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1. INTRODUCTION 

1.1 Encounter of people 

Nowadays, we often assume that our modern way of life is necessarily better than 
the past ones, and that the more we go back in time, the more the past humans 
struggled with poor living conditions or unperforming technologies. It is no 
surprise then that historical and archaeological studies tackle the curiosity of 
many of us, as with them we are forced to reshape our system of modern beliefs 
and gasp before how much past populations could in fact achieve.  

For example, Neanderthals were often depicted as some kind of monstrosity, 
able only to abide by the most cruel of animal tendencies, “that half-savage, half-
animal past of our race” says H. G. Wells in The Grisly Folk and Their War With 
Men (in an imaginative anthropological article in the Saturday Evening Post, 
v193 #37, March 12, 1921). The ‘caveman’ archetype was so instilled in popular 
culture that it appeared almost impossible to find traces of Neanderthal art 
(Hoffmann et al. 2018), let alone inbreeding with humans (Sankararaman et al. 
2014). However, misconceptions about the past do not stop at other human species.  

Around 12.000 years ago groups of nomads in southeast Anatolia built an 
enormous archaeological structure made of multiple stone pillars up to 20 metres 
in diameter and 5.5 metres in height, some of them were even elaborately carved 
(Dietrich et al. 2019). For reference, the primal example that usually comes to 
mind in terms of megaliths, the Stonehenge, was built around 9000 years later 
(Pearson et al. 2007). It is still unclear how the monoliths in Turkey were moved 
or carved, even the purpose of the site is still debated (Banning 2011). Traces of 
plant food processing and hunting, without the presence of large storage facilities, 
point to seasonal activity within the site, indicating a cyclical presence of people 
(Dietrich et al. 2019). Were nomadic groups from 12.000 years ago so organised 
to meet periodically in one specific location in Turkey to build such an enormous 
site?  

Despite the fact that nowadays long distance travelling is made quite easy, 
long travels are not a modern prerogative, not even comfortable travel. Athenaeus 
of Naucratis depicts in his ‘The Deipnosophists’ the great Syracusia: one of the 
most large and elegant ships of 240 BC, built with wood that could be sufficient 
for sixty triremes, with couches, mosaic, ivory doors and a temple dedicated to 
Aphrodite. We have lost trace of the great Syracusia, but not of Caligula’s ‘Giant 
ship’, a over 100 metres barge found in Italy and linked to the 800-ton obelisk 
ship that transported the famous St. Peter’s Square obelisk from Egypt.  

Should we then be surprised by the large commercial trade that characterised 
the entire Mediterranean in the Bronze age? Or even more so, if one happened to 
walk around Tel Kabri, in Israel, should they be surprised to see Aegean (specifi-
cally Minoan) style frescos from the 17th century B.C.E (Cline, Yasur-Landau, 
and Goshen 2011)?  
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Historical and archaeological records continue to remind us to look at the past 
with unstagnant eyes. As much as we do nowadays, people in the past were 
organised, they moved, they travelled, they shared ideas, cultures and techno-
logies: and we can still find traces of their encounters.  

To fully comprehend our past history a single set of eyes cannot be sufficient, 
as no scientific field is fully independent. With this in mind, this thesis aims to 
look at the residual traces of past encounters through the genetic data. 
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2. LITERATURE OVERVIEW 

2.1 Encounter of genes:  
layered effects of the admixture event 

2.1.1 Encounter of genes 

The consequences of an encounter can be traced throughout all the layers of 
human complexity, from cultural (religion, customs, tales (Bortolini et al. 2017)) 
to biological ones. When it comes to studying the encounter of people through 
biology, genetics serves as a great tool to trace such events. 

By comparing the genetic differences between populations separated by either 
space or time we can trace the movement of humans throughout continents and 
years. Although most differences are shared between individuals regardless of 
their group, there are still small genetic details that can contribute to our under-
standing of human evolution.  

When people meet and mix, their genetic makeup is passed on to their 
children, whose DNA becomes a mixture of their parents’ DNA. We can follow 
the path upwards: we can trace an offspring’s mother and father, grandmothers and 
grandfathers and so on. Following one’s genealogical tree, we can see that the 
ancestors double at each generation, so that in k generations there will be 2^k 
branches that are theoretically related to any given person (Ralph and Coop 2013, 
Donnelly 1983). However, from a genetic perspective, the number of genetic con-
tributors halves at each past generation, due to the nature of autosomal DNA. 
Consequently, while finding one specific genealogical ancestor far back in time 
by leveraging on the genetic features is doomed to fail, such a huge number of 
branches (2^k), when taken together, can give insight on the average genetic 
makeup of one’s group of origin.  

To trace branches through time and space we move away from a mere 
genealogical point of view, and instead look at individuals as a collection of traces 
that characterised their population of origin. Moreover, starting from contempo-
rary populations we can trace back to the ones that contributed to their history. 

If individuals mix to produce an offspring, populations then go through what 
is referred as admixture event to create admixed populations. The process of 
tracing the contributors of an admixture event is called ancestry deconvolution 
(AD). 
 
 

2.1.2 A mosaic of ancestries 

When using AD approaches we look at the genetic makeup of an admixed entity 
as a mosaic, where each tile is a genetic block that can be traced back to an ancestry 
or population that contributed to the admixture event.  
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Several different forces will act on these blocks, and, in turn, the mosaic 
pattern will show levels of variation throughout the individuals within the popu-
lation. Despite tracing their history back to the same sources, no two individuals 
will look alike.  

The major force that shuffles the mosaic tiles is recombination, which is the 
process by which chromosomes exchange genetic material. This is done by trans-
ferring information from one homologous strand to the other either by breaking, 
shuffling and then repairing the strands, or by copying genetic information from 
the opposite strand. Such shuffling happens with different intensity during the 
mitosis and, most importantly in our case, the meiosis. In fact, as the ‘Great-
reshuffler’ (sic (Jobling 2004)), recombination plays a key role in generating vari-
ability at each new generation by generating new combinations of loci (or mosaic 
tiles) (Alves et al. 2017; Stapley et al. 2017).  

However, recombination does not impact the entire genome equally: there are 
loci that are rarely affected by it, and thus rarely separated (Nachman 2002).  

The lack of recombination between loci will lead to a correlation between them, 
favouring a phenomenon named Linkage Disequilibrium (LD): defined as the 
event by which alleles at two separate genetic loci are found more often together 
at a population level than would be expected based on their individual allelic 
frequencies (sic, (Rybicki et al. 2002)). Low recombination rates and physical 
proximity are among the causes for LD, upon these variables selection, mutations, 
genetic drift and finally, gene flows may occur (Slatkin 2008). 

In an admixed group we will in fact find different types of correlation between 
SNPs that will cause different LD patterns (Falush, Stephens, and Pritchard 
2003). Correlation between SNPs may be due to the variation of ancestry between 
individuals (named mixture LD) (S Gravel 2012); the admixing sources will 
contribute with their own LD pattern (background LD) (Pritchard and Przeworski 
2001); however, even if the admixing sources show little to none LD, as long as 
their allele frequencies differ, they will raise the level of LD in the admixed group, 
that will then show patterns defined admixture LD (Liang and Nielsen 2014; 
Chakraborty R and Weiss K M 1988). 

 
 

2.1.3 Global and Local Ancestry approaches 

Ancestry Deconvolution (AD) is an approach that allows to analyse the genetic 
mosaic of an admixed group, trace the admixing contributors and further charac-
terise the admixing event. Ancestry Deconvolution results may yield key infor-
mation regarding demographic histories, but the approach can be used as a tool 
to solve broader scientific questions that do not solely revolve around under-
standing historical events.  

Generally, to perform an Ancestry Deconvolution study one relies on Global 
ancestry (GA) methods and/or Local ancestry (LA) methods. GA methods allow 
to infer the average proportion of each ancestry that contributed to the admixture 
event, while LA approaches allow to infer which ancestry falls within a given 
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inherited locus, appointing the observed mosaic tile (whether it is an allele or a 
small genomic tract) to its ancestral contributor (Figure 1).  

To achieve such a fine level of inferences, most LA approaches leverage on 
several assumptions and need to compare the target admixed group with a limited 
number of admixing sources, possibly in large sample size, to best capture the 
genetic variation within the admixed population. However, most of the time the 
actual sources of the admixture event are not available in unadmixed form, and 
one must rely on proxy groups to deconvolute the target population. In addition, 
genetically similar sources tend to hinder the LA assignment, which poses a great 
issue when deconvoluting a sub-continental admixture events, as in European 
populations. Such is the reason why most LA applications regard Latin and African 
American groups, characterised by divergent sources (Wangkumhang and Hel-
lenthal 2018).  

So while performing LA on an admixed population characterised by world-
wide ancestries may be a task completely focused on discovering hidden and 
unknown past demographic events, applying LA on sub-continental admixtures, 
such as European populations, requires a methodological approach designed to 
comprehend the LA limitations first. Eventually, leveraging on the knowledge 
that mostly all human groups are admixed (see next paragraph), it comes naturally 
to propose AD and, more specifically LA, as approaches useful beyond the realm 
of demography studies. 
 

 
Figure 1. Schematic representation of an admixture event and subsequent Ancestry 
Deconvolution analysis from a genetic perspective. Source populations are indicated 
as ‘Source 1’ and ‘Source 2’ and their contribution is indicated in orange and blue, respec-
tively. 
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2.1.4 Admixture throughout human populations 

By looking at the genome as the result of past events, we will discover that 
encounters between populations are far from being rare in human history. Some-
times genomics studies can confirm and reinforce knowledge given by historical 
records (Ongaro et al. 2019), in other cases they can unravel unknown demo-
graphic histories (Hellenthal et al. 2014; Patterson et al. 2012). 

For example, genetic data showed that most modern Indians (Reich et al. 2009) 
are characterised by two very different ancestral layers, indicating that two distinct 
human groups mixed in the past. One contributor was a population genetically 
close to Middle Easterners, Central Asians and Europeans. The origin of the second 
group remains unclear, although it may descend from a trifurcation with Anda-
manese and East Asian components (Yelmen et al. 2019). Similarly, the Indo-
nesian area (Hudjashov et al. 2017) is genetically characterised mainly by two 
ancestries: Papuan and Asian. While the first one can be traced back to the first 
occupation of the area, the second one originated from Taiwan and arrived in the 
islands relatively recently.  

On the other side, the genetic studies of the Americas benefitted from the large 
historical knowledge and described in finer detail the demographic events that 
occurred in the continent. As a consequence of the vast migrations and forced 
relocations, many modern American populations carry multiple ancestries, whose 
origin and proportions depend on the specific history of the area. For example, 
the Caribbean area was characterised by large amount of sugar plantations where 
massive exploitation of slave labour was performed, and nowaday modern popu-
lations show a high contribution (~88%) from sub-Saharan African ancestry; one 
of the largest migration of the 19th century, named the ‘italian diaspora’, saw 
over 10 million italians moving to different areas of the continent, event shown 
through the american populations’ DNA as an italian-like component is hetero-
geneous and at pan-american level (Ongaro et al. 2019). 

On the other hand, the African (Busby et al. 2016) continent does not possess 
large historical written records, thus demographic events can be inferred mainly 
through archaeological or genetic studies. As seen for many other human groups, 
signs of recent migrations can be seen in almost all sub-Saharan populations 
(Currie et al. 2013; Seidensticker et al. 2021) and from Africa into nearby 
Levantine and Southern Europeans (Moorjani et al. 2011). 

Similar examples can be found throughout almost all human populations, as 
Hellenthal et al describe ‘admixture happens to be an almost universal force that 
shaped modern human populations.’ (Hellenthal et al. 2014).  

An essential key factor that allows us to describe in finer detail the old narra-
tives of the past world is ancient DNA (aDNA). One of the most exceptional 
examples of the impact of aDNA in rephrasing the historical narratives and 
detangling intricate histories can be seen in Europe.  
 
 
 



17 

2.1.5 The Neolithic and post Neolithic expansion in Europe 

To an extent unlike any other area, the study of Europe’s past demographic history 
has been extremely favoured by finding and sampling large amounts of ancient 
DNA, allowing for an understanding of past and recent historical movements 
deeper than any other continent.  

Although the first examples of anatomically modern humans more closely re-
lated to present day Europeans than to East Asian are found as early as ~39–36kya 
thousand years ago (kya) (Fu et al. 2016; Nielsen et al. 2017), their genetic 
contribution to the contemporary Europeans is minimal (Günther and Jakobsson 
2016). Starting from at least 17 kya, before the Bølling–Allerød interstadial, a 
climatic warming during the last glacial period, a homogeneous Hunter-Gatherer 
ancestry became dominant in most of Europe (Fu et al. 2016; Bortolini et al. 2021). 
Such ancestry can be referred to as WHG, Western Hunter-Gatherer, to dis-
tinguish it from the Eastern Hunter-Gatherers (EHG) ancestry, found in Eastern 
European Mesolithic samples (~8kya), and Caucasus Hunter-Gatherers (CHG) 
ancestry, found in samples from the Caucasus region from the Upper Palaeolithic 
and Mesolithic period (Lazaridis et al. 2016; Jones et al. 2015).  

Starting from 8,800 ya the first farmers expanded from the Anatolian area to 
Western Europe, while Hunter-Gatherers from Caucasus (CHG) migrated 
towards the northern steppe (Lazaridis et al. 2016).  

While up until 6 kya Neolithic farmers in Europe show little traces of WHG 
ancestry, successively the two groups must have admixed as the Hunter-Gatherer 
ancestry increases to 20% in the Neolithic farmers samples found (Mathieson et 
al. 2018). By the end of the Neolithic period Western Europe was inhabited mainly 
by the descendents of the first farmers of Anatolian ancestry carrying genetic 
traces of the local Western Hunter-Gatherers. During the Bronze age another 
massive migration from the North-East arrived in Western Europe, bringing 
EHG, Iran and CHG ancestry, altogether identified as the Steppe ancestry.  

In turn, the European genetic landscape carried three distinct ancestries: 
WHG-like, Anatolian-like and Steppe-like ancestry (Lazaridis et al. 2014). These 
three components still characterise all present day Europeans, although with dif-
ferent proportions depending on their geographic location (Haak et al. 2015).  

After the Bronze Age migrations, several gene flows within the European 
continent reshaped the genetic composition of European sub-groups, decreasing 
the genetic differences (Günther and Jakobsson 2016). Post Bronze Age demo-
graphic events can be still studied with fine-scale analyses (Leslie et al. 2015; 
Gilbert et al. 2019; Pankratov et al. 2020; Martin et al. 2018; Bycroft et al. 2019; 
Saint Pierre et al. 2020; Drineas, Lewis, and Paschou 2010). As a testament of 
the high level of detail that can be obtained from fine-scale analyses see Figure 2, 
reproposed here from Pankratov et al. 2020. However, in such sub-continental 
context, AD seems to underperform, so that, to date, it is not possible to extract 
the ancestral components within European groups, but just characterise them with 
fine-scale analyses (Günther and Jakobsson 2016, Novembre and Stephens 2008, 
Lao et al. 2008; Marnetto et al. 2022). 
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Figure 2. Differential genetic affinities of “Baltic”, “Slavic”, Finnish and Swedish 
groups in Estonians. Differential genetic affinities of «Balts» (Latvians and Lithua-
nians), «Slavs» (Belarusians, Poles, Russians, Ukrainians), Finns, and Swedes obtained 
with fine-scale approaches by Pankratov V. et al 2020. 
 
 

2.1.6 The Bronze Age expansions in Eastern Africa 

The Neolithic and post Neolithic waves that started from the Near East and 
expanded throughout all West Eurasia were not limited to the European continent. 
While from one side the steppe ancestry arrived to Northern India, on the other 
side the neolithic farmers contributed to the genetic history of the African conti-
nent. In fact, while Anatolian farmers during the neolithic period moved north-
west towards central Europe, traces of the genetic makeup linked to the neolithic 
farmers are found in Eastern Africa a few millennia later (Lazaridis et al. 2016). 

Initially, links between the Horn of Africa and non-African cultures were found 
through the studies of uniparental markers (mtDNA (Kivisild et al. 2004) and Y 
chromosome (Semino et al. 2002). The admixture event was detected also with 
the autosomal data of several modern Ethiopian groups, who showed two genomic 
layers: an African component and a West Eurasian (or non-African) component 
arrived in the area 3 kya (Pickrell et al. 2014; Pagani et al. 2012). An additional 
admixture event was found tracing back 23 kya (Hodgson et al. 2014).  
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To date, the ancient individual that best describes the African ancestry of 
Ethiopians is a 4500 years old hunter-gatherer found in a cave in Mota, Ethiopia 
(Llorente et al. 2015). The sample was free from any West Eurasian trace, con-
firming a recent date for the arrival of such a component into East Africa, which 
therefore could not be older than 4500 ya.  

On the other hand, the exact origin of the non-African component has not been 
yet clarified. The non-African component has been consistently indicated to be 
genetically closer to the Mediterranean populations (see Figure 3, originally pre-
sented in Pagani et al. 2012), however studies indicated either a Sardinian-like 
ancestry (Llorente et al. 2015; Pickrell et al. 2014), or a similarity with farmers 
from the Neolithic Levant (Lazaridis et al. 2016). An additional link to the Levant 
area is given by the presence of the Ethiosemitic language group in Ethiopia, 
thought indeed to have originated in the Levant area and arrived in the Horn of 
Africa 3 kya (Kitchen et al. 2009).  

Being an Anatolian source or a Levantine one, results point to the source of 
the backflow being genetically similar to ‘the one that fueled the Neolithic expan-
sion into Europe’ (sic, (Llorente et al. 2015)). 

 
Figure 3. Pairwise FST between Semitic-Cushitic Ethiopians and Surrounding 
Populations, presented by Pagani et al 2012. (A) ten haploid genomes from the Semitic-
Cushitic Ethiopians, showing that modern Yemeni, Egyptians, and Moroccans are closest 
to the Ethiopians, and (B) ten haploid non-African genomes from the same groups, 
showing instead a prevalence of Egyptian and Middle Eastern contributions to the non-
African Ethiopian gene pool. By permission of Elsevier. 
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2.2 Admixture outcomes on the phenotypes  

The information carried by 3 billion bases is astonishingly huge, allowing us to 
ask very broad scientific questions. Up to now, the thesis focused on the demo-
graphic and evolutionary consequences of the admixture event. However, along 
with inheriting the ancestral components from the admixing sources, we do 
inherit SNPs associated with specific traits (or phenotypes). So, instead of 
looking at the genome as a mosaic made of ancestral components, we could zoom 
in and focus in more detail on the biological effect of the inherited alleles. Shifting 
our mindset from the past to the present, we won’t ask anymore how the admix-
ture event unravelled in the distant past, but how admixture affects our traits in 
the present-days. 
 
 

2.2.1 GWAS studies 

The approach designed to detect the alleles affecting our phenotypic variation is 
known as Genome Wide Association Study (GWAS), where the aim is to find a 
link between one or more genetic variants and a trait within a population. Such a 
link is found when the allele frequency in specific loci is similar between indi-
viduals with a specific trait (Uffelmann et al. 2021).  

There are two main trait categories: Mendelian or complex. A Mendelian trait, 
also indicated as a monogenic trait, is a phenotype caused by a single variant with 
a very large effect size. On the other side, a complex trait, that can be either oligo- 
or poly-genic, will be affected by some (oligo) or many (poly) alleles with mode-
rate to small effect sizes. Differently from Mendelian traits, very rare in humans, 
complex traits are quite common. 

For any Mendelian trait, the presence of a single allele will indicate if an indi-
vidual will either display or not a given trait. Instead, to predict the variants’ effect 
on a complex trait one must weigh the effect of all (sometimes more thousands) 
loci linked to said trait, where each of these loci will only partially impact the 
final phenotypic effect. 
 
 

2.2.2 Polygenic Scores 

A widely used method to predict the genetic burden for a given trait is the Poly-
genic Score (PS) (Visscher et al. 2017; Uffelmann et al. 2021). PS are obtained 
by summing the contribution of all alleles associated with a trait across the genome, 
which could either increase or decrease the probability of the phenotypic out-
come, weighted by the allele effect size, inferred from the GWASs (Martin et al. 
2017).  

PS analyses need a validation set, the target set on which the scores are to be 
estimated, and a GWAS set, also referred to as base set, listing the genotype-
phenotype associations (Choi, Mak, and O’Reilly 2020). The two sets should be 
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independent, as any overlap in samples would cause an over-estimation of asso-
ciations due to over-fitting (Wray et al. 2013).  

Transferring the GWAS associations estimates to the validation set cannot be 
done directly: there may be differences in the allele effect size between the two 
sets or differences in LD patterns between the base and validation (Choi, Mak, 
and O’Reilly 2020). The sets should be thus cleaned from potential biases, by 
shrinking all SNPs or applying an arbitrary P-value to remove a fraction of the 
SNPs (Choi, Mak, and O’Reilly 2020).  

Beyond samples overlapping and LD patterns, there are several other compli-
cations that arise when transferring GWAS estimates. In fact, estimating PSs on 
populations different from the one the GWAS was based on has shown to be rather 
complex. 
 
 

2.2.3 Underrepresentation and Transferability of GWAS studies  
in admixed groups 

GWASs are usually carried out on large cohorts and some groups, such as Euro-
peans (Sirugo, Williams, and Tishkoff 2019; Kim et al. 2018), are more covered 
than others (Landry et al. 2018), although more and more studies focusing on 
non-European populations recently started to emerge (Nagai et al. 2017). Besides 
the inability to fully capture human variability levels throughout world-wide 
populations, and fueling the ever-lasting bias towards the over-representation of 
European populations (Need and Goldstein 2009; Petrovski and Goldstein 2016; 
Bustamante, De La Vega, and Burchard 2011), the main implication of such a 
lack of variability is that the application of predictive medicine is limited only to 
the groups that are covered by GWAS analyses (Manrai et al. 2016). In fact, 
GWAS results are hardly transferable between populations due to the many 
population-specific forces acting on the genome(Li and Keating 2014).  

Many associated SNPs are not in fact causal, but only indirectly linked with 
the pathway that causes the trait, likely detected thanks to LD with the causal 
SNPs. We could assume that the associated SNP is indeed an ideal proxy, given 
its link with the causal marker. However, in distantly related populations, LD 
patterns may be broken and the proxy SNPs selected would not be in fact in LD 
with the causal one, thus not actually associated with the trait under study.  

GWASs tend to find association between traits and alleles with common or 
intermediate frequency in the population, therefore failing to recognize low 
frequency alleles and rare variants showing little sharing among populations 
(Mathieson and McVean 2012; Simon Gravel et al. 2011). Due to genetic drift, 
populations will have different allele frequency spectra, and associated SNPs 
found in one population may present with a different frequency in another. As an 
example, SNPs associated with height in the Greenlandic Inuit population are 
found to be highly associated with height in European groups as well. However, 
such association emerged only in the Inuit groups that carry the allele with a 
frequency of 0.98, and was not in the European populations, as they carry the 
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allele in low frequency (0.017), despite their high association with the trait 
(Fumagalli et al. 2015). 

Along with differences in LD patterns and allele frequency spectra, assortative 
mating, ascertainment bias and environment all will have a population-specific 
impact.  

Consequently, PS estimates, when applied to populations different from the 
one the GWAS was based on, yield low predictivity (Martin et al. 2017; 2019; 
Scutari, Mackay, and Balding 2016; Reisberg et al. 2017), relegating the power 
of predictive medicine to only the groups thoroughly and directly studied with 
GWAS (Figure 4). 

As constantly demonstrated by demographic studies, most human groups 
show some level of sub-continental structure with differences in terms of LD 
patterns and allele frequencies that will impact GWASs (Martin et al. 2017). How-
ever, given the numerous variables acting upon SNPs-trait associations, it has been 
suggested that performing GWAS in more diverse cohorts may not be sufficient 
to reduce discovery bias (De La Vega and Bustamante 2018). To partially over-
come the biases a few GWAS studies leveraged on LA, showing indeed an in-
creased statistical power (Martin et al. 2017; Pasaniuc et al. 2011; Szulc et al. 
2017). However, LA approaches have not been directly applied to retrieve PS 
estimations, limiting the promise of predictive medicine to only certain popu-
lations. 

Figure 4. Polygenic Scores relative to Type II Diabetes distributions in different 
populations presented in Reisberg et al 2017, showing PR transferability bias. 
 

 

  



23 

2.3 Studying the admixture events 

2.3.1 Explorative analyses 

Detecting an admixture event requires first an understanding of the target 
population structure, along with its genetic relationship with other groups, to find 
the best proxy sources that contributed to the mixed population. For such pre-
liminary and exploratory analyses, descriptive tools are the best choice, because 
they can be applied on a dataset without any a priori information of the demo-
graphic structure. They will reveal patterns that can be inferred as similarity or 
dissimilarity between samples and they can recognize admixture events. 
  
 

2.3.1.1 FST: the fixation index 

One of the most common summary statistics used to detect population structure 
compares allele frequencies between populations. Between the 1940 and 1950, S. 
Wright and G. Malecot developed a series of parameters to describe and measure 
how the genetic diversity is apportioned within and among populations. They 
computed three different parameters, each one measuring the amounts of 
heterozygosity at a given level of population structure. Here we will focus only 
on one: FST, a measure of both the genetic differentiation between the subpopu-
lation as well as the differentiation within the subpopulation, providing insights 
into population structure and demographic histories (Holsinger and Weir 2009).  

While being generally indicated as FST = Vp/p(1-p), with Vp being the 
variance in allele frequency among populations, and p(1-p) the variance in the 
allelic state for an allele chosen randomly from the entire population, FST itself 
has been defined, estimated and applied on datasets in several ways. As men-
tioned in Bhatia G. et al 2013, Wright defined the FST as the correlation of 
randomly drawn gametes from the same population relative to the total population 
(Bhatia, Patterson, and Sankararaman 2013), however it is not clear what should 
be defined as ‘total population’. A widely used tool to perform genetic analyses, 
PLINK (Chang et al. 2015), follows Cockerham’s definition referring to the ‘total 
population’ parameter from an evolutionary point of view, thus as the most recent 
common ancestral population to the populations considered (Bhatia, Patterson, 
and Sankararaman 2013). 

Given the differences in defining and estimating the parameter, FST values 
may differ from study to study, with the additional complication that the type of 
marker will affect the FST final estimate (Jakobsson, Edge, and Rosenberg 2013; 
Auton et al. 2009; The 1000 Genomes Project Consortium et al. 2015; Barreiro 
et al. 2008; Barbujani and Colonna 2010). Nevertheless, FST estimates among 
global human populations are known to vary broadly (The 1000 Genomes Project 
Consortium et al. 2015). In this document I will use Fst values to indicate fine-
scale population structure, commonly defined by Fst values of 0.01 or lower 
(Novembre and Peter 2016). Such FST values are generally found within sub-
continental groups, for example European populations.
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2.3.1.2 Principal Component Analyses  

When it comes to analysing the vast amount of information of the genetic data, 
dimensionality reduction techniques are essential tools. They comprise a set of 
approaches that aim to understand the relationship between multiple attributes 
(for example SNPs) of an entity (such as individuals) and assess their relevance 
in describing the set while minimising the information loss (Jolliffe and Cadima 
2016). Among the dimensionality reduction techniques, Principal Component 
Analysis (PCA) is one of the most used in population genetics since Menozzi et 
al pioneered its usage to study genetic variation (Novembre and Stephens 2008; 
Menozzi P., Piazza A., and Cavalli-Sforza L. 1978). Similarly to FST, PCA does 
not operate on a priori information, allowing it to be an optimal exploratory 
analyses to make predictive models on the data. 

The base assumption is that genotypes will cluster together in the PC space 
according to their similarity, so individuals with a recent shared ancestry should 
fall closer together than more distantly related individuals (Schraiber and Akey 
2015). In fact, as demonstrated by McVean 2009 the location of samples on the 
PC space can be related to the mean time of coalescence between pairs of samples 
(McVean 2009). Through PCA we can infer past demographic events such as 
admixture, to an extent where softwares have been developed that discriminate 
between ancestries within a genome given the PC space (see PCAdmix). In fact, 
when samples fall along a gradient we can infer they are the results of an admix-
ture event where the putative sources of said event fall at the ends of the gradient 
(McVean 2009; Patterson, Price, and Reich 2006). 

On the other hand, if multiple demographic models have the same effect on 
mean coalescence times, it is difficult to define what kind of event characterised 
the population under study (McVean 2009; Novembre and Stephens 2008). For 
example, given that genetic similarity decays with distance (Novembre et al. 2009; 
Novembre and Stephens 2008), clines between groups that may look like admix-
ture events might be in fact an effect of isolation-by-distance. 

It follows that despite allowing for a wide range of inferences, interpreting 
past demographic events from PCA patterns is challenging and should be done 
with caution. PCA projections depend strongly on the sample size, as sample size 
differences between populations will distort the projection space, but also sampling 
location and ascertainment of samples may cause biases. 

An additional useful feature of PCA is to define the PC space with selected 
samples and then project the samples of interest. Projecting samples on an already 
defined PC space avoids potentially skewing the analyses when the sample size 
of the target group is significantly different from the other set, or when the target 
samples are characterised by a substantial missing data, as commonly happens 
when ancient samples are studied. Additionally, projecting samples is useful when 
they are thought to be admixed, in fact by projecting the admixed individuals in 
the reference populations defined PC space, it is also possible to identify the 
admixture proportions (McVean 2009). 

Although PCA is a powerful explorative tool to make initial inferences, they 
should be followed up with further analyses.
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2.3.1.3 Clustering analyses 

Alternatively to measure the genetic variance (FST) or conveniently visualise it 
with PCA, it is possible to summarise the genetic information without a priori 
information by clustering the target individuals based on their genetic patterns, 
highlighting population structure within the dataset.  

Given a K number of clusters, clustering algorithms group together samples 
based on their similarity. As a result they assign each individual to all clusters 
with a probability of belonging to that cluster, defined as the membership coeffi-
cient. Such assignments occur SNP-wise to account for multiple ancestries within 
one genome. In this way, each individual has several membership coefficients 
that summarise the proportion of DNA for which they are most closely related to 
the other individuals in cluster K.  

Most of the largely used clustering algorithms (such ADMIXTURE (Alexander, 
Novembre, and Lange 2009)) do not model correlation between adjacent loci. 
However, there are several drawbacks linked to the clustering approach itself that 
go beyond modelling for different patterns of LD.  

As indicated for other explorative analyses, different demographic events may 
cause similar clustering patterns. Multiple non-zero membership coefficients can 
be due to admixture events, but also bottlenecks, drift, isolation by distance or 
other evolutionary events (Pritchard, Stephens, and Donnelly 2000; Novembre 
2016; Lawson, van Dorp, and Falush 2018). If a sample is assigned to multiple 
clusters, that does not necessarily imply admixture and thus the K components 
are not indeed representing K ancestral populations. However, it is possible to run 
clustering analyses by indicating X populations or groups that are representative 
of X distinctive clusters, so that all other samples’ ancestral proportions will be 
modelled based on the X specified groups. In this scenario, the base assumption 
is that the X distinctive clusters are indeed the ancestral groups. 

Additionally, many assumptions revolve around choosing the value of K. K is 
usually determined a priori and strongly impacts the analyses as the direct con-
sequence is that all individuals are assumed to share from 1 to a maximum of K 
components. While few Ks may not be able to properly describe the dataset vari-
ability, too many Ks will cause overfitting (Novembre 2016). Usually, the analyses 
are run selecting several numbers of K (ie, K=2–10), to then select one or two sets 
of the results obtained. There are several ways to select the most appropriate K, 
such as choosing the K with the smallest cross validation error, making use of 
softwares that parametrize K or evaluating the results based on historical knowl-
edge (G. Hellenthal 2019). However, none of these methods can predict the true 
K, given that K is usually unlikely to be a biologically meaningful quantity. 
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2.3.2 Allele frequency analyses 

By leveraging allele frequencies differences it is possible to test specific demo-
graphic hypotheses, rather than to infer past events from patterns of similarity 
highlighted by explorative analyses. In my studies I focused on the F-statistics 
suite to perform most of the allele frequency analyses and to test specific demo-
graphic hypotheses.  
 
 

2.3.2.1 Inferring population structure  
with allele frequency analyses  

Widely used allele frequency methods that analyse population structure are the 
F-statistics, distinct but related to Wright’s F-statistics, introduced by Reich et al 
2009 (Reich et al. 2009) and extensively developed by Nick Patterson and col-
laborators (Patterson et al. 2012; Moorjani et al. 2011), as mentioned in Peter 
2016 (Peter 2016).  

With F-statistics one explicitly tests a demographic model rather than inferring 
relationships from the data. The model can be interpreted as a phylogenetic tree 
and the length of the tree branches relating the groups are a measure of the allele 
frequency correlations (Peter 2016). Such correlations are interpreted as shared 
drift and all subsequent inferences are based on the assumption that shared drift 
implies shared evolutionary history (Peter 2016). 

Considering a tree (X;Y,Z), the F-statistics will estimate the allele frequency 
correlations across X, Y and Z, averaged over many biallelic SNPs. The correla-
tions are expected to change as E(y|x) = x and E(z|x) = x, so that the expected allele 
frequency correlations across the groups can be indicated as: E(x–y)(x–z) = 0. The 
given phylogenetic tree analysed through the F-statistics will serve as the null 
hypothesis to test E(x–y)(x–z) = 0. The hypothesis will be rejected if the drift 
value is significantly ≠ 0, measured with Z-Scores. In case of a rejection, the 
topology tested simply does not reflect the shared drift calculated between the 
groups, and other evolutionary events apart from drift might have acted upon the 
tested groups.  

F-statistics can be applied on two (f2-statistics), three (f3-statistics) or four 
(f4-statistics) populations (Figure 5). 

F2 is a measure of similarity between pairs of entities, calculated based on 
shared genetic drift, lower values of F2 are thus expected the more distantly 
related two populations are, differently from FST.  

Given three populations, F3 can be used either as a formal test for detecting 
admixture (F3-Admixture) or as a measure of shared genetic drift between two 
populations given a third one used as an outgroup (F3-Outgroup). F3-Outgroup 
measures the genetic similarity of population A and B conditioned on the out-
group O. The outgroup allows the statistics to be calculated only on the poly-
morphic sites of A and B not shared with O. With F3-Outgroup the expected 



27 

value of the tree is always >= 0. Instead, F3-Admixture tests whether target popu-
lation C is admixed with A and B both and in this case, negative values are 
expected if the admixture did occur. The method is robust, thus a negative value 
ensures that an admixture event occurred on C. However signals of admixture 
may be hidden by genetic drift or founder events and in these cases F3-Admixture 
may result in positive value even if C is admixed. 

 

Figure 5. A population phylogeny with (A) branches corresponding to F2 (green), 
F3 (yellow), and F4(B) (blue), (B) an admixture graph extends a population phylogeny by 
allowing gene flow (red, solid line) and admixture events (red, dotted line). Peter B., 
“Admixture, Population Structure and F-Statistics”, 2016, Genetics,Volume 202, Issue 4, 
by permission of Oxford University Press. 
 
F4 is a formal test for a phylogeny (also referred to as treeness), and its rationale 
is similar to the D statistics (Durand et al. 2011; Green et al. 2010). The D statistic 
considers four populations: two references (A and B), one target (C) and one 
outgroup (O), in a phylogeny (A,B,C,O), and the goal is to compare the similarity 
between C and the references A and B. With D = 0 the built phylogeny do not 
show excess of shared drift; with D < 0 the statistics indicate a stronger gene flow 
between C and B; while D > 0 the gene flow is stronger between C and A. The 
F4-statistics behaves similarly, with positive or negative signals indicating which 
reference group is closest to the target one.  
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2.3.2.2 Estimating the admixture proportions  
using allele frequency analyses 

Previously listed F-statistics, while they can detect admixture events, they cannot 
provide additional information about the gene flow, such as the magnitude. 
However, by making use of two sets of F4, it is possible to estimate the contri-
bution of one source of the admixed population though the F4-ratio (Reich et al. 
2009). For such analysis there is no need for accurate surrogates of the admixture 
event, but the phylogeny of populations considered must be known.  

qpWave and qpAdm allow for a deeper analysis of the admixture event. 
qpWave detects the minimum number of independent ancestries needed to model 
the target population, while qpAdm models and estimates the admixture pro-
portions by considering several independent ancestries. Both of these tools require 
that at least a partial phylogeny is known, as they need a defined set of M outgroups 
(defined ‘right’ populations, R), a set of N putative admixing sources (defined 
‘left’ populations, L) along with the target admixed group, T. qpWave tests whether 
L and R clades are independent, thus if that gene flow did not occur between the 
populations of the two sets. Through multiple F4 statistics, qpWave estimates the 
minimum number of gene flow events occurring between L and R. If all F4s 
values calculated are 0 (https://uqrmaie1.github.io/admixtools/index.html), the 
outgroup set R and the reference set L are independent. We can then model the 
target T as being admixed by L set populations, conditioned on the R set with 
qpAdm. 

Finally, with qpGraph one can test a given phylogeny by building a tree-like 
graph with N leaves that correspond to real populations and M nodes indicating 
pseudo-populations. By testing all possible F-statistics between the N leaves, the 
tool returns all the respective Zscores that may reject (|Zscores| > 3) or accept 
(|Zscores| < 3) the proposed topology (Patterson et al. 2012). The tool models also 
admixture events, for which the best-fitting admixture proportions are calculated, 
and indicates the amount of drift occurring in each branch. An optimal topology, 
among the many possible ones, is found when Zscores values for all F-statistics 
are not significantly different from zero. In such cases the given tree-like graph 
represents a fitted model for the groups studied, although it cannot be considered 
as the true topology. 

 
 

2.3.3 Haplotype data 

Many of the analyses listed before consider SNPs to be independent from one 
another. Such assumption, even if simplistic, allows for computational speed and 
inferences on past demographic events, even without a priori information. How-
ever, modelling the correlation patterns of SNPs along a chromosome, although 
computationally expensive, allows for fine-detailed inferences (Leslie et al. 2015). 

By taking into account combinations of alleles, rather than single SNPs, we 
are shifting from allele-based to haplotype-based analyses. An haplotype is a 
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combination of alleles along a set of loci that have been inherited entirely from 
the maternal or paternal source (McVean and Kelleher 2019). The length of the 
set of loci considered may vary depending on the study, it may be an entire chromo-
some, a smaller segment or a block of ancestry. By considering an haplotype as 
a block of ancestry entirely inherited from one source, we are accounting for 
correlation between markers and therefore considering Linkage Disequilibrium 
patterns. 
 
 

2.3.3.1 Retrieving haplotype data 

The haplotype phase can be estimated through either experimental or compu-
tational methods. In both cases, the goal is to infer from which parent each allele 
is inherited. Experimental methods have a very high accuracy, however the cost 
of generating the sequence data and the requirement of technical expertise limit 
their application (Browning and Browning 2011). Consequently, several tools 
have been developed to statistically infer the parental configuration of alleles at 
heterozygous sites. Especially in cases where related individuals are unavailable, 
it is necessary to rely on algorithms that estimate the haplotype configurations 
using a large cohort of samples as reference. Widely used tools that model haplo-
type phase are based on Hidden Markov Models (see paragraph 2.3.3.1.1) (Howie, 
Donnelly, and Marchini 2009; Delaneau et al. 2014; Stephens and Scheet 2005; 
Loh, Palamara, and Price 2016).  

Once the haplotype phase is inferred, the resulting genetic information can be 
used for association studies and inferring demographic events (Browning and 
Browning 2011). 
 

2.3.3.1.1 Hidden Markov Models 

A Hidden Markov Model (HMM) represents a system assuming that: i) it follows 
a Markov chain where the states of interest are unobservable (or ‘hidden states’), 
the Markov chain itself assumes a sequence of states where the probability of the 
next state depends only on the present state and not the entire chain of events; ii) 
there is an observable process whose behaviour is related with the hidden state, 
thus from the observable states one can learn about the hidden states (Yoon 2009). 

To build an HMM, three distribution probabilities are needed: the Initial state 
distribution P(z0); the Transition probabilities P(zl|zl–1), indicating the probability 
of jumping from one hidden state to another; the Emission probabilities P(xl|zl), 
indicating the probability that each hidden state emits the observed state 
(Wegmann and Leuenberger 2019). The joint distribution of the HMM is equiv-
alent to the product of initial state distribution, transition probabilities and emission 
probabilities: 
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A popular HMM that handles genetic data was introduced by Li & Stephens in 
2003 (Li and Stephens 2003), and has been widely used to infer the haplotype 
phase as well as the ancestral state in Local Ancestry analyses. The model allows 
reconstructing the target haplotypes as an imperfect mosaic of a set of the refe-
rence haplotypes. The transition probabilities model how the state of the mosaic 
tiles change along the chromosome, following the recombination rates (rho), 
making the model realistic. The emission probabilities allow each target haplo-
type to differ at some level from the reference haplotypes by accounting for 
mutation probabilities (θ, also defined as the miscopying parameter) making the 
model robust to several biases (mutations, genotyping errors).  

An issue of such models is that the number of the generated states is generally 
quite high, for example, when taking into account haplotypes, the number of 
states will be N^2, where N is the number of haplotypes. Although ideally a 
straightforward solution would be to calculate the maximum likelihood of the 
combination of all states, it is not computationally feasible. 

There are ways to avoid calculating the maximum likelihood that can still 
retrieve valid information from the generated states (L. R. Rabiner 1989): with 
the Forward-Backward algorithm, we can calculate the posterior probabilities 
P(zl | x0:L) of the hidden state per each locus l given the full observed data, x0:L 
and with the Viterbi algorithm we can find the most likely path through the hidden 
states. Differently, the Baum-Welch algorithm, a case of the Expectation-
Maximisation (EM) algorithm, can be instead applied to infer the model para-
meters (the transition and emission probabilities). 

 
 

2.3.3.2 ChromoPainter: a strategy to infer population structure  
from haplotype data 

A widely used haplotype-based approach that models LD is ChromoPainter (CP) 
(Lawson et al. 2012). CP finds patterns of similarity between haplotypes, laying 
the foundations for demographic inferences, ancestry proportions, population 
structure and sample clustering. A strong feature of ChromoPainter is that it does 
not need a narrow set of pre-specified reference samples to characterise the target 
haplotype, in contrast to what many other allele-based or haplotype-based 
approaches do. 

In order to find similarity patterns, ChromoPainter considers each target indi-
vidual as a ‘recipient’ and the rest of the samples as ‘donors’. The recipient indi-
vidual genome is reconstructed (or painted) using the DNA chunks of the donors, 
so that the recipient can be seen as a mosaic of several chucks, each of these 
donated by the suited donor. The most suited donor chunk is found by selecting 
the closest genetic relative available in the donor set for each haplotype. By 

P(z0:L,x0:L) = P(z0) P(zl|zl-1) P(xl|zl)
𝑙=1

𝐿

∏
𝑙=1

𝐿

∏



31 

painting the entire chromosome as a series of donated chunks, the painted 
recipient individual genome will in turn look as a mosaic where each tile is repre-
sented by the closest relative of the individual at that locus. The recombination 
events that break the mosaic tiles at the boundaries of the donated haplotype can 
be considered as the ancestry switches.  

To find the closest relative haplotype that best describes the recipient haplo-
type, ChromoPainter employs a modified version of the Hidden Markov Model 
proposed by Li and Stephens (described in 2.3.3.1.1)(Li and Stephens 2003). The 
main difference with Li & Stephens model is that ChromoPainter algorithm 
considers all donor haplotypes to reconstruct a recipient, instead of ordering the 
haplotypes based on ‘Product of Approximate Conditionals’ likelihood, which 
select only a handful of potential donor haplotypes in the Li & Stephens model.  

 
 

2.3.3.3 Estimating admixture proportions using haplotype data  
with ChromoPainter 

From the painting process we can obtain the ‘copying vectors’ that inform from 
which donor a given recipient copies per each locus. Through linear regression it 
is possible to make use of ChromoPainter copying vectors to model populations 
as mixtures of others, and thus calculating the ancestry proportions of each donor 
group copied by the target group. Such modelling is done by calculating the least 
squares, by finding the line (combination of donors copying vectors) that 
minimises the sum of squares residuals calculated from the data points (target 
copying vector) to said line. From such a combination we can infer the ancestry 
proportions. 

Since the haplotypes are a physical entity, they cannot be defined by a negative 
number (Chen and Plemmons 2009). In this scenario instead of using least 
squares, it is more suitable to use a Non-Negative Least Square (NNLS) where 
the values are constrained to be positive. The NNLS function often employed in 
CP analyses, described in Hellenthal et al, Leslie et al (Hellenthal et al., 2014; 
Leslie et al., 2015), is a modification of the Lawson-Hanson NNLS implemen-
tation of non-negative least squares function (Lawson and Hanson, 1995).  

 
 

2.3.4 Dating the admixture event 

Along with the ancestry proportions, another feature that can be inferred from an 
admixed population is assessing when the admixture event occurred. Dating the 
admixture event is key to contextualising the genetic inferences in relation to 
historical events. Dating analyses rely on the fact that recombination breaks down 
the ancestry segments over generations: thus, from the tract length distribution or 
the number of ancestry switches (Johnson et al. 2011) it is possible to infer the 
number of generations that occurred since the admixture event, the Admixture 
Time (AT).  



32 

However, the amount of ancestry switches may not always be directly obtained, 
and thus widely used dating methods rather analyse the exponential decay of 
admixture LD as a function of genetic distance, which requires fewer parameters 
and assumptions (ROLLOFF (Moorjani et al. 2011; 2013), ALDER (Loh et al. 
2013) and MALDER (Pickrell et al. 2014)). Given a target admixed group and its 
reference sources, the LD estimates will show an exponential decay over genetic 
distance, forming a curve whose decay rate indicates the AT (sic, (G. Hellenthal 
2019)). Additional exponential functions allow for testing and dating multiple 
admixture events (Pickrell et al. 2014). The methods can be also used beyond the 
scope of dating and further characterise the admixture event. For example, by 
comparing the amplitude of the curves obtained with different reference popu-
lations, one can detect the most suited reference groups, which will show the 
highest amplitude value (Pickrell et al. 2014).  

Additionally, it is possible to infer the AT from ChromoPainter analises, as 
done by the software GLOBETROTTER (Hellenthal et al. 2014) and fast 
GLOBETROTTER (Wangkumhang, Greenfield, and Hellenthal 2021), using 
haplotype information rather than allele-frequency to discriminate between the 
references. 

Generally, in case of samples scarcity and ancient admixture events the men-
tioned methods cannot deliver accurate results, and standard errors are generally 
quite large when dating events that occurred more than 100 generations ago. How-
ever, a recently developed method, DATES, has been shown to reach satisfactory 
accuracy levels when inferring few, unphased, low-coverage ancient samples 
(Chintalapati, Patterson, and Moorjani 2022; Narasimhan et al. 2019).  
 
 

2.3.5 Local Ancestry inferences 

Local ancestry inferences (LA) allow us to look in more detail at the effects of 
the admixture within the genome. Differently from Global ancestry approaches, 
that allow to estimate the ancestral proportions along the genome, with LA we 
detect the ancestral contributor at a haplotype or SNP level allowing for infe-
rences on population evolutionary history with a finer level (Yelmen et al. 2019). 
Additionally, ancestral patterns along the genome impact phenotypic variation 
and are taken into account also in SNP-trait association studies (Martin et al. 2017), 
highlighting the relevance of LAI tools not only in evolutionary studies but in 
clinical ones as well (Pasaniuc et al. 2011). 
 
 

2.3.5.1 Admixture deciphering key points 

LA approaches assign each allele to its respective ancestry by comparing the target 
and the sources’ genetic features. To make such an assignment LA tools are based 
on several assumptions, therefore several variables should be taken into account 
to achieve accurate results.  
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2.3.5.1.1 Input data: the importance of phased data 

Since LA approaches assign each allele to the respective ancestry, an unphased 
dataset would compromise the assignment. While for some human groups phasing 
might not be an issue, given that the phase might be obtained experimentally or 
statistically with a large amount of data, such conditions may not be met for 
poorly sampled human groups or different taxa, for which it could be eventually 
impossible to perform local ancestry accurately. To overcome such issues some 
LA tools implemented a phasing step within their inferences (Guan 2014). 
 

2.3.5.1.2 Length of ancestral blocks 

Recombination will impact the admixed genome over generations, shortening the 
inherited segments. Therefore, while recent admixtures, characterised by few 
recombination events, will show long ancestrals tracts, past admixture events will 
show short ancestry blocks. Generally, longer tract lengths are easier to detect and 
to assign correctly to the right ancestry, while small tract lengths will negatively 
impact LAI accuracy.  

It is possible to infer the expected tile length (L) of the ancestry block in a 
population, given the mixing proportion (m), recombination rate (r) and time since 
the admixture event (t, in generations), as follows: L=[1−m]r[t−1])^–1 (Racimo 
et al. 2015). 
  

2.3.5.1.3 The sources of the admixture 

LAI tools usually compare the genetic features of the admixed sample to the 
sources’ features to properly assign the admixed components to their respective 
ancestries. The choice of reference populations is crucial in ancestry deconvo-
lution analyses, as unfit proxy samples will cause misassignation or low rate 
assignment. Generally the sources’ samples are unavailable, or, at best, had gone 
through extensive genetic drift since the admixture event, so most of the time one 
relies on proxy samples. Although it is theoretically possible to use ancient DNA 
as reference, high levels of missingness in the data, low sample size and unphased 
genotypes will substantially lower the inference accuracy levels.  

It should be taken into account, however, that the chosen reference samples 
most likely do not correspond to the actual admixing source population, and we 
must be cautious when we link the ancestral component of the admixed group with 
either modern or ancient labelled populations. Overall, when we link any ancestral 
component to its source we are referring to the genetic similarity between the 
component and the putative sources, rather than direct contact (Mathieson and 
Scally 2020).  
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2.3.5.1.4 Genetic similarity between sources 

LA base their inferences in finding similarity between the target admixed group 
and the available sources. Similarity between the sources will impact the analyses 
as the discriminating power of the tools will be lower. In such cases the inherited 
ancestral tracts will share a large amount of allele frequency or haplotype 
structure within the target group, which ultimately translates in a difficulty in 
discerning between the ancestral sources, even with ideal reference samples. 
Source similarity is an issue encountered mosty when inferring sub-continental 
admixture events.  
 
 

2.3.5.2 Local Ancestry inference Methods 

LA methods available can be clustered based on several elements: whether they 
account for LD, whether they can model multi-ways admixtures or based on the 
type of parameters they require (Geza et al. 2019). Here, I will instead present the 
three state-of-the-art methodologies that I used throughout my studies given the 
algorithms they are based on. 
 

2.3.5.2.1 Hidden Markov Model-based approaches 

Several LAI tools base their inferences on Hidden Markov Model (HMM) algo-
rithmes (Schraiber and Akey 2015; Hoggart et al. 2004; Tang et al. 2006; Sund-
quist et al. 2008; Sriram Sankararaman et al. 2008; Price et al. 2009; Baran et al. 
2012; Omberg et al. 2012; Guan 2014; Salter-Townshend and Myers 2019). As 
indicated by Wegmann and Leuenberge (Wegmann and Leuenberger 2019), said 
algorithm fits perfectly the need of modelling ancestry along the genome, for two 
reasons: i) Markov Chains (on which HMM are based) do not need to be aware 
of all states, only the one state previous to the one studied. Along the genome, 
ancestry segments generally span many loci, so that the knowledge of the ancestry 
of one locus is sufficient to infer the ancestry of the next if no recombination 
occurred. ii) The exact sources of the admixture are usually unavailable, so an 
ancestry cannot be directly observed. Therefore, since the ancestries along the 
genome are hidden, we can use them as the hidden states. 

Among the methods that employ HMM, I will further describe only ELAI 
(Guan 2014), as its algorithm allows testing for a wide range of different 
scenarios. 

ELAI is based on an extension of HMM, where a two-layer HMM models 
both sets of LD: one upper-layer accounts for admixture LD while the second 
lower-layer accounts for background LD. 

Within each layer, a K number of clusters are created and labelled to represent 
the ancestries’ alleles, so that, for example, multiple clusters with the same label 
over adjacent markers indicate an ancestral haplotype. The ancestry switches, thus 
the loci where cluster labels switch, are recognized as recombination events. This 
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implies that ELAI does not use pre-specified windows, it can be used on either 
small or long tract lengths, thus on recent or (relatively) ancient admixture events. 
Local ancestry is then inferred by condensing the local haplotypes inferred from 
the lower-layer, and then assigning them probabilistically into the ancestral groups 
following the upper-cluster labels.  

Like many other local ancestry tools, ELAI needs a set of reference popu-
lations that are closely related to the real sources of the admixture to efficiently 
assign the markers to the respective ancestral component. Another costrain is 
given by the need for specifying the number of generations that elapsed since the 
admixture event, which may be inferred by other dating software. However, many 
other parameters that are limitations for other softwares are inferred by ELAI 
directly from the data: there is no strict need for phasing, as the software will 
attempt to phase the given unphased data, and recombination rates are inferred 
from the dataset. Additionally, ELAI can be run without surrogates for one of the 
admixing groups (Zhou, Zhao, and Guan 2016).  

 

2.3.5.2.2 Principal Component Analysis-based approaches 

PCAdmix (Brisbin et al. 2012) is a Principal Component Analyses-based algo-
rithm to perform LAI. PC analyses themselves fit well the needs of Local Ancestry, 
as they are fast and can separate samples on a continuous space based on the 
population structure. 

The first step of the analysis relies on inferring the PCs via Singular Value 
Decomposition (SVD) based on the reference samples, to then project the target 
individual windows upon the PC space created. The method proceeds by analysing 
short windows of SNPs and assessing the probability that a given window of the 
target admixed individual comes from each reference population. 

To determine how informative each SNP is in classifying the ancestry of a 
genetic region, the PC loadings (the eigenvectors) for each SNPs are collected 
from K – 1 PCs, where K is the number of ancestral populations (Brisbin et al. 
2012).  

To model the posterior probability of the ancestry in each window (Brisbin 
et al. 2012), PCadmix uses a Forward-Backward algorithm. In this framework the 
transition probabilities are qi,jπ, the recombination rates (π) and the average 
ancestry proportion (q) of population j in target haplotype i, which is estimated 
by calculating the Euclidean distance in the PC space between i and all non-j 
populations. The emission probabilities are defined by a multivariate normal dis-
tribution that takes into account, among other parameters, the window loading 
scores. 

This methodology requires pruning the dataset beforehand, removing loci in 
strong LD, therefore losing some level of genetic information, and a pre-specified 
set of reference populations. PCAdmix has been tested on a wide range of popu-
lations and can handle two-ways and three-ways admixture events. 
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2.3.5.2.3 Random Forest-based approaches 

With generative approaches, such as Hidden Markov Models, we assume that the 
observable state is linked to the hidden one. However, even if we account for 
recombination rates, miscopying rates and eventually perfectioning the para-
meters with an EM-algorithm, real-world observations may be also characterised 
by other features and dependencies that we cannot control (Wallach 2004). Alter-
natively to the generative approaches, there are the discriminative approaches, 
which focus on separating one class from another, rather than generating new 
data from the observed states (Lasserre and Bishop 2007). 

A widely used discriminative approach to perform LA is RFmix (Maples et al. 
2013). RFmix applies a Conditional Random Field (CRF), a probabilistic frame-
work for segmenting and labelling sequence data, on windows of the genome of 
predefined length (Wallach 2004). The CRF is parameterized by a Random Forest 
(RF) algorithm, which is itself based on Decision Trees (DTs). DTs are a decision 
support tool based on a tree-like graph where each internal node splits into two 
events and the leaves are the possible final outcomes of the events.  

The RF creates a random set of DTs (a set of decision trees as big as a forest), 
the observed trait is then passed through all DTs and then the most voted output 
is chosen.  

In RFMix, there are two learning steps: initially, the chromosomes are divided 
into windows, and in each of them a RF, trained on the reference panel, is used 
to estimate the posterior probability of the ancestral state; then, the ancestry 
assignment obtained from the previous state is used to improve the final inference 
accuracy with an EM step (Maples et al. 2013). 

Similar to the majority of the other methods, RFmix relies on a panel of proxies 
for the source populations, however, the algorithm should be capable of learning 
to discriminate from the admixed samples themselves, overcoming the issue of 
limited source availability. Ideally, such a framework makes Rfmix perfect for a 
dataset with sample scarcity. However, this LAI tool has been mainly tested on 
recently admixed populations with large block length and availability of samples, 
such as the American populations.  

 
 

2.3.5.3 Downstream exploitation of Local Ancestry inferences 

Generally, LAI tools will return the posterior probabilities of the ancestral states 
per each site or per each window. The user will then apply a threshold to remove 
all windows/sites where the posterior probability of an ancestry does not reach 
the desired level. Threshold levels may be chosen based on the experimental 
design, aim of the analysis or amount of windows needed to perform successive 
analyses (a stringent threshold generally implies removing a larger amount of 
sites).  
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Furthermore, it is possible to perform subsequent ancestry-specific analyses 
by masking out either ancestries in order to retrieve only the SNPs assigned to 
one ancestral component (Yelmen et al. 2019; 2021).  

 
 

2.3.5.4 Testing against known scenarios 

Since all LAI approaches rely on several assumptions it is possible that some of 
these assumptions are not perfectly met and errors are accumulated throughout 
all LAI steps. As a control for the LAI analysis, it is useful to create a simulated 
set of samples for which all genetic parameters are known and perform LAI on 
this set as well.  

Testing against known scenarios provides insights on the sensitivity and spe-
cificity levels of the method developed by comparing the experimental results, 
the predicted values, with the simulated ones, which are the known truth. By 
applying several thresholds to build different confusion matrices, we can build a 
ROC curve, where the true positive rate is defined by the rate of ancestries assigned 
correctly, and the false positive rate is given by the misassignation. 

Many simulation tools are based on the program published by Hudson in 2002, 
named ms (Hudson 2002) and its legacy. Ms generates a random genealogical 
history using a coalescent approach. A random set of samples is then drawn and 
used to investigate the properties of a population evolving under a neutral model 
(mutation cannot occur twice on the same site (infinite-sites model), no selection 
is acting upon the samples, generations do not overlap and population size is 
finite). The neutral model allows for mutations, recombination, gene conversion, 
symmetric migration among subpopulations, and simple population size changes. 
Further developments of ms program also allow for crossovers and gene con-
version hotspots (Hellenthal and Stephens 2007), and are able to deal with large 
sample sizes more efficiently then the base version (Kelleher, Etheridge, and 
McVean 2016). 

Similarly, programs that simulate admixture between multiple populations 
have been developed. Several admixing parameters can be indicated, such as: 
number of admixed individuals, admixing proportions, sources, generations 
elapsed since the admixture. The result is an arbitrary number of admixed indi-
viduals for which the ancestral contributor at each allele is known. 
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3. AIM OF THE STUDIES 

The three studies I will present aim to discuss the potentialities and limits of the 
Ancestry Deconvolution (AD) approaches. The Neolithic and post-Neolithic 
migrations characterised a large area, favouring the encounter of divergent popu-
lations over time. Such expansions can be traced to sub-Saharan Africa, high-
lighting an event of cross-continental admixture. Even more so, the entire Euro-
pean region has been the stage of massive migrations, to such an extent where 
each European group can be modelled as the result of a series of admixture events. 

The AD approaches have been applied on three different topics: studying an 
admixture event where worldwide, highly divergent populations came together; 
studying the limitations in deconvoluting fine-scale admixture events, such as in 
European groups; and finally applying the built knowledge to overcome the 
limitations in applying Polygenic Score and GWAS estimates on admixed 
populations.  
 
 

3.1 Aims of the first study (Ref I)  

East Africans are genetically characterised by a combination of a Non-African 
layer, originating from a wave of migrations from West Eurasia during the Bronze 
Age, along with an autochthonous African layer. Despite numerous studies 
describing the non-African layer, a consensus on the origin of such a component 
has not been reached yet. In fact, Pickrell et al found the layer to be genetically 
closer to a Sardinian-like ancestry, while Lazaridis et al 2016 found genetic simi-
larity with farmers from the Neolithic Levant (Pickrell et al. 2014; Lazaridis et 
al. 2016). In both studies, the Ethiopians’ ancestral layers have been analysed 
with global ancestry methods, therefore considering both components together. 
However, whole-genome inferences may be clouded by much discordant infor-
mation that the layers carry altogether. Starting from LAI approaches, I aim to 
study the demographic history of the Ethiopian genetically non-African layer by 
leveraging on ancestry specific analyses. 
 
 

3.2 Aims of the second study (Ref II) 

LA tools have been applied on admixed populations with divergent ancestries, 
where the admixing contributors came from different continents (ie, Latin Ameri-
can and African American groups) and for which large amounts of samples per 
each reference group should be available. This is not the case for any European 
population, where the post Neolithic migrations waves and subsequent migrations 
within the continent contributed to shape the genetic makeup of all present-day 
European populations, causing the admixing sources to be genetically too similar 
to perform LA accurately. 
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Secondly, LA inferences require a large amount of samples per each reference 
population, to best capture the genetic variability of the admixed individuals. 
However, while such a requirement may be frivolous for some, well-typed and 
largely available human groups, for other key human groups or different taxa it 
might not be the case. 

I compared different LA tools accuracy levels under different scenarios where 
the admixing sources show different degrees of similarity and availability of 
samples, to better understand current state-of-the-art LAI tools limitations. 
Additionally, I proposed WINC (Window-based ChromoPainter/NNLS) a novel 
LA tool that leverages on haplotype-painting technique. Such technique has been 
shown to accurately describe sub-continental population structure and to not be 
affected by low samples size as the painting step is done at individual levels 
(Drineas, Lewis, and Paschou 2010; Leslie et al. 2015; Gilbert Edmund et al. 
2019; Pankratov et al. 2020; Saint Pierre et al. 2020; Martin et al. 2018; Bycroft 
et al. 2019).  
 
 

3.3 Aims of the third study (Ref III) 

Polygenic Scores (PSs) summarise the effect of many genetic variants shown to 
be associated with a phenotype or a disease (Lambert, Abraham, and Inouye 
2019; Dudbridge 2013). However, PSs rely on population-dependent contri-
butions of many associated alleles, with limited applicability to understudied 
populations and recently admixed individuals. We proposed to leverage on LA 
inferences to extract ancestry-specific SNPs and estimate PS on the partial de-
convoluted segments.  
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4. MATERIALS AND METHODS 

4.1 First study (Ref I) 

The study focused on 120 whole-genome sequences from five Ethiopian popu-
lations: Amhara, Gumuz, Oromo, Ethiopian Somali, Wolayta (Pagani et al. 2015). 

Along with the Ethiopian samples, I combined various datasets where both 
ancient and modern genomes were available, so that the analyses could focus on 
both geographical and temporal information. Globally, the dataset included world-
wide populations data from the 1000 Genomes project, HGDP-CEPH project 
along with published ancient samples and 100 whole-genome sequences from 
Egypt (http://reich.hms.harvard.edu/datasets; The 1000 Genomes Project Con-
sortium et al. 2015; Behar et al. 2010; Pagani et al. 2015). After merging, the 
dataset was downsampled to maximise the number of individuals typed at each 
SNP, retrieving 1,037,084 markers and 6,382 individuals. 

PCA analyses were performed on the dataset comprehensive of all the avail-
able populations through EIGENSOFT (Patterson, Price, and Reich 2006) 
smartpca using lsqproject: YES, defining the PC space with modern individuals 
and then projecting the target samples along with the aDNA. ADMIXTURE 
(Alexander, Novembre, and Lange 2009) analyses were performed from k=2 to 
k=15 after excluding individuals with more than 15% missing data with PLINK 
(Chang et al. 2015). LA inferences were carried out with PCAdmix (Brisbin et al. 
2012), analysing windows of 20 SNPs, and ELAI (Guan 2014) setting 100 
admixture generations. All allele-frequency analyses were run using F-Statistics, 
with POPSTATS (Skoglund et al. 2015) and AdmixTools (Patterson et al. 2012). 
Dating inferences were carried out with MALDER, with mindis parameter set as 
0.005 (Pickrell et al. 2014). 
 
 

4.2 Second study (Ref II) 

I simulated with mspms (Kelleher et al., 2016) a Test Set, composed of 13 popu-
lations with the addition of seven sister groups labelled them as “Ghost” (GST). 
The GST demes were used to create eight two-ways admixed populations and 
one three-ways admixted group.  

I then created the Empirical Set, characterised by all available groups from the 
1000 Genome Project and three two-ways and one three-ways simulated admixed 
groups (The 1000 Genomes Project Consortium et al. 2015). I simulated admix-
ture events between: FIN-TSI, CHB-TSI, YRI-TSI and YRI-CHB-TSI.  

All simulated admixed groups were obtained with Admix-Simu software from 
Williams Lab (https://github.com/williamslab/admix-simu) and were characterised 
by an admixture event dated 100 generations ago with the sources contribution of 
70%–30% for the two-ways admixture and 40%–30%–30% for the three-ways 
admixture. I simulated 50 individuals per each admixed group. 
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To test our approach on a real case scenario, I used 61 ASW individuals and 
64 MXL (American of African Ancestry in South West and Mexican Ancestry 
from Los Angeles USA) from the 1000 Genome Project (The 1000 Genomes 
Project Consortium et al. 2015).  

I performed LA analyses on the simulated data with ELAI (Guan 2014), 
RFMix (Maples et al. 2013) and PCAdmix (Brisbin et al. 2012), adjusting the 
parameters to account for the number of reference samples (45 and 2 individuals 
per source) and time since the admixture (100 generations).  

To test our framework, I first estimated ChromoPainter nuisance parameters 
mu (mutation rate) and Ne (effective population size), through the Expectation-
Maximisation algorithm. I obtained the mu = 0.0011, and Ne = 2516.3133 for the 
Test set, and mu = 0.0008281 and Ne = 939.2658 for the Empirical set. I included 
in the donor panel all available groups within the tested set, but downsampled the 
proxy sources first to 45 and then to 2 samples. I then splitted ChromoPainter 
copying vectors in genomic windows of equal lengths. Finally, to perform the 
ancestry assignment I used the Non-Negative Least Squares (NNLS) approach 
presented in Hellenthal et al., 2014 on the previously splitted copying vectors. 
 
 

4.3 Third study (Ref III) 

We created five simulated admixed populations using 1000 Genomes Project 
groups combining deeply divergent populations, so that they traced their ancestry 
to East Asian (ASN), Africa (AFR) and Europe (EUR), with different proportions 
and admixture generations. All simulations were carried out using Admix-Simu 
software from Williams Lab (https://github.com/williamslab/admix-simu). I per-
formed LA analyses with ELAI using CEU to retrieve the EUR ancestry, YRI to 
retrieve the AFR ancestry and CHB to retrieve the ASN ancestry. I then 
performed LAI on a subset of phased admixed individuals within UK-BioBank 
(Bycroft et al. 2018), 220 Ethiopian whole-genome sequences (Pagani et al. 2015) 
and ASW (The 1000 Genomes Project Consortium et al. 2015) using West 
Eurasian, African and Asian groups as reference sources.  

All LA inferences were carried out using ELAI. The admixture generation 
parameter was adjusted based on the population under study. We assigned each 
SNP to the respective ancestry selecting a threshold of 0.9. To evaluate PS pre-
dictivity on the deconvoluted segments further analyses were carried out on the 
Estonian BioBank (Leitsalu et al. 2015) and UK BioBank making use of also 
SNP-trait association studies of Japan BioBank (Akiyama et al. 2017; 2019) . 
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5. RESULTS AND DISCUSSION 

5.1 Local Ancestry inferences applied on  
a demographic study: the Ethiopian case  

5.1.1 Performing Local Ancestry and masking genomes 

Local Ancestry inferences were carried out with PCAdmix on 120 samples from 
five Ethiopian ethinic groups: Amhara, Ethiopian Somali, Oromo, Wolayta and 
Gumuz. To retrieve the West Eurasian ancestry I selected as source CEU, Utah 
residents with ancestry from northern and western Europe; while I used Gumuz, 
an Ethiopian group previously shown to have close to 0% of Eurasian component, 
as proxy for the African component. I selected a threshold of 0.9 probability for 
a window to be assigned to either one layer of ancestry or the other. If a window 
did not reach the threshold for any component, I then labelled it as unassigned. 
I masked the Ethiopian genomes by retrieving only the windows that passed the 
threshold (Figure 6). I thus obtained 240 partial genomic segments characterised 
by SNPs that were assigned with a 0.9 probability to either the African (AF) or 
the non-African (NAF) ancestry.  

Given the low proportion of NAF ancestry in Gumuz, I did not proceed 
carrying on allele-frequency analyses on this ethnic group. 
 

Figure 6. Schematic workflow to perform ancestry-specific analyses. Work-
flow to perform Ancestry Deconvolution and masking process to obtain the 
ancestral components within the Ethiopian genomes. 
  



43 

5.1.2 Explorative analyses with masked genomes 

PCA shows Ethiopians whole-genomes falling outside the European cline, as 
expected given the African layer (Figure 7). Masked NAF genomes cluster with 
other non-African populations from the Mediterranean area, notably: North 
African Jews and ancient samples from the anatolian area such as 
‘Minoans_Lasithi’ and ‘Minoan_Odigitria’, samples dated 2210–1680 BCE and 
linked to a Bronze age civilization from Create, and ‘Anatolia_N’, samples dated 
5500–5000 BCE and linked with the neolithic farming period. The ancient 
Levantine samples from the Mesolitic (Natufians) to the Eneolithic (Neolithic and 
Chalcolithic samples) era fall between the Anatolian cluster and the Ethiopian 
whole-genome sequences (Bar-Yosef and Valla 1990; Pearce 2019). The other 
main West Eurasian ancestral sources, WHG and CHG, fall at opposite sites 
outside the modern European cline, as expected. 

 
Figure 7. Principal Component Analysis of Amhara group and Amhara Non-
African segments (NAF), along with modern West Eurasian populations and ancient 
samples. 
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5.1.3 Shared drift estimations 

I measured the shared genetic drift between the target samples and the available 
modern and ancient groups with F3-Outgroup analysis. The analyses were per-
formed on the Ethiopian populations considering either the masked segments 
(Ethiopian_NAF) or the whole-genome sequences (Ethiopian). A systematic 
survey has been carried out using the formula: f3(Ethiopian_NAF/Ethiopian, X; 
Outgroup). I set as X all the available modern and ancient samples from the broad 
Mediterranean area; while as an outgroup I used the Mbuti population, a hunter-
gatherer group from Central Africa. I then compared the results of the masked 
genomes (on the x axis in Figure 8) against the respective whole-genome popu-
lation results (on the y axis in Figure 8).  

The ancient samples from the Anatolian area (Minoan individuals and 
Anatolia Neolithic farmers) and modern Jewish populations from North Africa 
show high values of shared genetic drift with the Ethiopian NAF component. 
Differently, the whole-genome sequences are genetically closer to the ancient 
Levantine groups. 

Figure 8. F3-Outgroup analysis of the Ethiopian whole-genome and masked 
sequences, where masked sequences are presented on the x axis and whole-genome 
sequences results are presented along the y axis: a) Amhara and Amhara_NAF, b) Oromo 
and Oromo_NAF, c) Ethiopian Somali and Ethiopian Somali_NAF, listed as Somali in 
the graph for brevity d) Wolayta and Wolayta_NAF 
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5.1.4 Modelling multiple ancestral contributors 

I aimed to characterise the admixture event in more detail, by modelling the 
masked and the whole-genome as a mixture of multiple ancestries. I focused on 
the F3-Outgroup top scoring groups: Anatolian Neolithic (Anatolia_N), Minoan 
(Minoan_Lasithi and Minoan_Odigitria), Jewish individuals from North Africa 
and Levantine Neolithic (Levant_N) populations. 

I used a custom list of Left populations to test two-ways and three-ways 
admixture events: the Test population, X and Mota for the two-ways admixture; 
the Test population, X, Y and Mota for the three-ways admixture. As Test popu-
lation I included either Ethiopian NAF or Ethiopian whole-genome sequences, as 
X I selected for each analyses either Anatolia_N, Levant_N or Minoan samples 
and as Y I selected CHG.  

QpWave results indicated that X and Mota and X, Y and Mota represented 
independent ancestries. QpAdm results for Ethiopian whole and Masked geno-
mes depict the differences already hinted at in previous analyses when comparing 
whole-sequences genomes and Masked genomes: complete genomes display 
Mota and Levant_N as most likely ancestries, while NAF Masked genomes show 
an Anatolian-like and CHG contribution, ~80% and ~20% respectively (Figure 9). 
 

 
Figure 9. Estimating admixture proportions in Amhara, Amhara_NAF, Minoans and 
jews from Tunisia, by modelling them as a mixture of Mota, CHG and either Anatolian 
or Levantine ancestry. 
 
 

5.1.5 Bias testing 

PCAdmix assigns each window to an ancestry with a probability, so that, after 
the AD, each admixed individual’s genomic segments are either: high confidence 
non African (NAF), low confidence NAF (X), low confidence African (Y) or high 
confidence African (AF). In the main analyses I discarded the low confidence 
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segments, however they might bear genetic patterns with different signatures than 
the ones we found. 

I combined the four components and tested their genetic signature through a 
series of F4 statistics. The low confidence NAF component, when merged together 
with the high confidence NAF segments, does not qualitatively affect our infe-
rences. Furthermore, I assembled all high confidence components (NAF and AF, 
referred to as ‘Joint’) and reiterated the signals of the global whole-genome seg-
ments. The results show that the low confidence components are not holding a 
distinct genetic signature (Figure 10).  
 

 

Figure 10. Frequency-based allele-sharing analyses. F4-statistics test on several 
Amhara ancestral segments: Amhara, where all segments are considered; Amhara_NAF, 
where only the high confidence Non African segments are retrieved; Amhara Joint, where 
the high confidence segments, buth African and Non African, are considered and 
Amhara_NAF+X, where high confidence and low confidence Non African segments are 
selected 
 
PCAdmix, as many other LAI tools, requires a set of reference populations to 
detangle the ancestral components of the admixed samples and they are crucial 
in the analyses.  

The analyses shown in the main manuscript are drawn by deconvoluting the 
Ethiopian ethnic groups with CEU and Gumuz. The CEU population is charac-
terised by European ancestry, which bears additional traces of Anatolian neolithic 
ancestry and therefore might cause biases against the levantine ancestry. Whereas 
the Gumuz are an Ethiopian ethnic group characterised by a negligible amount of 
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Non African ancestry (< 3%) that might assign non African genetic segments to 
the African component. 

We explored potential confounders linked with the choice of CEU and Gumuz 
by selecting different sets of reference populations. As an alternative to the CEU, 
we selected the Druze population, a Levantine population showing little signs of 
recent African admixture (Moorjani et al. 2011), to minimise the distance from 
the true West Eurasian source. For the alternative African ancestry, we selected 
YRI, Yoruba from Nigeria, to instead maximise the distance of the African proxy 
to the population that was likely involved in the admixture event. We also per-
formed the Local Ancestry analyses using a different software, ELAI, and 
compared the results with PCAdmix. The comparisons were carried out through 
a series of F4-statistics tests and confirmed the robustness of our approach 
(Figure 11).  
 

 
Figure 11. F4 statistics results on masked Ethiopians, using different populations as 
sources (Gumuz-CEU, YRI-CEU and Gumuz-Druze) and different LAI tools (PCAdmix 
or ELAI) to retrieve the masked segments. 
 
 

5.2 Understanding and overcoming Local Ancestry 
inferences limits: WINC 

5.2.1 WINC Framework 

Our proposed Local Ancestry approach leverages on the ChromoPainter/NNLS 
framework. Our approach can be divided into three steps: performing Chromo-
Painter analyses, splitting the copying vectors in genomic windows and analysing 
each window through NNLS.  
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In the first step, ChromoPainter should be performed in order to retrieve both 
the admixed group and the reference populations’ copying vectors. In this step 
both the targeted admixed group as well as the proxy admixing sources should be 
set as recipients, so that they are all painted by the rest of the donor panel. 

In the second step the copying vectors are splitted in genomic windows of the 
same length. Since the window size depends on the length of the ancestry chunks, 
an approximate understanding of generations elapsed since the admixture must 
be available.  

Finally, in the third step, WINC compares the painting profile of the admixed 
sample’s genomic window to the references’ windows with NNLS analyses and 
assigns the admixed window to the most representative ancestry. We refer to our 
approach as Window-based ChromoPainter/NNLS: WINC (Figure 12). 

 

Figure 12. Schematic workflow of WINC, WINC is based on the ChromoPainter/NNLS 
framework (ChromoPainter step, top part of the figure), with the additional step of 
splitting the copying vectors resulting from the ChromoPainter (CP) run (Split step, 
middle part of the figure) before analysing them through the NNLS step (NNLS, bottom 
part of the figure). 
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5.2.2 Simulating Test Set 

Following a similar model as in Van Dorp et al 2015 (van Dorp et al., 2015), we 
simulated 13 populations to represent current European (EUR), East Asian (ASN) 
and African (AFR) groups. We then added seven sister groups (GST), charac-
terised by a divergence time from their sisters of 100 generations (3 kya), for a 
total of 20 simulated populations (Figure 13). These GST populations were later 
used to create admixed groups, but were not included in any LA analysis, in order 
to mimic a real scenario where the actual sources of the admixture are not 
available. For each group we simulated 50 individuals and phased genomic 
segments of 250 Mb, mimicking the length of chromosome 1.  
 

 
Figure 13. Demography of the simulated populations. The x-axis lists the simulated 
population labels, y-axis lists the kilo (K) years elapsed from the present. 
 
By combining pairs of simulated GST (Ghost) demes, I generated 8 two-ways 
admixed and one three-ways admixed populations with 50 individuals each and 
100 generations elapsed since the admixture event (Table 1). The admixing GST 
demes were selected to cover a broad spectrum of divergence times, allowing us 
to test admixture events with sources progressively more genetically similar. The 
two-ways admixture are all characterised by ancestral proportions of 70%–30%. 
The simulated population that was obtained from a three-way admixture is 
characterised by African-like, European-like and Asian-like contributors, with 
proportions 40%–30%–30%. The resulting admixed simulated samples were 
combined with the previously simulated dataset, from which the GST demes were 
removed. I referred to the obtained dataset as the Test Set. 
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Table 1. List of the simulated admixed groups using GST demes as sources. In 
Source 1, Source 2 and Source 3 we listed the GST demes used to create the admixed 
group and in Proxy 1, Proxy 2 and Proxy 3 we indicated the reference source populations 
used in the deconvolution analyses. Lastly, in Divergence Time we indicated the diver-
gence time between the sources. 

 
 

5.2.3 Testing WINC on different window sizes 

Given that all simulated populations showed an AT of 100 generations, the 
expected length of the ancestry tiles in our dataset is ~1 megabase (Mb).  

