DSpace
    • English
    • Deutsch
    • Eesti
  • English 
    • English
    • Deutsch
    • Eesti
  • Login
View Item 
  •   DSpace @University of Tartu
  • Dissertatsioonid 2004 – Theses, MSc, PhD (ETD)
  • 1. TÜ väitekirjad alates 2004 - Theses, PhD, MSc, ETD
  • View Item
  •   DSpace @University of Tartu
  • Dissertatsioonid 2004 – Theses, MSc, PhD (ETD)
  • 1. TÜ väitekirjad alates 2004 - Theses, PhD, MSc, ETD
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compactness and null sequences defined by lp spaces

Thumbnail
View/Open
ain_kati.pdf (1.553Mb)
Date
2015-05-22
Author
Ain, Kati
Metadata
Show full item record
Abstract
Funktsionaalanalüüsi ja selle rakenduste alusuuringutes mängib olulist rolli hulkade ja operaatorite kompaktsus. Grothendiecki kompaktsuse kriteeriumi kohaselt on Banachi ruumi alamhulk suhteliselt kompaktne parajasti siis, kui ta sisaldub mingi nulliks koonduva jada kinnises kumeras kattes. Sellest kriteeriumist inspireerituna on sisse toodud mitmeid uusi tugevamaid kompaktsuse versioone, mis omakorda defineerivad erinevaid kompaktsete operaatorite klasse. Käesolevas väitekirjas töötatakse välja kompaktsuse vormide ning vastavate operaatorite klasside ühtne teooria. Selleks tuuakse sisse tugevam ja üldisem (p,r)-kompaktsuse mõiste nii hulkade kui ka operaatorite jaoks, mis erijuhul p=∞ ühtib klassikalise kompaktsusega ning juhul r=1 osutub Bourgain-Reinovi p-kompaktsuseks. Erijuhul r= p/(p-1) on tegemist viimasel ajal intensiivselt uuritud Sinha-Karni p-kompaktsusega. Väitekirja tunduvalt lihtsam alternatiivne teooria hõlmab muuhulgas ka Sinha-Karni p-kompaktsust ning saadud tulemused parendavad mitmeid varasemaid.
 
The compactness of sets and operators plays an important role in the baseline studies of functional analysis and its applications. According to Grothendieck’s criterion of compactness, a subset of a Banach space is relatively compact if and only if it is contained in the closed convex hull of a sequence converging to zero. This criterion has inspired several other forms of relative compactness, which in turn define different classes of compact operators. In the current thesis, a unified study of compactnesses and corresponding classes of compact operators is developed. A stronger and more general notion of (p,r)-compactness for sets and for operators is introduced, so that when p=∞, it coincides with the classical compactness and for r=1, it is exactly the p-compactness in the sense of Bougain-Reinov. In the special case when r=p/(p-1), it is the extensively studied p-compactness in the sense of Sinha-Karn. The alternative theory of the thesis encompasses among others the p-compactness in the sense of Sinha-Karn, and the results improve several known ones.
 
URI
http://hdl.handle.net/10062/46499
Collections
  • 1. TÜ väitekirjad alates 2004 - Theses, PhD, MSc, ETD [3257]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV