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ABSTRACT 
 
The thesis focuses on analysis of Quaternary freshwater ostracod subfossils, 
ostracod species distribution and autecology of indicator species in order to 
reconstruct lacustrine palaeoenvironments for the post-late Weichselian 
glaciation in Estonia. Five lake sediment cores (covering the late-glacial and 
Holocene) were studied, representing the development of lacustrine environ-
ments in northern (Sinijärv, Varangu), eastern (Elistvere, Pedja) and western 
(Ermistu) Estonia. Available information on ostracods in the Holocene 
sediments in Lake Peipsi (eastern Estonia) and in late-glacial silts in the Haljala 
section (northern Estonia) and Pikkjärv section (eastern Estonia) was 
incorporated into the study. Well preserved calcareous subfossils of ostracods 
occurred as carapaces and disarticulated valves of juvenile and adult specimens, 
indicating minor post-mortem transportation and their rapid deposition. 
Altogether 30 freshwater ostracod species were identified in subfossil 
assemblages. All these species are known from the modern and subfossil record 
in Estonia and in central and northern Europe.  

Ostracods colonized large lakes very early after the ice retreat from current 
Estonian territory and the ostracod fauna responded to climatic changes during 
the late-glacial time. Pioneer species in the late-glacial Haljala lake (Eucypris 
cf. virens, Limnocythere inopinata, Cyclocypris ovum, Pseudocandona 
compressa, Candona candida) colonized the lake margin area already at ca. 
13.8–13.6 14C cal kyr BP following a temperature increase after ice decay. 
Temperature decrease at ca. 13.6–13.1 14C cal kyr BP favoured species which 
inhabit cold, oligotrophic, well-ventilated bottom waters in profundal areas of 
large lakes (Limnocytherina sanctipatricii, Cytherissa lacustris). 

Compared to early late-glacial minerogenic sediments the ostracod fauna is 
more variable and heterogeneous in late-glacial and Holocene freshwater tufa 
sequences. The composition of the ostracod fauna reflects changes in the water 
level, temperature, trophic status and vegetation cover of the lake. The 
succession of ostracod assemblages show a general evolution of lake 
environments in Estonia: the “candida-fauna” represents phase of large 
oligotrophic lakes; the succeeding “stevensoni-fauna” indicates shallower 
mesotrophic open lakes; and the “cordata-fauna” refers to a shallow, aged, 
eutrophic water body with dense, emerged vegetation. Finally, appearance of 
Scottia pseudobrowniana suggests paludification of lake margins.  

Water level in isolated water bodies began to decrease already at the end of 
late-glacial and at the beginning of the Holocene, as indicated by the dominance 
of warm and eutrophic conditions favouring Metacypris cordata in tufa 
sequences. Also, the predominance of Metacypris cordata suggests an 
increasing temperature toward the Holocene Thermal Maximum and higher 
productivity in lakes during the first part of the Holocene.  

In the lakes studied changes in ostracod assemblages reveal like palaeo-
ecological signals. However, the environmental shifts were not 
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contemporaneous, suggesting that the influence of local catchment features, 
such as water level, groundwater inflow, vegetation cover and nutrient input, 
was stronger than that of regional climatic conditions.  
 
Keywords: ostracods, lacustrine sediments, tufa, late-glacial, Holocene, 
palaeoenvironmnent, Estonia 
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1. INTRODUCTION 
 
It is acknowledged that the modelling of future possible climate fluctuations of 
temperate areas is largely based on studies of fluctuations in the climate and 
environment for the time period following the last deglaciation. Sediments of 
freshwater lakes formed through the accumulation of biological, chemical and 
physical components and terrigenous, cosmogenic and volcanogenic particles 
from within and outside of the lake are good archives for this purpose (Douglas, 
2007; Cohen, 2003).  

Numerous proxy indicators can be teased out of the sediment matrix and 
analyzed to infer past environmental conditions; for example, biological 
indicators include algae, plants, zooplankton and benthic organisms that have 
been used for palaeolimnological studies (De Deckker & Forester, 1988). 
Aquatic organisms are the best recorders of climatic changes available in the 
fossil record (Birks et al., 2000). A good proxy indicator is one that reproduces 
often, is abundant, easily identified, readily preserved in sediments and reflects 
specific environmental conditions (Douglas, 2007). Variations in lake tempera-
ture, water level and chemical composition can be determined in the subfossil 
record (Cohen, 2003). Lake surface water temperature during the summer 
months appears to react more sensitively to interannual variability in meteoro-
logical forcing than does air temperature, supporting the use of temperature-
sensitive lacustrine biota as indicators of climate change (Livingstone & Lotter, 
1998).  

Palaeoecological studies that focus on the late-glacial (hereinafter  “LG”, the 
period between the decay of glaciers of the Late-Weichselian glaciation and the 
beginning of the Holocene) and the Holocene (last 10 000 14C years or ca.  
11.7 14C cal kyr in Earth’s history; Walker et al., 2009) often use pollen, 
diatoms, macroplant remains, chrinomids and molluscs for (palaeo-) 
environmental reconstructions (e.g. Itkonen et al., 1999; Heiri & Lotter, 2003; 
Seppä & Poska, 2004; Davies & Griffiths, 2005; Antonsson et al., 2006; 
Brooks, 2006; Gedda, 2006; Amon & Saarse, 2010; Amon et al., 2010).  

Ostracods are microscopic crustaceans with a bivalved calcareous carapace 
that totally encloses the body and the appendages. Adults are typically  
0.5–2.0 mm long. Ostracods, as benthic crawlers and swimmers, are found in 
both the littoral or profundal areas of a lake (Griffiths & Holmes, 2000; Cohen, 
2003). Ostracods are an important group of animals for palaeolimnology, 
because of their excellent preservability, abundance, their long fossil and 
subfossil record and relative ease of identification. Thus, in Quaternary science 
ostracods are an excellent source of information on past environments. Ostracod 
carapaces are particularly well preserved in calcareous sediments – tufas or 
travertines. Herein the term “tufa” indicates calcareous sediments in temperate 
cool freshwater lakes. Thus, the palaeoecological interest in freshwater ostra-
cods focuses on calcareous sediment sequences that often have the potential to 
yield subfossil sequences in fine resolution that cover periods of thousands of 
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years (Griffiths, 1995a). Ostracod subfossils and their assemblage structure in 
lake sediments potentially reflect the evolution of the water body, in terms of 
changes in trophic conditions and variations in water and air temperatures, lake 
level and aquatic vegetation. Freshwater ostracods have potential to provide 
information on past ratios of precipitation to evaporation (Carbonel et al., 1988; 
Griffiths & Holmes, 2000; De Deckker, 2002). Knowledge of the habitat 
preferences of recent ostracod species facilitates an estimation of past 
environmental conditions. For example, the presence of Cytherissa lacustris 
implies oligo- to mesotrophic oxygen-rich cool freshwaters, Metacypris cordata 
in turn indicates eutrophic warmer freshwaters, and the phytophilic species 
Cypridopsis vidua infers emerged vegetation.  

Information derived from ostracod subfossils is widely used in the 
reconstruction of late-glacial and Holocene environmental conditions in 
southern and central Europe (e.g. Absolon, 1973; Günther, 1986; Löffler, 1986, 
1997; Griffiths, 1995b, 1999; Griffiths et al., 1994, 1996; Roca & Juliá, 1997; 
Krzymińska & Przezdziecki, 2001; Viehberg, 2004; Wilkinson et al., 2005; 
Belis et al., 2008). Pioneering palaeoecological studies based on ostracods from 
LG and Holocene calcareous tufas focus on material from Belgium (Van 
Frausum & Wouters, 1990), from Holocene chalk streams and tufas in the 
British Isles (Ham, 1982; Taylor et al., 1994; Griffiths et al., 1996; Griffiths, 
1999; Davies & Griffiths, 2005), and from interglacial tufas from France 
(Preece et al., 1986). In recent decades stable isotope studies have increasingly 
focused on ostracod carapace material in order to reconstruct past climates (e.g. 
von Grafenstein et al., 1994, 1999; Hammarlund, 1999; Schwalb, 2003; Garnett 
et al., 2004). 

The records of many types of fossils, for example, pollen, diatoms, and 
macro plant remains are available for palaeoecological research on lacustrine 
deposits. Many researchers studying Estonian sequences (e.g. Veski, 1998; 
Saarse & Veski, 2001; Seppä & Poska, 2004; Poska & Saarse, 1999; Poska et 
al., 2004, 2008; Veski et al., 2005; Niinemets & Saarse, 2006, 2007; Hang et 
al., 2008; Niinemets, 2008; Sillasoo et al., 2007, 2009) have interpreted aspects 
of palaeoecology and Holocene forest dynamics from pollen and plant remains 
analyses of freshwater sediments. However, pollen in lake sediments is often 
not in situ but carried into lakes by wind and water from surrounding areas 
(Cohen, 2003). Reconstruction of Baltic Sea history and the associated 
development of coastal areas as well as record of changes in recent trophic 
conditions are heavily based on proxy data from diatom analyses (Heinsalu & 
Veski, 2007; Heinsalu et al., 2007; Punning & Puusepp, 2007; Heinsalu & 
Alliksaar, 2009). Abundant proxy data serves as a good background for 
palaeoenvironmental research into the largely unstudied freshwater ostracod 
fauna of Estonia.  

Recent freshwater ostracod faunas of Estonia have been described by 
Järvekülg (1959, 1960, 1961, 1995, 2001) and Timm & Järvekülg (1975). 
Previous studies of Quaternary ostracod faunas from Estonia were on material 
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from the Late-Saalian lacustrine silt (Rattas et al., 2010) and in the Early 
Holocene bottom deposits of Lake Peipsi (Niinemets & Hang, 2009).  

The aim of the present PhD research was to determine the distribution of 
freshwater ostracods in the late-glacial and Holocene lacustrine sediments in 
Estonia, and to utilize the knowledge on habitat preferences of ostracod species 
in order to reconstruct changes in lacustrine palaeoenvironments after the Late-
Weichselian glaciation in northern Baltic area. Specific objectives of the project 
were:  

•  To reveal the occurrence and distribution pattern of ostracod assemblages 
in the late-glacial and Holocene sediments in Estonia;  

•  To reconstruct the dynamics of the development of ostracod assemblages 
in freshwater bodies of water formed after the retreat of the last 
Scandinavian Ice Sheet (SIS) from its south-eastern sector; 

•  To apply the ostracod subfossil record and biostratigraphy in 
palaeoenvironmental reconstructions (e.g. changes in temperature, trophic 
level, water level) for the post-glacial period in Estonia. This information 
supports the consecutive stable isotope analyses produced from ostracod 
calcite to reconstruct the palaeotemperature throughout the late-glacial 
and Holocene; 

•  To interpret the ostracod-derived palaeoenvironmental information in the 
context of the post-glacial environmental changes and climate history of 
temperate areas of northern Europe. 

 
 
 



13 

2. THEORETICAL BACKGROUND 
  
Ostracod subfossils in Quaternary sediments are extremely useful in 
reconstructing past environments. Ostracods occur in all types of freshwater 
environments. They are common components in lacustrine faunas, especially in 
non-acidic environments (Griffiths & Holmes, 2000). Good preservation in 
sediments, especially in freshwater tufas, is an additional advantage in studying 
ostracod subfossils. The palaeoenvironmental information that they provide will 
depend on the setting of the regional environmental system (Griffiths & 
Holmes, 2000). From a practical viewpoint ostracods are relatively easily 
employed for use in Quaternary palaeoecology as their study does not require 
complex preparation techniques. Ostracod carapaces are also useful for 
geochemical analyses: autochthonous low-magnesium calcite of the carapace is 
produced in a short time (hours) under ambient conditions and thus is a good 
target for stable isotope analysis that gives information on past temperatures.  
 
 

2.1. Use of ostracods in palaeoecological research 
 
Ostracods are common as microfossils, since the two calcified valves are easily 
preserved in sediments after death (Martens & Horne, 2009). The earliest 
occurrence of marine ostracods is during the Early Ordovician (Tinn & Meidla, 
2004; Williams et al., 2008) and the first freshwater faunas are of Carboniferous 
age (Holmes & Horne, 1999). 

The Class Ostracoda is subdivided into five orders that were present in the 
Ordovician; some of them are now extinct. The Myodocopida and Platycopida 
are extant and exclusively marine, and the ubiquitous Podocopida is the most 
diverse group at the present day, found in marine, brackish and fresh waters 
(Martens & Horne, 2009). Ostracod species are environmentally and 
geographically diverse and are known from aquatic environments from the 
Arctic to the tropics, from deserts to high-mountains, and from very dilute to 
highly saline waters, including lakes, ponds, springs, streams, rivers, estuaries 
and oceans; some species even occur in semi-terrestrial environments and 
within groundwater (De Deckker & Forester, 1988).  

There are about 200 genera of recent freshwater ostracods and ca. 2000 
species worldwide (Martens et al., 2008). Palaearctic, which includes most of 
Europe, Asia and northern Africa, is the zoogeographical region that has the 
highest specific diversity of freshwater ostracods with more than 700 species 
(Martens et al., 2008). 

Freshwater ostracods disperse over distances through passive transport by 
invertebrate and vertebrate animals, and even via humans. However, migratory 
movement assisted by birds is most probably a major means of ostracod 
dispersal. The eggs of many ostracod species are resistant to desiccation and 
excellent candidates for dispersal by the wind. Some ostracods may have been 

4
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widely distributed through the circumglobal transport of eggs by high altitude 
winds (Meisch, 2000). Ostracods reproduce by sexual and asexual (partheno-
genesis) modes. In the case of parthenogenetic or gravid brooding females, one 
specimen is theoretically sufficient to initiate a new population (Martens et al., 
2008). Like others crustaceans, ostracods grow by moulting their carapaces: up 
to eight times prior to reaching adulthood (Griffiths & Holmes, 2000). 
Ontogenetic studies suggest that this number could have been higher in 
Paleozoic ostracods (Hinz-Schallreuter & Schallreuter, 1999). 

Most lacustrine ostracods are benthic crawlers and swimmers, found in both 
littoral and profundal regions of lakes. Ostracods living in continental aquatic 
environments are quite selective with respect to the environments in which they 
live (De Deckker & Forester, 1988). They are sensitive to the temperature, 
salinity, anion composition and nutrient status of their host waters, together with 
a range of other habitat variables such as the depth, size and permanence of the 
water body, substrate type, aquatic macrophyte cover and energy level, turbidity 
and dissolved oxygen content. Thus, ostracods have excellent potential as 
palaeoenvironmental indicators (Holmes & Horne, 1999; Griffiths & Holmes, 
2000).  

Recent ostracod species are identified especially based on their soft-part 
characteristics. However, genetic studies suggest that even morphological 
uniform populations may contain several cryptic taxa (e.g. Bode et al., 2010). 
Subfossil ostracod material used in Quaternary studies comprises calcitic 
carapaces and valves. Their soft parts are not preserved and the diagnostic 
features for identification of species are valve size, shape and sculpture and 
muscle scar patterns. Most of the relevant palaeoecological information is 
derived by identification of specimens to specific or generic level, together with 
data on presence or absence and absolute number or percentage of species. The 
approach to palaeoecological reconstruction using ostracods involves qualitative 
methods based on the perceived autecology of individual species in order to 
estimate habitat conditions (Griffiths & Holmes, 2000). The level of palaeo-
environmental information that can be derived from subfossil ostracods depends 
largely on the extent to which the ecological preferences of individual recent 
species are known. 

Ostracod population structure can be obtained through a direct examination 
of subfossil ostracod valves: a life assemblage can be recognized if all growth 
stages are recovered from the same sample (Holmes, 1992). Assuming that 
juveniles and adults cohabit, the recovery of valves representing all stages from 
the same sample will indicate that the material has not been reworked. 
Conversely, species in the same population represented by only part of their 
complete ontogeny are likely to be allochthonous (Whatley, 1988).  
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2.2. Late-glacial and Holocene freshwater  
ostracod faunas in Europe 

 
Freshwater ostracod species are recorded from Pleistocene and Holocene 
sequences across Europe (Griffiths, 1995a; Meisch, 2000). Many species (e.g. 
Candona candida, Candona neglecta, Ilyocypris bradyi, Cypridopsis vidua, 
Cypria ophtalmica, Herpetocypris reptans, Pseudocandona compressa) have a 
broad geographic distribution, suggesting high tolerance levels to different 
environmental variables. These species are found from high latitudes to the 
Mediterranean region in Europe (Külköylüoğlu et al., 2007). Ostracod species 
have „preferred” climatic and environmental optima, and they track these back 
and forth over landscapes as conditions fluctuate through time (Griffiths, 2001). 
For example, the decrease in abundance of Limnocytherina sanctipatricii and 
Cytherissa lacustris in lakes of central Europe is likely a result of northward 
retreat of the polar front during the Early Holocene (Schwalb et al., 1998).  

In Europe the colonization of deep modern lakes by ostracods started very 
early after the deglaciation. C. lacustris, L. sanctipatricii, Leucocythere 
mirabilis, C. candida were the pioneer species and the LG ostracod fauna is 
typical of the profundal zone of great lakes with minerogenic sediments. This 
type of ostracod fauna is widely distributed in well-oxygenated, oligotrophic, 
cold and deep lacustrine environments in Europe (Löffler, 1975, 1986; 
Danielopol et al., 1993; Griffiths et al., 1994; Krzymińska & Przezdziecki, 
2001; Schwalb et al., 1998; Belis et al., 1999, 2008; Meisch, 2000). However, 
the LG ostracod fauna may also contain shallow lake (maximum depth a few 
meters) representatives (Scharf et al., 2005). Metacypris cordata, Darwinula 
stevensoni, Fabaeformiscandona protzi, C. vidua, Cyclocypris ovum, Limno-
cythere inopinata and Notodromas monacha are common species in the 
Holocene of central Europe and the British Isles (Löffler, 1986; Griffiths et al., 
1994; Griffiths & Evans, 1995; Griffiths, 1999; Viehberg et al., 2008). 
M. cordata is clearly the dominant species in the Lower Holocene sediments of 
central Europe (Absolon, 1973; Viehberg, 2004; Griffiths & Evans, 1995; 
Viehberg 2004).  

In central Europe Absolon (1973) divided the LG and Holocene ostracod 
faunas into two separate groups, the „candida-“and „cordata-fauna“. The first 
group contains C. candida, P. compressa, H. reptans, Potamocyypris villosa 
and C. ovum whilst the „cordata-fauna” consists of M. cordata, D. stevensoni, 
N. monacha and F. protzi. The transitional fauna between these successions 
contain L. sanctipatricii, F. protzi, C. vidua, Pseudocandona marchica, 
L. inopinata, C. ophtalmica and Cypria exsculpta. Later a similar division of 
ostracod assemblages was recognised in central Europe (Günther, 1986; Löffler, 
1986) and the British Isles (Griffiths & Evans, 1995).  

Ostracod species present in the LG “candida-fauna” possess desiccation-
resistant life-history stages and could have been dispersed by a variety of 
means; most are ecologically polyvalent (Griffiths & Evans, 1995). However, 
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the “candida-fauna” is essentially cold, oligotrophic and benthic (Griffiths, 
2001). In the dispersal of the fauna, next to wind, carriage in melt water and 
migratory movements of water birds provided considerable assistance. The LG 
fauna elements are usually species habiting cool and oligotrophic environs in 
large lakes (e.g. C. lacustris, C. candida, L. mirabilis and L. sanctipatricii).  

Unlike the “candida-fauna”, the “cordata-fauna” consists of more 
eurythermal, free-swimming and phytophilic species (Griffiths & Evans, 1995; 
Griffiths, 2001). Decrease in abundance of L. mirabilis and C. lacustris in 
Holocene lakes is probably related to rising trophic conditions (Scharf, 1993). 
Typical Holocene ostracod species (D. stevensoni, M. cordata) prefer small and 
shallow, vegetation-rich and seasonally permanent water bodies with higher 
nutrient status. Their dispersal takes place by hydrological means (Griffiths & 
Evans, 1995; Griffiths, 2001).  The advent of the “cordata-fauna” tends to 
signify broad-scale environmental changes: increased ambient temperatures, 
increase in ecosystem productivity and associated change in trophic degree 
(from oligotrophy to some higher state).  

In shallow lake basins, increasing autochthonous and allochthonous 
bioproductivity is enforced by progressive anionic leaching from the surroun-
ding catchment. This culminates with encroachment of littoral and basin 
closure, and thus the “cordata-fauna” records an extinction of the lake, before 
the ostracod record itself is obliterated by the change to humic deposition. Then 
the water body moves through meso-/eutrophy into dystrophy, and phytic 
species increase until wetland forms (e.g. Scottia) appear (Griffiths & Evans, 
1995; Griffiths, 2001).  
 
 

2.3. Recent and subfossil freshwater  
ostracod fauna in Estonia 

 

The modern Estonian ostracod fauna is similar to the fauna of the temperate 
zone as recorded in continental Europe and the British Isles and distributed over 
the western Palaearctic Zoogeographical Region (Meisch, 2000; Henderson, 
2002; Jurmalietis, 2003; Nagorskaya & Keyser, 2005). In Estonia over seventy 
ostracod species are found from recent freshwater basins – lakes, rivers, springs, 
temporal and permanent pools and ditches (Järvekülg, 1959, 1960, 1961, 1995). 
In addition ostracods described from the Baltic Sea are represented in coastal 
water bodies of Estonia, both brackish and freshwater species (Järvekülg, 1973; 
Timm et al., 2007). 

Freshwater species that are common in Estonia are C. lacustris, L. 
sanctipatricii, Fabaeformiscandona levanderi, Candonopsis kingselii, Physo-
cypria kliei, Ilyocypris decipens, Cypridopsis parva and M. cordata. Species 
such as Dolerocypris fasciata, C. vidua, Cyclocypris laevis, C. ovum, N. 
monacha, C. ophtalmica, Candona weltneri, Pseudocandona parallela, D. 
stevensoni and L. inopinata occur predominantly in littoral areas of lakes. In 
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ponds, there are species such as Pseudocandona rostrata and P. compressa 
(Järvekülg, 1995). Cyclocypris serena, Cypria curvifurcata and Potamocypris 
wolfi occur only in rivers and frequently together with C. ovum, C. laevis and C. 
vidua (Järvekülg, 1995, 2001). Ostracods found in springs include Tonnacypris 
estonica (characteristic, in large numbers, of springs in the Pandivere area, 
northern Estonia), Psychodromus olivaceus (abundant in springs on Saaremaa 
Island and in north-western Estonia), Potamocypris fulva and Potamocypris 
pallida (Timm & Järvekülg, 1975). Ostracod diversity is high in littoral zones, 
and a particularly high number of species and individuals occur in temporal 
water bodies and seasonal pools, where Eucypris crassa, Eucypris virens, 
Eucypris elliptica, Koencypris ornata, Tonnacypris lutaria, Bradleystrandesia 
fuscata, Bradleystrandesia reticulate, Cyclocypris globosa, Cyprois marginata, 
Pseudocandona stagnalis, Pseudocandona pratensis, Pseudocandona sucki, 
Pseudocandona parallela, Cypris pubera, Heterocypris incongruens and C. 
ovum dominate (Järvekülg, 1961, 1995). Ostracod diversity increases with 
increase of vegetation (Kiss, 2007). 

In general, the deep lake habitat is characterized by low diversity 
assemblages with stable species composition. In Estonian lakes, the profundal 
zone is considered to be poor in numbers of ostracod species, with the most 
dominant species being C. lacustris and L. sanctipatricii (Järvekülg, 1961).  

The oldest Quaternary ostracod remains in Estonia are recorded from the 
Arumetsa quarry in south-western Estonia where the Late-Saalian massive clay 
yields C. lacustris and I. bradyi. The presence of these species is interpreted as 
an indication of a cold-water environment (Rattas et al., 2010). 

Earlier or in parallel to the current PhD project, some other data were 
published on the Weichselian late-glacial ostracod fauna in Estonia. The present 
author recorded LG ostracods (C. lacustris, C. candida and L. mirabilis) from 
silty bottom sediments of Lake Pikkjärv in the Saadjärve Drumlin Field, eastern 
Estonia (Sohar, 2004). The Weichselian LG fauna was also documented by the 
author from sediments of the Haljala palaeolake (Saarse et al., 2009) where C. 
candida, C. lacustris, P. compressa and L. sanctipatricii dominate. C. ovum, C. 
laevis and E. virens were also identified in this ostracod fauna. Niinemets and 
Hang (2009) identified ostracods in Early Holocene tufa from Lake Peipsi 
where the fauna composed primarily of C. lacustris, C. candida, L. 
sanctipatricii, F. protzi, F. levanderi and I. bradyi, accompanied by H. reptans 
and D. stevensoni. 
 

 
2.4. Ostracod species as Quaternary  

environmental indicators 
 
Ostracod species found from Quaternary sediments in Estonia are also known 
from other regions, both in southern and central Europe. However, several 
species tolerate certain ambient conditions and this enables the use of ostracods 
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in Quaternary studies. In the following are presented ecological characteristics 
of some common ostracod species in freshwater basins. 

M. cordata is a species indicator of eutrophic and mesotrophic conditions of 
ageing lakes. It is a warm-stenothermal summer form and pure freshwater 
species, commonly associated with littoral vegetation, peat or macrophyte root-
masses (Hiller, 1972; Meisch, 2000; Nagorskaya & Keyser, 2005). The species 
evades groundwater habitats (Danielopol et al., 1996). In Estonia it is common 
in littoral areas of small lakes, together with D. fasciata, C. exsculpta and  
C. ophtalmica (Järvekülg, 1959). Some specimens are recorded in recent faunas 
from Matsalu Bay in western Estonia, among dense reed beds (at water depth 
0.5–1.2 m and salinity < 0.5‰), where it occurs together with other freshwater 
species such as Stenocypria fishceri, Ilyocypris gibba, C. ophtalmica, C. 
exsculpta, C. candida, P. compressa, C. vidua and with the marine and brackish 
water species Cyprideis torosa and Heterocypris salina. The preferred bottom 
sediments for the species are organic muds and it can survive in conditions with 
a high H2S content (Järvekülg, 1985). M. cordata appears, presumably, when 
the lake level is decreasing and water temperature is rising. M. cordata refers to 
an ageing eutrophic lake with emerged water plants in littoral zone, or marks 
dystrophy, shallowing and basin encroachment and closure (Walker et al., 1993; 
Griffiths, 1999).   

D. stevensoni is considered as a rare species in the lakes and rivers in 
Estonia; it preferably occupies profundal areas of lakes (Järvekülg, 1959). It is 
also found in shallow open lagoons and coastal freshwater shallow lakes in 
western Estonia and its islands, where it occurs together with C. torosa,  
F. protzi and C. exsculpta (Timm et al., 2007). In Finland it is recorded from 
oligotrophic shallow lake with muddy bottom (Ranta, 1979).  

C. candida is a cosmopolitan species, associated with lakes, rivers, ponds 
and temporal pools; it may occupy depths down to 300 m. It is both ecologically 
and temporally ubiquitous. The absence of C. candida is more remarkable than 
its presence. Co-occurrence with other eurytopic species (e.g. C. ophtalmica,  
C. ovum) may be used to indicate a colonisation phase or a stressful or 
unsuitable environment that precludes colonisation by more specialised species 
(Griffiths, 1995b). In Estonia C. candida is numerous and abundant among 
vegetation in permanent water bodies. However, it is considered to prefer cold 
water conditions (Järvekülg, 1959). It is also recorded from springs (Timm & 
Järvekülg, 1975), shallow coastal lagoons and lakes (Timm et al., 2007). In 
Estonia it is also found in temporal water bodies, where it prefers vegetation-
rich biotopes. In plant-poor waters, it occurs in muddy bottoms. In permanent 
waters (including brackish waters), it is found in alkaline waters (pH 7.4–8.3). 
Seasonally, adult specimens have been found from June to October (water 
temperature up to 9.4 ºC) (Järvekülg, 1961).  

L. inopinata is an open-water benthic species that prefers calm shallow 
waters with enhanced detritus content such as macrophyte debris. Populations 
of L. inopinata are confined to the littoral zone and to open lake areas (Yin et 
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al., 1999). It tolerates a wide range of environmental conditions and occurs in 
both small and large lakes, ponds, ditches, brooks on sandy or muddy bottoms 
and may occupy coastal areas with slight salinity (Meisch, 2000). It is common 
in Estonian lakes and rivers (Järvekülg, 1959).  

C. lacustris exclusively inhabits the benthic area of cold, well-oxygenated 
lakes of low productivity, where it lives on fine, silty sediments (Griffiths, 
1995b). In laboratory experiments its temperature adaptation plateau is in the 
10–15ºC range (Newrkla, 1985). C. lacustris is typical of lakes over 100 m 
deep. The highest densities occur in oligo-mesotrophic lakes at depths between 
12 and 40 m (Meisch, 2000). In Estonian lakes it is rare, occupying only 
sublittoral and profundal zones of large lakes (Järvekülg, 1959).  

L. sanctipatricii is clearly a cold stenothermal form, occurring sublittorally 
in lakes and other still water bodies and may be sensitive to eutrophic 
conditions (Griffiths, 1995b; Meisch, 2000). In Estonia it is recorded from large 
lakes in profundal zones, together with C. lacustris and at around depths of  
> 6 m (Järvekülg, 1959; Mäemets, 1977).  

L. mirabilis prefers sublittoral and profundal zones of cold oligotrophic lakes 
(minimum depth 12 m). It is considered as LG lacustrine species, which 
disappeared in the Holocene as a consequence of natural eutrophication 
(Meisch, 2000).  

I. bradyi is predominantly stream dwelling, or lives on vegetation. It is 
strongly associated with springs and undoubtedly considered crenophilous. 
Occurrence in other habitats is explained through drift (Griffiths, 1995b). In 
Estonia I. bradyi is recorded from cold springs (Timm & Järvekülg, 1975).  

T. estonica occurs in cold springs of the Pandivere Upland region. It is 
associated with cold waters and sandy bottom conditions (Järvekülg, 1960, 
Timm & Järvekülg, 1975). Van der Meeren et al. (2009) documented the 
species from cold oligotrophic springs with sandy bottom sediments from 
Mongolia.  

F. protzi tends to be found in larger water bodies and generally can be 
collected in winter. It is a cold-water stenotherm form that has never been 
reported from running waters. It is generally found on sandy or muddy 
sediments with plants detritus (Griffiths, 1995b). In Estonia it is found in lakes 
fed by springs and in profundal and littoral zones of lakes (Järvekülg, 1959; 
Timm & Järvekülg, 1975). It does not tolerate high trophic conditions (Hiller, 
1972; Meisch, 2000). F. levanderi is a cold water preferring species found in 
spring-fed lakes in Estonia (Timm & Järvekülg, 1975). It may occur in both 
littoral and profundal areas of lakes (Meisch, 2000). 

C. vidua, C. ovum, C. exsculpta, C. ohptalmica are ubiquitous. In Estonia 
they are common species occupying temporal and permanent waters. They are 
especially common and numerous in littoral zones of lakes, occupying several 
biotopes, including areas with sparse vegetation and sandy lake bottoms 
(Järvekülg, 1959, Timm & Järvekülg, 1975). The phytophilic summer form and 
active swimmer C. vidua prefers stagnant plant-rich water bodies. It is known 



20 

from poorly oxygenated to oxygen-saturated waters (De Deckker, 1988). In 
Estonia it is recorded from temporal springs, Fe-rich and saline waters, and 
even from waters influenced by high fertilisation in agriculture. Also C. vidua 
occupies temporal waters with pH values of 6.4–7.7. It survives the autumn and 
winter seasons in the littoral zone (found in January temperature +0.6 ºC) 
(Järvekülg, 1961). C. ovum prefers plant-rich stagnant waters. In a water body 
with sparse vegetation C. ovum is observed on sandy, muddy gravely and 
clayey bottoms. It tolerates acidic and alkaline environs (pH 6–8.6), but is more 
frequent in acidic waters. In temporal waters its adult specimens are found from 
May to November, at a water temperature of +5.7 – +27.2ºC. In permanent 
waters adult specimens occur also in the winter months of December, January, 
and March (Järvekülg, 1961). C. ophtalmica is recorded from lakes, ponds, 
rivers and springs in Estonia. In temporal waters it is common in both plant-rich 
and plant-poor biotopes. It may occupy the profundal areas of lakes and may 
survive in anoxic conditions and in niches that are unfavourable to other species 
(Griffiths & Martin, 1993; Martín-Rubio et al., 2005). C. exsculpta occurs 
mostly in lakes, in both the littoral and profundal zones. Rare occurrences are 
also known from permanent pools and rivers (Järvekülg, 1959). Griffiths & 
Evans (1991) described C. ophtalmica and C. ovum from small ponds, where 
algae or other lower plants are present.   

P. rostrata occurs in permanent and temporal small lakes and in springs and 
interstitial groundwater and is considered to be a cold stenothermal species 
(Meisch, 2000; Keatings et al., 2002). In Wales, UK, P. rostrata dominates 
together with associates C. ovum, C. vidua and M. cordata in Early Holocene 
calcareous sediments indicative of a littoral environment with increasing 
eutrophication and a progressive shallowing of lake waters (Walker et al., 1993; 
Griffiths, 1999). 

In Estonia P. villosa is found in springs, spring-fed ponds and littoral zones 
of lakes with sparse vegetation, where the bottom deposits are sand, mud, clay, 
or tufa, and the waters are alkaline (pH 7.5–8.0). Adult and juvenile specimens 
are present from June to August, at water temperatures up to 22 ºC (Järvekülg, 
1959; Järvekülg, 1961; Timm & Järvekülg, 1975).  

Scottia pseudobrowniana, together with M. cordata, is documented as a 
semi-terrestrial species that occurs on floating fen soil (Meisch, 2000; 
Danielopol & Vespremeanu, 1964). S. pseudobrowniana prefers alkaline warm 
waters (Külköylüoĝlu & Vinyard, 2000). In northern Europe the species 
apparently prefers colder waters (Henderson, 2002). The species is unknown in 
recent Estonian lakes. 

C. kingsleii occurs, but rarely, in recent lakes in Estonia. It is found in littoral 
zones with sandy, muddy bottoms and in vegetation-rich lakes (Järvekülg, 
1959). It is associated with M. cordata and S. pseudobrowniana in freshwater 
habitats (Meisch, 2000; Danielopol & Vespremeanu, 1964). 
 



21 

3. GEOLOGICAL AND PALAEOECOLOGICAL 
CONDITIONS 

 
The territory of Estonia is located in the north-western part of the East European 
platform.  Structurally it lies on southern slope of the Fennoscandian Shield. 
The crystalline basement is covered by sedimentary bedrock of Ediacaran and 
Cambrian sandstones and siltstones, Ordovician and Silurian limestones and 
dolomites and Devonian sandstones and carbonates. Estonia was subjected to 
the last Scandinavian (Weichselian) Glaciation, being influenced both by glacial 
erosion and deposition. The relief of the bedrock has been significantly shaped 
by Quaternary ice sheets. The bedrock is covered with glacial sediments and the 
modern glacial topography was formed mostly in course of the Late-
Weichselian glaciation. The thickness of the Quaternary cover, predominantly 
of tills, glaciofluvial and glaciolacustrine deposits, varies from less than 5 m in 
northern Estonia to more than 100 m in southern Estonia (Raukas & Kajak, 
1997).  
 
 

3.1. Environmental and climate change after 
termination of the Late-Weichselian glaciation 

 
During the Late-Weicshelian glaciation the Scandinavian Ice Sheet (SIS) 
reached the maximum extent (the last Glacial Maximum – LGM) in its south-
eastern sector (Valdai Heights in the Russian Plain) at ca. 20.0–18.0 cal kyr BP 
(OSL and calibrated 14C datings: Lunkka et al., 2001; OSL and calibrated 14C 
datings: Svendsen et al., 2004; 10Be ages: Rinterknecht et al., 2007, 2008). The 
territory of Estonia became deglaciated between ca. 14.7–12.7 14C cal kyr BP 
(Kalm, 2006). Following the ice decay, extensive ice-dammed lakes spread over 
the area. The Baltic Ice Lake was the biggest that developed in front of the 
receding ice sheet. Already at ca. 13.3 14C cal kyr BP the Baltic Ice  
Lake extended to the ice-free areas in current Latvia, Estonia and  
north-western Russia (Rosentau et al., 2009). Approximately at the same time 
(ca. 13.3–12.8 14C cal kyr BP) there was dry land in the Pandivere area 
(northern Estonia) and in southern Estonia according to palaeogeographical 
reconstructions of the Baltic Ice Lake (Rosentau et al., 2009). Saarse et al. 
(2009) and Amon & Saarse (2010) claim that the ice margin receded from 
northern Estonia even much earlier, at ca. 13.8 14C cal kyr BP. Over the low 
topography western Estonia the Baltic Ice Lake extended much longer, until 
between 12.3–11.6 14C cal kyr BP. Because of the mutual connections via a 
system of straits in central Estonia the Baltic Ice Lake had initially the same 
water level as the Glacial Lake Peipsi and Võrtsjärv. These strait systems were 
closed at ca. 12.8–11.7 14C cal kyr BP, prior to the final drainage of the Baltic 
Ice Lake due to the isostatic uplift (Rosentau et al., 2009). Glacial Lake Peipsi 
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became isolated from the Baltic Ice Lake at ca. 12.4–11.7 14C cal kyr BP and 
Glacial Lake Võrtsjärv at ca. 12.4–12.0 14C cal kyr BP (Rosentau et al., 2009). 
In general, the topographically higher the lake basin, the earlier it got isolated 
from the local ice lakes or from waters of the Baltic Ice Lake. 

At the time of LGM the climate was extremely dry and cold, the mean 
annual temperature along the eastern margin of the SIS was below –6º C, but a 
sharp climatic turnover to warmer summers started around 15.0 14C cal kyr BP 
(Hubberten et al., 2004). The climate, however, remained very dry, with cold 
winters. At the LG/Holocene transition the mean annual temperature increased 
rapidly (ca. 5º C) and summer lake-water temperature increased to ca. 12º C in 
northern Europe (Hammarlund et al., 1999). At ca. 12.5 14C cal kyr BP climate 
become more humid and general degradation of permafrost started, accompa-
nied by a change from tundra-steppe into wet tundra and forest tundra (Hubber-
ten et al., 2004). During the LG climate fluctuated toward colder and warmer 
episodes, as registered in the oxygen isotope records of ice-cores from 
Greenland (Lowe et al., 2008). Transitions from cold to warm periods are 
considered as rapid events (von Grafenstein et al., 1999). In multi-millennial 
time-scales the main factors that affect the Holocene climate change are related 
to orbital forcing (changes in obliquity, precession and eccentricity), which 
involves re-distribution of solar energy, both seasonally and latitudinally. 
Climatic oscillations are reflected in changes in the Holocene lake levels, in the 
oceanic thermohaline circulation, and in freshwater flows from proglacial lakes 
during the final stage of deglaciation (Bradley, 2005).  

Climate reconstructions from northern Europe (Heikkilä & Seppä, 2003) 
show cold climate at the beginning of the Early Holocene (annual mean 
temperature –3–0° C). However, the reconstruction of mean annual temperature 
suggests a very rapid but steady warming from ca. 10.7–9.0 14C cal kyr BP 
onwards, to the Holocene Thermal Maximum (HTM) at 8.0–4.5 14C cal kyr BP 
(Heikkilä & Seppä, 2003; Seppä & Poska, 2004; Antonsson et al., 2008; Seppä 
et al., 2009). The Early Holocene has been suggested as the most oceanic 
climate period, but probably with a high variability in temperature in northern 
Europe (Giesecke et al., 2008). In northern Europe at the earlier part of the 
HTM the mean annual temperature was 2.0–2.5° C higher than at present and 
July temperature values were 1.5° C higher than today (Seppä et al., 2009). The 
climate trend from the moist Early Holocene towards a dry and warm Middle 
Holocene was caused by a changing atmospheric circulation together with 
summer anticyclonic circulation that dominated during the Middle Holocene 
(Antonsson et al., 2008).  

The Early Holocene warming was interrupted by short-term coolings at ca. 
10.3–9.3 and ca. 8.6–8.2 14C cal kyr BP (the so-called 8.2 kyr event) (e.g. von 
Grafenstein et al., 1998; Barber et al., 1999; Björk et al., 2001; Seppä & Poska, 
2004; Rohling & Pälike, 2005; Hammarlund et al., 2005; Lowe et al., 2008). In 
annually laminated lake sediments in southern Estonia pollen and vegetation 
response to the short cool period was recognized at 8.4–8.08 cal 14C kyr BP 
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(Veski et al., 2004). The “8.2 kyr event” appears to have been generally cool 
over much of the Northern Hemisphere, where large ice sheets were still 
present, as evidenced by major ice rafting, strengthened atmospheric circulation 
over the North Atlantic and Siberia. At least one large pulse of glacier melt 
water into the North Atlantic probably enhanced production of sea ice, 
providing an additional positive feedback on climate cooling (Mayewski et al., 
2004). The melt water flooding events could have induced decrease in the 
oceanic thermohaline circulation (Magny, 2007).  

After the HTM, at about 4.5 14C cal kyr BP the mean annual temperature 
clearly drops in northern Europe (Heikkilä & Seppä, 2003; Seppä & Poska, 
2004). The cooler anomalies occurred at 3.8–3.0 and 0.5–0.1 14C cal kyr BP and 
were associated with increasing humidity over northern European mainland, 
consistent with the correlation between cold and humid/warm and dry modes of 
summer weather in the region as a result of variations in the oceanic and 
atmospheric circulation in the North-Atlantic–North-European region (Seppä et 
al., 2009). Thus, the Late Holocene experienced a humid and variable climate 
(Hammarlund et al., 2003).  

 
 

3.2. Biotic response to environmental changes  
in lacustrine systems 

 
Lakes have fluctuated in size in response to climatically induced changes in the 
hydrological regime, including precipitation/evaporation balance over the 
catchment system of the lake. Water-level fluctuations affect space and habitat 
availability, water chemistry, stratification, and mixing regimes (Jones & 
Jordan, 2007). A transect running down-slope and offshore from the shoreline 
reveal a change in habitat and lake organisms. In the photic, shallow littoral 
zone, high rates of photosynthesis can normally be supported and a high 
diversity of organisms is encountered. Near the shoreline emergent macrophytes 
are often present, either attached to the substrate or floating nearshore, forming 
a substrate for attached or crawling organisms (Cohen, 2003). Changes in lake 
level will have an effect on the spatial distribution of littoral macrophytes, 
which is primarily a function of light intensity and water depth. In the 
sublittoral zone, light penetration is reduced, and large macrophytic plants are 
absent, but lower levels of benthic primary production may persist from algal or 
bacterial growth (Cohen, 2003). As one begins to move away from the littoral 
zone with the increasing water depth, the submerged/floating macrophytes 
increase in importance; they are replaced in the deeper sublittoral zone by low-
light taxa (e.g. Chara). With increase in lake level the marginal taxa will 
steadily be replaced by deep-water taxa (Jones & Jordan, 2007). In the aphotic, 
profundal zone the food resources are provided through secondary productivity, 
by settling detritus and microbial food resources. In this environment, variation 
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in species abundance and diversity is driven by currents and nutrient availability 
(Cohen, 2003).  

Lacustrine ecosystems are controlled by the quantity and periodicity of the 
water resource, lake size, depth, basin origin and climate. Water levels in 
shallow lakes fluctuate intra- and interannually depending on regional climatic 
conditions (Coops et al., 2003). Phases of higher lake level coincide with an 
increase in annual precipitation, a decrease in summer temperature and a 
shortening of the growing season. Periods of low lake level correspond to a 
decrease in annual precipitation, an increase in summer temperature and a 
longer growing season (Magny, 2007). The period with higher temperatures 
characterizes low water levels and dry climate. Low temperatures at the 
beginning of the Early Holocene were associated with high water levels, 
whereas low water levels and dry conditions prevailed during the following 
period of high temperatures due to high summer evapotranspiration and lower 
precipitation in northern Europe (Hammarlund et al., 2003; Antonsson et al., 
2006; Antonsson & Seppä, 2007). The response to increasing temperatures at 
the end of the LG and the beginning of the Holocene was immediate in the lakes 
and their catchments. Many organisms that were present expanded their 
populations within a year or two and cold-preferring species became extinct 
(Birks et al., 2000). The aquatic ecosystem development during the LG and 
Early Holocene showed that the large LG biotic changes were synchronous, and 
were driven by the overriding forcing factor of temperature. Later, in the Early 
Holocene the changes were more gradual and more independent of each other, 
showing that other factors become important, such as the dissolved and 
particulate material from the catchment, base and nutrient status of the lake 
water, and internal process of ecosystem succession and sediment accumulation. 
The lake biota does not depend only on regional climatic conditions, but also on 
changes in the lake catchment and on internal processes within the lake (Birks 
et al., 2000).  

As the lake basin in-fills with sediments, its volume is decreased and, with a 
constant total loading of nutrients, it becomes increasingly eutrophic. The 
increase in trophic condition of a lake is a slow and natural process in 
geological history of a lake. Eutrophication likewise increases the rate of 
sedimentation in the basin. Lakes also become overgrown from the shoreline 
and in shallow shore regions emergent macrophytes (reeds, rushes) accumulate 
nutrients that contribute to natural eutrophication (Lampert & Sommer, 2007). 
The rise in trophic status often coincides with elevated temperatures that are 
known from the period of HTM (Andersson, 2010 and references therein).  

In general, also sediment structure and composition refers to water level 
changes in the lake; coarser minerogenic deposits correspond to shallower water 
and higher hydrodynamics. Organic sediments such as gyttja and peat 
characterize shallow water or late stages of lake infilling. Low lake water levels 
often correspond to an escalation of peat and organic detritus deposition in the 
near-shore areas. Water high-stand periods are characterized by inwash and 
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accumulation of predominantly minerogenic sediments. Sediments deposited 
during the Early Holocene or earlier often have a more offshore and deeper 
stratigraphic position in a lake than the younger ones (Magny, 2007).  

The coarser fractions of tufa consist mainly of various carbonate concretion 
morphotypes of biochemical origin (from bacterial activity) associated with the 
photosynthetic activity of aquatic plants (Pedley, 1990; Viles & Goudie, 1990; 
Magny, 2007). Over much of Europe the tufa started to form during the LG or 
at the beginning of Holocene and deposition was widespread roughly between 
11.0–4.0 14C cal kyr BP (Goudie et al., 1993; Griffiths & Pedley, 1995; Baker 
& Simms, 1998; Dramis et al., 1999; Garnett et al., 2006; Pentecost, 2005). 
Tufas accumulated during the Holocene within the geographical area of the last 
glaciation (Hammarlund et al., 2003; Gedda, 2006; Diefendorf et al., 2006), as 
well as outside of it (Kele et al., 2003; Dramis et al., 1999; Andrews et al., 
2000).  

 
 

3.3. Climatic conditions and post-glacial history  
of lake basins in Estonia 

 
Estonia is located in the northern Europe on the eastern coast of the Baltic Sea 
between 57–60° N. It represents a transition zone from the maritime climate 
type on islands to the continental one in East Estonia. In spite of its 
comparatively small area, climatic differences in the territory of Estonia are 
large, especially during the winter (Jaagus, 1997). The annual air temperature 
oscillations are affected by the Atlantic Ocean, the North-Atlantic stream, and 
the dominant westerly winds that bring moist air masses to continent. In western 
Estonia the climate is maritime type and the mean January air temperature is –
3.5° C and in July it is +16.5 – +17° C. In eastern Estonia in January the mean 
air temperature is –6 – –6.5° C and in July +16.5° C. The annual mean 
precipitation in western Estonia is 550–350 mm and in eastern region 650–700 
mm (Saarse et al., 1996; Jaagus, 2002). 

In Estonia modern lake basins started to form after the last deglaciation. At 
present there are about 1500 small lakes (surface area less than 10 km2) in 
Estonia and most of them are shallow, less than 10 m deep. Many small lakes 
are lost completely or partially as a result of intensive sedimentation and the 
lowering of lake levels. The water level normally fluctuates 1–2 m annually. 
The catchment areas of lakes are small and therefore the resistance time is long 
(water changes 2–4 times annually). Estonian lakes are dimictic, in April and in 
October the water masses mix and the water temperature over the water column 
is +4° C. In very shallow lakes (< 5 m) the temperature of water column is 
almost uniform during ice-free seasons: the difference between surface and 
bottom temperatures is only a few degrees. Thermal stratification occurs in deep 
lakes and difference reach ca. 20º C. Mid-summer surface water temperatures 
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are between +19º C and +29º C, but the near basin floor the temperature is only 
ca. +4º C. Water transparency is ca. 1.5–3.0 m in small lakes, but some “hard-
water” lakes are transparent to the basin floor (e.g. ca. 8 m in Lake Äntu 
Sinijärv). Higher concentrations of chloride ions occur in coastal lakes 
(Mäemets & Saarse, 1995). Modern small lakes in Estonia have high biological 
productivity (Mäemets, 1977).  

Most basins of small lakes are of glacial origin and glacigenic bottoms 
sediments (predominantly glaciolacustrine silt and clay) are covered with post-
glacial lacustrine sediments. In sediment sequences the transition from 
glaciolacustrine to lacustrine deposition is marked by the end of varved clays 
layers and the onset of lake silts and clays with low values of organic matter and 
with plant remains (Pirrus & Saarse, 1978). LG silts, sands and clays, and 
Holocene gyttja, tufa and peat hold information on vegetation history and 
climate change. Pollen data from the oldest LG lake sediments indicate dry 
periglacial climate and peaky flora. The LG climate warming and permafrost 
decline resulted in trees with wide ecological preferences and aquatic plants 
started to spread in lakes. Climatic cooling at the end of LG caused a re-
appearance of tundra floral assemblages (Mäemets & Saarse, 1995). Lakes were 
oligotrophic during the LG in Estonia (Mäemets & Saarse, 1995). 

Infilling and overgrowing processes have gradually reduced the number and 
volume of lakes, although new isolated water bodies formed from former 
lagoons and bays of the Baltic Sea due to the land uplift in north-western and 
western Estonia (Kessel, 1968; Saarse, 1997). Lakes in the Saadjärve Drumlin 
Field are glacial in origin, resulting from a combination of glacial depression 
and erosion. These lakes were submerged by a proglacial lake, but when the 
threshold of the proglacial lake was freed of ice, the water level dropped and 
independent development of the inter-drumlin lakes started. These lakes are 
elongated in direction of ice movement and contain LG sediments (varved 
clays, silts, silty clays, fine sand) and Holocene deposits (gyttja, tufa) (Saarse, 
1997). 

Intensive tufa formation took place in the Pandivere Upland, and 
surroundings of the Saadjärv Drumlin Field (Mäemets & Saarse, 1995). The 
tufa is variable in its properties; mostly it comprises a light beige calcareous 
mud, laminated or massive and unstratified. It contains macro remains of plants 
or invertebrate subfossils, such as molluscs and gastropods. The tufa formation 
was extensive during the Early and Middle Holocene (Männil, 1967) and was 
later replaced by accumulation of organics in Estonia (Mäemets & Saarse, 
1995).  

In Estonia the most pronounced lowering in lake level occurred ca.  
10.2–8.9 14C cal kyr BP and ca. 4.5–3.5 14C cal kyr BP. Lakes were at the 
highest levels about 10.7, 7.8 and 3.2 14C cal kyr BP (Saarse et al., 1995). Low 
water level periods were characterized by dryer climatic conditions. Wetter 
conditions occurred at the beginning of Early and Middle Holocene (Saarse, 
1997). 
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4. MATERIAL AND METHODS 
 
The sedimentary material that served as the source of palaeoenvironmental 
information for this PhD project originates from five lacustrine sections. 
Sediment cores were taken from sites using a Belorussian-type corer in ice 
(winter) or from lake margins (summer). The ostracod fauna recovered reflects 
the development of lacustrine environments in northern (Sinijärv, Varangu), 
eastern (Elistvere, Pedja) and western (Ermistu) Estonia (Fig. 1) through the LG 
and the Holocene. In the interpretations and discussions herein all available data 
on the ostracod distribution in the Quaternary sediments of Estonia (Niinemets 
& Hang, 2009; Saarse et al., 2009; Rattas et al., 2010) has also been taken into 
account.  
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Fig. 1. Location of studied Quaternary sections in Estonia comprising ostracod data:  
1 – Lake Sinijärv (Paper I), 2 – Varangu (Papers III, IV), 3 – Lake Elistvere (Paper II), 
4 – Pedja (Early Holocene Lake Võrtsjärv) (Paper II), 5 – Lake Ermistu (Paper II),  
6 – Lake Pikkjärv (Sohar, 2004), 7-9 – Lake Peipsi (Niinemets & Hang, 2009),  
10 – Haljala (Saarse et al., 2009), 11 – Arumetsa (Rattas et al., 2010). 

 

4.1. Overview of the lakes and sections studied 
 
Lake Sinijärv is located on the southern slope of the Pandivere Upland in 
northern Estonia (59º03´45´´ N, 26º14´24´´ E), where Ordovician and Silurian 
limestones are covered with tills and glaciofluvial gravels of various thickness 
(3–15 m). Zones of tectonic dislocations and the frequent occurrence of 
fractures in the limestone bedrock have facilitated the occurrence of karst 
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processes in this region. Many groundwater-fed springs therefore flow out of 
the upland slopes and result in paludification. These springs have good water 
yield (100–1000 l/s), and normally the amount of total dissolved matter is  
0.3–0.4 g/l. The annual average precipitation in the region is ca. 700 mm/yr 
(Arold, 2005). 

The basal part of the 480 cm long sediment core from Lake Sinijärv (Fig. 2) 
comprises grey, clayey silt, overlain by (at depth 475–434 cm) a layer of 
massive gyttja. The remainder of the sequence (434–0 cm) is composed of 
freshwater tufa, in some levels rich in fragments of aquatic mosses (intervals 
219–164 cm and 70–0 cm). The tufa interval at 379–340 cm depth is Fe-rich 
and the fresh light tufa turns to a reddish-brown colour upon oxidation in air.  

Lake Elistvere is located in eastern Estonia, in the Saadjärve Drumlin Field. 
Lake basins developed in the Saadjärve Drumlin Field as a result of the 
drumlinization of glacial and glaciofluvial deposits distal to the Pandivere 
(bedrock) Upland. The retreat of proglacial lakes from the Saadjärve Drumlin 
Field has left only small isolated lakes in the inter-drumlin depressions 
(Rosentau et al., 2007). Deposition of LG varved clays, silts, silty clays, fine 
sand was followed by deposition of Holocene sediments (gyttja, tufa) in 
variable thickness (Saarse, 1997). According to pollen data (Pirrus, 1983), 
accumulation of the tufa started in the lake basin in the Early Holocene.  

Lake Elistvere was cored from the near-shore paludal area (58º35´12´´ N, 
26º40´54´´ E). The 350 cm long sediment section starts with silt and fine sand 
(350–325 cm) which is covered by a thin layer of gyttja (325–321 cm). The 
latter is overlain by an 82 cm thick (321–239 cm) tufa layer and the uppermost 
239 cm of the sediment column consists of peat (Fig. 2).  

The Pedja drill core, taken from the Laeva bog in east-central Estonia 
(58º30´22´´ N, 26º 16´2´´ E), contains lacustrine sediments that reflect the early 
history of Lake Võrtsjärv. Lacustrine development at the site lasted until the 
water level lowered and shallow marginal areas (including the Pedja site) were 
overgrown and turned into a peat bog. Three sedimentary units are present in 
the core from the Pedja site (Fig. 2): homogenous LG sand and silt  
(750–730 cm), a layer of tufa (730–583 cm) and a thick peat complex  
(583–0 cm). The area of Lake Võrtsjärv was larger at the beginning of 
Holocene than that of the contemporary lake (Moora & Raukas, 2004). The 
Pedja core was not dated, however, according to palynological data, the 
calcareous deposits formed during the Early Holocene age continue into the 
Middle Holocene (Moora & Raukas, 2004). Pronounced water level decrease 
took place ca. 7.7 14C cal kyr BP (Moora et al., 2002).  
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Fig. 2. Lithostratigraphy of studied sequences with positions and ages of radiocarbon 
dated samples. 
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Lake Ermistu in western Estonia represents the type of lake which formed 
from former lagoons and bays of the Baltic Sea, due to land uplift in the north-
western and western parts of Estonia (Kessel, 1968; Saarse, 1997; Veski, 1998). 
Sediment core (58º21´18´´ N, 23º58´45´´ E) was taken from the shore of Lake 
Ermistu. The sediment sequence consists of six distinct layers (Fig. 2): sand 
(615–598 cm), peat (598–588 cm), silty calcareous gyttja (588–546 cm), sand 
(546–523 cm), tufa (523–384 cm), dark greenish-brown gyttja (384–80 cm) and 
peat (80–0 cm). The pollen record in Lake Ermistu has been carefully analysed 
(Veski, 1998); the lower peat layer accumulated at ca. 10.5 14C cal kyr BP when 
the lake basin was isolated due to isostatic uplift. 

The Varangu core section (59º02´17´´ N, 26º07´10´´ E) represents an old, 
desiccated groundwater-fed lake, located on southern slope of the Pandivere 
Upland in northern Estonia. The core was taken from the eastern edge of a tufa 
pit that covers a large part of the tufa area in the former lake. The lowermost 
part of the core has dark grey silty clay (333–293 cm) which is overlain by a 
thick bed of tufa (293–28 cm). The topmost part (28–0 cm) of the sequence 
comprises a soil layer (Fig. 2). 
 
 

4.2. Methods 
 
The general stratigraphy and sedimentary characteristics of the cores were 
documented on site. The core sections were then wrapped in plastic film, for 
making analyses in the laboratory. The 5 cm diameter core was divided into 1 to 
5 cm thick sediment slices (ca. 5–50 cm3) for ostracod analyses, while parallel 
cores were used for radiocarbon dating and for loss-on-ignition (LOI) 
estimation. Sediment slices for ostracod analyses were wet-sieved (using 50 μm 
or 63 μm sieves) and dried at a room temperature. From the dry sediments 
ostracod subfossil valves and carapaces were picked with a wet paintbrush 
under an Olympus stereomicroscope. Adult and juvenile ostracod valves and 
carapaces were stored in micro-slides.  

Generally, the preservation of the ostracod subfossils was sufficient for 
identification, which was based on valve morphology such as shape, size, 
morphology of the adductor muscle field and the hinge and free margin, and 
also dimorphic features and sculpture (Fig. 3). Ostracod species identification, 
species nomenclature and basic ecological interpretation are mainly based on 
Meisch´s monograph (2000). Subfossil material from Estonia was compared to 
and verified against British Quaternary ostracod collections in Natural History 
Museum in London, UK.  
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Fig. 3. Morphology of ostracod carapace used in identification of subfossil taxa.  
A – lateral view of carapace, B – dorsal view of carapace, C – internal view of carapace. 
 
 

Juvenile material was not identifiable in every case and was classified as 
Candonidae spp., although it may actually belong to several ostracod species. 
Absolute numbers of ostracod species in the samples is given in the distribution 
diagrams. Carapaces and valves of juveniles as well as the adults were counted 
as specimens. The ratio of adult/juvenile specimens was also estimated.  

To calculate the biodiversity of an ostracod community, the Shannon-Wiener 
index (H´) was used: 
 

H´=–Σpilnpi , 
 
where pi represents the proportion of each species in the sample. The Shannon-
Wiener index is dependent not only on the relative abundances of specimens, 
but also on the number of taxa (Hammer & Harper, 2006). 

All identified ostracod species were imaged by scanning electron 
microscopy (SEM). Specimens were mounted on SEM plates, cleaned with a 
paintbrush, and covered with thin layer of cold or platinum in vacuum. SEM 
was undertaken at the Centre of Material Research at Tallinn University of 
Technology, at the Department of Geology, University of Tartu, Estonia, and at 
the Natural History Museum, London, UK.  
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Fig. 4. Age-depth models of sedimentation in lakes Elistvere, Varangu, Sinijärv and 
Ermistu (Papers I–III). 
 

For isotope analysis of ostracod calcite, the specimens were rinsed with 
distilled water to remove the sediment matrix. Whole carapaces were opened to 
clean the inside surface of valves. Stable isotopic analyses from ostracod and 
tufa carbonate were performed at the Iso Analytical Ltd. Laboratory, UK with 
precision better than 0.3‰ for 18O and better than 0.2‰ for 13C.   

The loss-on-ignition (LOI) analyses were performed at the Department of 
Geology, University of Tartu, Estonia. The organic content of the sediment was 
estimated by LOI at 500° C and carbonate content from LOI between 500° and 
1000º C multiplied by 2.27, after Gedda (2001). 

The AMS 14C dates were obtained at the Poznań Radicarbon Laboratory, 
Poland and conventional 14C datings in the Radiocarbon Laboratory of the 
Department of Geology, University of Tartu, Estonia. The OxCal v3.10 and 
v.4.0 programmes (Bronk Ramsey, 1995, 2001) were used for calibration of 
radiocarbon ages. The dates in this thesis are expressed as 14C cal kyr BP.  

In this thesis the LG and Holocene stratigraphy of Estonia follows the 
stratigraphic scheme of Kukk et al. (2000), while the ages of major stratigraphic 
boundaries were calibrated and expressed as mean values of calibration ranges 
(Early to Middle Holocene, 11.7–8.8 14C cal kyr BP; Middle to Late Holocene, 
between 8.8 and 2.6 14C cal kyr BP). 

If not directly dated, the age-boundaries of sedimentary units or ostracod 
assemblages were derived from age-depth models that were derived separately 
for each dated section (Fig 4; Papers I, III, IV). 
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4.3. Characteristic features of ostracod assemblage  
as environmental indicators 

 
Reconstruction of past environmental conditions based on the composition of 
ostracod subfossil assemblages requires knowledge of the ecological 
preferences of recent ostracod species. Ostracods are capable of rapidly 
invading newly available habitats with suitable environmental conditions. 
Environmental factors control the distribution of ostracod species and, 
accordingly, certain indicator species can infer particular environmental 
conditions.  
 
 

4.3.1. Environmental indication from taphonomic features 
 
The validity of any palaeoenvironmental reconstruction based on subfossil 
assemblages depends on knowledge of the relevant taphonomy. If the subfossils 
have been transported from elsewhere, the reconstruction may be invalid unless 
that fact is taken into account (Holmes, 1992). Ostracod subfossils behave 
sedimentologically like sand grains. Because of their relatively large size and 
mass their down-slope transport can result in considerable mixing of littoral and 
profundal species in lakes wherever there are relatively steeply sloping lake 
floors. Ostracods are preserved in sediments as carapaces, isolated valves or 
fragments. The presence of ostracod carapaces infer rapid burial processes 
beneath sediments, avoiding excess scavenger or bacterial activity and oxygen 
levels that might decompose the weak hinges of the carapace (De Deckker, 
1988). Predominantly disarticulated valves in sediments perhaps infer a slow 
sedimentation rate and thus slow burial and isolation of the ostracod subfossils. 
After death of an ostracod, the carapace opens eventually and decomposes due 
to microbial activity (Danielopol et al., 1986). 

If only adult specimens are present in a subfossil assemblage, it suggests 
possible post-mortem reworking of sediments, and sorting of the ostracod 
subfossils in a higher energy environment. Occurrence of both adult and 
juvenile specimens infers lower energy conditions and thus is likely to be an 
autochthonous ostracod assemblage (Whatley, 1988; Holmes, 1992; Griffiths & 
Holmes, 2000; De Deckker, 2002). Subfossil fragments in sediments refer to 
post-mortem redeposition or even destruction due to coring procedure. 

Ostracods are taxonomically complex and sensitive environmental indicators 
and they are found in most alkaline sediments that are usually deposited under 
oxic conditions. Because of their calcitic exoskeleton ostracod subfossils are 
poorly preserved in even mildly acidic bodies of water. Dissolution of ostracod 
valves also occurs in organic-rich sediments (gyttja, peat) due to reduced pore 
water pH, resulting from oxidisation of organic matter (De Deckker & Forester, 
1988; Holmes et al., 1998).  

9
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Subfossil ostracod valves may become dark brown or black if anoxic 
conditions prevail in sediments after the death of the ostracods (De Deckker, 
1988). Ostracod valves that have been buried to great depth and undergone 
pressure and temperature changes appear grainy and normally transparent 
valves may become coloured. Evidence of biological corrosion, micro-borings 
and holes of microborers (bacteria or fungi) may be present on the surface of 
subfossil ostracod carapaces and valves (Danielopol et al., 1986).  

 
 

4.3.2. Water depth indication from ostracod data 
 
Water level variation in a lake can affect the littoral fauna, which has to adapt to 
the changes and migrate to suitable depths. This applies to ostracods, and it is 
possible to reconstruct changes in water depths from ostracod assemblages in 
lake sediment sequences. Ostracods can be grouped into species that occur in 
shallow lacustrine waters and vegetated littoral zones of lakes and ponds, and in 
those of deeper water (Löffler, 1997; Griffiths & Holmes, 2000). The 
distribution of ostracod species is closely dependent on the distribution of 
macrophytes, especially charophytes (which may be related to water depth), on 
the chemical composition of the bottom waters, and on the types of sediment 
present (Griffiths & Holmes, 2000). Mourguiart et al. (1986) showed that the 
deepest parts of lakes with organic-rich sediments may lack ostracods, but areas 
less than 10 m deep with carbonate rich sediments and charophytes are very rich 
in ostracods (e.g. C. vidua, Darwinula sp., H. reptans).  

In Europe, the most typical deep-water fresh-water ostracod species are C. 
lacustris, C. candida, C. neglecta, L. sanctipatricii, L. mirabilis (inhabiting 
waters >12 m deep) and F. protzi, that dominates in profundal zones, often 
together with C. ophtalmica (Griffiths et al., 1993; Griffiths & Holmes, 2000; 
Namiotko et al., 2006; Namiotko & Martins, 2008; Mischke et al., 2010). 

Analysis of the relationship between water depth and subfossil ostracod 
assemblages showed that L. inopinata occurs only in shallow water less than  
10 m deep (Mischke et al., 2010). The occurrence of C. ovum, H. reptans and 
P. villosa indicate very shallow waters only a few meters deep (Scharf et al., 
2005). The distribution of P. rostrata is often associated with submerged 
vegetation in the littoral zone of lakes and C. vidua is usually associated with 
Chara mats. Margins of meso-eutrophic lakes also harbour strongly phytophilic 
species, notably M. cordata. The shallower parts of oligo-mesotrophic lakes are 
often inhabited by D. stevensoni, which infers water depth less than 8 m (more 
often even less than 3 m) deep (Meisch, 2000; Griffiths & Holmes, 2000).  
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4.3.3. Indicators for change in temperature  
and oxygen regime 

 
The knowledge of the temperature and oxygen requirements of particular 
ostracod species and its application in climate and lake level studies has become 
increasingly important. Most ostracod species have upper and lower limits of 
temperature tolerance and the presence and abundance of particular species 
reflects the temperature regime of a locality. In shallow lakes, which are 
thermally coupled to the atmosphere, ostracod subfossil records may also 
provide information on past air temperatures (Griffiths & Holmes, 2000). 

A number of ostracod species prefer cool conditions for their life cycles and 
reproduction. C. lacustris is restricted to cool environments, as is L. sancti-
patricii, L. mirabilis, I. bradyi, C. candida, F. levanderi and F. protzi.  
C. candida, F. protzi, L. sanctipatricii and C. ophtalmica are even found in 
Arctic freshwaters (Löffler, 1997; Wetterich et al., 2008; van der Meeren, 
2009). C. lacustris is a cold water species whose presence can infer a 
Pleistocene age for the host sediments, and the presence of L. sanctipatricii 
most likely refers to the early stage in lake development during the LG when 
the summer temperatures were mostly below 10–15º C (Löffler, 1997). 

The abundance of M. cordata is related to temperate conditions and its 
appearance refers to the transition from the LG to the Holocene, and an 
associated remarkable temperature rise (Meisch, 2000, Griffiths & Evans, 
1995).  

Some ostracod species have well defined requirements for dissolved oxygen 
content in the waters they live in. A few species need well oxygenated water for 
their life cycle (e.g. C. lacustris; Newrkla, 1985; Geiger, 1993) but others, like 
for example M. cordata, can survive at very low dissolved oxygen concent-
rations brought along by eutrophication (Danielopol et al., 1996; Meisch, 2000; 
Griffiths & Holmes, 2000). C. ophtalmica may survive in hypoxic waters with 
high CO2 concentrations and it may occupy greater depths in a lake (Martín-
Rubio et al., 2005).  
 
 

4.3.4. Indicators of trophic conditions 
 
Ostracod assemblages may be sensitive to variations in the trophic status in 
lacustrine systems, as reflected in changes of assemblage structure. Onset of 
natural eutrophication is normally caused by warm and humid climate periods. 
Eutrophication may also result from increased input of allochthonous organic 
material and nutrients (Löffler, 1997).  

L. mirabilis, which often co-exists with C. lacustris, clearly prefers oligo-
trophic environments and its abundance decreases as the lake turns eutrophic 
(Meisch, 2000). Nowadays, also, intensive human impact may cause the 
disappearance of these species (Löffler, 1997; Meisch, 2000; Belis et al., 2008). 
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The presence of D. stevensoni may infer shallow oligo-mesotrophic lakes with 
no vegetation in marginal zones (Ranta, 1979; Belis et al., 2008). The presence 
of M. cordata infers some higher degree of trophic conditions in the areas 
where macrophyte masses and organogenic sediments dominate in shallow lake 
margins, and indicates dystrophy or ageing of a water body (Griffiths & Evans, 
1995; Meisch, 2000; Belis et al., 2008).  

The faunas described by Absolon (1973) typify ecological conditions in 
newly-formed water bodies: the “candida-fauna” refers to a oligotrophic and 
benthic environment; the “cordata-fauna”, on the contrary, typically characte-
rizes waters with higher nutrient load. Normally a water body develops through 
mesotrophy and eutrophy into dystrophy, and phytophilic ostracod species 
appear when wetlands are present (Griffiths, 2001). 

Scharf (1998) documented changes in the trophic status of the Lake 
Arendsee, Germany, where the oligotrophic lake turned to eutrophic because of 
sewage loading. This led to the disappearance of the oligotrophic ostracod fauna 
(e.g. C. lacustris, F. protzi), which was replaced by species (e.g. M. cordata,  
H. reptans, L. inopinata) more tolerant to higher trophic condition. 
 
 

4.4.5. Oxygen isotope composition of ostracod carapaces  
as an environmental indicator 

 
Water of the lakes that are predominantly fed on precipitation reflects the mean 
oxygen isotopic composition of the precipitation of the catchment area, which 
depends on air temperature. Therefore, the isotopic composition of ostracods 
from a lake provides a link to air temperature variation (von Grafenstein et al., 
1999). During evaporation, water vapour becomes enriched in the lighter 
isotope 16O and the residual water becomes enriched in the heavier isotope 18O 
(Leng & Marshall, 2004). During precipitation, the heavier isotope condenses 
first and is enriched in rain and snow, and the cloud moisture is subsequently 
depleted in 18O as rain out continues. The factors that affect the isotopic 
composition of water in the lake are evaporation, which changes with relative 
humidity, temperature, wind stress, lake surface area and water residence time 
(Schwalb, 2003). Decreasing lake volume in a relatively dry climate leads to 
enrichment in 18O due to increased evaporation/inflow ratio and atmospheric 
equilibrium. Intervals of humid climatic conditions increased lake volume and 
rise, and cause depleted isotopic ratios (Hammarlund et al., 2003).  

Ostracod carapaces provide a source of calcite for oxygen isotopic analyses 
and are composed primarily of low-Mg calcite, which reflects the geochemistry 
of the host water body of the ostracod. Carapaces are formed using Ca2+ and 
HCO3 

– ions taken directly from ambient water at the time of carapace secretion, 
which is a rapid process as it lasts only a few hours (Turpen & Angell, 1971). 
As the ostracod carapace is secreted over a very short time and not built up 
incrementally then its composition is a time- and space-specific “snapshot” of 
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water composition. When information about the depth preferences and seasonal 
cycles of growth is known, the use of material of only one ostracod species 
allows very close constraints to be placed on timing and location of calcite 
formation (Griffiths & Holmes, 2000). Because of that the chemistry of 
ostracod carapaces is increasingly used to reconstruct the chemistry and the 
temperature of water in which they lived, with the ultimate aim of reconstruc-
ting past environmental conditions including effective precipitation, air 
temperature, changes in evapotranspiration ratio, lake water level or depth, 
atmospheric circulation and the carbon cycle of the lake and its catchment area 
(Holmes & Chivas, 2000; Ito et al., 2003). Heaton et al. (1995) emphasized the 
need for caution when using isotopic data from single ostracod valves in 
palaeoclimatic studies. They found large ranges of 18O/16O ratios among modern 
valves of the same species at the same time. Also, there is a systematic offset 
between 18O of valve carbonate compared to 18O expected for a theoretical 
calcite formed in isotopic equilibrium (von Grafenstein et al., 1999; Ito et al., 
2003). Stable isotope record from lacustrine ostracods can be used to estimate 
temperature oscillations throughout the LG and Holocene in Europe as shown 
by Von Grafenstein et al. (1994), Anadon et al. (2006), Hammarlund (1999), 
Schwalb et al. (1994), Garnett et al. (2004) and many other researchers.  
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5. RESULTS 
 
Altogether 30 freshwater ostracod species (10 genera), represented by some 28 
000 specimens, were identified in the Quaternary deposits in Estonia (Table 1). 
Most of them are also known from the recent freshwater ostracod record in 
Estonia. Only two species, S. pseudobrowniana and L. mirabilis have not been 
documented from recent local faunas. These species are as follows (taxonomic 
scheme after Meisch, 2000): 
 
Phylum Arthropoda 
 Subphylum Crustacea Pennant, 1777  
  Class Ostracoda Latreille, 1806 
   Order Podocopida Sars, 1866 
    Suborder Podocopina Sars, 1866 
     Infraorder Darwinulocopina Sohn, 1988 
      Superfamily Darwinuloidea Brady & Norman, 1889 
       Family Darwinulidae Brady & Norman, 1889 
        Genus Darwinula Brady & Robertson, 1885 
         Species Darwinula stevensoni (Brady & Robertson, 1870) 
     Superfamily Cypridoidea s. str. Baird, 1845 
      Family Candonidae Kaufmann, 1900 
       Subfamily Candoninae Kaufmann, 1900 
        Genus Candona s. str. Baird, 1845 
         Species Candona candida (O.F. Müller, 1776) 
         Species Candona neglecta Sars, 1887 
        Genus Fabaeformiscandona Kristić, 1972 
         Species Fabaeformiscandona holzkampfi (Hartwig, 1900) 
         Species Fabaeformiscandona levanderi (Hirschmann, 1912) 
         Species Fabaeformiscandona protzi (Hartwig, 1898) 
        Genus Pseudocandona Kaufmann, 1900 
         Species Pseudocandona albicans (Brady, 1864) 
         Species Pseudocandona compressa (Koch, 1838) 
         Species Pseudocandona rostrata (Brady & Norman, 1889) 
         Species Pseudocandona sucki (Hartwig, 1901) 
        Genus Candonopsis Vávra, 1891 
         Species Candonopsis kingsleii (Brady & Robertson, 1870) 
       Subfamily Cyclocypridinae Kaufmann, 1900 
        Genus Cypria Zenker, 1854 
         Species Cypria exsculpta (Fisher, 1855) 
         Species Cypria ophtalmica (Jurine, 1820) 
        Genus Cyclocypris Brady & Norman, 1889 
         Species Cyclocypris laevis (O.F. Müller, 1776) 
         Species Cyclocypris ovum (Jurine, 1820) 
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      Family Ilyocyprididae Kaufmann, 1900 
       Subfamily Ilyocypridinae Kaufmann, 1900 
        Genus Ilyocypris Brady & Norman, 1889 
         Species Ilyocypris bradyi Sars, 1890 
      Family Cyprididae Baird, 1845 
       Subfamily Cypridinae Baird, 1845 
        Genus Cypris O.F. Müller, 1776 
         Species Cypris pubera O.F. Müller, 1776 
       Subfamily Eucypridinae Bronshtein, 1947 
        Genus Eucypris Vávra, 1891 
         Species Eucypris virens (Jurine, 1820) 
        Genus Tonnacypris Diebel & Pietrzeniuk, 1975 
         Species Tonnacypris estonica (Järvekülg, 1960) 
         Species Tonnacypris lutaria (Koch, 1838) 
       Subfamily Herpetocypridinae Kaufmann, 1900 
        Genus Herpetocypris Brady & Norman, 1889 
         Species Herpetocypris reptans (Baird, 1835) 
       Subfamily Scottiinae Bronshtein, 1947 
        Genus Scottia Brady & Norman, 1889 
         Species Scottia pseudobrowniana Kempf, 1971 
       Subfamily Cypridopsinae Kaufmann, 1900 
        Genus Cypridopsis Brady, 1867 
         Species Cypridopsis vidua (O.F. Müller, 1776) 
        Genus Potamocypris Brady, 1870 
         Species Potamocypris similis, G.W. Müller, 1912 
         Species Potamocypris villosa (Jurine, 1820) 
     Superfamily Cytheroidea Baird, 1850 
      Family Limnocytheridae Klie, 1938 
       Subfamily Limnocytherinae Klie, 1938 
        Genus Limnocythere s. str. Brady, 1867 
         Species Limnocythere inopinata (Baird, 1843) 
        Genus Limnocytherina Negadaev-Nikonov, 1967 
         Species Limnocytherina sanctipatricii (Brady & Robertson, 1869) 
        Genus Leucocythere Kaufmann, 1892 
         Species Leucocythere mirabilis Kaufmann, 1892 
       Subfamily Timiriaseviinae Mandelstam, 1960 
        Genus Metacypris Brady & Robertson, 1870 
         Species Metacypris cordata Brady & Robertson, 1870 
       Family Cytherideidae Sars, 1925 
        Genus Cytherissa Sars, 1925 
         Species Cytherissa lacustris (Sars, 1863) 
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Table 1. Quaternary and recent freshwater ostracod species in Estonia (Late-
Saalian/minerogenic sediments – ◊; late-glacial/minerogenic sediments – ■; late-
glacial/tufa – □; Holocene/minerogenic sediments – ●; Holocene/tufa – ○; recent – x). 
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Candona candida   ■ ■○ ○ ○ ●○ ○ ○ ○ x 
Candona neglecta        ○   x 
Candonopsis kingsleii       ○    x 
Cyclocypris cf. laevis   ■        x 
Cyclocypris ovum   ■ ■○  ○ ○  ○ ○ x 
Cypria exsculpta      ○ ○  ○ ○ x 
Cypria ophtalmica          ○ x 
Cypridopsis vidua   ■ ■○  ○ ○ ○ ○ ○ x 
Cypris cf. pubera         ○  x 
Cytherissa lacustris ◊ ■ ■ ○   ○   x 
Darwinula stevensoni    ○ ○  ○   x 
Eucypris cf. virens   ■        x 
Fabaeformiscandona 
holzkampfi  

    ○  ○ ○  x 

Fabaeformiscandona 
levanderi  

   ○  ●○   ○ x 

Fabaeformiscandona protzi     ■○  ○ ○ ○ ○ ○ x 
Herpetocypris reptans     ○ ○     x 
Ilyocypris bradyi  ◊   ○   ○   x 
Leucocythere mirabilis    ■   ●     
Limnocythere inopinata   ■ ■○  ○ ○ ○ ○ ○ x 
Limnocytherina sanctipatricii   ■  ○  ● ○   x 
Metacypris cordata      ○ ○ ○ □○ □○ x 
Potamocypris similis     ○     x 
Potamocypris villosa      ○    x 
Pseudocandona albicans         ○ x 
Pseudocandona compressa   ■       ○ x 
Pseudocandona rostrata       ○   ○ x 
Pseudocandona sucki        ○   x 
Scottia pseudobrowniana      ○      
Tonnacypris estonica       ●    x 
Tonnacypris cf. lutaria       ●    x 
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Quaternary ostracod remains were found in two types of sediments: 
lacustrine sandy silts and clay, and in freshwater calcareous mud (tufa). LG 
and/or Lower Holocene fine sand and silty clay are rich in ostracod subfossils 
while in coarse sand layers of the same age ostracods are absent. The richest 
and most abundant ostracod fauna was identified from the freshwater tufa 
layers. Ostracods were not found in organogenic deposits (gyttja), probably due 
to the dissolution of calcareous material.  

Ostracod subfossils occur as carapaces, valves, and valve fragments; 
dissolution marks were observed on some carapaces. In cases the ostracod 
remains were autochthonous, and therefore, enabled subsequent environmental 
interpretation. In the Early Holocene silty clay layer at Varangu only valves and 
a mixed assemblage occurred (Paper IV). Scavengers or transportation possibly 
disarticulated the ostracod shells post-mortem.  

In the tufa beds the abundance of whole carapaces was high, suggesting 
rapid sedimentation and burial. Juveniles were also well represented 
(adult/juvenile ratio ca. 70:30). In the Varangu tufa bed instars (A-8 or A-7) 
occur in subfossil carapaces of females of Metacypris cordata (Paper III). 

Within the ostracod material there is no evidence of recrystallization or 
deformation. Ostracod valves are mostly white or transparent. In an Fe–total rich 
sediment layer in Lake Sinijärv some ostracod specimens were brownish-red in 
colour. With regard to isotope studies ostracods from tufa were white or 
transparent and, thus, in a pristine condition and ideal for analysis (Paper III).  
 
 

5.1. Ostracod assemblages and environmental 
interpretations of the studied sequences 

 
The studied LG and Holocene sequences of Estonia represent sediments of 
small lakes of temperate area and ostracods preserved in these sediments reflect 
the past lacustrine environment (Papers I–IV). The ostracod fauna recorded is 
indicative of cool and temperate limnic freshwaters, no riverine (e.g. 
Cyclocypris serena, Cypria curvifurcata) or marine elements were recorded. 
Taxa which colonize temporary water bodes, like species of the genus Eucypris, 
where not recorded in the tufa layers, although it was found from LG 
minerogenic sediments. The LG and Holocene ostracod assemblage is typical of 
permanent still water bodies. However, presence of T. estonica and P. villosa 
suggests some influence of spring systems in Lake Varangu (Paper IV).  
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5.1.1. History of small lakes  
in Estonia inferred on ostracod data 

 
Lake Sinijärv (Paper I) 
Complete faunal history of ostracods throughout the Holocene is obtainable 
only from the Lake Sinijärv section (a 434 cm long tufa sequence). Continuous 
freshwater tufa precipitation in Lake Sinijärv, northern Estonia, started at ca. 
12.8 14C cal kyr BP and has continued up to nowadays. In total, 12 ostracod 
species were identified in the tufa. Silt and gyttja in the lowermost portion of 
the core section are barren of ostracod subfossils.  In the Sinijärv tufa sequence 
(Fig. 5A) the LG and Early Holocene (ca. 12.8–10.6 14C cal kyr BP), in the 
depth of 434–383 cm the assemblage composed mainly of M. cordata. Very 
few remains of C. candida and P. compressa are present. Evaporation likely 
exceeded precipitation, and groundwater level was low. The trophic level was 
high. The most significant change in the ostracod succession occurred at ca. 
10.6 14C cal kyr BP (at 383 cm), when a typical littoral, polythermophilic fauna 
(dominated by M. cordata) was replaced by a sublittoral, meso- to 
stenothermophilic ostracod fauna, suggesting water level rise and a shift toward 
meso- to oligotrophic conditions (F. protzi, C ophtalmica, P. compressa,  
P. albicans, C. exsculpta and C. ovum in the depth interval of 383–348 cm). 
This environmental shift suggests reduction of bottom spring feeding of the lake 
before ca. 10.6 14C cal kyr BP.  

Ca. 8.0–7.4 14C cal kyr BP new species in the ostracod assemblage was  
F. levanderi (in the interval of 348–225 cm). The number of species from 
previous assemblage decreased sharply which may colonize profundal areas 
(e.g. C. ophtalmica, C. exsculpta). Few remains of littoral species L. inopinata 
occurred in the interval also. The composition of the assemblage suggests 
lowered water level during this period. Middle and Late Holocene periods  
(6.6–0 14C cal kyr BP) were characterized by dominant species cold water 
preferring P. rostrata and F. protzi in the interval of 225–0 cm (F. levanderi 
disappeared at ca. 6.6 14C cal kyr BP in the interval of 225 cm). P. rostrata is 
related groundwater fed lakes, thus appearance of the taxa suggests increased 
water level as a result of intensive groundwater inflow to the lake.  

The ostracod fauna showed quite cold bottom conditions in the lake 
throughout the Holocene (F. levanderi, F. protzi, P. rostrata, C. candida). The 
highest diversity of ostracod fauna was between 10.6 and 8.0 14C cal kyr BP. 
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Fig. 5. Age, lithology, ostracod distribution and diversity index (H´) in the fossiliferous 
part of Sinijärv (A), Elistevere (B),  Pedja (C) sequences (Papers I, II). Legend see in 
Fig. 2. 
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Lake Elistvere (Paper II) 
In the Elistvere section, ostracod subfossil remains were recorded only in the 
tufa sequence (321–239 cm) (Fig. 5B). The dating shows the LG age of the 
basal beds of tufa (ca. 12.8 14C cal kyr BP). Altogether nine ostracod species 
were identified. With the tufa accumulation littoral ostracods populated the 
basin and M. cordata occurs together with C. vidua, C. ovum, L. inopinata in 
the tufa interval, suggesting the sampling area to represent a shallow lake 
margin with vegetation. Less common were L. inopinata, C. candida, 
Fabaeformiscandona holzkampfi, C. cf. pubera, F. protzi, C. exsculpta. The 
gradual increase of abundance of M. cordata suggests the lake level lowering, 
increase in ambient temperature and in trophic level. Datings suggest that the 
water level lowered and marginal zone of the lake paludified at ca. 10.2 14C cal 
kyr BP. The diversity index increases also upward in the section. 
 
 
Early Holocene Lake Võrtsjärv (Pedja section; Paper II) 
Ostracod remains were found in the tufa sequence only, and in total 12 ostracod 
species were recognised. The oldest ostracod assemblage in the fossiliferous 
part of the Pedja tufa section (from marginal zone of the Early Holocene Lake 
Võrtsjärv) in the interval of 735–721 cm is characterized by abundant C. 
candida, L. inopinata, C. vidua, C. ovum, F. holzkampfi, H. reptans, C. 
exsculpta, D. stevensoni, P. similis (Fig. 5C). Presence of this assemblage is 
indicative of a shallow mesotrophic lake with less vegetation in shore area of 
the lake. A shift in assemblage structure followed, and disappearance of L. 
inopinata, H. reptans, and D. stevensoni occurred. Changes in the ostracod 
assemblage may be related to rising water level (at 721–690 cm of tufa 
sequence). A new water level lowering occurred when M. cordata made its 
appearance (690–583 cm of sequence) co-occurring with C. candida, C. vidua, 
C. ovum, F. holzkampfi, C. exsculpta, F. protzi. The number of M. cordata 
increases gradually in the upper part of the sequence, but rest other species are 
rare. A gradual increase of abundance of M. cordata is likely due to a 
progressive eutrophication of the water body, the ancient Lake Võrtsjärv. In the 
tufa-peat transition zone M. cordata co-occurs only with S. pseudobrowniana 
and C. ovum and has a very high population density. As the peat accumulation 
started just above this level, the appearance of S. pseudobrowniana is 
apparently related to the transition of the marginal parts of the lake from the 
lacustrine to the wetland (peat-bog) stage.  
   
 
Lake Ermistu (Paper II) 
In the Ermistu core (Fig. 6A) ostracod remains occur only in (588–546 cm) the 
Early Holocene sediments and 12 ostracod species were found. In silty 
calcareous gyttja, remains of D. stevensoni, L. inopinata, C. candida, C. vidua  
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Fig. 6. Age, lithology, ostracod distribution, diversity index (H´) in the fossiliferous part 
of Ermistu (A) and Varangu (B) sequences (Papers II, IV). Legends see in Fig. 2. 
 
 
F. holzkampfi occur. The occurrence of this assemblage suggests cool oligo to 
mesotrophic (sub) littoral waters with the lack of vegetation ca. at 10.5–10.3 14C 
cal kyr BP. In the transition between calcareous gyttja and sand layer (546–523 
cm) very few carapaces and valves of L. inopinata, I. cf. bradyi, C. lacustris, 
and F. protzi occurred. In the sand interval D. stevensoni did not occur. It is 
noteworthy that L. sanctipatricii and C. lacustris, two species typical of 
oligotrophic cold-stenothermal environments, occur in this transgressive silty 
calcareous gyttja/sand interval. The sand layer is overlain by tufa (interval  
523–418 cm). In this layer M. cordata is dominating, occurring together with  
P. sucki, C. neglecta, I. bradyi, C. candida, F. protzi, L. inopinata. The highest 
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diversity in this section was recorded. This ostracod assemblage refers to the 
shallowest water level and a high productivity, lasting from ca. 10.1 14C cal kyr 
BP up to ca. 9.5 14C cal kyr BP. The ostracod fauna contains no indication of 
overgrowing of the area, which is present in the contemporaneous sediments of 
the Elistvere and Pedja sections. Although Lake Ermistu has a specific history, 
representing a former bay or lagoon of the Baltic Sea, it was exclusively 
characterized by freshwater ostracod fauna as documented from the Early 
Holocene, similarly to the shallow water bodies in eastern Estonia. 
 
 
Lake Varangu (Paper III, IV) 
From Varangu sequence (Fig. 6B) 15 ostracod species were identified. The 
Early Holocene silty clay contains (11.2–9.3 14C cal kyr BP; 330–293 cm) 
subfossils of C. candida, T. estonica, L. mirabilis, L. sanctipatricii, F. levan-
deri, and T. cf. lutaria. Occurrence of T. estonica, L. mirabilis, L. sanctipatricii 
suggest the formation of the silty clay layer took place in an oxygen-rich cool 
and oligotrophic profundal area of the lake, with a spring inflow to lake basin. 
Material of T. estonica is likely the first fossil record of this species worldwide 
(Paper IV). Appearance of only adult valves of ostracods and species from 
different habitats (e.g. crenophilous T. estonica and lacustrine L. sanctipatricii, 
L. mirabilis) suggest allochthonous and mixed assemblages in this sediment 
layer. The highest diversity occurred in this oldest ostracod assemblage in the 
sequence. 

In the tufa layer above silty clay layer ostracod carapaces and valves were 
autochthonous. The interval with a mixed assemblage is overlain by a tufa bed 
(293–262 cm) being dated approximately as 9.3–9.1 14C cal kyr BP. This bed 
contains plant remains and its ostracod assemblage is dominated by C. candida. 
Few remains of littoral species of C. cf. ovum, C. exsculpta, P. cf. villosa, P. 
compressa, L. inopinata occurred in this interval suggesting lowered water level 
and increased temperature. During 9.1–8.6 14C cal kyr BP (262–180 cm) 
occurred species cold water and oligotrophic conditions preferring F. protzi 
together C. cf. ovum, C. exsculpta, C. vidua. In this interval P. rostrata made its 
appearance also. A slight cooling and productivity decrease during ca.  
9.1–8.6 14C cal kyr BP preceded further temperature rise and water level 
lowering ca. 8.6–7.4 14C cal kyr BP (180–28 cm), leading to the development of 
an eutrophic lake and ceasing of the tufa precipitation. In this interval M. 
cordata and P. rostrata remains occur together C. kingsleii in sediments 
suggesting shallowing warm nutrient- and vegetation rich water body toward 
the end of tufa formation (ca. 7.4 14C cal kyr BP; Papers III, IV).  

Co-occurrence of warm stenothermal M. cordata and cold stenothermal  
P. rostrata is rather peculiar and may suggest presence of a thermocline in the 
water body, as benthic species preferring groundwater inflow and exobenthic 
ostracod avoiding groundwater both occur in the subfossil assemblage (Paper 
IV). The ostracod stable oxygen isotopic analyses (ca. 8.5 14C cal kyr BP) show 
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low δ18O values, –10.05 ‰ (SD=0.64) for exobenthic M. cordata, –9.34 ‰ 
(SD=0.27) for C. kingsleii and –8.75 ‰ (SD=0.34) for benthic P. rostrata, 
(Paper III). Such a dispersive oxygen isotopic composition of ostracods may 
suggest that the upper water masses were more affected by variations in air 
temperature and precipitation during the summer period; the valves of benthic 
P. rostrata had also more uniform isotopic composition suggesting more stable 
temperature condition in the near bottom waters. The period was probably 
characterized by the higer effective humidity, as upper water masses were 
depleted by heavier isotope 18O (Fig. 7).  
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Fig. 7. Formation of isotope composition of ostracod subfossils according to ecological 
preferences of species suggests lower evapotranspiration ratio in freshwater basin in 
summer seasons before the HTM when the surface water became depleted in the heavier 
isotope 18O. 
 
 

5.1.2. Late-glacial and Holocene ostracod faunas in Estonia 
 
Distribution of ostracod species in the sediments is recorded throughout the 
post-glacial period. The main colonization of the area by ostracods took place 
roughly at the transition of LG and Holocene (Fig. 8). The LG and Early 
Holocene silts and clays are characterized by the cosmopolitan species  
C. candida, occurring together with the cold stenothermal L. mirabilis,  
L. sanctipatricii, C. lacustris (Haljala, Pikkjärv, Varangu sites). Such 
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assemblage structure (the “candida-fauna” sensu Absolon, 1973) is typical of 
large cold oligotrophic lakes. In the LG and Early Holocene the tufa sequences 
contain abundant M. cordata, and the corresponding assemblage may be 
interpreted as the “cordata-fauna” sensu Absolon (1973) (Papers I–IV). The 
latter assemblage is more species-rich than the “candida-fauna”. Ostracod 
species in the cordata-assemblage are sensitive to environmental changes, like 
lowering water level, temperature fluctuation, changes of trophic status of a lake 
(Papers I–IV).  
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Fig. 8. Development of ostracod fauna in Estonia during the LG and Holocene (Papers 
I–IV; Sohar, 2004; Niinemets & Hang, 2009; Saarse et al., 2009). Solid line – time 
interval of the species distribution according to age-depth models; dotted line – time 
ineterval of species distribution derived from correlation of sediment 
layers/palaeoenvironmental events. 
 
 

M. cordata and D. stevensoni did not co-occur in Estonian lakes at the 
beginning of the Holocene (Paper II). D. stevensoni made its appearance before 
the invasion of M. cordata, being accompanied by L. inopinata, C. candida,  
C. vidua, H. reptans and I. bradyi. The “stevensoni-fauna” was a transitional 
ostracod fauna between the oligotrophic “candida-fauna“and eutrophic 
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“cordata-fauna” in Estonia. Occurrence of D. stevensoni likely refers to oligo-
/mesotrophic conditions in shallow water bodies with open waters, i.e. without 
or with only minimal aquatic vegetation (Pedja and Ermistu sections) (Paper II).  

Development of a lake from an oligotrophic water body towards meso-to 
eutrophic state and formation of a paludal area bring along distinct changes in 
the composition of ostracod assemblages (Fig. 9). Oligotrophic lakes of Estonia 
are characterized by the “candida-fauna” (Sohar, 2004; Saarse et al., 2009; 
Paper IV). Rise of temperature and nutrient level brings a lake into the oligo- to 
mesotrophic state, supporting higher ostracod diversity and the appearance of 
the “stevensoni-fauna” (Paper II). Progressive eutrophication and ageing of a 
water body create favourable conditions for M. cordata. Appearance of this 
species, together with other typical littoral taxa, is indicative of lowering water 
level and shrinking lake basin. These changes cause a gradual increase of 
population density of M. cordata (Papers I, II, IV). Eutrophication and 
development of dense vegetation in marginal areas of a lake is a characteristic 
feature of the Early Holocene. Transition of the overgrown water body into a 
paludal area may result in the appearance of S. pseudobrowniana in the low-
diversity “cordata-fauna” (Paper II). 
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Fig. 9. Succession of freshwater ostracod assemblages in Estonia from the LG to the 
HTM according to changes (water level, trophic status) in ambient waters (Papers I, 
II, IV). 
 

Appearance of P. rostrata in the Middle and Late Holocene does not fit the 
above model. P. rostrata is recorded from the tufa beds of Lake Sinijärv and 
Varangu tufa pit, but not recorded from the eastern or western parts of Estonia. 
It has the same distribution areas as the spring-related T. estonica. This may be 
interpreted as evidence of groundwater preference in P. rostrata. 

13
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6. DISCUSSION 
 
6.1. Evolution of lacustrine ostracod faunas during the 

late-glacaial and the Holocene in Quaternary 
sediments in Estonia 

 
In the last late-glacial ostracods populated very early large water bodies in 
central and northern Europe. Pioneer species were normally L. mirabilis,  
C. lacustris, L. sanctipatricii, C. candida, C. neglecta, subfossils of which occur 
in LG clays and silts (Scharf, 1993; Schwalb et al., 1994; Löffler, 1986, 1997; 
Schwalb et al., 1998; Krzymińska & Przezdziecki, 2001; Namiotko et al., 2006; 
Viehberg et al., 2008; Hammarlund, 1999; Hammarlund et al., 1999). This 
conclusion is supported with the Estonia data as well. C. lacustris, accompanied 
with I. bradyi, is documented also in the Late-Saalian clay deposit in western 
Estonia (Table 1) (Rattas et al., 2010), suggesting that these two were the 
pioneer species, following the termination of glacial environments. 

The last Scandinavian Ice Sheet (Late-Weichselian) grew large enough to 
divert melt water from the margin of the ice sheet in northern Europe across the 
Baltic Basin to eastern Europe. At ca. 15.0 14C cal kyr BP it formed large ice 
dammed lakes (the Baltic Ice Lake, Pri-Valdai Ice Lake), due to temperature 
increase (Hubberten et al., 2004; Mangerud et al., 2004). Large freshwater 
bodies were suitable for primal aquatic habitants.  

Lakes with minerogenic (sand, clay) sedimentation have a low organic 
content and are considered oligotrophic (Håkanson & Jansson, 1983). The 
assemblages associated with minerogenic sediments contain benthic species 
which require high oxygen concentrations in the cold bottom waters and inhabit 
profundal areas of large lakes (C. lacustris, C. candida, L. mirabilis, L. 
sanctipatricii – Danielopol et al., 1988; Meisch, 2000; Mischke et al., 2010). 
Few of the species, e.g. C. lacustris and Leucocythere sp., have water depth 
optima deeper than 30 m.  

In Estonia ostracods colonised freshwater basins after the decay of the last 
ice cap. The earliest post-glacial ostracod subfossils are found in lacustrine silty 
clays and clayey silts or in fine sand (Table 1; Fig. 8). The LG species were 
distributed mainly with melt water flows and in course of water level changes 
caused by melting glaciers and permafrost. Similar possibilities of ostracod 
distribution were suggested by Griffiths & Evans (1995) in northern Europe. 
Judging from the presence of arctic ichtyofauna in the LG Baltic Ice Lake 
(Paaver & Lõugas, 2003; Kukk et al., 2000), a passive way of distribution may 
also have played some role in migration of ostracod species.  

Ice retreated from the current Estonian territory between ca. 14.7–12.7 14C 
cal kyr BP (Kalm, 2006). As described by Davydova et al. (2001), Birks et al. 
(2000), Heikkilä et al. (2009), LG terrestrial and aquatic ecosystems readily 
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responded to climatic changes. Changes in the composition of LG ostracod 
assemblages reflect temperature and water level fluctuations in lakes.  

The oldest subfossil ostracod record of post-glacial Estonia comes from the 
Haljala palaeolake in northern Estonia, where the pioneer species were 
temperate, shallow water ostracods E. cf. virens, C. candida, C. ovum,  
P. compressa and L. inopinata. Appearance of these species marks a 
temperature increase at ca. 13.8–13.6 14C cal kyr BP (Saarse et al., 2009). The 
earliest records of L. sanctipatricii and C. lacustris are younger, between ca. 
13.6 and 13.1 14C cal kyr BP. This may refer to the incompleteness of the data 
set, as the early colonization history of the lacustrine environments was most 
likely similar to the respective developments in the other parts of Europe. For 
example Scharf et al. (2005) recorded the appearance of C. candida, C. ovum, 
H. reptans, C. vidua, P. villosa, L. inopinata and I. decipiens in sediments of the 
former lake of Miesenheim, northern-western Germany ca. 13.4–12.0 14C cal 
kyr BP. 

Ostracod fauna in minerogenic sediments of Lake Pikkjärv (eastern Estonia) 
is also of LG age (after R. Pirrus, 1983; not directly dated). The dominant 
species in the LG sediments of this lake were C. lacustris, C. candida,  
L. mirabilis suggesting cool conditions in a large water body (Sohar, 2004). 
According to many studies in Europe (Schwalb et al., 1998; Krzymińska & 
Przezdziecki, 2001; Belis et al., 2008; Viehberg et al., 2008) co-occurrence of  
C. lacustris, C. candida, L. mirabilis and L. sanctipatricii refers to profundal 
zones of large deep well ventilated lakes with silty or clayey bottom sediments. 
A similar assemblage was recorded in silty clays at the Varangu site, where it 
persisted until the middle Early Holocene (11.2 to 9.3 14C cal kyr BP) (Table 1; 
Paper IV).  

In modern ostracod fauna, the species typical of oligotrophic lakes (like C. 
lacustris and L. sanctipatricii), are not very common in smaller lakes but are 
still found together in profundal areas of large lakes in Estonia (Järvekülg, 
1959). L. mirabilis invaded large cool lakes with minerogenic sedimentation 
during the LG and Early Holocene, until rising temperatures and rising trophic 
status turned unfavourable to this species. L. mirabilis does not tolerate higher 
trophic status, warmer ambient temperatures and anoxic conditions. It 
disappears in course of enrichment of the lake sediments with organic material 
and decreasing oxygenation of the water-sediment interface (Meisch, 2000). 

Already at the end of LG, isolated water bodies started to replace proglacial 
large lakes in Estonia. Precipitation of freshwater tufa began in many lakes at 
ca. 12.8 14C cal kyr (Papers I, II). The water level lowering in lakes was due to 
Billingen drainage and land uplift (Rosentau et al., 2009). At the beginning of 
the Holocene, the sedimentary environment turned humic or alkaline in the lake 
basins. Ostracod distribution occurred by hydrological means or as a passive 
transport by mammals or avifauna. In addition, ichtyofauna may have 
contributed to passive dispersal of the latest LG and Holocene ostracod species 
in Estonia (Paaver & Lõugas, 2003). 
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The above described developments introduced more eurythermal ostracod 
species in littoral areas of lakes. The ostracod fauna is heterogeneous and of 
variable species composition in the Holocene tufas of Estonia (Figs. 5–6; Papers 
I–IV). The dominant species were M. cordata, C. vidua, C. candida, P. rostrata 
and C. ovum. Griffiths & Evans (1995) suggested calcareous conditions to be 
unsuitable for M. cordata and refer the species mainly to humic deposits. 
However, the occurrence of this species in the LG and Holocene calcareous 
deposits of Estonia, but also in calcareous deposits in other parts of northern 
Europe (Griffiths, 1999; Walker et al., 1999), suggests that calcareous habitats 
were still favourable to this species.  

Although M. cordata is very common, it is not present in every studied 
sequence. Subfossils of M. cordata are recorded from several lakes: 

• Lake Sinijärv between ca. 12.8–10.6 14C cal kyr BP (Paper I); 
• Lake Elistvere, the subfossil record ca. 12.8–10.2 14C cal kyr BP (Paper 

II);  
• Lake Ermistu in western Estonia, where M. cordata occurred in 

sediments deposited between ca. 10.2 and 9.5 14C cal kyr BP (Paper II); 
• at Varangu site where the species occurred in much younger sediments, 

dated as ca. 8.6–7.4 14C cal kyr BP (Paper IV); 
• in the Pedja core (Lake Võrtsjärv deposits), the occurrence of M. cordata 

was not directly dated but indirect evidence suggests it to occur in the 
Early Holocene or early Middle Holocene (Paper II). The strait system 
between Lake Peipsi and Lake Võrtsjärv closed ca. 12.8–11.7 14C cal kyr 
BP (due to isostatic uplift: Rosentau et al., 2009) and this event marked 
the beginning of decrease of volume of the Lake Võrtsjärv. Moora et al. 
(2002) have supposed that the lake retreated from the study area nearly 
7.7 14C cal kyr BP. 

 
The data listed above demonstrate that M. cordata can be recorded in the 

sediments of different age but its presence is referring to similar changes in 
palaeoenvironments. At the same time, it still did not colonize lakes with 
minerogenic sedimentation.  

The “candida-fauna” sensu Absolon (1973) contains C. candida, P. 
compressa, P. villosa, C. ovum, and some other taxa not common in Estonia. 
Typical representative species of his “cordata-fauna are M. cordata and D. 
stevensoni, together with some other typical central European taxa. The 
“candida-fauna” can also be recognized in Estonia, being composed of C. 
candida, L. sanctipatricii, L. mirabilis, C. lacustris, and T. estonica. Judging 
from palaeoenvironmental reconstructions of the area, this was a cold 
stenothermal fauna (Sohar, 2004; Saarse et al., 2009; Paper IV). Similar 
candida-assemblages are also recognised in the Holocene sediments on the 
British Isles (Griffiths & Evans, 1995) and in central Europe (Günther, 1986; 
Löffler, 1986, 1997; Viehberg, 2004). Günther (1986) and Viehberg et al. 
(2008) also suggest this fauna to be characteristic of the minerogenic sediments. 
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Ostracod species belonging to the “cordata-fauna” in Estonia are eurythermal, 
colonising favourably lakes with tufa precipitation, and this new assemblage is 
more species-rich than the “candida-fauna”. These taxa were still sensitive to 
changing water level, temperature fluctuations and changing trophic status 
(Papers I–IV).  

An intermediate assemblage of D. stevensoni can be recognized before 
invasion of M. cordata in several localities of Estonia (Pedja, Ermistu). In 
central and southern Europe, M. cordata and D. stevensoni are found in the 
same ostracod assemblages at the beginning of the Holocene (Belis et al., 2008; 
Viehberg et al., 2008). In Estonia, M. cordata and D. stevensoni were not found 
together. D. stevensoni co-occurs with L. inopinata, C. candida, C. vidua, H. 
reptans and I. bradyi, in the Holocene sediments of the Lake Peipsi also 
together with C. lacustris, C. candida, F. levanderi, F. protzi, L. sanctipatricii 
(Niinemets & Hang, 2009). The record from Lake Peipsi shows that the 
stevensoni assemblage has some overlap with the “candida-fauna” and likely 
comprises a transition between the oligotrophic “candida-“and eutrophic 
“cordata-fauna” (Paper II). 

The Holocene ostracod fauna is generally similar to the modern freshwater 
ostracod fauna in permanent shallow lakes in Estonia. The species recognized in 
the calcareous sediments (tufa) are known in modern small lakes in Estonia, 
however, only half of the recent species have a subfossil record. This may partly 
be due to the fact that recent depositional environments are too different of the 
Holocene alkaline lakes. Alkaline lakes are nowadays rare in Estonia. 
 
 

6.2. Ostracods and palaeoenvironmental  
changes in Estonia 

 
Changes in ostracod assemblages in freshwater systems serve as a proxy of 
environmental changes. Autecology of ostracod species allows to reconstruct 
environmental history, e.g. changes in relative water level, temperature and 
trophic status of small lakes in Estonia through the Late-Pleistocene and the 
Holocene (Papers I–IV).  

With the exception of L. mirabilis and S. pseudobrowniana, the rest of the 
LG and the Holocene taxa are present in the recent ostracod fauna of Estonia as 
well. All the freshwater ostracod species identified in the studied Quaternary 
sequences in Estonia (Papers I–IV; Rattas et al., 2010; Saarse et al., 2009) are 
also common in modern, the LG and the Holocene faunas throughout northern 
and central Europe (summaries in Griffiths, 1995a and Meisch, 2000).  

M. cordata has wide geographical distribution. It is found in most regions of 
Estonia, both in LG and Early Holocene tufa sequences (Papers I–IV), with the 
exception of the Early Holocene sediments of Lake Peipsi (Niinemets & Hang, 
2009). Disappearance of M. cordata from the tufa sequences is a result of 
intensifying groundwater inflow during the Early Holocene, as documented 

14
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from the Pandivere area (Paper I). There is an evidence from the other areas 
(observations from Austrian, Romanian, English lakes) that M. cordata avoids 
groundwater inflows (Danielopol et al., 1996). The groundwater in the 
Pandivere Upland area, northern Estonia, has been Fe-rich during the Early 
Holocene (Paper I) and high Fe concentrations were lately measured in the 
recent spring waters too (Syrovetnik et al., 2007). This may suggest that the 
changes in the population density of M. cordata may partly be related to the 
changes in water chemistry. 

P. rostrata, if compared to M. cordata had more restricted distribution. It 
occurs in the Middle- to Late-Holocene tufa sequences in the Pandivere area 
which is rich in springs (Papers I, III, IV). In modern European ostracod fauna 
P. rostrata is found in ponds of calcareous wetlands, fed by springs that flow 
out from the Cretaceous chalk (Keatings et al., 2002). This available 
information suggests that the occurrence of P. rostrata may be indicative of an 
increased groundwater discharge into the water body.  

Although the subfossil record of T. estonica is unknown outside Estonia 
(Paper IV) and the species  is also rare in modern ostracod fauna in Europe (van 
der Meeren et al., 2009), its recent distribution in Estonia and co-occurrence 
with other modern species (Timm & Järvekülg, 1975) suggests a controlling 
mechanism on its distribution which is similar to that in P. rostrata.  

S. pseudobrowniana is often documented as being related to springs, but 
semi-terrestrial way of life has been observed as well (Meisch, 2000). It inhabits 
floating fens of shallow lakes, in association with C. kingsleii and M. cordata 
(Danielopol & Vespremeanu, 1964). In Estonia S. pseudobrowniana points to 
aged water-bodies, rather than to the spring-water systems, appearing in 
composition of the “cordata-fauna” in course of paludification of lake shores 
(Paper II).  

Comparative analysis of data from studied freshwater tufa sequences 
revealed similar ostracod distribution patterns. This is best reflected in 
dynamics of M. cordata. However, the fact that M. cordata is recorded in 
sediments of different ages (see above) suggests that similarity in ostracod 
distribution patterns between the studied sections is most likely due to similar 
environmental trends that were non-contemporaneous.  

Figure 10 is summarizing local changes in composition of ostracod 
assemblages, changes of water level and temperature in the studied lakes. It 
visualizes the similar but non-contemporaneous trends in environmental history 
of different water bodies. This proves that regional climatic changes are not the 
only factor influencing lake biota and evolution of lakes. Other factors, like 
dissolved and particulate material from the catchment, the base and nutrient 
status of the lake water and the internal process of ecosystem succession and 
sediment accumulation (Birks et al., 2000; Väliranta et al., 2007) have likely 
been equally important during the Holocene. 
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Fig. 10. Distribution of indicator ostracod species in studied sequences showing local 
environmental changes during the LG and the Holocene (Papers I, II, IV and Niinemets 
& Hang, 2009). 
 
 

Development of water bodies is well reflected in the succession of ostracod 
assemblages. The “candida-fauna” reflects an early, oligotrophic stage in lake 
evolution, being also related to high water level in a lake. Studies of pollen and 
sediments suggest high lake levels for the beginning of Holocene in Estonia 
(Punning et al., 2003; Koff et al., 2005). This may be due to increasing 
humidity over the northern mainland, maritime climate (Seppä et al., 2005; 
Giesecke et al., 2008; Seppä et al., 2009) and relatively low temperatures 
(Hammarlund et al., 2003; Seppä et al., 2005). Appearance of the “stevensoni-
fauna” is characteristic of the mesotrophic phase in the development of a lake 
while the “cordata-fauna” is indicative of the eutrophic/dystrophic phase. The 
early appearance of M. cordata (12.8 14C cal kyr BP) supports the idea that 
lowering of water levels and a temperature rise in lakes started already during 
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the LG in Estonia. Saarse et al. (1995) concluded that this happened in the Early 
Holocene but the dated ostracod records from Lake Sinijärv and Lake Elistvere 
clearly refer to the LG ages (Papers I, II). The periods of the highest 
temperatures during the HTM were characterised by progressively lowering 
lake levels and dry climate, culminating in the middle of the Holocene in 
northern Europe (Heikkilä & Seppä, 2003; Hammarlund et al., 2003; Seppä & 
Poska, 2004; Antonsson et al., 2006; Gedda, 2006; Antonsson et al. 2008; 
Seppä et al., 2009; Heikkilä et al., 2010). The prevalence of M. cordata and a 
gradual increase of its abundance in the Early Holocene sediments are due to 
this water level lowering and increase of both, temperature and trophic status of 
the particular lake (Papers II, IV; Fig. 10).  

Differences in O-isotopic composition of valve calcite of ostracod species 
with different habitat preferences (exobenthic M. cordata has lower 18O values 
(–10.05 ‰) than benthic P. rostrata (–8.75 ‰) – Paper III) suggest low 
evapotranspiration rates, high water levels and increased groundwater discharge 
before the Holocene Thermal Maximum. Intervals of more humid climate 
conditions are characterized by increased lake volume and relatively depleted 
isotopic ratios (Hammarlund et al., 2003).  

A gradual decrease in temperature is recorded since ca. 4.5–4.0 14C cal kyr 
BP in northern Europe, being visible both in the pollen and stable isotopic 
records (Hammarlund et al., 2003; Heikkilä & Seppä, 2003; Seppä & Poska, 
2004; Seppä et al., 2005; Antonsson & Seppä, 2007). Changes in the Late 
Holocene ostracod assemblage structure in northern Estonia, the appearance of 
P. rostrata in particular, are in agreement with these data, suggesting increasing 
water level and high groundwater discharge (Paper I).  
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7. CONCLUSIONS 
•  The Quaternary ostracod subfossils record in Estonia comprises 30 

freshwater species recorded from minerogenic sediments (predominantly 
cold-preferring species) and freshwater lacustrine tufa deposits (more  
thermophilous species). Organic lacustrine sediments are barren of ostracod 
remains. Ostracod shells, if present, are well preserved and mostly in situ 
conditions. 

•  Late-glacial and Holocene ostracods occur in the modern freshwater fauna of 
Estonia, except for Scottia pseudobrowniana and Leucocythere mirabilis, 
and are known in the western and northern European subfossil and recent 
faunas as well. The subfossil record of Tonnacypris estonica in northern 
Estonia is the first documentation of subfossil occurrence of this species 
worldwide.  

•  The late-glacial ostracod fauna was temperature-dependent. The late-glacial 
pioneer species were thermophilous Limnocythere inopinata, Cyclocypris 
ovum, Pseudocandona compressa, and cold water preferring Candona 
candida, Leucocythere mirabilis, Limnocytherina sanctipatricii, Cytherissa 
lacustris, both faunas appearing soon after the Late-Weichselian ice decay in 
Estonia.  

•  Changes in the composition of the ostracod assemblages in tufa sequences 
reflect changes in ambient temperature, lake level and trophic conditions. 
Metacypris cordata, Darwinula stevensoni, Pseudocandona rostrata, and 
Candona candida are the most important taxa for interpreting palaeo-
environmental changes in Estonian lakes 

•  The dated ostracod record refers to first clear evidence of lake water level 
lowering and a temperature increase in Estonia already during the late-
glacial (ca. 12.8 C cal kyr BP). 14

•  The “candida-fauna” and the“cordata-fauna” by Absolon (1973) were 
recognized in Estonian lacustrine sediments but they refer to non-
contemporaneous environmental changes in the studied lakes. Appearance of 
the “cordata-fauna” refers to an ageing eutrophic freshwater body with 
emerged aquatic vegetation. Specific feature for Estonia is that between the 
“candida-“ and “cordata-faunas“a transitional “stevensoni-fauna” occurs, 
implying to mesotrophic lake with cooler and open water.  

•  Oxygen isotopic composition of valve calcite of exobenthic Metacypris 
cordata (average δ18O = –10.05 ‰) has lower 18O values than that of benthic 
Pseudocandona rostrata (δ18O = –8.75 ‰), suggesting that there was low 
evapotranspiration rate, increased lake volume and high groundwater 
discharge before the Holocene Thermal Maximum. 

•  Similar ostracod successions in the tufa sequences are mostly non-
contemporaneous. This suggests that, since the end of late-glacial and 
beginning of the Holocene, development of the lakes was more affected by 
local changes in the catchments (water level, productivity, temperature, 
vegetation, groundwater inflow) than by regional climatic changes.  

15



58 

8. FUTURE RESEARCH PERSPECTIVES 
 
Advanced research using ostracod subfossils will contribute to high-resolution 
reconstructions of air/water temperature histories since the late-glacial. Calcite 
of ostracod carapaces is among the best materials for stable isotopic analyses 
that can produce quantitative temperature data for the Quaternary (e.g. Anadon 
et al., 2006; Schwalb, 2003; Schwalb et al., 1994; von Grafenstein et al., 1994; 
1998; Holmes et al., 2010). The present study demonstrates that freshwater tufa 
deposits are the best sediment archives where subfossil ostracods are preserved 
in large quantities and in good preservation. One of the best study objects in this 
respect is Lake Sinijärv in northern Estonia which reveals ostracod subfossil 
record since the late-glacial up to now. In addition, ostracod-containing tufa 
sequences of the Eemian age are also known to cover lengthy periods of time 
and thus provide an opportunity for comparative palaeoecological research of 
two different interglacials.  
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SUMMARY IN ESTONIAN 
 

Mageveelised karpvähid pärastjääaegsetes setetes ja nende 
kasutamine paleokeskkonna rekonstrueerimisel Eestis  

 
Paleokeskkonna uuringud on muutunud oluliseks kogu maailmas. Selleks, et 
näha ette võimalikke tuleviku arengusuundi, püütakse mõista minevikus 
toimunud kliimamuutusi. Järvede elustik, sh põhjaloomastik, on tundlik 
keskkonnas toimuvate muutuste suhtes, reageerides veetaseme, temperatuuri, 
toitelisuse, soolsuse kõikumistele. Õietolmu, ränivetikate ja taimejäänuste 
uurimine järvesetetest on laialt levinud. Antud töös kasutatakse esmakordselt 
Eestis karpvähkide ehk ostrakoodide subfossiile, interpreteerimaks keskkonna-
muutusi peale viimast jääaega. Karpvähid (u 0,5–2 mm) on veelised organis-
mid, kelle pehmet keha ümbritseb kahepoolmeline lubiainest koda, mis säilib 
setetes pärast looma surma. Teades tänapäevaste karpvähkide keskkonna-
eelistusi on võimalik interpreteerida mineviku veelist keskkonda. 

Mandriliustik taandus Eesti aladelt ligikaudu 14 700–12 800 aastat tagasi 
ning jääpaisjärvede sulavetest kujunesid veetaseme alanemisel järved. Peale 
liustiku taandumist asustasid karpvähid kiiresti suured pärastjääaegsed 
mageveekogud. Karpvähkide koosluste struktuur sõltus esialgu enamasti 
temperatuurist ning esimesed soojenemisele viitavad liigid olid Limnocythere 
inopinata, Candona candida (13 800–13 600 aastat tagasi). Järgnes kliima 
jahenemine u 13 600–13 000 aastat tagasi ning karpvähiliste seas levisid 
külmalembesed liigid, näiteks Cytherissa lacustris ja Limnocytherina 
sanctipatricii, mida on leitud nii Haljala piirkonnast, kinnikasvanud Varangu 
järve setetest kui ka Saadjärve voorestiku Pikkjärve aleuriidist. 

Isoleerunud järvenõgudes hakkas ligikaudu 12 800 aastat tagasi (Äntu 
Sinijärv, Elistvere) või kohati ka viimase jäävaheaja, Holotseeni (viimased 
11 700 aastat) algul (Varangu, Ermistu, Võrtsjärv) kuhjuma valkjasbeež 
järvelubi. Erinevates uuritud läbilõigetes võib täheldada karpvähkide koosluste 
muutusi, mis viitavad veekogude vananemisele. Ilmneb teatud indikaatorliikide 
reeglipärane levik, nt madala toitelisusega hapnikurikkas jahedas ning sügavas 
järves oli levinud C. candida, kuid avaveelisele madaldunud veekogule oli 
iseloomulik Darwinula stevensoni ning rohketoitelises soojas taimestikurikkas 
kaldavööndis domineeris Metacypris cordata. Poolmaismaalise eluviisiga 
Scottia pseudobrowniana esinemine järvesetete noorimates kihtides viitab 
kinnikasvamisjärgus järvenõole. Veekogude vananemine oli seotud veetaseme 
langusega, temperatuuri tõusuga ning toitelisuse kasvuga Holotseeni esimesel 
poolel, mis ajaliselt langeb kokku kliimaoptimumiga. Ehkki selline arengu-
mudel on järvedele tüüpiline, ei ole muutused järvedes ega ostrakoodikooslustes 
leidnud aset samaaegselt. Järvede arengut mõjutasid mitte ainult temperatuuri-
muutused, vaid ka sademete ja aurumise vahekorra ning toitelisuse muutused 
Holotseeni esimesel poolel. Holotseeni teisel poolel viitab karpvähkide kooslus 
(Sinijärv) jahedamale keskkonnale ning tõusnud veetasemele, mis langeb kokku 
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Põhja-Euroopas viimaste aastatuhandete jooksul valitsenud külmema ning 
niiskema kliimaga. 

Karpvähkide kasutamine paleoklimaatilistes rekonstruktsioonides väärib 
edaspidi süvendatud tähelepanu, kuna nende kodade geokeemiline analüüsimine 
(isotoopkoostis) annab ainulaadset informatsiooni temperatuurikõikumiste 
kohta pärast jääaega.  
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