DSpace
    • English
    • Deutsch
    • Eesti
  • English 
    • English
    • Deutsch
    • Eesti
  • Login
View Item 
  •   DSpace Home
  • Loodus- ja täppisteaduste valdkond
  • Matemaatika ja statistika instituut
  • Matemaatika instituut. Kuni 2015
  • MMI bakalaureusetööd – Bachelor's theses. Kuni 2015
  • View Item
  •   DSpace Home
  • Loodus- ja täppisteaduste valdkond
  • Matemaatika ja statistika instituut
  • Matemaatika instituut. Kuni 2015
  • MMI bakalaureusetööd – Bachelor's theses. Kuni 2015
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integraali keskväärtusteoreemid: keskväärtust määravate punktide asümptootiline käitumine

Thumbnail
View/Open
Maadik_2013.pdf (304.9Kb)
Date
2013
Author
Maadik, Inger-Helen
Metadata
Show full item record
Abstract
The purpose of this thesis is to study the asymptotic behaviour of intermediate points in mean value theorems for integrals. The most simple mean value theorem states that if f : [a; b] ! R is a continuous function then there exists a number c 2 (a; b) such that Z b a f(t) dt = f(c)(b - a): In the case of the simpler mean value theorems for integrals the intermediate point c(x) asymptotically approaches the midpoint of the interval [a; x] and in addition lim sup x!a c(x) - a x - a 1 e : The simplest weighted mean value theorem for integrals states that if f : [a; b] ! R is a continuous function and g : [a; b] ! [0;1) is an integrable function then there exsists a number c 2 [a; b] such that Z b a f(t)g(t) dt = f(c) Z b a g(t) dt: In the case of the weighted mean value theorems for integrals the intermediate point asymptotically approaches the value a + (x - a) k q 1 k+1, where k 2 N is the number of times the function f di erentiable at the point a. Also when f and g are di erentiable then the intermediate point satis es the equation lim x!a R c(x) a g(t) dt R x a g(t) dt = 1 2 : 38 If the conditions set on the functions in the weighted mean value theorems for integrals are expanded to functions that aren't di erentiable at the point a then the approximate value c(x) a + (x - a) r r s + 1 r + s + 1 ; where r 2 (-1; 0) [ (0;1), s 2 (-1;1) and r +s > -1, can be used to provide close approximiations to certain physics' problems.
URI
http://hdl.handle.net/10062/31066
Collections
  • MMI bakalaureusetööd – Bachelor's theses. Kuni 2015 [51]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV