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I. INTRODUCTION 

The European forest landscape has undergone drastic changes in area and 
habitat quality during recent centuries (Grigg 1987; Foley et al. 2005). As a 
result, only a small proportion of forest ecosystems has remained in a natural or 
near-natural state (Hermy & Verheyen 2007; Adermann 2009; Eriksson et al. 
2010). During recent decades, forest cover has been increasing again, due 
mostly to afforestation of former agricultural land (EEA 2009; Hansen et al. 
2013). Although these stands are of secondary origin and only partially 
resemble natural forests, they are expected to function as a habitat for forest 
species (Brunet & Von Oheimb 1998). However, these forests often contain a 
lower number of forest species than natural forests (Vellend 2003; Van Calster 
et al. 2008). The potential of secondary forest to harbour forest species 
successfully depends on habitat quality and landscape structure, as these two 
conditions determine the probability of species to colonise a newly formed 
habitat (Verheyen & Hermy 2001; Jacquemyn et al. 2003b; Brunet 2007). 

Secondary forests can be colonised only by species that are already present 
in the local species pool of the landscape (Eriksson 1993; Pärtel et al. 1996). 
Species accumulate in continuously existing habitats, defined as historic or 
ancient habitats, which function as species sources (Zobel 1997; Wulf 2003; 
Pärtel et al. 2007). Colonisation success further depends on the probability of 
dispersal to an uncolonised habitat. The patch-corridor-matrix theory predicts 
that species dispersal is hampered by an unsuitable matrix habitat, while 
increased by corridors and stepping-stone patches (Opdam 1990; Forman 1995). 
Indeed, novel forest stands adjacent to old forests are colonized at a faster rate 
than isolated stands surrounded by agricultural fields (Brunet & Von Oheimb 
1998; Brunet et al. 2012). Tree lines and hedgerows can facilitate forest species 
dispersal (Ehrlén & Eriksson 2000; Liira & Paal 2013). The role of linear 
woody habitats as dispersal corridors is, however, still debated, as their 
efficiency depends on regional history, corridor age and connectivity between 
habitats (Deckers et al. 2004; Roy & de Blois 2008; Wehling & Diekmann 
2009b).  

Habitat quality, or niche availability, is a significant factor determining the 
colonisation probability of forest species (Gauslaa et al. 2007; Brunet et al. 
2011; Jonsell 2012; Vojta & Drhovská 2012). Forest inventories and monitoring 
schemes use a wide range of structural characteristics as a proxy of habitat 
quality (Lindenmayer et al. 2000; Liira et al. 2007; Scheller et al. 2008; Lõhmus 
& Kraut 2010). A forest stand with a complex stand structure provides a large 
range of available niches, thereby increasing the chance for species colonisation 
(Norden & Appelqvist 2001; De Sanctis et al. 2010; Jamoneau et al. 2011). Old-
growth forest stands, for example, contain a high diversity of microhabitats and 
can, therefore, harbour a high diversity of forest species (Brunet & Von Oheimb 
1998; De Sanctis et al. 2010). Soil conditions are another commonly used 
indicator of habitat quality, because soil on former agricultural land is often 
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affected by agricultural activity (Brunet 1993; Honnay et al. 2002; Baeten et al. 
2009a; Orczewska 2009). Habitat quality and stand history, therefore, need to 
be taken into account when assessing species colonisation success. 

The colonisation probability of an uncolonised habitat is determined by the 
trait composition of dispersing species. For example, the low dispersal ability of 
forest plant species is assumed to be the main limiting factor in habitat 
colonisation (Brunet & Von Oheimb 1998; Takahashi & Kamitani 2004; Hermy 
& Verheyen 2007). The dispersal limitation of forest species is often attributed 
to their relatively large seed mass and poor adaptation for long-distance 
dispersal (Ehrlén & Eriksson 2000; Jacquemyn et al. 2003b; Verheyen et al. 
2003b; Flinn & Vellend 2005). For example, myrmecochory, i.e. the dispersal 
of seeds by ants, is a common dispersal mechanism among forest species 
(Brunet & Von Oheimb 1998; Graae & Sunde 2000; Kelemen et al. 2013). Poor 
competitive ability is considered an additional limiting factor for forest species 
(Baeten et al. 2009a; Brunet et al. 2011). Generalist species that are good 
competitors can, therefore, prevent the establishment of forest specialists in 
novel habitats. The establishment success of species can thus be determined by 
fundamental niches and resource use strategies of immigrating species. 

Disentangling the importance of landscape connectivity, habitat quality, and 
species traits means that all factors should be evaluated simultaneously (Kolb & 
Diekmann 2004). Since stand formation and species arrival act at a relatively 
slow pace, conducting a long-term experiment at a landscape scale is 
impractical. An alternative would be to survey a range of habitats along a 
colonisation gradient. For forest plants, this gradient encompasses ancient to 
recent forest stands, and landscape corridors. In this type of study, young forest 
plantations on former agricultural land are often used as recent forest stands 
(Jacquemyn et al. 2003a; Brunet et al. 2012). Such studies often emphasize the 
importance of time and, therefore, a significant dispersal limitation can be 
expected for late arrivals. However, when the final resulting community is of 
interest, rather than the pace of community formation, old plantation stands 
should be addressed. In this case, old parks can be a model habitat used for 
forest species colonisation studies. Plantations and parks have many common 
features, but for forest species even minor structural differences can be critical. 
For instance, forest plantations are planted and managed to optimize tree growth 
and to maximize timber production of a single tree species. On such plantations, 
suitable conditions for forest-dwelling species emerge only during the last 
stages of stand succession (Flinn & Marks 2007). Parks are planted too, but 
managed to meet a variety of purposes other than timber production. Planted 
parks stands are often species rich and include smaller patches of shrubs. 
Furthermore, parks have a planned structural heterogeneity, which creates 
various microhabitats for species establishment already in the early stages of 
park formation.  

Old parks stands are not only a suitable model habitat for a long-term 
observational experiment. In strongly urbanized regions, parks compensate for 
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the lack of natural habitats and have, therefore, gained considerable research 
attention (Cornelis & Hermy 2004; Ignatieva & Konechnaya 2004; LaPaix & 
Freedman 2010). By contrast, studies in rural parks are relatively rare and often 
focus on a single taxonomic or growth-form group (Jonsell 2004; Kowarik et al. 
2013). The traditionally low management intensity of closed-canopy stands in 
rural parks has created environmental conditions comparable to temperate 
forests (Cranz & Boland 2004; Abner et al. 2007). Therefore, old park habitats 
may serve as substitute or refugia habitats, harbouring forest-specific species 
(Glendell & Vaughan 2002; Jonsell 2012). 

 
The aims of this doctoral thesis were: 
–  to test the hypothesis that rural manor parks, as recently created habitats, are 

a suitable habitat for forest-dwelling species (I, II); 
–  to test the hypothesis that rural manor parks harbour a high species diversity 

of forest plants and, thus, contribute to biodiversity at a landscape level (I, 
II) 

–  to understand the colonisation process of forest plant species in rural manor 
parks (II, III)  

3
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II. MATERIAL AND METHODS 

2.1. Study area 

Estonia is located in a transitional zone between temperate nemoral forests and 
northern boreal forests, referred to as the hemi-boreal vegetation zone (Ahti et 
al. 1968). The area is characterised by an average summer temperature of 17 °C 
in July, an average winter temperature of –6 °C in February, and mean annual 
precipitation ranging from 600–700 mm (Aunap 2011). The study was 
conducted in central and southern parts of Estonia (~58°–59° N and 24°–27°30’ E). 
The forests in this area grow mainly on podzols, luvisols and various gleysols, 
with some on fluvisols (Aunap 2011). 

Approximately half of Estonia is covered by forest. These forests serve as an 
important economic resource for the country. This is illustrated by the fact that 
the rate of forest stand loss and gain are both high (Hansen et al. 2013). As a 
result of intensive forest use throughout history, only up to four per cent of 
forests is in a near-natural state (Adermann 2009). Also, the amount of nemoral 
forests with broad-leaved trees covers only about five per cent of the total forest 
area, because nemoral forests on fertile soil were the first to be cut down and 
converted into agricultural land (Lindbladh et al. 2000; Reitalu et al. 2013). In 
the last decades, less fertile arable land has been abandoned and reforested, but 
the fertile soils where nemoral forests could grow still remain in agricultural 
use. 

Estonia has a large number of parks planted around manors in historical 
agricultural landscapes (Abner et al. 2007). Most manor parks were established 
during the late 18th or early 19th century on former agricultural land. 
Traditionally, rural park design kept pace with contemporary gardening trends. 
For example, parks were regularly redesigned and, therefore, contain elements 
from different garden styles. Early parks were relatively small and designed to 
follow the principles of a baroque garden style, which is characterised by 
geometrical hedges, roads, flowerbeds and regular planning (Thacker 1981). For 
example, the oldest part of the park was planted close to the manor itself and 
had regular planning including flowerbeds and lawns, and a structured regular 
system of walkways. This style supports species from open habitats, while 
species that prefer closed-canopy stands are rare. By the end of the 18th 
century, the English landscape park design became fashionable (Abner et al. 
2007; Watkins et al. 2007). This design mimics nature in aesthetic terms, but 
not necessarily in species composition or ecological function (Watkins et al. 
2007). Such parks often include a variety of closed-canopy stands in the outer 
periphery. In 19th-century parks, these two design styles were usually 
combined. Areas closer to the main building had an organised and managed 
appearance, whereas stands in the outer periphery were less-intensively 
managed (Abner et al. 2007). Nowadays parks consist of a combination of 
styles providing a broad spectrum of habitats, including forest-like stands. After 
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Estonia gained its independence in 1918 many of these parks were under-
managed or even completely abandoned. Mismanagement continued later 
during the Soviet era. As a result, many Estonian rural manor parks developed 
into natural forest-like habitats. 

 
 

2.2. Sampling design 

I selected historic manor parks located in agriculture-dominated landscapes, 
which included a closed-canopy stand (tree canopy closure > 0.5) with an area 
of at least 0.5 ha. Selected stands consisted of mature trees (age > 80 years). 
Parks in close proximity to each other were avoided to minimise the potential 
effect of spatial autocorrelation. Adjacent parks were surveyed only if there was 
a distinct contrast in either their internal structure or in the abundance of 
surrounding forest. 

Based on the map data, about 81% of the selected parks can be confirmed to 
have had open land cover at some point in history. Ten per cent of parks were 
probably wooded meadows or have an unclear origin of shade-providing 
habitat. Early map data was not available for 9% of manor parks. The land 
cover change in the park sampling points is presented in Table 1.  
 
Table 1. Proportions of land cover type in the park sampling points throughout history. 
N = number of parks that had a classified land cover type at some point in history; 
1 based on detailed maps of parks; 2 detailed maps of parks and one verst map of the 
Russian Empire  

End year 
of time 
interval 

Land cover Number 
of parks Agricultural 

land 
Lawn or 

open 
garden 

Regular 
(open) 
park 

Closed-
canopy 

park 

Woodland 

1700 56 32 – 2 10 59 

1850 27 27 18 23 5 22 

19001 18 12 14 53 2 49 

19182 – 3 14 80 4 74 

1945 3 – 4 93 – 67 

1960 – 1 – 99 – 74 

1980 – – – 100 – 74 

2009 – – – 100 – 74 

N 42 27 16 74 10 74 

 
I selected deciduous-tree-dominated stands from the surrounding landscape to 
provide a comparison group for park stands. Suitable forest stands had an area 
of >0.9 ha and a first layer tree age of >75 years. I selected forests growing on a 
similar soil type as parks in order to minimize potential side effects in park-
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forest comparison. I sampled forests growing primarily on ancient forest land. 
This means that the area was marked as forest land on maps from the 17th to 
mid-19th centuries, depending on the maps available in the map collections of 
the Estonian Land Board and Estonian Historical Archives. About 79% of 
selected forest stands had history of being continuously forested land. The 
remaining 20% of forests were located in old semi-open woodland areas, and 
1% was of secondary origin. The latter was sampled only because ancient 
mature forests were not available within a reasonable distance from the park. 

Linear wooded habitats, such as hedgerows, tree lines and a few tree stands, 
were sampled as corridor habitats to estimate the ability of forest species to 
thrive in different habitats. These corridor habitats ranged in age from relatively 
young hedgerows to centuries-old allées. Grasslands were sampled as reference 
habitats to obtain a species list and a species trait pool from open habitats. 

 
 

 
Figure 1. Theoretical scheme of forest species dispersal into parks, and the sampling 
design to evaluate dispersal. Sampled habitats and sampling points in parks (P), 
deciduous forests (F), corridor habitats (C), and grasslands (O) are marked on the 
scheme. Coniferous forest and semi-open parks were not sampled and are merely shown 
to illustrate the general landscape and park structure.  

 
The general sampling design comprised four habitat types: rural parks, forests, 
corridors, and grasslands (Fig 1). I used a subset of 74 parks and 93 neigh-
bouring forests in paper I, using their full variable list of community structure. 
With emphasis on herb layer plants, I used a subset of 40 parks, 70 forests and 
103 corridor habitats in paper II. In paper III, I used the complete dataset of 74 
parks, 230 forests, 151 corridors, and 97 grasslands (Fig 2). 
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Based on historical maps, the landscape around planted manor parks had 
changed little since the 17th century. Most parks were planted on old 
agricultural land, whereas the majority of the forests (79%) were located on 
ancient forest land or woodland (20%; wooded grassland or pasture forest) (I). 
The history of corridor habitats was occasionally available since the end of 19th 
century, but mostly since the 1950s, depending on map precision and object 
size. As I sampled the oldest-looking corridor or stepping-stone type habitat, 
most of the sampled corridor habitats in the landscape could be considered as 
older than 30–50 years. Old allées were at least one century old, some even 
older. Presently, crop rotation field is the dominant land use type in the 
agricultural matrix of the study region. The composition of land cover within a 
1-km radius of manor parks was agricultural land – 23.5%–84% (average 
58.5%); forest land – 1.1%–62.1% (average 20.4%) and buildings with enclosed 
yards, average 11.6%.  

 

 
Figure 2. Map depicting the location of studied rural manor parks in central and 
southern Estonia. For paper II only the sites depicted with closed circles (●) were used. 
For papers I and III, the same sites were used plus the sites depicted with open circles 
(○). 
 
 
 
 
 
 

4
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2.3 Data collection 

The herb layer survey was carried out from late May to early August 2008–2012 
when both spring and summer plants were visible. In parks and forests, I used a 
30-m radius study circle from which I compiled a species list of vascular plants 
growing in the herb layer. At each park site, I sampled an additional 10 randomly 
distributed plots (2  2 m) within each 30-m study circle to characterise herb layer 
coverage and species richness (II). In corridors, I sampled the area under the 
canopy’s projection on the ground in a 30-m section at a minimum distance of 50 
m from adjacent forest or park (II, III). Since grassland habitats were used only 
as a reference habitat to filter out grassland species and to provide scaling 
estimates, I recorded all the observed herb layer species (III). 

I characterised each stand of park (I, II, III) and forest (I) with various 
structural variables. At the centre of each 30-m study circle, I recorded the basal 
area of trees at two intervals of diameter at breast height (DBH):  
DBH = 8–40 cm and >40 cm, using a Bitterlich relascope. The proportion of 
each tree species was recorded. I characterised stem diameter diversity as the 
number of trunk diameter classes present in the stand (<2 cm; 2–8 cm; 8–20 cm; 
20–40 cm; 40–80 cm; >80 cm). To evaluate the vertical canopy structure, I 
visually estimated the cover of coniferous and deciduous foliar layers at three 
height intervals (1–4 m; 4–10 m; >10 m). The basal area of lying logs or 
downed dead trees was measured using a methodology similar to the DBH 
recording. Specifically, I counted logs longer than 1.3 m and with a diameter 
greater than 8 cm, 15 cm and 40 cm in concentric circles around the central 
point with a radius of 0–5 m, 5–10 m and 10–30 m, respectively. I also recorded 
the presence of wind-thrown or wind-broken trees, the decay classes of dead 
wood (early, medium, or late decay), and the number of fresh and decaying 
stumps. Understorey composition was described in a 100-m² circle by 
estimating the proportions of shrub layer coverage and counts of tree saplings 
by species (DBH < 8 cm and height between 1.3 m and 25% of stand height). I 
also recorded signs of management, such as mowing, and cutting of trees and 
shrubs. I recorded the presence of several old-growth forest indicator groups: 
(i) epiphytic bryophyte species Neckera pennata and Leucodon sciuroides, and 
epiphytic lichens Lobaria pulmonaria, long-bodied Usnea and Bryoria species 
as indicators of ancient nemoral or mixed-nemoral forests, (ii) common forest 
bryophytes Homalia tricomanoides and Radula complanata, and stem-base 
lichen Peltigera species to test for basic habitat suitability, (iii) large insect 
holes and cavities in tree trunks, (iv) fungi on trees, and (v) signs of woodpecker 
activity. To calculate the management intensity index (chapter 2.4), signs of 
management activity were recorded within a 30-m and a 60-m radius. 

The historical and present-day landscape configuration for each landscape 
window was measured as the area per land-cover type from historical maps 
(1890–1934) and present-day maps (2009). For the time period 1600–1900, I 
used historical maps available from the Estonian Historical Archive 
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(www.ra.ee), and for 1890–1965, the map sources of the Estonian Land Board 
(xgis.maaamet.ee). 

Plant trait data were obtained from online databases, such as BiolFlor (Klotz 
et al. 2002), LEDA (Kleyer et al. 2008), BioPop (Poschlod et al. 2003), SID 
(Kew 2014), and floras (Kukk 1999; Leht 2010). I collated species trait data for 
(i) life-strategy traits including Ellenberg’s indicator values (Ellenberg et al. 
1991), hemeroby level (Jalas 1955; Sukopp 1969), and Grime’s plan strategies 
(Grime 1979); (ii) resource acquirement related traits including average height, 
specific leaf area, growth form, leaf form, and presence of petiole; (iii) dispersal 
related traits including flowering period, colour of flowers, pollination vector, 
reproduction strategy, average seed mass, maximum dispersule mass, and 
dispersal syndrome. Plant nomenclature followed Kukk (1999), while 
synonyms were identified using The Plant List (2010) database. 

 
 

2.4. Compound indices 

A detailed record of management and disturbance history of park stands is 
hardly ever available. Instead, I used a forest-specific management intensity 
index (Liira et al. 2007; Liira & Sepp 2009). This management intensity index 
considers the regional and community-specific spectrum of disturbances, and 
avoids potential assessment bias based on single trait estimation (e.g. the 
number of cut stumps). The index can be interpreted as a quantified judgement 
of an expert, assessing the disturbance rate by combining the presence of 
various visible signs of anthropogenic disturbance. These visible signs are cut 
stumps, wood piles, forest tracks, roads, neighbouring clear-cut areas, ditches, 
trash, fences, soil mechanical damage etc. Signs were recorded at two distance 
intervals: in the study circle (r = 30 m), and in the outer buffer zone  
(r = 30–60 m). Each sign of anthropogenic activity was given a score describing 
its proportional effect (1 = weak; 2 = strong) in the outer buffer zone, and 
double weighted (2 = weak; 4 = strong) for the 30-m study circle. The 
management intensity index is the sum of these weighted scores. A manage-
ment index of 0 indicates no anthropogenic disturbance within a 60-m radius, 
and can be as high as 50 in the case of a clear-cut area with soil damage, trash 
pollution, intersecting ditches and roads, surrounded by neighbouring arable 
fields or buildings. For example, a typical deciduous forest with moderate forest 
activities has a management index value of 25 (Liira & Sepp 2009). Since parks 
are managed quite different from forests, I divided the management index of 
each park stand into sub-indices to obtain an index for understory management, 
small roads, mowing and landscape management. 

Estimating the nature value of a stand is a complicated task. Here, I proposed 
three single-value indicator composites describing (i) the stand structure quality, 
(ii) the quantity and quality of dead wood, and (iii) the level of biodiversity. 
Each composite was calculated as the sum of the presence-absence data of stand 
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structural characteristics or individual biodiversity indicators (Table 1). The 
values of these indicators range, depending on the number of indicators 
included, from 0 to 6, 7 or 8. I then summed these three composites into a single 
nature value indicator (value range: 0–21).  

 
Table 2. Characteristics used to calculate nature value indicator composites. Table 
modified from appendix A, paper I.  

Characteristics Description 
Index for stand structure  
Basal area of large trees >5 Basal area of trees with DBH >40 cm is larger 

than 5 
Deciduous tree species >2 More than two broad-leaved deciduous trees in 

the stand 
Natural shrub species >2 More than two naturally occurring shrub 

species in the stand 
Extremely large trees (DBH >80 cm) Trees with diameter at breast height >80 cm 

Many large trees More than two trees with diameter >80 cm 
Foliage layer 4–10 m cover >4% Foliage cover at the height of 4–10 m is >4% 
  

Index for dead wood  
Standing dead wood Presence of standing dead trees in the stand 
Snags Broken dead trees with height >1.3 m 

Dead branches on trees Dead branches with diameter >8 cm on living 
trees 

Lying dead wood Lying logs with diameter >8 cm 
Standing dead wood counted in basal 

area 
Presence of standing dead trees in the basal 

area estimate 
Wind damage Wind-broken or wind thrown trees in the stand 
Large diameter dead wood The presence of lying dead wood with diameter 

>40 cm 
  

Index for biodiversity  
Neckera pennata A widely-used bryophyte indicator species of 

old stands 
Homalia trichon A widely-used bryophyte indicator species of 

old stands 
Lobaria pulmonaria A widely-used lichen indicator species of old 

stands 
Insect holes >10 mm Visible insect holes with diameter >10 mm 

Woodpecker Signs of woodpecker activities 

Cavity trees Hollow trees and trees with cavities 

Fungi on wood Fruit bodies of fungi on dead and living trees 

Natural forest species >3 More than three natural forest species defined 
in Sepp & Liira (2009) 

Total nature value indicator Sum of above 
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2.5 Forest species classification 

In study I and II, I defined common forest species as forest-specific or shade-
tolerant species that are adapted to regional climate conditions and the soil 
types. These are abundant in forest landscapes around parks and are, therefore, 
potentially able to produce a sufficiently large number of diaspores to ensure the 
likelihood of species inhabiting the closed-canopy habitats in parks. I defined a 
common forest species as a species present in at least 10% of all studied forests. 
I further characterised the ecological profiles of common forest species by 
comparing their occurrence distribution pattern among three habitat types with 
Indicator Species Analysis (ISA; Dufrêne & Legendre 1997). I only used 
common forest species that had a minimum frequency of 33% in at least one of 
the three habitat types to emphasize affiliation patterns. I then classified these 
common forest species into three categories: (i) generalist species common in 
all three studied habitat types (ISA test of three groups non-significant, but a 
frequency 33% in all habitat types); (ii) forest-park distribution type of species 
or ‘from-patch-to-patch jumpers’, i.e. species common in both forests and park 
fragments, but not in linear woody habitats (ISA test of three groups and park-
corridor pair-wise test was significant); (iii) low-dispersal forest specialist 
species or forest-delimited species that were common only in forests (ISA test 
of three groups was significant).  

In study III, I analysed the variation of species occurrence patterns between 
forest, park, corridor, and open habitats using Non-metric Multidimensional 
Scaling (NMS). I used Sørensen distance, random starting configuration, and 50 
iterations with real data in PC-ORD v6.05 (McCune & Mefford 2011). Based 
on 118 iterations, the final two axis solution had a stress value of 20.57 and an 
instability of <0.0001. I used NMS instead of an Indicator Species Analysis to 
obtain a habitat affiliation for all species, so as not to limit my results to 
statistically significant indicator species. The NMS ordination included park 
habitats to ensure that the species composition of parks was sufficiently similar 
to forests to consider parks as potential habitats for forest species. I then 
distinguished three species groups: (i) forest specialists, (ii) corridor specialists, 
and (iii) open habitat specialists. Species were classified according to species 
scores along the first axis. I used the median score of sites in the ordination 
space where point clouds of habitats overlapped as the cut-off value (Fig 3). 
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Figure 3. The Nonmetric Multidimensional Scaling ordination graph of sampling sites 
and the distinction of specialist groups for each habitat based on NMS score values. The 
median score of sites in overlapping areas were used as cut-off values in the 
classification and are indicated with vertical lines. 
 
 

2.6 Statistical analyses 

To illustrate the structural composition of parks and forests, I used a Principal 
Component Analysis (PCA) on stand structural traits (I). An artificial sample 
site of the theoretically generated idealistic old-growth forest with all respective 
indicators present was included in order to give a scaling reference point on the 
ordination graph (I). 

Herb layer compositions in forest, park and corridor habitats was analysed 
using Detrended Correspondence Analysis (DCA; Hill and Gauch, 1980) on the 
species presence-absence data of common forest species (II). I excluded 
infrequent species that were recorded less than 10 times to reduce noise 
variation in the data caused by non-representative species. I also excluded 
cultivars since I was interested only in describing the colonisation ecology of 
indigenous species.  
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To compare the structural characteristics of parks and forests, I used General 
and Generalized Linear Mixed Model analyses implemented in the MIXED and 
GLIMMIX procedures in SAS v.9.2 (Littel et al. 1996). The extended landscape 
window, defined as the combination of intersecting buffer areas of a 1-km 
radius around parks and forests, was included as a random factor to take into 
account the spatial relatedness of neighbouring study sites. In GLIMMIX, I 
compared two-state characteristics (presence-absence), using a binomial error 
distribution and a logit-link function, and correcting for over-dispersion with a 
random factor ‘Landscape window’. To reveal the ecological reasons for the 
presence of biodiversity indicators, I built extended ecosystem models for 
biodiversity indicators. I used a two-way stepwise selection and the Akaike 
information criterion (AIC) to select the best explanatory set of environmental 
factors. 

In study II, I calculated the percentage of common forest species in the 
species list of each park, expecting that this variable characterises the optimum 
of a park’s environmental conditions for forest species. The colonisation 
success was quantified as the percentage of common forest species present in 
the park relative to the local species pool in the 1-km radius. Similar 
percentages were calculated for each neighbouring complex of forests and 
corridors. I then compared these proportions in park, forest and corridor using 
Repeated-measures Analysis of Variance (ANOVA) with Tukey’s post hoc test. 
I tested the responses of the percentage estimates of common forest species to 
sampled gradients of park area, anthropogenic disturbances and environmental 
variables with multi-factorial General Linear Model (GLM) analyses. 

To quantify the trait pattern differences between species groups and habitat 
types, I used General Mixed-effect Models (MIXED; III). For these tests, I used 
the average trait value per species group in a site as a response variable and 
species group as a repeated factor. Since some habitat replicates were in relative 
close proximity to each other, and thus cannot be considered as independent 
replicates in space, all habitats were nested within a local landscape window. 
These landscape windows consisted of a 2-km buffer zone around sample points 
whereby intersecting buffer zones were merged into the same landscape 
window. I tested only the average trait values between forest and corridor 
specialists in closed-canopy habitats, such as forests, parks and corridors. Open 
habitat specialists were only used as a comparison group for scaling trait value 
general trends. 

To determine the probability of species colonisation in parks, I fitted 
Generalized Mixed-effect Model (GLIMMIX; III). As model predictors, I 
included factors such as species dispersal traits, niche-related species traits, 
habitat quality characteristics, and landscape structure metrics. Landscape 
window and species were included in the model as random factors to account 
for potential spatial auto-correlation within a landscape or species. Species that 
were potentially available, but absent from park habitats, were determined from 
cumulative species lists for each 2-km landscape window around a given park. 
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III. RESULTS 

3.1. Stand structure 

The general mixed-effects model showed that canopy closure (0.74 ± SE 0.01) 
and tree density (20.8 ± 1.0 m2 ha–1) in parks were similar to that in forests 
growing on similar soils throughout Estonia (II, based on literature 0.72; 26.1 
m2ha–1), and to adjacent forests (I, 0.72 ± 0.01 and 21.3 m2 ha–1). This similarity 
confirmed that park stands resembled forests at least in some basic light 
conditions and stand statistics. In contrast to forests, park stands contained more 
trees with a large diameter (7.6 ± 1.1 m2 ha–1 in parks and 17.5 ± 1.0 m2 ha–1 in 
forests). The proportion of broad-leaved trees (Tilia spp., Quercus robur and 
Fraxinus excelsior) was greater in parks (76% ± 2.4) than in forests (23% ± 2.9). 
At the same time, the proportion of conifers was about three times that in forests 
(12.7% ± 1.8 in parks and 38.3% ± 2.8 in forests), where typical boreal forest 
tree species, Pinus sylvestris and Picea abies, grew together with deciduous 
species characteristic of post-clear-cut forests (Populus tremula and Betula spp). 
Even though the proportional abundance of the dominant tree species in a stand 
was about the same (46.4% ± 2.4 in parks and 52.1% ± 1.8 in forests), park 
stands were richer in tree species with an average of two more tree species per 
sample area. Average values of stand structure characteristics in parks and 
forests are presented in study I, Table 1. 

Forest stands had higher species richness of undergrowth trees (0.9 ± 1.1 
species in parks and 2.0 ± 1.0 species in forests) and shrub layer (0.6 ± 1.0 
species in parks and 2.2 ± 1.0 species in forests). Shrub cover was 39.2% ±3.2 
in forests and 7.9% ±1.9 in parks. Also, the foliage cover at a height of 1–4 m 
was twice as much in forests (59.1% ± 2.7) than in parks (27.8% ± 3.0), 
whereas the foliar cover at 4–10 m was similar (43.9% ± 2.3 and 49.4% ± 2.3). 
In parks, the foliar layers at 1–4 m and 4–10 m were dominated by deciduous 
species (deciduous-coniferous ratio 7.5 ± 1.1 and 6.8 ± 1.1) whereas in forests, 
the foliar layer 4–10 m was distinguished by the equally balanced mix of 
deciduous and conifers (deciduous-coniferous ratio 2.6 ± 1.2). 

Compared to parks, forests had a greater total basal area of dead wood  
(43.9 ± 2.3 m2 ha–1 in parks and 49.4 ± 2.3 m2 ha–1 in forest) and diversity of 
decay types (2.3 ± 0.2 types in parks and 3.2 ± 0.2 types in forests). Specifi-
cally, more than half (53%) of forests had medium decay coarse woody debris 
present, compared to 23% of parks. Late decay stage was present in 35% of 
forests and in 15% of parks. By contrast, more parks had large-diameter dead 
branches on trees (in 68% of parks, 29% of forests) and large diameter lying 
logs (in 23% of parks, 10% of forests).  
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Figure 4. Illustration of contrasting features in stand structure between parks and forests 
(Table 1 in I).  

 
The first two PCA axes extracted from the analysis on stand structural 
characteristics accounted for 13.9% and 12.2% of the total variance in the 
composition of stand structure characteristics. A structural distinction between 
park stands and forests is evident (I, Fig 1), with a very loose continuum 
between these two habitat types. Most of the tested structural characteristics that 
were distinct between parks and forests were correlated with the first PCA axis, 
and sometimes with the second axis as well. Characteristics such as dead wood 
types and the number of diameter classes had a slightly stronger correlation with 
the second axis, indicating general trends over habitat types. Variables such as 
canopy closure and the basal area of trees that had similar average values in 
parks and forests did not correlate with the PCA axes. 
 
 

3.2 Management 

The average value of the management intensity index in parks was 1.4 times 
higher than in forests (Table 1 in I). A common disturbance in all habitats was 
‘neighbouring an open area’ (in 85% of parks and 86% of forests), indicating a 
widespread edge effect (Table 2). Edge effect was increased by various types of 
roads crossing or intersecting stands with similar frequency in parks (83.8%) 
and in forests (86.0%). Selective cutting was common in both habitats, as 
indicated by the nearly equal counts of stumps in both habitats, on average  
3 (± 0.53 SE) fresh stumps and 5 (± 0.50) old stumps in forest plots, and  
1 (± 0.31) fresh and 5 (± 0.76) old stumps in parks. 
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Table 2. Frequency of selected indicators of management and anthropogenic 
disturbances within a 60-m sampling radius, except for logging, which is sampled only 
within a 30-m radius. This table is modified from Appendix A, Table 3 in I. 

Selected indicator groups Park% Forest% 

Logging (30-m radius):  

   Fresh, single tree (1–10 stumps) 32 36 

   Fresh, selective (>10 stumps) 0 8 

   Old, single tree (1–10 stumps) 70 66 

   Old, selective (>10 stumps) 10 11 

Piles of logs 43 42 

Understory management 62 43 

Soil mechanical damage 60 36 

Garbage 69 72 

Footpaths 82 44 

All roads 84 86 

   Forest roads 41 56 

   Roads 69 59 

Linear open corridors/power lines 7 22 

Neighbouring open areas/clear-cut areas 85 86 

Drainage ditches 23 44 

Fences 35 12 

Stone piles 30 23 

Mowing 66 3 

Unclassified signs of disturbance 62 29 

Bird nest boxes 41 9 

 
 

3.3. Biodiversity indicators 

An old-growth forest indicator, the Lobaria pulmonaria lichen, was present in 
seven parks but only in one forest (I, Table 2). Usnea and Bryoria spp. were 
equally rare, occurring in five forests and four parks. Stem-base growing 
Peltigera spp. were equally present in 25% of forests and 17% of parks. The 
epiphytic indicator moss Neckera pennata was more frequent in parks than in 
forests, but, as the lower AIC-value of the ecological model showed, this 
contrast was determined by the stand composition and the number of large trees 
(I, Table 2). The indicator moss Leucodon sciuroides was mostly present in 
parks, but its presence was supported additionally by the abundance of broad-
leaved trees (I, Table 2). Common forest epiphytes Homalia trichomanoides 
and Radula complanata were equally successful in both habitats, indicating 
equal opportunities, even though the occurrence of H. trichomanoides was 
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evidently determined by the proportion of deciduous trees (I, Table 2). 
Woodpeckers, cavities in trees and saproxylic insects were more common in 
parks, whereas fungi on trees and wind damage were more common in forests. 
However, as the ecological model results showed, the presence of cavities and 
fungi was largely determined by stand structure (I, Table 2).  

The mean of the total nature value index was 1.2 units greater in parks than 
in forests (I, Table 3). Its three sub-indices had a more heterogeneous pattern; 
the stand quality and biodiversity level indices were greater in parks, whereas 
forests had a greater mean for dead wood quality and quantity index. However, 
the mean value did not describe the distribution of high quality habitat between 
parks and forests. Therefore, we calculated the proportion of sites above the mid 
value of the range of index values. Parks largely exceeded forests in stand 
quality because the stand quality index was greater than the mid value in 64% of 
the parks and 18% of the forests. The biodiversity level index was above the 
mid value for 47% of the parks and 30% of the forests, whereas 52% of forests 
had a greater index mid value for dead wood, but only 35% of parks exceeded 
the dead wood index mid value. 

These results indicate that the stand structure of parks differed generally 
from that of regional forests. This is also illustrated by the negative correlation 
of the stand quality index with the first axis of PCA (PCA-1 r = –0.5; 
p < 0.0001). However, the positive correlation of the dead wood index was 
much stronger with the second PCA-axis (r = 0.9; p < 0.0001), showing a 
parallel trend in parks and forests. 

 
 
3.4 Forest species classification and characterisation 

The classification of plant species according to their 10% frequency in forests 
resulted in 109 species defined as forest species common to the whole study 
region. Further classification of these common forest species defined 22 species 
as generalists, 17 species as forest and park species and 22 species as forest-
delimited species (Table 3 in II). 

Alternatively, the classification of species based on NMS scores of a larger 
data set resulted in 107 forest specialists, 53 corridor specialists, and 56 open 
habitat specialists (III). Some 72 species were classified as forest species in 
both studies. All species that were defined as forest-park species or forest-
delimited species in paper II were classified as forest specialist in the NMS-
based classification, whereas half of the species defined as generalist species in 
paper I were classified as corridor specialists and the other half as forest 
specialists. In general, a relatively large overlap between classification results 
can be seen in Figure 5. The only 17 species from study II that do not overlap 
with study III were tree and shrub species that were excluded from the data in 
study III.  



24 

 

Figure 5. Schematic overview of the classification difference between study II 
(common forest species growing in more than 10% but less than 30% of forests; forest 
and park delimited species and generalist species growing in more than 30% of forests) 
and study III (forest specialists; corridor specialists; and open habitat specialists). 
Numbers indicate the number of species (sp) in each group, while the overlap between 
classifications indicates shared species.  
 
In parks, forest and corridor specialists showed similar trait patterns as in their 
source habitat, or in some cases had an intermediate trait value. Therefore, most 
trait patterns are discussed as a comparison between forest and corridor habitats.  

Forest specialists had lower Ellenberg’s indicator values for light than 
corridor specialists, and both specialist groups were represented by more light-
demanding species in corridors (Fig 4.1 in III). Ellenberg’s indicator values for 
soil productivity were lower among forest specialists than corridor specialists. 
The soil productivity indicator value increased among forest specialists from 
forest to corridor, but corridors specialists had higher requirements for soil 
productivity in forests than in corridors (Fig 4.11 in III).  

Forest specialists had shorter plant height in forest habitats than in corridor 
habitats (Fig 4.4 in III). The specific leaf area estimate was relatively large for 
both specialist groups and only corridor specialists in corridors had a lower 
value (Fig 4.2 in III). Corridor specialists were dominated by species with a 
hemi-rosette growth form irrespective of habitat type (slightly more than half of 
species, Fig 4.6 in III). The rosette growth form was rare in all specialist 
groups, only slightly more common among forest specialists in forests (Fig 4.7 
in III). The leaf shape type among forest specialists was more constant between 
habitats than that of corridor specialists. For corridor specialists, the proportion 
of simple and compound leaves decreased from forest to corridor and were 
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replaced by species with narrow leaves (Fig 4.8–4.10 in III). By contrast, open 
habitat specialists were dominated by species with simple leaves, whereas the 
proportion of narrow leaved species was quite low.  

Forest and corridor specialists started flowering almost at the same time, but 
the flowering period of corridor specialists was longer by almost a month (Fig 
3.5 in III). Forest specialists had a high additional ability for self-pollination 
(Fig 3.4 in III). Many forest specialists used both vegetative and generative 
reproduction, whereas corridor and open habitat specialists relied more on seeds 
(Fig 2.1 in III). The average seed mass of forest specialists was less than that of 
corridor specialists, but did not differ between habitats (Fig 2.4 in III). 
Dispersule mass, however, did not differ between species groups, but only 
between habitat types, as the dispersule weight in corridors was a bit less than in 
parks, but still greater than in open habitat specialists (Fig 2.5 in III). The 
dispersule based dispersal types prevailed among corridor specialists and open 
habitat specialists, whereas both propagule types, seed and dispersule, were 
equal among forest species (Fig 2.3 in III). Zoochory was the most prevalent 
dispersal syndrome for all specialists groups, used by more than half of the 
species; in corridors it reached the level of open habitat specialists (Fig 2.6 in 
III). Within zoochory, mammals were the most prevailing vector group, 
particularly among corridor specialists (Fig 2.7 in III), whereas bird dispersal 
played no significant role (Fig 2.8 in III). Dispersal by invertebrates was twice 
as important for forest species as for corridor species (Fig 2.9 in III). Among 
invertebrates, myrmecochory played a small role in all specialists groups, 
particularly among forest species (Fig 2.10 in III). The proportion of species 
using anemochory was constant over all habitats, except in parks, where 
anemochory was less common (Fig 2.11 in III). 

 
 

3.5 Forest species proportion in park flora 

Herb layer richness in parks was on average 36 (± 1.3 SE) species. With a 
smaller sample size of 40 parks (II), the average richness per cent of common 
forest species in the park flora was 87%, but decreased to 75% when all 74 
parks, including less-representative park stands, were analysed. In comparison, 
the average richness per cent of common forest species in neighbouring forests 
was nearly identical to parks (85% in forests; II), whereas it was remarkably 
lower in corridors (66%; II). Park flora consisted of 63% forests specialists and 
32% corridor specialists (III). Open land species (III) were of minor 
importance (average of 2.0 ± 0.3 species per park) and can be neglected as the 
stochastic fraction of park biodiversity.  

The most frequent species in park stands were also common in woody linear 
habitats, i.e. Veronica chamaedrys (in 98% of parks), Aegopodium podagraria 
(90%) and Ranunculus cassubicus (90%), (Table 3, in paper II). They could, 
therefore, be classified as forest-dwelling generalist species. Other generalists 
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growing in all three habitats were Rubus idaeus, Geum urbanum, Geum rivale 
and Poa nemoralis. Very common species in parks with a forest-park 
distribution pattern were Anemone nemorosa (85%) and Oxalis acetosella 
(75%). Similar forest-park distribution species were Galeobdolon luteum, Paris 
quadrifolia, Stellaria holostea and Athyrium filix-femina. Species of the last 
group, such as Dryopteris carthusiana, D. filix-mas, Maianthemum bifolium, 
Melica nutans, Mercurialis perennis, Rubus saxatilis and Stachys sylvatica were 
present mostly in forests and, therefore, can be considered to be forest-delimited 
species. 

According to the results of the GLM analysis, the proportion of forest 
species in parks depended on the area of forest-like habitat in the park, the area 
occupied by forest in the surrounding landscape, canopy closure of the stand in 
the park fragment, the number of large trees in the park and park management 
intensity (II, Table 2, Fig 4). Specifically, park area predicted a greater 
proportion of forest species in parks, but levelled off when the park fragment 
area reached 2.5–3.0 ha. The proportional area of forests in the surrounding 
landscape had a negative correlation with the proportion of forest species in 
parks. Two factors had a threshold in their effect on the proportion of forest 
species. Tree canopy closure had a positive effect until closure attained 0.75, 
after which the relationship flattened out. The density of large trees predicted an 
increase in the proportion of forest species until a basal area of 17 m2 ha–1 was 
reached. The effect of understory management on park flora was positive at low 
intensity values of understory management. Mowing had a significant negative 
effect on the proportion of common forest species in park flora, indicating 
sensitivity of forest species to mowing. 

 
 

3.6. Colonisation ecology of forest plant species 

The average size of the local species pool of common forest species per park in 
the surrounding landscape was 66 species (SD = 10.6, ranging between 46 and 
91; II). The average proportion of the local species pool that colonised park 
fragments was 50% (SD = 9.4). Using the larger dataset in paper III, an average 
of 40.2% (range 12.7–80.6%) of forest specialists from the local species pool 
was present in parks. In comparison, the average proportion of the local species 
pool in the neighbouring forest stand was 74% (SD = 11.3) and in the corridor 
37% (SD = 11.0) (II).  

The General Linear Model analysis showed that the proportion of common 
forest species pool in parks had some regional variation (Table 2 and Fig 2 in 
paper II). After considering region-specific variability, the proportion of the 
local species pool in parks was correlated with the proportional area of forest in 
the surrounding landscape, stand canopy closure, and the basal area of large 
trees in the park. The proportional area of adjacent forest land affected the 
proportion of species pool positively, whereas the distance from the forest did 
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not occur as a significant independent variable in the model. The effect of two 
factors, canopy closure and the number of large trees, was non-linear. The 
proportional colonisation success from a local species pool increased to a 
closure level of 0.65, after which, the estimates decreased again (Fig 2 in paper 
II). The proportion of species pool present in parks had an almost stable value 
up to a basal area estimate of 13 m2ha–1; at greater values, the proportion 
decreased. 

The results of Generalized Linear Mixed-Effect Model analysis on data of 
the occurrence of 160 species in parks showed that colonisation success of 
species was explained by a combination of habitat conditions, plant traits related 
to life-history, and the use of resources and landscape configuration. The 
landscape effect consisted of two factors: the proportion of historical forest land 
and the proportion of agricultural land in the area. The proportion of historical 
forests predicted an increase in the probability of colonisation of both forest and 
corridor species, whereas the proportion of agricultural land predicted increased 
colonisation success only of corridor specialists (Table 1 in paper III). 

 Management intensity index of parks, as a generalized descriptor for 
anthropogenic disturbances on a stand, had a positive effect on the colonisation 
success of both species groups. In addition, mowing increased the probability of 
colonisation of corridor specialists. Understory cover, i.e. young trees and 
shrubs at foliage height 1–4 m, predicted an increase in the probability of 
establishment of forest specialists and suppressed the colonisation of corridor 
specialists. Species traits, which predicted species colonisation in parks, were 
related to resource acquisition. Specifically, successful colonisers had earlier 
flowering time and were more shade tolerant (lower Ellenberg’s indicator value 
for light), and at the same time, had a higher requirement for soil nutrients 
(Ellenberg’s indicator for soil nutrients) and the R-strategy. 
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IV. DISCUSSION 

4.1. Habitat suitability 

The structural characteristics of a forest stand (Lindenmayer et al. 2000; 
Scheller et al. 2008; Lõhmus & Kraut 2010) can be used as an efficient means 
to evaluate habitat quality and biodiversity value of parks. In the present study, 
forest and park stands had similar tree density and canopy closure, resulting 
from similar light regimes in both habitat types (I, II). In addition, park stands 
were sufficiently dominated by broad-leaved deciduous tree species to create 
seasonality in understory light intensity and microclimatic conditions 
favourable to forest-dwelling species (Brunet et al. 2011; Ellis 2012). Moreover, 
the presence of old broad-leaved trees in park stands played an important role as 
a substrate for epiphytic forest species. In fact, the old-growth forest indicators 
Neckera pennata and Lobaria pulmonaria were more frequent in park stands 
than in forest stands. This was mostly because large broad-leaved trees were 
more abundant in park stands than in the surrounding forests (I). These results 
indicate that structurally-diverse park stands are likely to contain the specific 
habitat requirements for a variety of taxa or ecological guilds that are associated 
with high habitat quality and biodiversity value. 

The amount of dead wood is widely used as an indicator of management 
history and intensity (Nilsson et al. 2002). Additionally, large-diameter dead 
wood has been shown to host a large number of red-listed saproxylic insects 
(Lõhmus & Kraut 2010; Jonsell 2012). Due to the specific management of 
parks, parks are likely to have a lower diversity and less dead wood (I). The 
scarcity of dead wood in parks, however, was balanced by the presence of large-
diameter dead wood, which was rare in contemporary forests. 

Contemporary forests are often structurally degraded as a result of recurrent 
clear-cuts and intensive management (Kohv & Liira 2005; Scheller et al. 2008). 
For example, I found that forest stands had high proportions of coniferous tree 
species and post-clear-cut tree species, such as Populus tremula and Betula spp 
(I). This means that parks can be even more valuable for nature conservation of 
nemoral forest species than the best reference stands in a contemporary 
landscape (I). However, even though many old-growth structural indicators 
were more common in parks than in forests, both habitat types were still far 
from the theoretical old-growth forest (I). Therefore, more efforts should be 
made to attain biodiversity-supporting targets even in the best representatives of 
both habitat types. 
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4.2. Forest species properties 

Biodiversity conservation can be effective only when the object of interest and 
its limiting factors have been properly recognized. Therefore, in the present 
study much effort has been put into identifying forest specialist species and 
their specific habitat requirements. A forest specialist is traditionally 
characterised as a shade-tolerant species with poor competitive adaptations, and 
limited dispersal capacity (Graae & Sunde 2000; Flinn & Vellend 2005; Brunet 
et al. 2012). However, previous studies have often identified forest specialists 
without using comparison groups. Here, the comparison of forest specialists to 
corridor and open habitat specialists (III) showed that corridor specialists were 
more similar to forest specialists. They can be defined as shade-tolerant 
generalists, which have the potential to be forest dwellers, but also use various 
alternative and perturbed shaded habitats in the landscape. Open-habitat 
specialists, on the other hand, formed a distinct group with more light 
demanding species (III).  

Forest specialists are species best adapted to poor light conditions in forests 
(Hermy et al. 1999; Brunet et al. 2011). This was supported by their leaf traits, 
flowering phenology and growth form (III). Forest species have been shown to 
be sensitive to anthropogenic disturbances (Sepp & Liira 2009). Forest species 
indeed tolerated only low levels of management and were sensitive to mowing 
(II, III). Additionally, forest species expressed fairly low competitive abilities, 
as expected (Baeten et al. 2009b; Brunet et al. 2011). Corridor species, on the 
other hand, showed a greater investment in competitive strategies as would be 
expected from their generalist nature (Roy & Blois 2006; Wehling & Diekmann 
2009b). 

Forest species are considered to have a low dispersal ability (Matlack 1994; 
Ehrlén & Eriksson 2000; Verheyen et al. 2003b). Dispersal-related traits, 
however, showed patterns that seemed to contradict earlier understanding, 
because some forest specialists were well-adapted for long-distance dispersal 
(III). Forest species had smaller seeds than corridor species, which suggests that 
many seed-size drawn conclusions have been made based specifically on data 
from early-successional forests. Liira & Paal (2013) suggested that dispersule 
weight could be used to predict species dispersal ability. Here, the dispersule 
weight was uniformly larger for forest and corridor species in comparison to 
open habitat specialists. Previous research indicated that forest specialists have 
adaptations mostly for short-distance dispersal (Couvreur et al. 2005; Hovstad 
et al. 2009; Peredo et al. 2013), one of which is myrmecochory (Hermy et al. 
1999). Such studies, however, usually do not use a quantitative comparison with 
species of alternative habitats. In my results, the most common dispersal type in 
all species groups was zoochory, and its significance increased towards more 
open habitats among both forest and corridor specialists. Furthermore, wind 
dispersal, which is a long distance dispersal vector, was equally common in all 
species groups. Forest species are shown to rely more on vegetative dispersal 

8 



30 

(Brunet et al. 2012), but I found that forest specialists were more flexible and 
used both vegetative and generative reproduction. At the same time, a combined 
reproduction strategy of generative and vegetative type was of less importance 
among other specialist groups, as they rely more on generative reproduction, 
indicating their more opportunistic ecology (MacArthur & Wilson 1967; Pianka 
1970; Grime 1979).  

An additional adaptation to forest conditions within the generative 
reproduction type of forest specialists is an early and short flowering period, 
with the potential deficit of pollinators in the early season being compensated 
by self-pollination ability (Westoby 1998; Graae & Sunde 2000). Similarly, 
corridor species had an early onset of flowering, but in contrast to forest 
species, had a longer flowering period analogous to species of open habitats 
(III). Interestingly, in an alternative forest-like secondary habitat, such as a 
park, both forest and corridor specialists had even earlier onsets of flowering. 
This might indicate selective management pressure (Duflot et al. 2014) resulting 
from early summer mowing in parks. 

  
 

4.3 Colonisation ecology of forest plant species 

Secondary forest stands often have a reduced number of forest specialists 
growing in the herb layer (Verheyen et al. 2003a; Sciama et al. 2009). However, 
several forest-specialist plant species, classified as ancient forest species in 
Europe (Peterken & Game 1984; Hermy et al. 1999; Schmidt et al. 2003), have 
found a way to colonise old parks (II, III). Particularly, three forest-specialist 
species, Anemone nemorosa, Ranunculus cassubicus and Oxalis acetosella, 
were present in the majority of the parks, with the two first ones even more 
common in park stands than in forests. Several forest-specialist species, such as 
Galeobdolon luteum, Paris quadrifolia, Stellaria holostea and Athyrium filix-
femina, were also found in more than half of the parks, and nine other typical 
forest species were observed in 30–50% of the parks (II). Most of these species 
have been observed as characteristic of unmanaged boreo-nemoral stands in 
Estonia (Sepp & Liira 2009).  

Forest-dwelling species have to overcome two critical steps to colonise 
secondary forests. The first step is dispersal, which depends mostly on habitat 
connectivity and time allowed for a dispersal event. The time lag in dispersal 
processes is sometimes also referred to as colonisation credit (Harmer et al. 
2001; Jacquemyn et al. 2003b; Brunet et al. 2011). The selected old park stands 
have existed for at least a century, and this can be expected to be long enough to 
overcome the colonisation credit (Vellend 2003; Brunet 2007). The second step 
is the establishment and expansion in a stand, which depends on habitat quality 
in terms of optimal stand structure and management-disturbance intensity 
(Hartley 2002; Gauslaa et al. 2007; Vojta & Drhovská 2012). Parks showed to 
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have at least a sufficient minimum habitat quality to support survival of forest-
dwelling species (I, II). 

The proportion of species from the local species pool in parks was somewhat 
less than the same estimate in forests (50% versus 74%, respectively), but was 
still considerably greater than in woody corridor habitats (37%). In study III, 
the proportion of species from the local species pool was about 10% less, 
because of an extended sampling size toward less-suitable parks. Nevertheless, 
the 40–50% of the forest species pool growing in parks seems to be an 
encouraging result in comparison to 23% for recent forests stands observed in 
Belgium (Butaye et al. 2002).  

Landscape aspects of forest plant dispersal predict that geographic distance 
from the source habitat determines colonisation success (Brunet & Von Oheimb 
1998; Bellemare et al. 2002). Contrary to this expectation, the abundance of 
forest land in the surrounding landscape of parks was the best predictor of 
successful immigration of forest species. This complements observations from 
forests in Western Europe (Butaye et al. 2002; De Frenne et al. 2011). This 
result indicates that the abundance of available seed sources in the 
neighbourhood is probably the main critical factor compensating the minute 
probability of a long-distance dispersal event to occur, traditionally termed as 
the ‘mass effect’ (Shmida & Wilson 1985).  

The habitat quality of target habitats has been shown to limit recruitment 
success and persistence rate in forests (Verheyen & Hermy 2001; Godefroid et 
al. 2011). However, my results indicate that colonisation success was limited 
mostly by the habitat quality of a target habitat. Limited light availability and 
variability are usually considered as the base conditions for the formation of a 
forest understory community (Dupré & Ehrlén 2002; Bartemucci et al. 2006). 
The general canopy closure or smaller-scale factors, such as the cover of 
understory foliage layer (tree saplings and shrubs), were predictors of 
colonisation success, partly because the specific shade provides site selection. 
However, the shading effect by understory facilitated forest specialists and 
suppressed corridor specialists, which can be explained by the greatest shade 
tolerance of forest specialists (Westoby 1998; Graae & Sunde 2000; Herault et 
al. 2005).  

