Majandusteaduskonna magistritööd – Master´s theses
Permanent URI for this collection
Browse
Browsing Majandusteaduskonna magistritööd – Master´s theses by Subject "aegridade analüüs"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Corporate tax arrears prediction based on monthly time series of tax arrears(Tartu Ülikool, 2020) Siimon, Õie Renata; Lukason, Oliver, juhendaja; Tartu Ülikool. Majandusteaduskond; Tartu Ülikool. Sotsiaalteaduste valdkondItem Evaluation and comparison of machine learning and classical econometric AR model on financial time series data(Tartu Ülikool, 2020) Mikeliani, Roza; Kavlashvili, Nino; Eratalay, Mustafa Hakan, juhendaja; Tartu Ülikool. Majandusteaduskond; Tartu Ülikool. Sotsiaalteaduste valdkondThis paper examines the effects of time series data behaviour on the predictive performance of classical econometric univariate autoregressive and machine learning autoregressive models. The research aims to understand which forecasting approach would perform better in extreme scenarios. Even though some empirical studies demonstrate the superiority of machine learning methods relative to classical econometric methods, it is still arguable under what conditions one method can be constantly better than the other. And if there are any cases when econometric models are preferable than machine learning. Data is derived from simulation, ensuring the presence of different outlier and error distributions in small and relatively larger samples. The simulation results show that the machine learning approach outperforms econometric models in most of the cases. However, the existence of outliers worsens the performance of machine learning on small datasets. Even with the presence of outliers, as the sample size grows, the result improves so much for machine learning that it dominates the econometric model. The same models were used to forecast with rolling sample approaches on real financial data.Item Millenium data - a quantitative exploratory analysis using regularization models on the UK GDP growth through multi frequency data(Tartu Ülikool, 2023) Melo Silva, Pedro Marco; Alfieri, Luca, juhendaja; Tartu Ülikool. Majandusteaduskond; Tartu Ülikool. Sotsiaalteaduste valdkondItem Prognoosimine Google otsingu märksõnade sageduse abil aegridade meetoditega(Tartu Ülikool, 2017) Matkur, Margus; Võrk, Andres, juhendaja; Tartu Ülikool. Majandusteaduskond; Tartu Ülikool. Sotsiaalteaduste valdkond