DSpace
    • English
    • Deutsch
    • Eesti
  • English 
    • English
    • Deutsch
    • Eesti
  • Login
View Item 
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Matemaatika ja statistika instituut
  • Matemaatika instituut. Kuni 2015
  • MMI bakalaureusetööd – Bachelor's theses. Kuni 2015
  • View Item
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Matemaatika ja statistika instituut
  • Matemaatika instituut. Kuni 2015
  • MMI bakalaureusetööd – Bachelor's theses. Kuni 2015
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Murrulised tuletised

Thumbnail
View/Open
Heinsalu_2013.pdf (3.605Mb)
Date
2013
Author
Heinsalu, Märten
Metadata
Show full item record
Abstract
This thesis consists of five parts. The first section contains definitions and theorems that are needed in following sections. These mostly regard Euler’s gamma and beta functions. This includes the domain of Euler’s gamma function, the relationship between the two functions and the gamma function’s limit representation. The second section consists of three chapters and provides Grünwald-Letnikov’s, Riemann-Liouville’s and Caputo’s approaches to fractional derivatives. Each chapter includes the definitions, the reasoning behind those definitions and some of the more important properties of those definitions. The third section concerns the relationships between the three previously stated definitions of fractional derivatives. Firstly, it explores the connection between Riemann-Liouville’s and Caputo’s fractional differential operators, and secondly, the relationship between Riemann-Liouville’s and Grünwald-Letnikov’s definitions of fractional derivatives. The fourth section gives examples on how to find fractional derivatives of some power functions based on the three different definitions explored in this paper. The example functions are (x − a)b, √x, x2, x3 and the constant function f(x) = c. The final section gives examples of the applications of fractional derivatives. It primarily focuses on how to solve Abel’s integral equation and equations that are equivalent to Abel’s integral equation using fractional order derivatives and how to model some special cases of diffusion.
URI
http://hdl.handle.net/10062/31019
Collections
  • MMI bakalaureusetööd – Bachelor's theses. Kuni 2015 [63]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV