, that the 
Middle Weichselian glaciation has been recorded in western Finland between 
62 and 55 ka (Salonen et al. 2008) and has been interpreted to have reached at 
least SE Finland (Lunkka et al. 2008).  
  

4.2. Last Weichselian glaciation 

Currently developed chronology of the last Weichselian glaciation in the study 
area is based on 311 radiocarbon (14C, 14C AMS), 87 OSL and 72 10Be ages 
from 204 different sites/sections (PAPERS II and III). Only calibrated ages are 
used in further discussion, while all dates (both uncalibrated and calibrated 
ages) from key sites (Fig. 10), which were directly used for establishing the 
chronology and mentioned therefore in the discussion, are reported in Table 1. 
Based on time-distance diagrams (Figs. 11, 12), rest of the dates concerning the 
advance and decay of the SIS in the study area were considered relatively young 
or old, nevertheless all dates are shown in the figures. Note that hereafter the 
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results are given separately for the eastern (Karelian ISC area) and western 
(Baltic ISC area) parts of the study area and it is advisable to follow the 
discussion in conjunction with the time-distance diagrams.   

 

Fig. 10. Study area. Zones A and B, used to simplify the handling of the data and to 
evaluate ice sheet dynamics in different parts of the study area. The glacial maximum 
extent of the last SIS (Ehlers & Gibbard 2004; Kalm 2012a) is marked with a blue line 
and the ages are based on Rinterknecht et al. (2007). The red line denotes the azimuth 
line as the general direction of the ice-flow. Red dots show the dated sites mentioned in 
text: 1 = LAT-1; 9 = Rucava; 48 = Mančhiagine; 50 = Zervynos; 51 = Gozha; 66 = 
Ulmale; 67 = Baltmuiža; 72 = Turženu; 73 = Jiesia; 74 = Rokai; 75 = Jonionys; 76 = 
Netiesos; 88 = Pääsküla; 91 = Männiku; 97 = Pikassaare; 182 = Pehka; 99 = Haljala; 
100 = Voka; 105 = Räätsma; 174 = Lozoviki; 175 = Latyshi; 196 = Smeceres sils; 197 = 
Drcihaluki; 202 = Chizhovka. 
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4.2.1. The advance of the last Scandinavian Ice Sheet  
     to the western part of East European Plain 

 

Baltic ISC area in the west (PAPER III) 
In the western Baltic ISC area, dates below the uppermost till from the western 
shores of Latvia (Ulmale = 66, Baltmuiža = 67 in Figs. 10, 11 and Table 1) 
yielded an age of 26 OSL ka (Saks 2010). Preglacial organic sediments from the 
adjoining area in Poland gave a similar age, 27.8–25.0 cal. 14C ka BP (Marks 
2002). Dates of mammoth findings from central Sweden (39–31 cal. 14C ka BP, 
Ukkonen et al. 2007)) show that the SIS should have reached areas further from 
the glaciation centre after 31 cal. 14C ka BP. These results and dates from 
western Latvia indicate that the last SIS advanced to western Latvia from the 
Baltic Sea depression not before 26 OSL ka. Therefore the ice-free period, 
which started already in the Middle Weichselian, can be extended to the 
beginning of the last glaciation (26 OSL ka) in the western part of the current 
study area.  

The estimation about the last SIS advance (not before 26 OSL ka) suggests a 
longer ice-free period for previously dated sites, where the youngest preglacial-
time sediments yielded an age of 31.9 OSL ka close to the southern border of 
Lithuania (Netiesos = 76) and an age of 30.6 OSL ka in central Lithuania 
(Rokai = 74) (Figs. 10, 11; Table 1) (Gaigalas et al. 2005). Furthermore, a 
single 14C date below the uppermost till from central Lithuania (Rokai) is  
26.1 cal. 14C ka BP (Gaigalas & Pazdur 2004). As the mentioned sites are 
further from the glaciation centre than sites of western Latvia, they should have 
been ice-free for a longer time and the last SIS should have reached central and 
southern Lithuania later than 26 OSL ka. This is supported by recent TL dates 
(26–20 TL ka) from lacustrine sand below the uppermost till from SE Lithuania, 
suggesting even longer ice-free conditions (Guobytė & Satkūnas 2011).  

The currently presented ice advance model (time-distance diagram) for the 
last SIS in the western part of the study area includes two key sites in central 
and southern Lithuania (Turženu = 72, Jonionys = 76) and one in NW Belarus 
(Gozha = 51) (Figs. 10, 11; Table 1). A mammoth molar from central Lithuania 
(Turženu) yielded an age of 25.6 cal. 14C ka BP (Arppe & Karhu 2010) and the 
youngest peat samples from southern Lithuania (Jonionys) from between the two 
uppermost tills, gave an age of 24.7 cal. 14C ka BP (Serebryanny 1978). Plant 
detritus from laminated lacustrine clays in NW Belarus (Gozha site) gave an age 
of 22.6 cal. 14C ka BP (Vigdorchik et al. 1974; Pavlovskaya et al. 2002). Although 
these clays were not covered by till, the palaeobotanic studies from the same 
sequence suggested that the site was close to the LGM position, under periglacial 
conditions (Pavlovskaya et al. 2002). This has been questioned by Karabanov & 
Matveyev (2011) whose geomorphological studies suggested that the last SIS 
overrode the Gozha site, yet there is no geological evidence to confirm this view. 
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Fig. 11. Time-distance diagram in the western part of the study area (Baltic ISC area as 
zone A) along the azimuth line shown in Fig. 10. Dated sites: 1 = LAT-1; 2 = Lici; 3 = 
Ozolnieki; 4 = Sarkanais mals; 5 = Progress; 6 = Sarnate; 7 = Kaltiki; 8 = Kaulezers;  
9 = Rucava; 10 = NLIT-3; 11 = NLIT-2; 12 = Rakani; 13 = NLIT-1; 14 = Vartaja; 15 = 
Lat-3; 16 = Lake Kašučiai; 17 = LAT-8; 18 = Ventes Ragas; 19 = Abavas Rumba; 20 = 
Krikmani; 21 = Lielause; 22 = MLIT-1; 23 = MLIT-3; 24 = MLIT-4; 25 = Balti-18;  
26 = MLIT-5; 27 = MLIT-8´´; 28 = MLIT-6; 29 = LIT-8; 30 = Balti-7; 31 = Balti-6;  
32 = Rekyva; 33 = Juodonys; 34 = Bebrjai; 35 = Balti-9; 36 = Daktarishke; 37 = 
Petrašiunai; 38 = Balti-2; 39 = Balti-3; 40 = Balti-4; 41 = Balti-5; 42 = LIT-2; 43 = LIT-
3; 44 = LIT-9; 45 = Vievis; 46 = Bebrukas; 47 = Vilkiškes; 48 = Mančhiagire; 49 = 
Varenis; 50 = Zervynos; 51 = Gozha; 52 = Pamerkis; 53 = Rudnia; 54 = Gruda-1; 55 = 
Bel-19; 56 = Lit-1; 57 = Krokšlys; 58 = BEL-3; 59 = Lit-7; 60 = Bel-2; 61 = Naroch;  
62 = Lit-5; 63 = Morino; 64 = Komaryshki; 65 = Kobuzi; 66 = Ulmate; 67 = 
Baltmuiža; 68 = Strante; 69 = Ecenieki; 70 = Purviai; 71 = Kvesai; 72 = Turženu; 73 = 
Jiesia; 74 = Rokai; 75 = Jonionys; 76 = Netiesos; 77 = Ratnycia; 78 = Plaskovsky; 79 = 
Ula; 80 = Kukli; 81 = Medininkai. Key sites are in Italic. 
 
 
Relying on the presented time-distance diagram (Fig. 11), the ice-free period 
before last glaciation in central and southern Lithuania could be extended up to 
the time range between 25.6 and 24.7 cal. 14C ka BP (Turženu, Jonionys), which 
indicates that the ice-free period ended 5 ka later than suggested previously on the 
basis of OSL dates from central Lithuania (Rokai) (Gaigalas et al. 2005). 
Similarly, the ice-free period in S Lithuania (Netiesos) and NW Belarus lasted 
presumably 6 ka longer than indicated by earlier OSL ages (Gaigalas et al. 2005) 
and should be prolonged to the time range of 24.7–22.6 cal. 14C ka BP (Jonionys, 
Gozha).  

The youngest preglacial dates close to the LGM position (Jonionys) yielded an 
age of 24.7 cal. 14C ka BP (25–24.4cal. 14C ka BP; Table 1) in southern Lithuania 
(Jonionys) (Serebryanny 1978) and 22.6 cal. 14C ka BP (24.1–20.6 cal. 14C ka BP; 
Table 1) in NW Belarus (Gozha site) (Vigdorchik et al. 1974). As both of these 
sites were under periglacial conditions near the proposed LGM position during the 
last glaciation, the dates indicate that the last SIS should have reached the LGM 
position in the Baltic ISC area between 24.4 and 20.6 cal. 14C ka BP, when 
considering the whole time range instead of median calibrated ages. Furthermore, if 
two post-glacial dates also near the LGM position with the ages of 20.8 cal. 14C ka 
BP (Mančhiagine = 48) (Zimenkov et al. 1985) and 22 cal. 14C ka BP (Zervynos = 
50) (Serebryanny 1978) are taken into account, it can be suggested that the last SIS 
reached and/or remained at the LGM position between 24.4 and 19.6 cal. 14C ka BP 
in the Baltic ISC area (Figs. 10, 11; Table 1). The TL dates from lacustrine sand 
below till in SE Lithuania also suggest that the SIS reached its maximum extent not 
earlier than 26–20 TL ka (Guobytė & Satkūnas 2011). In the adjoining area of NE 
Poland, the SIS reached the LGM position before 19.7 36Cl ka (Dzierżek & Zreda 
2007) and between 20 and 18 TL ka (Krzywicki 2002). These dates correspond 
quite well with our estimated age range, considering that 36Cl or TL dates have 
larger errors than radiocarbon dates.  
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Karelian ISC area in the east (PAPERS II and III) 
The last SIS advance started about 4 OSL ka later in the eastern, Karelian ISC 
area than in the Baltic ISC in the west of the study area. A date from northern 
Estonia (Männiku = 91; Figs. 10, 12; Table 1) yielded an age of 21 (± 2.5) OSL 
ka (Raukas & Stankowski 2005), which expresses the time of ice-free condi-
tions before the site was glaciated. Many other dated sites in northern Estonia 
(Pikasaare = 97, Haljala = 99, Voka = 100, Pehka = 182; Figs. 10, 12; Table 1) 
also confirm the ice-free period at least between 43.9 and 23 OSL ka (Kadastik 
2004; Raukas & Stankowski 2005; Molodkov et al. 2007; Saarse et al. 2009). 
Therefore, it can be assumed that the last SIS reached the southern shores of the 
Gulf of Finland not before 21 OSL ka. Thus, the ice-free period which started in 
the Middle Weichselian can be prolonged to ca 21 OSL ka when the last SIS 
reached the eastern part of the study area. Based on a date from the Vidzeme 
Upland (Smeceres sils = 196; Figs. 10, 12; Table 1) (Raukas et al. 2010), the last 
SIS reached central Latvia not before 19.6 (± 1) OSL ka, which leaves about  
1.4 ka for the SIS to have advanced from northern Estonia to central Latvia.  

Ice streams of the Karelian ISC reached the LGM position in NE Belarus 
(Chizhovka site = 202 in Figs. 10, 12 and Table 1) not before 19.3 cal. 14C ka 
BP (Zimenkov 1989). As at some sites (Drichaluki = 197, Brigitpole = 198, 
Shapurovo = 200, Kasplyane = 201 in Figs, 10, 12 and Table 1) in NE Belarus, 
including the one from LGM position (Chizhovka = 202), the dated material 
originates from the same stratigraphic layer (Zubakov 1974), the youngest date 
among them can be used to evaluate the arrival of the last SIS to LGM position. 
Therefore, the dated plant detritus from Drichaluki between the two uppermost 
tills suggests that the last SIS should have reached the LGM position not earlier 
than 19.1 cal. 14C ka BP (19.4–18.9 cal. 14C ka BP; Table 1).  

Considering the whole time-range of dates relevant to determining the age of 
the LGM, and also taking into account the ages of 16.6 cal. 14C ka BP (17.8–
15.3 cal. 14C ka BP)  from the Lozoviki site (Novik et al. 2010) and 16.8 cal. 14C 
ka BP (16.9–16.7 cal. 14C ka BP) from the Latyshi site (Zimenkov et al. 1985) 
of NE Belarus where the start of vegetation development after deglaciation has 
been dated, the last SIS should have rested at the LGM zone between 19.4 and 
17.8 cal. 14C ka BP (Lozoviki = 176, Drichaluki = 197 in Figs. 10, 12 and Table 
1) in the east of our study area.  
 
Comparison of the SIS advance in two parts of the study area (PAPER III) 
Based on chronological data and constructed time-distance diagrams, it can be 
concluded that the last SIS acquired a maximum extent earlier in the west, in the 
Baltic ISC area, than in the east, in the Karelian ISC area, even if the whole time 
range of the relevant dates is considered. Comparison of the SIS advance diagrams 
(Figs. 11, 12) shows that in the western part of the study area, the last SIS reached 
the LGM position in NW Belarus not earlier than 22.6 cal. 14C ka BP, while in the 
eastern part of the study area it had not yet reached the southern shores of the Gulf 
of Finland at that time. This conclusion is supported by the 14C AMS and OSL dates 
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from western, southern and eastern Finland (Nenonen 1995; Ukkonen et al. 1999; 
Lunkka et al. 2001; Lunkka et al. 2008) confirming the ice-free period between 35 
and 25 ka in Finland, which is closer to the glaciation centre than our study area at 
the southern shores of the Gulf of Finland. Boulton et al. (2001) also concluded that 
in the southeastern sector of the Scandinavian glaciation, the maximum glacial 
extent reached the west earlier and the east later, and that the ice sheet was still 
advancing in the east whilst already retreating in the west.  

Based on advance timing and LGM ages, the mean linear rate of the advance 
of the last SIS from the Baltic Sea coast to the LGM position was calculated. 
The mean rate was three times faster in the Karelian ISC area, from the southern 
shores of the Gulf of Finland to the LGM in NE Belarus (330 m a–1), than in the 
Baltic ISC area, from the western shores of Latvia to the LGM in NW Belarus 
(110 m a–1). However, it has to be kept in mind that the calculated mean linear 
rates of the advance are not absolute, and values are mostly based on scanty 
Middle Weichselian ages from limited areas. For comparison, Lunkka et al. 
(2001) suggest that the last SIS expanded across Finland to its maximum 
position in the northern Russian Plain within 7 ka. This yields a mean advance 
rate of about 140 m a–1, which is smaller than the currently calculated rate for 
the eastern part of the study area, yet the two areas are located next to each 
other. This phenomenon can be explained by the fact that when calculating the 
last SIS linear advance rate, spatial fluctuations and temporal oscillations of 
different ice streams and the ice margin are not taken into account.  

The calculated mean advance rates of the last SIS (330 and 110 m a–1) are in 
accordance with the ice sheet model of Paterson (1981), which is similar to the 
SIS during the LGM. The ice cap was assumed to be in a steady state and the 
velocity of the ice sheet about 135 m a–1 at a distance of 950 km from the 
glaciation centre. However, the LGM position was farther from the glaciation 
centre than this (Donner 1989) and, as the ice sheet is not in a steady state in 
reality, the velocity might have been even higher than suggested by Paterson.  
Surface velocities of several hundred to thousand metres per year are achieved 
through basal motion, which requires basal temperatures at the pressure-melting 
point (Paterson 1981; Clarke 1987; Lundqvist 2007). Accordingly, based on 
calculated advance rates, it can also be assumed that the bedrock beneath the 
last SIS in the study area was not frozen throughout the advance. Furthermore, 
the water-filled cavities must have existed at places where the sliding velocity 
was higher than 100 m a–1, which had a triggering effect to increase glacier 
velocities (Paterson 1981). Several studies also support this suggestion as the 
base of the SIS was obviously in a liquid state during the Late Weichselian in 
the study area (Jõeleht 1998; Rattas 2004; Saks 2010; Jirakova et al. 2011). 
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Fig. 12. Time-distance diagram in the eastern part of the study area (Karelian ISC area 
as zone B) along the azimuth line shown in Fig. 10. Dated sites: 82 = Nõva; 83 = 
Tabasalu; 84 = Kunda; 85 = Saha mire; 86 = Rae mire; 87 = Kuusalu; 88 = Pääsküla 
mire; 89 = Käsmu; 90 = Ruila lake; 91 = Männiku; 92 = Sillaotsa; 93 = Kemba; 94 = 
Valgejõe; 95 = Vaharu lake; 96 = Palmse; 97 = Pikasaare; 98 = Viitna; 99 = Haljala; 
100 = Voka; 101 = Loobu; 102 = Udriku; 103 =  Kallukse; 104 = Pannjärve; 105 = 
Räätsma; 106 = Iisaku; 107 = Mannjärve; 108 = Äntu; 109 = Varangu; 110 = Laiuse; 
111 = Prossa; 112 = Puurmani; 113 = Elistvere; 114 = Vedu; 115 = Laeva; 116 = Peipsi; 
117 = Saviku; 118 = Vasula; 119 = Naritsa; 120 = Vana-Kuuste; 121 = Kuliska; 122 = 
Nõuni; 123 = Lake Nakri; 124 = Nohipalu; 125 = Äidu; 126 = Kammeri; 127 = 
Taimeaia; 128 = Kaagvere; 129 = Lat-4; 130 = Kurenurme; 131 = Lat-3, Lat-3B; 132 = 
Lat-2; 133 = Viesuleni; 134 = Tamula; 135 = Līdumnieki; 136 = Solova; 137 = 
Remmeski; 138 = Jaanimäe; 139 = MLIT-13; 140 = EST-23; 141 = Viitka; 142 = 
Petruse; 143 = Veclaicene; 144 = MLIT-11; 145 = Lodesmuiža; 146 = MLIT-15; 147 = 
Lake Kūži; 148 = Raunis; 149 = Balti-12; 150 = MLIT-17; 151 = MLIT-19; 152 = 
MLIT-22; 153 = MLIT-21; 154 = MLIT-16; 155 = Dreimans; 156 = Sece; 157 = Balti-
18; 158 = Lat-7; 159 = NLIT-4; 160 = Balti-15; 161 = Kurjanovas; 162 = Rudzāti;  
163 = Balti-16; 164 = Lake Lielais Svētiņu; 165 = Leonovo; 166 = Balti-17; 167 = 
Burzava; 168 = Balti-13; 169 = Bel-15, Bel-15a; 170 = Zhizhitskoe; 171 = Bel-16;  
172 = Bel-14; 173 = Bel-13; 174 = Lozoviki; 175 = Latyshi; 176 = Bel-19; 177 = Bel-9; 
178 = Studenets; 179 = Sudoble; 180 = Svjatoe; 181 = Töölö; 182 = Pehka; 183 = 
Peedu; 184 = Tõrva; 185 = Laguja; 186 = Valga; 187 = Dores; 188 = Aabissaare; 189 = 
Lorupe; 190 = Mēri; 191 = Rõngu; 192 = Veselava; 193 = Misso; 194 = Dunayevo;  
195 = Plavinas; 196 = Smeceres Sils; 197 = Drichaluki; 198 = Brigitpole; 199 = 
Borisovo; 200 = Shapurovo; 201 = Kasplyane; 202 = Chizhovka; 203 = Rubezhnitsa; 
204 = Sloboda Dvina. Key sites are in Italic.  

 
4.2.2. Deglaciation and chronology of the last termination  

in the SE part of the Scandinavian glaciation 
 

Deglaciation in the study area is mostly assessed on the basis of radiocarbon 
dates because these are more numerous than dates obtained by other methods. 
However, there was no preference among different dating methods. Radio-
carbon dating has an advantage over other dating methods as it contains smaller 
errors and therefore also gives a smaller time range than, for example, OSL or 
10Be ages. However, even on the background of radiocarbon dates, deglaciation 
occurred so rapidly that the dating errors often cover the time difference 
between neighbouring ice-marginal formations. It should also be borne in mind 
that radiocarbon dating reflects the start of organic deposition and vegetation 
development after the retreat of the ice sheet, which might have taken hundreds 
of years after the area became ice-free (Hodkinson et al. 2003; Amon 2011).  

More dates relevant to establishing the deglaciation chronology for our study 
area are available from the eastern part which is better covered by chronological 
data than the western part. Differences and similarities between the decay of the 
last SIS in the western Baltic ISC area and the eastern Karelian ISC area can be 
observed in time-distance diagrams (Figs. 11, 12) and are discussed below.  
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Baltic ISC area in the west (PAPER III) 
In the Baltic ISC area, the last deglaciation started not earlier than 22.6 cal. 14C 
ka BP in NW Belarus close to the LGM position (Gozha = 51). Within ca 8 ka 
the ice margin retreated to the NW of Latvia (site 1; Figs. 10, 11; Table 1), but 
not before 14.2 (± 1.3) 10Be ka (Rinterknecht et al. 2006). The following six 
major SIS stagnations occurred in the western part of the study area during this 
deglaciation (starting with the oldest one): LGM, Baltija, South-Lithuanian 
(Sth-Lit), Middle-Lithuanian (Md-Lit), Haanja (Hn) and Sakala (Sa) (Fig. 13).  

Different authors have suggested various correlations of the ice-marginal 
zones across the glaciated area (Kalm 2006, 2012a; Zelčs et al. 2011; Bitinas 
2012). The Baltija ice-marginal zone in the western and the Vepsian ice-
marginal formation in the eastern part of the study area are often correlated 
morphologically (Kalm 2012a), yet the synchronous timing of their formation 
based on the time-distance diagrams is questionable. According to our study, 
the Baltija ice-marginal zone appears to be about 4.5 ka older than the Vepsian 
ice-marginal zone. The time-distance diagram (Fig. 11) suggests that the decay 
of the last SIS was most rapid between the LGM and the South-Lithuanian ice-
marginal zone. Karabanov & Matveyev (2011) are of the same opinion and 
explain this fact by wide distribution of ice-dammed lakes in front of the ice 
margin in NW Belarus, which provoked a relatively high rate of ice melting and 
calving. The calculated last SIS recession rate between the South-Lithuanian 
and Sakala ice-marginal zones is rather similar. Still, more dates from this area 
are absolutely necessary, to confirm this conclusion, as presently only two dates 
from mammoth remains from central Lithuania (Jiesia = 73) and SW of Latvia 
(Rucava = 9 in Figs. 10, 11 and Table 1) are significant for constructing the 
chronology of the decay of the last SIS in the Baltic ISC area (Arppe & Karhu 
2010). Based on the time-distance diagram, most of the dates involving 
deglaciation in the western part of the study area are relatively young for 
assessing the decay of the last SIS. For example, some radiocarbon ages (sites 
4, 5 and 7 in Fig. 11) between the Haanja and Sakala ice-marginal zones express 
the time of deposition of the Baltic Ice Lake sediments, as the samples for 
dating were taken from glaciolacustrine sands above varved clay (Danilans 
1973). Furthermore, 14C dates express the onset of vegetation in a particular 
area and thus do not directly reflect the timing of deglaciation. Cosmogenic 
beryllium dates are also mostly too young for the assessment of the deglaciation 
chronology in this part of the study area, possibly because the dated erratic 
boulders were not exposed to cosmic rays immediately after deglaciation 
(Heyman et al. 2011) but were covered by waters of glacial lakes.  
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Fig. 13. Location of sites with dated sediments of Late Weichselian (post-LGM) age on 
the background of the ice-flow pattern.  

 
Karelian ISC area in the east (PAPERS II and III) 
The decay of the last SIS in the Karelian ISC area started after the SIS reached 
the LGM position at 19.1 cal. 14C ka BP (Drichaluki = 198). The time-distance 
diagram (Fig. 12) indicates an approximately 2.6 ka standstill or dead ice field 
at the position of the maximum SIS extent, as suggested by Karabanov & 
Matveyev (2011), because ages from the modelled LGM position, which would 
fall into the time range of 19.1–16.8 cal. 14C ka BP (median age at the Dricha-
luki and Latyshi sites) are lacking. The first date that can confirm deglaciation 
in the Karelian ISC area from the LGM position towards the southern shores of 
the Gulf of Finland is the one from NE Belarus, about 40 km west of the 
Vitebsk Upland (Latyshi = 176 in Figs. 10, 12 and Table 1), showing an age of 
16.8 cal. 14C ka BP (Zimenkov et al. 1985). Within 3.5 ka the whole area from 
the LGM to the southern Gulf of Finland was deglaciated, as indicated by the 
radiocarbon age (13.3 cal. 14C ka BP) of lake deposits from northern Estonia 
(Pääsküla = 88; Figs. 10, 12; Table 1) (Heinsalu & Veski 2007). Thus the 
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deglaciation in the Karelian ISC area was about twice as fast as in the Baltic 
ISC area. The faster retreat of the last SIS in the eastern part of the study area 
could be explained by large meltwater bodies in front of the SIS, which 
favoured more rapid decay of the ice margin due to calving. Eight major SIS 
stagnations occurred during deglaciation of the Karelian ISC area, resulting in 
the formation of ice-marginal zones – LGM, Vepsian (Vep), Middle-Lithuanian 
(Md-Lit), Haanja (Hn), Otepää (Ot), Sakala (Sa), Pandivere (Pn) and Palivere 
(Pl) (Fig. 13). The distance between different ice-marginal zones is mainly in 
the range of 20–100 km, which is much smaller than in the western part of the 
study area and implies a faster decay of the SIS. Although the deglaciation rate 
was different in the west and in the east, some ice-marginal zones such as the 
Middle-Lithuanian, Haanja and Sakala zones, have a similar formation-time in 
both parts of the study area as shown in the time-distance diagrams (Figs. 11, 
12). A possible explanation is that calculation of the deglaciation rate does not 
take into account other features such as the possible surges or fan-shape flow of 
ice streams and fluctuations of the ice sheet margin. 

Although it is difficult to achieve an exact timing of the formation of ice-
marginal zones across the study area, an attempt has been made to determine the 
age for the five youngest ice-marginal zones in its eastern part, Estonia (PAPERS 
II and III). The modelled decay of the last SIS in Estonia is shown in Fig. 14.  

 
Haanja ice-marginal zone 
The age of the oldest Estonian ice-marginal zone, Haanja, is traditionally (Pirrus 
& Raukas 1996; Raukas 2009) determined from dating the Raunis interstadial 
sediments below the Haanja till (between 15.7 and 15.9 cal 14C ka BP; 
Dreimanis & Zelčs 1995; Zelčs & Markots 2004) in northern Latvia (Fig. 14). 
After the ice front retreated from the northern slopes of the Haanja Heights, 
varved clay deposition started in Lake Tamula ca. 14 675 varve years ago 
(Sandgren et al. 1997; Kalm 2006; Raukas 2009). Consequently, dates from 
below and above the Haanja stadial till place the formation of the ice-marginal 
zone between ca 15.7 and 14.7 cal. ka BP. Raukas (2009) reported two new 
(10.5 and 10.4 cal 14C ka BP) dates from the Raunis section and questioned the 
interstadial age of the sediments there. However, even if the organic sediments 
in the Raunis section are not interstadial, the Haanja ice-marginal zone formed 
before the start of varved clay deposition in Lake Tamula, which took place 
before 14.7 ka BP. During the Haanja phase of deglaciation a small northeast–
southwest oriented ice tongue operated between the Haanja and Otepää uplands 
(Karukäpp 2004; Kalm 2010). It is probably responsible for burial of pieces of 
wood, gyttja and sand layers under the surficial till in few locations (Kure-
nurme, Kaagvere in SE Estonia). 
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Fig. 14. Modelled decay of the Late Weichselian ice in Estonia along the general azi-
muth line. The sites mentioned in the discussion concerning the chronology in Estonia: 
8 = Nõuni, 9 = Kurenurme , 10 = Kaagvere, 11 = Remmeski, 12 = Viitka, 13  = Petruse, 
55 = Lake Peipsi , 56 = Nohipalu, 59 = Taimeaia, 70 = Kõpu, 71 = Vigala, 83 = 
Tamula.  
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The oldest 14C ages from buried organics under the Haanja till in Kurenurme 
(14.5 and 14.9 cal. 14C ka BP) and OSL ages of buried sand in Kurenurme and 
Kaagvere (12.7, 14.5 and 14.9 cal. 14C  ka BP) confirm that the Haanja zone 
was formed before 14.9 cal. 14C  ka BP. All five measured 14C ages from the 
Haanja Upland beyond the Haanja ice-marginal belt (between 12.8 and 14.9 cal 
14C ka BP; Kalm 2006) are restricted to superficial organic deposits (Remmeski) 
or plant detritus and peat buried under the slope wash and debris of hummocky 
moraine topography (Viitka, Petruse). The first organic sediments (gyttja, peat 
and plant detritus) on the Haanja Upland started to accumulate at the time 
(≤14.9 cal. 14C ka BP) when the upland was surrounded by ice from the west, 
north and east.  

 
Otepää ice-marginal zone 
The formation time of the Otepää ice-marginal zone is older than its direct 
dating from the region of the Otepää Upland. The 12.9 cal 14C ka BP age of the 
first lateglacial organics in the Nõuni section of lacustrine deposits (Saarse 
1979), which is situated just on the proximal side of the Otepää ice-marginal 
zone, indicates the start of vegetation after deglaciation rather than direct 
deglaciation time. In addition, two 13.2 OSL ka ages from sand of the 
glaciofluvial delta (Taimeaia) and kame (Nohipalu) (Raukas & Stankowski 
2005), located also in the proximal position relative to the Otepää ice-marginal 
zone, indicate an earlier retreat of the ice from that zone. Radiocarbon dates 
(12.9 to 13.9 cal. 14C ka; Saarse & Liiva 1995; Sohar & Kalm 2008; Kalm & 
Sohar 2010) and OSL ages (13.1–14.0 ka) from glaciofluvial deposits (Raukas 
& Stankowski 2005) between the Otepää and Pandivere ice-marginal zones, 
suggest ice recession from the Otepää ice-marginal zone well before 14 OSL ka.  

Sakala ice-marginal zone 
The Sakala ice-marginal zone has been suggested to occur between the Otepää 
and Pandivere ice-marginal zones (Pirrus & Raukas 1996; Raukas et al. 2004; 
Kalm 2010). However, it is morphologically difficult to identify and accurate 
dating is problematic.  

Pandivere ice-marginal zone 
Based on varve studies in eastern Estonia, Hang (2003) concluded that 
deglaciation of the northern part of the glacial Lake Peipsi started around  
13 500 varve ka ago and ended ca 370 years later. Hang (2003) also suggested 
that the first 184 varves in glacial Lake Peipsi were deposited before the ice 
margin withdrew from the Pandivere ice-marginal zone. According to him, the 
start of deposition of distal varves some 13300–13320 varve years ago 
corresponds to the withdrawal of the ice from the Pandivere zone. Based on 
Saarse et al. (2009) and PAPER III, it can be concluded that ice cover of the 
Pandivere Upland started to perish already before 13.9 cal. 14C ka BP, that is 
some 0.5 ka earlier than in the depression of Lake Peipsi.  
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Palivere ice-marginal zone 
Hang & Sandgren (1996) counted 476 annual varves at Vigala in western 
Estonia between the Pandivere and Palivere ice-marginal zones and dated the 
Palivere marginal formations to about 11 800 years BP. With the correction of 
missing 875 varves according to Swedish varve chronology (Andren et al. 
1999), they assigned the Palivere ice-marginal zone an age of 12.675 years BP, 
from which an age for the Palivere re-advance around 12.7 cal 14C ka BP was 
derived. However, eight 10Be ages from the Palivere ice-marginal zone have a 
weighted mean age of 13.6 ka (Rinterknecht et al. 2006), which predates even 
the 10Be age (13.1 ka) of the Haanja ice-marginal zone in SE Estonia. However, 
according to overall deglaciation chronology in the eastern part of the study area 
(the Karelian ISC area; PAPER III and Saarse et al. 2012), the Palivere ice-
marginal zone formed before 13.3 cal. 14C ka BP. This result corresponds well 
with the suggestion by Lunkka et al. (2004) that the ice margin of the SIS 
reached the coastal areas of southern Finland 13.1 ka ago. Similar studies from 
the Vologda area, NW Russia, confirm that the Lake Onega basin between the 
Pandivere and Salpausselkä ice-marginal zones was deglaciated between 14.25 
and 12.74 cal. 14C ka BP (Lunkka et al. 2001; Saarnisto & Saarinen 2001). 

Comparison of the deglaciation in two parts of the study area 
The calculated linear rate of deglaciation was slower in the Baltic ISC area than 
in the Karelian ISC area, whereas the formation of one ice-marginal zone in 
each of these areas took about 1.6 ka and about 0.5 ka, respectively. The 
calculated linear mean rate of the last SIS recession in the western part of the 
study area was ca 50 m a–1, which is about two times slower than in SW 
Sweden, where the varve chronology suggests a retreat rate of 75–100 m a–1 
(Ringberg & Erlström 1999). In the eastern part of the study area, the respective 
value was about 170 m a–1, i.e. about ten times faster than in the west. 
Compared to mean recession rates of 150 m a–1, previously suggested for the 
Karelian ISC area from varved clays in the Lake Peipsi depression (Hang 2001), 
and 110 m a–1 from the Haanja to Palivere ice-marginal zones in Estonia (Kalm 
2006), the recession rate in this thesis is somewhat higher. In Russia, bordering 
on the eastern part of the study area, the ice-retreat rate from Kubenskoye to 
northern Lake Ladoga and Lake Onega was estimated to be 60–80 m a–1 
(Lunkka et al. 2001). Based on varved clays, the maximum rate in the Onega 
area was about 200 m a–1 (Saarnisto & Saarinen 2001). This value is slightly 
higher, but still more or less in agreement with the calculated recession rate 
given in this thesis, because it is a maximum and not a mean rate. 
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5. CONCLUSIONS 

The most important conclusions of this thesis are as follows: 

 According to chronological data available from the Valdai Upland (Ki-
leshino site), ice-free conditions existed between 72.2 OSL and 33.8 cal. 
14C ka BP in the western part of the East European Plain.  

 The Scandinavian Ice Sheet reached the Valdai Upland (Kileshino site) 
only once during the last 72.2 ka – during the Late Weichselian after 33.8 
cal, 14C ka BP, and presumably between 19.1 cal. 14C BP and 18 OSL ka. 

 The last SIS in the Baltic ISC area reached the western shores of Latvia not 
before 26 OSL ka, advanced further to central Lithuania not before  
25.6 cal. 14C ka BP and reached southern Lithuania not before 24.7 cal. 14C 
ka BP.  

 In the Karelian ISC area, the last SIS reached the southern shores of the 
Gulf of Finland not before 21 OSL ka and central Latvia not before 19.6 
OSL ka. 

 The last SIS reached its maximum extent in NW Belarus not earlier than 
22.6 cal. 14C ka BP and in NE Belarus not earlier than 19.1 cal. 14C ka BP.  

 When considering the whole time range of individual dates and the 
youngest dates which express the beginning of vegetation development, the 
last SIS could have been at its maximum extent in the Baltic ISC area 
between 24.4 and 19.6 cal. 14C ka BP, and in the Karelian ISC area 
between 19.4 and 17.8 cal. 14C ka BP.  

 The mean calculated linear advance rate of the last SIS in the western part 
of the study area was 110 m a–1 and about three times faster in the eastern 
part, 330 m a–1. These values, however, are tentative because of the scanty 
data from the Middle Weichselian. Nevertheless, the calculated relatively 
high speed of ice advance suggests warm-based conditions and that the bed 
beneath the last SIS in the study area was not frozen throughout the SIS 
advance. 

 Deglaciation in the Baltic ISC area started not earlier than 22.6 cal. 14C ka 
BP. By 14.2 10Be ka, the entire area between the LGM position in NW 
Belarus and the western shores of Latvia was deglaciated. In the Karelian 
ISC area, the last SIS recession started not earlier than 19.1 cal. 14C ka BP. 
By 13.3 cal. 14C ka BP, the whole area between the LGM position in NE 
Belarus and the southern shores of the Gulf of Finland was ice-free. 

 The last SIS recession rate in the study area was about three times faster in 
the east than in the west, 50 and 170 m a–1, respectively.  
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SUMMARY IN ESTONIAN 

Weichseli jäätumise kronoloogia Skandinaavia 
jäätumise kagusektoris 

Käesolev doktoritöö uurib Weichseli jäätumise ajalist kulgu, liustiku maksi-
maalse leviku ulatust ja liustiku pealetungi ja taandumise dünaamikat jäätu-
misele allunud Ida-Euroopa tasandiku lääneosas. Uuringuala hõlmab Skandi-
naavia jäätumise kagusektorit Läänemerest kuni viimase jäätumise maksimaalse 
leviku piirini. See ala on Weichseli jäätumise jooksul mitmeid kordi allunud 
liustike tegevusele. Jäätumiste ja eelkõige jää taandumisega kaasnevad kliima- 
ja keskkonnamuutused on olnud määravaks jäätumisalade geoloogia, pinnamoe, 
hüdrograafia, mullastiku ja seotud taimkatte aga ka inimasustuse kujunemisel. 
Veelgi enam, soojeneva kliima tingimustes toimunud liustike sulamisega kaas-
nenud sulaveehulgad mõjutasid märkimisväärselt ookeani veetaset ja soojus-
režiimi. Paraku on andmed selle mõju ulatuse kohta puudulikud, mis omakorda 
takistab võimalike kliima ja veetaseme muutuste prognoose tänapäeval, mil 
eeldatav soojenemine võib kaasa tuua kaasaegsete jääkilpide sulamise ja 
ookeanitaseme tõusu. Seega on väga oluline varasemate liustike ajalis-ruumilise 
dünaamika selgitamine, mis võimaldaks paremini mõista ka eesootavat tule-
vikku. Varasemate liustike dünaamika selgub aga eelkõige läbi pinnavormide ja 
setete kronoloogiliste uuringute, millega tegeleb ka käesolev doktoritöö.  

Vaatamata pikaajalistele ja mitmekülgsetele uuringutele, on teadmised 
Weichseli jäätumise ajalis-ruumilise kulgemise kohta Ida-Euroopa tasandikul 
väga lünklikud ja olemasolevad andmed jäätumisala lõikes väga ebaühtlased. 

Eriti puudulik info on varasemate Vara- ja Kesk-Weichseli jäätumise kohta, 
kuna sellele järgnenud Hilis-Weichseli liustik on varasemaid setteid ja pinna-
vorme oluliselt ümber kujundanud või hoopis erodeerinud. Seetõttu on varase-
mate jäätumiste setteid leitud vaid üksikutest kohtadest Põhja-, Kesk- ja Ida-
Euroopast. Viimase, Hilis-Weichseli jäätumise kohta on andmeid rohkem, kuid 
siiani on ebaselge liustiku saabumise aeg uuringualale ja laienemine maksi-
maalse leviku piirile. Aga ka viimase liustiku taandumise käik on põnevate 
diskussioonide teemaks. Mitmed autorid (Kalm 2006, 2012a; Rinterknecht jt. 
2006, 2007, 2008; Raukas 2009; Satkūnas jt. 2009; Guobytė & Satkūnas 2011; 
Zelčs jt. 2011; Bitinas 2012) on pakkunud erinevaid mudeleid liustiku serva 
taandumise ajalist ebaühtlust väljendavate servamoodustiste vööndite paikne-
mise, korrelatsiooni ja vanuse osas. Seetõttu on käesoleva töö peamisi eesmärke 
koondada ja kriitiliselt analüüsida Weichseli jäätumise liustike ajalis- ruumilist 
dünaamikat iseloomustavat kronoloogilist andmestikku Ida-Euroopa tasandiku 
lääneosas.  Spetsiifilised eesmärgid olid: esiteks, hinnata viimasele jäätumisele 
eelnenud jäävaba perioodi kestvust uuringualal; teiseks, hinnata viimase Weich-
seli liustiku pealetungi ajalist kestvust; kolmandaks, luua viimase jäätumise 
taandumise kronoloogia arvestades sealhulgas olemasoleva kronoloogilise 
andmestiku geograafilise paiknemise ja liustikukeelte dünaamikaga; neljandaks, 
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hinnata liustiku pealetungi ja taandumise kiirust, mis on aluseks liustiku aluste 
protsesside mõistmisel ja suurte jääkilpide mudelite loomisel.   