I compared WINC performances on windows of different lengths, splitting the 
copying vectors of two admixed populations in genomic tiles of 100 kilo bases 
(kb), 500 kp and 1 Mb. Results show that different window lengths can affect 
WINC performances. Notably, a shorter window length causes decrease in per-
formance. Differently, choosing a window length closer to the expected one (1 Mb) 
does not heavily affect the performance when 50 individuals are used per source. 
On the other hand, when two individuals are used per source, WINC shows higher 
accuracy levels when applied on 1 Mb window length.  

In the following analyses we maintain as standard window size the length of 
500 kb, in order to ensure that each ancestry block analysed falls within the 
expected window tile of 1 Mb. 

 
 

5.2.4 Comparison between Local Ancestry tools 

We deconvolved the admixed groups of the Test set with several local ancestry 
tools: ELAI (Guan 2014), RFMix (Maples et al. 2013) and PCAdmix (Brisbin et 
al. 2012) and WINC. The admixed samples’ sources show a degree of similarity 
based on how long ago they diverged, i.e. if they diverged 75 kya they will show 
a low level of similarity, while if they diverged 7.5 kya their genetic patterns are 
expected to be similar. Secondly, the ancestral block length is expected to be short 
given that 100 generations have elapsed since the admixture. Sources’ similarity 
as well as small block length may interfere with the accuracy levels for all LAI 
tools analysed here. 

I applied a wide range of ancestry assignment thresholds (or ancestry scores, 
AS), removing all SNPs or windows that did not reach said threshold. I then 
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compared the resulting assignments with the true ancestral state that was given 
by the simulation software as a separate output. By comparing the observed 
ancestry assignment to the known ancestral state I was able to estimate the 
accuracy levels of the LA tools. Additionally, I estimated the portions of genomic 
windows available after filtering for the SNPs that did not pass the threshold, 
expecting that higher thresholds would remove a higher number of SNPs/ 
windows. 

Overall RFMix results show low accuracy levels, independently on how similar 
the sources’ genetic patterns are or how many reference individuals are available. 
Most likely this is due to the length of the ancestry blocks. On the other hand, ELAI, 
PCAdmix and WINC all show high accuracy levels (>0.8) where 50 reference 
individuals are available and the two sources are sufficiently divergent (> 24 kya 
between sources) (Figure 14). When only two individuals are available as 
sources, both ELAI and WINC perform with high accuracy levels (> 0.8) when 
the sources are highly differentiated (diverged 75 kya). WINC maintains accuracy 
> 0.8 also when the sources are less divergent (30 kya or higher). When the 
sources diverged less than 24 kya all tools tested show a decrease in accuracy, no 
matter the number of available reference individuals.  

Figure 14. Local Ancestry inferences on two-ways admixture groups from Test Set. 
Comparing ELAI (red), RFmix (yellow), PCAdmix (green) and WINC (blue) in terms of 
the window proportion assigned (y axis) and accuracy levels (x axis), under a range of 
threshold. The eight panels are labelled based on the divergence time of the admixing 
sources. Local Ancestry inferences were carried out with 50 individuals per sources 
(triangle) and two (dots) 
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Overall, results on the three-way admixture event show that ELAI reaches higher 
performances. Both ELAI and WINC reach high accuracy levels when 50 
individuals per source are available, but WINC retrieves fewer genomic windows. 
The accuracy levels are lower for both methods when performing LA based on 
only 2 individuals per source, however ELAI retrieves more genomic windows. 
 
 

5.2.5 C-AS matrix 

As seen from the Test set deconvolution results, LAI approaches are expected to 
perform with higher accuracy when the admixing sources are genetically distant.  

Similarly, the more two sources are differentiated at a given genomic window, 
the easier it should be for the NNLS as well to assign a haplotype to one or the 
other source population. We leveraged on the similarity between sources to predict 
whether NNLS has sufficient information to correctly infer the local ancestries. 

To assess the similarity between different sources, we computed a Pearson 
correlation coefficient (rho) between the same window of each pair of source 
populations from the Test set.  

We performed the NNLS analysis on the windows, applying a wide range of 
thresholds (Assignment Score, AS) and calculated the accuracy of the NNLS 
assignment.  
 

Figure 15. Correlation-AssignmentScore matrix, estimated from the Test set.  
 
  

0.380.42

0.430.44

0.46

0.5

0.5 0.5 0.5

0.51

0.51

0.52

0.52

0.52

0.52

0.52

0.53

0.53

0.53

0.53

0.54

0.540.54

0.54

0.54

0.55

0.55

0.56

0.56

0.56

0.57

0.57

0.58

0.58

0.58

0.58

0.58

0.59

0.59

0.59

0.59

0.6

0.6

0.6

0.6

0.61

0.61

0.62

0.62

0.62

0.62

0.62

0.62

0.63 0.63

0.63

0.64

0.64

0.64

0.65

0.65

0.650.66

0.66

0.67

0.67

0.67

0.68

0.68

0.68

0.69

0.7

0.7

0.72

0.72

0.72

0.73

0.74

0.75

0.75

0.75

0.75

0.77

0.77

0.79

0.79

0.8

0.8

0.81

0.83

0.83

0.83

0.84

0.84

0.85

0.86

0.86

0.87

0.87

0.9

0.92

0.92

0.93

0.94

0.95

0.95

0.96

0.97

0.98

0.98

0.99

0.99

0.99

1 1

1 1

1

1 1−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Threshold

rh
o



53 

In this way, for each window of all pairs of sources, we obtained a correlation 
coefficient that measured their similarity and the accuracy level reached by the 
NNLS analyses when assigning the target window to the source under several 
threshold values. 

In doing so, we obtained a Correlation-Assignment Score (C-AS) matrix that, 
given different values of similarity between sources (correlation) and a threshold 
(or assignment score (AS)), will inform on the NNLS assignment accuracy values 
(Figure 15). 

 
 

5.2.6 Simulating Empirical Set 

To test the transferability of the C-AS matrix, obtained from the simulated Test 
set, I simulated an additional dataset of admixed individuals along with their proxy 
sources: the Empirical Set. The Empirical Set was characterised by all groups 
available from the 1000 Genome Project and four admixed groups (The 1000 
Genomes Project Consortium et al. 2015). 

I simulated two-ways admixture events between an European (TSI, Toscani 
in Italy) and an African (YRI, Yoruba in Nigeria) population. TSI-YRI; an Euro-
pean (TSI) and Asian (CHB, Han Chinese in Beijing) population, TSI-CHB, and 
within European populations (TSI and FIN, Finnish in Finland), TSI-FIN. Lastly, 
I simulated a three-ways admixture event between continents mixing YRI, CHB 
and TSI with proportions 40%–30%–30% respectively.  

I used CEU (Utah residents with European ancestry) as a source population to 
retrieve TSI fragments, ESN (Esan in Nigeria) for YRI ancestry and CHS (Han 
Chinese South) for CHB ancestry. To retrieve FIN fragments, we set as source 
all FIN individuals not used to create the admixed population TSI-FIN. 

 
 

5.2.7 C-AS Matrix Transferability  

We tested the applicability of the C-AS matrix estimated from the Test Set on the 
Empirical Set. For a given correlation in a specific window, we used the minimum 
AS threshold needed to obtain the desired accuracy value. We analysed the over-
all performance and transferability of the C-AS matrix on the Empirical Set and 
compared it with the results obtained by selecting the windows only by AS thre-
sholds. 

Our tool, as well as ELAI, operates with high accuracy values (> 0.9) also on 
the Empirical Set when the sources are genetically differentiated and 45 or two 
individuals are available (Figure 16). All LAI tools tested do not reach satis-
factory accuracy levels when the source populations are genetically similar, such 
as TSI-FIN. 

For both TSI-YRI and TSI-CHB populations, WINC calibrated with the C-AS 
matrix performs equally well to WINC alone in terms of accuracy, but retrieves 
higher portions of the genome, with the additional difference that WINC+C-AS 
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accuracy is predictable in its outcome. By applying the C-AS matrix to WINC we 
could in fact assign windows with the desired accuracy, with the only exception 
being reaching an observed accuracy of ~0.97 when the expected one was set at 
0.99. Differently from WINC alone, WINC + C-AS matrix tends to not assign 
any genomic window of TSI-FIN (maximum 0.1%), when threshold values were 
set to 0.85 or higher, hence providing an effective way of drastically reducing 
false positives. 

Differently from the Test Set results, ELAI shows lower accuracy levels with 
respect to both WINC and WINC+C-AS when two individuals are used as source 
for the LAI analyses on the three-ways admixture group. 

 

Figure 16. Local ancestry inferences on the Empirical Set using WINC and ELAI, 
with WINC (blue), WINC+CAS (light blue) and ELAI (red), given 45 (triangles) or 
2 (dots) individuals per source. 
 
 

5.2.8 Real Case scenario 

Lastly, we applied the WINC and WINC+C-AS matrix approaches on real 
genomes: ASW (American of African Ancestry in SW) and MXL (Mexican 
Ancestry from Los Angeles USA)(The 1000 Genomes Project Consortium et al. 
2015). To deconvolute ASW, we used CEU and ESN as reference sources, while 
for MXL we used CEU, PEL and ESN. Each analysis was composed of either 45 
or 2 of source individuals.  
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Being a real case not resulting from simulations, to assess WINC perfor-
mances we chose to compare WINC the results with ELAI ancestry assignments 
using 45 individuals, deemed as the “gold standard”. For comparison, we also 
performed ELAI analyses on ASW and MXL using 2 individuals per source and 
benchmarked the results against the same ELAI run using 45 reference samples.  

Consistently with the previous results on highly divergent simulated popu-
lations, WINC shows high accuracy levels deconvoluting ASW, despite the 
number of reference samples. Discrepancies on the portions of the assigned 
genome between the real case and the Test Set could be due to the fact that ELAI 
assigns windows that WINC set as NA, or vice versa.  

On the MXL population WINC reaches accuracy of 0.9 or higher when using 
45 individuals per source, but unlike ELAI, it does not reach high accuracy levels 
when inferring the three MXL ancestries when only 2 individuals are used per 
source (Figure 17). 

Figure 17. Local Ancestry analyses on ASW and MXL with WINC (blue), WINC+ 
CAS (light blue) and ELAI (red), given 45 (triangles) or 2 (dots) individuals per source. 
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5.3 Employing Local Ancestry inferences to overcome 
Polygenic Scores limited transferability 

5.3.1 Testing Local Ancestry inferences on a simulated set 

We first performed LAI on simulated genomes that mimic the real populations 
targeted in the study to assess ELAI accuracy when the AT is not precise. I per-
formed several LA runs per each simulated group, indicating different numbers 
of generations for each run and compared the LAI results with the known truth 
given by the simulation software. I performed LA given: the exact admixture 
time, doubled time and half time, an average of the former dates and, finally, a 
quarter of the exact time. ELAI shows robustness also in cases where the 
admixture time given is not precise. 
 
 

5.3.2 Local Ancestry inferences on selected samples from 
1000 Genomes project, Ethiopian groups and UK BioBank 

We then performed LAI on the UK-BioBank, selected 1000 Genomes project 
samples, five Ethiopian groups and Egyptian samples using ELAI. All popu-
lations were characterised by divergent ancestral components, one of them of West 
Eurasian origin. To deconvolute the ASW population, Egyptian and Ethiopian 
whole-genome sequences, we used 72 samples equally distributed among CEU, 
TSI, IBS to represent the West Eurasian ancestry and GUM (Gumuz), LWK, 
YRI, to represent the African ancestry. The admixture generations parameter was 
set as 100 for Ethiopians, 30 for Egyptians, 6 for ASW. 

Figure 18. Local Ancestry assignments of the target dataset with a) Ethiopian and 
Egyptian whole-genome sequences and ASW group from 1000 Genome Project b) admixed 
samples from UKBB 
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The UK-BioBank admixed samples were deconvoluted using UK-BioBank 
individuals to minimise batch effects. To retrieve the West Eurasian ancestry, 
100 samples were selected among the UK-BioBank samples that fall near the 
GWAS training set. For the African and East Asian components we extracted the 
100 samples with the highest appropriate ancestry fraction according to ADMIX-
TURE results. The admixture generations parameter was set as 10 for the admixed 
UK-BioBank samples.  

We selected a threshold of 0.9 for the assignment, so that all SNPs assigned 
with less than 0.9 probability were removed and labelled as unknown (Figure 18). 
 
 

5.3.3 Partial Polygenic Scores transferability 

The LAI assignments were then used to mask the targeted genomes in order to 
retrieve European ancestry (Figure 19). Successively, we preceded estimating the 
polygenic scores (PS) on the masked samples. PS were calculated on the masked 
genomes accounting for the fraction of the genome available, therefore applying 
a modified estimation of the PS defined partial polygenic score (pPS). To assess 
the predictive value of the pPS obtained, a parallel set of masking analyses was 
carried out on the Estonian BioBank (EstBB).  
 

Figure 19. Schematic workflow to obtain partial Polygenic Scores (pPS). A graphical 
representation of the workflow we adopted to obtain normalised PS and ancestry specific 
pPS. White boxes represent input data, the two key steps of ancestry deconvolution and 
partial PS computation have an orange background. 
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The masked loci obtained from the UK-BioBank were used to mask the EstBB 
samples, on which the pPS were calculated. Separately, the PS were calculated 
using the entire, unmasked genomes of the EstBB. We then compared the PS 
estimates of the EstBB against the pPS estimates of the masked EstBB. Results 
showed that pPS estimated on only a fraction of the admixed genome, retrieved 
thanks to LAI, were sufficient to improve prediction estimates. Furthermore, we 
applied the approach on real admixed genomes showing the effectiveness of the 
approach also on real-case scenarios. We analysed individuals from the UK 
BioBank, for which both the East Asian and European ancestrals components 
could be analysed through pPS, thanks to the availability of the SNP-trait 
associations studies from the UK BioBank and BioBank Japan. We added 
together the two ancestry-specific PS and showed that predictivity of the 
combined-ancestry-specific PR (casPS) outperforms both pPS and PS estimates. 
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6. CONCLUSIONS 

The three studies presented in this thesis aimed to contribute to the current 
understanding of Ancestry Deconvolution approaches, focusing on Local Ancestry 
inferences.  

 
Ref I – The West Eurasian component in four Ethiopian ethnic groups (Amhara, 
Oromo, Ethiopian Somali, Wolayta), when analysed separately, is found to be 
genetically characterised by the presence of approximately 80% of Anatolia 
Neolithic ancestry and 20% of CHG ancestry. Such signal is maintained when 
performing Local ancestry analyses with a non-African source enriched for 
Levantine-like ancestry and also when accounting for the windows discarded due 
to their low assignment rate. Differently, when the entire genome is analysed, 
thus when considering all ancestral layers, the Ethiopian ethnic groups are defined 
as being admixed with a Levantine Neolithic ancestry and an autochthonous Afri-
can layer. Our work indicates that when the mixing components are deeply 
differentiated, such as in the case of contemporary Ethiopians, controlling for all 
components with ancestry deconvolution may be a supporting tool for allele 
sharing tests and allow for further insight on past demographic histories. 
 
Ref II – Current LA methods are limited when assessing components that are 
genetically similar, since they do not have the power to properly distinguish 
between the admixing sources. Additionally, most of the tools require a large 
amount of reference samples to reach a satisfactory accuracy level. Our frame-
work was able to reach high accuracy levels when deconvoluting an event whose 
sources were sufficiently divergent (up to 30 kya) and when only two individuals 
were used per each source. However, the haplotype-painting framework that was 
proven successful in describing sub-continental substructures could not yield 
satisfactory results when applied in a LA framework to deconvolute sources that 
diverged earlier than 24 kya. Our work allowed us to understand and measure 
part of the limitations of state-of-the-art tools, along with providing a novel LA 
methodology able to perform ancestry deconvolution in cases of sample scarcity. 
 
Ref III – Our work showed that Local Ancestry inferences can be employed to 
estimate Polygenic Scores in admixed individuals. LA allows to select the genomic 
segments derived from a specific ancestry, shared with the GWAS cohort, and 
ancestry-specific Polygenic Score can be estimated on the remaining genetic 
fraction. Our work enables the estimation of Polygenic Scores for individuals of 
mixed ancestries. 

 
Local Ancestry Inferences can be a viable approach to control for multiple 
ancestral components and perform ancestry specific analyses. Along with con-
tributing in the understanding of past demographic events, LAI allows to refine 
GWAS-dependent strategies such as the estimation of PS. Despite the great power 
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that this approach holds, there are several limitations that should be taken into 
account, above all the lower accuracy level reachable in case of high similarity 
between the ancestral components.  

Future steps into refining LA’s ability of deconvoluting sub-continental 
admixture will allow us to gain deeper knowledge on the evolutionary history of 
our species, so that we can continue narrating through past encounters the story of 
our ancestors. 
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SUMMARY IN ESTONIAN 

Eesti, Euroopa ja üleilmsete inimgenoomide geneetilise  
päritolu kihtide lahtikaevamine 

Tänapäeval eeldame sageli, et meie moodne eluviis on minevikust tingimata 
parem, ja et mida kaugemale me ajas tagasi läheme, seda enam heitlesid mineviku 
inimesed kehvade elutingimuste või küündimatu tehnoloogiaga. Pole üllatav, et 
ajaloolised ja arheoloogilised uuringud äratavad meist paljude uudishimu, kuna 
nende tõttu oleme sunnitud oma tänapäevast uskumuste süsteemi ümber kujun-
dama ning jahmuma sellest, kui palju mineviku populatsioonid tegelikult saavu-
tada suutsid. Ajaloolised ja arheoloogilised andmed meenutavad meile jätkuvalt, 
et minevikku tuleb vaadata värske pilguga. Samavõrd nagu tänapäeval olid 
mineviku inimesed organiseerunud ühiskonnaks, nad liikusid, nad rändasid, nad 
jagasid ideid, kultuure ja tehnoloogiaid – ja me leiame ikka veel nende kokku-
puudete jälgi. Meie mineviku ajaloo täielikuks mõistmiseks ei piisa ühestainsast 
silmapaarist, kuna ükski teadusvaldkond pole täiesti sõltumatu. Seda silmas 
pidades on käesoleva doktoritöö eesmärgiks mineviku kokkupuudete jälgede 
uurimine geneetilistes andmetes. 

Kui indiviidid segunevad, et saada järeltulijaid, leiab populatsioonides aset 
segunemissündmus, mis tekitab segunenud populatsioone. Segunemissündmuse 
osaliste jälgede ajamise protsessi nimetatakse põlvnemise lahtiharutamiseks 
(Ancestry Deconvolution, AD). AD on lähenemisviis, mis võimaldab segunenud 
grupi geneetilist mosaiiki analüüsida, ajades segunemise osaliste jälgi, ja segu-
nemissündmust täpsemalt iseloomustada.  

Vaadates genoomi AD abil kui minevikusündmuste tulemit, avastame, et 
populatsioonide kokkupuuted pole inimajaloos olnud kaugeltki harvad, mõnikord 
saavad kokku geneetiliselt lähedased populatsioonid (segunemine maailmajao 
siseselt), mõnikord jällegi segunevad väga erinevad grupid (segunemine üle maa-
ilmajao). 

AD lähenemisviiside seas on meetodid, mida nimetatakse lokaalse põlvnemise 
tuletamiseks (Local Ancestry Inferences, LAI), mis võimaldavad tuletada antud 
päriliku lookuse põlvnemist. Sellistel kõrge lahutusastmega tuletustel on piiran-
gud, mis mõnel juhul LAI tööriistade jõudlust tugevalt piiravad. Tegelikult käsit-
levad LAI rakendused peamiselt segunemissündmusi üle maailmajao, kus on 
segunenud väga erinevad allikad.  

Samuti, kui LA rakendamine segunenud populatsioonil, mida iseloomustab 
põlvnemine eri maailmajagudest, võib olla täielikult peidetud ja tundmatute 
mineviku demograafiliste sündmuste avastamisele keskendunud ülesanne, nõuab 
LA kasutamine maailmajao sisestel segunemistel, näiteks Euroopa populat-
sioonidel, metodoloogilist lähenemist, mis on kujundatud nii, et see võtab kõige-
pealt arvesse LA piiranguid.  

Lõpuks, toetudes teadmisele, et üldiselt on kõik inimrühmad segunenud, on 
loomulik pakkuda, et AD ja täpsemalt LAI on lähenemisviisidena kasulikud ka 
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väljaspool demograafilisi uuringuid. Tegelikult peitub 3 miljardis aluspaaris 
hämmastavalt hiiglaslik hulk informatsiooni, mis võimaldab meil esitada väga 
laiu teaduslikke küsimusi. Koos segunevate allikate põlvnemiskomponentidega 
pärime konkreetsete tunnuste (või fenotüüpidega) seotud SNP-d. Teatud feno-
tüübi väljakujunemise tõenäosust on võimalik osaliselt ennustada polügeensete 
skooride (Polygenic Scores, PS) hindamise abil. See hinnang saadakse, sum-
meerides kõigi tunnusega seotud alleelide panuse üle kogu genoomi, mis kas 
suurendaks või vähendaks fenotüübilise tulemuse tõenäosust, kaalutuna alleeli 
mõju suuruse järgi. Seos SNP-de ja tunnuste vahel tuletatakse ülegenoomsetest 
assotsiatsiooniuuringutest (Genome-Wide Association Studies, GWAS) (Martin jt 
2017). Samas viiakse GWAS uuringuid tavaliselt läbi suurtes kohortides ja mõni 
grupp, näiteks eurooplased (Sirugo, Williams ja Tishkoff 2019; Kim jt 2018), on 
teistest rohkem kaetud (Landry et al. 2018). Kuna genoomile mõjuv tohutu hulk 
muutujaid on populatsioonispetsiifilised, saab GWAS-i tuletusi kasutada ainult 
nende populatsioonide puhul, mis on GWAS-i aluseks olnud populatsioonile 
geneetiliselt lähedased, mis takistab PS-i ülekantavust ja rakendatavust vähem 
uuritud populatsioonidele ja segunenud indiviididele. 

Ma esitlen kolme uuringut, mille eesmärgiks on arutleda põlvnemise lahti-
harutamise (Ancestry Deconvolution, AD) lähenemisviiside võimalusi ja piiran-
guid. AD lähenemisviise, täpsemalt LA tuletamist, on rakendatud kolmel erineval 
teemal: uurides segunemissündmust, milles said kokku väga erinevad populat-
sioonid eri maailmajagudest; uurides väikesel skaalal segunemissündmuste, 
näiteks Euroopa rühmade puhul, lahtiharutamise piiranguid; ja lõpuks rakendades 
kogutud teadmisi, ületamaks polügeensete skooride ja GWAS hinnangute kasu-
tamise piiranguid segunenud populatsioonidel.  

Ref I – ida-aafriklasi iseloomustab geneetiliselt mitte-Aafrika kihistus, mis 
pärineb pronksiaegsest migratsioonide lainest Lääne-Euraasiast, ja autohtoonne 
Aafrika kihistus. Hoolimata paljudest mitte-Aafrika kihistust kirjeldanud uurin-
gutest pole selle komponendi päritolu osas veel konsensusele jõutud. Pickrell jt 
väitsid, et kihistus on geneetiliselt lähedasem Sardiinia tüüpi põlvnemisele, aga 
Lazaridis jt 2016 tuvastasid geneetilise sarnasuse neoliitilise Levandi põllu-
harijatega (Pickrell jt 2014; Lazaridis jt 2016). Mõlemas uuringus analüüsiti 
etiooplaste põlvnemiskihistusi globaalsete põlvnemismeetoditega, seega käsit-
ledes mõlemat komponenti koos. Kuid ülegenoomseid tuletusi võib varjutada 
suur hulk kokkusobimatut informatsiooni, mis on kihistustes olemas. Alustades 
LAI lähenemisviisidega, on minu eesmärgiks uurida Etioopia mitte-Aafrika 
kihistuse demograafilist ajalugu, kasutades põlvnemisspetsiifilisi analüüse.  

Ref II – LAI tööriistu on rakendatud erinevate põlvnemiskomponentidega 
segunenud populatsioonide puhul, kui segunemise osalised pärinevad erinevatest 
maailmajagudest (nt ladina-ameerika ja aafrika-ameerika grupid) ja iga referents-
grupi kohta on olemas suur hulk proove. See ei kehti ühegi Euroopa populatsiooni 
kohta, kuna kõigi tänapäeva Euroopa populatsioonide geneetilise koostise kujun-
damisse panustasid neoliitikumijärgsed migratsioonilained ja järgnevad ränded 
maailmajao sees, mistõttu on segunemise allikad LAI täpseks läbiviimiseks 
geneetiliselt liiga sarnased. 
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Teiseks on LAI tuletusteks vaja suurt arvu proove igast referentspopulat-
sioonist, et segunenud indiviidide geneetilist varieeruvust kõige paremini kirjel-
dada. Kuid ehkki selline nõue võib mõne põhjalikult uuritud ja laialdaselt kätte-
saadava inimrühma puhul olla triviaalne, ei pruugi see nii olla teiste oluliste inim-
rühmade või teiste taksonite puhul. 

Võrdlesin erinevate LAI tööriistade täpsuse taset erinevate stsenaariumite 
puhul, kus segunemise allikatel oli erinev sarnasuse määr ja proovide kätte-
saadavus, et paremini mõista LAI tööriistade piirangute praegust olukorda. Lisaks 
pakkusin välja uue LAI tööriista WINC (Window-based ChromoPainter/NNLS), 
mis kasutab haplotüüpide „värvimise“ tehnikat. On näidatud, et selline tehnika 
kirjeldab maailmajao sisest populatsioonistruktuuri täpselt ja seda ei mõjuta väike 
proovide arv, kuna „värvimise“ etapp viiakse läbi indiviidi tasemel (Drineas, Lewis 
ja Paschou 2010; Leslie jt 2015; Gilbert Edmund jt 2019; Pankratov jt 2020; Saint 
Pierre jt 2020; Martin jt 2018; Bycroft jt 2019).  

Ref III – polügeensed skoorid (PS-d) summeerivad paljude geneetiliste 
variantide mõju, millel on näidatud seos mõne fenotüübi või haigusega (Lambert, 
Abraham ja Inouye 2019; Dudbridge 2013). Samas põhinevad PS-d paljude 
assotsieerunud alleelide populatsioonist sõltuvatel panustel ning nende rakenda-
tavus vähem uuritud populatsioonidele ja hiljuti segunenud indiviididele on 
piiratud. Tegime ettepaneku kasutada LAI-d põlvnemisspetsiifiliste SNP-de 
eraldamiseks ja hinnata PS osaliste lahtiharutatud segmentide kohta. 
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