Colonisation is usually related to habitat area (MacArthur & Wilson 1967). 
However, the area of a park stand predicted the proportion of forest species in 
the park (i.e. community composition), but not the proportion of species present 
from the local species pool. Such an area effect indicates that the size of the 
target habitat was of minor importance to species immigration. However, larger 
stands often have higher habitat quality due to the larger core area being 
unaffected by an edge effect (Didham & Lawton 1999). The effect of patch area 
on forest-specialist species has frequently been observed (Dupré & Ehrlén 2002; 
Kolb & Diekmann 2005), but the critical minimum area in which the boundary 
effect has a minor impact on forest-like vegetation composition is still 
undefined. According to the shape of the model prediction profile, I suggest that 
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the minimum area of a forest-like habitat fragment required to be an efficient 
habitat for forest species is 2.5–3.0 ha, which is several times greater than the 
minimum forest patch area suggested in the literature (Honnay et al. 2002; 
Marozas et al. 2005; Avon et al. 2010). 

The establishment of forest and corridor specialist groups was enhanced in 
parks where management was more sustainable. Even though park management 
optimises tree and shrub density for visitors, the average shade and intermediate 
disturbances seem to improve the overall environmental conditions in a stand 
towards an optimum for all shade-tolerant species (Von Oheimb & Härdtle 
2009; De Keersmaeker et al. 2011; Liira & Paal 2013). However, some 
management treatments, such as intensive early-summer mowing, supported 
only corridor specialists, probably because corridor specialists with hemi-rosette 
growth form have a greater tolerance to mowing. This is reflected by the 
observed pattern of earlier flowering onset of forest species in park habitats in 
comparison to forest habitats. Another indicator group of forest specialists 
intolerant of mowing and management are ferns (McEvoy et al. 2006), which 
were largely absent in habitats where intensive mowing was a component of the 
local management regime. Only some management traits proved to be 
statistically significant on forest specific plants. In the context of direct 
management disturbances, I analysed the intensity of understory management 
(anthropogenic disturbance rate) and mowing, and found that both affected the 
proportion of forest species in parks. The negative effect of mowing on forest 
plants is an expected outcome. The continuous index of understory management 
intensity, however, revealed a unimodal response of the proportion of common 
forest species richness in park flora. The negative correlation between forest 
land proportion in the landscape and park flora can be an indirect indicator of 
low management intensity in recent decades. Low intensity of understory 
management allows park stands to become more overgrown by ornamental 
shrubs or tree saplings, particularly Padus avium and Acer platanoides, and this 
has limited the colonisation of herb species in parks. The dense stand conditions 
suppress competitive light-demanding species (Decocq et al. 2005; Götmark et 
al. 2005; Wohlgemuth et al. 2008; Sepp & Liira 2009), while the competition 
created by the surplus shrub-layer and tree recruits after selective management 
suppresses shade-tolerant species (Bailey & Tappeiner 1998; Liira et al. 2007; 
Bergstedt et al. 2008).  

As suggested by the emerged trait patterns of forest and corridor specialists, 
the colonisation of a park stand was not limited by species dispersal traits. The 
prevalence of long-distance dispersal properties and the flexibility to use many 
reproductive types among forest specialists suggests that dispersal limitation has 
been an over-estimated factor, particularly considering that colonisation as a 
long-term process. The dispersal success of forest specialist species is correlated 
with landscape structure around forests (Verheyen et al. 2003a; Endels et al. 
2007; Baeten et al. 2009a), and specifically to historically continuous habitats 
(Graae et al. 2004; Ewers et al. 2013). I found that the importance of the long-
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term availability of seed-source habitats, such as in historical forests in the 
landscape, was important, but only for forest specialists. By contrast, shade-
tolerant generalists, namely corridor specialists, benefited from the 
contemporary structure of the open landscape, in which secondary habitats, 
including recently created corridors and woodland edges, might be important 
(Wehling & Diekmann 2009a; Liira & Paal 2013). Considering the historic use 
of manors and their parks, the bond with dogs or horses (Heinken 2000; Graae 
2002; Couvreur et al. 2004) can be important means of dispersal for many 
species. At present, foxes and hares are the most common animals in these rural 
landscapes, and their roles as potential epi- and endozochorous vectors have yet 
to be revealed (Heinken et al. 2001; Matias et al. 2010; Faust et al. 2011). 

 
 

4.4. Management recommendations 

The main factor preventing park stands from becoming universal harbours of 
forest biodiversity is the structural simplification by management to meet the 
requirements of public use and recreational purposes (LaPaix & Freedman 
2010). Management effects on biodiversity are mostly indirect via changes in 
habitat structure (Liira et al. 2007; Reich et al. 2012; Kohv et al. 2013). With 
respect to forest biodiversity conservation, specific management principles 
should be applied in order to enhance the stand complexity. Old and large-
diameter trees, snags and fallen trunks should be preserved in parks and forests 
in order to support epiphytes, saproxylic fungi and insects. In parks specifically, 
the shrub mosaic should be enhanced in order to provide necessary habitats for 
birds and small animals, while mowing height and frequency should be adapted 
to preserve ephemerals and other forest herbs. Biodiversity-targeted manage-
ment in habitats open to the public, i.e. parks, would consequently increase 
general awareness of biodiversity issues. Old parks could be upgraded from 
objects of simple cultural heritage to socio-ecological systems with ecosystem-
enhancing sustainable management. 
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V. CONCLUSIONS 

Old rural manor parks proved to be suitable habitats for many forest-dwelling 
species (I, II, III). The suitability of parks was confirmed by habitat conditions 
that were measured using stand structure characteristics (I). Park stand structure 
was largely similar to forests, and old planted stands in manor parks resembled 
broad-leaved deciduous nemoral forests even more than contemporary forests 
on ancient forest land (I). The habitat suitability of park stands was confirmed 
by a number of forest biodiversity indicators. Several biodiversity indicators 
were common in park stands with some of these indicators, for example 
Lobaria pulmonaria and Neckera pennata, more common in parks than in 
forests. These findings indicate that parks can harbour a high level of 
biodiversity and thus contribute to biodiversity at a landscape level. 

Focusing on forest specialist plants and their colonisation ecology in park 
stands, I identified several characteristics of forest specialists (III). Forest 
specialist plants were characterised as species showing adaptation to intensive 
shade and lower soil nutrient levels, and intolerance to anthropogenic 
disturbances, while having a flexible reproductive and dispersal strategy (III). 
Species in corridor habitats were mostly habitat generalists according to their 
traits; therefore, corridors contribute little to forest biodiversity in agriculture-
dominated landscapes (III). 

Common forest species formed the majority of park flora (II). Forest-
dwelling species in old secondary stands are supported by sufficient stand area, 
canopy closure and stand density. To further support forest species, understory 
management needs to be at an optimal level and intensive mowing should be 
avoided. Colonisation success of forest specialists into park stands was 
determined by niche defining plant traits, taking into account the habitat quality 
of the target habitat and the long-term availability of seed source habitats (II, 
III). Therefore, it is important to consider not only the present day status of the 
habitat and the number of species in it, but also to take into account the habitat 
history and its surrounding landscape (II, III).  

The primary task of conservation planning should be to preserve the 
historical habitat patches and to maintain suitable conditions for habitat 
specialists in these fragments. The biodiversity conservation of old cultural 
habitats is achievable by focusing on the habitat quality requirements of species 
with conservation value, or on a more general group of habitat specialists. 
Adaptive management schemes should be developed to preserve and enhance 
current biodiversity. To support forest specialists, park management should 
promote a heterogeneous mid-story with a mosaic understory and a diverse 
overstory to diversify seasonal variations in light conditions, and avoid mowing 
early in the season. 
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VI. SUMMARY 

Forest biodiversity is among the most common, but still threatened habitats in 
Europe because severe human impact has reduced forest cover and decreased 
the habitat quality in remaining stands. Even in Estonia, where the forest land 
covers about half the country, the quality of habitats is often diminished. Rural 
parks provide a unique study system to disentangle the colonisation ecology of 
forest species. Even though parks have been shown to harbour indigenous 
species, little is known of the closed-canopy parts of parks and their ability to 
function as forest-like habitat. The aim of my thesis was to quantify the 
ecological value of old rural parks to forest biodiversity and to identify the 
factors that affect forest species colonisation in forest-like habitats. My first 
hypothesis was that old rural manor parks are a suitable habitat for forest 
species. Secondly, I tested whether rural manor parks harbour a high forest 
species diversity and contribute to biodiversity at a landscape level. I then used 
parks, as a model system of old secondary habitats that forest species colonised 
in the past, to understand the long-term colonisation processes of forest plant 
species. 

Estonia has a large number of old manor parks, planted on former 
agricultural land around manors during the 17th–19th century. After Estonia 
became independent in 1918, and following the Soviet era, many of these parks 
were largely undermanaged. Low management levels allowed parks to develop 
into a more natural looking habitat. Here I sampled more than 70 old rural 
manor parks across central and southern Estonia. I compared the flora and 
structure of closed-canopy parts of parks with that of adjacent forests growing 
on ancient forest land. For this purpose, I described the stand structure and herb 
layer composition in parks and forests using 30-m radius sampling plots. I also 
used these forests as species source habitats in subsequent analyses. To identify 
the biodiversity conservation value of parks, I recorded the presence of 
biodiversity indicators, such as old-growth indicator species and dead wood 
quantities. In order to assess human influence, I recorded visible signs of 
management. To further study the ability of forest species to use different 
habitats, I sampled linear wooded habitats as dispersal corridors. To adequately 
describe the plant trait patterns of forest species, I sampled species growing in 
open habitats as a comparison group. I used various statistical models, such as 
repeated-measures ANOVA, general linear model and generalised mixed effect 
model, to analyse these data. 