Eesmärkide saavutamiseks koondati kättesaadav kronoloogiline andmestik 
ning korrastati see andmekoguna kuhu lisandusid käesoleva uurimuse jooksul 
saadud uued radisosüsiniku (14C), optiliselt stimuleeritud luminestsentsi (OSL), 
termoluminestsentsi (TL) ja kosmogeense berülliumi (10Be) dateeringud. 
Andmekogu täiendati regulaarselt uueneva kronoloogilise andmestikuga.  

Kronoloogilisest andmestikust tehti valik deteeringutest, mis on sobilikud ja 
asjassepuutuvad liustiku pealetungi ning taandumise hindamisel. Valik piirneb 
dateeringutega ajavahemikus 35 ja 11,7 tuhat aastat tagasi (a.t.). 35 tuhat a.t. 
tähistab siinkohal viimast soojenemisperioodi, merelise isotoopstaadiumi 3.1. 
(Lambeck jt. 2010) algust, millele järgnes viimase Skandinaavia liustiku 
laienemine uuringualale u 26 tuhat a.t. ja selle lõplik taandumine 11,7 tuhat a.t. 
Valikust jäeti välja näiteks radiosüsiniku dateeringud, mille vanus võib olla 
ülehinnatud stabiilse süsinikuga rikastumise tõttu (järvelubi, karbonaatsed 
setted). Kokku kasutati 311 radiosüsiniku, 87 optiliselt stimuleeritud lumi-
nestsents ja 72 kosmogeense berülliumi dateeringut. Valikusse alles jäänud 
dateeringud kanti koordinaatide järgi kaardile ja vastavalt liustikukeelte dünaa-
mikale jaotati uuringuala kaheks; läänepoolne Balti jääkeelte ala ja idapoolne 
Karjala jääkeelte ala. Seejärel kanti kõik dateeringud proportsionaalselt üle-
üldisele jäätumistsentrisse orienteeritud liustiku laienemise ja taandumise 
asimuudile, arvestades nende asendit servamoodustiste suhtes ning koostati 
selle põhjal aeg-distants mudelid, mis olid aluseks järgnevale liustike dünaa-
mika analüüsile.  

Kronoloogiliste ja sedimentoloogiliste tulemuste põhjal selgus, et Skandi-
naavia liustik jõudis Valdai kõrgustikule (Kilešino uuringula) viimase Weich-
seli jäätumise maksimaalse levikupiiri lähedale ainult ühel korral viimase  
72,2 tuhande aasta jooksul. See toimus Hilis-Weichselis, hiljem kui 33,8 tuhat 
a.t. aga suurema tõenäosusega ajavahemikul 19,1 kalendriaastat ja 18 tuhat a.t. 
Ajavahemikus 72,2 tuhat ja 33,8 tuhat a.t. oli Valdai kõrgustik jäävaba.  

 Viimane Skandinaavia liustik liikus uuringuala lääneosasse, seal oma 
maksimumlevikupiirini ja ka taandus varem kui idaosas. Lääneosas jõudis 
Skandinaavia liustik Läti läänerannikule mitte varem kui 26 tuhat (a.t.), laienes 
Kesk-Leedu aladele umbes 25,6 tuhat a.t. ja Leedu lõunaosasse mitte varem kui 
24,7 tuhat a.t. Uuringuala idaosas jõudis Skandinaavia liustik Soome lahe 
lõunarannikule mitte varem kui 21 tuhat a.t.  ja Läti keskaladele mitte varem kui 
19,6 tuhat a.t. Oma maksimumleviku saavutas Skandinaavia liustik uuringuala 
läänesoas, Loode-Valgevenes, hiljem kui 22,6 tuhat a.t. ja Kirde-Valgevenes, 
mitte varem kui 19,1 tuhat a.t. Liustikuserva maksimaalsel levikupiiril püsimise 
kestvuse hindamiseks kasutati üksikdateeringute mediaanväärtuste asemel 
ajavahemikke ning liustiku taandumisejärgse orgaanilise taimestiku kujunemise 
kõige varasemaid dateeringuid. Sellele toetuvalt võib arvata, et Skandinaavia 
liustik oli maksimumlevikupiiril ajavahemikus 24,4 ja 19,6 tuhat a.t. uuringuala 
lääneosas ja ajavahemikus 19,4 ja 17,8 tuhat a.t. uuringuala idaosas. Krono-
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loogilise andmestiku geograafilise paiknemise analüüsile toetuva liustiku peale-
tungi kiiruse arvutused näitavad, et uuringuala lääneosas oli see u 110 m/a ja 
idaosas 330 m/a. Toetudes varasematele uuringutele võib arvata, et selline väga 
kiire liustiku liikumine on võimalik saavutada vaid siis, kui liustiku basaalne 
kiht on sulas olekus, ja seetõttu järeldame, et jää aluspind uuringualal ei olnud 
külmunud kogu Weichseli jäätumise kestel.           

Viimase Skandinaavia liustiku taandumine algas uuringuala lääneosas mitte 
varem kui 22,6 tuhat a.t. ning liustiku maksimumlevikupiiri ja Läti lääneranniku 
vaheline ala sai lõplikult jäävabaks 14,2 tuhat a.t. Uuringuala idaosas algas 
Skandinaavia liustiku taandumine hiljem ja mitte varem kui 19,1 tuhat a.t. 
tagasi ning kogu ala liustiku maksimumlevikupiiri ja Soome lahe vahel sai 
jäävabaks 13.3 tuhat a.t. Liustiku taganemiskiirus lääneosas (50 m/a) on 
sarnaselt pealetungi kiirusele ligikaudu 3 korda aeglasem kui idaosas (170 m/a).  
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