Stand structure measured as stand density and canopy closure was similar in 
old parks and forest stands. Park stands, however, included more large 
deciduous trees, whereas forest stands had more dead wood. I found 
biodiversity indicators from different organism groups, such as bryophytes and 
lichens, growing in old parks. Even more so, I found more biodiversity indi-
cators in park stands than in forest stands. Several of these indicators were 
connected to the presence of large deciduous trees, which are common in parks 
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but rare in adjacent forests. About 87% of species growing in parks were forest 
plants and approximately half the forest species from the local species pool 
were present in parks. The proportion of forest species in park flora was 
explained by environmental conditions and management in parks, but also by 
park area and the structure of surrounding landscape. The proportion of forest 
species from the surrounding species pool depended mostly on landscape 
properties and environmental characteristics of parks, with some regions having 
higher forest species proportions than others. Forest species differed in their 
ability to colonise new habitats. Shade tolerant species that had some generalist 
properties were more successful and could also grow in corridor habitats. 
However, species colonisation success was affected mostly by the surrounding 
landscape structure and habitat properties, and less by species-specific traits. 
Landscapes in which disturbed habitats prevailed supported more generalist 
species, whereas better habitat connectivity supported forest species. Plant 
species that were more successful in colonising park habitats had adaptations to 
shade tolerance and earlier flowering, but also higher requirements for soil 
nutrients and higher values for a ruderal life strategy. 

The results of my study indicated that old planted stands, such as rural manor 
parks, can make a significant contribution to forest biodiversity. Therefore, in 
addition to cultural and historical value, the biodiversity conservation value of 
parks should be emphasised. However, to support forest specialist species, the 
management level in parks needs to be kept at moderate levels. My results also 
imply that forest species are able to colonise forest-like habitats given enough 
time and suitable landscape and habitat conditions. Suitable conditions at a 
landscape level means ensuring the availability of species source habitats and 
supporting larger habitat connectivity. At a habitat level, sufficient area and 
limited light conditions, suitable for forest species, should be provided. 
However, in addition to the sufficient closure of tree canopy, it is important to 
have some shading from shrub layer and lower tree layers. How to combine 
biodiversity value and cultural aspects effectively in manor parks needs further 
study. 
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SUMMARY IN ESTONIAN  

Metsataimede levikuökoloogia ja  
mõisaparkide panus metsade elurikkuse hoidmisel  

Metsade elurikkus on üks ohustatumaid Euroopas, kuna intensiivne inimmõju 
on oluliselt vähendanud metsade pindala ja halvendanud allesjäänud metsade 
looduslikku kvaliteeti. Isegi Eestis, kus metsamaa katab umbes poole mais-
maast, on metsaelupaikade kvaliteet majandamise tõttu sageli vähenenud. Maa-
piirkondade mõisapargid pakuvad ainulaadset mudelsüsteemi uurimaks metsa-
liikide levikuökoloogiat. Kuigi on teada, et parkides kasvab lisaks võõrliikidele 
ka hulgaliselt pärismaiseid liike, siis varjuliste pargiosade ja nende võime kohta 
metsaliikidele elupaiku pakkuda teatakse seni suhteliselt vähe. Käesoleva 
doktoritöö eesmärgiks oli hinnata mõisaparkide ökoloogilist väärtust metsade 
elurikkusele ja tuvastada tegurid mis mõjutavad metsa-liikide asustamist uutes 
kasvukohtades. Töö esimeseks hüpoteesiks oli, et mõisaparkide taga-osades 
paiknevad puistud on sobivad elupaigad metsaliikidele. Teiseks, hindasin 
mõisa-parkide elurikkuse taset, leidmaks kas pargid panustavad elurikkusesse 
maastiku tasemel. Seejärel kasutasin parke, kui mudel-elupaika kuhu metsa-
liigid on saanud levida pika aja jooksil, et mõista metsaliikide ajast sõltumatuid 
asustamisprotsesse. 

Eestis on suur hulk vanu mõisaparke, mis on istutatud 17.–19. sajandil 
endistele põllumaadele mõisamajade ümber. Pärast Eesti iseseisvumist 1918. 
aastal ja ka hilisemal nõukogude ajal olid mitmed mõisapargid vähe hooldatud 
või suisa maha jäetud. Vähene majandamine võimaldas parkidel areneda 
looduslähedaseks elupaigaks. Käesolevas doktoritöös uurisin üle 70 vana 
mõisapargi Kesk- ja Lõuna-Eestis. Võrdlesin pargipuistute taimestikku ja puistu 
struktuuri lähedalasuvate püsival metsamaal kasvavate metsadega. Selleks 
kirjeldasin puistu struktuuri ja rohurinde liigirikkust 30 m raadiusega proovi-
punktis nii pargis kui ka metsas. Samu uuritud metsi kasutasin ka kui liikide 
allikelupaiku. Parkide looduskaitselise väärtuse hindamiseks registreerisin 
parkides esinevaid elurikkuse indikaatoreid nagu näiteks vanametsa indikaator-
liike ja kõdupuidu esinemist. Parkides ja metsades esineva inimmõju hinda-
miseks märkisin nähtavad majandamistegevuse jäljed. Metsaliikide erinevate 
elupaikade kasutamise võimet kirjeldasin maastikus esinevate puisjoonte abil. 
Puisjooned võiksid olla metsataimedele levikukoridoriks. Taimetunnuste 
adekvaatseks hindamiseks kirjeldasin lisaks ka avamaastikes kasvavaid liike. 
Andmeid analüüsisin peamiselt üldise lineaarse mudeli, üldistatud segamudeli 
ning ordinatsioonianalüüsi meetoditel. 

Puistu struktuur, mõõdetuna kui puistu tihedus ja võrade liitvus, oli sarnane 
parkides ja metsades. Küll aga kasvas parkides rohkem suuri laialehelisi puid, 
samas kui metsades esines rohkem kõdupuitu. Mitmed erinevatest organismi-
rühmade indikaatorliigid, nagu samblad ja samblikud, kasvasid vanades 
parkides. Kusjuures rohkem elurikkuse indikaatoreid leidsin just parkidest. 
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Mitmed vaadeldud indikaatorliigid olid seotud suurte laialeheliste puudega, mis 
olid parkides tavalised, kuid metsades haruldased. Umbes 87% parkides kasva-
vatest rohurinde liikidest olid metsaliigid ja umbes pool maastiku metsaliikide 
liigifondist oli parkides esindatud. Metsaliikide osakaalu parkides ennustasid 
pargisisesed keskkonnatingimused ja parkide majandamise tase, kuid samuti ka 
pargi pindala ja ümbritseva maastiku struktuur. Liigifondist parki jõudnud 
liikide osakaal sõltus eelkõige maastiku omadustest ja pargi keskkonnatingi-
mustest, kusjuures erinevates piirkondades oli parki jõudnud liikide osakaal 
erinev. Metsaliigid erinesid uute elupaikade asustamisvõime poolest. Genra-
listlike omadustega varjutaluvad liigid on edukamad ja suudavad kasvada ka 
koridorelupaikades. Liikide austamisedukus on peamiselt mõjutatud ümbritseva 
maastiku struktuuri ja elupaiga omaduste poolt, vähem liigispetsiifiliste 
tunnuste poolt. Maastikud, kus domineerivad häiritud elupaigad toetavad 
generalistlike liikide levikut, samas kui parem elupaikade ühendatus toetab 
metsaspetsiifilisi liike. Taimeliigid, mis olid edukamad parkide asustajad olid 
kohastunud varjutaluvusele ja varajasele üitsemisele, aga omasid ka kõrgemat 
toitainete nõudlust ja kõrgemaid ruderaalse strateegia väärtusi. 

Käsesoleva doktoritöö tulemused viitavad, et vanad mõisapargid suudavad 
anda olulise panuse metsade elurikkuse säilitamisse. Seepärast tuleks lisaks 
kultuurilisele ja ajaloolisele väärtusele rohkem tähtsustada ka parkide loodus-
kaitselist väärtust. Toetamaks metsaomaste liikide kasvamist parkides, tuleks 
majandamise tase hoida parkides tagasihoidlik. Tulemused viitavad ka sellele, 
et metsaliigid suudavad asustada uusi elupaiku kui neile anda piisavalt aega, 
sobivad maastikutingimused ja elupaiga kvaliteet. Maastiku tasemel tähendab 
see piisavate levikuallikate kindlustamist ja elupaikade ühendatust. Elupaiga 
tasemel tuleb tagada elupaiga piisav suurus ja metsaliikidele sobivad varjulised 
tingimused. Kusjuures, lisaks võrade liitvusele tuleb tagada ka põõsaste ja 
järelkasvu olemasolu. Kuidas täpsemalt elurikkust ja kultuurilise aspekte 
mõisaparkides kombineerida vajab veel edasist uurimist.  
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